WorldWideScience

Sample records for saturable core magnetometers

  1. Exploiting nonlinear dynamics in a coupled-core fluxgate magnetometer

    International Nuclear Information System (INIS)

    Bulsara, Adi R; In, Visarath; Kho, Andy; Longhini, Patrick; Neff, Joe; Anderson, Gregory; Obra, Christopher; Palacios, Antonio; Baglio, Salvatore; Ando, Bruno

    2008-01-01

    Unforced bistable dynamical systems having dynamics of the general form τ F x-dot (t)=-∇ x U(x) cannot oscillate (i.e. switch between their stable attractors). However, a number of such systems subject to carefully crafted coupling schemes have been shown to exhibit oscillatory behavior under carefully chosen operating conditions. This behavior, in turn, affords a new mechanism for the detection and quantification of target signals having magnitude far smaller than the energy barrier height in the potential energy function U(x) for a single (uncoupled) element. The coupling-induced oscillations are a feature that appears to be universal in systems described by bi- or multi-stable potential energy functions U(x), and are being exploited in a new class of dynamical sensors being developed by us. In this work we describe one of these devices, a coupled-core fluxgate magnetometer (CCFM), whose operation is underpinned by this dynamic behavior. We provide an overview of the underlying dynamics and, also, quantify the performance of our test device; in particular, we provide a quantitative performance comparison to a conventional (single-core) fluxgate magnetometer via a 'resolution' parameter that embodies the device sensitivity (the slope of its input–output transfer characteristic) as well as the noise floor

  2. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)

  3. Coupled-core fluxgate magnetometer: Novel configuration scheme and the effects of a noise-contaminated external signal

    International Nuclear Information System (INIS)

    Palacios, Antonio; Aven, John; In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Bulsara, Adi

    2007-01-01

    Recent theoretical and experimental work has shown that unidirectional coupling can induce oscillations in overdamped and undriven nonlinear dynamical systems that are non-oscillatory when uncoupled; in turn, this has been shown to lead to new mechanisms for weak (compared to the energy barrier height) signal detection and amplification. The potential applications include fluxgate magnetometers, electric field sensors, and arrays of Superconducting Quantum Interference Device (SQUID) rings. In the particular case of the fluxgate magnetometer, we have developed a ''coupled-core fluxgate magnetometer'' (CCFM); this device has been realized in the laboratory and its dynamics used to quantify many properties that are generic to this class of systems and coupling. The CCFM operation is underpinned by the emergent oscillatory behavior in a unidirectionally coupled ring of wound ferromagnetic cores, each of which can be treated as an overdamped bistable dynamic system when uncoupled. In particular, one can determine the regimes of existence and stability of the (coupling-induced) oscillations, and the scaling behavior of the oscillation frequency. More recently, we studied the effects of a (Gaussian) magnetic noise floor on a CCFM system realized with N=3 coupled ferromagnetic cores. In this Letter, we first introduce a variation on the basic CCFM configuration that affords a path to enhanced device sensitivity, particularly for N>=3 coupled elements. We then analyze the response of the basic CCFM configuration as well as the new setup to a dc target signal that has a small noisy component (or ''contamination'')

  4. Coupled-core fluxgate magnetometer: Novel configuration scheme and the effects of a noise-contaminated external signal

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Antonio [San Diego State University, Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego, CA 92182-7720 (United States)]. E-mail: palacios@euler.sdsu.edu; Aven, John [San Diego State University, Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego, CA 92182-7720 (United States); In, Visarath [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States)]. E-mail: visarath@spawar.navy.mil; Longhini, Patrick [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Kho, Andy [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Neff, Joseph D. [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Bulsara, Adi [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States)]. E-mail: bulsara@spawar.navy.mil

    2007-07-16

    Recent theoretical and experimental work has shown that unidirectional coupling can induce oscillations in overdamped and undriven nonlinear dynamical systems that are non-oscillatory when uncoupled; in turn, this has been shown to lead to new mechanisms for weak (compared to the energy barrier height) signal detection and amplification. The potential applications include fluxgate magnetometers, electric field sensors, and arrays of Superconducting Quantum Interference Device (SQUID) rings. In the particular case of the fluxgate magnetometer, we have developed a ''coupled-core fluxgate magnetometer'' (CCFM); this device has been realized in the laboratory and its dynamics used to quantify many properties that are generic to this class of systems and coupling. The CCFM operation is underpinned by the emergent oscillatory behavior in a unidirectionally coupled ring of wound ferromagnetic cores, each of which can be treated as an overdamped bistable dynamic system when uncoupled. In particular, one can determine the regimes of existence and stability of the (coupling-induced) oscillations, and the scaling behavior of the oscillation frequency. More recently, we studied the effects of a (Gaussian) magnetic noise floor on a CCFM system realized with N=3 coupled ferromagnetic cores. In this Letter, we first introduce a variation on the basic CCFM configuration that affords a path to enhanced device sensitivity, particularly for N>=3 coupled elements. We then analyze the response of the basic CCFM configuration as well as the new setup to a dc target signal that has a small noisy component (or ''contamination'')

  5. Plasma current sustainment after iron core saturation in the STOR-M tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O., E-mail: omitarai@ktmail.tokai-u.jp [Kumamoto Liberal Arts Education Center, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto 862-8652 (Japan); Ding, Y.; Hubeny, M.; Lu, Y.; Onchi, T.; McColl, D.; Xiao, C.; Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada)

    2014-10-15

    Highlights: • Plasma current can be started up by small iron core without central solenoid. • Iron core removes central solenoid. • Plasma current can be maintained after iron core saturation. • Hysteresis curve shows the partial core saturation. • Image field from iron core is estimated during discharge. • Spherical tokamak reactor without CS is proposed using the small iron core. - Abstract: We propose to use of a small iron core transformer to start up the plasma current in a spherical tokamak (ST) reactor without central solenoid (CS). Taking advantage of the high aspect ratio of the STOR-M iron core tokamak, we have demonstrated that the plasma current up to 10–15 kA can be started up using the outer Ohmic heating (OH) coils without CS, and that the plasma current can be maintained further by increasing the outer OH coil current during iron core saturation phase. When the magnetizing current reaches 1.2 kA and the iron core becomes saturated, the third capacitor bank connected to the outer OH coils is discharged to maintain the plasma current. The plasma current is slightly increased and maintained for additional 5 ms as expected from numerical calculations. Core saturation has been clearly observed on the hysteresis curve. This is the first experimental demonstration of the feasibility of slow transition from the iron core to air core transformer phase without CS. The results implies that a plasma current can be initiated by a small iron core and could be ramped up by additional heating and vertical field after iron core saturation in future STs without CS.

  6. Optimization design of toroidal core for magnetic energy harvesting near power line by considering saturation effect

    Science.gov (United States)

    Park, Bumjin; Kim, Dongwook; Park, Jaehyoung; Kim, Kibeom; Koo, Jay; Park, HyunHo; Ahn, Seungyoung

    2018-05-01

    Recently, magnetic energy harvesting technologies have been studied actively for self-sustainable operation of applications around power line. However, magnetic energy harvesting around power lines has the problem of magnetic saturation, which can cause power performance degradation of the harvester. In this paper, optimal design of a toroidal core for magnetic energy harvesters has been proposed with consideration of magnetic saturation near power lines. Using Permeability-H curve and Ampere's circuital law, the optimum dimensional parameters needed to generate induced voltage were analyzed via calculation and simulation. To reflect a real environment, we consider the nonlinear characteristic of the magnetic core material and supply current through a 3-phase distribution panel used in the industry. The effectiveness of the proposed design methodology is verified by experiments in a power distribution panel and takes 60.9 V from power line current of 60 A at 60 Hz.

  7. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Science.gov (United States)

    Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.

    2017-10-01

    Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal

  8. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Directory of Open Access Journals (Sweden)

    D. M. Miles

    2017-10-01

    Full Text Available Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc. which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C−1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK engineering plastic (virgin, 30 % glass filled and 30 % carbon filled, and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C−1 had a thermal gain dependence within 5 ppm°C−1 of a traditional sensor constructed from MACOR ceramic (8.1

  9. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  10. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  11. Criterion of magnetic saturation and simulation of nonlinear magnetization for a linear multi-core pulse transformer

    International Nuclear Information System (INIS)

    Zeng Zhengzhong; Kuai Bin; Sun Fengju; Cong Peitian; Qiu Aici

    2002-01-01

    The linear multi-core pulse transformer is an important primary driving source used in pulsed power apparatus for the production of dense plasm owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data

  12. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    Science.gov (United States)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  13. Suggested Methods for Preventing Core Saturation Instability in HVDC Transmission Systems

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Ian

    2002-07-01

    In this thesis a study of the HVDC related phenomenon core saturation instability and methods to prevent this phenomenon is performed. It is reason to believe that this phenomenon caused disconnection of the Skagerrak HVDC link 10 August 1993. Internationally, core saturation instability has been reported at several HVDC schemes and thorough complex studies of the phenomenon has been performed. This thesis gives a detailed description of the phenomenon and suggest some interesting methods to prevent the development of it. Core saturation instability and its consequences can be described in a simplified way as follows: It is now assumed that a fundamental harmonic component is present in the DC side current. Due to the coupling between the AC side and the DC side of the HVDC converter, a subsequent second harmonic positive-sequence current and DC currents will be generated on the AC side. The DC currents will cause saturation in the converter transformers. This will cause the magnetizing current to also have a second harmonic positive-sequence component. If a high second harmonic impedance is seen from the commutation bus, a high positive-sequence second harmonic component will be present in the commutation voltages. This will result in a relatively high fundamental frequency component in the DC side voltage. If the fundamental frequency impedance at the DC side is relatively low the fundamental component in the DC side current may become larger than it originally was. In addition the HVDC control system may contribute to the fundamental frequency component in the DC side voltage, and in this way cause a system even more sensitive to core saturation instability. The large magnetizing currents that eventually will flow on the AC side cause large zero-sequence currents in the neutral conductors of the AC transmission lines connected to the HVDC link. This may result in disconnection of the lines. Alternatively, the harmonics in the large magnetizing currents may cause

  14. The MASCOT Magnetometer

    Science.gov (United States)

    Herčík, David; Auster, Hans-Ulrich; Blum, Jürgen; Fornaçon, Karl-Heinz; Fujimoto, Masaki; Gebauer, Kathrin; Güttler, Carsten; Hillenmaier, Olaf; Hördt, Andreas; Liebert, Evelyn; Matsuoka, Ayako; Nomura, Reiko; Richter, Ingo; Stoll, Bernd; Weiss, Benjamin P.; Glassmeier, Karl-Heinz

    2017-07-01

    The Mobile Asteroid Scout (MASCOT) is a small lander on board the Hayabusa2 mission of the Japan Aerospace Exploration Agency to the asteroid 162173 Ryugu. Among the instruments on MASCOT is a fluxgate magnetometer, the MASCOT Magnetometer (MasMag). The magnetometer is a lightweight (˜280 g) and low power (˜0.5 W) triaxial fluxgate magnetometer. Magnetic field measurements during the landing period and during the surface operational phase shall provide information about any intrinsic magnetic field of the asteroid and its remanent magnetization. This could provide important constraints on planet formation and the thermal and aqueous evolution of primitive asteroids.

  15. The Pioneer XI high field fluxgate magnetometer

    Science.gov (United States)

    Acuna, M. A.; Ness, N. F.

    1975-01-01

    The high field fluxgate magnetometer experiment flown aboard the Pioneer XI spacecraft is described. This extremely simple instrument was used to extend the spacecraft's upper-limit measurement capability by approximately an order of magnitude (from 0.14 mT to 1.00 mT) with minimum power and volume requirements. This magnetometer was designed to complement the low-field measurements provided by a helium vector magnetometer and utilizes magnetic ring core sensors with biaxial orthogonal sense coils. The instrument is a single-range, triaxial-fluxgate magnetometer capable of measuring fields of up to 1 mT along each orthogonal axis, with a maximum resolution of 1 microT.

  16. Tuned cavity magnetometer sensitivity.

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Schwindt, Peter

    2009-09-01

    We have developed a high sensitivity (magnetometer that utilizes a novel optical (interferometric) detection technique. Further miniaturization and low-power operation are key advantages of this magnetometer, when compared to systems using SQUIDs which require liquid Helium temperatures and associated overhead to achieve similar sensitivity levels.

  17. Estimates of the hydrologic impact of drilling water on core samples taken from partially saturated densely welded tuff

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1987-09-01

    The purpose of this work is to determine the extent to which drill water might be expected to be imbibed by core samples taken from densely welded tuff. In a related experimental study conducted in G-Tunnel, drill water imbibition by the core samples was observed to be minimal. Calculations were carried out with the TOUGH code with the intent of corroborating the imbibition observations. Due to the absence of hydrologic data pertaining directly to G-Tunnel welded tuff, it was necessary to apply data from a similar formation. Because the moisture retention curve was not available for imbibition conditions, the drainage curve was applied to the model. The poor agreement between the observed and calculated imbibition data is attributed primarily to the inappropriateness of the drainage curve. Also significant is the value of absolute permeability (k) assumed in the model. Provided that the semi-log plot of the drainage and imbibition moisture retention curves are parallel within the saturation range of interest, a simple relationship exists between the moisture retention curve, k, and porosity (/phi/) which are assumed in the model and their actual values. If k and /phi/ are known, we define the hysteresis factor λ to be the ratio of the imbibition and drainage suction pressures for any saturation within the range of interest. If k and /phi/ are unknown, λ also accounts for the uncertainties in their values. Both the experimental and modeling studies show that drill water imbibition by the core has a minimal effect on its saturation state. 22 refs., 6 figs., 2 tabs

  18. Possibility evaluation of eliminating the saturated control fuel element from Tehran research reactor core

    International Nuclear Information System (INIS)

    Mirvakili, S.M.; Keyvani, M.; Arshi, S. Safaei; Khalafi, H.

    2012-01-01

    Highlights: ► We show safe operation of Tehran research reactor without one of its control rods. ► We propose an optimum new core configuration by fuel management calculations. ► We calculate neutronic and thermal hydraulic parameters of the new core. ► Parameters are consistent with the safety criteria. - Abstract: In this study the possibility of safe operation of Tehran research reactor (TRR) providing the elimination of one control rod is evaluated. One of the control fuel elements (CFEs) of TRR has been reached the maximum permissible burn-up and due to the impossibility of fresh fuel assembly provision under current situation, providing an optimum core configuration which satisfies safe operation conditions by applying fuel management calculations is essential. In order to ensure the safe and stable operation of recently proposed configuration for TRR core, neutronic and thermal hydraulic parameters of the new core are calculated and compared with the safety criteria. The results show good compatibility with reactor safety criteria, and provide desired shutdown margin and safety reactivity factor.

  19. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Science.gov (United States)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  20. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  1. GOES Space Environment Monitor, Magnetometer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Three orthogonal flux-gate magnetometer elements, (spinning twin fluxgate magnetometer prior to GOES-8) provide magnetic field measurements in three mutually...

  2. Scalar magnetometers for space applications

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    A survey of existing instrumentation and developments is presented emphasizing instrumentation for in-flight calibration of vector magnetometers on magnetic mapping missions. Proton free or forced precession magnetometers are at the focus as calibration references, because the proton gyromagnetic...

  3. The Magnetospheric Multiscale Magnetometers

    Science.gov (United States)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; hide

    2014-01-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  4. A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

    Science.gov (United States)

    Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.

  5. Mathematical model of a fluxgate magnetometer

    OpenAIRE

    Baranov Pavel F.; Baranova Vitalia E.; Nesterenko Tamara G.

    2018-01-01

    In paper analytical equations for calculate the electromotive force in the measuring coil of the fluxgate magnetometer independent of the drive signal frequency content are presented. Also, the equations for es-timation of the fluxgate sensitivity at any harmonic and for study fluxgates operation with a glance to the waveform and the polynomial approximation of the mean magnetization curve of the core are provided.

  6. Mathematical model of a fluxgate magnetometer

    Directory of Open Access Journals (Sweden)

    Baranov Pavel F.

    2018-01-01

    Full Text Available In paper analytical equations for calculate the electromotive force in the measuring coil of the fluxgate magnetometer independent of the drive signal frequency content are presented. Also, the equations for es-timation of the fluxgate sensitivity at any harmonic and for study fluxgates operation with a glance to the waveform and the polynomial approximation of the mean magnetization curve of the core are provided.

  7. THOR Fluxgate Magnetometer (MAG)

    Science.gov (United States)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Carr, Christopher, M.; O'Brien, Helen, L.; Narita, Yasuhito; K, Chen, Christopher H.; Berghofer, Gerhard; Valavanoglou, Aris; Delva, Magda; Plaschke, Ferdinand; Cupido, Emanuele; Soucek, Jan

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The fluxgate Magnetometer (MAG) measures the background to low frequency magnetic field. The high sensitivity measurements of MAG enable to characterize the nature of turbulent fluctuations as well as the large-scale context. MAG will provide the reference system for determining anisotropy of field fluctuations, pitch-angle and gyro-phase of particles. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two- sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy. We discuss the role of MAG in THOR key science questions and present the new developments during Phase A such as the finalised instrument design, MAG relevant requirement, and new calibraion schemes.

  8. The IRM fluxgate magnetometer

    Science.gov (United States)

    Luehr, H.; Kloecker, N.; Oelschlaegel, W.; Haeusler, B.; Acuna, M.

    1985-01-01

    This report describes the three-axis fluxgate magnetometer instrument on board the AMPTE IRM spacecraft. Important features of the instrument are its wide dynamic range (0.1-60,000 nT), a high resolution (16-bit analog to digital conversion) and the capability to operate automatically or via telecommand in two gain states. In addition, the wave activity is monitored in all three components up to 50 Hz. Inflight checkout proved the nominal functioning of the instrument in all modes.

  9. Cryostats for SQUID magnetometers

    International Nuclear Information System (INIS)

    Testard, O.A.; Locatelli, M.

    1982-05-01

    A non metallic and non magnetic cryostat, with a very low thermal budget and a container type autonomy was developed, to condition S.Q.U.I.D. magnetometers which maximum sensitivity reaches 10 -14 Tesla Hertzsup(-1/2). This instrumentation puts in hand new concepts of composite materials, thermal shock and vibration resistant, multilayer thermal radiative insulation also to the prouve of vibrations with thermal equivalent emissivity lower than 10 -3

  10. Minerals in fractures of the saturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.

    1987-04-01

    The minerals in fractures in drill core USW G-4, from the static water level (SWL) at 1770 ft to the base of the hole at 3000 ft, were studied to determine their identity and depositional sequence and to compare them with those found above the SWL in the same drill hole. There is no change in mineralogy or mineral morphology across the SWL. The significant change in mineralogy and relationship to the host rock occurs at 1381 ft, well above the present water table. Below 1381 ft clinoptilolite appears in the fractures and rock matrix instead of heulandite, and the fracture mineralogy correlates with the host rock mineralogy. Throughout most of the saturated zone (below the SWL) in USW G-4, zeolites occur in fractures only in zeolitic tuff; however, zeolites persist in fracture below the base of the deepest zeolitic tuff interval. Nonzeolitic intervals of tuff have fewer fractures, and many of these have no coatings; a few have quartz and feldspar coatings. One interval in zeolitic tuff (2125-2140 ft) contains abundant crisobalite coatings in the fractures. Calcite occurs in fractures from 2575 to 2660 ft, usually with the manganese mineral hollandite, and from 2750 to 2765 ft, usually alone. Manganese minerals occur in several intervals. The spatial correlation of zeolites in fractures with zeolitic host rock suggests that both may have been zeolitized at the same time, possibly by water moving laterally through more permeable zones in the tuff. The continuation of zeolites in fractures below the lowest zeolitic interval in this hole suggests that vertical fracture flow may have been important in the deposition of these coatings. Core from deeper intervals in another hole will be examined to determine if that relationship continues. 17 refs., 19 figs

  11. Design of a Low-Cost 2-Axes Fluxgate Magnetometer for Small Satellite Applications

    Directory of Open Access Journals (Sweden)

    Su-Jeoung Kim

    2005-03-01

    Full Text Available This paper addresses the design and analysis results of a 2-axes magnetometer for attitude determination of small satellite. A low-cost and efficient 2-axes fluxgate magnetometer was selected as the most suitable attitude sensor for LEO microsatellites which require a low-to-medium level pointing accuracy. An optimization trade-off study has been performed for the development of 2-axes fluxgate magnetometer. All the relevant parameters such as permeability, demagnetization factor, coil diameter, core thickness, and number of coil turns were considered for the sizing of a small satellite magnetometer. The magnetometer which is designed, manufactured, and tested in-house as described in this paper satisfies linearity requirement for determining attitude position of small satellites. On the basis of magnetometer which is designed in Space System Research Lab. (SSRL, commercial magnetometer will be developed.

  12. Core Flooding Experiments Combined with X-rays and Micro-PET Imaging as a Tool to Calculate Fluid Saturations in a Fracture

    Science.gov (United States)

    Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.

    2017-12-01

    One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.

  13. THREE-PHASE TRANSFORMER PARAMETERS CALCULATION CONSIDERING THE CORE SATURATION FOR THE MATLAB-SIMULINK TRANSFORMER MODEL

    Directory of Open Access Journals (Sweden)

    I. V. Novash

    2015-01-01

    Full Text Available This article describes the parameters calculation for the three-phase two-winding power transformer model taken from the SimPowerSystems library, which is the part of the MatLab- Simulink environment. Presented methodology is based on the power transformer nameplate data usage. Particular attention is paid to the power transformer magnetization curve para- meters  calculation.  The  methodology  of  the  three-phase  two-winding  power  transformer model parameters calculation considering the magnetization curve nonlinearity isn’t presented in Russian-and English-language sources. Power transformers demo models described in the SimPowerSystems user’s guide have already calculated parameters, but without reference to the sources of their determination. A power transformer is a nonlinear element of the power system, that’s why for its performance analysis in different modes of operation is necessary to have the magnetization curve parameters.The process analysis during no-load energizing of the power transformer is of special interest. This regime is accompanied by the inrush current on the supply side of the power transformer, which is several times larger than the transformer rated current. Sharp rising of the magnetizing current is explained by the magnetic core saturation. Therefore, magnetiza- tion characteristic accounting during transformer no-load energizing modeling is a mandatory requirement. Article authors attempt to put all calculating formulas in a more convenient form and validate the power transformer nonlinear magnetization characteristics parameters calcu- lation. Inrush current oscillograms obtained during the simulation experiment confirmed the adequacy of the calculated model parameters.

  14. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  15. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber.

    Science.gov (United States)

    Ming, Na; Tao, Shina; Yang, Wenqing; Chen, Qingyun; Sun, Ruyi; Wang, Chang; Wang, Shuyun; Man, Baoyuan; Zhang, Huanian

    2018-04-02

    Previously, PbS/CdS core/shell quantum dots with excellent optical properties have been widely used as light-harvesting materials in solar cell and biomarkers in bio-medicine. However, the nonlinear absorption characteristics of PbS/CdS core/shell quantum dots have been rarely investigated. In this work, PbS/CdS core/shell quantum dots were successfully employed as nonlinear saturable absorber (SA) for demonstrating a mode-locked Er-doped fiber laser. Based on a film-type SA, which was prepared by incorporating the quantum dots with the polyvinyl alcohol (PVA), mode-locked Er-doped operation with a pulse width of 54 ps and a maximum average output power of 2.71 mW at the repetition rate of 3.302 MHz was obtained. Our long-time stable results indicate that the CdS shell can effectively protect the PbS core from the effect of photo-oxidation and PbS/CdS core/shell quantum dots were efficient SA candidates for demonstrating pulse fiber lasers due to its tunable absorption peak and excellent saturable absorption properties.

  16. High Accuracy Vector Helium Magnetometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed HAVHM instrument is a laser-pumped helium magnetometer with both triaxial vector and omnidirectional scalar measurement capabilities in a single...

  17. Optical Magnetometer Incorporating Photonic Crystals

    Science.gov (United States)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  18. Magnetogama: an open schematic magnetometer

    Science.gov (United States)

    Wahyudi; Khakhim, Nurul; Kuntoro, Tri; Mardiatno, Djati; Rakhman, Afif; Setyo Handaru, Anas; Akhmad Mufaqih, Adien; Marwan Irnaka, Theodosius

    2017-09-01

    Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV). Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM) and Kakadu (KDU) and the response of magnetic substance.

  19. Magnetogama: an open schematic magnetometer

    Directory of Open Access Journals (Sweden)

    Wahyudi

    2017-09-01

    Full Text Available Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV. Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM and Kakadu (KDU and the response of magnetic substance.

  20. A simple vibrating sample magnetometer for macroscopic samples

    Science.gov (United States)

    Lopez-Dominguez, V.; Quesada, A.; Guzmán-Mínguez, J. C.; Moreno, L.; Lere, M.; Spottorno, J.; Giacomone, F.; Fernández, J. F.; Hernando, A.; García, M. A.

    2018-03-01

    We here present a simple model of a vibrating sample magnetometer (VSM). The system allows recording magnetization curves at room temperature with a resolution of the order of 0.01 emu and is appropriated for macroscopic samples. The setup can be mounted with different configurations depending on the requirements of the sample to be measured (mass, saturation magnetization, saturation field, etc.). We also include here examples of curves obtained with our setup and comparison curves measured with a standard commercial VSM that confirms the reliability of our device.

  1. Digital fluxgate magnetometer: design notes

    International Nuclear Information System (INIS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-01-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed. (paper)

  2. Digital fluxgate magnetometer: design notes

    Science.gov (United States)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-12-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.

  3. Fast neutron (14 MeV) attenuation analysis in saturated core samples and its application in well logging

    International Nuclear Information System (INIS)

    Amin Attarzadeh; Mohammad Kamal Ghassem Al Askari; Tagy Bayat

    2009-01-01

    To introduce the application of nuclear logging, it is appropriate to provide a motivation for the use of nuclear measurement techniques in well logging. Importance aspects of the geological sciences are for instance grain and porosity structure and porosity volume of the rocks, as well as the transport properties of a fluid in the porous media. Nuclear measurements are, as a rule non-intrusive. Namely, a measurement does not destroy the sample, and it does not interfere with the process to be measured. Also, non- intrusive measurements are often much faster than the radiation methods, and can also be applied in field measurements. A common type of nuclear measurement employs neutron irradiation. It is powerful technique for geophysical analysis. In this research we illustrate the detail of this technique and it's applications to well logging and oil industry. Experiments have been performed to investigate the possibilities of using neutron attenuation measurements to determine water and oil content of rock sample. A beam of 14 MeV neutrons produced by a 150 KV neutron generator was attenuated by different samples and subsequently detected with plastic scintillators NE102 (Fast counter). Each sample was saturated with water and oil. The difference in neutron attenuation between dry and wet samples was compared with the fluid content determined by mass balance of the sample. In this experiment we were able to determine 3% of humidity in standard sample model (SiO 2 ) and estimate porosity in geological samples when saturated with different fluids. (Author)

  4. Low Cost, Low Power, High Sensitivity Magnetometer

    Science.gov (United States)

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  5. An Arduino-Based Magnetometer

    Science.gov (United States)

    McCaughey, Mike

    2017-01-01

    An Arduino-based system with a triple axis magnetometer chip may be used to plot both the strength and direction of the magnetic field of a magnet directly on a sheet of paper. Before taking measurements, it is necessary either to correct for or to eliminate soft and hard iron effects. The same sensor may be used to determine the presence of soft…

  6. Magnetometer calibration and test procedure

    International Nuclear Information System (INIS)

    Squier, D.M.

    1997-01-01

    Nuclear waste has been sluiced and pumped from storage tank 241-AX-104, leaving a contaminated heel volume. These operations did not include measurements of the removed waste volume leaving an unknown heel volume in the tank. A magnetometer transducer will be lowered through tank riser ports to rest on the heel's surface. The heel thickness will control the distance between the transducer and the tank's bottom The instrument's output varies with the distance from a magnetic mass, such as the tank's steel bottom, thereby enabling a measurement of the heel depth. Measurements at several tank locations will permit an estimate of the tank's heel volume. The magnetometer's output is influenced by adjacent magnetic materials, such as the tank walls, air lift circulators or other equipment installed in the tank. An adjacent vertical steel surface produces a voltage offset in the instrument's output. Measurements near a tank wall or other tank components may be corrected by noting the offset before the instrument's output is influenced by the tank bottom. An unlevel or uneven heel surface could orient the magnetometer transducer so that it is not vertically level. The magnetometer readings are influenced by these skewed transducer orientations. The magnitude of these errors and offsets must be characterized to bound the heel volume estimate range. The data collected by this activity will be statistically analyzed by SESC to state the confidence level of the heel volume estimates. A test report will document the results of the measurements

  7. Induction Magnetometers – Design Peculiarities

    Directory of Open Access Journals (Sweden)

    Valeriy KOREPANOV

    2010-09-01

    Full Text Available Induction or search-coil magnetometers (IM are widely used in many branches of science and industry. The frequency range and dynamic range of IMs are probably the widest of all existing magnetometers: they are used for the measurement of magnetic field variations in the frequency band from ~10-4 till ~106 Hz with the intensities from fractions of femtotesla till tens of tesla. This explains the permanent interest to IM design and the attempts to construct the IMs with best possible parameters. The present paper deals with the peculiarities of IM design. An attempt to re-establish the correctness of priorities in the field is made and the approaches to the IM optimization and their quality estimation are described.

  8. Design and analysis of miniature tri-axial fluxgate magnetometer

    Science.gov (United States)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-02-01

    The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.

  9. Atomic magnetometer for human magnetoencephalograpy.

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter; Johnson, Cort N.

    2010-12-01

    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, the evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.

  10. Vector Fluxgate Magnetometer (VMAG) Development for DSX

    Science.gov (United States)

    2010-06-03

    AFRL-RV-HA-TR-2010-1056 Vector Fluxgate Magnetometer (VMAG) Development for DSX Mark B. Moldwin UCLA Institute of Geophysics... Fluxgate Magnetometer (VMAG) Development for DSX 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Mark B. Moldwin 5d. PROJECT...axis fluxgate magnetometer for the AFRL-mission. The instrument is designed to measure the medium-Earth orbit geomagnetic field with precision of 0.1

  11. DSCOVR Magnetometer Level 2 One Minute Averages

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Interplanetary magnetic field observations collected from magnetometer on DSCOVR satellite - 1-minute average of Level 1 data

  12. DSCOVR Magnetometer Level 2 One Second Averages

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Interplanetary magnetic field observations collected from magnetometer on DSCOVR satellite - 1-second average of Level 1 data

  13. Fluxgate Magnetometer Array for Geomagnetic Abnormal Phenomena Tracking

    Directory of Open Access Journals (Sweden)

    Xiaomei Wang

    2011-06-01

    Full Text Available The objective of this project is to develop a flexible observation mode for a geomagnetic abnormal phenomena tracking system. The instrument, based on ring core fluxgate magnetometer technology, improves the field environment performance. Using wireless technology provides on-the-spot mobile networking for the observational data, with efficient access to the earthquake precursor observation network. It provides a powerful detection method for earthquake short-term prediction through installation of a low-noise fluxgate magnetometer array, intensely observing the phenomenon of geomagnetic disturbances and abnormal low-frequency electromagnetic signals in different latitudes, then carrying out observational data processing and exploring the relationship between earthquake activity and geomagnetic field changes.

  14. Digitalization of highly precise fluxgate magnetometers

    DEFF Research Database (Denmark)

    Cerman, Ales; Kuna, A.; Ripka, P.

    2005-01-01

    This paper describes the theory behind all three known ways of digitalizing the fluxgate magnetometers: analogue magnetometers with digitalized output using high resolution ADC, application of the delta-sigma modulation to the sensor feedback loop and fully digital signal detection. At present time...... the Delta-Sigma ADCs are mostly used for the digitalization of the highly precise fluxgate magnetorneters. The relevant part of the paper demonstrates some pitfalls of their application studied during the design of the magnetometer for the new Czech scientific satellite MIMOSA. The part discussing...... the application of the A-E modulation to the sensor feedback loop theoretically derives the main advantage of this method-increasing of the modulation order and shows its real potential compared to the analog magnetometer with consequential digitalization. The comparison is realized on the modular magnetometer...

  15. Investigating the Role of Shell Thickness and Field Cooling on Saturation Magnetization and Its Temperature Dependence in Fe3O4/γ-Fe2O3 Core/Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2017-12-01

    Full Text Available Understanding saturation magnetization and its behavior with particle size and temperature are essential for medical applications such magnetic hyperthermia. We report the effect of shell thickness and field cooling on the saturation magnetization and its behavior with temperature in Fe3O4/γ-Fe2O3 core/shell nanoparticles of fixed core diameter (8 nm and several shell thicknesses. X-ray diffraction (XRD analysis and transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM were used to investigate the phase and the morphology of the samples. Selected area electron diffraction (SAED confirmed the core/shell structure and phases. Using a SQUID (San Diego, CA, USA, magnetic measurements were conducted in the temperature range of 2 to 300 K both under zero field-cooling (ZFC and field-cooling (FC protocols at several field-cooling values. In the ZFC state, considerable enhancement of saturation magnetization was obtained with the increase of shell thickness. After field cooling, we observed a drastic enhancement of the saturation magnetization in one sample up to 120 emu/g (50% larger than the bulk value. In both the FC and ZFC states, considerable deviations from the original Bloch’s law were observed. These results are discussed and attributed to the existence of interface spin-glass clusters which are modified by the changes in the shell thickness and the field-cooling.

  16. A simple fluxgate magnetometer using amorphous alloys

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Mitra, A.

    1992-01-01

    A simple fluxgate magnetometer is developed using low magnetostrictive ferromagnetic amorphous alloy acting as a sensing element. It uses the fact that the magnetization of sensing element symmetrically magnetized by a sinusoidal field contains even harmonic components in presence of dc signal field H and the amplitude of the second harmonic component of magnetization is proportional to H. The sensitivity and linearity of the magnetometer with signal field are studied for parallel configuration and the field ranging from 10 nT to 10 μT can be measured. The functioning of the magnetometer is demonstrated by studying the shielding and flux-trapping phenomena in high-Tc superconductor. (orig.)

  17. All optical vector magnetometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research project will investigate a novel method of operating an atomic magnetometer to simultaneously measure total magnetic fields and vector magnetic...

  18. The Fluxgate Magnetometer Simulation in Comsol Multiphysics

    Directory of Open Access Journals (Sweden)

    Kolomeytsev Andrey

    2018-01-01

    Full Text Available This article describes the fluxgate magnetometer simulation in Comsol Multiphysics software package. The simulation results coincide with the experiment described earlier. Decomposition of the output signal by the Fourier coefficients shows a frequency doubling.

