WorldWideScience

Sample records for satellites provide critical

  1. Critical inclinations in satellite theory

    Science.gov (United States)

    Deprit, A.

    1978-01-01

    The main problem of satellite theory is described in polar coordinates by a Hamiltonian function. It is proposed to find a solution of the Hamiltonian function with the following properties: (1) the reference orbit is Keplerian; (2) no restriction is imposed on the eccentricity; in particular, it is exempt of singularities - real or apparent - for small eccentricities; and (3) no restriction is imposed on the inclination; in particular, it is exempt of singularities - real or apparent - for small inclinations; also it is valid even in the neighborhood of inclinations at which the perigee is stationary.

  2. Satellites provide new insights into polar geophysics

    Science.gov (United States)

    Laxon, Seymour; McAdoo, David

    A revolution in polar geophysics is under way thanks to altimeter data, which the ERS satellites have been collecting since 1991. Geophysical surveys in the polar regions have long been hampered by inaccessibility, particularly in areas that are covered yearround by sea ice or land ice. As a result the major remaining uncertainties in global tectonic models of the Mesozoic and Cenozoic tend to lie in the Arctic and Antarctic regions. In fact, major tectonic plate boundaries have been hypothesized, but not confirmed, for both regions. In the Arctic, a divergent plate boundary associated with the Mesozoic opening of the Canada Basin has been proposed [e.g., Lawver et al., 1990] while in the Antarctic a divergent boundary, active during the late Cretaceous in the Amundsen Sea, has been hypothesized [Cande et al., 1995; Stock and Molnar, 1987]. Due to the acute sparseness of seafloor surveys in these areas, however, no one has been able to prove that these plate boundaries actually existed, nor has anyone been able to locate extinct remnants of the boundaries. High-resolution marine gravity fields (Figures 1 and 2) derived from satellite altimeter data are now redressing this problem of sparse surveys.

  3. A satellite formation flying approach providing both positioning and tracking

    Science.gov (United States)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2016-05-01

    A magnetic field approach is presented whereby a large number of closely located satellites can be positioned and oriented relative to each other, but can also be tracked in six degrees of freedom. This is accomplished by using frequency-multiplexed magnetic fields where coils are placed on each satellite to allow them to generate magnetic fields, to interact with the magnetic fields from other satellites, and to sample the surrounding magnetic fields. By doing this, a satellite can choose which alternating field to push or pull against, to provide torque about, or to sample in order to determine its location and orientation relative to the other satellites. Theory is provided demonstrating the capability of this approach along with its advantages and limitations. An experimental system allowing 3 degrees-of-freedom was constructed and used to demonstrate a feedback and control system where a satellite is told to move to a location and it does this by interacting with the surrounding satellites to both generate forces and torques and to track its position and orientation.

  4. Zika Virus: Critical Information for Emergency Providers.

    Science.gov (United States)

    Shastry, Siri; Koenig, Kristi L; Hirshon, Jon Mark

    2016-08-01

    Zika virus is an arbovirus of the Flaviviridae family. It is primarily a minimally symptomatic mosquito-borne infection. However, with Zika's 2015 to 2016 introduction into the Western Hemisphere and its dramatic and rapid spread, it has become a public health concern, in large part due to congenital abnormalities associated with infection in pregnant women. In early 2016, the World Health Organization declared the microcephaly and other neurologic conditions associated with Zika virus infection a public health emergency of international concern. This article discusses the current epidemiologic and clinical understanding of Zika virus, focusing on critical information needed by emergency providers.

  5. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  6. New Opportunitie s for Small Satellite Programs Provided by the Falcon Family of Launch Vehicles

    Science.gov (United States)

    Dinardi, A.; Bjelde, B.; Insprucker, J.

    2008-08-01

    The Falcon family of launch vehicles, developed by Space Exploration Technologies Corporation (SpaceX), are designed to provide the world's lowest cost access to orbit. Highly reliable, low cost launch services offer considerable opportunities for risk reduction throughout the life cycle of satellite programs. The significantly lower costs of Falcon 1 and Falcon 9 as compared with other similar-class launch vehicles results in a number of new business case opportunities; which in turn presents the possibility for a paradigm shift in how the satellite industry thinks about launch services.

  7. Conserving critical sites for biodiversity provides disproportionate benefits to people.

    Directory of Open Access Journals (Sweden)

    Frank W Larsen

    Full Text Available Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites identified as top priorities for the conservation of threatened species. Conserving these sites would yield benefits--in terms of a climate change mitigation through avoidance of CO(2 emissions from deforestation; b freshwater services to downstream human populations; c retention of option value; and d benefits to maintenance of human cultural diversity--significantly exceeding those anticipated from randomly selected sites within the same countries and ecoregions. Results suggest that safeguarding sites important for biodiversity conservation provides substantial benefits to human well-being.

  8. Conserving critical sites for biodiversity provides disproportionate benefits to people.

    Science.gov (United States)

    Larsen, Frank W; Turner, Will R; Brooks, Thomas M

    2012-01-01

    Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites identified as top priorities for the conservation of threatened species. Conserving these sites would yield benefits--in terms of a) climate change mitigation through avoidance of CO(2) emissions from deforestation; b) freshwater services to downstream human populations; c) retention of option value; and d) benefits to maintenance of human cultural diversity--significantly exceeding those anticipated from randomly selected sites within the same countries and ecoregions. Results suggest that safeguarding sites important for biodiversity conservation provides substantial benefits to human well-being.

  9. Conserving critical sites for biodiversity provides disproportionate benefits to people

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Turner, Will R.; Brooks, Thomas M.

    2012-01-01

    Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites...... identified as top priorities for the conservation of threatened species. Conserving these sites would yield benefits - in terms of a) climate change mitigation through avoidance of CO2 emissions from deforestation; b) freshwater services to downstream human populations; c) retention of option value; and d......) benefits to maintenance of human cultural diversity - significantly exceeding those anticipated from randomly selected sites within the same countries and ecoregions. Results suggest that safeguarding sites important for biodiversity conservation provides substantial benefits to human well-being....

  10. Conserving Critical Sites for Biodiversity Provides Disproportionate Benefits to People

    Science.gov (United States)

    Larsen, Frank W.; Turner, Will R.; Brooks, Thomas M.

    2012-01-01

    Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites identified as top priorities for the conservation of threatened species. Conserving these sites would yield benefits – in terms of a) climate change mitigation through avoidance of CO2 emissions from deforestation; b) freshwater services to downstream human populations; c) retention of option value; and d) benefits to maintenance of human cultural diversity – significantly exceeding those anticipated from randomly selected sites within the same countries and ecoregions. Results suggest that safeguarding sites important for biodiversity conservation provides substantial benefits to human well-being. PMID:22666337

  11. The National Resource Center on LGBT Aging provides critical training to aging service providers.

    Science.gov (United States)

    Meyer, Hilary; Johnston, Tim R

    2014-01-01

    The National Resource Center on LGBT Aging was created in 2010 by Services & Advocacy for Gay, Lesbian, Bisexual and Transgender Elders (SAGE) with seed funding from the US Department of Health and Human Services. Three years into the project, thousands of aging and LGBT service providers have been reached with training and technical assistance; however, a great need, especially for cultural competency training, remains.

  12. The Iodine Satellite (iSat) Project Development Towards Critical Design Review (CDR)

    Science.gov (United States)

    Dankanich, John W.; Selby, Michael; Polzin, Kurt A.; Kamhawi, Hani; Hickman, Tyler; Byrne, Larry

    2016-01-01

    Despite the prevalence of Small Satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy (i.e. high pressure vessels). These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U configuration under the Small Spacecraft Technology Program. The project formally began in FY15 as a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is in final preparation of the Critical Design Review prior to initiating the fabrication and integration phase of the project. The iSat project is on schedule for a launch opportunity in November 2017.

  13. The Impact of Process Capability on Service Reliability for Critical Infrastructure Providers

    Science.gov (United States)

    Houston, Clemith J., Jr.

    2013-01-01

    This study investigated the relationship between organizational processes that have been identified as promoting resiliency and their impact on service reliability within the scope of critical infrastructure providers. The importance of critical infrastructure to the nation is evident from the body of research and is supported by instances where…

  14. NOAA Satellites Provide a Keen View of the Martin Luther King Solar Storm of January 2005

    Science.gov (United States)

    Wilkinson, D. C.; Allen, J. H.

    2005-05-01

    Solar active region 0720 rotated onto the east limb on January 10th and put on a pyrotechnic display uncharacteristic for this phase of the solar cycle before disappearing beyond the west limb on January 23rd. On January 15th this region released the first of five X-class solar flares. The last of those flares, January 20th, was associated with an extraordinary ion storm whose effect reached Earth's surface. This paper highlights the record of this event made by NOAA's GOES satellites via their Space Environment Monitor (SEM) subsystems that measures X-ray, energetic particles, and the magnetic field vector at the satellite. Displays of those data are supplemented by neutron monitor data to illustrate their relationship to the January 20th Ground Level Event. GOES-12 is also equipped with the Solar X-ray Imager (SXI) that produces an image of the Sun in X-ray wavelengths once per minute. Movies created from those data perfectly illustrate the cause-and-effect relationship between intense solar activity and satellite disruptions. The flares on January 17th and 20th are closely followed by noise in the SXI telescope resulting from energetic ions penetrating SXI. Ions with sufficient velocity and atomic number can penetrate satellite components and deposit charge along their path. Sufficient charge deposition can introduce erroneous information into solid-state devices. A survey of satellites that experienced problems of this type during this event will also be presented.

  15. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies: Part 2: Technical report

    Science.gov (United States)

    Naderi, F. (Editor)

    1982-01-01

    A conceptual system design for a satellite-aided land mobile service is described. A geostationary satellite which employs a large (55-m) UHF reflector to communicate with small inexpensive user antennas on mobile vehicles is discussed. It is shown that such a satellite system through multiple beam antennas and frequency reuse can provide thousands of radiotelephone and dispatch channels serving hundreds of thousands of users throughout the U.S.

  16. Providing satellite-based early warnings of fires to reduce fire flashovers on South Africa’s transmission lines

    CSIR Research Space (South Africa)

    Frost, PE

    2007-07-01

    Full Text Available The Advanced Fire Information System (AFIS) is the first near real time operational satellite-based fire monitoring system of its kind in Africa. The main aim of AFIS is to provide information regarding the prediction, detection and assessment...

  17. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  18. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies. Part 1: Executive summary

    Science.gov (United States)

    Naderi, F. (Editor)

    1982-01-01

    A system design for a satellite aided land mobile service is described. The advanced system is based on a geostationary satellite which employs a large UHF reflector to communicate with small user antennas on mobile vehicles. It is shown that the system through multiple beam antennas and frequency reuse provides for radiotelephone and dispatch channels. It is concluded that the system is technologically feasible to provide service to rural and remote regions.

  19. Pediatric triage and allocation of critical care resources during disaster: Northwest provider opinion.

    Science.gov (United States)

    Johnson, Erin Margaret; Diekema, Douglas S; Lewis-Newby, Mithya; King, Mary A

    2014-10-01

    Following Hurricane Katrina and the 2009 H1N1 epidemic, pediatric critical care clinicians recognized the urgent need for a standardized pediatric triage/allocation system. This study collected regional provider opinion on issues of care allocation and pediatric triage in a disaster/pandemic setting. This study was a cross-sectional survey of United States (US) health care providers and public health workers who demonstrated interest in critical care and/or disaster care medicine by attending a Northwest regional pediatric critical care symposium on disaster preparation, held in 2012 at Seattle Children's Hospital in Seattle, Washington (USA). The survey employed an electronic audience response system and included demographic, ethical, and logistical questions. Differences in opinions between respondents grouped by professions and work locations were evaluated using a chi-square test. One hundred and twelve (97%) of 116 total attendees responded to at least one question; however, four of these responders failed to answer every question. Sixty-two (55%) responders were nurses, 29 (26%) physicians, and 21 (19%) other occupations. Fifty-five (51%) responders worked in pediatric hospitals vs 53 (49%) in other locations. Sixty-three (58%) of 108 successful responses prioritized children predicted to have a good neuro-cognitive outcome. Seventy-one (68%) agreed that no pediatric age group should be prioritized. Twenty-two (43%) of providers working in non-pediatric hospital locations preferred a triage system based on an objective score alone vs 14 (26%) of those in pediatric hospitals (P = .038).