  19. The Fluxgate Magnetometer Simulation in Comsol Multiphysics

    OpenAIRE

    Kolomeytsev Andrey; Baranov Pavel; Zatonov Ivan

    2018-01-01

    This article describes the fluxgate magnetometer simulation in Comsol Multiphysics software package. The simulation results coincide with the experiment described earlier. Decomposition of the output signal by the Fourier coefficients shows a frequency doubling.

  20. Magnetometer Data recovered from 35mm film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The L57 CDMP recovery project takes magnetometer data on 35mm film stored at the archive's climate controlled warehouse and digitizes them.

  1. Development of a nuclear precession magnetometer

    International Nuclear Information System (INIS)

    Virgens Alves, J.G. das.

    1983-12-01

    The objective of this thesis was to develop a proton precession magnetometer for geophysical prospecting and base stations. The proton procession magnetometer measures the total magnetic fields intensity. It operates on the basis of nuclear magnetic resonance by determining the processing frequency of protons of a non viscous liquid in the terrestrial magnetic fields. The instrument was tested in field to evaluate signal/noise ratio, supportable gradient and battery consumption. Application test was carried out to take diurnal variation data and, reconnaissance and detail surveys data on an archaeological site in the Marajo Island-Pa. The test results were confronted with two commercial magnetometers-GP-70, McPhar e G-816, Geometric - and, with data from Observatorio Magnetico Ilha de Tatuoca as well. For all cases, the data comparison showed a good performance of the magnetometer tested. (author)

  2. ATS-6 - UCLA fluxgate magnetometer

    Science.gov (United States)

    Mcpherron, R. L.; Coleman, P. J., Jr.; Snare, R. C.

    1975-01-01

    A summary of the design of the University of California at Los Angeles' fluxgate magnetometer is presented. Instrument noise in the bandwidth 0.001 to 1.0 Hz is of order 85 m gamma. The DC field of the spacecraft transverse to the earth-pointing axis is 1.0 + or - 21 gamma in the X direction and -2.4 + or - 1.3 gamma in the Y direction. The spacecraft field parallel to this axis is less than 5 gamma. The small spacecraft field has made possible studies of the macroscopic field not previously possible at synchronous orbit. At the 96 W longitude of Applications Technology Satellite-6 (ATS-6), the earth's field is typically inclined 30 deg to the dipole axis at local noon. Most perturbations of the field are due to substorms. These consist of a rotation in the meridian to a more radial field followed by a subsequent rotation back. The rotation back is normally accompanied by transient variations in the azimuthal field. The exact timing of these perturbations is a function of satellite location and the details of substorm development.

  3. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  4. Directly coupled YBCO dc SQUID magnetometers

    International Nuclear Information System (INIS)

    Petersen, P.R.E.; Shen, Y.Q.; Holst, T.; Larsen, B.H.; Sager, M.P.; Bindslev Hansen, J.

    1999-01-01

    YBa 2 Cu 3 O 7- x magnetometers have been made on 10mmx10mm MgO substrates by directly coupling the magnetometer pick-up loop to a dc SQUID with narrow strip lines. The dc SQUIDs were made with YBa 2 Cu 3 O 7-x step-edge Josephson junctions. The layout of the magnetometer pick-up loop was chosen as a compromise between maximizing the loop effective area and minimizing the loop inductance. The SQUID was designed to have L S ∼100 pH in order to obtain β L =2I 0 L S /Φ 0 approx.= 1 with the single-junction critical current I 0 ∼10 μA. We have made magnetometers with white noise levels down to 55 fT Hz -1/2 and a 1/f knee at 1 Hz (ac biased). Noise measurements were made on a field-cooled magnetometer. The noise measured at 1 Hz when cooled in 'zero field' was 175 fT Hz -1/2 . When cooled in magnetic fields of B = 50 μT and B = 100 μT we measured the noise at 1 Hz to be 430 fT Hz -1 2 and 1.3 pT Hz -1/2 , respectively. (author)

  5. A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz

    Science.gov (United States)

    Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun

    2017-12-01

    This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.

  6. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-01-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement

  7. Silent Localization of Underwater Sensors Using Magnetometers

    Directory of Open Access Journals (Sweden)

    Jonas Callmer

    2010-01-01

    Full Text Available Sensor localization is a central problem for sensor networks. If the sensor positions are uncertain, the target tracking ability of the sensor network is reduced. Sensor localization in underwater environments is traditionally addressed using acoustic range measurements involving known anchor or surface nodes. We explore the usage of triaxial magnetometers and a friendly vessel with known magnetic dipole to silently localize the sensors. The ferromagnetic field created by the dipole is measured by the magnetometers and is used to localize the sensors. The trajectory of the vessel and the sensor positions are estimated simultaneously using an Extended Kalman Filter (EKF. Simulations show that the sensors can be accurately positioned using magnetometers.

  8. Optimizing the sensing performance of a single-rod fluxgate magnetometer using thin magnetic wires

    International Nuclear Information System (INIS)

    Can, Hava; Tanrıseven, Sercan; Birlikseven, Cengiz; Sözeri, Hüseyin; Topal, Uğur; Svec, Peter Jr; Svec, Peter Sr; Bydzovsky, Jan

    2015-01-01

    This paper presents the optimal conditions for the design of a single-rod fluxgate magnetometer using Co-based amorphous magnetic wires with reduced geometrical dimensions of 100 μm in diameter. In order to enhance the performance of the current sensor (i.e. the noise level, the sensitivity, the dynamical range, the scaling factor, etc), the core materials were subjected to annealing at different annealing temperatures in a longitudinal magnetic field ranging from 0 to 0.5 T. The B–H measurements have shown that the heat treatments significantly change the magnetic parameters of the cores (the saturation field, the initial and apparent permeabilities). For instance, the initial permeability μ i attains values of between 3500 and 4700 depending on the treatment conditions. These magnetic parameters were subsequently correlated with the sensor performance by using the principles of the fluxgate physics. Consequently, the enhanced fluxgate effect with improved sensing characteristics has been obtained by annealing the wire core at 250 °C (B  =  0 T). It is shown that this magnetic wire with a sensing area of 0.00785 mm 2 is suitable as a sensor core for the nondestructive testing of metallic objects and the surfaces of magnetic cards. The sensor signal shows perfect linear dependence to dc or low frequency fields up to ∼1 Oe. The fitting parameters R 2 of 0.9998 could be achieved in a dc field interval of  −1.0 Oe and 1.0 Oe (when R 2   =1.0, all points lie exactly on the curve with no scatter). Such linearity has not been seen in such a large dynamical range until now in the rod-type single-core fluxgates. It is also shown that there is no hysteresis on the V 2f –H dc graphs (the V 2f is the sensor signal) even after applying fields as high as 100 Oe. Besides, the cross-field effect is almost zero due to the geometry of the long-thin wire. (paper)

  9. Optimizing the sensing performance of a single-rod fluxgate magnetometer using thin magnetic wires

    Science.gov (United States)

    Can, Hava; Svec, Peter, Jr.; Tanrıseven, Sercan; Bydzovsky, Jan; Birlikseven, Cengiz; Sözeri, Hüseyin; Svec, Peter, Sr.; Topal, Uğur

    2015-11-01

    This paper presents the optimal conditions for the design of a single-rod fluxgate magnetometer using Co-based amorphous magnetic wires with reduced geometrical dimensions of 100 μm in diameter. In order to enhance the performance of the current sensor (i.e. the noise level, the sensitivity, the dynamical range, the scaling factor, etc), the core materials were subjected to annealing at different annealing temperatures in a longitudinal magnetic field ranging from 0 to 0.5 T. The B-H measurements have shown that the heat treatments significantly change the magnetic parameters of the cores (the saturation field, the initial and apparent permeabilities). For instance, the initial permeability μ i attains values of between 3500 and 4700 depending on the treatment conditions. These magnetic parameters were subsequently correlated with the sensor performance by using the principles of the fluxgate physics. Consequently, the enhanced fluxgate effect with improved sensing characteristics has been obtained by annealing the wire core at 250 °C (B  =  0 T). It is shown that this magnetic wire with a sensing area of 0.00785 mm2 is suitable as a sensor core for the nondestructive testing of metallic objects and the surfaces of magnetic cards. The sensor signal shows perfect linear dependence to dc or low frequency fields up to ~1 Oe. The fitting parameters R 2 of 0.9998 could be achieved in a dc field interval of  -1.0 Oe and 1.0 Oe (when R 2  =1.0, all points lie exactly on the curve with no scatter). Such linearity has not been seen in such a large dynamical range until now in the rod-type single-core fluxgates. It is also shown that there is no hysteresis on the V 2f -H dc graphs (the V 2f is the sensor signal) even after applying fields as high as 100 Oe. Besides, the cross-field effect is almost zero due to the geometry of the long-thin wire.

  10. Vector magnetometer design study: Analysis of a triaxial fluxgate sensor design demonstrates that all MAGSAT Vector Magnetometer specifications can be met

    Science.gov (United States)

    Adams, D. F.; Hartmann, U. G.; Lazarow, L. L.; Maloy, J. O.; Mohler, G. W.

    1976-01-01

    The design of the vector magnetometer selected for analysis is capable of exceeding the required accuracy of 5 gamma per vector field component. The principal elements that assure this performance level are very low power dissipation triaxial feedback coils surrounding ring core flux-gates and temperature control of the critical components of two-loop feedback electronics. An analysis of the calibration problem points to the need for improved test facilities.

  11. Man-Portable Simultaneous Magnetometer and EM System (MSEMS)

    Science.gov (United States)

    2008-12-01

    limited to cesium vapor magnetometers outputting a Larmor signal. It cannot, as presently configured, be used with less expensive fluxgate magnetometers ...pulses to convert the frequency-based Larmor signal into nT. A fluxgate magnetometer does not employ the resonance mechanism of an alkali vapor...Simultaneous Magnetometer and EM System (MSEMS) December 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  12. Determination of the Overhauser magnetometer uncertainty

    Czech Academy of Sciences Publication Activity Database

    Ulvr, M.; Zikmund, A.; Kupec, J.; Janošek, M.; Vlk, Michal; Bayer, Tomáš

    2015-01-01

    Roč. 66, 7/s (2015), s. 26-29 ISSN 1335-3632 Institutional support: RVO:67985530 Keywords : Overhauser magnetometer * Earth `s magnetic field * comparison * uncertainty Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.407, year: 2015

  13. Miniaturized digital fluxgate magnetometer for small spacecraft applications

    International Nuclear Information System (INIS)

    Forslund, Åke; Ivchenko, Nickolay; Olsson, Göran; Edberg, Terry; Belyayev, Serhiy; Marusenkov, Andriy

    2008-01-01

    A novel design of an Earth field digital fluxgate magnetometer is presented, the small magnetometer in low-mass experiment (SMILE). The combination of a number of new techniques results in significant miniaturization of both sensor and electronics. The design uses a sensor with volume compensation, combining three dual rod cores in a Macor® cube with the side dimension of 20 mm. Use of volume compensation provides high geometrical stability of the axes and improved performance compared to component compensated sensors. The sensor is operated at an excitation frequency of 8 kHz. Most of the instrument functionality is combined in a digital signal processing core, implemented in a field programmable gate array (FPGA). The pick-up signal is digitized after amplification and filtering, and values of compensation currents for each of the axes are determined by a digital correlation algorithm, equivalent to a matched filter, and are fed to a hybrid pulse-width modulation/delta-sigma digital-to-analogue converter driving the currents through the compensation coils. Using digital design makes the instrument very flexible, reduces power consumption and opens possibilities for the customization of the operation modes. The current implementation of the design is based on commercial off-the-shelf components. A calibration of the SMILE instrument was carried out at the Nurmijärvi Geophysical Observatory, showing high linearity (within 6 nT on the whole ±50 µT scale), good orthogonality (22 arcmin) and very good temperature stability of the axes

  14. Vector Magnetometer Application with Moving Carriers

    Directory of Open Access Journals (Sweden)

    Andrii Prystai

    2016-12-01

    Full Text Available In magnetic prospecting the aeromagnetic survey is a widespread method used for research in large territories or in the areas with difficult access (forests, swamps, shallow waters. At present, a new type of mobile carriers – remotely piloted vehicles or drones – is becoming very common. The drones supplied by magnetometer can be also used for underground utility location (for example, steel and concrete constructions, buried power cables, to name a few. For aeromagnetic survey, obtaining of 3-component magnetic field data gives higher processing precision, so the fluxgate magnetometers (FGM seem to be the most preferable by reason of low weight, noise, power consumption and costs. During movement of FGM fixed to a drone practically permanent attitude changes in the Earth’s magnetic field arises with corresponding changes of its projection at FGM axes. Also the electromagnetic interference from the drone motor and uncontrolled oscillations of drone and suspension are the factors which limit the magnetometer sensitivity level. Aroused because of this, signals significantly exceed the expected signals from a studied object and so should be removed by proper interference filtration and use of stabilized towed construction, as well as at data processing. To find the necessary resolution threshold of a drone-portable FGM, the modeling was made to estimate magnetic field value from a small sphere about 1 cm radius at the minimal altitude of drone flight and it was shown that such a small object can be reliably detected if the FGM noise level is less than 0.15 nT. Next requirement is the necessity to decrease as much as possible the FGM power consumption with retention of low noise level. Finally, because of drone movement, the broadening of a frequency range should be done. The LEMI-026 magnetometer was developed satisfying all requirements to the drone-mounted device. The field tests were successfully performed using two of LEMI-026

  15. A Web Server for MACCS Magnetometer Data

    Science.gov (United States)

    Engebretson, Mark J.

    1998-01-01

    NASA Grant NAG5-3719 was provided to Augsburg College to support the development of a web server for the Magnetometer Array for Cusp and Cleft Studies (MACCS), a two-dimensional array of fluxgate magnetometers located at cusp latitudes in Arctic Canada. MACCS was developed as part of the National Science Foundation's GEM (Geospace Environment Modeling) Program, which was designed in part to complement NASA's Global Geospace Science programs during the decade of the 1990s. This report describes the successful use of these grant funds to support a working web page that provides both daily plots and file access to any user accessing the worldwide web. The MACCS home page can be accessed at http://space.augsburg.edu/space/MaccsHome.html.

  16. Midlatitude magnetometer chains during the IMS

    International Nuclear Information System (INIS)

    Mcpherron, R.L.

    1982-01-01

    The International Magnetospheric Study (IMS) is an international program to study global problems of magnetospheric dynamics. A key element of the U.S. participation in this program was the establishment of a ground magnetometer network. This network included a number of arrays at high and low latitudes. This report describes three chains established at midlatitudes, including the IMS Midlatitude Chain, the AFGL Magnetometer Network, and the Bell Lab Conjugate Array. Descriptions of the type of equipment, station locations, types of data display, and availability of data for each chain are presented in this report. A major problem of the data analysis phase of the IMS will be reducing selected subsets of these data to a common format. Currently, there are no plans to do this in a systematic manner

  17. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    OpenAIRE

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-01-01

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. P...

  18. Digital Detection and feedback Fluxgate Magnetometer

    DEFF Research Database (Denmark)

    Piil-Henriksen, J.; Merayo, José M.G.; Nielsen, Otto V

    1996-01-01

    A new full Earth's field dynamic feedback fluxgate magnetometer is described. It is based entirely on digital signal processing and digital feedback control, thereby replacing the classical second harmonic tuned analogue electronics by processor algorithms. Discrete mathematical cross......-correlation routines and substantial oversampling reduce the noise to 71 pT root-mean-square in a 0.25-10 Hz bandwidth for a full Earth's field range instrument....

  19. High temperature superconductive flux gate magnetometer

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal

  20. Fluxgate magnetometers for outer planets exploration

    Science.gov (United States)

    Acuna, M. H.

    1974-01-01

    The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.

  1. The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    Science.gov (United States)

    Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.

    1978-01-01

    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.

  2. Development of a Micro-Fabricated Total-Field Magnetometer

    Science.gov (United States)

    2011-03-01

    are made with fluxgate technologies. Fluxgates have lower sensitivity than Cs magnetometers , yet they continue to be used in small wands simply...extraction process by providing the sensitivity of a Cs magnetometer with the convenience and low cost of a fluxgate wand. Extremely small and low cost...FINAL REPORT Development of a Micro-Fabricated Total-Field Magnetometer SERDP Project MR-1512 MARCH 2011 Mark Prouty Geometrics, Inc

  3. Choice of optimal parameters for the superconductive quantum magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, B V; Ivanenko, A I; Trofimov, V N

    1974-12-31

    The problem of choosing the optimal coupling coefficient and optimal working frequency for superconductive quantum magnetometer is considered. The present experimental signalnoise dependence confirms the drawn conclusions. (auth)

  4. High Tc Josephson Junctions, SQUIDs and magnetometers

    International Nuclear Information System (INIS)

    Clarke, J.

    1991-01-01

    There has recently been considerable progress in the state-of-the-art of high-T c magnetometers based on dc SQUIDs (Superconducting Quantum Interference Devices). This progress is due partly to the development of more manufacturable Josephson junctions, making SQUIDs easier to fabricate, and partly to the development of multiturn flux transformers that convert the high sensitivity of SQUIDs to magnetic flux to a correspondingly high sensitivity to magnetic field. Needless to say, today's high-T c SQUIDs are still considerably less sensitive than their low-T c counterparts, particularly at low frequencies (f) where their level of 1/f noise remains high. Nonetheless, the performance of the high-T c devices has now reached the point where they are adequate for a number of the less demanding applications; furthermore, as we shall see, at least modest improvements in performance are expected in the near future. In this article, the author outlines these various developments. This is far from a comprehensive review of the field, however, and, apart from Sec. 2, he describes largely his own work. He begins in Sec. 2 with an overview of the various types of Josephson junctions that have been investigated, and in Sec. 3, he describes some of the SQUIDs that have been tested, and assess their performance. Section 4 discuss the development of the multilayer structures essential for an interconnect technology, and, in particular, for crossovers and vias. Section 5 shows how this technology enables one to fabricate multiturn flux transformers which, in turn, can be coupled to SQUIDs to make magnetometers. The performance and possible future improvements in these magnetometers are assessed, and some applications mentioned

  5. Corrosion measurement using flux gate magnetometer

    International Nuclear Information System (INIS)

    Rashdi Shah Ahmad; Chong Cheong Wei

    2001-01-01

    The ability of fluxgate magnetometer to detect and measure quantitatively the magnetic field generated by electrochemical corrosion is presented. In this study, each sample (iron plate) was exposed to a range of increasingly corrosive environment. During the exposure, we measured the magnetic field above the sample for specific duration of time. The result shows that there is a clear relationship between corrosivity of the environment and the change in magnitude of magnetic field that was generated by the corrosion reaction. Therefore, the measurement of magnetic field might be used to determine the corrosion rates. (Author)

  6. Automated system for the calibration of magnetometers

    DEFF Research Database (Denmark)

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel

    2009-01-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical Uni...... through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented. ©2009 American Institute of Physics...

  7. Performances and place of magnetometers based on amorphous wires compared to conventional magnetometers

    International Nuclear Information System (INIS)

    Robbes, D.; Dolabdjian, C.; Monfort, Y.

    2002-01-01

    We discuss and compare performances of various room temperature magnetometers. The work is directed towards the search of those magnetometers having a high sensitivity (>1000 V/T), a very low noise level (>1 pT/√Hz at white noise) attainable in a volume typically smaller than 1 cm 3 . The choice of this set of parameters is related to the useful comparison of room temperature magnetometers versus cryogenic ones, such as Superconducting Quantum Interferometer Devices (SQUIDs). The latter have highly degraded performances when their working operations needs an open unshielded environment as required for example in industrial application (non-destructive evaluation). SQUIDs have also a rather poor spatial resolution, and could be replaced by room temperature sensors in some magnetic imaging systems, which require a high spatial resolution. The paper is 'highlighted' in the field of magnetic sensors based on amorphous magnetic wires that were used to carry out wide bandwidth (>100 kHz), very low noise flux gate (∼pT/√Hz at white noise) and highly sensitive, low noise magnetometers (∼pT/√Hz at white noise) Colpitts oscillator configuration use by K. Bushida's

  8. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    Science.gov (United States)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  9. Magnetometer Data in the Classroom as a part of the NASA THEMIS Satellite Mission

    Science.gov (United States)

    Peticolas, L. M.; Bean, J.; Walker, A.

    2011-12-01

    The NASA-funded THEMIS mission was designed to determine the onset time and location of magnetic substorms of Earth's space environment, a prerequisite to understanding space weather. THEMIS is an acronym for Time History of Events and Macroscale Interactions during Substorms. he Geomagnetic Event Observation Network by Students (GEONS) project was the flagship, formal education component of the E/PO program. With the placement of magnetometers in the proximity of rural schools throughout the country, middle and high school teachers along with their students benefited from the opportunity to work with 'real-time' data and participated in hands-on space science activities. Particular attention was paid to placing the magnetometer stations at schools in rural communities whose students were traditionally underserved and underrepresented in the sciences. The project offered to the teachers of these students long-term professional development opportunities that centered around THEMIS-related space science and the magnetometer data. The THEMIS E/PO final evaluation report for the main phase of the THEMIS mission covered the period from 2003-2009, describing the impact of this program such as this program placed magnetometers sites at 13 rural, underserved schools/communities, two-fifths of which are on tribal lands; and provided intensive professional development for 20 teachers from 2004 through 2009. A core group of eight teachers estimated reaching more than 2,720 students with THEMIS-related materials/ideas. 75% of these students are minorities in science. Core teachers provided evidence of the project's positive impact on students' attitudes toward science and their choices for courses that position them for STEM-related careers. Core teachers reported sharing THEMIS-related materials/ideas with 275 colleagues. The NewsHour with Jim Lehrer featured the Petersburg, Alaska site potentially reaching more than 5 million viewers in two airings, according to Nielsen

  10. Digital Fluxgate Magnetometer for Detection of Microvibration

    Directory of Open Access Journals (Sweden)

    Menghui Zhi

    2017-01-01

    Full Text Available In engineering practice, instruments, such as accelerometer and laser interferometer, are widely used in vibration measurement of structural parts. A method for using a triaxial fluxgate magnetometer as a microvibration sensor to measure low-frequency pendulum microvibration (not translational vibration is proposed in this paper, so as to detect vibration from low-frequency vibration sources, such as large rotating machine, large engineering structure, earthquake, and microtremor. This method provides vibration detection based on the environmental magnetic field signal to avoid increased measurement difficulty and error due to different relative positions of permanent magnet and magnetometer on the device under test (DUT when using the original magnetic measurement method. After fixedly connecting the fluxgate probe with the DUT during the test, the angular displacement due to vibration can be deduced by measuring the geomagnetic field’s magnetic induction intensity change on the orthogonal three components during the vibration. The test shows that the microvibration sensor has angular resolution of over 0.05° and maximum measuring frequency of 64 Hz. As an exploring test aimed to detect the microvibration of earth-orbiting satellite in the in-orbit process, the simulation experiment successfully provides the real-time microvibration information for attitude and orbit control subsystem.

  11. Automated system for the calibration of magnetometers

    International Nuclear Information System (INIS)

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel; Merayo, Jose M. G.

    2009-01-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used to evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented

  12. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  13. Battlefield Applications for the Polatomic 2000 Magnetometer/Gradiometer

    National Research Council Canada - National Science Library

    Kuhlman, G

    2002-01-01

    ... He(4) scalar magnetometer/gradiometer. A major innovation in the P-2000 helium magnetometer is the introduction of a laser pump source to replace the conventional RF discharge helium lamp used in the Navy AN/ASQ-81/208 MAD Set...

  14. Choice of Magnetometers and Gradiometers after Signal Space Separation.

    Science.gov (United States)

    Garcés, Pilar; López-Sanz, David; Maestú, Fernando; Pereda, Ernesto

    2017-12-16

    Modern Elekta Neuromag MEG devices include 102 sensor triplets containing one magnetometer and two planar gradiometers. The first processing step is often a signal space separation (SSS), which provides a powerful noise reduction. A question commonly raised by researchers and reviewers relates to which data should be employed in analyses: (1) magnetometers only, (2) gradiometers only, (3) magnetometers and gradiometers together. The MEG community is currently divided with regard to the proper answer. First, we provide theoretical evidence that both gradiometers and magnetometers result from the backprojection of the same SSS components. Then, we compare resting state and task-related sensor and source estimations from magnetometers and gradiometers in real MEG recordings before and after SSS. SSS introduced a strong increase in the similarity between source time series derived from magnetometers and gradiometers (r² = 0.3-0.8 before SSS and r² > 0.80 after SSS). After SSS, resting state power spectrum and functional connectivity, as well as visual evoked responses, derived from both magnetometers and gradiometers were highly similar (Intraclass Correlation Coefficient > 0.8, r² > 0.8). After SSS, magnetometer and gradiometer data are estimated from a single set of SSS components (usually ≤ 80). Equivalent results can be obtained with both sensor types in typical MEG experiments.

  15. Digital fluxgate magnetometer for the "Astrid-2" satellite

    DEFF Research Database (Denmark)

    Pedersen, Erik Bøje; Primdahl, Fritz; Petersen, Jan Raagaard

    1999-01-01

    The design and performance of the Astrid-2 magnetometer are described. The magnetometer uses mathematical routines implemented by software for commercially available digital dignal processors to determine the magnetic field from the fluxgate sensor. The sensor is from the latest generation of amo...

  16. Analysing Harmonic Motions with an iPhone's Magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Temiz, Burak Kagan

    2016-01-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone's (or iPad's) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone's magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone's screen using the "Sensor Kinetics"…

  17. Hall probe magnetometer for SSC magnet cables

    International Nuclear Information System (INIS)

    Cross, R.W.; Goldfarb, R.B.

    1991-01-01

    The authors of this paper constructed a Hall probe magnetometer to measure the magnetization hysteresis loops of Superconducting Super Collider magnet cables. The instrument uses two Hall-effect field sensors to measure the applied field H and the magnetic induction B. Magnetization M is calculated from the difference of the two quantities. The Hall probes are centered coaxially in the bore of a superconducting solenoid with the B probe against the sample's broad surface. An alternative probe arrangement, in which M is measured directly, aligns the sample probe parallel to the field. The authors measured M as a function of H and field cycle rate both with and without a dc transport current. Flux creep as a function of current was measured from the dependence of ac loss on the cycling rate and from the decay of magnetization with time. Transport currents up to 20% of the critical current have minimal effect on magnetization and flux creep

  18. Quantum critical environment assisted quantum magnetometer

    Science.gov (United States)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  19. High transition-temperature SQUID magnetometers and practical applications

    International Nuclear Information System (INIS)

    Dantsker, E.; Lawrence Berkeley National Lab., CA

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO 3 -YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz -1/2 at 1 Hz and 8.5 fT Hz -1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz -1/2 at 1 Hz and 18 fT Hz -1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room

  20. High transition-temperature SQUID magnetometers and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dantsker, Eugene [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa2Cu3O7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO3-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz-1/2 at 1 Hz and 8.5 fT Hz-1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz-1/2 at 1 Hz and 18 fT Hz-1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.

  1. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    Science.gov (United States)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  2. Self-Compensating Excitation of Fluxgate Sensors for Space Magnetometers

    DEFF Research Database (Denmark)

    Cerman, Alec; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    The paper presents design and implementation of the new self-compensating excitation circuitry to the new generation of high-precise space vector magnetometers. The application starts with complex study including design of new robust model of the non-linear inductor leading to investigation...... of the most crucial points, continuous by design of the self-compensating excitation unit and concludes with unit complex testing and application to the magnetometer. The application of the self-compensation of the excitation decreases temperature drift of the magnetometer offset caused by the temperature...

  3. Analysing harmonic motions with an iPhone’s magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-05-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.

  4. GIOTTO MAGNETOMETER 8 SECOND DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of the Giotto Magnetometer Experiment is the investigation of the interaction between Comet Halley and the solar wind at a distance of 0.9 AU from...

  5. Developement of a Fluxgate Magnetometer for the KITSAT-3 Satellite

    Directory of Open Access Journals (Sweden)

    S. H. Hwang

    1997-12-01

    Full Text Available The magnetometer is one of the most important payloads of scientific satellites to monitor the near-earth space environment. The electromagnetic variations of the space environment can be observed with the electric and magnetic field measurements. In practice, it is well known that the measurement of magnetic fields needs less technical complexities than that of electric fields in space. Therefore the magnetometer has long been recognized as one of the basic payloads for the scientific satellites. In this paper, we discuss the scientific fluxgate magnetometer which will be on board the KITSAT-3. The main circuit design of the present magnetometer is based on that of KISAT-1 and -2 but its facilities have been re-designed to improve the resolution to about 5nT for scientific purpose. The calibration and noise level test of this circuit have been performed at the laboratory of the Tierra Tecnica company in Japan.

  6. Differential Search Coils Based Magnetometers: Conditioning, Magnetic Sensitivity, Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Timofeeva Maria

    2012-03-01

    Full Text Available A theoretical and experimental comparison of optimized search coils based magnetometers, operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the sensor is studied which is an important parameter for applications in non destructive evaluation. A general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are proposed to design magnetometers with reduced weight and volume without degrading the magnetic sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this structure is better in terms of volume occupancy than magnetometers using two separated coils without any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations.

  7. VOYAGER 1 SATURN MAGNETOMETER RESAMPLED DATA 9.60 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Saturn encounter magnetometer data that have been resampled at a 9.6 second sample rate. The data set is composed of 6 columns: 1)...

  8. Self-Calibrating Vector Helium Magnetometer (SVHM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes proposed development of a conceptual design for a Self-Calibrating Vector Helium Magnetometer (SVHM) for design and fabrication...

  9. VOYAGER 2 JUPITER MAGNETOMETER RESAMPLED DATA 48.0 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Jupiter encounter magnetometer data that have been resampled at a 48.0 second sample rate. The data set is composed of 6 columns: 1)...

  10. Ultrasensitive magnetometers based on rotational magnetic excitation

    International Nuclear Information System (INIS)

    Hristoforou, E.; Svec, P. Sr.

    2014-01-01

    Three new types of fluxgate magnetometers are presented in this paper, able to monitor the three components of the ambient field, all of them based on the principle of rotational excitation field. The first type is based on Yttrium- Iron Garnet (YIG) single crystal film, magnetized with rotational field on its plane, where the 2"n"d, 4"t"h and 6"t"h harmonics offer the three components of the ambient field with sensitivity better than 1 pT at 0.2 Hz, its size being 25 cm"3. The second type is based on permalloy film, where the rotational excitation field on its plane offers change of magnetoresistance with sensitivity better than 10 pT at 1 Hz, uncertainty of 1 ppm and size ∼ 8 cm"3. The third type, is based on amorphous film, where the rotation field mode offer sensitivity better than 100 pT at 1 Hz, uncertainty of 10 ppm and size ∼ 10 mm"3. (authors)

  11. The Search-Coil Magnetometer for MMS

    Science.gov (United States)

    Le Contel, O.; Leroy, P.; Roux, A.; Coillot, C.; Alison, D.; Bouabdellah, A.; Mirioni, L.; Meslier, L.; Galic, A.; Vassal, M. C.; Torbert, R. B.; Needell, J.; Rau, D.; Dors, I.; Ergun, R. E.; Westfall, J.; Summers, D.; Wallace, J.; Magnes, W.; Valavanoglou, A.; Olsson, G.; Chutter, M.; Macri, J.; Myers, S.; Turco, S.; Nolin, J.; Bodet, D.; Rowe, K.; Tanguy, M.; de la Porte, B.

    2016-03-01

    The tri-axial search-coil magnetometer (SCM) belongs to the FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission (Torbert et al. in Space Sci. Rev. (2014), this issue). It provides the three magnetic components of the waves from 1 Hz to 6 kHz in particular in the key regions of the Earth's magnetosphere namely the subsolar region and the magnetotail. Magnetospheric plasmas being collisionless, such a measurement is crucial as the electromagnetic waves are thought to provide a way to ensure the conversion from magnetic to thermal and kinetic energies allowing local or global reconfigurations of the Earth's magnetic field. The analog waveforms provided by the SCM are digitized and processed inside the digital signal processor (DSP), within the Central Electronics Box (CEB), together with the electric field data provided by the spin-plane double probe (SDP) and the axial double probe (ADP). On-board calibration signal provided by DSP allows the verification of the SCM transfer function once per orbit. Magnetic waveforms and on-board spectra computed by DSP are available at different time resolution depending on the selected mode. The SCM design is described in details as well as the different steps of the ground and in-flight calibrations.

  12. Ultra-sensitive Magnetic Microscopy with an Atomic Magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-19

    The PowerPoint presentation focused on research goals, specific information about the atomic magnetometer, response and resolution factors of the SERF magnetometer, FC+AM systems, tests of field transfer and resolution on FC, gradient cancellation, testing of AM performance, ideas for a multi-channel AM, including preliminary sensitivity testing, and a description of a 6 channel DAQ system. A few ideas for future work ended the presentation.

  13. Magnetometer and Gyroscope Calibration Method with Level Rotation

    Directory of Open Access Journals (Sweden)

    Zongkai Wu

    2018-03-01

    Full Text Available Micro electro mechanical system (MEMS gyroscopes and magnetometers are usually integrated into a sensor module or chip and widely used in a variety of applications. In existing integrated gyroscope and magnetometer calibration methods, rotation in all possible orientations is a necessary condition for a good calibration result. However, rotation around two or more axes is difficult to attain, as it is limited by the range of movement of vehicles such as cars, ships, or planes. To solve this problem, this paper proposes an integrated magnetometer and gyroscope calibration method with level rotation. The proposed method presents a redefined magnetometer output model using level attitude. New gyroscope and magnetometer calibration models are then deduced. In addition, a simplified cubature Kalman filter (CKF is established to estimate calibration parameters. This method possesses important value for application in actual systems, as it only needs level rotation for real-time calibration of gyroscopes and magnetometers. Theoretical analysis and test results verify the validity and feasibility of this method.

  14. Development, construction and analysis of the "Ørsted" fluxgate magnetometer

    DEFF Research Database (Denmark)

    Nielsen, Otto V; Petersen, Jan Raagaard; Primdahl, Fritz

    1995-01-01

    glass ribbons as core materials. It is shown that very simple physical models can be used to explain the fluxgate mode of operation, thereby making it easy to calculate the overall sensor performance from first principles. Special attention is drawn to the core excitation current which is analysed...... in the instrument (±65 536 nT with 0.5 nT resolution). The maximum attainablebandwidth is half the sensor excitation frequency (½ x 15 kHz) but the Ørsted magnetometer bandwidth is limited to 250 Hz. The thermal stability of the sensor has been measured to be better than 1 nT in the temperature range -20 to +60°C....

  15. Design and implementation of JOM-3 Overhauser magnetometer analog circuit

    Science.gov (United States)

    Zhang, Xiao; Jiang, Xue; Zhao, Jianchang; Zhang, Shuang; Guo, Xin; Zhou, Tingting

    2017-09-01

    Overhauser magnetometer, a kind of static-magnetic measurement system based on the Overhauser effect, has been widely used in archaeological exploration, mineral resources exploration, oil and gas basin structure detection, prediction of engineering exploration environment, earthquakes and volcanic eruotions, object magnetic measurement and underground buried booty exploration. Overhauser magnetometer plays an important role in the application of magnetic field measurement for its characteristics of small size, low power consumption and high sensitivity. This paper researches the design and the application of the analog circuit of JOM-3 Overhauser magnetometer. First, the Larmor signal output by the probe is very weak. In order to obtain the signal with high signal to noise rstio(SNR), the design of pre-amplifier circuit is the key to improve the quality of the system signal. Second, in this paper, the effectual step which could improve the frequency characters of bandpass filter amplifier circuit were put forward, and theoretical analysis was made for it. Third, the shaping circuit shapes the amplified sine signal into a square wave signal which is suitable for detecting the rising edge. Fourth, this design elaborated the optimized choice of tuning circuit, so the measurement range of the magnetic field can be covered. Last, integrated analog circuit testing system was formed to detect waveform of each module. By calculating the standard deviation, the sensitivity of the improved Overhauser magnetometer is 0.047nT for Earth's magnetic field observation. Experimental results show that the new magnetometer is sensitive to earth field measurement.

  16. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  17. Calibration of three-axis magnetometers with differential evolution algorithm

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhang, Qi; Wang, Wei; Wang, Junya; Li, Ji; Luo, Shitu; Wan, Chengbiao; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-01-01

    The accuracy of three-axis magnetometers is influenced by different scale and bias of each axis and nonorthogonality between axes. One limitation of traditional iteration methods is that initial parameters influence the calibration, thus leading to the local optimal or wrong results. In this paper, a new method is proposed to calibrate three-axis magnetometers. To employ this method, a nonmagnetic rotation platform, a proton magnetometer, a DM-050 three-axis magnetometer and the differential evolution (DE) algorithm are used. The performance of this calibration method is analyzed with simulation and experiment. In simulation, the calibration results of DE, unscented Kalman filter (UKF), recursive least squares (RLS) and genetic algorithm (GA) are compared. RMS error using DE is least, which is reduced from 81.233 nT to 1.567 nT. Experimental results show that comparing with UKF, RLS and GA, the DE algorithm has not only the least calibration error but also the best robustness. After calibration, RMS error is reduced from 68.914 nT to 2.919 nT. In addition, the DE algorithm is not sensitive to initial parameters, which is an important advantage compared with traditional iteration algorithms. The proposed algorithm can avoid the troublesome procedure to select suitable initial parameters, thus it can improve the calibration performance of three-axis magnetometers. - Highlights: • The calibration results and robustness of UKF, GA, RLS and DE algorithm are analyzed. • Calibration error of DE is the least in simulation and experiment. • Comparing with traditional calibration algorithms, DE is not sensitive to initial parameters. • It can improve the calibration performance of three-axis magnetometers

  18. Calibration of the Ørsted vector magnetometer

    DEFF Research Database (Denmark)

    Olsen, Nils; Tøffner-Clausen, Lars; Sabaka, T.J.

    2003-01-01

    The vector fluxgate magnetometer of the Orsted satellite is routinely calibrated by comparing its output with measurements of the absolute magnetic intensity from the Overhauser instrument, which is the second magnetometer of the satellite. We describe the method used for and the result obtained...... coordinate system and the reference system of the star imager. This is done by comparing the magnetic and attitude measurements with a model of Earth's magnetic field. The Euler angles describing this rotation are determined in this way with an accuracy of better than 4 arcsec....

  19. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    Science.gov (United States)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  20. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah; Renzoni, Ferruccio [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-03-07

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  1. Long-term vacuum tests of single-mode vertical cavity surface emitting laser diodes used for a scalar magnetometer

    Science.gov (United States)

    Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.

    2017-11-01

    Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.

  2. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lu

    2015-06-01

    Full Text Available A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  3. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide.

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff

    2015-06-19

    A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  4. Evaluating Detection and Estimation Capabilities of Magnetometer-Based Vehicle Sensors

    Science.gov (United States)

    2012-05-01

    fluxgate magnetometers whose operating characteristics are well documented [1, 2]. Such magnetometers measure two perpendicular magnetic components of...of surveillance scenarios. As part of that work, this analysis focuses on UGS utilizing of two-axis fluxgate magnetometers . Two MOPs are 12 -60 -40 -20...Proceedings of the IEEE, 78(6):973–989, June 1990. [2] E. M. Billingsley and S. W. Billingsley. Fluxgate magnetometers . Proceedings of the IEEE, 5090(194

  5. Gluon saturation in a saturated environment

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-01-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.

  6. The Pioneer 11 high-field fluxgate magnetometer

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1973-01-01

    The High Field Fluxgate Magnetometer Experiment flow aboard the Pioneer 11 spacecraft to investigate Jupiter's magnetic field is described. The instrument extends the spacecraft's upper limit measurement capability by more than an order of magnitude to 17.3 gauss with minimum power and volume requirements.

  7. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    Science.gov (United States)

    Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space. PMID:22294904

  8. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an appa...... on the distribution and motion of interplanetary (>μm sized) dust....

  9. Ionospheric travelling convection vortices observed by the Greenland magnetometer chain

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Stolle, Claudia; Friis-Christensen, Eigil

    2013-01-01

    The Greenland magnetometer array continuously provides geomagnetic variometer data since the early eighties. With the polar cusp passing over it almost every day, the array is suitable to detect ionospheric traveling convection vortices (TCVs), which were rst detected by Friis-Christensen et al...

  10. Small fluxgate magnetometers: development and future trends in Spain.

    Science.gov (United States)

    Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  11. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    OpenAIRE

    Lucas Pérez; Claudio Aroca; Marina Díaz-Michelena; David Ciudad

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  12. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    Directory of Open Access Journals (Sweden)

    Lucas Pérez

    2010-03-01

    Full Text Available In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  13. A theoretical and experimental investigation of the proton magnetometer

    International Nuclear Information System (INIS)

    Hancke, G.P.

    1987-01-01

    This study comprises the investigation of the properties of the proton magnetometer based on the free precession of protons. The basic principle of the free precession of protons in the earth's magnetic field is described and the most important factors affecting this free precession are examined. It is shown that very important parameters to keep in mind are the polarization time and the magnitude of the polarization field. A discussion of the errors of a proton magnetometer built on the periodometer principles is given and it is shown that the error in counting of the number of precession periods during the time of measurement contributes most to the total error. The magnitude of this error depends on the signal-to-noise ratio, the instability of the operating threshold of the discriminator of the period counter, it's operating time and the tuning accuracy of the sensor to the precession frequency. The penetration to a magnetometer input of variable magnetic and electric interferences, their influence on the phase of the useful signal, and the resulting measurement errors are examined and methods of reducing the effects of interferences are discussed. The optimization of sensor design is very important in the development of proton magnetometers. The coil geometry, physical size, the working substance and the polarization design are important parameters. The selection of a method for processing the precession signal of a proton magnetometer is examined, given a sensor and signal amplifier with fixed parameters. A method is proposed and compared with known methods. Measurement errors are computed for various signal-to-noise ratios and times of observation of the precession signal, and it is shown that the proposed method is superior to conventional methods found in commercial instruments

  14. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  15. Quantitative 1D saturation profiles on chalk by NMR

    DEFF Research Database (Denmark)

    Olsen, Dan; Topp, Simon; Stensgaard, Anders

    1996-01-01

    Quantitative one-dimensional saturation profiles showing the distribution of water and oil in chalk core samples are calculated from NMR measurements utilizing a 1D CSI spectroscopy pulse sequence. Saturation profiles may be acquired under conditions of fluid flow through the sample. Results reveal...

  16. Autonomous Aeromagnetic Surveys Using a Fluxgate Magnetometer

    Directory of Open Access Journals (Sweden)

    Douglas G. Macharet

    2016-12-01

    Full Text Available Recent advances in the research of autonomous vehicles have showed a vast range of applications, such as exploration, surveillance and environmental monitoring. Considering the mining industry, it is possible to use such vehicles in the prospection of minerals of commercial interest beneath the ground. However, tasks such as geophysical surveys are highly dependent on specific sensors, which mostly are not designed to be used in these new range of autonomous vehicles. In this work, we propose a novel magnetic survey pipeline that aims to increase versatility, speed and robustness by using autonomous rotary-wing Unmanned Aerial Vehicles (UAVs. We also discuss the development of a state-of-the-art three-axis fluxgate, where our goal in this work was to refine and adjust the sensor topology and coupled electronics specifically for this type of vehicle and application. The sensor was built with two ring-cores using a specially developed stress-annealed CoFeSiB amorphous ribbon, in order to get sufficient resolution to detect concentrations of small ferrous minerals. Finally, we report on the results of experiments performed with a real UAV in an outdoor environment, showing the efficacy of the methodology in detecting an artificial ferrous anomaly.

  17. Autonomous Aeromagnetic Surveys Using a Fluxgate Magnetometer.

    Science.gov (United States)

    Macharet, Douglas G; Perez-Imaz, Héctor I A; Rezeck, Paulo A F; Potje, Guilherme A; Benyosef, Luiz C C; Wiermann, André; Freitas, Gustavo M; Garcia, Luis G U; Campos, Mario F M

    2016-12-17

    Recent advances in the research of autonomous vehicles have showed a vast range of applications, such as exploration, surveillance and environmental monitoring. Considering the mining industry, it is possible to use such vehicles in the prospection of minerals of commercial interest beneath the ground. However, tasks such as geophysical surveys are highly dependent on specific sensors, which mostly are not designed to be used in these new range of autonomous vehicles. In this work, we propose a novel magnetic survey pipeline that aims to increase versatility, speed and robustness by using autonomous rotary-wing Unmanned Aerial Vehicles (UAVs). We also discuss the development of a state-of-the-art three-axis fluxgate, where our goal in this work was to refine and adjust the sensor topology and coupled electronics specifically for this type of vehicle and application. The sensor was built with two ring-cores using a specially developed stress-annealed CoFeSiB amorphous ribbon, in order to get sufficient resolution to detect concentrations of small ferrous minerals. Finally, we report on the results of experiments performed with a real UAV in an outdoor environment, showing the efficacy of the methodology in detecting an artificial ferrous anomaly.

  18. Results from the GSFC fluxgate magnetometer on Pioneer 11

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.

  19. Machine Learning Based Localization and Classification with Atomic Magnetometers

    Science.gov (United States)

    Deans, Cameron; Griffin, Lewis D.; Marmugi, Luca; Renzoni, Ferruccio

    2018-01-01

    We demonstrate identification of position, material, orientation, and shape of objects imaged by a Rb 85 atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97% are obtained. This circumvents the need of solving the inverse problem and demonstrates the extension of machine learning to diffusive systems, such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.

  20. General theory of detection of signal induced in vibrating magnetometer

    International Nuclear Information System (INIS)

    Pacyna, A.W.

    1980-01-01

    Assuming the point dipole approximation only and making use of the vectorial notation, signal (EMF) induced in a single-turn pick-up coil of the vibrating magnetometer are calculated for the case of any orientation of the coil, of vibration axis and of the magnetic moment of the sample. On the basis of formula obtained, three types of measurement geometries have been distinquished and for these the qualitative analysis is made. (author)

  1. Athermal fiber laser for the SWARM absolute scalar magnetometer

    Science.gov (United States)

    Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.

    2017-11-01

    The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.

  2. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    Directory of Open Access Journals (Sweden)

    Naser El-Sheimy

    2012-09-01

    Full Text Available Inertial Navigation Systems (INS consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth’s magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS applications.

  3. In-Flight Calibration Processes for the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; hide

    2015-01-01

    The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and DigitalFluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, LosAngeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since thesuccessful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the groundcalibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluatetwelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers usingalgorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF,UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tonesand harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA.IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolutegains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS andgive examples of the quality of the resulting calibrations.

  4. New Magneto-Inductive DC Magnetometer for Space Missions

    Science.gov (United States)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of magnetometer.

  5. A spinner magnetometer for large Apollo lunar samples

    Science.gov (United States)

    Uehara, M.; Gattacceca, J.; Quesnel, Y.; Lepaulard, C.; Lima, E. A.; Manfredi, M.; Rochette, P.

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10-7 Am2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  6. A spinner magnetometer for large Apollo lunar samples.

    Science.gov (United States)

    Uehara, M; Gattacceca, J; Quesnel, Y; Lepaulard, C; Lima, E A; Manfredi, M; Rochette, P

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10 -7 Am 2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  7. Particle swarm optimization algorithm based low cost magnetometer calibration

    Science.gov (United States)

    Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.

    2011-12-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments

  8. In-Flight Calibration Processes for the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.

    2015-12-01

    The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and Digital Fluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, Los Angeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since the successful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the ground calibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluate twelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers using algorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF, UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tones and harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA. IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolute gains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS and give examples of the quality of the resulting calibrations.

  9. Through-barrier electromagnetic imaging with an atomic magnetometer.

    Science.gov (United States)

    Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio

    2017-07-24

    We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85 Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets' size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.

  10. Detection Range of Airborne Magnetometers in Magnetic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Chengjing Li

    2015-11-01

    Full Text Available Airborne magnetometers are utilized for the small-range search, precise positioning, and identification of the ferromagnetic properties of underwater targets. As an important performance parameter of sensors, the detection range of airborne magnetometers is commonly set as a fixed value in references regardless of the influences of environment noise, target magnetic properties, and platform features in a classical model to detect airborne magnetic anomalies. As a consequence, deviation in detection ability analysis is observed. In this study, a novel detection range model is proposed on the basis of classic detection range models of airborne magnetometers. In this model, probability distribution is applied, and the magnetic properties of targets and the environment noise properties of a moving submarine are considered. The detection range model is also constructed by considering the distribution of the moving submarine during detection. A cell-averaging greatest-of-constant false alarm rate test method is also used to calculate the detection range of the model at a desired false alarm rate. The detection range model is then used to establish typical submarine search probabilistic models. Results show that the model can be used to evaluate not only the effects of ambient magnetic noise but also the moving and geomagnetic features of the target and airborne detection platform. The model can also be utilized to display the actual operating range of sensor systems.

  11. A broadband two axis flux-gate magnetometer

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available A broadband two axis flux-gate magnetometer was developed to obtain high sensitivity in magnetotelluric measurements. In magnetotelluric sounding, natural low frequency electromagnetic fields are used to estimate the conductivity of the Earth's interior. Because variations in the natural magnetic field have small amplitude(10-100 pT in the frequency range 1 Hz to 100 Hz, highly sensitive magnetic sensors are required. In magnetotelluric measurements two long and heavy solenoids, which must be installed, in the field station, perpendicular to each other (north-south and east-west and levelled in the horizontal plane are used. The coil is a critical component in magnetotelluric measurements because very slight motions create noise voltages, particularly troublesome in wooded areas; generally the installation takes place in a shallow trench. Moreover the coil records the derivative of the variations rather than the magnetic field variations, consequently the transfer function (amplitude and phase of this sensor is not constant throughout the frequency range 0.001-100 Hz. The instrument, developed at L'Aquila Geomagnetic Observatory, has a flat response in both amplitude and phase in the frequency band DC-100 Hz, in addition it has low weight, low power, small volume and it is easier to install in the field than induction magnetometers. The sensivity of this magnetometer is 10 pT rms.

  12. Gluon Saturation and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Sichtermann, Ernst

    2016-12-15

    The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.

  13. Development of Next-Generation Borehole Magnetometer and Its Potential Application in Constraining the Magnetic Declination of Oman Samail Ophiolite at ICDP Drill Sites

    Science.gov (United States)

    Lee, S. M.; Parq, J. H.; Kim, H.; Moe, K.; Lee, C. S.; Kanamatsu, T.; Kim, K. J.; Bahk, K. S.

    2017-12-01

    Determining the azimuthal orientation of core samples obtained from deep drilling is extremely difficult because the core itself could have rotated during drilling operations. Several indirect methods have been devised to address this issue, but have certain limitations. Thus it is still a challenge to determine the azimuthal orientation consistently over the entire length of the hole. Provided that the recovery rate is high and thus all the other magnetic properties such as magnetization intensity and inclination are measured from the recovered cores, one possible method for ascertaining magnetic declination information is to measure the magnetic field inside the empty borehole and invert for the best fitting declination. However, there are two major problems: one is that present-day borehole magnetometers are not precise enough to resolve changes in direction of magnetization, and the other is that in most rock drilling experiments the rate of recovery is low. To overcome the first major problem which is technical, scientists from Korea and Japan jointly conducted the development for the next-generation borehole magnetometer, namely 3GBM (3rd Generation Borehole Magnetometer). The borehole magnetometer which uses fiber-optic laser gyro promises to provide accurate information on not only the magnetic field itself but also the orientation of the instrument inside the borehole. Our goal is to deploy this borehole magnetometer in the ICDP Oman Drilling Project Phase 2 drilling experiment early 2018. The site may be suitable for the investigation because, as recent Phase 1 of the Oman Samail Ophiolite drilling has demonstrated, the recovery rate was very high. Also the post-drilling measurements onboard DV Chikyu have shown that much of the recovered samples has moderate magnetization intensity on the order of 0.1 and 1 A/m. Here, we present the results of numerical simulation of magnetic field inside the borehole using finite element method to show that magnetic

  14. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lu

    2014-07-01

    Full Text Available This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or “responsivity” for magnetometers and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz1/2 at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.

  15. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-01-01

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or “responsivity” for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz1/2 at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market. PMID:25196107

  16. High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design.

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-07-30

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current "flip chip" concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or "responsivity" for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz(1/2) at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.

  17. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from ATC well NC-EWDP-19D. These estimates will allow a comparison of laboratory- and field-derived sorption parameters to be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

  18. SATURATED ZONE IN-SITU TESTING

    International Nuclear Information System (INIS)

    REIMUS, P.W.

    2004-01-01

    transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from ATC well NC-EWDP-19D. These estimates will allow a comparison of laboratory- and field-derived sorption parameters to be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC

  19. Miniature scientific-grade induction magnetometer for cubesats

    Science.gov (United States)

    Pronenko, Vira

    2017-04-01

    One of the main areas of space research is the study and forecasting of space weather. The society is more and more depending nowadays on satellite technology and communications, so it is vital to understand the physical process in the solar-terrestrial system which may disturb them. Besides the solar radiation and Space Weather effects, the Earth's ionosphere is also modified by the ever increasing industrial activity. There have been also multiple reports relating VLF and ELF wave activity to atmospheric storms and geological processes, such as earthquakes and volcanic activity. For advancing in these fields, the AC magnetic field permanent monitoring is crucial. Using the cubesat technology would allow increasing the number of measuring points dramatically. It is necessary to mention that the cubesats use for scientific research requires the miniaturization of scientific sensors what is a serious problem because the reduction of their dimensions leads, as a rule, to the parameters degradation, especially of sensitivity threshold. Today, there is no basic model of a sensitive miniature induction magnetometer. Even the smallest one of the known - for the Bepi-Colombo mission to Mercury - is too big for cubesats. The goal of the present report is to introduce the new design of miniature three-component sensor for measurement of alternative vector magnetic fields - induction magnetometer (IM). The study directions were concentrated on the ways and possibilities to create the miniature magnetometer with best combination of parameters. For this a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Finally, the LEMI-151 IM was developed for the SEAM cubesat mission with optimal performances within the

  20. Multilayer Based Technology to Build RTD Fluxgate Magnetometer

    Directory of Open Access Journals (Sweden)

    B. ANDO

    2006-03-01

    Full Text Available In this paper we discuss the main features of the Residence Times Difference Fluxgate Magnetometer. A low-cost technology, negligible onboard power requirements and the intrinsic digital form of the readout signal are the main advantages of the proposed strategy. Results obtained show the possibility to realise low-cost devices exploiting Printed Circuit Board (PCB technology for applications requiring resolution in the nanotesla range as the ferrous object (or particles detection, being the performance obtained suitable to detect the presence or the transit of ferrous materials via their interaction with the geomagnetic field.

  1. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  2. The simple procedure for the fluxgate magnetometers calibration

    Science.gov (United States)

    Marusenkov, Andriy

    2014-05-01

    The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the

  3. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    DEFF Research Database (Denmark)

    Menvielle, M.; Primdahl, Fritz; Brauer, Peter

    to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surfa ce, so as to achieve...... scientific payload in the frame of the ESA ExoMars mission. Experience from previous missions constitutes the background for the MSMO Magnetometer Protection strategy. DC and AC lander generated magnetic perturbations are discussed, with particular attention to those related to solar generators. Emphasis...... and very resource consuming....

  4. Testing the three axis magnetometer and gradiometer MOURA and data comparison on San Pablo de los Montes Observatory.

    Science.gov (United States)

    Belen Fernandez, Ana; Sanz, Ruy; Covisa, Pablo; Tordesillas, Jose Manuel; Diaz-Michelena, Marina

    2013-04-01

    A magnetometer and gradiometer named MOURA has been developed with the objective to measure the magnetic field on Mars in the frame of Mars MetNet Precursor Mission (MMPM) [1]. MOURA is a compact, miniaturized, intelligent and low cost instrument, based on two sets of triaxial magnetometers separated one centimeter from each other to do gradiometry studies. It has a resolution of 2.2 nT, and a field range of + 65μT, which can be extended to +130 μT when sensors are saturated. [2] These sensor heads are Anisotropic MagnetoResistances (AMR) Commercial-Off-The-Shelf (COTS) by Honeywell, specifically HMC1043, which has been selected due to their relative low consumption, weight and size, factors very important for the mission with very limited mass and power budget (shared 150 g for three full payloads). Also, this technology has been previously successfully employed on board Unmanned Aerial Vehicles (UAV) to perform geomagnetic surveys in extreme conditions areas [3], and in several space missions for different applications. [4] After the development of the MOURA Engineering Qualification Model (EQM) in November 2011, an exhaustive set of tests have been performed to validate and fully characterize the instrument. Compensation equations have been derived for the temperature corrections in the operation range (between -135 °C and 30 °C) in controlled environments. These compensation equations have been applied to field data, which have shown to follow the daily Earth's magnetic field variations as registered by San Pablo Geomagnetic Observatory (IAGA code: SPT) (available at www.ign.es and www.intermagnet.org) with deviations lower than 40 nT. These deviations were attributed to several error factors as the different locations between MOURA and SPT and other possible different geomagnetic conditions. Due to the above, a measurement campaign on SPT installations are been done. The main objective is to compare MOURA measurements on a relevant environment, with data

  5. Saturation Detection-Based Blocking Scheme for Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-07-01

    Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.

  6. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  7. Multi-flux-transformer MRI detection with an atomic magnetometer.

    Science.gov (United States)

    Savukov, Igor; Karaulanov, Todor

    2014-12-01

    Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate twofold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Development of autonomous magnetometer rotorcraft for wide area assessment

    Energy Technology Data Exchange (ETDEWEB)

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of

  9. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-01-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are −0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions. (paper)

  10. Swarm's absolute magnetometer experimental vector mode, an innovative capability for space magnetometry

    DEFF Research Database (Denmark)

    Hulot, Gauthier; Vigneron, Pierre; Leger, Jean-Michel

    2015-01-01

    , combining ASM scalar data with independent uxgate magnetometer vector data. The high level of agreement between these models demonstrates the potential of the ASM's vector mode for data quality control and as a stand alone magnetometer, and illustrates the way the evolution of key eld features can easily...

  11. Preliminary Report: DESiGN and Test Result of KSR-3 Rocket Magnetometers

    Directory of Open Access Journals (Sweden)

    Hyo-Min Kim

    2000-12-01

    Full Text Available The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for a scientific purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field. The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  12. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    Science.gov (United States)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-07-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.

  13. Closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1994-01-01

    A closed-cycle gas flow system for cooling a high-crit. temp. d.c.-superconducting quantum interference device (SQUID) magnetometer by means of a cryocooler has been designed, constructed and tested. The magnetometer is aimed to measure heart signals with a sensitivity of 0.1 pT/Hz1/2. The required

  14. The absolute magnetometers on board Swarm, lessons learned from more than two years in space

    DEFF Research Database (Denmark)

    Hulot, Gauthier; Leger, Jean-Michel; Vigneron, Pierre

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-borne magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the ma...

  15. Correlation between fluxgate and SQUID magnetometer data sets for geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Matladi Thabang

    2014-01-01

    Full Text Available There has always been a need to monitor the near Earth's magnetic field, as this monitoring provides understanding and possible predictions of Space Weather events such as geomagnetic storms. Conventional magnetometers such as fluxgates have been used for decades for Space Weather research. The use of highly sensitive magnetometers such as Superconducting QUantum Interference Devices (SQUIDs, promise to give more insight into Space Weather. SQUIDs are relatively recent types of magnetometers that exploit the superconductive effects of flux quantization and Josephson tunneling to measure magnetic flux. SQUIDs have a very broad bandwidth compared to most conventional magnetometers and can measure magnetic flux as low as a few femtotesla. Since SQUIDs have never been used in Space Weather research, unshielded, it is necessary to investigate if they can be reliable Space Weather instruments. The validation is performed by comparing the frequency content of the SQUID and fluxgate magnetometers, as reported by Phiri.

  16. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  17. Associating ground magnetometer observations with current or voltage generators

    DEFF Research Database (Denmark)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.

    2017-01-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for driversof ionospheric currents: ionospheric elec tric fields/voltages constant while current/conductivity vary—the“voltage generator”—and current constant while electric field/conductivity vary—the “current generator.......”Statistical studies of ground magnetometer observations associated with dayside Transient High LatitudeCurrent Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm:some studies associate THLCS with voltage generators, others with current generators. We argue that mostof...... these two assumptions substantially alter expectations for magnetic perturbations associatedwith either a current or a voltage generator. Our results demonstrate that before interpreting groundmagnetometer observations of THLCS in the context of current/voltage generators, the location...

  18. A three-axis SQUID-based absolute vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. [Department of Quantum Detection, Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Zakosarenko, V.; Meyer, M. [Supracon AG, An der Lehmgrube 11, Jena 07751 (Germany)

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  19. Magnetometer-Augmented IMU Simulator: In-Depth Elaboration

    Directory of Open Access Journals (Sweden)

    Thomas Brunner

    2015-03-01

    Full Text Available The location of objects is a growing research topic due, for instance, to the expansion of civil drones or intelligent vehicles. This expansion was made possible through the development of microelectromechanical systems (MEMS, inexpensive and miniaturized inertial sensors. In this context, this article describes the development of a new simulator which generates sensor measurements, giving a specific input trajectory. This will allow the comparison of pose estimation algorithms. To develop this simulator, the measurement equations of every type of sensor have to be analytically determined. To achieve this objective, classical kinematic equations are used for the more common sensors, i.e., accelerometers and rate gyroscopes. As nowadays, the MEMS inertial measurement units (IMUs are generally magnetometer-augmented, an absolute world magnetic model is implemented. After the determination of the perfect measurement (through the error-free sensor models, realistic error models are developed to simulate real IMU behavior. Finally, the developed simulator is subjected to different validation tests.

  20. Synthesis of Ni core NiO shell nanostructure and magnetic investigation for shell thickness determination

    International Nuclear Information System (INIS)

    Arabi, H.; Bruck, E.; Tichelaar, F.D.

    2007-01-01

    Full text: Nickel oxide has received a considerable amount of attention in recent years for its catalytic, electronic and magnetic properties. Ni nanoparticles with an average size of 8 nm were prepared by dc - arc discharge in argon atmosphere. A current of 130 A and 300 milli bar pressure of argon have been applied. The produced Ni nanoparticles were annealed for oxidizing in air at 350 for six hours to produce antiferromagnetic NiO particles. The structure of Ni and NiO nanoparticles and size estimation of them studied by means of X-ray diffraction. The size and morphology of the particles were also characterized by high resolution transmission microscopy (TEM). The Ni core NiO shell structure, resulting from the oxidation process, were studied by magnetic properties measurements. A quantum design squid magnetometer, model MPMS5S was used for measuring saturation magnetization of both nanoparticles of Ni with and without NiO layer. By knowing the density of Ni and NiO, we were able to deduce the thickness of the Ni core and NiO outer layer. They are around 3 and 5 nanometers respectively. (authors)

  1. Optimization of a digital SQUID magnetometer in terms of noise and distortion

    International Nuclear Information System (INIS)

    Haverkamp, I; Toepfer, H; Wetzstein, O; Kunert, J; Stolz, R; Meyer, H-G; Ortlepp, T

    2012-01-01

    The digital SQUID magnetometer takes advantage of flux quantization in a superconducting loop in order to measure magnetic fields. The core element of the digital SQUID is a Josephson comparator with a superconducting antenna loop attached to one of its junctions. Evaluation of the circuit from the system’s point of view requires an analysis in the frequency domain. In order to obtain a high-resolution fast Fourier transform, large datasets are necessary which are difficult to generate with transient simulation tools. In this work we derive a behavioural model for the digital SQUID in order to overcome restrictions imposed by transient simulation. By means of this model the influence of the comparator grey zone and the input loop inductance on the system performance was analysed. In order to assess the system, evaluation criteria based on the power spectral density were applied, which are commonly used for characterization of semiconductor analogue to digital converters. As a result of this study, design guidelines for an optimum antenna inductance depending on the comparator grey zone are derived, allowing us to achieve an optimum system performance in terms of noise and distortion. (paper)

  2. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

    International Nuclear Information System (INIS)

    Yu Dindi; Ruangchaithaweesuk, Songtham; Yao Li; Xu Shoujun

    2012-01-01

    The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/√Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 μm with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 μm, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

  3. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Yu Dindi; Ruangchaithaweesuk, Songtham; Yao Li; Xu Shoujun, E-mail: sxu7@uh.edu [University of Houston, Department of Chemistry (United States)

    2012-09-15

    The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/{radical}Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 {mu}m with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 {mu}m, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

  4. Natural remanent magnetization and rock magnetic parameters from the North-East Atlantic continental margin : Insights from a new, automated cryogenic magnetometer at the Geological Survey of Norway

    Science.gov (United States)

    Klug, Martin; Fabian, Karl; Knies, Jochen; Sauer, Simone

    2017-04-01

    Natural remanent magnetization (NRM) and rock magnetic parameters from two locations, West Barents Sea ( 71.6°N,16.2°E) and Vestnesa Ridge, NW Svalbard ( 79.0°N, 6.9°E), were acquired using a new, automatically operating cryogenic magnetometer system at the Geological Survey of Norway. The magnetometer setup comprises an automated robot sample feeding, dynamic operation and measurement monitoring, and customised output-to-database data handling. The setup is designed to dynamically enable a variety of parallel measurements with several coupled devices (e.g. balance, MS2B) to effectively use dead-time in between the otherwise time-consuming measurements with the cryogen magnetometer. Web-based access allows remote quality control and interaction 24/7 and enables high sample throughput. The magnetic properties are combined with geophysical, geochemical measurements and optical imaging, both radiographic and colour images, from high-resolution core-logging. The multidisciplinary approach enables determination and interpretation of content and formation of the magnetic fraction, and its development during diagenetic processes. Besides palaeomagnetic age determination the results offer the opportunity to study sediment transformation processes that have implications for the burial and degradation of organic matter. The results also help to understand long and short-term variability of sediment accumulation. Chemical sediment stability is directly linked to environmental and climate variability in the polar marine environment during the recent past.

  5. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  6. Rectifier transformer saturation on commutation failure

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1989-01-01

    The rectifier transformer's service differs from the power transformer's service because of the rectifier load. Under certain fault conditions, such as a commutation failure, d.c. magnetization may be introduced into the rectifier transformer cores, resulting in possible saturation of the magnetic circuit, thus in degradation of the performance of the transformer. It is the purpose of this paper to present an approach for evaluating the electromagnetic transient process under such a fault condition. The studies were made on the operating 1000MVA converter system at the Princeton Plasma Physics Laboratory

  7. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  8. Effect of low-frequency ambient magnetic fields on the control unit and RF head of a commercial SQUID magnetometer

    Science.gov (United States)

    Marcus, C. M.

    1984-01-01

    The control unit and RF head of the SHE model 330XRFSQUID system are shown to be sensitive to ambient ac magnetic fields below 1 HZ, which cause the appearance of false signals corresponding to a magnetometer signal of 0.000001 phi(0) per gauss of field applied. The control unit shows a sensitivity that is linear with frequency, suggesting that the signal is generated by Faraday induction. In contrast, the RF head response is independent of frequency and shows a strong second-harmonic coversion. This response may be due to the magnetic field sensitivity of the ferrite core inductor in the tuned amplifier of the RF head. These signals induced by ambient fields are a potential source of error in Stanford's Relativity Gyroscope experiment, which uses SQUID's on board a rolling satellite as part of the gyroscope readout system. The extent of the magnetic field sensitivity in these components necessitates the use of additional magnetic shielding aboard the satellite.

  9. Magnetic dichroism in photoemission: a new element-specific magnetometer with atomic-layer resolution

    International Nuclear Information System (INIS)

    Starke, K.; Arenholz, E.; Kaindl, G.

    1998-01-01

    Full text: Magnetic coupling in layered metallic structures has become a key issue in thin-film magnetism since the observation of oscillatory exchange coupling across non-ferromagnetic spacer layers. Although this phenomenon was discovered in rare earths (RE) superlattices, mostly transition-metal systems have been studied and are now applied in data-storage industry. An understanding of the coupling mechanisms has been reached after a fabrication of high-quality interfaces became possible. It allowed, in particular, the experimental finding of induced ferromagnetic order in 'nonmagnetic' atomic layers near an interface, using element-specific probes such as magnetic circular dichroism in x-ray absorption. - In layered RE systems, by contrast, the well known intermiscibility has prevented a preparation of atomically sharp interfaces, and all RE superlattices studied so far showed interdiffusion zones of several atomic layers. In the present overview, we report the first fabrication of atomically flat heteromagnetic RE interfaces, their structural characterization and their magnetic analysis using magnetic dichroism in photoemission (MDPE). This new tool gives access to the magnetization of individual atomic layers near interfaces in favourite cases. Merits of MDPE as a magnetometer are demonstrated at the example of Eu/Gd(0001), where chemical shifts of core-level photoemission lines allow to spectroscopically separate up to four different atomic layers. The high surface sensitivity of MDPE, together with the well known dependence of the core-level binding energies on the coordination number of the photo emitting atom, opens the door to future site-specific studies of magnetism in sub-monolayer systems such as 'nanowires'

  10. Development of Magnetometer Digital Circuit for KSR-3 Rocket and Analytical Study on Calibration Result

    Directory of Open Access Journals (Sweden)

    Eun-Seok Lee

    2002-12-01

    Full Text Available This paper describes the re-design and the calibration results of the MAG digital circuit onboard the KSR-3. We enhanced the sampling rate of magnetometer data. Also, we reduced noise and increased authoritativeness of data. We could confirm that AIM resolution was decreased less than 1nT of analog calibration by a digital calibration of magnetometer. Therefore, we used numerical-program to correct this problem. As a result, we could calculate correction and error of data. These corrections will be applied to magnetometer data after the launch of KSR-3.