  20. Moral distress and its contribution to the development of burnout syndrome among critical care providers.

    Science.gov (United States)

    Fumis, Renata Rego Lins; Junqueira Amarante, Gustavo Adolpho; de Fátima Nascimento, Andréia; Vieira Junior, José Mauro

    2017-12-01

    Burnout appears to be common among critical care providers. It is characterized by three components: emotional exhaustion, depersonalization and personal accomplishment. Moral distress is the inability of a moral agent to act according to his or her core values and perceived obligations due to internal and external constraints. We aimed to estimate the correlation between moral distress and burnout among all intensive care unit (ICU) and the step-down unit (SDU) providers (physicians, nurses, nurse technicians and respiratory therapists). A survey was conducted from August to September 2015. For data collection, a self-administered questionnaire for each critical care provider was used including basic demographic data, the Maslach Burnout Inventory (MBI) and the Moral Distress Scale-Revised (MDS-R). Correlation analysis between MBI domains and moral distress score and regression analysis to assess independent variables associated with burnout were performed. A total of 283 out of 389 (72.7%) critical care providers agreed to participate. The same team of physicians attended both ICU and SDU, and severe burnout was identified in 18.2% of them. Considering all others critical care providers of both units, we identified that overall 23.1% (95% CI 18.0-28.8%) presented severe burnout, and it did not differ between professional categories. The mean MDS-R rate for all ICU and SDU respondents was 111.5 and 104.5, respectively, p = 0.446. Many questions from MDS-R questionnaire were significantly associated with burnout, and those respondents with high MDS-R score (>100 points) were more likely to suffer from burnout (28.9 vs 14.4%, p = 0.010). After regression analysis, moral distress was independently associated with burnout (OR 2.4, CI 1.19-4.82, p = 0.014). Moral distress, resulting from therapeutic obstinacy and the provision of futile care, is an important issue among critical care providers' team, and it was significantly associated with severe burnout.

  1. The human factor: the critical importance of effective teamwork and communication in providing safe care.

    Science.gov (United States)

    Leonard, M; Graham, S; Bonacum, D

    2004-10-01

    Effective communication and teamwork is essential for the delivery of high quality, safe patient care. Communication failures are an extremely common cause of inadvertent patient harm. The complexity of medical care, coupled with the inherent limitations of human performance, make it critically important that clinicians have standardised communication tools, create an environment in which individuals can speak up and express concerns, and share common "critical language" to alert team members to unsafe situations. All too frequently, effective communication is situation or personality dependent. Other high reliability domains, such as commercial aviation, have shown that the adoption of standardised tools and behaviours is a very effective strategy in enhancing teamwork and reducing risk. We describe our ongoing patient safety implementation using this approach within Kaiser Permanente, a non-profit American healthcare system providing care for 8.3 million patients. We describe specific clinical experience in the application of surgical briefings, properties of high reliability perinatal care, the value of critical event training and simulation, and benefits of a standardised communication process in the care of patients transferred from hospitals to skilled nursing facilities. Additionally, lessons learned as to effective techniques in achieving cultural change, evidence of improving the quality of the work environment, practice transfer strategies, critical success factors, and the evolving methods of demonstrating the benefit of such work are described.

  2. Knowledge of Critical Care Provider on Prevention of Ventilator Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Passang Chiki Sherpa

    2014-01-01

    Full Text Available Background: Ventilator-associated pneumonia (VAP continues to be an important cause of morbidity and mortality in ventilated patient. Prevention of VAP in critically ill patient is significant concern for health care team in intensive care units (ICUs. Knowledge on prevention of VAP would have a significant impact on patient outcome. Aims and Objectives: To assess knowledge on prevention of VAP in critical care providers and to find the association between knowledge on prevention of VAP and educational qualification and years of experience in ICUs. Settings and Design: The study was conducted in 5 different ICUs of Kasturba Hospital, Manipal, and using descriptive study design. Material and Methods: The study involved a purposive sample of 138 critical care providers. Critical care providers who were willing to participate in the study were included. Tools on demographic proforma and self-administered structured knowledge questionnaire on prevention of VAP were developed and content validity was established. The reliability of the tools was established.The data was categorized and analyzed by using descriptive and inferential statistics. The SPSS 16.0 version was used for the analysis of the study. Result: Majority 89.1% of the participant were 20-29 years, 63% unmarried 51.4% had completed diploma course and majority 81.2% were from nursing discipline. The study revealed that only 55.80% of subjects were having adequate knowledge on prevention of VAP based on median score. There was no significant association between knowledge score and educational qualification (÷²=0, p=0.833, years of experience in ICU (÷²= 2.221, p=0.329.

  3. A Critical Examination of Current On-Orbit Satellite Collision Risk Analysis Under Constraints of Public Data

    Science.gov (United States)

    Whitworth, Brandon; Moon, Mark; Pace, William; Baker, Robert

    2010-09-01

    The collision of Cosmos 2251 and Iridium 33 on 10 February 2009, made real the dangers of space operations without accurate situational awareness. A critical examination of the state of the art in collision risk assessment for on-orbit assets quickly reveals that it is inadequate to have provided satellite operators the opportunity to prevent the Cosmos-Iridium collision. Satellite operators need reliable information in a timely manner in order to take appropriate action. The shortfalls of publicly available orbit information place all spacecraft and missions at risk. The accuracy limitations of the General Perturbations(GP) catalog and orbit model(SGP-4) limit the effectiveness of current open source efforts. Beyond the accuracy limits, the relatively low frequency of updates for debris included in the catalog increases the uncertainty in time-space for inactive space objects such as Cosmos 2251. The current state of the art collision risk assessment includes advanced techniques such as expanding the GP model with covariance information which will allow uncertainty in the model to be accounted for in the on-orbit risk calculations. Covariance information can be estimated from consecutively published element sets for the same orbital object. A challenge to covariance estimation is that maneuvers or long periods of time between updates can skew the computed data. Once reliable covariance information is known and an efficient algorithm can be applied to find all of the close approaches between all cataloged objects then it is possible to estimate the collision risk for each close encounter with the tri-variate normal distribution. Unknown covariance will need to be handled in an appropriate way for a complete solution. Covariance information alone cannot solve the problem due to the relatively slow rate of update for all objects by the Space Surveillance Network(SSN) and there is no centralized source for planned and executed orbit changes for powered spacecraft. The

  4. Video Data Link Provides Television Pictures In Near Real Time Via Tactical Radio And Satellite Channels

    Science.gov (United States)

    Hartman, Richard V.

    1987-02-01

    Advances in sophisticated algorithms and parallel VLSI processing have resulted in the capability for near real-time transmission of television pictures (optical and FLIR) via existing telephone lines, tactical radios, and military satellite channels. Concepts have been field demonstrated with production ready engineering development models using transform compression techniques. Preliminary design has been completed for packaging an existing command post version into a 20 pound 1/2 ATR enclosure for use on jeeps, backpacks, RPVs, helicopters, and reconnaissance aircraft. The system will also have a built-in error correction code 2 (ECC) unit, allowing operation via communicatons media exhibiting a bit error rate of 1 X 10-or better. In the past several years, two nearly simultaneous developments show promise of allowing the breakthrough needed to give the operational commander a practical means for obtaining pictorial information from the battlefield. And, he can obtain this information in near real time using available communications channels--his long sought after pictorial force multiplier: • High speed digital integrated circuitry that is affordable, and • An understanding of the practical applications of information theory. High speed digital integrated circuits allow an analog television picture to be nearly instantaneously converted to a digital serial bit stream so that it can be transmitted as rapidly or slowly as desired, depending on the available transmission channel bandwidth. Perhaps more importantly, digitizing the picture allows it to be stored and processed in a number of ways. Most typically, processing is performed to reduce the amount of data that must be transmitted, while still maintaining maximum picture quality. Reducing the amount of data that must be transmitted is important since it allows a narrower bandwidth in the scarce frequency spectrum to be used for transmission of pictures, or if only a narrow bandwidth is available, it

  5. New approaches to provide ride-through for critical loads in electric power distribution systems

    Science.gov (United States)

    Montero-Hernandez, Oscar C.

    2001-07-01

    The extensive use of electronic circuits has enabled modernization, automation, miniaturization, high quality, low cost, and other achievements regarding electric loads in the last decades. However, modern electronic circuits and systems are extremely sensitive to disturbances from the electric power supply. In fact, the rate at which these disturbances happen is considerable as has been documented in recent years. In response to the power quality concerns presented previously, this dissertation is proposing new approaches to provide ride-through for critical loads during voltage disturbances with emphasis on voltage sags. In this dissertation, a new approach based on an AC-DC-AC system is proposed to provide ride-through for critical loads connected in buildings and/or an industrial system. In this approach, a three-phase IGBT inverter with a built in Dc-link voltage regulator is suitably controlled along with static by-pass switches to provide continuous power to critical loads. During a disturbance, the input utility source is disconnected and the power from the inverter is connected to the load. The remaining voltage in the AC supply is converted to DC and compensated before being applied to the inverter and the load. After detecting normal utility conditions, power from the utility is restored to the critical load. In order to achieve an extended ride-through capability a second approach is introduced. In this case, the Dc-link voltage regulator is performed by a DC-DC Buck-Boost converter. This new approach has the capability to mitigate voltage variations below and above the nominal value. In the third approach presented in this dissertation, a three-phase AC to AC boost converter is investigated. This converter provides a boosting action for the utility input voltages, right before they are applied to the load. The proposed Pulse Width Modulation (PWM) control strategy ensures independent control of each phase and compensates for both single-phase or poly

  6. Prehospital management of evolving critical illness by the primary care provider.

    Science.gov (United States)

    Ellis, Kerri A; Hosseinnezhad, Alireza; Ullah, Ashfaq; Vinagre, Yuka-Marie; Baker, Stephen P; Lilly, Craig M

    2013-10-01

    The factors that limit primary care providers (PCPs) from intervening for adults with evolving, acute, severe illness are less understood than the increasing frequency of management by acute care providers. Rates of prehospital patient management by a PCP and of communication with acute care teams were measured in a multicenter, cross-sectional, descriptive study conducted in all four of the adult medical ICUs of the three hospitals in central Massachusetts that provide tertiary care. Rates were measured for 390 critical care encounters, using a validated instrument to abstract the medical record and conduct telephone interviews. PCPs implemented prehospital management for eight episodes of acute illness among 300 encounters. Infrequent prehospital management by PCPs was attributed to their lack of awareness of the patient's evolving acute illness. Only 21% of PCPs were aware of the acute illness before their patient was admitted to an ICU, and 33% were not aware that their patient was in an ICU. Rates of PCP involvement were not appreciably different among provider groups or by patient age, sex, insurance status, hospital, ICU, or ICU staffing model. We identified lack of PCP awareness of patients' acute illness and high rates of PCP referral to acute care providers as the most frequent barriers to prehospital management of evolving acute illness. These findings suggest that implementing processes that encourage early patient-PCP communication and increase rates of prehospital management of infections and acute exacerbations of chronic diseases could reduce use of acute care services.

  7. An advanced generation land mobile satellite system and its critical technologies

    Science.gov (United States)

    Naderi, F.

    1982-01-01

    A conceptual design for a Land Mobile Satellite System (LMSS) for the 1990s is presented. LMSS involves small tranceivers accessing satellites directly, with ground reception through small car-top antennas. The satellite would have a large antenna and blanket coverage areas in the UHF. The call may originate from a home, be carried by wire to a gateway, transmitted to satellite on the S-band, converted to UHF on the satellite, and transmitted to the vehicle. The system design is constrained by the number of users in an area during the busiest hours, Shuttle storage, controllability factors, and the total area served. A 55-m antenna has been selected, with 87 spot beams and two 10 MHz UHF bands in the 806-890 MHz band. A 17 dB interbeam isolation level is required, implying that sufficient sub-bands can be generated to assure 8265 total channels. The mobile satellite (MSAT) would have an 83 m mast lower segment, a 34 m upper segment, and a second, 10 m antenna made of a deployable mesh. Various antenna function modes are considered.