  11. THE SATURATION OF SASI BY PARASITIC INSTABILITIES

    International Nuclear Information System (INIS)

    Guilet, Jerome; Sato, Jun'ichi; Foglizzo, Thierry

    2010-01-01

    The standing accretion shock instability (SASI) is commonly believed to be responsible for large amplitude dipolar oscillations of the stalled shock during core collapse, potentially leading to an asymmetric supernovae explosion. The degree of asymmetry depends on the amplitude of SASI, but the nonlinear saturation mechanism has never been elucidated. We investigate the role of parasitic instabilities as a possible cause of nonlinear SASI saturation. As the shock oscillations create both vorticity and entropy gradients, we show that both Kelvin-Helmholtz and Rayleigh-Taylor types of instabilities are able to grow on a SASI mode if its amplitude is large enough. We obtain simple estimates of their growth rates, taking into account the effects of advection and entropy stratification. In the context of the advective-acoustic cycle, we use numerical simulations to demonstrate how the acoustic feedback can be decreased if a parasitic instability distorts the advected structure. The amplitude of the shock deformation is estimated analytically in this scenario. When applied to the set up of Fernandez and Thompson, this saturation mechanism is able to explain the dramatic decrease of the SASI power when both the nuclear dissociation energy and the cooling rate are varied. Our results open new perspectives for anticipating the effect, on the SASI amplitude, of the physical ingredients involved in the modeling of the collapsing star.

  12. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  13. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  14. Rad-Hard Sigma-Delta 3-Channel ADC for Fluxgate Magnetometers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The measurement of the magnetic field vector is of fundamental importance to space physics missions. The fluxgate magnetometer is a device developed for precise...

  15. Measuring In-Flight Angular Motion With a Low-Cost Magnetometer

    National Research Council Canada - National Science Library

    Harkins, Thomas E; Wilson, Michael J

    2007-01-01

    A technique for obtaining pitch, yaw, and roll rates of a projectile from a single, low-cost, commercial off-the-shelf magnetometer has been developed at the Advanced Munitions Concepts Branch of the U.S...

  16. Rad-Hard Sigma-Delta 3-channel ADC for Fluxgate Magnetometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project aims to develop a multi-channel analog to digital converter (ADC) required for a fluxgate magnetometer (EPD) employed on NASA's planetary...

  17. Simplified High-Performance Roll Out Composite Magnetometer Boom, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for compact, low-cost deployable magnetometer booms for CubeSats, Roccor proposes to develop a Simple High-performance Roll-Out Composite...

  18. Basic technical parameters of magnetometers with ferromagnetic transducers and a method to define them

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1980-01-01

    The basic technical parameters of magnetometers with ferromagnetic transducers and measuring methods to define these parameters have been discussed. Special attention was paid to factors which essentially affect the inaccuracy of these measuring instruments. (author)

  19. Venus Lightning: What We Have Learned from the Venus Express Fluxgate Magnetometer

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.

    2010-03-01

    The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as predicted by the lightning model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by lightning.

  20. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    Science.gov (United States)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  1. IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies (IMCS31B) data set contains magnetic field readings taken over Greenland using...

  2. IceBridge Scintrex CS-3 Cesium Magnetometer L0 Raw Magnetic Field, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Scintrex CS-3 Cesium Magnetometer L0 Raw Magnetic Field data set contains magnetic field readings and fluxgate values taken over Greenland using...

  3. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  4. Feasibility study on measurement of magnetocardiography (MCG) using fluxgate magnetometer

    Science.gov (United States)

    Sengottuvel, S.; Sharma, Akash; Biswal, Deepak; Khan, Pathan Fayaz; Swain, Pragyna Parimita; Patel, Rajesh; Gireesan, K.

    2018-04-01

    This paper reports the feasibility of measuring weak magnetic fields generated by the electrical activity of the heart using a portable tri-axial fluxgate magnetometer inside a magnetically shielded room. Measurement of Magnetocardiogram (MCG) signals could be successfully demonstrated from a healthy subject using a novel set-up involving a reference fluxgate sensor which simultaneously measures the magnetic fields associated with the ECG waveform measured on the same subject. The timing information provided by R wave peaks of ECG recorded by the reference sensor is utilized to generate trigger locked average of the sensor output of the measurement fluxgate, and extract MCG signals in all the three orthogonal directions (X, Y and Z) on the anterior thorax. It is expected that such portable room temperature measurements using fluxgate sensor could assist in validating the direction of the equivalent current dipole associated with the electrical activity of the human heart. This is somewhat difficult in conventional MCG measurements using SQUID sensors, which usually furnish only the z component of the magnetic field and its spatial derivatives.

  5. CLUSTER STAFF search coils magnetometer calibration - comparisons with FGM

    Science.gov (United States)

    Robert, P.; Cornilleau-Wehrlin, N.; Piberne, R.; de Conchy, Y.; Lacombe, C.; Bouzid, V.; Grison, B.; Alison, D.; Canu, P.

    2013-12-01

    The main part of Cluster Spatio Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC) and the second by an onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from EFW experiment) in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signal of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units, across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Flux Gate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period.

  6. CLUSTER-STAFF search coil magnetometer calibration - comparisons with FGM

    Science.gov (United States)

    Robert, P.; Cornilleau-Wehrlin, N.; Piberne, R.; de Conchy, Y.; Lacombe, C.; Bouzid, V.; Grison, B.; Alison, D.; Canu, P.

    2014-09-01

    The main part of the Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC), and the second by the onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from the EFW experiment), in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signals of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Fluxgate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period.

  7. A xylophone bar magnetometer for micro/pico satellites

    Science.gov (United States)

    Lamy, Hervé; Niyonzima, Innocent; Rochus, Pierre; Rochus, Véronique

    2010-10-01

    The Belgian Institute of Space Aeronomy (BIRA-IASB), "Centre Spatial de Liège" (CSL), "Laboratoire de Techniques Aéronautiques et Spatiales" (LTAS) of University of Liège, and the Microwave Laboratory of University of Louvain-La-Neuve (UCL) are collaborating in order to develop a miniature version of a xylophone bar magnetometer (XBM) using Microelectromechanical Systems (MEMS) technology. The device is based on a classical resonating xylophone bar. A sinusoidal current is supplied to the bar oscillating at the fundamental transverse resonant mode of the bar. When an external magnetic field is present, the resulting Lorentz force causes the bar to vibrate at its fundamental frequency with an amplitude directly proportional to the vertical component of the ambient magnetic field. In this paper we illustrate the working principles of the XBM and the challenges to reach the required sensitivity in space applications (measuring magnetic fields with an accuracy of approximately of 0.1 nT). The optimal dimensions of the MEMS XBM are discussed as well as the constraints on the current flowing through the bar. Analytical calculations as well as simulations with finite element methods have been used. Prototypes have been built in the Microwave Laboratory using silicon on insulator (SOI) and bulk micromachining processes. Several methods to accurately measure the displacement of the bar are proposed.

  8. Reducing systematic errors in measurements made by a SQUID magnetometer

    International Nuclear Information System (INIS)

    Kiss, L.F.; Kaptás, D.; Balogh, J.

    2014-01-01

    A simple method is described which reduces those systematic errors of a superconducting quantum interference device (SQUID) magnetometer that arise from possible radial displacements of the sample in the second-order gradiometer superconducting pickup coil. By rotating the sample rod (and hence the sample) around its axis into a position where the best fit is obtained to the output voltage of the SQUID as the sample is moved through the pickup coil, the accuracy of measuring magnetic moments can be increased significantly. In the cases of an examined Co 1.9 Fe 1.1 Si Heusler alloy, pure iron and nickel samples, the accuracy could be increased over the value given in the specification of the device. The suggested method is only meaningful if the measurement uncertainty is dominated by systematic errors – radial displacement in particular – and not by instrumental or environmental noise. - Highlights: • A simple method is described which reduces systematic errors of a SQUID. • The errors arise from a radial displacement of the sample in the gradiometer coil. • The procedure is to rotate the sample rod (with the sample) around its axis. • The best fit to the SQUID voltage has to be attained moving the sample through the coil. • The accuracy of measuring magnetic moment can be increased significantly

  9. Obtaining 'images' from iron objects using a 3-axis fluxgate magnetometer

    International Nuclear Information System (INIS)

    Chilo, Jose; Jabor, Abbas; Lizska, Ludwik; Eide, Age J.; Lindblad, Thomas

    2007-01-01

    Magnetic objects can cause local variations in the Earth's magnetic field that can be measured with a magnetometer. Here we used tri-axial magnetometer measurements and an analysis method employing wavelet techniques to determine the 'signature' or 'fingerprint' of different iron objects. Clear distinctions among the iron samples were observed. The time-dependent changes in the frequency powers were extracted by use of the Morlet wavelet corresponding to frequency bands from 0.1 to 100 Hz

  10. Nuclear Magnetic Resonance and Elastic Wave Velocity of Chalk Saturated with Brines Containing Divalent Ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    divided into groups of three and each group was saturated either with deionized water, calcite equilibrated water, or sodium chloride, magnesium chloride and calcium chloride solutions of the same ionic strength. Saturation with solutions that contain divalent ions caused major shifts in the distribution...... of the relaxation time. Core samples saturated with calcium chloride solution relaxed slower and those saturated with magnesium chloride solution relaxed faster than the rest of the samples. Along with the changes in relaxation the samples experienced smaller velocities of elastic waves when saturated with MgCl2...

  11. Saturated Zone In-Situ Testing

    International Nuclear Information System (INIS)

    Reimus, P. W.; Umari, M. J.

    2003-01-01

    colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from both the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from NC-EWDP-19D1 (one of the wells at the ATC) so that a comparison of laboratory- and field-derived sorption parameters can be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC

  12. Saturated Zone In-Situ Testing

    Energy Technology Data Exchange (ETDEWEB)

    P. W. Reimus; M. J. Umari

    2003-12-23

    colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from both the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from NC-EWDP-19D1 (one of the wells at the ATC) so that a comparison of laboratory- and field-derived sorption parameters can be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

  13. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect

    International Nuclear Information System (INIS)

    Burdin, D.A.; Chashin, D.V.; Ekonomov, N.A.; Fetisov, Y.K.; Stashkevich, A.A.

    2016-01-01

    The design and operation principle of dc field magnetometer using nonlinear resonance magnetoelectric effect in a ferromagnetic–piezoelectric structure are described. It is shown that under action of ac pumping magnetic field the structure generates the output voltage containing higher harmonics whose amplitudes depend on the dc magnetic field. Best performance of the device is obtained if the signal of the third harmonics is used for the dc field measurement. The sensitivity can be considerably (by approximately three orders of magnitude) increased if advantage is taken of the acoustic resonance of the structure at this frequency. There exists the optimal pumping field ensuring the highest sensitivity. Further increasing of this field expands the range of measurable dc fields at the expense of deteriorated sensitivity. The magnetometer fabricated on the basis of a planar langatate-Metglas structure had sensitivity up to ~1 V/Oe and allowed detection of the fields as low as ~10"−"5 Oe. - Highlights: • Operational principle and design of new type dc field magnetometer is described. • Magnetometer uses nonlinear magnetoelectric effect in a langatate-Metglas structure. • Magnetometer has sensitivity of ~1 V/Oe and detects fields as low as 10"−"5 Oe. • The proposed magnetometer can compete with well known fluxgate sensors.

  14. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, D.A.; Chashin, D.V.; Ekonomov, N.A. [Moscow State University of Information Technologies, Radio Engineering and Electronics, Moscow (Russian Federation); Fetisov, Y.K., E-mail: fetisov@mirea.ru [Moscow State University of Information Technologies, Radio Engineering and Electronics, Moscow (Russian Federation); Stashkevich, A.A. [LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse (France)

    2016-05-01

    The design and operation principle of dc field magnetometer using nonlinear resonance magnetoelectric effect in a ferromagnetic–piezoelectric structure are described. It is shown that under action of ac pumping magnetic field the structure generates the output voltage containing higher harmonics whose amplitudes depend on the dc magnetic field. Best performance of the device is obtained if the signal of the third harmonics is used for the dc field measurement. The sensitivity can be considerably (by approximately three orders of magnitude) increased if advantage is taken of the acoustic resonance of the structure at this frequency. There exists the optimal pumping field ensuring the highest sensitivity. Further increasing of this field expands the range of measurable dc fields at the expense of deteriorated sensitivity. The magnetometer fabricated on the basis of a planar langatate-Metglas structure had sensitivity up to ~1 V/Oe and allowed detection of the fields as low as ~10{sup −5} Oe. - Highlights: • Operational principle and design of new type dc field magnetometer is described. • Magnetometer uses nonlinear magnetoelectric effect in a langatate-Metglas structure. • Magnetometer has sensitivity of ~1 V/Oe and detects fields as low as 10{sup −5} Oe. • The proposed magnetometer can compete with well known fluxgate sensors.

  15. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    International Nuclear Information System (INIS)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-01-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field 'F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  16. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    Science.gov (United States)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-05-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  17. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  18. Development of Autonomous Magnetometer Rotorcraft For Wide Area Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. McKay; Matthew O. Anderson

    2011-08-01

    Large areas across the United States and internationally are potentially contaminated with unexploded ordinance (UXO), with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with (1) near 100% coverage and (2) near 100% detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 to 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys, resulting in costs of approximately $100-$150/acre. In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide highresolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus there is a need for other systems, which can be used for effective data collection. An Unmanned Aerial Vehicle (UAV) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly

  19. In-Flight Calibration of the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; hide

    2017-01-01

    We present an overview of the approach to in-flight calibration, which is a coordinated effort between the University of California Los Angeles (UCLA), Space Research Institute, Graz, Austria (IWF) and the NASA Goddard Space Flight Center (GSFC). We present details of the calibration effort at GSFC. During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.

  20. Nanosatellite High-Precision Magnetic Missions Enabled by Advances in a Stand-Alone Scalar/Vector Absolute Magnetometer

    Science.gov (United States)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Jager, T.; Bertrand, F.; Coisson, P.; Deram, P.; Boness, A.; Tomasini, L.; Faure, B.

    2017-12-01

    Satellites of the ESA Swarm mission currently in operation carry a new generation of Absolute Scalar Magnetometers (ASM), which nominally deliver 1 Hz scalar for calibrating the relative flux gate magnetometers that complete the magnetometry payload (together with star cameras, STR, for attitude restitution) and providing extremely accurate scalar measurements of the magnetic field for science investigations. These ASM instruments, however, can also operate in two additional modes, a high-frequency 250 Hz scalar mode and a 1 Hz absolute dual-purpose scalar/vector mode. The 250 Hz scalar mode already allowed the detection of until now very poorly documented extremely low frequency whistler signals produced by lightning in the atmosphere, while the 1 Hz scalar/vector mode has provided data that, combined with attitude restitution from the STR, could be used to produce scientifically relevant core field and lithospheric field models. Both ASM modes have thus now been fully validated for science applications. Efforts towards developing an improved and miniaturized version of this instrument is now well under way with CNES support in the context of the preparation of a 12U nanosatellite mission (NanoMagSat) proposed to be launched to complement the Swarm satellite constellation. This advanced miniaturized ASM could potentially operate in an even more useful mode, simultaneously providing high frequency (possibly beyond 500 Hz) absolute scalar data and self-calibrated 1 Hz vector data, thus providing scientifically valuable data for multiple science applications. In this presentation, we will illustrate the science such an instrument taken on board a nanosatellite could enable, and report on the current status of the NanoMagSat project that intends to take advantage of it.

  1. Development of Search-Coil Magnetometer for Ultra Low Frequency (ULF) Wave Observations at Jang Bogo Station in Antarctica

    Science.gov (United States)

    Lee, J. K.; Shin, J.; Kim, K. H.; Jin, H.; Kim, H.; Kwon, J.; Lee, S.; Jee, G.; Lessard, M.

    2016-12-01

    A ground-based bi-axial search-coil magnetometer (SCM) has been devloped for observation of time-varying magnetic fields (dB/dt) in the Ultra Low Frequency (ULF) range (a few mHz up to 5 Hz) to understand magnetosphere-ionosphere coupling processes. The SCM consists of magnetic sensors, analog electronics, cables and data acquisition system (DAQ). The bi-axial magnetic sensor has coils of wire wound around a mu-metal cores, each of which measures magnetic field pulsations in the horizontal components, geomagnetic north-south and east-west, respectively. The analog electronics is designed to control the cut-off frequency of the instrument and to amplify detected signals. The DAQ has a 16 bit analog to digital converter (ADC) at the user defined rate of 10 Hz. It is also equipped with the Global Positioning System (GPS) and Network Time Protocol (NTP) for time synchronization and accuracy. We have carried out in-lab performance tests (e.g., frequency response, noise level, etc) using a magnetically shielded case and a field-test in a magnetically quiet location in South Korea. During the field test, a ULF Pi 2 event has been observed clearly. We also confirmed that it was a substorm activity from a fluxgate magnetometer data at Mineyama (35°57.3'N, 135°05'E, geographic). The SCM will be installed and operated at Jang Bogo Antarctic Research Station (74°37.4'S, 164°13.7'E, geographic) on Dec. 2016. The geomagnetic latitude of the station is similar to that of the US McMurdo station (77°51'S, 166°40'E, geographic), both of which are typically near the cusp region. Thus, we expect that the SCM can provide useful information to understand ULF wave propagation characteristics.

  2. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  3. Radiation tolerance of a spin-dependent tunnelling magnetometer for space applications

    International Nuclear Information System (INIS)

    Persson, Anders; Thornell, Greger; Nguyen, Hugo

    2011-01-01

    To meet the increasing demand for miniaturized space instruments, efforts have been made to miniaturize traditional magnetometers, e.g. fluxgate and spin-exchange relaxation-free magnetometers. These have, for different reasons, turned out to be difficult. New technologies are needed, and promising in this respect are tunnelling magnetoresistive (TMR) magnetometers, which are based on thin film technology. However, all new space devices first have to be qualified, particularly in terms of radiation resistance. A study on TMR magnetometers' vulnerability to radiation is crucial, considering the fact that they employ a dielectric barrier, which can be susceptible to charge trapping from ionizing radiation. Here, a TMR-based magnetometer, called the spin-dependent tunnelling magnetometer (SDTM), is presented. A magnetometer chip consisting of three Wheatstone bridges, with an angular pitch of 120°, was fabricated using microstructure technology. Each branch of the Wheatstone bridges consists of eight pairs of magnetic tunnel junctions (MTJs) connected in series. Two such chips are used to measure the three-dimensional magnetic field vector. To investigate the SDTM's resistance to radiation, one branch of a Wheatstone bridge was irradiated with gamma rays from a Co 60 source with a dose rate of 10.9 rad min −1 to a total dose of 100 krad. The TMR of the branch was monitored in situ, and the easy axis TMR loop and low-frequency noise characteristics of a single MTJ were acquired before and after irradiation with the total dose. It was concluded that radiation did not influence the MTJs in any noticeable way in terms of the TMR ratio, coercivity, magnetostatic coupling or low-frequency noise

  4. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-01-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers. (paper)

  5. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    Science.gov (United States)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-02-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers.

  6. NetPICOmag: A low-cost networked magnetometer and its applications

    Science.gov (United States)

    Schofield, I.; Connors, M.; Russell, C. T.

    2012-03-01

    NetPICOmag (NPM) is the culmination of a design effort to build a compact, low-cost, laboratory-grade, networked magnetometer designed for remote autonomous operation, suited for research and education. NPM allows wide placement of magnetometers sensitive enough to detect auroral activity and the daily variation, and is suitable for education projects and a range of geophysical applications. The use of networked microcontrollers and GPS timing is applicable to other small instruments for field or local deployment, and an onboard data logging capability has also been demonstrated. We illustrate the value of the placement of low-cost magnetometers to increase coverage in an area through the study of a Pc 5 pulsation event which took place on September 4, 2010. By combining results with those from auroral zone magnetometers supporting the THEMIS project, we find that the phase velocity of these morning sector pulsations was northward on the ground. The event took place under very quiet solar wind conditions, and credible mapping associates it with the inner magnetosphere. Another aspect beyond increasing areal coverage is increasing density of coverage, which becomes feasible with instruments of very low cost. We examine aspects of the April 5, 2010 space weather event which are possible to deduce from closely spaced magnetometers.

  7. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  8. Comparison of a triaxial fluxgate magnetometer and Toftness sensometer for body surface EMF measurement.

    Science.gov (United States)

    Zhang, John; Toftness, Dave; Snyder, Brian; Nosco, Dennis; Balcavage, Walter; Nindl, Gabi

    2004-12-01

    The use of magnetic fields to treat disease has intrigued mankind since the time of the ancient Greeks. More recently it has been shown that electromagnetic field (EMF) treatment aids bone healing, and repetitive transcranial magnetic stimulation (rTMS) appears to be beneficial in treating schizophrenia and depression. Since external EMFs influence internal body processes, we hypothesized that measurement of body surface EMFs might be used to detect disease states and direct the course of subsequent therapy. However, measurement of minute body surface EMFs requires use of a sensitive and well documented magnetometer. In this study we evaluated the sensitivity and frequency response of a fluxgate magnetometer with a triaxial probe for use in detecting body surface EMF and we compared the magnetometer readings with a signal from a Toftness Sensometer, operated by an experienced clinician, in the laboratory and in a clinical setting. A Peavy Audio Amplifier and variable power output Telulex signal generator were used to develop 50 microT EMFs in a three coil Merritt coil system. A calibrated magnetometer was used to set a 60 Hz 50 microT field in the coil and an ammeter was used to measure the current required to develop the 50 microT field. At frequencies other than 60 Hz, the field strength was maintained at 50 microT by adjusting the Telulex signal output to keep the current constant. The field generated was monitored using a 10 turn coil connected to an oscilloscope. The oscilloscope reading indicated that the field strength was the same at all frequencies tested. To determine if there was a correspondence between the signals detected by a fluxgate magnetometer (FGM1) and the Toftness Sensometer both devices were placed in the Merritt coil and readings were recorded from the FGM1 and compared with the ability of a highly experienced Toftness operator to detect the 50 microT field. Subsequently, in a clinical setting, FGM1 readings made by an FGM1 technician and

  9. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    International Nuclear Information System (INIS)

    El-Alaily, T.M.; El-Nimr, M.K.; Saafan, S.A.; Kamel, M.M.; Meaz, T.M.; Assar, S.T.

    2015-01-01

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability. - Highlights: • A low cost automated vibrating sample magnetometer VSM has been constructed. • The VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. • The VSM has been calibrated and tested by using some measured ferrite samples. • Our VSM lab-built new design proved success and reliability

  10. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    El-Alaily, T.M., E-mail: toson_alaily@yahoo.com [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); El-Nimr, M.K.; Saafan, S.A.; Kamel, M.M.; Meaz, T.M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Assar, S.T. [Engineering Physics and Mathematics Department, Faculty of Engineering, Tanta University, Tanta (Egypt)

    2015-07-15

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability. - Highlights: • A low cost automated vibrating sample magnetometer VSM has been constructed. • The VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. • The VSM has been calibrated and tested by using some measured ferrite samples. • Our VSM lab-built new design proved success and reliability.

  11. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    Science.gov (United States)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  12. Development of a {sup 3}He magnetometer for a neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas; Heil, Werner; Lauer, Thorsten; Neumann, Daniel [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Koch, Hans-Christian [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); University of Fribourg, Physics Department, Fribourg (Switzerland); Daum, Manfred [Paul Scherrer Institute, Villigen (Switzerland); Pazgalev, Anatoly [Ioffe Institute, St Petersburg (Russian Federation); Sobolev, Yuri [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Weis, Antoine [University of Fribourg, Physics Department, Fribourg (Switzerland)

    2014-01-01

    We have developed a highly sensitive {sup 3}He magnetometer for the accurate measurement of the magnetic field in an experiment searching for an electric dipole moment of the neutron. By measuring the Larmor frequency of nuclear spin polarized {sup 3}He atoms a sensitivity on the femto-Tesla scale can be achieved. A {sup 3}He/Cs-test facility was established at the Institute of Physics of the Johannes Gutenberg University in Mainz to investigate the readout of {sup 3}He free induction decay with a lamp-pumped Cs magnetometer. For this we designed and built an ultra-compact and transportable polarizer unit which polarizes {sup 3}He gas up to 55% by metastability exchange optical pumping. The polarized {sup 3}He was successfully transfered from the polarizer into a glass cell mounted in a magnetic shield and the {sup 3}He free induction decay was detected by a lamp-pumped Cs magnetometer. (orig.)

  13. Deconvolution of continuous paleomagnetic data from pass-through magnetometer: A new algorithm to restore geomagnetic and environmental information based on realistic optimization

    Science.gov (United States)

    Oda, Hirokuni; Xuan, Chuang

    2014-10-01

    development of pass-through superconducting rock magnetometers (SRM) has greatly promoted collection of paleomagnetic data from continuous long-core samples. The output of pass-through measurement is smoothed and distorted due to convolution of magnetization with the magnetometer sensor response. Although several studies could restore high-resolution paleomagnetic signal through deconvolution of pass-through measurement, difficulties in accurately measuring the magnetometer sensor response have hindered the application of deconvolution. We acquired reliable sensor response of an SRM at the Oregon State University based on repeated measurements of a precisely fabricated magnetic point source. In addition, we present an improved deconvolution algorithm based on Akaike's Bayesian Information Criterion (ABIC) minimization, incorporating new parameters to account for errors in sample measurement position and length. The new algorithm was tested using synthetic data constructed by convolving "true" paleomagnetic signal containing an "excursion" with the sensor response. Realistic noise was added to the synthetic measurement using Monte Carlo method based on measurement noise distribution acquired from 200 repeated measurements of a u-channel sample. Deconvolution of 1000 synthetic measurements with realistic noise closely resembles the "true" magnetization, and successfully restored fine-scale magnetization variations including the "excursion." Our analyses show that inaccuracy in sample measurement position and length significantly affects deconvolution estimation, and can be resolved using the new deconvolution algorithm. Optimized deconvolution of 20 repeated measurements of a u-channel sample yielded highly consistent deconvolution results and estimates of error in sample measurement position and length, demonstrating the reliability of the new deconvolution algorithm for real pass-through measurements.

  14. Coherent population trapping magnetometer by differential detecting magneto–optic rotation effect

    International Nuclear Information System (INIS)

    Zhang Fan; Tian Yuan; Zhang Yi; Gu Si-Hong

    2016-01-01

    A pocket coherent population trapping (CPT) atomic magnetometer scheme that uses a vertical cavity surface emitting laser as a light source is proposed and experimentally investigated. Using the differential detecting magneto–optic rotation effect, a CPT spectrum with the background canceled and a high signal-to-noise ratio is obtained. The experimental results reveal that the sensitivity of the proposed scheme can be improved by half an order, and the ability to detect weak magnetic fields is extended one-fold. Therefore, the proposed scheme is suited to realize a pocket-size CPT magnetometer. (paper)

  15. Obtaining 'images' from iron objects using a 3-axis fluxgate magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Chilo, Jose [University of Gaevle, S-80176 Gaevle (Sweden); Jabor, Abbas [Royal Institute of Technology, Department of Physics, S-106 91 Stockholm (Sweden); Lizska, Ludwik [Swedish Institute of Space Physics in Umea (Sweden); Eide, Age J. [Ostfold University College, N-1757 Halden (Norway); Lindblad, Thomas [Royal Institute of Technology, Department of Physics, S-106 91 Stockholm (Sweden)], E-mail: lindblad@particle.kth.se

    2007-10-01

    Magnetic objects can cause local variations in the Earth's magnetic field that can be measured with a magnetometer. Here we used tri-axial magnetometer measurements and an analysis method employing wavelet techniques to determine the 'signature' or 'fingerprint' of different iron objects. Clear distinctions among the iron samples were observed. The time-dependent changes in the frequency powers were extracted by use of the Morlet wavelet corresponding to frequency bands from 0.1 to 100 Hz.

  16. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    Science.gov (United States)

    El-Alaily, T. M.; El-Nimr, M. K.; Saafan, S. A.; Kamel, M. M.; Meaz, T. M.; Assar, S. T.

    2015-07-01

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability.

  17. Integrated high-transition temperature magnetometer with only two superconducting layers

    DEFF Research Database (Denmark)

    Kromann, R.; Kingston, J.J.; Miklich, A.H.

    1993-01-01

    We describe the fabrication and testing of an integrated YBa2Cu3O7-x thin-film magnetometer consisting of a dc superconducting quantum interference device (SQUID), with biepitaxial grain boundary junctions, integrated with a flux transformer on a single substrate. Only two superconducting layers...... are required, the SQUID body serving as the crossunder that completes the multiturn flux transformer. The highest temperature at which any of the magnetometers functioned was 76 K. At 60 K the magnetic field gain of this device was 63, and the magnetic field noise was 160 fT Hz-1/2 at 2 kHz, increasing to 3...

  18. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement

    Science.gov (United States)

    Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  19. Beyond the Natural Proteome: Nondegenerate Saturation Mutagenesis-Methodologies and Advantages.

    Science.gov (United States)

    Ferreira Amaral, M M; Frigotto, L; Hine, A V

    2017-01-01

    Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to "tweak" the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers, and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity. © 2017 Elsevier Inc. All rights reserved.

  20. Lunar magnetic anomalies detected by the Apollo substatellite magnetometers

    Science.gov (United States)

    Hood, L.L.; Coleman, P.J.; Russell, C.T.; Wilhelms, D.E.

    1979-01-01

    Properties of lunar crustal magnetization thus far deduced from Apollo subsatellite magnetometer data are reviewed using two of the most accurate presently available magnetic anomaly maps - one covering a portion of the lunar near side and the other a part of the far side. The largest single anomaly found within the region of coverage on the near-side map correlates exactly with a conspicuous, light-colored marking in western Oceanus Procellarum called Reiner Gamma. This feature is interpreted as an unusual deposit of ejecta from secondary craters of the large nearby primary impact crater Cavalerius. An age for Cavalerius (and, by implication, for Reiner Gamma) of 3.2 ?? 0.2 ?? 109 y is estimated. The main (30 ?? 60 km) Reiner Gamma deposit is nearly uniformly magnetized in a single direction, with a minimum mean magnetization intensity of ???7 ?? 10-2 G cm3/g (assuming a density of 3 g/cm3), or about 700 times the stable magnetization component of the most magnetic returned samples. Additional medium-amplitude anomalies exist over the Fra Mauro Formation (Imbrium basin ejecta emplaced ???3.9 ?? 109 y ago) where it has not been flooded by mare basalt flows, but are nearly absent over the maria and over the craters Copernicus, Kepler, and Reiner and their encircling ejecta mantles. The mean altitude of the far-side anomaly gap is much higher than that of the near-side map and the surface geology is more complex, so individual anomaly sources have not yet been identified. However, it is clear that a concentration of especially strong sources exists in the vicinity of the craters Van de Graaff and Aitken. Numerical modeling of the associated fields reveals that the source locations do not correspond with the larger primary impact craters of the region and, by analogy with Reiner Gamma, may be less conspicuous secondary crater ejecta deposits. The reason for a special concentration of strong sources in the Van de Graaff-Aitken region is unknown, but may be indirectly

  1. A Parallel Saturation Algorithm on Shared Memory Architectures

    Science.gov (United States)

    Ezekiel, Jonathan; Siminiceanu

    2007-01-01

    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.

  2. Preparation of hydrophilic magnetic nanospheres with high saturation magnetization

    International Nuclear Information System (INIS)

    Xu Hong; Tong Naihu; Cui Longlan; Lu Ying; Gu Hongchen

    2007-01-01

    Well-defined silica-magnetite core-shell nanospheres were prepared via a modified sol-gel method. Sphere-like magnetite aggregates were obtained as cores of the final nanospheres by assembling in the presence of Tween 20. Characterization by transmission electron microscopy (TEM) showed spherical morphology of the nanospheres with controlled silica shell thickness from 9 to 30 nm, depending on the amount of tetraethoxysilane (TEOS) used. The nanospheres contained up to 41.7 wt% magnetite with a saturation magnetization of 21.8 emu/g. Up to 35 μg/mg of the model biomolecule streptavidin (SA) could be bound covalently to the hydrophilic silica nanospheres

  3. A novel green synthesis of Fe{sub 3}O{sub 4}-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B. [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India); Anitha, K. [Department of Chemistry, S.K. University, Anantapur-515003, Andhra Pradesh (India); Jyothi, N.V.V., E-mail: nvvjyothi01@gmail.com [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India)

    2015-01-15

    We described a novel and eco-friendly method for preparing Fe{sub 3}O{sub 4}-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe{sub 3}O{sub 4}-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV–vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe{sub 3}O{sub 4}-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe{sub 3}O{sub 4}-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe{sub 3}O{sub 4}-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe{sub 3}O{sub 4}-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  4. Space Weather Magnetometer Set with Automated AC Spacecraft Field Correction for GEO-KOMPSAT-2A

    Science.gov (United States)

    Auster, U.; Magnes, W.; Delva, M.; Valavanoglou, A.; Leitner, S.; Hillenmaier, O.; Strauch, C.; Brown, P.; Whiteside, B.; Bendyk, M.; Hilgers, A.; Kraft, S.; Luntama, J. P.; Seon, J.

    2016-05-01

    Monitoring the solar wind conditions, in particular its magnetic field (interplanetary magnetic field) ahead of the Earth is essential in performing accurate and reliable space weather forecasting. The magnetic condition of the spacecraft itself is a key parameter for the successful performance of the magnetometer onboard. In practice a condition with negligible magnetic field of the spacecraft cannot always be fulfilled and magnetic sources on the spacecraft interfere with the natural magnetic field measured by the space magnetometer. The presented "ready-to-use" Service Oriented Spacecraft Magnetometer (SOSMAG) is developed for use on any satellite implemented without magnetic cleanliness programme. It enables detection of the spacecraft field AC variations on a proper time scale suitable to distinguish the magnetic field variations relevant to space weather phenomena, such as sudden increase in the interplanetary field or southward turning. This is achieved through the use of dual fluxgate magnetometers on a short boom (1m) and two additional AMR sensors on the spacecraft body, which monitor potential AC disturbers. The measurements of the latter sensors enable an automated correction of the AC signal contributions from the spacecraft in the final magnetic vector. After successful development and test of the EQM prototype, a flight model (FM) is being built for the Korean satellite Geo-Kompsat 2A, with launch foreseen in 2018.