  8. [Nursing fundamentals: critical incidents related to care provided in supervised training].

    Science.gov (United States)

    Valsecchi, Elizabeth Amâncio de Souza da Silva; Nogueira, Maria Suely

    2002-01-01

    The course of Nursing fundamentals introduces the students to supervised training and can result in anxiety and tension. Therefore, the purpose of this study was to identify positive/negative aspects related to the care provided during the supervised training, based on the critical incidents technique. The subjects were students of the 2 degrees, 3 degrees and 4 degrees years of the Nursing Undergraduate Program offered by the State University of Maringá-PR. Authors identified 95 reports: 48(50.5%) positive and 47(49.5) negative. The positive aspects were related to the faculty's presence mediating the teaching-learning process; and the negative ones were related to the professionals insensibility regarding pain and death.

  9. Introduced fire ants can exclude native ants from critical mutualist-provided resources.

    Science.gov (United States)

    Wilder, Shawn M; Barnum, Thomas R; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2013-05-01

    Animals frequently experience resource imbalances in nature. For ants, one resource that may be particularly valuable for both introduced and native species is high-carbohydrate honeydew from hemipteran mutualists. We conducted field and laboratory experiments: (1) to test if red imported fire ants (Solenopsis invicta) competed with native ants for access to mutualisms with aphids, and (2) to quantify the effects of aphid honeydew presence or absence on colony growth of native ants. We focused on native dolichoderine ants (Formicidae, Dolichoderinae) because they are abundant ants that have omnivorous diets that frequently include mutualist-provided carbohydrates. At two sites in the southeastern US, native dolichoderine ants were far less frequent, and fire ants more frequent, at carbohydrate baits than would be expected based on their frequency in pitfall traps. A field experiment confirmed that a native ant species, Dorymyrmex bureni, was only found tending aphids when populations of S. invicta were suppressed. In the laboratory, colonies of native dolichoderine ants with access to both honeydew and insect prey had twice as many workers and over twice as much brood compared to colonies fed only ad libitum insect prey. Our results provide the first experimental evidence that introduced ants compete for access to mutualist-provided carbohydrates with native ants and that these carbohydrates represent critical resources for both introduced and native ants. These results challenge traditional paradigms of arthropod and ant nutrition and contribute to growing evidence of the importance of nutrition in mediating ecological interactions.

  10. Evaluation of District-Provided Professional Development on Critical Thinking Skills

    Science.gov (United States)

    Bedosky, Michael J.

    2013-01-01

    Critical thinking skills are often not being taught or used in classrooms. Instead, more testing has become the norm, leaving students less equipped to discern information and become well-informed, conscientious citizens. Based on research concerning the importance of critical thinking skills and professional development for teachers, this study…

  11. Assessment of Stirling Technology Has Provided Critical Data Leading Toward Flight Readiness of the Stirling Converter

    Science.gov (United States)

    Thieme, Lanny G.

    2001-01-01

    The NASA Glenn Research Center is supporting the development of a Stirling converter with the Department of Energy (DOE, Germantown, Maryland) for an advanced Stirling Radioisotope Power System (SRPS) to provide spacecraft onboard electric power for NASA space science missions. A key technology assessment completed by Glenn and DOE has led to the SRPS being identified as a high-efficiency power source for such deep space missions as the Europa Orbiter and the Solar Probe. In addition, the Stirling system is now being considered for unmanned Mars rovers, especially where mission profiles may exclude the use of photovoltaic power systems, such as exploration at high Martian latitudes or for missions of long duration. The SRPS efficiency of over 20 percent will reduce the required amount of radioisotope by more than a factor of 3 in comparison to current radioisotope thermoelectric generators. This significantly reduces radioisotope cost, radiological inventory, and system cost, and it provides efficient use of scarce radioisotope resources. In support of this technology assessment, Glenn conducted a series of independent evaluations and tests to determine the technology readiness of a 55-We Stirling converter developed by Stirling Technology Company (Kennewick, Washington) and DOE. Key areas evaluated by Glenn included: 1) Radiation tolerance of materials; 2) Random vibration testing of the Stirling converter in Glenn's Structural Dynamics Lab to simulate operation in the launch environment; 3) Electromagnetic interference and compatibility (EMI/EMC) of the converter operating in Glenn's EMI lab; Independent failure modes, effects, and criticality analysis, and life and reliability 4. Independent failure modes, effects, and criticality analysis, and life and reliability assessment; and 5) SRPS cost estimate. The data from these evaluations were presented to NASA Headquarters and the Jet Propulsion Laboratory mission office by a joint industry/Government team

  12. Environmental Satellites: Strategy Needed to Sustain Critical Climate and Space Weather Measurements

    Science.gov (United States)

    2010-04-01

    together. For example, climate measurements have allowed scientists to better understand the effect of deforestation on how the earth absorbs heat, retains...Geostationary Operational Environmental Satellites: Progress Has Been Made, but Improvements Are Needed to Effectively Manage Risks, GAO-08-18 (Washington...color; and atmospheric observations such as greenhouse gas levels (e.g., carbon dioxide), aerosol and dust particles, and moisture concentration. When

  13. Critical amino acids in syndecan-4 cytoplasmic domain modulation of turkey satellite cell growth and development.

    Science.gov (United States)

    Song, Yan; McFarland, Douglas C; Velleman, Sandra G

    2012-02-01

    Syndecan-4 is composed of a core protein and covalently attached glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein is divided into extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain has two conserved regions and a variable region in the middle. The Ser residue in the conserved region 1 and the Tyr residue in the variable region are important in regulating protein kinase C alpha (PKCα) membrane localization and focal adhesion formation. The objective of the current study was to investigate the role of syndecan-4 Ser and Tyr residues in combination with the GAG and N-glycosylated chains in turkey satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Site-directed mutagenesis was used to generate Ser and Tyr mutants with or without GAG and N-glycosylated chains. The wild type and mutant syndecan-4 constructs were transfected into turkey satellite cells. The over-expression of Ser and Tyr mutants increased cell proliferation and differentiation and decreased membrane localization of PKCα. Furthermore, Ser mutants enhanced cellular responsiveness to FGF2. The results from this study are the first demonstration of a role of syndecan-4 cytoplasmic domain Ser and Tyr residues in regulating satellite cell proliferation, differentiation, and the modulation of cellular responsiveness to FGF2.

  14. Small range and distinct distribution in a satellite breeding colony of the critically endangered Waved Albatross

    Science.gov (United States)

    To determine the proximate consequences of the limited breeding distribution of the critically endangered Waved Albatross (Phoebastria irrorata), we present continuous breeding season GPS tracks highlighting differences in behaviour, destinations, and distances travelled between ...

  15. Small range and distinct distribution in a satellite breeding colony of the critically endangered Waved Albatross

    Science.gov (United States)

    To determine the proximate consequences of the limited breeding distribution of the critically endangered Waved Albatross (Phoebastria irrorata), we present continuous breeding season GPS tracks highlighting differences in behaviour, destinations, and distances travelled between ...

  16. Critical Evaluation of 0-30 km Profile Information in Ground-Based Zenith-Sky and Satellite-Measured Backscattered UV Radiation

    Science.gov (United States)

    Bhartia, Pawan; Petropavlovskikh, Irina; Deluishi, John; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We now have several decades of experience in deriving vertical ozone profiles from the measurements of diffuse ultraviolet radiation by both ground and satellite-based instruments using Umkehr and BUV techniques. Continuing technological advances are pushing the state-of-the-art of these measurements to high spectral resolution and broader wavelength coverage. These modern instruments include the ground-based Brewer and satellite-based Global Ozone Monitoring Experiment (GOME) instruments, as well as advanced instruments being developed by ESA(SCIAMACHY), Netherlands(OMI) and Japan(ODUS). However, one of the issues that remains unresolved is the 0-30 km ozone profile information retrievable from these measurements. Though it is commonly believed that both the Umkehr and the satellite-based BUV techniques have very limited profile information below 30 km, there are those who argue that the data from these instruments should continue to be reported in this altitude range for they compare well with ozonesondes and hence there is useful scientific information. Others claim that the limitations of the Umkehr and BUV techniques are largely due to their low spectral resolution, and that the profile information below 30 km can be greatly improved by going to high spectral resolution instruments, such as Brewer and GOME. The purpose of this paper is to provide a critical evaluation of the 0-30 km ozone profile information in the various UV remote sensing techniques. We use a database of individual ozone profiles created using ozonesondes and SAGE and 4D ozone fields generated by data assimilation techniques to simulate radiances measured by the various techniques. We then apply a common inversion approach to all the methods to systematically examine how much profile information is available simply from the knowledge of total ozone, how much additional profile information is added by the traditional Dobson Umkehr and satellite buv techniques, and how much better one can do

  17. A critical reassessment of particle Dark Matter limits from dwarf satellites

    CERN Document Server

    Ullio, Piero

    2016-01-01

    Dwarf satellite galaxies are ideal laboratories for identifying particle Dark Matter signals. When advocating limits on particle Dark Matter properties from null searches, it becomes however crucial the level at which the Dark Matter density profile within these systems is constrained by observations. In the limit in which the spherical Jeans equation is assumed to be valid for a given tracer stellar population, we study the solution of this equation having the Dark Matter mass profile as an output rather than as a trial parametric input. Within our new formulation, we address to what level dwarf spheroidal galaxies feature a reliable mass estimator. We assess then possible extrapolation of the density profiles in the inner regions and -- keeping explicit the dependence on the orbital anisotropy profile of the tracer population -- we derive general trends on the line-of-sight integral of the density profile squared, a quantity commonly dubbed $J$-factor and crucial to estimate fluxes from prompt Dark Matter p...

  18. A critical reassessment of particle Dark Matter limits from dwarf satellites

    Science.gov (United States)

    Ullio, Piero; Valli, Mauro

    2016-07-01

    Dwarf satellite galaxies are ideal laboratories for identifying particle Dark Matter signals. When setting limits on particle Dark Matter properties from null searches, it becomes however crucial the level at which the Dark Matter density profile within these systems is constrained by observations. In the limit in which the spherical Jeans equation is assumed to be valid for a given tracer stellar population, we study the solution of this equation having the Dark Matter mass profile as an output rather than as a trial parametric input. Within our new formulation, we address to what level dwarf spheroidal galaxies feature a reliable mass estimator. We assess then possible extrapolation of the density profiles in the inner regions and—keeping explicit the dependence on the orbital anisotropy profile of the tracer population—we derive general trends on the line-of-sight integral of the density profile squared, a quantity commonly dubbed J-factor and crucial to estimate fluxes from prompt Dark Matter pair annihilations. Taking Ursa Minor as a study case among Milky Way satellites, we perform Bayesian inference using the available kinematical data for this galaxy. Contrary to all previous studies, we avoid marginalization over quantities poorly constrained by observations or by theoretical arguments. We find minimal J-factors to be about 2 to 4 times smaller than commonly quoted estimates, approximately relaxing by the same amount the limit on Dark Matter pair annihilation cross section from gamma-ray surveys of Ursa Minor. At the same time, if one goes back to a fixed trial parametric form for the density, e.g. using a NFW or Burkert profile, we show that the minimal J can hardly be reduced by more than a factor of 1.5.

  19. A group randomized trial of critical incident stress debriefing provided to U.S. peacekeepers.

    Science.gov (United States)

    Adler, Amy B; Litz, Brett T; Castro, Carl Andrew; Suvak, Michael; Thomas, Jeffrey L; Burrell, Lolita; McGurk, Dennis; Wright, Kathleen M; Bliese, Paul D

    2008-06-01

    In a group randomized trial of critical incident stress debriefing (CISD) with platoons of 952 peacekeepers, CISD was compared with a stress management class (SMC) and survey-only (SO) condition. Multilevel growth curve modeling found that CISD did not differentially hasten recovery compared to the other two conditions. For those soldiers reporting the highest degree of exposure to mission stressors, CISD was minimally associated with lower reports of posttraumatic stress and aggression (vs. SMC), higher perceived organizational support (vs. SO), and more alcohol problems than SMC and SO. Soldiers reported that they liked CISD more than the SMC, and CISD did not cause undue distress.

  20. Satellite tagging of Mediterranean fin whales: working towards the identification of critical habitats and the focussing of mitigation measures.

    Science.gov (United States)

    Panigada, Simone; Donovan, Gregory P; Druon, Jean-Noël; Lauriano, Giancarlo; Pierantonio, Nino; Pirotta, Enrico; Zanardelli, Margherita; Zerbini, Alexandre N; di Sciara, Giuseppe Notarbartolo

    2017-06-13

    Mediterranean fin whales comprise a genetically distinct population, listed as Vulnerable (VU) in the IUCN Red List. Collisions with vessels are believed to represent the main cause of human-induced mortality. The identification of critical habitats (including migration routes) incorporating satellite telemetry data is therefore crucial to develop focussed conservation efforts. Between 2012 and 2015 thirteen fin whales were equipped with satellite transmitters, 8 in the Pelagos Sanctuary (although two ceased within two days) and 5 in the Strait of Sicily, to evaluate movements and habitat use. A hierarchical switching state-space model was used to identify transiting and area-restricted search (ARS) behaviours, believed to indicate foraging activities. All whales undertook mid- to long-distance migrations, crossing some of the world's busiest maritime routes. Areas where the animals predominantly engaged in ARS behaviour were identified in both study areas. The telemetry data were compared with results from ecosystem niche modelling, and showed that 80% of tagged whale positions was near (habitat. The results contribute to the view that precautionary management should include establishment of a coordinated and dynamic basin-wide management scheme; if appropriate, this may include the establishment of protected areas by specific regional Conventions.

  1. The Critical Need for Future Mid-Resolution Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Vincent, R. K.

    2006-12-01

    Eight future applications of data from mid-resolution thermal infrared satellite sensors are suggested, from least to most significant as follows: 8. Map thin ice unsafe for ice-fishing in the Great Lakes as a warning to winter fishermen; 7. Map ammonia plumes to locate large ammonia stockpiles (Homeland Security) and to monitor concentrated animal feeding operations (CAFOs); 6. Map types of surface algae in ocean, lakes, and rivers, especially those containing surface diatoms; 5. Monitor urban heat islands to determine the cooling affects of painting visibly dark surfaces with bright paints or coatings; 4. Map rock-types and soil-types of non- vegetated regions world-wide, a task which ASTER cannot complete in its current lifetime; 3. Detect surface warming of rocks under increased stress and pressure as an earthquake precursor; 2. Map pollutant gases, especially sulfur dioxide, which is important both for smokestack monitoring and volcanic eruption precursors; 1. Map methane escape into the atmosphere from methane clathrate destabilization as a key warning of imminent and drastic temperature rises in the troposphere. Each of these applications will be briefly discussed and past examples will be given for most of them.

  2. Question No. 5: What Role Can Satellites Take, as a Complement to Ground Based Measurement Systems, to Provide Sustained Observations to Monitor GHG Emissions?

    Science.gov (United States)

    Chahine, Moustafa; Olsen, Edward

    2011-01-01

    What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions (e.g., CO2, CH4, O3, N2O, CFC s, NH3, and NF3) that contribute to global warming?

  3. LOOPUS Mob-D: System concept for a public mobile satellite system providing integrated digital services for the Northern Hemisphere from an elliptical orbit

    Science.gov (United States)

    Kuhlen, H.; Horn, P.

    1990-08-01

    A new concept for a satellite based public mobile communications system LOOPUS Mob-D is introduced where most of the 'classical' problems in mobile satellite systems are approached in a different way. The LOOPUS system will offer a total capacity of 6000 high rate channel in three service areas (Europe, Asia, and North America) covering the entire Northern Hemisphere with a set of group special mobile (GSM) compatible mobile services eventually providing the 'office in the car'. Special characteristics of the LOOPUS orbit and the communications network architecture are highlighted.

  4. Chemical elemental distribution and soil DNA fingerprints provide the critical evidence in murder case investigation.

    Science.gov (United States)

    Concheri, Giuseppe; Bertoldi, Daniela; Polone, Elisa; Otto, Stefan; Larcher, Roberto; Squartini, Andrea

    2011-01-01

    The scientific contribution to the solution of crime cases, or throughout the consequent forensic trials, is a crucial aspect of the justice system. The possibility to extract meaningful information from trace amounts of samples, and to match and validate evidences with robust and unambiguous statistical tests, are the key points of such process. The present report is the authorized disclosure of an investigation, carried out by Attorney General appointment, on a murder case in northern Italy, which yielded the critical supporting evidence for the judicial trial. The proportional distribution of 54 chemical elements and the bacterial community DNA fingerprints were used as signature markers to prove the similarity of two soil samples. The first soil was collected on the crime scene, along a corn field, while the second was found in trace amounts on the carpet of a car impounded from the main suspect in a distant location. The matching similarity of the two soils was proven by crossing the results of two independent techniques: a) elemental analysis via inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES) approaches, and b) amplified ribosomal DNA restriction analysis by gel electrophoresis (ARDRA). Besides introducing the novel application of these methods to forensic disciplines, the highly accurate level of resolution observed, opens new possibilities also in the fields of soil typing and tracking, historical analyses, geochemical surveys and global land mapping.

  5. Chemical elemental distribution and soil DNA fingerprints provide the critical evidence in murder case investigation.

    Directory of Open Access Journals (Sweden)

    Giuseppe Concheri

    Full Text Available BACKGROUND: The scientific contribution to the solution of crime cases, or throughout the consequent forensic trials, is a crucial aspect of the justice system. The possibility to extract meaningful information from trace amounts of samples, and to match and validate evidences with robust and unambiguous statistical tests, are the key points of such process. The present report is the authorized disclosure of an investigation, carried out by Attorney General appointment, on a murder case in northern Italy, which yielded the critical supporting evidence for the judicial trial. METHODOLOGY/PRINCIPAL FINDINGS: The proportional distribution of 54 chemical elements and the bacterial community DNA fingerprints were used as signature markers to prove the similarity of two soil samples. The first soil was collected on the crime scene, along a corn field, while the second was found in trace amounts on the carpet of a car impounded from the main suspect in a distant location. The matching similarity of the two soils was proven by crossing the results of two independent techniques: a elemental analysis via inductively coupled plasma mass spectrometry (ICP-MS and optical emission spectrometry (ICP-OES approaches, and b amplified ribosomal DNA restriction analysis by gel electrophoresis (ARDRA. CONCLUSIONS: Besides introducing the novel application of these methods to forensic disciplines, the highly accurate level of resolution observed, opens new possibilities also in the fields of soil typing and tracking, historical analyses, geochemical surveys and global land mapping.

  6. Geobiology of the Critical Zone: the Hierarchies of Process, Form and Life provide an Integrated Ontology

    Science.gov (United States)

    Cotterill, Fenton P. D.

    2016-04-01

    complementary biotic indicators of the palaeoenviroments in which they evolved. This strategy extends into the critical zone, to track evolutionary tenures and turnovers of endemics "ecological prisoners" in vadosic and phreatic landforms. Moreover, geoecodynamics of the Critical Zone can logically exploit endemic biota at the microscale in regolith, and also extremophiles to extreme depths; all such populations hold fascinating potential as biotic indicators of otherwise encrypted events in Earth history. Geoecodynamics is an exciting area emerging in geobiology. It opens up with new lines of attack on challenges at the core of geomorphology and palaeoecology. In its abilities to quantify mesoscale phenomena, geoecodynamics injects new life into evolutionary geomorphology. Moreover, the means to quantify mesoscale process and form enables quantification of thresholds and tenures of landform dynamics; we can now scrutinize obscurities, including the scale-dependency of landscape events invoked to have shaped palimpsests (Brunsden D 1996 Zeitschrift für Geomorphologie NF, 40, 273- 288). Analogously, where accumulated packages of evidence survive, we should be able to map out key signals in the tempo and mode of the genomic record through the Critical Zone, and so scrutinize otherwise encrypted events that shaped the inherent emptiness of the Rock Record (Ager D 1993. The Nature of the Stratigraphical Record; Miall AD 2015. Strata and Time: Probing the Gaps in Our Understanding. Geological Society, London, Special Publications, 404, http://dx.doi.org/10.1144/SP404.4). Compared to, and notwithstanding, the episodic turnovers of sediments (and all allied events) that shaped evolving landscapes, the history of Life has been distinctly different; descent with modification links all clades and lineages of the Tree of Life with the present - even at deep nodes - though an unbroken chain of genomic connectivity. The complexity of niche space we see in landscapes reflects the diverse

  7. Neristatin 1 provides critical insight into bryostatin 1 structure-function relationships.

    Science.gov (United States)

    Kedei, Noemi; Kraft, Matthew B; Keck, Gary E; Herald, Cherry L; Melody, Noeleen; Pettit, George R; Blumberg, Peter M

    2015-04-24

    Bryostatin 1, a complex macrocyclic lactone isolated from Bugula neritina, has been the subject of multiple clinical trials for cancer. Although it functions as an activator of protein kinase C (PKC) in vitro, bryostatin 1 paradoxically antagonizes most responses to the prototypical PKC activator, the phorbol esters. The bottom half of the bryostatin 1 structure has been shown to be sufficient to confer binding to PKC. In contrast, we have previously shown that the top half of the bryostatin 1 structure is necessary for its unique biological behavior to antagonize phorbol ester responses. Neristatin 1 comprises a top half similar to that of bryostatin 1 together with a distinct bottom half that confers PKC binding. We report here that neristatin 1 is bryostatin 1-like, not phorbol ester-like, in its biological activity on U937 promyelocytic leukemia cells. We conclude that the top half of the bryostatin 1 structure is largely sufficient for bryostatin 1-like activity, provided the molecule also possesses an appropriate PKC binding domain.

  8. Neristatin 1 Provides Critical Insight into Bryostatin 1 Structure–Function Relationships

    Science.gov (United States)

    2015-01-01

    Bryostatin 1, a complex macrocyclic lactone isolated from Bugula neritina, has been the subject of multiple clinical trials for cancer. Although it functions as an activator of protein kinase C (PKC) in vitro, bryostatin 1 paradoxically antagonizes most responses to the prototypical PKC activator, the phorbol esters. The bottom half of the bryostatin 1 structure has been shown to be sufficient to confer binding to PKC. In contrast, we have previously shown that the top half of the bryostatin 1 structure is necessary for its unique biological behavior to antagonize phorbol ester responses. Neristatin 1 comprises a top half similar to that of bryostatin 1 together with a distinct bottom half that confers PKC binding. We report here that neristatin 1 is bryostatin 1-like, not phorbol ester-like, in its biological activity on U937 promyelocytic leukemia cells. We conclude that the top half of the bryostatin 1 structure is largely sufficient for bryostatin 1-like activity, provided the molecule also possesses an appropriate PKC binding domain. PMID:25808573

  9. Providing the Caribbean community with VIIRS-derived weather satellite and dust model output in preparation for African dust impacts

    Science.gov (United States)

    Kuciauskas, A. P.; Xian, P.; Hyer, E. J.; Oyola, M. I.; Campbell, J. R.