  5. Mapping of Ambient Magnetic Fields within Liquid Helium Dewar for Testing of a DC SQUID Magnetometer

    International Nuclear Information System (INIS)

    Newhouse, Randal

    2003-01-01

    In an effort to explore the cavity lights phenomenon, Experimental Facilities Department at SLAC is testing a DC SQUID magnetometer. Due to the nature of the SQUID magnetometer and the intended tests, the earth's magnetic field must be negated. It is proposed to reduce ambient fields using bucking coils. First, however, an accurate map of the magnetic field inside the liquid helium Dewar where the experiment is going to take place needed to be made. This map was made using a three-axis fluxgate magnetometer mounted on a 3D positioning device made for this purpose. A ten inch tall volume within the Dewar was measured at data points approximately an inch from each other in all three axes. A LabVEIW program took readings from the magnetometer at 2 ms intervals for 1000 readings in such a way as to eliminate any ambient 60 Hz signals that may be present in the data. This data was stored in spreadsheet format and was analyzed to determine how the magnetic field within the Dewar was changing as a function of position

  6. Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets

    International Nuclear Information System (INIS)

    Ludwig, Frank; Heim, Erik; Maeuselein, Sascha; Eberbeck, Dietmar; Schilling, Meinhard

    2005-01-01

    A magnetorelaxometry system based on sensitive fluxgate magnetometers for the analysis of the relaxation behavior of magnetic nanoparticles is presented. The system is tested with a dilution series of magnetite. The results are directly compared with data obtained with a SQUID magnetorelaxometry system measured on the same samples. Advantages of using fluxgates rather than SQUIDs for magnetorelaxometry are discussed

  7. Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Acuna, M.H.; Ness, N.F.

    1984-05-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model

  8. A novel HTS magnetometer, exploiting the low jc of bulk YBCO

    International Nuclear Information System (INIS)

    Gallop, J.C.; Lilleyman, S.; Langham, C.D.; Radcliffe, W.J.; Stewart, M.

    1989-01-01

    The authors report here a novel of magnetometer which is based on the low critical magnetic field H/sub cl/ of sintered samples of the high temperature ceramic superconductor YBa/sub 2/Cu/sub 3/O/sub y/. By driving a sample of the superconductor around a magnetization hysteresis loop, at a frequency of --100 kHz, and detecting the induced voltage in a coil coupled to the sample, at the second harmonic of the drive frequency, the authors find that this voltage is linearly dependent on the aplied d.c. magnetic field in which the sample is situated. They present a model which explains the operation of this magnetometer. This device, while not as sensitive as a SQUID, has the advantage of a wider dynamic range and direct measurement of flux density, unlike a SQUID which is only capable of sensing flux density changes. When operated at 77K the prototype magnetometer has already demonstrated a sensitivity at least 10 times better than that of a commercial fluxgate magnetometer. The system also appears to provide a simple method for investigation of flux flow in these materials

  9. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  10. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  11. Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models

    Science.gov (United States)

    Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.

    2017-12-01

    The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.

  12. MgB2 magnetometer with directly coupled pick-up loop

    NARCIS (Netherlands)

    Portesi, C.; Mijatovic, D.; Veldhuis, Dick; Brinkman, Alexander; Monticone, E.; Gonnelli, R.S.

    2006-01-01

    magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which

  13. Design Principles of A Sigma-delta Flux-gate Magnetometer

    Science.gov (United States)

    Magnes, W.; Valavanoglou, A.; Pierce, D.; Frank, A.; Schwingenschuh, K.

    A state-of-the-art flux-gate magnetometer is characterised by magnetic field resolution of several pT in a wide frequency range, low power consumption, low weight and high robustness. Therefore, flux-gate magnetometers are frequently used for ground-based Earth's field observation as well as for measurements aboard scientific space missions. But both traditional analogue and recently developed digital flux-gate magnetometers need low power and high-resolution analogue-to-digital converters for signal quan- tization. The disadvantage of such converters is the low radiation hardness. This fact has led to the idea of combining a traditional analogue flux-gate regulation circuit with that of a discretely realized sigma-delta converter in order to get a radiation hard and further miniaturized magnetometer. The name sigma-delta converter is derived from putting an integrator in front of a 1-bit delta modulator which forms the sigma-delta loop. It is followed by a digital decimation filter realized in a field-programmable gate array (FPGA). The flux-gate regulation and the sigma-delta loop are quite similar in the way of realizing the integrator and feedback circuit, which makes it easy to com- bine these two systems. The presented talk deals with the design principles and the results of a first bread board model.

  14. The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research

    Science.gov (United States)

    Engebretson, Mark; Zesta, Eftyhia

    2017-11-01

    A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.

  15. Two-channel recoder for magnetometer with energy-independent mass memory device

    International Nuclear Information System (INIS)

    Korzinin, V.N.; Selivanov, A.M.

    1993-01-01

    The paper describes a two-channel digit-to-analog recorder designed for converting the sequence of pulses from proton magnetometer (MMH-203) outlet; the device enables processing of the pulses and their recording in RAM and on the tape of the analog recorder. The availability of nonvolotile RAM allows to transmit digit information to a computer (BK-0010) for its further processing

  16. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Holland, H.J.; Brake, ter H.J.M.

    2005-01-01

    In order to achieve turnkey operation, the use is planned of cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mech. interference from the coolers, they are switched off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  17. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Venhorst, G.C.F.; Holland, Herman J.; ter Brake, Hermanus J.M.

    2005-01-01

    In order to achieve turnkey operation, we plan to use cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mechanical interference from the coolers, we intend to switch them off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  18. Characterization and demonstration results of a SQUID magnetometer system developed for geomagnetic field measurements

    Science.gov (United States)

    Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.

    2017-08-01

    We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.

  19. Magnetogate: Using an iPhone Magnetometer for Measuring Kinematic Variables

    Science.gov (United States)

    Temiz, Burak Kagan; Yavuz, Ahmet

    2016-01-01

    This paper presents a method to measure the movement of an object from specific locations on a straight line using an iPhone's magnetometer. In this method, called "magnetogate," an iPhone is placed on a moving object (in this case a toy car) and small neodymium magnets are arranged at equal intervals on one side of a straight line. The…

  20. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  1. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  2. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  3. A game-theoretic approach for calibration of low-cost magnetometers under noise uncertainty

    Science.gov (United States)

    Siddharth, S.; Ali, A. S.; El-Sheimy, N.; Goodall, C. L.; Syed, Z. F.

    2012-02-01

    Pedestrian heading estimation is a fundamental challenge in Global Navigation Satellite System (GNSS)-denied environments. Additionally, the heading observability considerably degrades in low-speed mode of operation (e.g. walking), making this problem even more challenging. The goal of this work is to improve the heading solution when hand-held personal/portable devices, such as cell phones, are used for positioning and to improve the heading estimation in GNSS-denied signal environments. Most smart phones are now equipped with self-contained, low cost, small size and power-efficient sensors, such as magnetometers, gyroscopes and accelerometers. A magnetometer needs calibration before it can be properly employed for navigation purposes. Magnetometers play an important role in absolute heading estimation and are embedded in many smart phones. Before the users navigate with the phone, a calibration is invoked to ensure an improved signal quality. This signal is used later in the heading estimation. In most of the magnetometer-calibration approaches, the motion modes are seldom described to achieve a robust calibration. Also, suitable calibration approaches fail to discuss the stopping criteria for calibration. In this paper, the following three topics are discussed in detail that are important to achieve proper magnetometer-calibration results and in turn the most robust heading solution for the user while taking care of the device misalignment with respect to the user: (a) game-theoretic concepts to attain better filter parameter tuning and robustness in noise uncertainty, (b) best maneuvers with focus on 3D and 2D motion modes and related challenges and (c) investigation of the calibration termination criteria leveraging the calibration robustness and efficiency.

  4. A game-theoretic approach for calibration of low-cost magnetometers under noise uncertainty

    International Nuclear Information System (INIS)

    Siddharth, S; Ali, A S; El-Sheimy, N; Goodall, C L; Syed, Z F

    2012-01-01

    Pedestrian heading estimation is a fundamental challenge in Global Navigation Satellite System (GNSS)-denied environments. Additionally, the heading observability considerably degrades in low-speed mode of operation (e.g. walking), making this problem even more challenging. The goal of this work is to improve the heading solution when hand-held personal/portable devices, such as cell phones, are used for positioning and to improve the heading estimation in GNSS-denied signal environments. Most smart phones are now equipped with self-contained, low cost, small size and power-efficient sensors, such as magnetometers, gyroscopes and accelerometers. A magnetometer needs calibration before it can be properly employed for navigation purposes. Magnetometers play an important role in absolute heading estimation and are embedded in many smart phones. Before the users navigate with the phone, a calibration is invoked to ensure an improved signal quality. This signal is used later in the heading estimation. In most of the magnetometer-calibration approaches, the motion modes are seldom described to achieve a robust calibration. Also, suitable calibration approaches fail to discuss the stopping criteria for calibration. In this paper, the following three topics are discussed in detail that are important to achieve proper magnetometer-calibration results and in turn the most robust heading solution for the user while taking care of the device misalignment with respect to the user: (a) game-theoretic concepts to attain better filter parameter tuning and robustness in noise uncertainty, (b) best maneuvers with focus on 3D and 2D motion modes and related challenges and (c) investigation of the calibration termination criteria leveraging the calibration robustness and efficiency. (paper)

  5. Empirical Determination of Efficient Sensing Frequencies for Magnetometer-Based Continuous Human Contact Monitoring

    Directory of Open Access Journals (Sweden)

    Seungho Kuk

    2018-04-01

    Full Text Available The high linear correlation between the smartphone magnetometer readings in close proximity can be exploited for physical human contact detection, which could be useful for such applications as infectious disease contact tracing or social behavior monitoring. Alternative approaches using other capabilities in smartphones have aspects that do not fit well with the human contact detection. Using Wi-Fi or cellular fingerprints have larger localization errors than close human contact distances. Bluetooth beacons could reveal the identity of the transmitter, threatening the privacy of the user. Also, using sensors such as GPS does not work for indoor contacts. However, the magnetometer correlation check works best in human contact distances that matter in infectious disease transmissions or social interactions. The omni-present geomagnetism makes it work both indoors and outdoors, and the measured magnetometer values do not easily reveal the identity and the location of the smartphone. One issue with the magnetometer-based contact detection, however, is the energy consumption. Since the contacts can take place anytime, the magnetometer sensing and recording should be running continuously. Therefore, how we address the energy requirement for the extended and continuous operation can decide the viability of the whole idea. However, then, we note that almost all existing magnetometer-based applications such as indoor location and navigation have used high sensing frequencies, ranging from 10 Hz to 200 Hz. At these frequencies, we measure that the time to complete battery drain in a typical smartphone is shortened by three to twelve hours. The heavy toll raises the question as to whether the magnetometer-based contact detection can avoid such high sensing rates while not losing the contact detection accuracy. In order to answer the question, we conduct a measurement-based study using independently produced magnetometer traces from three different

  6. Empirical Determination of Efficient Sensing Frequencies for Magnetometer-Based Continuous Human Contact Monitoring.

    Science.gov (United States)

    Kuk, Seungho; Kim, Junha; Park, Yongtae; Kim, Hyogon

    2018-04-27

    The high linear correlation between the smartphone magnetometer readings in close proximity can be exploited for physical human contact detection, which could be useful for such applications as infectious disease contact tracing or social behavior monitoring. Alternative approaches using other capabilities in smartphones have aspects that do not fit well with the human contact detection. Using Wi-Fi or cellular fingerprints have larger localization errors than close human contact distances. Bluetooth beacons could reveal the identity of the transmitter, threatening the privacy of the user. Also, using sensors such as GPS does not work for indoor contacts. However, the magnetometer correlation check works best in human contact distances that matter in infectious disease transmissions or social interactions. The omni-present geomagnetism makes it work both indoors and outdoors, and the measured magnetometer values do not easily reveal the identity and the location of the smartphone. One issue with the magnetometer-based contact detection, however, is the energy consumption. Since the contacts can take place anytime, the magnetometer sensing and recording should be running continuously. Therefore, how we address the energy requirement for the extended and continuous operation can decide the viability of the whole idea. However, then, we note that almost all existing magnetometer-based applications such as indoor location and navigation have used high sensing frequencies, ranging from 10 Hz to 200 Hz. At these frequencies, we measure that the time to complete battery drain in a typical smartphone is shortened by three to twelve hours. The heavy toll raises the question as to whether the magnetometer-based contact detection can avoid such high sensing rates while not losing the contact detection accuracy. In order to answer the question, we conduct a measurement-based study using independently produced magnetometer traces from three different countries. Specifically, we

  7. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  8. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  9. Development of Geomagnetic Monitoring System Using a Magnetometer for the Field

    Science.gov (United States)

    Lee, Young-Cheol; Kim, Sung-Wook; Choi, Eun-Kyeong; Kim, In-Soo

    2014-05-01

    Three institutes including KMA (Korea Meteorological Administration), KSWC (Korean Space Weather Center) of NRRA (National Radio Research Agency) and KIGAM (Korea Institute of Geoscience and Mineral Resources) are now operating magnetic observatories. Those observatories observe the total intensity and three components of geomagnetic element. This paper comes up with a magnetic monitoring system now under development that uses a magnetometer for field survey. In monitoring magnetic variations in areas (active faults or volcanic regions), more reliable results can be obtained when an array of several magnetometers are used rather than a single magnetometer. In order to establish and operate a magnetometer array, such factors as expenses, convenience of the establishment and operation of the array should be taken into account. This study has come up with a magnetic monitoring system complete with a magnetometer for the field survey of our own designing. A magnetic monitoring system, which is composed of two parts. The one is a field part and the other a data part. The field part is composed of a magnetometer, an external memory module, a power supply and a set of data transmission equipment. The data part is a data server which can store the data transmitted from the field part, analyze the data and provide service to the web. This study has developed an external memory module for ENVI-MAG (Scintrex Ltd.) using an embedded Cortex-M3 board, which can be programmed, attach other functional devices (SD memory cards, GPS antennas for time synchronization, ethernet cards and so forth). The board thus developed can store magnetic measurements up to 8 Gbytes, synchronize with the GPS time and transmit the magnetic measurements to the data server which is now under development. A monitoring system of our own developing was installed in Jeju island, taking measurements throughout Korea. Other parts including a data transfer module, a server and a power supply using solar

  10. Receptor saturation in roentgen films

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  11. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  12. Mechanics of non-saturated soils

    International Nuclear Information System (INIS)

    Coussy, O.; Fleureau, J.M.

    2002-01-01

    This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)

  13. Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data

    Science.gov (United States)

    Brew, Julian; Holzinger, Marcus J.

    2018-05-01

    Recent progress in the detection of small space objects, at geosynchronous altitudes, through ground-based optical and radar measurements is demonstrated as a viable method. However, in general, these methods are limited to detection of objects greater than 10 cm. This paper examines the use of magnetometers to detect plausible flyby encounters with charged space objects using a matched filter signal existence binary hypothesis test approach. Relevant data-set processing and reduction of archival fluxgate magnetometer data from the NASA THEMIS mission is discussed in detail. Using the proposed methodology and a false alarm rate of 10%, 285 plausible detections with probability of detection greater than 80% are claimed and several are reviewed in detail.

  14. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    Science.gov (United States)

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  15. New type of fluxgate magnetometer for the heart’s magnetic fields detection

    Directory of Open Access Journals (Sweden)

    Rybalko Ruslan

    2015-09-01

    Full Text Available The application area of fluxgate sensors is limited by their sensitivity. Medical researches create high demand on the magnetometers with the characteristics of high accuracy and sensibility for measuring weak magnetic fields produced by the human body, such as the heart‘s magnetic field. Due to the insufficient sensitivity of fluxgate sensors, superconducting magnetometers (SQUID take the dominant position for the cardiomagnetic measurements. They have to be cooled by liquefied gases and it leads to high service costs. Therefore an idea of creating a high sensitive sensor based on fluxgate principles and known methods of measurement is attractive and up to date. This paper is dedicated to the modified flux-gate sensors based on Racetrack technology with a new approach of signal demodulation. The improved fluxgate sensor system provides detection of the heart‘s magnetic field without additional expenditures for use.

  16. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Directory of Open Access Journals (Sweden)

    Zhang Zhen

    2015-10-01

    Full Text Available Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit magnetometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iterative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  17. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    Energy Technology Data Exchange (ETDEWEB)

    Jackson Kimball, D. F. [Cal State, East Bay; Budker, D. [UC, Berkeley; Eby, J. [Fermilab; Pospelov, M. [Perimeter Inst. Theor. Phys.; Pustelny, S. [Jagiellonian U.; Scholtes, T. [Fribourg U.; Stadnik, Y. V. [Helmholtz Inst., Mainz; Weis, A. [Fribourg U.; Wickenbrock, A. [Mainz U.

    2017-10-11

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.

  18. Automatic torque magnetometer for vacuum-to-high-pressure hydrogen environments

    International Nuclear Information System (INIS)

    Larsen, J.W.; Livesay, B.R.

    1979-01-01

    An automatic torque magnetometer has been developed for use in high-pressure hydrogen. It will contain pressures ranging from vacuum to 200 atm of hydrogen gas at sample temperatures greater than 400 0 C. This magnetometer, which uses an optical lever postion sensor and a restoring force technique has an operating range of 2.0 x 10 3 dyn cm to l.6 x 10 -4 dyn cm. An accompanying digital data collection system extends the sensitivity to 1 x 10 -5 dyn cm as well as increasing the data handling capacity of the system. The magnetic properties of thin films in high-temperature and high-pressure hydrogen environments can be studied using this instruments

  19. Micromechanical ``Trampoline'' Magnetometers for Use in Pulsed Magnetic Fields Exceeding 60 Tesla

    Science.gov (United States)

    Balakirev, F. F.; Boebinger, G. S.; Aksyuk, V.; Gammel, P. L.; Haddon, R. C.; Bishop, D. J.

    1998-03-01

    We present the design, construction, and operation of a novel magnetometer for use in intense pulsed magnetic fields. The magnetometer consists of a silicon micromachined "trampoline" to which the sample is attached. The small size of the device (typically 400 microns on a side) gives a fast mechanical response (10,000 to 50,000 Hz) and extremely high sensitivity (10-11 Am^2, corresponding to 10-13 Am^2/Hz^(1/2)). The device is robust against electrical and mechanical noise and requires no special vibration isolation from the pulsed magnet. As a demonstration, we present data taken in a 60 tesla pulsed magnetic field which show clear de Haas-van Alphen oscillations in a one microgram sample of the organic superconductor K-(BEDT-TTF)_2Cu(NCS)_2.

  20. Feasibility study of a sup 3 He-magnetometer for neutron electric dipole moment experiments

    CERN Document Server

    Borisov, Y; Leduc, M; Lobashev, V; Otten, E W; Sobolev, Y

    2000-01-01

    We report on a sup 3 He-magnetometer capable of detecting tiny magnetic field fluctuations of less than 10 sup - sup 1 sup 4 T in experiments for measuring the electric dipole moment (EDM) of the neutron. It is based on the Ramsey technique of separated oscillating fields and uses nuclear spin-polarized sup 3 He gas which is stored in two vessels of V approx =10 l in a sandwich-type arrangement around the storage bottle for ultra-cold neutrons (UCN). The gas is polarized by means of optical pumping in a separate, small discharge cell at pressures around 0.5 mbar and is then expanded into the actual magnetometer volume. To detect the polarization of sup 3 He gas at the end of the storage cycle the gas is pumped out by means of an oil-diffusion pump and compressed again into the discharge cell where optical detection of nuclear polarization is used.

  1. Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2012-12-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth’s geomagnetic filed by space weather, we use the international quiet days’ data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components’ quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation’s amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth’s atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

  2. Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2011-09-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28 a minimum appears and the time after about 3 hours and 30 minutes (15:28 a maximum appears. Also, a quiet interval start time (19:06 is near the sunset time, and a quiet interval end time (06:40 is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947, and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.

  3. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  4. Identification of Mobile Phones Using the Built-In Magnetometers Stimulated by Motion Patterns

    Directory of Open Access Journals (Sweden)

    Gianmarco Baldini

    2017-04-01

    Full Text Available We investigate the identification of mobile phones through their built-in magnetometers. These electronic components have started to be widely deployed in mass market phones in recent years, and they can be exploited to uniquely identify mobile phones due their physical differences, which appear in the digital output generated by them. This is similar to approaches reported in the literature for other components of the mobile phone, including the digital camera, the microphones or their RF transmission components. In this paper, the identification is performed through an inexpensive device made up of a platform that rotates the mobile phone under test and a fixed magnet positioned on the edge of the rotating platform. When the mobile phone passes in front of the fixed magnet, the built-in magnetometer is stimulated, and its digital output is recorded and analyzed. For each mobile phone, the experiment is repeated over six different days to ensure consistency in the results. A total of 10 phones of different brands and models or of the same model were used in our experiment. The digital output from the magnetometers is synchronized and correlated, and statistical features are extracted to generate a fingerprint of the built-in magnetometer and, consequently, of the mobile phone. A SVM machine learning algorithm is used to classify the mobile phones on the basis of the extracted statistical features. Our results show that inter-model classification (i.e., different models and brands classification is possible with great accuracy, but intra-model (i.e., phones with different serial numbers and same model classification is more challenging, the resulting accuracy being just slightly above random choice.

  5. Fluxgate vector magnetometers: A multisensor device for ground, UAV, and airborne magnetic surveys

    OpenAIRE

    Gavazzi , Bruno; Le Maire , Pauline; Munschy , Marc; Dechamp , Aline

    2016-01-01

    International audience; Fluxgate magnetometers are quite uncommon in geophysics. Recent advances in calibration of the devices and their magnetic compensation ability led Institut de Physique du Globe de Stras-bourg to develop instruments for magnetic measurements at different scales for a wide range of applications — from submetric measurements on the ground to aircraft-conducted acquisition by unmanned aerial vehicles (UAVs). A case study on the aerial military base BA112 shows the usefulne...

  6. Simulation and measurement of ferromagnetic impurities in non-magnetic aeroengine turbine disks using fluxgate magnetometers

    OpenAIRE

    Sebastian Hantscher; Ruixin Zhou; Albert Seidl; Johann Hinken; Christian Ziep

    2015-01-01

    In this paper, ferromagnetic impurities in paramagnetic aeroengine turbine disks are investigated. Because such inclusions represent a significant threat in aviation, a detailed analysis is required for impured turbine disks. For this purpose, sensitive fluxgate magnetometers are used. After a premagnetisation, this sensor is able to detect small ferromagnetic particles by recording the variation of the magnetic flux density while the disk rotates below the sensor head. This trajectory create...

  7. Airborne gamma-ray spectrometer and magnetometer survey, Sagavanirktok Quadrangle, Alaska. Volume I. Final report

    International Nuclear Information System (INIS)

    1981-03-01

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Sagavanirktok map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of eight uranium anomalies have been outlined on the interpretation map. However, all of these zones are only weakly to moderately anomalous. None are thought to be indicative of local enrichment of uranium to economically significant levels. No follow-up work is recommended

  8. Hypervelocity dust particle impacts observed by the Giotto Magnetometer and Plasma Experiments

    OpenAIRE

    Neubauer, F. M.; Glassmeier, K. H.; Coates, A. J.; Goldstein, R.; Acuña, M. H.; Musmann, G.

    1990-01-01

    We report thirteen very short events in the magnetic field of the inner magnetic pile‐up region of comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cemetery dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events ...

  9. Input-output linearizing tracking control of induction machine with the included magnetic saturation

    DEFF Research Database (Denmark)

    Dolinar, Drago; Ljusev, Petar; Stumberger, Gorazd

    2003-01-01

    The tracking control design of an induction motor, based on input-output linearisation with magnetic saturation included is addressed. The magnetic saturation is represented by a nonlinear magnetising curve for the iron core and is used in the control, the observer of the state variables......, and in the load torque estimator. An input-output linearising control is used to achieve better tracking performances. It is based on the mixed 'stator current - rotor flux linkage' induction motor model with magnetic saturation considered in the stationary reference frame. Experimental results show...... that the proposed input-output linearising tracking control with saturation included behaves considerably better than the one without saturation, and that it introduces smaller position and speed errors, and better motor stiffness on account of the increased computational complexity....

  10. Impact of magnetic saturation on the input-output linearising tracking control of an induction motor

    DEFF Research Database (Denmark)

    Dolinar, Drago; Ljusev, Petar; Stumberger, Gorazd

    2004-01-01

    This paper deals with the tracking control design of an induction motor, based on input-output linearization with magnetic saturation included. Magnetic saturation is represented by the nonlinear magnetizing curve of the iron core and is used in the control design, the observer of state variables......, and in the load torque estimator. An input-output linearising control is used to achieve better tracking performances of the drive. It is based on the mixed ”stator current - rotor flux linkage” induction motor model with magnetic saturation considered in the stationary reference frame. Experimental results show...... that the proposed input-output linearising tracking control with the included saturation behaves considerably better than the one without saturation, and that it introduces smaller position and speed errors, and better motor stiffness on account of the increased computational complexity....

  11. Water saturation in shaly sands: logging parameters from log-derived values

    International Nuclear Information System (INIS)

    Miyairi, M.; Itoh, T.; Okabe, F.

    1976-01-01

    The methods are presented for determining the relation of porosity to formation factor and that of true resistivity of formation to water saturation, which were investigated through the log interpretation of one of the oil and gas fields of northern Japan Sea. The values of the coefficients ''a'' and ''m'' in porosity-formation factor relation are derived from cross-plot of porosity and resistivity of formation corrected by clay content. The saturation exponent ''n'' is determined from cross-plot of porosity and resistivity index on the assumption that the product of porosity and irreducible water saturation is constant. The relation of porosity to irreducible water saturation is also investigated from core analysis. The new logging parameters determined from the methods, a = 1, m = 2, n = 1.4, improved the values of water saturation by 6 percent in average, and made it easy to distinguish the points which belong to the productive zone and ones belonging to the nonproductive zone

  12. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  13. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  14. Saturation in dual radiation action

    International Nuclear Information System (INIS)

    Rossi, H.H.; Zaider, M.

    1988-01-01

    The theory of dual radiation action (TDRA) was developed with the aim of applying microdosimetry to radiobiology. It therefore can deal only with the first phases in a long chain of events that results in patent effects. It is, however, clear that the initial spatial and temporal pattern of energy deposition has a profound influence on the ultimate outcome. As often happens, the early formulation of the theory contained a number of simplifying assumptions. Although most of these were explicitly stated when the first version of the TDRA was published experimental data obtained when the limitations are important were cited as contrary evidence causing considerable confusion. A more advanced version eliminated some of the restrictions but there remain others, one of which relates to certain aspects of saturation which are addressed here

  15. New vector/scalar Overhauser DNP magnetometers POS-4 for magnetic observatories and directional oil drilling support

    Directory of Open Access Journals (Sweden)

    Sapunov V.A., Denisov A.Y., Saveliev D.V., Soloviev A.A., Khomutov S.Y., Borodin P.B., Narkhov E.D., Sergeev A.V., Shirokov A.N.

    2016-12-01

    Full Text Available This paper covers same results of the research directed at developing an absolute vector proton magnetometer POS-4 based on the switching bias magnetic fields methods. Due to the high absolute precision and stability magnetometer POS-4 found application not only for observatories and to directional drilling support of oi and gas well. Also we discuss the some basic errors of measurements and discuss the long-term experience in the testing of magnetic observatories ART and PARATUNKA.

  16. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2015-06-01

    Full Text Available We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College, aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF, which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program and POES (Polar-orbiting Operational Environmental Satellites spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  17. Fluxgate magnetometer offset vector determination by the 3D mirror mode method

    Science.gov (United States)

    Plaschke, F.; Goetz, C.; Volwerk, M.; Richter, I.; Frühauff, D.; Narita, Y.; Glassmeier, K.-H.; Dougherty, M. K.

    2017-07-01

    Fluxgate magnetometers on-board spacecraft need to be regularly calibrated in flight. In low fields, the most important calibration parameters are the three offset vector components, which represent the magnetometer measurements in vanishing ambient magnetic fields. In case of three-axis stabilized spacecraft, a few methods exist to determine offsets: (I) by analysis of Alfvénic fluctuations present in the pristine interplanetary magnetic field, (II) by rolling the spacecraft around at least two axes, (III) by cross-calibration against measurements from electron drift instruments or absolute magnetometers, and (IV) by taking measurements in regions of well-known magnetic fields, e.g. cometary diamagnetic cavities. In this paper, we introduce a fifth option, the 3-dimensional (3D) mirror mode method, by which 3D offset vectors can be determined using magnetic field measurements of highly compressional waves, e.g. mirror modes in the Earth's magnetosheath. We test the method by applying it to magnetic field data measured by the following: the Time History of Events and Macroscale Interactions during Substorms-C spacecraft in the terrestrial magnetosheath, the Cassini spacecraft in the Jovian magnetosheath and the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. The tests reveal that the achievable offset accuracies depend on the ambient magnetic field strength (lower strength meaning higher accuracy), on the length of the underlying data interval (more data meaning higher accuracy) and on the stability of the offset that is to be determined.

  18. Integrated de SQUID magnetometer with high dV/dB

    International Nuclear Information System (INIS)

    Drung, D.; Cantor, R.; Peters, M.; Ryhanen, T.; Kochi, H.

    1991-01-01

    This paper presents a directly coupled dc SQUID magnetometer with very simple feedback electronics. The magnetometer has been integrated on a 7.2 x 7.2 mm 2 chip and fabricated using a four-level Nb/Si x N v /Nb process. Eight pick-up loops are connected in parallel to directly form the SQUID inductance of about 0.4 nH which leads to a high sensitivity B/Φ = 0.47 nT/Φ. An Additional Positive Feedback (APF) circuit on the magnetometer chip has been used to increase the gradient of the V-μ characteristic to dV/dΦ ≅ 300 μV/Φ 0 at the SQUID operating point. The resulting gradient of the transfer function of dV/dB ≅ 640 μV/nT makes it possible to directly read out the SQUID without helium temperature impedance matching circuits or flux modulation techniques

  19. Intense auroral field-aligned currents and electrojets detected by rocket-borne fluxgate magnetometer

    International Nuclear Information System (INIS)

    Tohyama, Fumio; Fukunishi, Hiroshi; Takahashi, Takao; Kokubun, Susumu; Fujii, Ryoichi; Yamagishi, Hisao.

    1988-01-01

    The S-310JA-11 and S-310JA-12 rockets, having a vector magnetometer with high sensitivity (1.8 nT) and high sampling frequency (100 Hz), were launched into the aurora on May 29 and July 12, 1985, from Syowa Station, Antarctica. The S-310JA-11 rocket penetrated twice quiet arcs, while the S-310JA-12 rocket traversed across intense and active auroral arcs during a large magnetic substorm. In the S-310JA-12 rocket experiment, intense field-aligned currents of 400 - 600 nT were observed when the rocket penetrated an active arc during the descending flight. The magnetometer on board the S-310JA-12 rocket also detected intense electrojet currents with a center at 110 km on the upward leg and at 108 km on the downward leg. The magnetometer data of the S-310JA-11 rocket showed no distinguished magnetic field variation due to field-aligned current and electrojet. (author)

  20. Attitude Determination with Magnetometers and Accelerometers to Use in Satellite Simulator

    Directory of Open Access Journals (Sweden)

    Helio Koiti Kuga

    2013-01-01

    Full Text Available Attitude control of artificial satellites is dependent on information provided by its attitude determination process. This paper presents the implementation and tests of a fully self-contained algorithm for the attitude determination using magnetometers and accelerometers, for application on a satellite simulator based on frictionless air bearing tables. However, it is known that magnetometers and accelerometers need to be calibrated so as to allow that measurements are used to their ultimate accuracy. A calibration method is implemented which proves to be essential for improving attitude determination accuracy. For the stepwise real-time attitude determination, it was used the well-known QUEST algorithm which yields quick response with reduced computer resources. The algorithms are tested and qualified with actual data collected on the streets under controlled situations. For such street runaways, the experiment employs a solid-state magnetoresistive magnetometer and an IMU navigation block consisting of triads of accelerometers and gyros, with MEMS technology. A GPS receiver is used to record positional information. The collected measurements are processed through the developed algorithms, and comparisons are made for attitude determination using calibrated and noncalibrated data. The results show that the attitude accuracy reaches the requirements for real-time operation for satellite simulator platforms.

  1. Study on modulation amplitude stabilization method for PEM based on FPGA in atomic magnetometer

    Science.gov (United States)

    Wang, Qinghua; Quan, Wei; Duan, Lihong

    2017-10-01

    Atomic magnetometer which uses atoms as sensitive elements have ultra-high precision and has wide applications in scientific researches. The photoelastic modulation method based on photoelastic modulator (PEM) is used in the atomic magnetometer to detect the small optical rotation angle of a linearly polarized light. However, the modulation amplitude of the PEM will drift due to the environmental factors, which reduces the precision and long-term stability of the atomic magnetometer. Consequently, stabilizing the PEM's modulation amplitude is essential to precision measurement. In this paper, a modulation amplitude stabilization method for PEM based on Field Programmable Gate Array (FPGA) is proposed. The designed control system contains an optical setup and an electrical part. The optical setup is used to measure the PEM's modulation amplitude. The FPGA chip, with the PID control algorithm implemented in it, is used as the electrical part's micro controller. The closed loop control method based on the photoelastic modulation detection system can directly measure the PEM's modulation amplitude in real time, without increasing the additional optical devices. In addition, the operating speed of the modulation amplitude stabilization control system can be greatly improved because of the FPGA's parallel computing feature, and the PID control algorithm ensures flexibility to meet different needs of the PEM's modulation amplitude set values. The Modelsim simulation results show the correctness of the PID control algorithm, and the long-term stability of the PEM's modulation amplitude reaches 0.35% in a 3-hour continuous measurement.

  2. MgB{sub 2} magnetometer with a directly coupled pick-up loop

    Energy Technology Data Exchange (ETDEWEB)

    Portesi, C [Istituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, I-10135 Turin (Italy); Mijatovic, D [Low Temperature Division and Mesa Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Veldhuis, D [Low Temperature Division and Mesa Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Brinkman, A [Low Temperature Division and Mesa Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Monticone, E [Istituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, I-10135 Turin (Italy); Gonnelli, R S [INFM, Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy)

    2006-05-15

    In this work, we show the results obtained in the fabrication and characterization of an MgB{sub 2} magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 10{sup 7} A cm{sup -2}. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm{sup 2}. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB{sub 2} thin films, such as the penetration depth.

  3. MgB2 magnetometer with a directly coupled pick-up loop

    Science.gov (United States)

    Portesi, C.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.; Monticone, E.; Gonnelli, R. S.

    2006-05-01

    In this work, we show the results obtained in the fabrication and characterization of an MgB2 magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 107 A cm-2. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm2. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB2 thin films, such as the penetration depth.

  4. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Science.gov (United States)

    Archer, M. O.; Horbury, T. S.; Brown, P.; Eastwood, J. P.; Oddy, T. M.; Whiteside, B. J.; Sample, J. G.

    2015-06-01

    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20-60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  5. Comparison of Vertical Drifts of ISR and Magnetometer Data Measurements at the Magnetic Equator

    Science.gov (United States)

    Condor P, P. J.

    2014-12-01

    We compare vertical drifts measured with the Jicamarca incoherent scatter radar (ISR) and drifts estimated from magnetometer data applying a Neural Network data processing technique. For the application of the Neural Network (NN) method, we use the magnitude of the horizontal (H) component of the magnetic field measured with magnetometers at Jicamarca and Piura (Peru). The data was collected between the years 2002 and 2013. In training the NN we use the difference between the magnitudes of the horizontal components (dH) measured at JRO (placed at the magnetic equator) and Piura (displaced 5° away). Additional parameters used are F10.7 and Ap indexes. The estimates obtained with the NN procedure are very good. We have an RMS error of 3.7 m/s using dH as an input of the NN while the error is 3.9 m/s when we use the component H of JRO as an input. The results are validated using the set of vertical drifts observations collected with the Jicamarca incoherent scatter radar. The estimated drifts can be accessed using the following website: http://jro.igp.gob.pe/driftnn. In the poster, we show the comparison of vertical drifts from 2002 to 2013 where we discuss the agreement between magnetometer and ISR data.

  6. Attitude-independent magnetometer calibration for marine magnetic surveys: regularization issue

    International Nuclear Information System (INIS)

    Wu, Zhitian; Hu, Xiaoping; Wu, Meiping; Cao, Juliang

    2013-01-01

    We have developed an attitude-independent calibration method for a shipboard magnetometer to estimate the absolute strength of the geomagnetic field from a marine vessel. The three-axis magnetometer to be calibrated is fixed on a rigid aluminium boom ahead of the vessel to reduce the magnetic effect of the vessel. Due to the constrained manoeuvres of the vessel, a linear observational equation system for calibration parameter estimation is severely ill-posed. Consequently, if the issue is not mitigated, traditional calibration methods may result in unreliable or unsuccessful solutions. In this paper, the ill-posed problem is solved by using the truncated total least squares (TTLS) technique. This method takes advantage of simultaneously considering errors on both sides of the observation equation. Furthermore, the TTLS method suits strongly ill-posed problems. Simulations and experiments have been performed to assess the performance of the TTLS method and to compare it with the performance of conventional regularization approaches such as the Tikhonov method and truncated single value decomposition. The results show that the proposed algorithm can effectively mitigate the ill-posed problem and is more stable than the compared regularization methods for magnetometer calibration applications. (paper)

  7. Combined spacecraft orbit and attitude control through extended Kalman filtering of magnetometer, gyro, and GPS measurements

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2014-06-01

    Full Text Available The main goal of this research is to establish spacecraft orbit and attitude control algorithms based on extended Kalman filter which provides estimates of spacecraft orbital and attitude states. The control and estimation algorithms must be capable of dealing with the spacecraft conditions during the detumbling and attitude acquisition modes of operation. These conditions are characterized by nonlinearities represented by large initial attitude angles, large initial angular velocities, large initial attitude estimation error, and large initial position estimation error. All of the developed estimation and control algorithms are suitable for application to the next Egyptian scientific satellite, EGYPTSAT-2. The parameters of the case-study spacecraft are similar but not identical to the former Egyptian satellite EGYPTSAT-1. This is done because the parameters of EGYPTSAT-2 satellite have not been consolidated yet. The sensors utilized are gyro, magnetometer, and GPS. Gyro and magnetometer are utilized to provide measurements for the estimates of spacecraft attitude state vector where as magnetometer and GPS are utilized to provide measurements for the estimates of spacecraft orbital state vector.

  8. Core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, N G; Edel' man, Ya A

    1981-02-15

    A core lifter is suggested which contains a housing, core-clamping elements installed in the housing depressions in the form of semirings with projections on the outer surface restricting the rotation of the semirings in the housing depressions. In order to improve the strength and reliability of the core lifter, the semirings have a variable transverse section formed from the outside by the surface of the rotation body of the inner arc of the semiring aroung the rotation axis and from the inner a cylindrical surface which is concentric to the outer arc of the semiring. The core-clamping elements made in this manner have the possibility of freely rotating in the housing depressions under their own weight and from contact with the core sample. These semirings do not have weakened sections, have sufficient strength, are inserted into the limited ring section of the housing of the core lifter without reduction in its through opening and this improve the reliability of the core lifter in operation.

  9. The QuakeFinder Magnetometer Network - a Platform for Earth and Space Science Research

    Science.gov (United States)

    Bleier, T.; Kappler, K. N.; Schneider, D.

    2016-12-01

    QuakeFinder (QF) is a humanitarian research and development project attempting to characterize earth-emitting electromagnetic (EM) signals as potential precursors to earthquakes. Beginning in 2005, QF designed, built, deployed and now maintains an array of 165 remote monitoring stations in 6 countries (US/California, Taiwan, Greece, Indonesia, Peru and Chile). Having amassed approximately 70 TB of data and greater than 140 earthquakes (M4+), QF is focused on the data analysis and signal processing algorithms in our effort to enable a forecasting capability. QF's autonomous stations, located along major fault lines, collect and transmit electromagnetic readings from 3-axis induction magnetometers and positive/negative ion sensors, a geophone, as well as various station health status and local conditions. The induction magnetometers, oriented N-S,E-W and vertically, have a 40 nT range and 1 pT sensitivity. Data is continuously collected at 50 samples/sec (sps), GPS time-stamped and transmitted, primarily through cell phone networks, to our data center in Palo Alto, California. The induction magnetometers routinely detect subtle geomagnetic and ionospheric disturbances as observed worldwide. QF seeks to make available both historic data and the array platform to strategic partners in the EM-related research and operation fields. The QF system will be described in detail with examples of local and regional geomagnetic activity. The stations are robust and will be undergoing a system-level upgrade in the near future. Domestically, QF maintains a 98% `up time' among the 120 stations in California while internationally our metric is typically near 80%. Irregular cell phone reception is chief among the reasons for outages although little data has been lost as the stations can store up to 90 days of data. These data are retrieved by QF personnel or, when communication is reestablished, the QF data ingest process automatically updates the database. Planned station upgrades

  10. A Near-real-time Data Transport System for Selected Stations in the Magnetometer Array for Cusp and Cleft Studies (MACCS)

    Science.gov (United States)

    Engebretson, M. J.; Valentic, T. A.; Stehle, R. H.; Hughes, W. J.

    2004-05-01

    The Magnetometer Array for Cusp and Cleft Studies (MACCS) is a two-dimensional array of eight fluxgate magnetometers that was established in 1992-1993 in the Eastern Canadian Arctic from 75° to over 80° MLAT to study electrodynamic interactions between the solar wind and Earth's magnetosphere and high-latitude ionosphere. A ninth site in Nain, Labrador, extends coverage down to 66° between existing Canadian and Greenland stations. Originally designed as part of NSF's GEM (Geospace Environment Modeling) Program, MACCS has contributed to the study of transients and waves at the magnetospheric boundary and in the near-cusp region as well as to large, cooperative, studies of ionospheric convection and substorm processes. Because of the limitations of existing telephone lines to each site, it has not been possible to economically access MACCS data promptly; instead, each month's collected data is recorded and mailed to the U.S. for processing and eventual posting on a publicly-accessible web site, http://space.augsburg.edu/space. As part of its recently renewed funding, NSF has supported the development of a near-real-time data transport system using the Iridium satellite network, which will be implemented at two MACCS sites in summer 2004. At the core of the new MACCS communications system is the Data Transport Network, software developed with NSF-ITR funding to automate the transfer of scientific data from remote field stations over unreliable, bandwidth-constrained network connections. The system utilizes a store-and-forward architecture based on sending data files as attachments to Usenet messages. This scheme not only isolates the instruments from network outages, but also provides a consistent framework for organizing and accessing multiple data feeds. Client programs are able to subscribe to data feeds to perform tasks such as system health monitoring, data processing, web page updates and e-mail alerts. The MACCS sites will employ the Data Transport Network

  11. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad [Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000 (Pakistan); Ahmad, Ishtiaq; Ali, Ihsan [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Muhammad Azhar [Department of Physics, Islamia University, Bahawalpur (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Rana, M.U. [Center of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Ali, Akbar [Department of Basic Sciences, Riphah International University, Islamabad-44000 (Pakistan); Ahmad, Mukhtar, E-mail: ahmadmr25@yahoo.com [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-05-01

    A series of single phase spinel ferrites having chemical formula Mg{sub 0.5}Zn{sub 0.5}Pr{sub x}Fe{sub 2−x}O{sub 4} (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M{sub s}) decreases whereas coercivity (H{sub c}) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M{sub s}) decreases whereas (H{sub c}) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials.

  12. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    International Nuclear Information System (INIS)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad; Ahmad, Ishtiaq; Ali, Ihsan; Akhtar, Majid Niaz; Khan, Muhammad Azhar; Abbas, Ghazanfar; Rana, M.U.; Ali, Akbar; Ahmad, Mukhtar

    2015-01-01

    A series of single phase spinel ferrites having chemical formula Mg 0.5 Zn 0.5 Pr x Fe 2−x O 4 (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M s ) decreases whereas coercivity (H c ) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M s ) decreases whereas (H c ) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials

  13. Reactor core

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    In a BWR type reactor, a great number of pipes (spectral shift pipes) are disposed in the reactor core. Moderators having a small moderating cross section (heavy water) are circulated in the spectral shift pipes to suppress the excess reactivity while increasing the conversion ratio at an initial stage of the operation cycle. After the intermediate stage of the operation cycle in which the reactor core reactivity is lowered, reactivity is increased by circulating moderators having a great moderating cross section (light water) to extend the taken up burnup degree. Further, neutron absorbers such as boron are mixed to the moderator in the spectral shift pipe to control the concentration thereof. With such a constitution, control rods and driving mechanisms are no more necessary, to simplify the structure of the reactor core. This can increase the fuel conversion ratio and control great excess reactivity. Accordingly, a nuclear reactor core of high conversion and high burnup degree can be attained. (I.N.)

  14. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  15. Patterning via optical saturable transitions

    Science.gov (United States)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.

  16. Sensorial saturation for infants' pain.

    Science.gov (United States)

    Bellieni, Carlo Valerio; Tei, Monica; Coccina, Francesca; Buonocore, Giuseppe

    2012-04-01

    Sensorial saturation (SS) is a multisensorial stimulation consisting of delicate tactile, gustative, auditory and visual stimuli. This procedure consists of simultaneously: attracting the infant's attention by massaging the infant's face; speaking to the infant gently, but firmly, and instilling a sweet solution on the infant's tongue. We performed a systematic Medline search of for articles focusing on human neonatal studies related to SS. The search was performed within the last 10 years and was current as of January 2012. We retrieved 8 articles that used a complete form of SS and 2 articles with an incomplete SS. Data show that the use of SS is effective in relieving newborns' pain. Oral solution alone are less effective than SS, but the stimuli without oral sweet solution are ineffective. the partial forms of SS have some effectiveness, but minor than the complete SS. Only one article showed lack of SS as analgesic method, after endotracheal suctioning. SS can be used for all newborns undergoing blood samples or other minor painful procedures. It is more effective than oral sugar alone. SS also promotes interaction between nurse and infant and is a simple effective form of analgesia for the neonatal intensive care unit.

  17. Δ isobars and nuclear saturation

    Science.gov (United States)

    Ekström, A.; Hagen, G.; Morris, T. D.; Papenbrock, T.; Schwartz, P. D.

    2018-02-01

    We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the Δ -isobar Δ (1232 ) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use pion-nucleon (π N ) low-energy constants (LECs) from a Roy-Steiner analysis of π N scattering data, optimize the LECs in the contact potentials up to NNLO to reproduce low-energy nucleon-nucleon scattering phase shifts, and constrain the three-nucleon interaction at NNLO to reproduce the binding energy and point-proton radius of 4He. For heavier nuclei we use the coupled-cluster method to compute binding energies, radii, and neutron skins. We find that radii and binding energies are much improved for interactions with explicit inclusion of Δ (1232 ) , while Δ -less interactions produce nuclei that are not bound with respect to breakup into α particles. The saturation of nuclear matter is significantly improved, and its symmetry energy is consistent with empirical estimates.

  18. Research on evaluation method for water saturation of tight sandstone in Suxi region

    Science.gov (United States)

    Lv, Hong; Lai, Fuqiang; Chen, Liang; Li, Chao; Li, Jie; Yi, Heping

    2017-05-01

    The evaluation of irreducible water saturation is important for qualitative and quantitative prediction of residual oil distribution. However, it is to be improved for the accuracy of experimental measuring the irreducible water saturation and logging evaluation. In this paper, firstly the multi-functional core flooding experiment and the nuclear magnetic resonance centrifugation experiment are carried out in the west of Sulige gas field. Then, the influence was discussed about particle size, porosity and permeability on the water saturation. Finally, the evaluation model was established about irreducible water saturation and the evaluation of irreducible water saturation was carried out. The results show that the results of two experiments are both reliable. It is inversely proportional to the median particle size, porosity and permeability, and is most affected by the median particle size. The water saturation of the dry layer is higher than that of the general reservoir. The worse the reservoir property, the greater the water saturation. The test results show that the irreducible water saturation model can be used to evaluate the water floor.

  19. High saturation magnetization FeB(C) nanocapsules

    International Nuclear Information System (INIS)

    Ma, S.; Si, P.Z.; Zhang, Y.; Wu, B.; Li, Y.B.; Liu, J.J.; Feng, W.J.; Ma, X.L.; Zhang, Z.D.

    2007-01-01

    FeB(C) nanocapsules were prepared by arc-discharging Fe 80 B 20 alloy in Ar and CH 4 . X-ray diffraction and transmission electron microscopy analyses showed that the FeB(C) nanocapsules had a core-shell structure with α-Fe and Fe 3 B as cores and graphite as shells. The formation mechanism of the FeB(C) nanocapsules is discussed. The graphite shells display a strong anti-acid effect. The saturation magnetization at room temperature of the FeB(C) nanocapsules is much higher than that of Fe(B) nanocapsules. The blocking temperature of FeB(C) nanocapsules is above 300 K

  20. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.

    2012-01-01

    Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated

  1. Results of neutron irradiation of liquid lithium saturated with deuterium

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Mazzitelli, Giuseppe

    2017-01-01

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(−144/RT). • The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10 −13 cm −2 s −1 . The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(-144/RT). The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  2. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  3. Studies of Polar Current Systems Using the IMS Scandinavian Magnetometer Array

    Science.gov (United States)

    Untiedt, J.; Baumjohann, W.

    1993-09-01

    As a contribution to the International Magnetospheric Study (IMS, 1976 1979) a two-dimensional array of 42 temporary magnetometer stations was run in Scandinavia, supplementary to the permanent observatories and concentrated in the northern part of the region. This effort aimed at the time-dependent (periods above about 100 s) determination of the two-dimensional structure of substorm-related magnetic fields at the Earth's surface with highest reasonable spatial resolution (about 100 km, corresponding to the height of the ionosphere) near the footpoints of field-aligned electric currents that couple the disturbed magnetosphere to the ionosphere at auroral latitudes. It has been of particular advantage for cooperative studies that not only simultaneous data were available from all-sky cameras, riometers, balloons, rockets, and satellites, but also from the STARE radar facility yielding colocated two-dimensional ionospheric electric field distributions. In many cases it therefore was possible to infer the three-dimensional regional structure of substorm-related ionospheric current systems. The first part of this review outlines the basic relationships and methods that have been used or have been developed for such studies. The second short part presents typical equivalent current patterns observed by the magnetometer array in the course of substorms. Finally we review main results of studies that have been based on the magnetometer array observations and on additional data, omitting studies on geomagnetic pulsations. These studies contributed to a clarification of the nature of auroral electrojets including the Harang discontinuity and of ionospheric current systems related to auroral features such as the break-up at midnight, the westward traveling surge, eastward drifting omega bands, and spirals.

  4. Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.

    Science.gov (United States)

    Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.

    2017-12-01

    Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.

  5. Fluxgate Magnetometer system mounted on UAS system: First field test at Dominga IOCG deposit, Chile

    Science.gov (United States)

    Yanez, G. A.; Banchero, L.; Marco, A.; Figueroa, R.

    2016-12-01

    With the support of Fundacion Chile (FCH) grant, we developed an airborne magnetic system (GeoMagDrone GFDAS) mounted on a UAS octodrone platform (DJI, S1000), based on a low cost/light-weight fluxgate magnetometer (FGM-301) and a robust/light-weight data logger for position, temperature, radar altimeter and 3 magnetic components at 16 Hz recording. Fluxgate magnetometer is hanging from the UAS platform at a distance of 2.5m where the EM noise is reduced to less than 2 nT. The whole geophysical system, including batteries, weights 650 gr., with an autonomy of 2 hours. Magnetometer calibration includes the 9 coefficients of amplitude, offset, and orthogonality, and temperature correction. We test the system over the IOCG deposit of Dominga-Chile, a magnetite ore (40%) (a block of 2x3 km with NS lines separated every 50m and a clearance of 40m, the mineral deposit buried 50-100m from the surface, where a ground magnetic survey was conducted previously. Ground conditions includes relatively rough topography with slopes of 10-20%, and some windy days. We use the digital terrain model SRTM30 to define the drape flight shape Average flight performance includes a mean speed of 35-40 km/hour, and an UAS battery consumption of 18-12 minutes depending on the wind conditions. A good correspondence was found between plan deployment and survey results in terms of line direction/separation/clearance. Line path were flown with errors less than 5 meters, whereas clearance of 40m was kept depending on the amount of control points used. The comparison between ground survey and GeoMagDrone results show a perfect match (anomaly amplitude/shape and noise envelope), validating in this way the system developed. Main concern for the productive application of this technology in unmanned geophysical platforms is the battery performance and the quality of digital terrain models to follow the topography.

  6. CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    This paper reports on x-ray computerized tomography (CT) scans obtained during measurement of the electrical resistivity of core samples which revealed some problems in obtaining uniform saturation along the lengths of the samples. The electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent used in electric-log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone: a stationary front formed in one sample at 1-psi oil/brine capillary pressure, a moving front formed at oil/brine capillary pressure ≤4 psi in samples tested in fresh mixed-wettability and cleaned water-wet states, and the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated in the samples

  7. CT-scan-monitored electrical resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Coles, M.E.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    X-ray CT scans obtained during measurement of the electrical resistivity of core samples revealed some problems in obtaining uniform saturation along the length of the sample. In this paper the electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent, which is used in electric log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone. A stationary front formed in one sample at 1 psi oil/brine capillary pressure. A moving front formed at oil/brine capillary pressures of 4 psi or less in both samples tested, in both a fresh mixed-wettability state and in a cleaned water-wet state. In these samples, the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated

  8. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  9. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  10. Airborne gamma-ray spectrometer and magnetometer survey: Harrison Bay Quadrangle, Alaska. Final report, Volume 1

    International Nuclear Information System (INIS)

    1981-02-01

    During the months of July and August of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 3 0 x 1 0 and one (1) 4 0 x 1 0 NTMS quadrangles of the Alaska North Slope. These include the Barrow, Wainwright, Meade River, Teshekpuk, Harrison Bay, Beechey Point, Point Lay, Utukok River, Lookout Ridge, Ikpikpuk River, Umiat, and Sagavanirktok quadrangles. This report discusses the results obtained over the Harrison Bay map area

  11. Feasibility Study for an Autonomous UAV -Magnetometer System -- Final Report on SERDP SEED 1509:2206

    Energy Technology Data Exchange (ETDEWEB)

    Roelof Versteeg; Mark McKay; Matt Anderson; Ross Johnson; Bob Selfridge; Jay Bennett

    2007-09-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area scanning is a multi-level one, in which medium altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry followed by surface investigations using either towed geophysical sensor arrays or man portable sensors. In order to be effective for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements means that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus, other systems are needed allowing for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it would be safer for the operators, cheaper in initial and O&M costs, and more effective in terms of site characterization. However, while UAV data acquisition from fixed wing platforms for large (> 200 feet) stand off distances is relatively straight forward, a host of challenges exist for low stand-off distance (~ 6 feet) UAV geophysical data acquisition. The objective of SERDP SEED 1509:2006 was to identify the primary challenges

  12. A summary of the results from the UCLA OGO-5 fluxgate magnetometer

    Science.gov (United States)

    Coleman, P. J., Jr.; Russell, C. T.

    1973-01-01

    The OGO-5 fluxgate magnetometer experiment (E-14) was designed to measure the vector magnetic field over the full range of the OGO-5 orbit. Thus, it had a dynamic range of + or - 64,000 gamma yet it maintained a precision of + or - 1/16 gamma at all times. This enabled a broad spectrum of problems to be attached. Studies of the magnetospheric waves, currents, waves-particle interactions, pitch angle distributions and wave normal directions were made. The structure of the magnetopause, the magnetotail, and bow shock were probed, waves and discontinuities in the solar wind were examined and the various phases of substorms were examined in depth.

  13. Elimination of the induced current error in magnetometers using superconducting flux transformers

    International Nuclear Information System (INIS)

    Dummer, D.; Weyhmann, W.

    1987-01-01

    The changing magnetization of a sample in a superconducting flux transformer coupled magnetometer induces a current in the transformer which in turn changes the field at the sample. This ''image'' field and the error caused by it can be eliminated by sensing the current in the loop and nulling it by feedback through a mutual inductance. We have tested the technique on the superconducting transition of indium in an applied magnetic field and shown that the observed width of the transition is greatly reduced by maintaining zero current in the flux transformer

  14. Airborne gamma-ray spectrometer and magnetometer survey: Aberdeen quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Aberdeen, South Dakota map area. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  15. Airborne gamma-ray spectrometer and magnetometer survey: north/south tieline. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted along the 99 0 longitude meridian from the Canadian border southward to the Mexican border. A total of 1555 line miles of geophysical data were acquired and, subsequently, compiled. The north-south tieline was flown as part of the National Uranium Resources Evaluation. NURE is a program of the US Department of Energy's Grand Junction, Colorado, office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  16. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  17. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    Science.gov (United States)

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  18. Airborne gamma-ray spectrometer and magnetometer survey, Point Lay Quadrangle, Alaska. Volume I. Final report

    International Nuclear Information System (INIS)

    1981-02-01

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Point Lay map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of six uranium anomalies have been indicated on the interpretation map. All six are only weakly to moderately anomalous in either uranium or the uranium ratios. None of these are thought to be of any economic significance. No follow-up work is recommended for the Point Lay Quadrangle

  19. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor

    International Nuclear Information System (INIS)

    Rimminen, H.; Kyynäräinen, J.

    2013-01-01

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  20. Airborne gamma-ray spectrometer and magnetometer survey, Wainwright Quadrangle, Alaska. Final report

    International Nuclear Information System (INIS)

    1981-03-01

    The results obtained from a gamma-ray spectrometer and magnetometer survey over the Wainwright map area of Alaska are presented. Based on the criteria outlined in the general section of interpretation, a total of seven uranium anomalies have been outlined on the interpretation map. With the exception of Anomaly 1, all are located over the higher terrain of the foothills in the southern portion of the quadrangle. All seven anomalies are only weakly to moderately anomalous. There are no indications anywhere within the area of any significant preferential accumulations of uranium. None of the anomalies are thought to be of any economic importance. No follow-up work is recommended

  1. Airborne gamma-ray spectrometer and magnetometer survey, Meade River Quadrangle, Alaska. Final report

    International Nuclear Information System (INIS)

    1981-02-01

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Meade River map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of eight uranium anomalies have been outlined on the interpretation map. Most of these are only weakly to moderately anomalous. Zones 3 and 7 are relatively better than the others though none of the anomalies are thought to be of any economic significance. No follow-up work is recommended

  2. Airborne gamma-ray spectrometer and magnetometer survey, Devils Lake quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Devil's Lake map area of North Dakota. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  3. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    Science.gov (United States)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  4. Is light narrowing possible with dense-vapor paraffin coated cells for atomic magnetometers?

    Science.gov (United States)

    Han, Runqi; Balabas, Mikhail; Hovde, Chris; Li, Wenhao; Roig, Hector Masia; Wang, Tao; Wickenbrock, Arne; Zhivun, Elena; You, Zheng; Budker, Dmitry

    2017-12-01

    We investigated the operation of an all-optical rubidium-87 atomic magnetometer with amplitude-modulated light. To study the suppression of spin-exchange relaxation, three schemes of pumping were implemented with room-temperature and heated paraffin coated vacuum cells. Efficient pumping and accumulation of atoms in the F=2 ground state were obtained. However, the sought-for narrowing of the resonance lines has not been achieved. A theoretical analysis of the polarization degree is presented to illustrate the absence of light narrowing due to radiation trapping at high temperature.

  5. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  6. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  7. Gas magnetometer

    Science.gov (United States)

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  8. Size Reduction of a DC Link Choke Using Saturation Gap and Biasing with Permanent Magnets

    DEFF Research Database (Denmark)

    Aguilar, Andres Revilla; Munk-Nielsen, Stig; Zuccherato, Marco

    2014-01-01

    This document describes the design procedure of permanent magnet biased DC inductors using the Saturation-gap technique [1]. This biasing configuration can provide a 50% reduction in either the core volume or the number of turns, while meeting its current and inductance requirements. A design exa...

  9. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  10. Advantages of iron core in a tokamak

    International Nuclear Information System (INIS)

    Bettis, E.S.; Ballou, J.K.; Becraft, W.R.; Peng, Y.K.M.; Watts, H.L.

    1977-01-01

    A quantitative comparison of the iron core vs air core concepts was carried out on a preliminary basis by using a representative tokamak reactor design with the following self-consistent reference parameters. In the area of plasma engineering, poloidal field and MHD equilibrium considerations with an unsaturated iron core is discussed. The question of proper poloidal field coils to maintain D-shaped plasmas of relatively high anti β (7%) with a saturated iron core is also discussed. Estimates of the required iron core size, volt seconds, magnetic flux and its influence on force loading on the superconducting toroidal field coils are shown. Conceptual designs of the mechanical structure of an iron core device are presented. Favorable impacts on the OH power supply cost and complexity are indicated

  11. Assessing species saturation: conceptual and methodological challenges.

    Science.gov (United States)

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  12. Effect of second harmonic in pulse-width-modulation-based DAC for feedback of digital fluxgate magnetometer

    Science.gov (United States)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2018-04-01

    Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.

  13. Temperature-dependent performance of all-NbN DC-SQUID magnetometers

    Science.gov (United States)

    Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen

    2017-05-01

    Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.

  14. Counter electrojet features in the Brazilian sector: simultaneous observation by radar, digital sounder and magnetometers

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2009-04-01

    Full Text Available In the present work we show new results regarding equatorial counter electrojet (CEJ events in the Brazilian sector, based on the RESCO radar, two set of fluxgate magnetometer systems and a digital sounder. RESCO radar is a 50 MHz backscatter coherent radar installed in 1998 at São Luís (SLZ, 2.33° S, 44.60° W, an equatorial site. The Digital sounder routinely monitors the electron density profile at the radar site. The magnetometer systems are fluxgate-type installed at SLZ and Eusébio (EUS, 03.89° S, 38.44° W. From the difference between the horizontal component of magnetic field at SLZ station and the same component at EUS (EEJ ground strength several cases of westward morning electrojet and its normal inversion to the eastward equatorial electrojet (EEJ have been observed. Also, the EEJ ground strength has shown some cases of CEJ events, which been detected with the RESCO radar too. Detection of these events were investigated with respect to their time and height of occurrence, correlation with sporadic E (Es layers at the same time, and their spectral characteristics as well as the radar echo power intensity.

  15. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    Science.gov (United States)

    Plaschke, Ferdinand; Narita, Yasuhito

    2016-09-01

    In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  16. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    Directory of Open Access Journals (Sweden)

    F. Plaschke

    2016-09-01

    Full Text Available In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  17. Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection

    Science.gov (United States)

    Arias-Thode, Y. Meriah; Hsu, Lewis; Anderson, Greg; Babauta, Jerome; Fransham, Roy; Obraztsova, Anna; Tukeman, Gabriel; Chadwick, D. Bart

    2017-07-01

    The Navy has a need for monitoring conditions and gathering information in marine environments. Sensors can monitor and report environmental parameters and potential activities such as animal movements, ships, or personnel. However, there has to be a means to power these sensors. One promising enabling technology that has been shown to provide long-term power production in underwater environments is the benthic microbial fuel cells (BMFC). BMFCs are devices that generate energy by coupling bioanodes and biocathodes through an external energy harvester. Recent studies have demonstrated success for usage of BMFCs in powering small instruments and other devices on the seafloor over limited periods of time. In this effort, a seven-stranded BMFC linear array of 30 m was designed to power a seafloor magnetometer to detect passing ship movements through Pearl Harbor, Hawaii. The BMFC system was connected to a flyback energy harvesting circuit that charged the battery powering the magnetometer. The deployment was demonstrated the BMFC supplied power to the battery for approximately 38 days. This is the first large-scale demonstration system for usage of the SeptiStrand BMFC technology to power a relevant sensor.

  18. The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter

    Science.gov (United States)

    Glassmeier, K.-H.; Auster, H.-U.; Heyner, D.; Okrafka, K.; Carr, C.; Berghofer, G.; Anderson, B. J.; Balogh, A.; Baumjohann, W.; Cargill, P.; Christensen, U.; Delva, M.; Dougherty, M.; Fornaçon, K.-H.; Horbury, T. S.; Lucek, E. A.; Magnes, W.; Mandea, M.; Matsuoka, A.; Matsushima, M.; Motschmann, U.; Nakamura, R.; Narita, Y.; O'Brien, H.; Richter, I.; Schwingenschuh, K.; Shibuya, H.; Slavin, J. A.; Sotin, C.; Stoll, B.; Tsunakawa, H.; Vennerstrom, S.; Vogt, J.; Zhang, T.

    2010-01-01

    The magnetometer (MAG) on the Mercury Planetary Orbiter (MPO) of the joint European-Japanese BepiColombo mission to planet Mercury is a low-noise, tri-axial, dual-sensor, digital fluxgate instrument with its sensors mounted on a 2.8-m-long boom. The primary MPO/MAG science objectives are to determine the spatial and temporal structure of the magnetic field in the Hermean system, in particular the structure and origin of the intrinsic magnetic field of Mercury. MPO/MAG has a dynamic measurement range of ±2000nT with a resolution of 2 pT during operation along the near-polar orbit of the MPO spacecraft around Mercury. MPO/MAG is designed to provide measurements with rates between 0.5 and 128 vectors/s. In cooperation with its sister magnetometer instrument, MMO/MGF on board the BepiColombo Mercury Magnetospheric Orbiter (MMO), MPO/MAG will be able to distinguish between temporal and spatial magnetic field variations in the magnetically closely coupled Hermean system.

  19. Development of fluxgate magnetometers and applications to the space science missions

    Science.gov (United States)

    Matsuoka, A.; Shinohara, M.; Tanaka, Y.-M.; Fujimoto, A.; Iguchi, K.

    2013-11-01

    Magnetic field is one of the essential physical parameters to study the space physics and evolution of the solar system. There are several methods to measure the magnetic field in the space by spacecraft and rockets. Fluxgate magnetometer has been most generally used out of them because it measures the vector field accurately and does not need much weight and power budgets. When we try more difficult missions such as multi-satellite observation, landing on the celestial body and exploration in the area of severe environment, we have to modify the magnetometer or develop new techniques to make the instrument adequate for those projects. For example, we developed a 20-bit delta-sigma analogue-to-digital converter for MGF-I on the BepiColombo MMO satellite, to achieve the wide-range (±2000 nT) measurement with good resolution in the high radiation environment. For further future missions, we have examined the digitalizing of the circuit, which has much potential to drastically reduce the instrument weight, power consumption and performance dependence on the temperature.

  20. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    Science.gov (United States)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  1. Saturation and forward jets at HERA

    International Nuclear Information System (INIS)

    Marquet, C.; Peschanski, R.; Royon, C.

    2004-01-01

    We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options

  2. Scintillation probe with photomultiplier tube saturation indicator

    International Nuclear Information System (INIS)

    Ruch, J.F.; Urban, D.J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs

  3. Alteration of properties of rock during their selection by shooting core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Malinin, V F

    1969-01-01

    During the process of intrusion of the core lifter into rock, splitting and dislocation of the granules and crystals which compose it occur. In the core lifters, single small nondisintegrated fragments are sometimes encountered. Data on comparison of porosity of crushed cores and rock from which they were selected indicate increase in porosity and penetration of the filtrate of the drilling solution during the process of coring. The determined residual oil saturation of the core is different from the residual oil saturation of the rock from which they were selected. The permeability of cores of rock with high porosity is altered.

  4. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  5. Minimum K_2,3-saturated Graphs

    OpenAIRE

    Chen, Ya-Chen

    2010-01-01

    A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.

  6. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  7. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  8. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4) nanocrystalline ferrites for core, switching and MLCI’s applications

    International Nuclear Information System (INIS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M.S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights: • Cu substituted

  9. Integrated induction coil and fluxgate magnetometers for EM analysis and monitoring

    Science.gov (United States)

    Hanstein, T.; Strack, K.; Jiang, J.

    2013-12-01

    The concept of a full field array electromagnetic system is an ideal tool to support hydrocarbon and geothermal E & P as well as various engineering monitoring applications. Some of the key questions are defining the reservoir, mapping of the fractures and reservoir depletion monitoring. The reservoirs are all too often relative thin and give an anomalous electromagnetic (EM) response, which is often small in amplitude and challenging for the EM measuring system. A digital fluxgate magnetometer (32-bit) is connected to the KMS magnetotelluric acquisition system with analogue induction coils and electrodes to extend the range of application of a single recording site. Since the noise level is above that of the induction coil for periods shorter than 20 s, the apparent resistivity is biased. For longer periods the apparent resistivity is consistent and eventually better than the induction coil. However, phase and tipper are not biased and agree well with the induction data even for shorter periods. This allows us to develop algorithms that significantly extend the range of application of the fluxgate beyond what was done in the past. The highest frequency of the fluxgate magnetometer is about 180 Hz and the hightest sampling of the FG-board is 4 kHz.The different induction coils and fluxgate magnetometer have intensively been tested in the magnetic chamber and at the field test site near Houston for noise performance by parallel recordings. They show that even in an environment with high cultural noise, the specification can be met. In Northeast China, a 30-day monitoring test with MT was carried out for seismologic applications. Acquisitition schedule included different recordings times and sampling rates. Daily, the data was collected and processed via the internet from either Europe or the US. Even with long recording, we still had to select the time windows for data averaging and coherences are not a good threshhold criteria in this case. During another MT

  10. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    The Web Services Business Process Execution Language (WS-BPEL) is a language for expressing business process behaviour based on web services. The language is intentionally not minimal but provides a rich set of constructs, allows omission of constructs by relying on defaults, and supports language......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...