    2016-12-01

    The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) predicts, monitors, and trains Caribbean agencies in preparing for and mitigating unhealthy episodes of Saharan-based dust. Of critical concern is the Saharan Air Layer (SAL), an elevated air mass of hot, dry, and often very dusty conditions that can be environmentally persistent and dangerous to the downstream Caribbean populace, resulting in respiratory illnesses; some of the world's highest asthma rates and associated premature deaths have been documented within the Caribbean islands. The SAL not only impacts the greater Caribbean, but also the Gulf of Mexico, northern South America, and southern and central US. One of the major responsibilities of the National Weather Service forecast office at San Juan, Puerto Rico (NWS-PR) is preparing the public within their area of responsibility for such events. The NRL-MMD has been at the forefront of implementing and demonstrating the positive impact of Suomi-VIIRS during SAL events. In preparation for SAL events, NRL-MMD is currently supporting the NWS-PR with near real time web-based products, primarily from VIIRS datasets. Preliminary studies have shown that VIIRS has demonstrated improvements in the assessment and prediction of dust intensities related to SAL passages. The upcoming launches of JPSS-1 and GOES-R are eagerly anticipated in possibly revolutionizing the R&D related toward further improvements in understanding Saharan dust dynamics and characteristics. Besides NWS-PR, NRL-MMD also collaborates with the Caribbean Institute for Meteorology and Hydrology (CIMH) in both providing and gathering in-situ measurements that stretch from the French Guyana northward through the West Indies island chain. Finally, NRL-MMD is involved with the Caribbean Aerosol Health Network (CAHN),an international network of health and environmental agencies whose mission is to improve the understanding of the impacts (e.g., air quality, health, climate, weather

  10. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  11. Satellite Upper Air Network (SUAN)

    Science.gov (United States)

    Reale, Tony L.; Thorne, Peter

    2004-10-01

    During the past 20 years of NOAA operational polar satellites, it has become evident that a growing problem concerning their utilization in Climate and also Numerical Weather Prediction (NWP) applications are the systematic errors and uncertainties inherent in the satellite measurements. Similar arguments can be made for global radiosonde observations. These uncertainties are often larger than the sensitive signals and processes, that satellite and radiosonde measurements are designed to reveal, particularly in the realm of climate. Possible strategies to quantify and compensate for these problems include the analysis of satellite overlap data and/or available collocations of satellite and ground truth (radiosonde) observations. However, overlap observations are typically not available except in extreme polar regions and current sampling strategies for compiling collocated radiosonde and satellite observations are insufficient, further compounding the inherent uncertainties in the ground-truth radiosonde data. A Satellite Upper Air Network is proposed to provide reference radiosonde launches coincident with operational polar satellite(s) overpass. The SUAN consist of 36 global radiosonde stations sub-sampled from the Global Upper Air Network (GUAN), and is designed to provide a robust, global sample of collocated radiosonde and satellite observations conducive to the monitoring and validation of satellite and radiosonde observations. The routine operation of such a network in conjunction with operational polar satellites would provide a long-term of performance for critical observations of particular importance for climate. The following report presents a candidate network of 36 upper-air sites that could comprise a SUAN. Their selection along with the mutual benefit across the satellite, radiosonde, climate, numerical weather prediction (NWP) and radiative transfer (RT) model areas are discussed.

  12. The "virtual" obstetrical intensive care unit: providing critical care for contemporary obstetrics in nontraditional locations.

    Science.gov (United States)

    Leovic, Michael P; Robbins, Hailey N; Foley, Michael R; Starikov, Roman S

    2016-12-01

    Management of the critically ill pregnant patient presents a clinical dilemma in which there are sparse objective data to determine the optimal setting for provision of high-quality care to these patients. This clinical scenario will continue to present a challenge for providers as the chronic illness and comorbid conditions continue to become more commonly encountered in the obstetric population. Various care models exist across a broad spectrum of facilities that are characterized by differing levels of resources; however, no studies have identified which model provides the highest level of care and patient safety while maintaining a reasonable degree of cost-effectiveness. The health care needs of the critically ill obstetric patient calls for clinicians to move beyond the traditional definition of the intensive care unit and develop a well-rounded, quickly responsive, and communicative interdisciplinary team that can provide high-quality, unique, and versatile care that best meets the needs of each particular patient. We propose a model in which a virtual intensive care unit team composed of preselected specialists from multiple disciplines (maternal-fetal medicine, neonatology, obstetric anesthesiology, cardiology, pulmonology, etc) participate in the provision of individualized, precontemplated care that is readily adapted to the specific patient's clinical needs, regardless of setting. With this team-based approach, an environment of trust and familiarity is fostered among team members and well thought-out patient care plans are developed through routine prebrief discussions regarding individual clinical care for parturients anticipated to required critical care services. Incorporating debriefings between team members following these intricate cases will allow for the continued evolution of care as the medical needs of this patient population change as well.

  13. Some thoughts on providing effective mental health critical care for police departments after Line-of-Duty Deaths.

    Science.gov (United States)

    Mitchell, Jeffrey T; Levenson, Richard L

    2006-01-01

    There is no more stressful or emotionally painful event in the professional lives of police officers than a fellow officer's Line-of-Duty Death (LODD). In response to a LODD, crisis teams must apply Critical Incident Stress Management (CISM) techniques in a systematic, organized, and responsible manner. Newly formed crisis teams are particularly vulnerable to choosing inappropriate tactics in complex situations. This article provides a strategic framework within which teams can work with police departments after a LODD. It includes cautionary information in connection with problematic situations and mistakes that can occur. Special modifications to the LODD debriefing process are recommended.

  14. Satellite delivery of B-ISDN services

    Science.gov (United States)

    Kwan, R. K.; Price, K. M.; Chitre, D. M.; White, L. W.; Henderson, T. R.

    1992-01-01

    This paper will address the role of technology in the satellite delivery of B-ISDN services. Satellites excel in serving remote users and in providing multicast and broadcast services. Benefits to potential users employing these satellite broadband services will be examined together with their respective network architecture. Two application requirements are then proposed. The critical technologies needed in the realization of these architectures will be identified.

  15. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  16. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  17. IEEE 802.15.4 Frame Aggregation Enhancement to Provide High Performance in Life-Critical Patient Monitoring Systems.

    Science.gov (United States)

    Akbar, Muhammad Sajjad; Yu, Hongnian; Cang, Shuang

    2017-01-28

    In wireless body area sensor networks (WBASNs), Quality of Service (QoS) provision for patient monitoring systems in terms of time-critical deadlines, high throughput and energy efficiency is a challenging task. The periodic data from these systems generates a large number of small packets in a short time period which needs an efficient channel access mechanism. The IEEE 802.15.4 standard is recommended for low power devices and widely used for many wireless sensor networks applications. It provides a hybrid channel access mechanism at the Media Access Control (MAC) layer which plays a key role in overall successful transmission in WBASNs. There are many WBASN's MAC protocols that use this hybrid channel access mechanism in variety of sensor applications. However, these protocols are less efficient for patient monitoring systems where life critical data requires limited delay, high throughput and energy efficient communication simultaneously. To address these issues, this paper proposes a frame aggregation scheme by using the aggregated-MAC protocol data unit (A-MPDU) which works with the IEEE 802.15.4 MAC layer. To implement the scheme accurately, we develop a traffic patterns analysis mechanism to understand the requirements of the sensor nodes in patient monitoring systems, then model the channel access to find the performance gap on the basis of obtained requirements, finally propose the design based on the needs of patient monitoring systems. The mechanism is initially verified using numerical modelling and then simulation is conducted using NS2.29, Castalia 3.2 and OMNeT++. The proposed scheme provides the optimal performance considering the required QoS.

  18. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    Science.gov (United States)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  19. A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

    CERN Document Server

    Lazzarotto, Francesco; Costa, Enrico; Del Monte, Ettore; Di Persio, Giuseppe; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Pacciani, Luigi; Rubini, Alda; Soffitta, Paolo

    2011-01-01

    Modern satellite based experiments are often very complex real-time systems, composed by flight and ground segments, that have challenging resource related constraints, in terms of size, weight, power, requirements for real-time response, fault tolerance, and specialized input/output hardware-software, and they must be certified to high levels of assurance. Hardware-software data processing systems have to be responsive to system degradation and to changes in the data acquisition modes, and actions have to be taken to change the organization of the mission operations. A big research & develop effort in a team composed by scientists and technologists can lead to produce software systems able to optimize the hardware to reach very high levels of performance or to pull degraded hardware to maintain satisfactory features. We'll show real-life examples describing a system, processing the data of a X-Ray detector on satellite-based mission in spinning mode.

  20. Arctic clouds and surface radiation – a critical comparison of satellite retrievals and the ERA-interim reanalysis

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2011-12-01

    Full Text Available Clouds regulate Earth's radiation budget, both by reflecting part of the incoming sunlight leading to cooling and by absorbing and emitting infrared radiation which tends to have a warming effect. Globally averaged, at the top of the atmosphere the cloud radiative effect is to cool the climate, while at the Arctic surface, clouds are thought to be warming. Ground-based observations of central Arctic Ocean cloudiness are limited to sporadic field campaigns. Therefore many studies rely on satellite- or reanalysis data. Here we compare a passive instrument, the AVHRR-based retrieval from CM-SAF, with recently launched active instruments onboard CloudSat and CALIPSO and the widely used ERA-Interim reanalysis. We find that the three data sets differ significantly. In summer, the two satellite products agree having monthly means of 70–80 percent, but the reanalysis are approximately ten percent higher. In winter passive satellite instruments have serious difficulties, detecting only half the cloudiness of the reanalysis, active instruments being in between. The monthly mean long- and shortwave components of the surface cloud radiative effect obtained from the ERA-Interim reanalysis are about twice that calculated on the basis of CloudSat retrievals. We discuss these discrepancies in terms of instrument-, retrieval- and reanalysis characteristics.

  1. The top five research priorities in physician-provided pre-hospital critical care: a consensus report from a European research collaboration

    Directory of Open Access Journals (Sweden)

    Lockey David

    2011-10-01

    Full Text Available Abstract Background Physician-manned emergency medical teams supplement other emergency medical services in some countries. These teams are often selectively deployed to patients who are considered likely to require critical care treatment in the pre-hospital phase. The evidence base for guidelines for pre-hospital triage and immediate medical care is often poor. We used a recognised consensus methodology to define key priority areas for research within the subfield of physician-provided pre-hospital critical care. Methods A European expert panel participated in a consensus process based upon a four-stage modified nominal group technique that included a consensus meeting. Results The expert panel concluded that the five most important areas for further research in the field of physician-based pre-hospital critical care were the following: Appropriate staffing and training in pre-hospital critical care and the effect on outcomes, advanced airway management in pre-hospital care, definition of time windows for key critical interventions which are indicated in the pre-hospital phase of care, the role of pre-hospital ultrasound and dispatch criteria for pre-hospital critical care services. Conclusion A modified nominal group technique was successfully used by a European expert group to reach consensus on the most important research priorities in physician-provided pre-hospital critical care.

  2. Sadness, tragedy and mass disaster in Oklahoma City: providing critical incident stress debriefings to a community in crisis.

    Science.gov (United States)

    Davis, J A

    1996-04-01

    Shortly after 09:00 h on 19 April 1995, the Alfred P. Murrah Federal Building, located in downtown Oklahoma City, was devastated with a bomb blast of such gigantic proportions that it was heard 60 miles away in neighbouring Norman, Oklahoma. Oklahomans routinely commuting to work on that sunny Wednesday morning went about their business as usual. A crude bomb chemically comprised of various organic compounds, chemical fertilizer, ammonium nitrate and diesel fuel, weighing an estimated 4800 pounds or more, was transported in a vehicle the size of a truck. It blew open a crater 6-8 ft deep in the street floor. The Murrah Federal Building was impacted immediately; floors, windows, communication equipment and almost all the innocent victims inside were razed to the ground. Outside the building, as far as 10 blocks away or more, hundreds of victims lay hurt, seriously injured or dead from shards of glass that flew from office windows hundreds of feet above the street floor. Without warning, the initial impact of the bomb immediately devastated the entire city. People were in a state of shock, disbelief and denial; acute symptoms of post traumatic stress disorder (PTSD) were commonplace. Oklahomans, 'numb' from the impact of the critical incident and ill-equipped to handle the chaos of such catastrophic proportions, struggled to regain control of their lives as friends, family and loved ones went unaccounted for or were found critically injured, dying or already dead. The critical incident on 19 April demanded the immediate attention of the nation, to come to the aid of the Oklahomans who were in desperate need. By 1 June, the exhaustive investigations revealed that 30 office buildings in downtown Oklahoma City had to be condemned, and as many as 300 others were damaged. In addition, 168 people had been found dead including 19 children and one nurse working as an emergency services rescue worker. Approximately 490 other victims had been reported injured from the blast

  3. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  4. Continuous Renal Replacement Therapy: Reviewing Current Best Practice to Provide High-Quality Extracorporeal Therapy to Critically Ill Patients.

    Science.gov (United States)

    Connor, Michael J; Karakala, Nithin

    2017-07-01

    Continuous renal replacement therapy (CRRT) use continues to expand globally. Despite improving technology, CRRT remains a complex intervention. Delivery of high-quality CRRT requires close collaboration of a multidisciplinary team including members of the critical care medicine, nephrology, nursing, pharmacy, and nutrition support teams. While significant gaps in medical evidence regarding CRRT persist, the growing evidence base supports evolving best practice and consensus to define high-quality CRRT. Unfortunately, there is wide variability in CRRT operating characteristics and limited uptake of these best practices. This article will briefly review the current best practice on important aspects of CRRT delivery including CRRT dose, anticoagulation, dialysis vascular access, fluid management, and drug dosing in CRRT. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  6. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  7. Proceedings of the Mobile Satellite Conference

    Science.gov (United States)

    Rafferty, William

    1988-01-01

    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them.

  8. Can Thromboelastography performed on kaolin-activated citrated samples from critically ill patients provide stable and consistent parameters?

    Science.gov (United States)

    White, H; Zollinger, C; Jones, M; Bird, R

    2010-04-01

    Thromboelastography (TEG) is a potentially useful tool but analysis within 4-6 min of collection imposes limitations on its use and access. The use of citrate blood tubes potentially increases the time frame for processing specimens. There is, however, limited research on the stability of citrate specimens, timing of processing and the accuracy of TEG results. The purpose of this study was to examine the effects of early and delayed processing on TEG parameters using kaolin-activated citrated blood samples in the intensive care population. TEG analysis was performed on 61 patients. Blood was collected into two 3.2% sodium citrate (0.105 m) tubes. Kaolin-activated samples were analysed at 15, 30 and 120 min postcollection. TEG parameters analysed included reaction time (R), clot formation time (K), alpha angle (alpha), maximum amplitude, LY30, the coagulation index, time to maximum rate of thrombus generation, maximum rate of thrombus generation and total thrombus generation. Sixty-one critically ill patients were included. The results of the anova showed that time from collection was significantly associated with the TEG((R)) results (P kaolin-activated citrate TEG specimens can begin as early as 15 min postvenipuncture. However, delaying processing by more than 30 min leads to a significant change in results.

  9. Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Enrico D'Aniello

    Full Text Available The first step in the conversion of vitamin A into retinoic acid (RA in embryos requires retinol dehydrogenases (RDHs. Recent studies have demonstrated that RDH10 is a critical core component of the machinery that produces RA in mouse and Xenopus embryos. If the conservation of Rdh10 function in the production of RA extends to teleost embryos has not been investigated. Here, we report that zebrafish Rdh10a deficient embryos have defects consistent with loss of RA signaling, including anteriorization of the nervous system and enlarged hearts with increased cardiomyocyte number. While knockdown of Rdh10a alone produces relatively mild RA deficient phenotypes, Rdh10a can sensitize embryos to RA deficiency and enhance phenotypes observed when Aldh1a2 function is perturbed. Moreover, excess Rdh10a enhances embryonic sensitivity to retinol, which has relatively mild teratogenic effects compared to retinal and RA treatment. Performing Rdh10a regulatory expression analysis, we also demonstrate that a conserved teleost rdh10a enhancer requires Pax2 sites to drive expression in the eyes of transgenic embryos. Altogether, our results demonstrate that Rdh10a has a conserved requirement in the first step of RA production within vertebrate embryos.

  10. A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs.

    Science.gov (United States)

    Shen, Lin; Rabi, S Alireza; Sedaghat, Ahmad R; Shan, Liang; Lai, Jun; Xing, Sifei; Siliciano, Robert F

    2011-07-13

    Control of HIV-1 replication was first achieved with regimens that included a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI); however, an explanation for the high antiviral activity of these drugs has been lacking. Indeed, conventional pharmacodynamic measures like IC(50) (drug concentration causing 50% inhibition) do not differentiate NNRTIs and PIs from less active nucleoside reverse transcriptase inhibitors (NRTIs). Drug inhibitory potential depends on the slope of the dose-response curve (m), which represents how inhibition increases as a function of increasing drug concentration and is related to the Hill coefficient, a measure of intramolecular cooperativity in ligand binding to a multivalent receptor. Although NNRTIs and PIs bind univalent targets, they unexpectedly exhibit cooperative dose-response curves (m > 1). We show that this cooperative inhibition can be explained by a model in which infectivity requires participation of multiple copies of a drug target in an individual life cycle stage. A critical subset of these target molecules must be in the unbound state. Consistent with experimental observations, this model predicts m > 1 for NNRTIs and PIs and m = 1 in situations where a single drug target/virus mediates a step in the life cycle, as is the case with NRTIs and integrase strand transfer inhibitors. This model was tested experimentally by modulating the number of functional drug targets per virus, and dose-response curves for modulated virus populations fit model predictions. This model explains the high antiviral activity of two drug classes important for successful HIV-1 treatment and defines a characteristic of good targets for antiviral drugs in general, namely, intermolecular cooperativity.

  11. Critical Analysis of the Quality, Readability, and Technical Aspects of Online Information Provided for Neck-Lifts.

    Science.gov (United States)

    Rayess, Hani; Zuliani, Giancarlo F; Gupta, Amar; Svider, Peter F; Folbe, Adam J; Eloy, Jean Anderson; Carron, Michael A

    2017-03-01

    The number of patients using the internet to obtain health information is growing. This material is unregulated and heterogeneous and can influence patient decisions. To compare the quality, readability, and technical aspects of online information about neck-lifts provided by private practice websites vs academic medical centers and reference sources. In this cross-sectional analysis conducted between November 2015 and January 2016, a Google search of the term neck-lift was performed, and the first 45 websites were evaluated. The websites were categorized as private practice vs other. Private websites (PWs) included sites created by private practice physicians. Other websites (OWs) were created by academic medical centers or reference sources. Quality, readability, and technical aspects of online websites related to neck-lifts. Quality was assessed using the DISCERN criteria and the Health on the Net principles (HONcode). Readability was assessed using 7 validated and widely used criteria. Consensus US reading grade level readability was provided by a website (readabilityformulas.com). Twelve technical aspects were evaluated based on criteria specified by medical website creators. Forty-five websites (8 OWs [18%] and 37 PWs [82%]) were analyzed. There was a significant difference in quality between OWs and PWs based on the DISCERN criteria and HONcode principles. The DISCERN overall mean (SD) scores were 2.3 (0.5) for OWs and 1.3 (0.3) for PWs (P analysis, the mean (SD) was 8.6 (1.8) (range, 5-11) for OW, and the mean (SD) was 5.8 (1.7) (range, 2-9) for PW. The mean (SD) readability consensus reading grade level scores were 11.7 (1.9) for OWs and 10.6 (1.9) for PWs. Of a total possible score of 12, the mean (SD) technical scores were 6.3 (1.8) (range, 4-9) for OWs and 6.4 (1.5) (range, 3-9) for PWs. Compared with PWs, OWs had a significantly higher quality score based on both the DISCERN criteria and HONcode principles. The mean readability for OWs and PWs was

  12. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    Science.gov (United States)

    Viers, J. H.

    2013-12-01

    (< 50 Mg/ha), but significantly less than naturally recruiting riparian forests (50 - 200 Mg/ha). Monitoring and assessment of dynamic ecosystem processes and functions will increasingly use data intensive methodologies; however, this research shows the utility of engaging citizen scientists in developing more robust data streams that not only reduces uncertainty, but also provide invaluable opportunities for improved education and outreach.

  13. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  14. ARDUSAT, an Arduino-Based CubeSat Providing Students with the Opportunity to Create their own Satellite Experiment and Collect Real-World Space Data

    Science.gov (United States)

    Geeroms, D.; Bertho, S.; De Roeve, M.; Lempens, R.; Ordies, M.; Prooth, J.

    2015-09-01

    Short for “Arduino Satellite”, ArduSat is an open-source Nanosatellite, based on the CubeSat standard. The extensive Arduino sensor suite on board gives students the opportunity to create their own satellite experiments and collect real-world space data using the Arduino open-source prototyping platform. From March until May 2014, two undergraduate physics students from Hasselt University used the downloadable ArduSat Software Development Kit which allowed them to design the command sequences they used to conduct their experiments.

  15. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  16. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  17. Neither as harmful as feared by critics nor as empowering as promised by providers: risk information offered direct to consumer by personal genomics companies.

    Science.gov (United States)

    Nordgren, Anders

    2014-01-01

    In this paper, I investigate ethical and policy aspects of the genetic services and web-rhetoric of companies offering genetic information direct to consumer, and I do so with a special focus on genetic risk information. On their websites, the companies stress that genetic risk testing for multifactorial complex medical conditions such as cardiovascular disease and cancer may empower the consumer and provide valuable input to personal identity. Critics maintain, on the other hand, that testing can be psychologically harmful, is of limited clinical and preventive value, and vulnerable to misinterpretation. I stress the importance of empirical studies in assessing the pros and cons of direct-to-consumer testing and point out that recent empirical studies indicate that this testing is neither as harmful as feared by critics nor as empowering as promised by the companies. However, the testing is not entirely harmless. Remaining problems include testing of third parties without consent and ownership of genotypic and phenotypic information. Moreover, the testing, although not particularly empowering, may still provide input to self-understanding that some people find valuable. Regarding policy-making, I suggest that self-regulation in terms of best practice guidelines may play an important role, but I also stress that national and international regulation may be necessary.

  18. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  19. Mobile satellite communications handbook

    CERN Document Server

    Cochetti, Roger

    2014-01-01

    With a Preface by noted satellite scientist Dr. Ahmad Ghais, the Second Edition reflects the expanded user base for this technology by updating information on historic, current, and planned commercial and military satellite systems and by expanding sections that explain the technology for non-technical professionals.   The book begins with an introduction to satellite communications and goes on to provide an overview of the technologies involved in mobile satellite communications, providing basic introductions to RF Issues, power Issues, link issues and system issues. It describes

  20. Satellite image collection modeling for large area hazard emergency response

    Science.gov (United States)

    Liu, Shufan; Hodgson, Michael E.

    2016-08-01

    Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.

  1. Performance Characterization of a Novel Plasma Thruster to Provide a Revolutionary Operationally Responsive Space Capability with Micro- and Nano-Satellites

    Science.gov (United States)

    2011-03-24

    controllers. ............ 33 Figure 15. BPU -600 Host Simulator software interface. ................................................. 34 Figure 16...Figure 14. Xenon and krypton bottle and battery of four mass flow controllers. Power for the thruster and cathode were provided by a Busek BPU -600...supply, which was capable of 0-55 V and 0-55 A. Control of the PPU was achieved using Busek‘s BPU -600 Host Simulator, which was a LabView

  2. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    Science.gov (United States)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  3. Providing critical laboratory results on time, every time to help reduce emergency department length of stay: how our laboratory achieved a Six Sigma level of performance.

    Science.gov (United States)

    Blick, Kenneth E

    2013-08-01

    To develop a fully automated core laboratory, handling samples on a "first in, first out" real-time basis with Lean/Six Sigma management tools. Our primary goal was to provide services to critical care areas, eliminating turnaround time outlier percentage (TAT-OP) as a factor in patient length of stay (LOS). A secondary goal was to achieve a better laboratory return on investment. In 2011, we reached our primary goal when we calculated the TAT-OP distribution and found we had achieved a Six Sigma level of performance, ensuring that our laboratory service can be essentially eliminated as a factor in emergency department patient LOS. We also measured return on investment, showing a productivity improvement of 35%, keeping pace with our increased testing volume. As a result of our Lean process improvements and Six Sigma initiatives, in part through (1) strategic deployment of point-of-care testing and (2) core laboratory total automation with robotics, middleware, and expert system technology, physicians and nurses at the Oklahoma University Medical Center can more effectively deliver lifesaving health care using evidence-based protocols that depend heavily on "on time, every time" laboratory services.