  11. Thermodynamics of a closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    van den Bosch, P.J.; van den Bosch, P.J.; ter Brake, Hermanus J.M.; van den Eijkel, G.C.; Boelens, J.P.; Holland, Herman J.; Verberne, J.F.C.; Rogalla, Horst

    1994-01-01

    A multichannel high-Tc dc-SQUID based heart-magnetometer is currently under development in our laboratory. The system is cooled by a cooler that, due to its magnetic interference, has to be separated from the SQUID unit. In the present prototype system a closed-cycle gas flow was chosen as the

  12. MOURA magnetometer for Mars MetNet Precursor Mission. Its potential for an in situ magnetic environment and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Michelena, M.; Sanz, R.; Fernandez, A.B.; Manuel, V. de; Cerdan, M.F.; Apestigue, V.; Arruego, I.; Azcue, J.; Dominguez, J.A.; Gonzalez, M.; Guerrero, H.; Sabau, M.; Kilian, R.; Baeza, O.; Ros, F.; Vazquez, M.; Tordesillas, J.M.; Covisa, P.; Aguado, J.

    2016-07-01

    MOURA magnetometer and gradiometer is part of the scientific instrumentation for Mars MetNet Precursor mission. This work describes the objective of the investigation, summarizes the work done in the design and development of the sensor as well as its calibration, and shows the demonstration campaigns to show the potential of such instrument for planetary landers and rovers. (Author)

  13. Comparison between SuperDARN flow vectors and equivalent ionospheric currents from ground magnetometer arrays

    DEFF Research Database (Denmark)

    Weygand, J. M.; Amm, O.; Angelopoulos, V.

    2012-01-01

    seasons. This comparison is done over a range of spatial separations, magnetic latitudes, magnetic local times, and auroral electrojet activity to investigate under what conditions the vectors are anti-parallel to one another. Our results show that in general the equivalent ionospheric currents are anti...... that may influence the alignment include ionospheric conductivity gradients and quiet time backgrounds. Our results can be used to approximate the macroscopic (similar to 1000 km) ionospheric convection patterns. The SECS maps represent a value-added product from the raw magnetometer database and can...... be used for contextual interpretation; they can help with our understanding of magnetosphere-ionosphere coupling mechanisms using ground arrays and the magnetospheric spacecraft data, and they can be used as input for other techniques....

  14. Triaxial digital fluxgate magnetometer for NASA applications explorer mission: Results of tests of critical elements

    Science.gov (United States)

    Mcleod, M. G.; Means, J. D.

    1977-01-01

    Tests performed to prove the critical elements of the triaxial digital fluxgate magnetometer design were described. A method for improving the linearity of the analog to digital converter portion of the instrument was studied in detail. A sawtooth waveform was added to the signal being measured before the A/D conversion, and averaging the digital readings over one cycle of the sawtooth. It was intended to reduce bit error nonlinearities present in the A/D converter which could be expected to be as much as 16 gamma if not reduced. No such nonlinearities were detected in the output of the instrument which included the feature designed to reduce these nonlinearities. However, a small scale nonlinearity of plus or minus 2 gamma with a 64 gamma repetition rate was observed in the unit tested. A design improvement intended to eliminate this small scale nonlinearity was examined.

  15. Summary of initial results from the GSFC fluxgate magnetometer on Pioneer 11

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    The main magnetic field of Jupiter was measured by the Fluxgate Magnetometer on Pioneer 11 and analysis reveals it to be relatively more complex than expected. In a centered spherical harmonic representation with a maximum order of n = 3 (designated GSFC model 04), the dipole term (with opposite polarity to the Earth's) has a moment of 4.28 Gauss x (Jupiter radius cubed), tilted by 9.6 deg towards a system 111 longitude of 232. The quadrupole and octupole moments are significant, 24% and 21% of the dipole moment respectively, and this leads to deviations of the planetary magnetic field from a simple offset tilted dipole for distances smaller than three Jupiter radii. The GSFC model shows a north polar field strength of 14 Gauss and a south polar field strength of 10.4 Gauss. Enhanced absorption effects in the radiation belts may be predicted as a result of field distortion.

  16. Infrastructure-Less Indoor Localization Using the Microphone, Magnetometer and Light Sensor of a Smartphone.

    Science.gov (United States)

    Galván-Tejada, Carlos E; García-Vázquez, Juan Pablo; Galván-Tejada, Jorge I; Delgado-Contreras, J Rubén; Brena, Ramon F

    2015-08-18

    In this paper, we present the development of an infrastructure-less indoor location system (ILS), which relies on the use of a microphone, a magnetometer and a light sensor of a smartphone, all three of which are essentially passive sensors, relying on signals available practically in any building in the world, no matter how developed the region is. In our work, we merge the information from those sensors to estimate the user's location in an indoor environment. A multivariate model is applied to find the user's location, and we evaluate the quality of the resulting model in terms of sensitivity and specificity. Our experiments were carried out in an office environment during summer and winter, to take into account changes in light patterns, as well as changes in the Earth's magnetic field irregularities. The experimental results clearly show the benefits of using the information fusion of multiple sensors when contrasted with the use of a single source of information.

  17. Magnetic field `flyby' measurement using a smartphone's magnetometer and accelerometer simultaneously

    Science.gov (United States)

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2017-12-01

    The spatial dependence of magnetic fields in simple configurations is a common topic in introductory electromagnetism lessons, both in high school and in university courses. In typical experiments, magnetic fields and distances are obtained taking point-by-point values using a Hall sensor and a ruler, respectively. Here, we show how to take advantage of the smartphone capabilities to get simultaneous measures with the built-in accelerometer and magnetometer and to obtain the spatial dependence of magnetic fields. We consider a simple setup consisting of a smartphone mounted on a track whose direction coincides with the axis of a coil. While the smartphone is moving on the track, both the magnetic field and the distance from the center of the coil (integrated numerically from the acceleration values) are simultaneously obtained. This methodology can easily be extended to more complicated setups.

  18. Investigation of a low-cost magneto-inductive magnetometer for space science applications

    Science.gov (United States)

    Regoli, Leonardo H.; Moldwin, Mark B.; Pellioni, Matthew; Bronner, Bret; Hite, Kelsey; Sheinker, Arie; Ponder, Brandon M.

    2018-03-01

    A new sensor for measuring low-amplitude magnetic fields that is ideal for small spacecraft is presented. The novel measurement principle enables the fabrication of a low-cost sensor with low power consumption and with measuring capabilities that are comparable to recent developments for CubeSat applications. The current magnetometer, a software-modified version of a commercial sensor, is capable of detecting fields with amplitudes as low as 8.7 nT at 40 Hz and 2.7 nT at 1 Hz, with a noise floor of 4 pT/Hz at 1 Hz. The sensor has a linear response to less than 3 % over a range of ±100 000 nT. All of these features make the magneto-inductive principle a promising technology for the development of magnetic sensors for both space-borne and ground-based applications to study geomagnetic activity.

  19. Measurements on very small single crystals of NdFeB using a vibrating reed magnetometer

    International Nuclear Information System (INIS)

    Richter, H.J.; Hempel, K.A.; Verhoef, R.

    1988-01-01

    Nd 2 Fe 14 B single crystals with magnetic moments ranging from 1.6 x 10 -8 Acm 2 to 9.5 x 10 -7 Acm 2 are measured using the ultra high sensitivity vibrating reed magnetometer. The hysteresis loops are compared to those of BaFe 12 O 19 single crystals. It turns out that the magnetization reversal of the Nd 2 Fe 14 B samples is similar to that of BaFe 12 O 19 single crystals if the ferrite samples are considerably bigger in size. This does not hold for bigger Nd 2 Fe 14 B particles where stronger domain wall pinning is observed. For very small grains of Nd 2 Fe 14 B there is still evidence of domain wall processes while for BaFe 12 O 19 grains of the same size true single domain behaviour can be observed

  20. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    International Nuclear Information System (INIS)

    Neubauer, F.M.; Glassmeier, K.H.; Goldstein, R.; Acuna, M.H.; Musmann, G.; Coates, A.J.

    1990-01-01

    The authors report thirteen very short events in the magnetic field of the inner magnetic pile-up region of comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera [Curdt and Keller, private communication]. Their characteristic shape generally involves a sudden decrease in magnetic field magnitude, a subsequent overshoot beyond initial field values and an asymptotic approach to the initial field somewhat reminiscent of the magnetic field signature after the AMPTE releases in the solar wind. These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft

  1. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    Science.gov (United States)

    Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.

    1990-01-01

    This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.

  2. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle......, potential relationships between Ksat and Dp/Do were investigated. A total of 84 undisturbed soil cores were extracted from the topsoil of a field site, and Dp/Do and Ksat were measured in the laboratory. Water-induced and solids-induced tortuosity factors were obtained by applying a two-parameter Dp...

  3. Real-time Geomagnetic Data from a Raspberry Pi Magnetometer Network in the United Kingdom

    Science.gov (United States)

    Case, N.; Beggan, C.; Marple, S. R.

    2017-12-01

    In 2014, BGS and the University of Lancaster won an STFC Public Engagement grant to build and deploy 10 Raspberry Pi magnetometers to secondary schools across the UK to enable citizen science. The system uses a Raspberry Pi computer as a logging and data transfer device, connected to a set of three orthogonal miniature fluxgate magnetometers. The system has a nominal sensitivity of around 1 nanoTesla (nT), in each component direction (North, East and Down). This is around twenty times less sensitive than a current scientific-level instrument, but given its relatively low-cost, at about £250 ($325) per unit, this is an excellent price-to-performance ratio given we could not improve the sensitivity unless we spent a lot more money. The magnetic data are sampled at a 5 second cadence and sent to the AuroraWatch website at Lancaster University every 2 minutes. The data are freely available to view and download. The primary aim of the project is to encourage students from 14-18 years old to look at how sensors can be used to collect geophysical data and integrate it together to give a wider understanding of physical phenomena. A second aim is to provide useful data on the spatial variation of the magnetic field for analysis of geomagnetic storms, alongside data from the BGS observatory and University of Lancaster's SAMNET variometer network. We show results from the build, testing and running of the sensors including some recent storms and we reflect on our experiences in engaging schools and the general public with information about the magnetic field. The information to build the system and logging and analysis software for the Raspberry Pi is all freely available, allowing those interested to participate in the project as citizen scientists.

  4. Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers

    Science.gov (United States)

    Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.

    2018-04-01

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .

  5. Geophysical Surveying of Shallow Magnetic Anomalies Using the iPhone Magnetometer

    Science.gov (United States)

    Opdyke, P.; Dudley, C.; Louie, J. N.

    2012-12-01

    This investigation examined whether the 3-axis Hall-effect magnetometer in the Apple iPhone 3GS can function as an effective shallow magnetic survey instrument. The xSensor Pro app from Crossbow Systems allows recoding of all three sensor components along with the GPS location, at a frequency of 1.0, 4.0, 16.0, and 32.0 Hz. If the iPhone proves successful in collecting useful magnetic data, then geophysicists and especially educators would have a new tool for high-density geophysical mapping. No-contract iPhones that can connect with WiFi can be obtained for about $400, allowing deployment of large numbers of instruments. iPhones with the xSensor Pro app surveyed in parallel with an Overhauser GEM system magnetometer (1 nT sensitivity) to test this idea. Anderson Bay, located on the Pyramid Lake Paiute Reservation, provided a rural survey location free from cultural interference. xSensor Pro, logged each component's intensity and the GPS location at a frequency of four measurements per second. Two Overhauser units functioned as a base unit and a roving unit. The roving unit collected total field at set points located with a handheld GPS. Comparing the total field computed from the iPhone components against that collected by the Overhauser establishes the level of anomalies that the iPhone can detect. iPhone total-field measurements commonly vary by 200 nT from point to point, so a spatial-temporal average over 25 seconds produces a smoothed signal for comparison. Preliminary analysis of the iPhone results show that the data do not accurately correlate to the total field collected by the Overhauser for any anomaly of less than 200 nT.

  6. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Science.gov (United States)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  7. A large-scale view of Space Technology 5 magnetometer response to solar wind drivers.

    Science.gov (United States)

    Knipp, D J; Kilcommons, L M; Gjerloev, J; Redmon, R J; Slavin, J; Le, G

    2015-04-01

    In this data report we discuss reprocessing of the Space Technology 5 (ST5) magnetometer database for inclusion in NASA's Coordinated Data Analysis Web (CDAWeb) virtual observatory. The mission consisted of three spacecraft flying in elliptical orbits, from 27 March to 27 June 2006. Reprocessing includes (1) transforming the data into the Modified Apex Coordinate System for projection to a common reference altitude of 110 km, (2) correcting gain jumps, and (3) validating the results. We display the averaged magnetic perturbations as a keogram, which allows direct comparison of the full-mission data with the solar wind values and geomagnetic indices. With the data referenced to a common altitude, we find the following: (1) Magnetic perturbations that track the passage of corotating interaction regions and high-speed solar wind; (2) unexpectedly strong dayside perturbations during a solstice magnetospheric sawtooth oscillation interval characterized by a radial interplanetary magnetic field (IMF) component that may have enhanced the accompanying modest southward IMF; and (3) intervals of reduced magnetic perturbations or "calms," associated with periods of slow solar wind, interspersed among variable-length episodic enhancements. These calms are most evident when the IMF is northward or projects with a northward component onto the geomagnetic dipole. The reprocessed ST5 data are in very good agreement with magnetic perturbations from the Defense Meteorological Satellite Program (DMSP) spacecraft, which we also map to 110 km. We briefly discuss the methods used to remap the ST5 data and the means of validating the results against DMSP. Our methods form the basis for future intermission comparisons of space-based magnetometer data.

  8. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    International Nuclear Information System (INIS)

    Bechstein, S; Petsche, F; Scheiner, M; Drung, D; Thiel, F; Schnabel, A; Schurig, Th

    2006-01-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-T c dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented

  9. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Bechstein, S [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Petsche, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Scheiner, M [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Drung, D [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Thiel, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schnabel, A [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schurig, Th [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/{radical}Hz was specially designed for a 304-channel low-T{sub c} dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  10. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    Science.gov (United States)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  11. Error Analysis of High Frequency Core Loss Measurement for Low-Permeability Low-Loss Magnetic Cores

    DEFF Research Database (Denmark)

    Niroumand, Farideh Javidi; Nymand, Morten

    2016-01-01

    in magnetic cores is B-H loop measurement where two windings are placed on the core under test. However, this method is highly vulnerable to phase shift error, especially for low-permeability, low-loss cores. Due to soft saturation and very low core loss, low-permeability low-loss magnetic cores are favorable...... in many of the high-efficiency high power-density power converters. Magnetic powder cores, among the low-permeability low-loss cores, are very attractive since they possess lower magnetic losses in compared to gapped ferrites. This paper presents an analytical study of the phase shift error in the core...... loss measuring of low-permeability, low-loss magnetic cores. Furthermore, the susceptibility of this measurement approach has been analytically investigated under different excitations. It has been shown that this method, under square-wave excitation, is more accurate compared to sinusoidal excitation...

  12. Results of neutron irradiation of liquid lithium saturated with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Mazzitelli, Giuseppe [ENEA, RC Frascati, Frascati (Italy)

    2017-04-15

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(−144/RT). • The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10{sup −13} cm{sup −2} s{sup −1}. The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(-144/RT). The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  13. Quantitative NMR measurements on core samples

    International Nuclear Information System (INIS)

    Olsen, Dan

    1997-01-01

    Within the frame of an EFP-95 project NMR methods for porosity determination in 2D, and for fluid saturation determination in 1D and 2D have been developed. The three methods have been developed and tested on cleaned core samples of chalk from the Danish North Sea. The main restriction for the use of the methods is the inherently short T2 relaxation constants of rock samples. Referring to measurements conducted at 200 MHz, the 2D porosity determination method is applicable to sample material with T2 relaxation constants down to 5 ms. The 1D fluid saturation determination method is applicable to sample material with T2 relaxation constants down to 3 ms, while the 2D fluid saturation determination method is applicable to material with T2 relaxation constants down to 8 ms. In the case of the 2D methods these constraints as a minimum enables work on the majority of chalk samples of Maastrichtian age. The 1D fluid saturation determination method in addition is applicable to at least some chalk samples of Danian and pre-Maastrichtian age. The spatial resolution of the 2D porosity determination method, the 1D fluid saturation methods, and the 2D fluid saturation method is respectively 0.8 mm, 0.8 mm and 2 mm. Reproducibility of pixel values is for all three methods 2%- points. (au)

  14. Magnetometer-inferred, Equatorial, Daytime Vertical ExB Drift Velocities Observed in the African Longitude Sector

    Science.gov (United States)

    Anderson, D. N.; Yizengaw, E.

    2011-12-01

    A recent paper has investigated the sharp longitude gradients in the dayside ExB drift velocities associated with the 4-cell, non-migrating structures thought to be connected with the eastward propagating, diurnal, non-migrating (DE3) tides. Observations of vertical ExB drift velocities obtained from the Ion Velocity Meter (IVM) on the Communication/Navigation Outage Forecast System (C/NOFS) satellite were obtained in the Western Pacific, Eastern Pacific, Peruvian and Atlantic sectors for a few days during the months of October, March and December, 2009. Respective ExB drift velocity gradients at the cell boundaries for these 4 longitude sectors were a.) -1.3m/sec/degree, b.) 3m/sec/degree, c.) -4m/sec/degree and d.) 1m/sec/degree and were observed on a day-to-day basis. In this talk, we estimate the longitude gradients in the dayside, vertical ExB drift velocities from magnetometer H-component observations in the African sector. We briefly describe the technique for obtaining realistic ExB drift velocities associated with the difference in the H-component values between a magnetometer on the magnetic equator and one off the magnetic equator at 6 to 9 degrees dip latitude (delta H). We present magnetometer-inferred, dayside ExB drift velocities obtained from the AMBER (African Meridian B-field Education and Research) magnetometer chain in the East Africa (Ethiopian) longitude sector and the West African (Nigerian) longitude sector. We compare the longitude gradients in ExB drift velocities in the African sector with the C/NOFS- observed longitude gradients mentioned above. We also discuss the advantages of using ground-based magnetometer observations to infer ExB drift velocities compared with the C/NOFS satellite observations.

  15. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  16. Black phosphorus saturable absorber for ultrashort pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland); Macherzynski, W.; Paletko, P. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wroclaw 50-372 (Poland)

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  17. Interger multiplication with overflow detection or saturation

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.J.; Balzola, P.I.; Akkas, A.; Brocato, R.W.

    2000-01-11

    High-speed multiplication is frequently used in general-purpose and application-specific computer systems. These systems often support integer multiplication, where two n-bit integers are multiplied to produce a 2n-bit product. To prevent growth in word length, processors typically return the n least significant bits of the product and a flag that indicates whether or not overflow has occurred. Alternatively, some processors saturate results that overflow to the most positive or most negative representable number. This paper presents efficient methods for performing unsigned or two's complement integer multiplication with overflow detection or saturation. These methods have significantly less area and delay than conventional methods for integer multiplication with overflow detection and saturation.

  18. Tracking Controller for Intrinsic Output Saturated Systems in Presence of Amplitude and Rate Input Saturations

    DEFF Research Database (Denmark)

    Chater, E.; Giri, F.; Guerrero, Josep M.

    2014-01-01

    We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...

  19. Studies of non-isothermal flow in saturated and partially saturated porous media

    International Nuclear Information System (INIS)

    Ho, C.K.; Maki, K.S.; Glass, R.J.

    1993-01-01

    Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell

  20. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.

    2012-01-01

    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  1. Saturated poroelastic actuators generated by topology optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2011-01-01

    the coupling of internal fluid pressure and elastic shear stresses a slab of the optimized porous material deflects/deforms when a pressure is imposed and an actuator is created. Several phenomenologically based constraints are imposed in order to get a stable force transmitting actuator.......In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizing...

  2. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  3. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  4. Saturated Zone Colloid-Facilitated Transport

    International Nuclear Information System (INIS)

    Wolfsberg, A.; Reimus, P.

    2001-01-01

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  5. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  6. Nonlinear saturation of the Rayleigh Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)

  7. Saturable absorption in detonation nanodiamond dispersions

    Science.gov (United States)

    Vanyukov, Viatcheslav; Mikheev, Gennady; Mogileva, Tatyana; Puzyr, Alexey; Bondar, Vladimir; Lyashenko, Dmitry; Chuvilin, Andrey

    2017-07-01

    We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a light-induced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking.

  8. The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers.

    Science.gov (United States)

    Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming

    2017-07-28

    The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.

  9. Prospecting For Magnetite Ore Deposits With A Innovative Sensor's of Unique Fundamentally New Magnetometer.

    Science.gov (United States)

    Emelianenko, T. I.; Tachaytdinov, R. S.; Sarichev, V. F.; Kotov, B. V.; Susoeva, G. N.

    After careful study of principles and abilities of all existing magnetmeters of all three revolutions in magnetic prospecting we have come to the conclusion that they cannot solve local guestions of the magnetic prospecting or determine centre coordinates of magnetite ore body before drilling Electromagnetism lows and achievents magnetprospectings and radioelectronics of all 20th century serve as a theoretical base of the "locator". While creating this cardinally new magnetmeter , we borrowed different things from radio-prospectors, magnetprospectors, wireless operators and combined all of them while creating the "locators''. The "locators' construction is bas ed on the "magnetic intensification" principle ,owing to which this "locators" are characterised by hight sensitiveness and ability to determine centers of even little commercial magnetite ore deposits with relatively weak magnetic anomalies. The main advantage of the "locators" over existing ones is that it can solve local questions determine centre coordinates. A remarkably simple locator construction determine direction of the on-surface measurings towards the ore body centre and gives approximate prognosis resourses before/withour/ drilling. The "locators" were worked out for the first time in history , they have 2 licences. The fundamental design and drawbacks of the existing magnetometers have been inherited from the original magnetometre dating back two or three hundred years. The developers of the existing magnetometres have all gone along the same well- beaten track of replacing the primitive sensor in the form of a piece of ore hung on a string at first by an arrow sensor and later by magnetically oriented protons and quanta, with amplification of the sensors' OUTPUT signal. Furthermore, all the existing magnetometres are imperfect in that they, lacking the directivity of the ground-level magnetic measurements, only record the overall magnetic vector field generated by all the ore bodies around the

  10. Ultrahigh precision nonlinear reflectivity measurement system for saturable absorber mirrors with self-referenced fluence characterization.

    Science.gov (United States)

    Orsila, Lasse; Härkönen, Antti; Hyyti, Janne; Guina, Mircea; Steinmeyer, Günter

    2014-08-01

    Measurement of nonlinear optical reflectivity of saturable absorber devices is discussed. A setup is described that enables absolute accuracy of reflectivity measurements better than 0.3%. A repeatability within 0.02% is shown for saturable absorbers with few-percent modulation depth. The setup incorporates an in situ knife-edge characterization of beam diameters, making absolute reflectivity estimations and determination of saturation fluences significantly more reliable. Additionally, several measures are discussed to substantially improve the reliability of the reflectivity measurements. At its core, the scheme exploits the limits of state-of-the-art digital lock-in technology but also greatly benefits from a fiber-based master-oscillator power-amplifier source, the use of an integrating sphere, and simultaneous comparison with a linear reflectivity standard.

  11. Oxygen general saturation after bronchography under general ...

    African Journals Online (AJOL)

    Thirty-six patients undergoing bronchography or bronchoscopy under general anaesthesia were continuously monitored by pulse oximetry for 5 hours after these procedures. Significant falls in oxygen saturation were observed in the first hour and were of most clinical relevance in patients with preexisting pulmonary ...

  12. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  13. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    the existence and propagation of four waves in the medium. Three of the waves are ... predicted infinite speed for propagation of ther- mal signals. Lord and ..... saturated reservoir rock (North-sea Sandstone) is chosen for the numerical model ...

  14. Saturated fat, carbohydrates and cardiovascular disease

    NARCIS (Netherlands)

    Kuipers, R. S.; de Graaf, D. J.; Luxwolda, M. F.; Muskiet, M. H. A.; Dijck-Brouwer, D. A. J.; Muskiet, F. A. J.

    The dietary intake of saturated fatty acids (SAFA) is associated with a modest increase in serum total cholesterol, but not with cardiovascular disease (CVD). Replacing dietary SAFA with carbohydrates (CHO), notably those with a high glycaemic index, is associated with an increase in CVD risk in

  15. Saturation at Low X and Nonlinear Evolution

    International Nuclear Information System (INIS)

    Stasto, A.M.

    2002-01-01

    In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale Q s . We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution. (author)

  16. Saturation of bentonite dependent upon temperature

    International Nuclear Information System (INIS)

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    Document available in extended abstract form only. The fundamental idea behind the long-term safe operation of a deep repository is the use of the Multi-barrier system principle. Barriers may well differ according to the type of host rock in which the repository is located. It is assumed that the buffer in the granitic host rock environment will consist of swelling clays which boast the ideal properties for such a function i.e. low permeability, high swelling pressure, self-healing ability etc. all of which are affected primarily by mineralogy and dry density. Water content plays a crucial role in the activation of swelling pressure as well as, subsequently, in the potential self healing of the various contact areas of the numerous buffer components made from bentonite. In the case of a deep repository, a change in water content is not only connected with the possible intake of water from the host rock, but also with its redistribution owing to changes in temperature after the insertion of the heat source (disposal waste package containing spent fuel) into the repository 'nest'. The principal reason for the experimental testing of this high dry density material is the uncertainty with regard to its saturation ability (final water content or the degree of saturation) at higher temperatures. The results of the Mock-Up-CZ experiment showed that when the barrier is constantly supplied with a saturation medium over a long time period the water content in the barrier as well as the degree of saturation settle independently of temperature. The Mock-Up-CZ experiment was performed at temperatures of 30 deg. - 90 deg. C in the barrier; therefore it was decided to experimentally verify this behaviour by means of targeted laboratory tests. A temperature of 110 deg. C was added to the set of experimental temperatures resulting in samples being tested at 25 deg. C, 95 deg. C and 110 deg. C. The degree of saturation is defined as the ratio of pore water volume to pore

  17. Two-beam interaction in saturable media

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Schmidt, Michel R.; Juul Rasmussen, Jens

    1998-01-01

    The dynamics of two coupled soliton solutions of the nonlinear Schrodinger equation with a saturable nonlinearity is investigated It is shown by means of a variational method and by direct numerical calculations that two well-separated solitons can orbit around each other, if their initial velocity...

  18. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Unknown

    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate. 431. Table 1. Competitive oxygenation of tetralin and cyclooctene with sodium periodate catalyzed by different manga- .... Teacher Education University. My grateful thanks also extend to Dr D Mohajer for his useful sugges- tions. References. 1.

  19. Multiscale optimization of saturated poroelastic actuators

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    A multiscale method for optimizing the material micro structure in a macroscopically heterogeneous saturated poroelastic media with respect to macro properties is presented. The method is based on topology optimization using the homogenization technique, here applied to the optimization of a bi...

  20. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    but which can actually be used for processes, which pro- duce interesting ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the .... The solid product obtained from the glycolysis of PET was bis(hydroxy ethyl ...

  1. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  2. Electrodynamics of an omega-band as deduced from optical and magnetometer data

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2009-09-01

    Full Text Available We investigate an omega-band event that took place above northern Scandinavia around 02:00–02:30 UT on 9 March 1999. In our analysis we use ground based magnetometer, optical and riometer measurements together with satellite based optical images. The optical and riometer data are used to estimate the ionospheric Hall and Pedersen conductances, while ionospheric equivalent currents are obtained from the magnetometer measurements. These data sets are used as input in a local KRM calculation, which gives the ionospheric potential electric field as output, thus giving us a complete picture of the ionospheric electrodynamic state during the omega-band event. The overall structure of the electric field and field-aligned current (FAC provided by the local KRM method are in good agreement with previous studies. Also the E×B drift velocity calculated from the local KRM solution is in good qualitative agreement with the plasma velocity measured by the Finnish CUTLASS radar, giving further support for the new local KRM method. The high-resolution conductance estimates allow us to discern the detailed structure of the omega-band current system. The highest Hall and Pedersen conductances, ~50 and ~25 S, respectively, are found at the edges of the bright auroral tongue. Inside the tongue, conductances are somewhat smaller, but still significantly higher than typical background values. The electric field shows a converging pattern around the tongues, and the field strength drops from ~40 mV/m found at optically dark regions to ~10 mV/m inside the areas of enhanced conductivity. Downward FAC flow in the dark regions, while upward currents flow inside the auroral tongue. Additionally, sharp conductance gradients at the edge of an auroral tongue are associated with narrow strips of intense FACs, so that a strip of downward current flows at the eastern (leading edge and a similar strip of upward current is present at the western (trailing edge. The Joule

  3. Low-frequency noise in high-(Tc) superconductor Josephson junctions, SQUIDs, and magnetometers

    Science.gov (United States)

    Miklich, A. H.

    1994-05-01

    Design and performance of high-T(sub c) dc superconducting quantum interference devices (SQUID's), junctions that comprise them, and magnetometers made from them are described, with attention to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUID's; this suggests a poorly connected interface at the grain boundary junction. SQUID's from bicrystal junctions have levels of critical current noise controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5 x 10(exp -30) J Hz(exp -1) at 1 Hz is reported. Magnetometers in which a (9 mm)(exp 2) pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz(exp -1/2) down to frequencies below 1 Hz, improving to 39 fT Hz(exp -1/2) at 1 Hz with the addition of a 50mm-diameter single-turn flux transformer. Poor coupling to pickup loop makes it difficult to satisfy competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz(exp -1/2) in the white noise region is reported with a (10 mm)(exp 2) pickup loop. However, additional 1/f noise from processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz(exp -1/2). High-T(sub c) SQUID's exhibit additional 1/f noise when cooled in a nonzero static magnetic field because of additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution of 9.2 pV Hz(exp -1/2) at 10 Hz (24 pV Hz(exp -1/2) at 1 Hz) is described.

  4. Low-Frequency Noise in High-T Superconductor Josephson Junctions, Squids, and Magnetometers.

    Science.gov (United States)

    Miklich, Andrew Hostetler

    The design and performance of high-T_ {rm c} dc superconducting quantum interference devices (SQUIDs), the junctions that comprise them, and magnetometers made from them are described, with special attention paid to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUIDs. This noise suggests a poorly connected interface at the grain boundary junction. SQUIDs from bicrystal junctions, in contrast, have levels of critical current noise that are controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5times 10^{-30} J Hz^ {-1} at 1 Hz is reported. Magnetometers in which a (9 mm)^2 pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz^{-1/2} down to frequencies below 1 Hz, improving to 39 fT Hz^{-1/2} at 1 Hz with the addition of a 50 mm-diameter single-turn flux transformer. Although the performance of these devices is sufficient for single -channel biomagnetometry or geophysical studies, their relatively poor coupling to the pickup loop makes it difficult to satisfy the competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz^{-1/2} in the white noise region is reported with a (10 mm) ^2 pickup loop. However, additional 1/f noise from the processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz^ {-1/2}. High-T_{ rm c} SQUIDs are shown to exhibit additional 1/f noise when they are cooled in a nonzero static magnetic field because of the additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05 mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution

  5. Side core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A

    1982-01-01

    A side core lifter is proposed which contains a housing with guide slits and a removable core lifter with side projections on the support section connected to the core receiver. In order to preserve the structure of the rock in the core sample by means of guaranteeing rectilinear movement of the core lifter in the rock, the support and core receiver sections are hinged. The device is equipped with a spring for angular shift in the core-reception part.

  6. Fluxgate vector magnetometers: Compensated multi-sensor devices for ground, UAV and airborne magnetic survey for various application in near surface geophysics

    Science.gov (United States)

    Gavazzi, Bruno; Le Maire, Pauline; Munschy, Marc; Dechamp, Aline

    2017-04-01

    Fluxgate 3-components magnetometer is the kind of magnetometer which offers the lightest weight and lowest power consumption for the measurement of the intensity of the magnetic field. Moreover, vector measurements make it the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with it. Unfortunately, Fluxgate magnetometers are quite uncommon in near surface geophysics due to the difficulty to calibrate them precisely. The recent advances in calibration of the sensors and magnetic compensation of the devices from a simple process on the field led Institut de Physique du Globe de Strasbourg to develop instruments for georeferenced magnetic measurements at different scales - from submetric measurements on the ground to aircraft-conducted acquisition through the wide range offered by unmanned aerial vehicles (UAVs) - with a precision in the order of 1 nT. Such equipment is used for different kind of application: structural geology, pipes and UXO detection, archaeology.

  7. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    International Nuclear Information System (INIS)

    Cochran, J.R.; McDonald, J.R.; Russell, R.J.; Robertson, R.; Hensel, E.

    1995-10-01

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy's Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ''... better, faster, safer and cheaper ...'' system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA)

  8. Auto-Calibration Methods of Kinematic Parameters and Magnetometer Offset for the Localization of a Tracked Mobile Robot

    OpenAIRE

    Luciano Cantelli; Samuel Ligama; Giovanni Muscato; Davide Spina

    2016-01-01

    This paper describes an automatic calibration procedure adopted to improve the localization of an outdoor mobile robot. The proposed algorithm estimates, by using an extended Kalman filter, the main kinematic parameters of the vehicles, such as the wheel radii and the wheelbase as well as the magnetometer offset. Several trials have been performed to validate the proposed strategy on a tracked electrical mobile robot. The mobile robot is aimed to be adopted as a tool to help humanitarian demi...

  9. Auto-Calibration Methods of Kinematic Parameters and Magnetometer Offset for the Localization of a Tracked Mobile Robot

    Directory of Open Access Journals (Sweden)

    Luciano Cantelli

    2016-11-01

    Full Text Available This paper describes an automatic calibration procedure adopted to improve the localization of an outdoor mobile robot. The proposed algorithm estimates, by using an extended Kalman filter, the main kinematic parameters of the vehicles, such as the wheel radii and the wheelbase as well as the magnetometer offset. Several trials have been performed to validate the proposed strategy on a tracked electrical mobile robot. The mobile robot is aimed to be adopted as a tool to help humanitarian demining operations.

  10. A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia

    International Nuclear Information System (INIS)

    Garaio, E.; Collantes, J.M.; Garcia, J.A.; Plazaola, F.; Mornet, S.; Couillaud, F.; Sandre, O.