  4. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    Science.gov (United States)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  5. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    ionosphere using IRI-Plas-G software. One of the outstanding features of IONOLAB-RAY is the opportunity of Global Ionospheric Map-Total Electron Content (GIM-TEC) assimilation. This feature enables more realistic representation of ionosphere, especially for the times when ionosphere deviates from the generalized models, such as during geomagnetic storms. This feature is critical to examine the effect of ionosphere on satellite signals under ionospheric storm conditions. In this study TURKSAT satellite data is used to compare the results of IONOLAB-RAY and evaluate the effect of ionosphere. TURKSAT is one of the world's leading companies providing all sorts of satellite communications through the satellites of TURKSAT as well as the other satellites. Providing services for voice, data, internet, TV, and radio broadcasting through the satellites across a wide area extending from Europe to Asia. The latest satellite of TURKSAT, namely Turksat 4B was launched on October 2015, before that various versions of TURKSAT satellites are launched since 1994. In the future enlargement of broadcasting area towards equatorial region is aimed, where the ionospheric anomalies and storms are highly expected. In the future this study can be applied to the satellite signals in equatorial regions and effects of ionosphere especially under storm conditions can be discussed. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  6. Work-related critical incidents in hospital-based health care providers and the risk of post-traumatic stress symptoms, anxiety, and depression: a meta-analysis.

    Science.gov (United States)

    de Boer, Jacoba; Lok, Anja; Van't Verlaat, Ellen; Duivenvoorden, Hugo J; Bakker, Arnold B; Smit, Bert J

    2011-07-01

    This meta-analysis reviewed existing data on the impact of work-related critical incidents in hospital-based health care professionals. Work-related critical incidents may induce post-traumatic stress symptoms or even post-traumatic stress disorder (PTSD), anxiety, and depression and may negatively affect health care practitioners' behaviors toward patients. Nurses and doctors often cope by working part time or switching jobs. Hospital administrators and health care practitioners themselves may underestimate the effects of work-related critical incidents. Relevant online databases were searched for original research published from inception to 2009 and manual searches of the Journal of Traumatic Stress, reference lists, and the European Traumatic Stress Research Database were conducted. Two researchers independently decided on inclusion and study quality. Effect sizes were estimated using standardized mean differences with 95% confidence intervals. Consistency was evaluated, using the I(2)-statistic. Meta-analysis was performed using the random effects model. Eleven studies, which included 3866 participants, evaluated the relationship between work-related critical incidents and post-traumatic stress symptoms. Six of these studies, which included 1695 participants, also reported on the relationship between work-related critical incidents and symptoms of anxiety and depression. Heterogeneity among studies was high and could not be accounted for by study quality, character of the incident, or timing of data collection. Pooled effect sizes for the impact of work-related critical incidents on post-traumatic stress symptoms, anxiety, and depression were small to medium. Remarkably, the effect was more pronounced in the longer than in the shorter term. In conclusion, this meta-analysis supports the hypothesis that work-related critical incidents are positively related to post-traumatic stress symptoms, anxiety, and depression in hospital-based health care professionals

  7. Mobile satellite service for Canada

    Science.gov (United States)

    Sward, David

    1988-05-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  8. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  9. Critical Care

    Science.gov (United States)

    Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications ... a team of specially-trained health care providers. Critical care usually takes place in an intensive care ...

  10. Biochemical markers and the FDA Critical Path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development

    DEFF Research Database (Denmark)

    Karsdal, M A; Henriksen, K; Leeming, D J;

    2009-01-01

    The aim of this review is to discuss the potential usefulness of a novel class of biochemical markers, neoepitopes, in the context of the US Food and Drug Administration (FDA) Critical Path Initiative, which emphasizes biomarkers of safety and efficacy as areas of pivotal interest. Examples...

  11. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  12. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  13. Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data

    OpenAIRE

    Quaas, Johannes

    2015-01-01

    A simple way to diagnose fractional cloud cover in general circulation models is to relate it to the simulated relative humidity, and allowing for fractional cloud cover above a “critical relative humidity” of less than 100%. In the formulation chosen here, this is equivalent to assuming a uniform “top-hat” distribution of subgrid-scale total water content with a variance related to saturation. Critical relative humidity has frequently been treated as a “tunable” constant, yet it is an observ...

  14. A Critical Review of the Evidence for M32 being a Compact Dwarf Satellite of M31 rather than a More Distant Normal Galaxy

    Institute of Scientific and Technical Information of China (English)

    C. Ke-shih Young; Malcolm J. Currie; Robert J. Dickens; A-Li Luo; Tong-Jie Zhang

    2008-01-01

    Since Baade's photographic study of M32 in the mid 1940s, it has been accepted as an established fact that M32 is a compact dwarf satellite of M31. The purpose of this paper is to report on the findings of our investigation into the nature of the existing evidence. We find that the case for M32 being a satellite of M31 rests upon Hubble Space Telescope (HST) based stellar population studies which have resolved red-giant branch (RGB) and red clump stars in M32 as well as other nearby galaxies. Taken in isolation, this recent evidence could be considered to be conclusive in favour of the existing view. However, the conventional scenario does not explain M32's anomalously high central velocity dispersion for a dwarf galaxy (several times that of either NGC 147, NGC 185 or NGC 205) or existing planetary nebula observations (which suggest that M32 is more than twice as distant as M31) and also requires an elaborate physical explanation for M32's inferred compactness. Conversely, we find that the case for M32 being a normal galaxy, of the order of three times as distant as M31, is supported by: (1) a central velocity dispersion typical of intermediate galaxies, (2) the published planetary nebula observations, and (3) known scaling relationships for normal early-type galaxies. However, this novel scenario cannot account for the high apparent luminosities of the RGB stars resolved in the M32 direction by HST observations. We are therefore left with two apparently irreconcilable scenarios, only one of which can be correct, but both of which suffer from potentially fatal evidence to the contrary. This suggests that current understanding of some relevant fields is still very far from adequate.

  15. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Z; Moore, J; Rosati, L; Mian, O; Narang, A; Herman, J; McNutt, T [Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goal of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  16. Overview of intercalibration of satellite instruments

    Science.gov (United States)

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms

  17. Archetypal Criticism.

    Science.gov (United States)

    Chesebro, James W.; And Others

    1990-01-01

    Argues that archetypal criticism is a useful way of examining universal, historical, and cross-cultural symbols in classrooms. Identifies essential features of an archetype; outlines operational and critical procedures; illustrates archetypal criticism as applied to the cross as a symbol; and provides a synoptic placement for archetypal criticism…

  18. Reconceptualizing the University's Duty to Provide a Safe Learning Environment: A Criticism of the Doctrine of "In Loco Parentis" and the Restatement (Second) of Torts.

    Science.gov (United States)

    Bickel, Robert D.; Lake, Peter F.

    1994-01-01

    Litigation concerning the responsibility of a college or university to provide a safe environment for students is reviewed, focusing on interpretations of the "in loco parentis" doctrine. It is argued that institutions have a duty to not only provide campus security but also enforce a code of civility on campus. (MSE)

  19. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  20. Central Satellite Data Repository Supporting Research and Development

    Science.gov (United States)

    Han, W.; Brust, J.

    2015-12-01

    Near real-time satellite data is critical to many research and development activities of atmosphere, land, and ocean processes. Acquiring and managing huge volumes of satellite data without (or with less) latency in an organization is always a challenge in the big data age. An organization level data repository is a practical solution to meeting this challenge. The STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR) is a scalable, stable, and reliable repository to acquire, manipulate, and disseminate various types of satellite data in an effective and efficient manner. SCDR collects more than 200 data products, which are commonly used by multiple groups in STAR, from NOAA, GOES, Metop, Suomi NPP, Sentinel, Himawari, and other satellites. The processes of acquisition, recording, retrieval, organization, and dissemination are performed in parallel. Multiple data access interfaces, like FTP, FTPS, HTTP, HTTPS, and RESTful, are supported in the SCDR to obtain satellite data from their providers through high speed internet. The original satellite data in various raster formats can be parsed in the respective adapter to retrieve data information. The data information is ingested to the corresponding partitioned tables in the central database. All files are distributed equally on the Network File System (NFS) disks to balance the disk load. SCDR provides consistent interfaces (including Perl utility, portal, and RESTful Web service) to locate files of interest easily and quickly and access them directly by over 200 compute servers via NFS. SCDR greatly improves collection and integration of near real-time satellite data, addresses satellite data requirements of scientists and researchers, and facilitates their primary research and development activities.

  1. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  2. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  3. Satellite Communications for Aeronautical Applications: Recent research and Development Results

    Science.gov (United States)

    Kerczewski, Robert J.

    2001-01-01

    Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.

  4. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  5. The Rae craton of Laurentia/Nuna: a tectonically unique entity providing critical insights into the concept of Precambrian supercontinental cyclicity

    Science.gov (United States)

    Bethune, K. M.

    2015-12-01

    Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.

  6. Privatization of data communication services by domestic satellite in Thailand

    Science.gov (United States)

    Reowilaisuk, Rianchai

    A summary of privatization of satellite communication services in Thailand is presented. A background of satellite communication in Thailand is given. Satellite communication providers, both government and private, are listed. Steps toward privatization and laws governing telecommunications are addressed.

  7. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...

  8. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    Science.gov (United States)

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  9. A critical evaluation of two point-of-use water treatment technologies: can they provide water that meets WHO drinking water guidelines?

    Science.gov (United States)

    Murphy, Heather M; McBean, Edward A; Farahbakhsh, Khosrow

    2010-12-01

    Point-of-use (POU) technologies have been proposed as solutions for meeting the Millennium Development Goal (MDG) for safe water. They reduce the risk of contamination between the water source and the home, by providing treatment at the household level. This study examined two POU technologies commonly used around the world: BioSand and ceramic filters. While the health benefits in terms of diarrhoeal disease reduction have been fairly well documented for both technologies, little research has focused on the ability of these technologies to treat other contaminants that pose health concerns, including the potential for formation of contaminants as a result of POU treatment. These technologies have not been rigorously tested to see if they meet World Health Organization (WHO) drinking water guidelines. A study was developed to evaluate POU BioSand and ceramic filters in terms of microbiological and chemical quality of the treated water. The following parameters were monitored on filters in rural Cambodia over a six-month period: iron, manganese, fluoride, nitrate, nitrite and Escherichia coli. The results revealed that these technologies are not capable of consistently meeting all of the WHO drinking water guidelines for these parameters.

  10. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  11. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  12. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  13. Operational experience and performance characteristics of a valve-regulated lead-acid battery energy-storage system for providing the customer with critical load protection and energy-management benefits at a lead-recycling plant

    Science.gov (United States)

    Hunt, G. W.

    The Power Control Division of GNB Technologies, commissioned on May 13, 1996 a new facility which houses a 5-MW battery energy-storage system (BESS) at GNB's Lead Recycling Centre in Vernon, CA. When the plant loses utility power (which typically happens two or three times a year), the BESS will provide up to 5 MW of power at 4160 VAC in support of all the plant loads. Since the critical loads are not isolated, it is necessary to carry the entire plant load (maximum of 5 MVA) for a short period immediately following an incident until non-critical loads have been automatically shed. Plant loading typically peaks at 3.5 MVA with critical loads of about 2.1 MVA. The BESS also provides the manufacturing plant with customer-side-of-the-meter energy management options to reduce its energy demand during peak periods of the day. The BESS has provided a reduction in monthly electric bills through daily peak-shaving. By design, the battery can provide up to 2.5 MWh of energy and still retain 2.5 MWh of capacity in reserve to handle the possibility of a power outage in protecting the critical loads for up to 1 h. By storing energy from the utility during off-peak hours of the night in the batteries when the cost is low (US4.5¢ per kWh), GNB can then discharge this energy during high demand periods of the day (US14.50 per kW). For example, by reducing its peak demand by 300 kW, the lead-recycling centre can save over US4000 per month in its electric bills. The BESS at Vernon represents a first large-scale use of valve-regulated lead-acid batteries in such a demanding application. This paper presents a summary of the operational experience and performance characteristics of the BESS over the past 2 years.