    2014-01-01

    Measurement of specific absorption rate (SAR) of magnetic nanoparticles is crucial to assert their potential for magnetic hyperthermia. To perform this task, calorimetric methods are widely used. However, those methods are not very accurate and are difficult to standardize. In this paper, we present AC magnetometry results performed with a lab-made magnetometer that is able to obtain dynamic hysteresis-loops in the AC magnetic field frequency range from 50 kHz to 1 MHz and intensities up to 24 kA m −1 . In this work, SAR values of maghemite nanoparticles dispersed in water are measured by AC magnetometry. The so-obtained values are compared with the SAR measured by calorimetric methods. Both measurements, by calorimetry and magnetometry, are in good agreement. Therefore, the presented AC magnetometer is a suitable way to obtain SAR values of magnetic nanoparticles. - Highlights: • We propose AC magnetometry as a method to measure the specific absorption rate (SAR) of magnetic nanoparticles suitable for magnetic hyperthermia therapy. • We have built a lab-made AC magnetometer, which is able to measure magnetic dynamic hysteresis-loops of nanoparticle dispersions. • The device works with AC magnetic field intensities up to 24 kA m −1 in a frequency range from 75 kHz to 1 MHz. • The SAR values of maghemite nanoparticles around 12 nm in magnetic diameter dispersed in water are measured by the lab-made magnetometer and different calorimetric methods. • Although all methods are in good agreement, several factors (probe location, thermal inertia, losses, etc.) make calorimetric method less accurate than AC magnetometry

  11. Apparatus for measurement of the electric dipole moment of the neutron using a cohabiting atomic-mercury magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.A. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chibane, Y.; Chouder, M. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Geltenbort, P. [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Green, K. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Harris, P.G., E-mail: p.g.harris@sussex.ac.uk [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Heckel, B.R. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Iaydjiev, P.; Ivanov, S.N.; Kilvington, I. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Lamoreaux, S.K. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); May, D.J.; Pendlebury, J.M.; Richardson, J.D.; Shiers, D.B.; Smith, K.F. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Grinten, M. van der [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2014-02-01

    A description is presented of apparatus used to carry out an experimental search for an electric dipole moment of the neutron, at the Institut Laue-Langevin (ILL), Grenoble. The experiment incorporated a cohabiting atomic-mercury magnetometer in order to reduce spurious signals from magnetic field fluctuations. The result has been published in an earlier letter [1]; here, the methods and equipment used are discussed in detail.

  12. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4}) nanocrystalline ferrites for core, switching and MLCI’s applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Majid Niaz, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Nazir, M.S. [Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Imran, M.; Ali, A.; Sattar, A. [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan)

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights

  13. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  14. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2013-08-01

    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  15. Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle

  16. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    Science.gov (United States)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  17. Swarm Deployable Boom Assembly (DBA) Development of a Deployable Magnetometer Boom for the Swarm Spacecraft

    Science.gov (United States)

    McMahon, Paul; Jung, Hans-Juergen; Edwards, Jeff

    2013-09-01

    The Swarm programme consists of 3 magnetically clean satellites flying in close formation designed to measure the Earth's magnetic field using 2 Magnetometers mounted on a 4.3m long deployable boom.Deployment is initiated by releasing 3 HDRMs, once released the boom oscillates back and forth on a pair of pivots, similar to a restaurant kitchen door hinge, for around 120 seconds before coming to rest on 3 kinematic mounts which are used to provide an accurate reference location in the deployed position. Motion of the boom is damped through a combination of friction, spring hysteresis and flexing of the 120+ cables crossing the hinge. Considerable development work and accurate numerical modelling of the hinge motion was required to predict performance across a wide temperature range and ensure that during the 1st overshoot the boom did not damage itself, the harness or the spacecraft.Due to the magnetic cleanliness requirements of the spacecraft no magnetic materials could be used in the design of the hardware.

  18. Airborne gamma-ray spectrometer and magnetometer survey: Barrow Quadrangle, Alaska. Final report. Volume I

    International Nuclear Information System (INIS)

    1981-03-01

    During the months of July-August 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 3 0 x 1 0 and one (1) 4 0 x 1 0 NTMS quadrangles of the Alaskan North Slope. This report discusses the results obtained over the Barrow map area. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps. The histograms and the multiparameter profiles are presented with the anomaly maps and flight path map in a separate bound volume. Complete data listings of both the reduced single record and the reduced averaged record data are found in the back of this report. The format of the printout of the microfiches and the format of the data files delivered on magnetic tape are in accordance with the specifications of the BFEC 1200-C and are described in appendices F through L of this report

  19. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  20. Evaluating detection and estimation capabilities of magnetometer-based vehicle sensors

    Science.gov (United States)

    Slater, David M.; Jacyna, Garry M.

    2013-05-01

    In an effort to secure the northern and southern United States borders, MITRE has been tasked with developing Modeling and Simulation (M&S) tools that accurately capture the mapping between algorithm-level Measures of Performance (MOP) and system-level Measures of Effectiveness (MOE) for current/future surveillance systems deployed by the the Customs and Border Protection Office of Technology Innovations and Acquisitions (OTIA). This analysis is part of a larger M&S undertaking. The focus is on two MOPs for magnetometer-based Unattended Ground Sensors (UGS). UGS are placed near roads to detect passing vehicles and estimate properties of the vehicle's trajectory such as bearing and speed. The first MOP considered is the probability of detection. We derive probabilities of detection for a network of sensors over an arbitrary number of observation periods and explore how the probability of detection changes when multiple sensors are employed. The performance of UGS is also evaluated based on the level of variance in the estimation of trajectory parameters. We derive the Cramer-Rao bounds for the variances of the estimated parameters in two cases: when no a priori information is known and when the parameters are assumed to be Gaussian with known variances. Sample results show that UGS perform significantly better in the latter case.

  1. In-Flight Calibration Methods for Temperature-Dependent Offsets in the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; hide

    2016-01-01

    During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.

  2. Analysis of digital fluxgate magnetometer and radon data of MPGO network in Kachchh

    International Nuclear Information System (INIS)

    Prasad, M.S.B.S.; Gupta, Arun; Pradhan, Rashmi; Rastogi, B.K.; Rawat, Gautam

    2010-01-01

    Institute of Seismological Research (ISR) has established a network of four Multi-parametric Geophysical Observatories (MPGO) at Bhachau, Vamka, Desalpar and Badargadh in Kachchh which fall in the aftershock zone of 2001 Bhuj earthquake (Mw 7.7) for earthquake prediction research. Two Magson digital fluxgate magnetometers (DFM) have been installed on February 07, 2009 to observe magnetic precursors, if any, at Desalpar and Vamka in Kachchh. The daily variations of geomagnetic horizontal and vertical components are being continuously observed at a sampling interval of 1 Hz. Variations of about 2-9 nT in vertical component have been observed during earthquakes of Mw = 4 occurring within a radius of 65 km from Vamka and 80 km from Desalpar. Conventional polarization analysis of DFM data is implemented to check lithospheric origin of electromagnetic signals. Geomagnetic transfer function is calculated to observe any subsurface conductivity variation beneath the measuring sites. Further a strong radon anomaly at Vamka and Chobari sites has been observed 7 days before Mw 4.1 earthquake of 12 April 2009 which is at a distance of 29 km W from Vamka and 23 Km SW from Chobari. DFM and Radon sensors were installed as a part of MPGO instruments and these data will be supplemented by several other parameters. Preliminary results will be presented and discussed in the meetings. (author)

  3. In-Flight Calibration Methods for Temperature-Dependendent Offsets in the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.

    2016-12-01

    During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen — for the period of any given week — to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.

  4. Investigation of a low-cost magneto-inductive magnetometer for space science applications

    Directory of Open Access Journals (Sweden)

    L. H. Regoli

    2018-03-01

    Full Text Available A new sensor for measuring low-amplitude magnetic fields that is ideal for small spacecraft is presented. The novel measurement principle enables the fabrication of a low-cost sensor with low power consumption and with measuring capabilities that are comparable to recent developments for CubeSat applications. The current magnetometer, a software-modified version of a commercial sensor, is capable of detecting fields with amplitudes as low as 8.7 nT at 40 Hz and 2.7 nT at 1 Hz, with a noise floor of 4 pT∕Hz at 1 Hz. The sensor has a linear response to less than 3 % over a range of ±100 000 nT. All of these features make the magneto-inductive principle a promising technology for the development of magnetic sensors for both space-borne and ground-based applications to study geomagnetic activity.

  5. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  6. Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers

    Directory of Open Access Journals (Sweden)

    Menk Frederick

    2014-01-01

    Full Text Available The plasmapause is a highly dynamic boundary between different magnetospheric particle populations and convection regimes. Some of the most important space weather processes involve wave-particle interactions in this region, but wave properties may also be used to remote sense the plasmasphere and plasmapause, contributing to plasmasphere models. This paper discusses the use of existing ground magnetometer arrays for such remote sensing. Using case studies we illustrate measurement of plasmapause location, shape and movement during storms; refilling of flux tubes within and outside the plasmasphere; storm-time increase in heavy ion concentration near the plasmapause; and detection and mapping of density irregularities near the plasmapause, including drainage plumes, biteouts and bulges. We also use a 2D MHD model of wave propagation through the magnetosphere, incorporating a realistic ionosphere boundary and Alfvén speed profile, to simulate ground array observations of power and cross-phase spectra, hence confirming the signatures of plumes and other density structures.

  7. Airborne gamma-ray spectrometer and magnetometer survey. Volume I. Final report

    International Nuclear Information System (INIS)

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Mariposa, California and Nevada; Fresno, California; and Bakersfield, Caifornia 1:250,000 National Topographic Map Series (NTMS) 1 0 x 2 0 quadrangle maps. The survey was a part of DOE's National Aerial Radiometric Reconnaissance (ARR) program, which in turn is a part of the National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured throughout the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. These maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  8. Infrastructure-Less Indoor Localization Using the Microphone, Magnetometer and Light Sensor of a Smartphone

    Directory of Open Access Journals (Sweden)

    Carlos E. Galván-Tejada

    2015-08-01

    Full Text Available In this paper, we present the development of an infrastructure-less indoor location system (ILS, which relies on the use of a microphone, a magnetometer and a light sensor of a smartphone, all three of which are essentially passive sensors, relying on signals available practically in any building in the world, no matter how developed the region is. In our work, we merge the information from those sensors to estimate the user’s location in an indoor environment. A multivariate model is applied to find the user’s location, and we evaluate the quality of the resulting model in terms of sensitivity and specificity. Our experiments were carried out in an office environment during summer and winter, to take into account changes in light patterns, as well as changes in the Earth’s magnetic field irregularities. The experimental results clearly show the benefits of using the information fusion of multiple sensors when contrasted with the use of a single source of information.

  9. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors.

    Science.gov (United States)

    Esteban, Segundo; Girón-Sierra, Jose M; Polo, Óscar R; Angulo, Manuel

    2016-10-31

    Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  10. A survey of flux transfer events recorded by the UKS spacecraft magnetometer

    International Nuclear Information System (INIS)

    Southwood, D.J.; Saunders, M.A.; Dunlop, M.W.; Mier-Jedrzejowicz, W.A.C.; Rijnbeek, R.P.

    1986-01-01

    The UKS spacecraft operated from August 1984 through to January 1985. During that time, it made multiple crossings of the magnetopause in local time sectors extending from mid-afternoon to just behind the dawn meridian. We have surveyed the magnetometer records from these magnetopause encounters and have compiled a catalogue of flux transfer events. Using the catalogue, we find the FTE occurrence determined from the UKS data set is substantially less than that detected using data from the early ISEE 1/2 spacecraft orbits. The UKS data set shows a correlation between FTE occurrence and southward external magnetic field, but there are several instances of passes in which no FTEs are detected but for which the external field was unambiguously southward. The passes with the largest number of events are those for which the field outside the magnetopause has a large Bsub(M) component. We conclude that the lower latitude of the UKS encounters is responsible for the discrepancy with the ISEE occurrence. The most likely source region appears to be near the subsolar region. (author)

  11. Airborne gamma-ray spectrometer and magnetometer survey: Peoria, Decater, Belleville Quadrangles, (IL). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Peoria, Decatur, and Belleville, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton procession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  12. Detection of Target ssDNA Using a Microfabricated Hall Magnetometer with Correlated Optical Readout

    Directory of Open Access Journals (Sweden)

    Steven M. Hira

    2012-01-01

    Full Text Available Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs, is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead target DNA in the presence of 36 μM nontarget (noncomplementary DNA (<10 ppm target DNA using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC diagnostics and subsequent medical care.

  13. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 {mu}m and 40 {mu}m, for values of the angle {theta} between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M{sub irr}, allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Senoussi, S.

    2006-01-01

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 μm and 40 μm, for values of the angle θ between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M irr , allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  16. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors

    Directory of Open Access Journals (Sweden)

    Segundo Esteban

    2016-10-01

    Full Text Available Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  17. Vector magnetometer based on synchronous manipulation of nitrogen-vacancy centers in all crystal directions

    Science.gov (United States)

    Zhang, Chen; Yuan, Heng; Zhang, Ning; Xu, Lixia; Zhang, Jixing; Li, Bo; Fang, Jiancheng

    2018-04-01

    Negatively charged nitrogen vacancy (NV‑) centers in diamond have been extensively studied as high-sensitivity magnetometers, showcasing a wide range of applications. This study experimentally demonstrates a vector magnetometry scheme based on synchronous manipulation of NV‑ center ensembles in all crystal directions using double frequency microwaves (MWs) and multi-coupled-strip-lines (mCSL) waveguide. The application of the mCSL waveguide ensures a high degree of synchrony (99%) for manipulating NV‑ centers in multiple orientations in a large volume. Manipulation with double frequency MWs makes NV‑ centers of all four crystal directions involved, and additionally leads to an enhancement of the manipulation field. In this work, by monitoring the changes in the slope of the resonance line consisting of multi-axes NV‑ centers, measurement of the direction of the external field vector was demonstrated with a sensitivity of {{10}\\prime}/\\sqrt{Hz} . Based on the scheme, the fluorescence signal contrast was improved by four times higher and the sensitivity to the magnetic field strength was improved by two times. The method provides a more practical way of achieving vector sensors based on NV‑ center ensembles in diamond.

  18. Global measures of ionospheric electrodynamic activity inferred from combined incoherent scatter radar and ground magnetometer observations

    International Nuclear Information System (INIS)

    Richmond, A.D.; Kamide, Y.; Akasofu, S.I.; Alcayde, D.; Blanc, M.; De LaBeaujardiere, O.; Evans, D.S.; Foster, J.C.; Holt, J.M.; Friis-Christensen, E.; Pellinen, R.J.; Senior, C.; Zaitzev, A.N.

    1990-01-01

    An analysis of several global measures of high-latitude ionospheric electrodynamic activity is undertakn on the basis of results obtained from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure applied to incoherent scatter radar and ground magnetometer observatons for January 18-19, 1984. Different global measures of electric potentials, currents, resistances, and energy transfer from the magnetosphere show temporal variations that are generally well correlated. The authors present parameterizations of thees quantities in terms of the AE index and the hemispheric power index of precipitating auroral particles. It is shown how error estimates of the mapped electric fields can be used to correct the estimation of Joule heating. Global measures of potential drop, field-aligned current, and Joule heating as obtained by the AMIE procedure are compared with similar measures presented in previous studies. Agreement is found to within the uncertainties inherent in each study. The mean potential drop through which field-aligned currents flow in closing through the ionosphere is approximately 28% of the total polar cap potential drop under all conditions during these 2 days. They note that order-of-magnitude differences can appear when comparing different global measures of total electric current flow and of effective resistances of the global circuit, so that care must be exercised in choosing characteristic values of these parameters for circuit-analogy studies of ionosphere-magnetosphere electrodynamic coupling

  19. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle

  20. Flux-gate magnetometer spin axis offset calibration using the electron drift instrument

    International Nuclear Information System (INIS)

    Plaschke, Ferdinand; Nakamura, Rumi; Baumjohann, Wolfgang; Steller, Manfred; Magnes, Werner; Leinweber, Hannes K; Chutter, Mark; Vaith, Hans

    2014-01-01

    Spin-stabilization of spacecraft immensely supports the in-flight calibration of on-board flux-gate magnetometers (FGMs). From 12 calibration parameters in total, 8 can be easily obtained by spectral analysis. From the remaining 4, the spin axis offset is known to be particularly variable. It is usually determined by analysis of Alfvénic fluctuations that are embedded in the solar wind. In the absence of solar wind observations, the spin axis offset may be obtained by comparison of FGM and electron drift instrument (EDI) measurements. The aim of our study is to develop methods that are readily usable for routine FGM spin axis offset calibration with EDI. This paper represents a major step forward in this direction. We improve an existing method to determine FGM spin axis offsets from EDI time-of-flight measurements by providing it with a comprehensive error analysis. In addition, we introduce a new, complementary method that uses EDI beam direction data instead of time-of-flight data. Using Cluster data, we show that both methods yield similarly accurate results, which are comparable yet more stable than those from a commonly used solar wind-based method. (paper)

  1. DESIGN AND CALIBRATION OF A VIBRANT SAMPLE MAGNETOMETER: CHARACTERIZATION OF MAGNETIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Freddy P. Guachun

    2018-01-01

    Full Text Available This paper presents the process followed in the implementation of a vibrating sample magnetometer (VSM, constructed with materials commonly found in an electromagnetism laboratory. It describes the design, construction, calibration and use in the characterization of some magnetic materials. A VSM measures the magnetic moment of a sample when it is vibrated perpendicular to a uniform magnetic field; Magnetization and magnetic susceptibility can be determined from these readings. This instrument stands out for its simplicity, versatility and low cost, but it is very sensitive and capable of eliminating or minimizing many sources of error that are found in other methods of measurement, allowing to obtain very accurate and reliable results. Its operation is based on the law of magnetic induction of Lenz-Faraday that consists in measuring the induced voltage in coils of detection produced by the variation of the magnetic flux that crosses them. The calibration of the VSM was performed by means of a standard sample (Magnetite and verified by means of a test sample (Nickel.

  2. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  3. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  4. Calibration of Helmholtz Coils for the characterization of MEMS magnetic sensor using fluxgate magnetometer with DAS1 magnetic range data acquisition system

    Science.gov (United States)

    Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham

    2012-09-01

    This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.

  5. Scaling of saturation amplitudes in baroclinic instability

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-01-01

    By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates

  6. Effective stress principle for partially saturated media

    International Nuclear Information System (INIS)

    McTigue, D.F.; Wilson, R.K.; Nunziato, J.W.

    1984-04-01

    In support of the Nevada Nuclear Waste Storage Investigation (NNWSI) Project, we have undertaken a fundamental study of water migration in partially saturated media. One aspect of that study, on which we report here, has been to use the continuum theory of mixtures to extend the classical notion of effective stress to partially saturated media. Our analysis recovers previously proposed phenomenological representations for the effective stress in terms of the capillary pressure. The theory is illustrated by specializing to the case of linear poroelasticity, for which we calculate the deformation due to the fluid pressure in a static capillary fringe. We then examine the transient consolidation associated with liquid flow induced by an applied surface load. Settlement accompanies this flow as the liquid is redistributed by a nonlinear diffusion process. For material properties characteristic of tuff from the Nevada Test Site, these effects are found to be vanishingly small. 14 references, 7 figures, 1 table

  7. Saturated tearing modes in tokamaks with divertors

    International Nuclear Information System (INIS)

    Bateman, G.

    1982-12-01

    We have developed a self-consistent theory of saturated tearing modes capable of predicting multiple magnetic island widths in tokamaks with no assumptions on the cross-sectional shape, aspect ratio, or plasma pressure. We are in the process of implementing this algorithm in the form of a computer code. We propose: (1) to complete, refine, document and publish this computer code; (2) to carry out a survey in which we vary the current profile, aspect ratio, cross-sectional shape, and pressure profile in order to determine their effect on saturated tearing mode magnetic island widths; and (3) to determine the effect of some externally applied magnetic perturbation harmonics on these magnetic island widths. Particular attention will be paid to the coupling between different helical harmonics, the effect of multiple magnetic islands on the profiles of temperature, pressure and current, and the potential of magnetic island overlap leading to a disruptive instability

  8. Tearing mode saturation with finite pressure

    International Nuclear Information System (INIS)

    Lee, J.K.

    1988-01-01

    With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)

  9. The danish tax on saturated fat

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Smed, Sinne

    Denmark introduced a new tax on saturated fat in food products with effect from October 2011. The objective of this paper is to make an effect assessment of this tax for some of the product categories most significantly affected by the new tax, namely fats such as butter, butter-blends, margarine...... on saturated fat in food products has had some effects on the market for the considered products, in that the level of consumption of fats dropped by 10 – 20%. Furthermore, the analysis points at shifts in demand from high-price supermarkets towards low-price discount stores – a shift that seems to have been...... utilized by discount chains to raise the prices of butter and margarine by more than the pure tax increase. Due to the relatively short data period with the tax being active, interpretation of these findings from a long-run perspective should be done with considerable care. It is thus recommended to repeat...

  10. In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument

    Science.gov (United States)

    Leinweber, H. K.; Russell, C. T.; Torkar, K.

    2012-10-01

    We show that the spin axis offset of a fluxgate magnetometer can be calibrated with an electron drift instrument (EDI) and that the required input time interval is relatively short. For missions such as Cluster or the upcoming Magnetospheric Multiscale (MMS) mission the spin axis offset of a fluxgate magnetometer could be determined on an orbital basis. An improvement of existing methods for finding spin axis offsets via comparison of accurate measurements of the field magnitude is presented, that additionally matches the gains of the two instruments that are being compared. The technique has been applied to EDI data from the Cluster Active Archive and fluxgate magnetometer data processed with calibration files also from the Cluster Active Archive. The method could prove to be valuable for the MMS mission because the four MMS spacecraft will only be inside the interplanetary field (where spin axis offsets can be calculated from Alfvénic fluctuations) for short periods of time and during unusual solar wind conditions.

  11. A method for combining search coil and fluxgate magnetometer data to reveal finer structures in reconnection physics

    Science.gov (United States)

    Argall, M. R.; Caide, A.; Chen, L.; Torbert, R. B.

    2012-12-01

    Magnetometers have been used to measure terrestrial and extraterrestrial magnetic fields in space exploration ever since Sputnik 3. Modern space missions, such as Cluster, RBSP, and MMS incorporate both search coil magnetometers (SCMs) and fluxgate magnetometers (FGMs) in their instrument suites: FGMs work well at low frequencies while SCMs perform better at high frequencies. In analyzing the noise floor of these instruments, a cross-over region is apparent around 0.3-1.5Hz. The satellite separation of MMS and average speeds of field convection and plasma flows at the subsolar magnetopause make this a crucial range for the upcoming MMS mission. The method presented here combines the signals from SCM and FGM by taking a weighted average of both in this frequency range in order to draw out key features, such as narrow current sheet structures, that would otherwise not be visible. The technique is applied to burst mode Cluster data for reported magnetopause and magnetotail reconnection events to demonstrate the power of the combined data. This technique is also applied to data from the the EMFISIS instrument on the RBSP mission. The authors acknowledge and thank the FGM and STAFF team for the use of their data from the CLUSTER Active Archive.

  12. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers.

    Science.gov (United States)

    Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry

    2018-01-19

    The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ∼100  Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.

  13. In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument

    International Nuclear Information System (INIS)

    Leinweber, H K; Russell, C T; Torkar, K

    2012-01-01

    We show that the spin axis offset of a fluxgate magnetometer can be calibrated with an electron drift instrument (EDI) and that the required input time interval is relatively short. For missions such as Cluster or the upcoming Magnetospheric Multiscale (MMS) mission the spin axis offset of a fluxgate magnetometer could be determined on an orbital basis. An improvement of existing methods for finding spin axis offsets via comparison of accurate measurements of the field magnitude is presented, that additionally matches the gains of the two instruments that are being compared. The technique has been applied to EDI data from the Cluster Active Archive and fluxgate magnetometer data processed with calibration files also from the Cluster Active Archive. The method could prove to be valuable for the MMS mission because the four MMS spacecraft will only be inside the interplanetary field (where spin axis offsets can be calculated from Alfvénic fluctuations) for short periods of time and during unusual solar wind conditions. (paper)

  14. CalMagNet – an array of search coil magnetometers monitoring ultra low frequency activity in California

    Directory of Open Access Journals (Sweden)

    C. Dunson

    2008-04-01

    Full Text Available The California Magnetometer Network (CalMagNet consists of sixty-eight triaxial search-coil magnetometer systems measuring Ultra Low Frequency (ULF, 0.001–16 Hz, magnetic field fluctuations in California. CalMagNet provides data for comprehensive multi-point measurements of specific events in the Pc 1–Pc 5 range at mid-latitudes as well as a systematic, long-term study of ULF signals in active fault regions in California. Typical events include geomagnetic micropulsations and spectral resonant structures associated with the ionospheric Alfvén resonator. This paper provides a technical overview of the CalMagNet sensors and data processing systems. The network is composed of ten reference stations and fifty-eight local monitoring stations. The primary instruments at each site are three orthogonal induction coil magnetometers. A geophone monitors local site vibration. The systems are designed for future sensor expansion and include resources for monitoring four additional channels. Data is currently sampled at 32 samples per second with a 24-bit converter and time tagged with a GPS-based timing system. Several examples of representative magnetic fluctuations and signals as measured by the array are given.

  15. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers

    Science.gov (United States)

    Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry

    2018-01-01

    The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ˜100 Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.

  16. Reduction of vibrational interference from the iron core on HBTXIA

    International Nuclear Information System (INIS)

    Wilcock, P.D.

    1981-01-01

    The HBTXIA machine is a toroidal reversed field pinch which utilises a 1 volt second iron core. This paper looks briefly at the sources of vibration from the iron core and describes the design of a novel support system that has been installed to minimise the transmission of vibration to plasma diagnostics and other equipment during the machine pulse. Vibration measurements on the completed installation when the core is driven to saturation are reported and compared with calculations for a ground mounted core. (author)

  17. Stabilization of Neutral Systems with Saturating Actuators

    Directory of Open Access Journals (Sweden)

    F. El Haoussi

    2012-01-01

    to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

  18. Gluon saturation beyond (naive) leading logs

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, Guillaume

    2014-12-15

    An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.

  19. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  20. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.

    1990-07-01

    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  1. Multipactor saturation in parallel-plate waveguides

    International Nuclear Information System (INIS)

    Sorolla, E.; Mattes, M.

    2012-01-01

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  2. Mass transfer in water-saturated concretes

    International Nuclear Information System (INIS)

    Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.

    1990-01-01

    Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed

  3. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  4. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    International Nuclear Information System (INIS)

    Conca, J.

    2000-01-01

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion

  5. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    Science.gov (United States)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  6. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  7. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.

  8. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  9. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  10. Airborne gamma-ray spectrometer and magnetometer survey: Norton Bay Quadrangle (Alaska). Final report

    International Nuclear Information System (INIS)

    1980-01-01

    During the months of July, August, and September 1979, an airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten 3 0 x 1 0 NTMS quadrangles of West-Central Alaska. The results obtained over the Norton Bay Map area are discussed. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps and flight path maps. The histograms and the multiparameter are presented with the anomaly maps and flight path map in a separate volume. A total of twenty (20) uranium anomalies have been indicated on the interpretation map. No thorium anomalies were found. The uranium anomalies are all weak and generally have only U/K or U/T expression. Often the uranium concentration within the zone is low, and generally is less than 2.5 ppM. Only zones 9, with an average of 3.0 ppM eU, and 14, with 2.6 ppm have above average uranium content. Zone 14 is also the only uranium anomaly with combined U/K and U/T ratio anomalies. No single uranium anomaly is believed to represent an economic follow-up target. The most prospective area appears to be the elongate zone of generally high uranium content, formed by the deposits of the Shaktolik group, to the east of the Ungalik conglomerate. This zone flanks an elongate area of relatively strong shallow magnetic sources, interpreted to be related to a monozonitic intrusive of which the Christmas mountain forms part. This intrusive rock contains in other neighboring areas often high thorium and uranium concentrations and may here as well served as a possible source of uranium deposits

  11. Observations of the Earth's polar cleft at large radial distances with the Hawkeye 1 magnetometer

    International Nuclear Information System (INIS)

    Farrell, W.M.; Van Allen, J.A.

    1990-01-01

    Based on 364-spacecraft passes through the dayside region, the position of the polar cleft at large redial distances was determined with the magnetometer flown on Hawkeye 1. This data set represents one of the largest to investigate the high-latitude region at large radial distances, making it ideal for the study of the cusp and cleft region. Identification of the cleft depended on noting strong negative deviations of the magnetic field strength in the region from that of the dipole field. In solar magnetic coordinates, cleft observations were found between 40 degree and 70 degree latitude and ±75 degree longitude, while in geocentric magnetospheric coordinates, these observations were found between 20 degree and 75 degree latitude and ± 75 degree longitude. The extreme longitudinal extent of 150 degree is larger than those reported in some previous studies. Large magnetic depressions associated with the cleft extend out to 12 R E . Beyond this point, low model dipole field strengths make the determination of the cleft based on magnetic depressions unreliable. The cleft occurrences fall within an oval in magnetic latitude and longitude, but this oval is of a statistical nature and cannot be interpreted as the shape of the region at a given moment. As reported in other studies, the cleft was observed to shift to lower latitudes as compared to its quiet time geometry during periods when Kp was large and when the interplanetary magnetic field (IMF) pointed in a southerly direction. A southerly shift was also observed when th solar wind bulk flow speed, V sw , was large (>450 km/s), and the region might have enlarged when solar wind pressure, P sw , was large. The variation of the cleft latitude with V sw and P sw has not been thoroughly examined in previous studies

  12. An absolute nuclear magnetic resonance magnetometer; Magnetometre absolu a resonance magnetique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, A [Commisariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-10-15

    After an introduction in which the various work undertaken since the discovery of nuclear magnetic resonance is rapidly reviewed, the author describes briefly In the first chapter three types of NMR magnetometers, giving the advantages and disadvantages of each of them and deducing from this the design of the apparatus having the greatest number of qualities Chapter II is devoted to the crossed coil nuclear oscillator which operates continuously over a wide range (800 gamma). To avoid an error due to a carrying over the frequency, the measurement is carried out using bands of 1000 {gamma}. Chapter III deals with frequency measurements. The author describes an original arrangement which makes possible the frequency-field conversion with an accuracy of {+-} 5 x 10{sup -6}, and the differential measurement between two nuclear oscillators. The report finishes with a conclusion and a few recordings. (author) [French] Apres une introduction rappelant les divers travaux effectues en resonance magnetique nucleaire depuis sa mise en evidence, l'auteur decrit sommairement dans le premier chapitre trois types de magnetometre a R.M.N. enumerant les avantages et les inconvenients de chacun a partir desquels il projet, l'appareillage reunissant le maximum de qualites. Le chapitre II est consacre a l'oscillateur nucleaire a bobines croisees permettant un fonctionnement continu dons une large plage (800 gamma). Pour eviter une erreur due a l'entrainement de frequence, la mesure s'effectue par bandes de 1000 {gamma} chacune. Le chapitre III traite la mesure de frequence. L'auteur expose un montage original permettant la traduction frequence-champ avec une precision egale a {+-} 5.10{sup -6}, et la mesure differentielle entre deux oscillateurs nucleaires. Une conclusion et quelques enregistrements terminent ce travail. (auteur)

  13. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2011-01-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen

  14. Calcium phosphate saturation in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Temperature, inorganic phosphate concentration and pH seem to be the major factors influencing the degree of saturation of calcium phosphate in sea water. Two water regions can be demarcated in the study area based on the saturation patterns...

  15. Automated agitation management accounting for saturation dynamics.

    Science.gov (United States)

    Rudge, A D; Chase, J G; Shaw, G M; Lee, D

    2004-01-01

    Agitation-sedation cycling in critically ill is damaging to patient health and increases length of and cost. A physiologically representative model of the agitation-sedation system is used as a platform to evaluate feedback controllers offering improved agitation management. A heavy-derivative controller with upper and infusion rate bounds maintains minimum plasma concentrations through a low constant infusion, and minimizes outbursts of agitation through strong, timely boluses. controller provides improved agitation management using from 37 critically ill patients, given the saturation of effect at high concentration. Approval was obtained the Canterbury Ethics Board for this research.

  16. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  17. Elevated transferrin saturation and risk of diabetes

    DEFF Research Database (Denmark)

    Ellervik, Christina; Mandrup-Poulsen, Thomas; Andersen, Henrik Ullits

    2011-01-01

    OBJECTIVE We tested the hypothesis that elevated transferrin saturation is associated with an increased risk of any form of diabetes, as well as type 1 or type 2 diabetes separately. RESEARCH DESIGN AND METHODS We used two general population studies, The Copenhagen City Heart Study (CCHS, N = 9......,121) and The Copenhagen General Population Study (CGPS, N = 24,195), as well as a 1:1 age- and sex-matched population-based case-control study with 6,129 patients with diabetes from the Steno Diabetes Centre and 6,129 control subjects, totaling 8,535 patients with diabetes and 37,039 control subjects. RESULTS...

  18. The Danish tax on saturated fat

    DEFF Research Database (Denmark)

    Vallgårda, Signild; Holm, Lotte; Jensen, Jørgen Dejgård

    2015-01-01

    arguments and themes involved in the debates surrounding the introduction and the repeal. SUBJECTS/METHODS: An analysis of parliamentary debates, expert reports and media coverage; key informant interviews; and a review of studies about the effects of the tax on consumer behaviour. RESULTS: A tax......BACKGROUND/OBJECTIVES: Health promoters have repeatedly proposed using economic policy tools, taxes and subsidies, as a means of changing consumer behaviour. As the first country in the world, Denmark introduced a tax on saturated fat in 2011. It was repealed in 2012. In this paper, we present...... indicates that the tax was effective in changing consumer behaviour....

  19. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  20. THE PROGNOSTIC AND DIAGNOSTIC VALUE OF REPEATED TRANSRECTAL PROSTATE SATURATION BIOPSY

    Directory of Open Access Journals (Sweden)

    M. A. Kurdzhiev

    2014-08-01

    Full Text Available Objective: to determine the rate of prostate cancer (PC development after repeated transrectal saturation prostate biopsy (RTRSPB, to study the characteristics of diagnosed tumors, and to estimate their clinical significance from the data of radical retropubic prostatectomy (RRP.Materials and methods. The results of RTRSPB were analyzed in 226 patients with a later evaluation of a tumor from the results of RRP. All the patients underwent at least 2 prostate biopsies (mean 2.4. The average number of biopsy cores was 26.7 (range 24—30. The average value of total prostate-specific antigen before saturation biopsy was 7.5 (range 7.5 to 28.6 ng/ml. The mean age of patients was 62 years (range 53 to 70.  Results. PC was diagnosed in 14.6% of cases (33/226. An isolated lesion of the prostatic transition zone was in 12.1% of cases. If this zone had been excluded from the biopsy scheme, the detection rate of PC during saturation biopsy should be reduced by 13.8%. Better PC detectability during repeated saturation biopsy generally occurred due to the localized forms of the disease (93.3%. The agreement of Gleason tumor grading in the biopsy and prostatectomy specimens was noted in 66.7% of cases.Conclusion. Saturation biopsy allows prediction of a pathological stage of PC, Gleason grade of a tumor and its site localization with a greater probability. Most tumors detectable by saturation biopsy were clinically significant, which makes it possible to recommend RTRSPB to some cohort of high PC-risk patients