  14. Satellite oceanography - The instruments

    Science.gov (United States)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  15. Broadcast satellite service: The international dimension

    Science.gov (United States)

    Samara, Noah

    1991-09-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  16. Critical Jostling

    Directory of Open Access Journals (Sweden)

    Pippin Barr

    2016-11-01

    Full Text Available Games can serve a critical function in many different ways, from serious games about real world subjects to self-reflexive commentaries on the nature of games themselves. In this essay we discuss critical possibilities stemming from the area of critical design, and more specifically Carl DiSalvo’s adversarial design and its concept of reconfiguring the remainder. To illustrate such an approach, we present the design and outcomes of two games, Jostle Bastard and Jostle Parent. We show how the games specifically engage with two previous games, Hotline Miami and Octodad: Dadliest Catch, reconfiguring elements of those games to create interactive critical experiences and extensions of the source material. Through the presentation of specific design concerns and decisions, we provide a grounded illustration of a particular critical function of videogames and hope to highlight this form as another valuable approach in the larger area of videogame criticism.

  17. Communication satellite system beyond the year 2000

    Science.gov (United States)

    Robertson, G. J.; Fourquet, J. M.

    1991-10-01

    The primary evolutionary factors of satellite communications technologies are reviewed based on the results of a study of novel satellite developments. A critical evaluation of the viability and availability of the technologies is utilized in conjunction with market forecasts to determine promising commercial strategies. Modern technologies are almost prepared for the development of a class of communications satellites and include bandwidth utilization, spacecraft bus modularity, and functional integration.

  18. Criticality Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of

  19. Satellite to measure equatorial ozone layer

    Science.gov (United States)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  20. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    High Frequency Satellite (AEHF) is a joint service satellite communications system that provides global , survivable, secure, protected, and jam...three satellites fully integrated into the Milstar constellation. October 2014: On October 16, 2014, the program received PEO certification for the...Combined Orbital Operation, Logistics Sustainment ( COOLS ) contract, it will be completed and coordinated in CY 2016. The AEHF system being sustained

  1. Femto-Satellite Sensor Node Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key challenge for reducing a traditional satellite to such a small size is to remove the maximum possible functionality that is not critical for creating a...

  2. Introductory Course on Satellite Navigation

    Science.gov (United States)

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  3. Satellite cells: the architects of skeletal muscle.

    Science.gov (United States)

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  4. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  5. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  6. Direct Broadcast Satellite: Radio Program

    Science.gov (United States)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  7. A global satellite-assisted precipitation climatology

    Science.gov (United States)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  8. A global satellite assisted precipitation climatology

    Directory of Open Access Journals (Sweden)

    C. Funk

    2015-05-01

    Full Text Available Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05° global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology

  9. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  10. A satellite anemometer

    Science.gov (United States)

    Hanson, W. B.; Heelis, R. A.

    1995-01-01

    This report describes the design, development, and testing of components of a satellite anemometer, an instrument for measuring neutral winds in the upper atmosphere from a satellite platform. The device, which uses four nearly identical pressure sensors, measures the angle of arrival of the bulk neutral flow in the satellite frame of reference. It could also be used in a feedback loop to control spacecraft attitude with respect to the ram velocity direction. We have now developed miniaturized ionization pressure gauges that will work well from the slip flow region near 115 km up to the base of the exosphere, which covers the entire altitude range currently being considered for Tether. Laboratory tests have demonstrated a very linear response to changes in ram angle out to +/- 20 deg. (transverse wind component of 2.7 km s(exp -1)) from the ram, and a monotonic response to out beyond 45 deg. Pitch (vertical wind) and yaw (horizontal wind) can be sampled simultaneously and meaningfully up to 10 Hz. Angular sensitivity of 30 arc seconds (approximately 1 ms(exp -1) is readily attainable, but absolute accuracy for winds will be approximately 1 deg (130 m/s) unless independent attitude knowledge is available. The critical elements of the design have all been tested in the laboratory.

  11. Spectrometric Characterization of Active Geosynchronous Satellites

    Science.gov (United States)

    Bedard, D.; Monin, D.; Scott, R.; Wade, G.

    2012-09-01

    Spectrometric characterization of artificial space objects for the purposes of Space Situational Awareness (SSA) has demonstrated great potential since this technique was first reported at this conference over a decade ago. Yet, much scientific work remains to be done before this tool can be used reliably in an operational context. For example, a detailed study of the impacts of a dynamic illumination-object-sensor geometry during individual spectrometric observations has yet to be described. A thorough understanding of this last problem is considered critical if reflectance spectroscopy will be used to characterize active low Earth orbiting spacecraft, in which the Sun-object-sensor geometry varies considerably over the course of a few seconds, or to study space debris that have uncontrolled and varying attitude. It is with the above questions in mind that two observation campaigns were conducted. The first consisted in using small-aperture telescopes to obtain multi-color photometric light curves of active geosynchronous satellites over a wide range of phase angles. The second observation campaign was conducted at the Dominion Astrophysical Observatory (DAO) using the 1.8-metre Plaskett telescope and its Cassegrain spectrograph. The objective of this experiment was to gather time-resolved spectrometric measurements of active geosynchronous satellites as a function of phase angle. This class of satellites was selected because their attitude is controlled and can be estimated to a high level of confidence. This paper presents the two observation campaigns and provides a summary of the key results of this experiment.

  12. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    Science.gov (United States)

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  13. Satellite switching concepts for European business services in the nineties

    Science.gov (United States)

    Lombard, D.; Rouffet, D.

    A first generation of business communication satellites are now operational or to be launched. Increased demands for communication satellite facilities will develop, if special services, such as videoconferencing, can be provided at a reasonable cost. For such developments, it will be necessary to define a second generation of business communication satellites. The present investigation evaluates briefly the size of the expected European market for 1995. A study is conducted of the payload structure for the required satellite system, and aspects related to link budgets and power consumption are explored. It is found that system dimensioning is determined by the up-link and by technology. Critical factors are related to the output and input multiplexors for the link budget, the switching matrix, and implications for the mass budget. The best trade-off between technological, mass, and link budget limitations is achieved in connection with the employment of a hinged antennas satellite, using an intermediate number of spot beams and associated earth stations of reasonable size.

  14. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  15. Critical Pedagogy for Critical Mathematics Education

    Science.gov (United States)

    Tutak, Fatma Aslan; Bondy, Elizabeth; Adams, Thomasenia L.

    2011-01-01

    This article provides a brief introduction to critical pedagogy and further discussion on critical mathematics education. Critical mathematics education enables students to read the world with mathematics. Three emerging domains of mathematics education related to critical mathematics education are discussed in this manuscript: ethnomathematics,…

  16. Critical Pedagogy for Critical Mathematics Education

    Science.gov (United States)

    Tutak, Fatma Aslan; Bondy, Elizabeth; Adams, Thomasenia L.

    2011-01-01

    This article provides a brief introduction to critical pedagogy and further discussion on critical mathematics education. Critical mathematics education enables students to read the world with mathematics. Three emerging domains of mathematics education related to critical mathematics education are discussed in this manuscript: ethnomathematics,…

  17. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    Science.gov (United States)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  18. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  19. Blossom Point Satellite Tracking and Command Station

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Blossom Point Satellite Command and Tracking Facility (BP) provides engineering and operational support to several complex space systems for the Navy...

  20. Medicare Provider Data - Hospice Providers

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Hospice Utilization and Payment Public Use File provides information on services provided to Medicare beneficiaries by hospice providers. The Hospice PUF...

  1. Satellite Surveillance: Domestic Issues

    Science.gov (United States)

    2010-02-01

    earthquake and tsunami in the Indian Ocean and Hurricane Katrina in 2005, when the NGA provided graphics for “relief efforts that depicted the locations of...that show the damage resulting from an earthquake , fire, flood, hurricane, oil spill, or volcanic eruption.8 Bush Administration Policies...Satellite information has continued to have important civil applications in such disparate areas as the movement of glaciers in Yakutat Bay in Alaska

  2. Satellite television analogue and digital reception techniques

    CERN Document Server

    Benoit, Herve

    1999-01-01

    Satellite television is part of the lives of millions of television viewers worldwide and its influence is set to increase significantly with the launch of digital satellite television services.This comprehensive reference book, written by the author of the highly successful 'Digital Television', provides a technical overview of both analogue and digital satellite TV. Written concisely and thoroughly, it covers all aspects of satellite TV necessary to understand its operation and installation. It also covers the evolution of satellite television, and contains a detailed glossary of tec

  3. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  4. [Survey of analytical work done for drugs at the emergency and critical care centers equipped with high-performance instruments provided by the Ministry of Health and Welfare (at present: Ministry of Health, Labour and Welfare) in fiscal 1998].

    Science.gov (United States)

    Hori, Yasushi; Iseki, Ken; Suzuki, Koichiro; Namera, Akira; Fukumoto, Mariko; Fuke, Chiaki; Mori, Hiromi; Soma, Kazui

    2010-09-01

    A questionnaire was sent to 73 emergency and critical care centers where high-performance instruments for analyzing drugs and chemicals were provided by the Ministry of Health and Welfare (currently Ministry of Health, Labour and Welfare) in fiscal 1998. 52 centers (71.2%) responded to the questionnaire. Among these, the instruments have been in operation at 36 centers. This means that analytical work has been performed in at least 49.3% (36/73) of facilities with the instruments. A positive correlation was observed between the annual number of patients tested for drugs and chemicals and analytical work hours at the 36 facilities. The results indicated that 150 cases may be tested for drugs and chemicals in a year on the condition that 100 hours a month of analytical work are secured, and 200 or more cases may be tested if 200 hours a month are secured. As for the running costs required for the operation of the instruments, the instrument maintenance and repair cost was estimated at 2 million yen a year, and it was calculated that 100 cases could be handled with a maximum annual supply expense of 1 million yen and 150 cases could be handled with a maximum annual supply expense of 2 million yen. These results suggest that the instrument running cost would be fully covered at nationwide emergency and critical care centers if the additional 5,000 NHI points (1 point = 10 yen) for hospital admission, which is approved for advanced emergency and critical care centers, were applicable to all facilities. Among the 36 facilities, the implementation of analysis varied for each of the 15 toxic substances recommended for analysis by the Japanese Society for Clinical Toxicology. Further research will be necessary to investigate and assess the frequency of analysis requests and combination of simple qualitative and instrumental analyses for each of the 15 substances, in order to evaluate the approach to the 15 substances in analytical work.

  5. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  6. Existence of undiscovered Uranian satellites

    Energy Technology Data Exchange (ETDEWEB)

    Boice, D.C.

    1986-04-01

    Structure in the Uranian ring system as observed in recent occultations may contain indirect evidence for the existence of undiscovered satellites. Using the Alfven and Arrhenius (1975, 1976) scenario for the formation of planetary systems, the orbital radii of up to nine hypothetical satellites interior to Miranda are computed. These calculations should provide interesting comparisons when the results from the Voyager 2 encounter with Uranus are made public. 15 refs., 1 fig., 1 tab.

  7. Radio interferometry and satellite tracking

    CERN Document Server

    Kawase, Seiichiro

    2012-01-01

    Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describ

  8. ASTER satellite observations for international disaster management

    Science.gov (United States)

    Duda, K.A.; Abrams, M.

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  9. Neptune's small satellites

    Science.gov (United States)

    Thomas, P.

    1992-04-01

    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  10. Integration of mobile satellite and cellular systems

    Science.gov (United States)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  11. Heart Monitoring By Satellite

    Science.gov (United States)

    1978-01-01

    The ambulance antenna shown is a specially designed system that allows satellite-relayed two-way communications between a moving emergency vehicle and a hospital emergency room. It is a key component of a demonstration program aimed at showing how emergency medical service can be provided to people in remote rural areas. Satellite communication permits immediate, hospital- guided treatment of heart attacks or other emergencies by ambulance personnel, saving vital time when the scene of the emergency is remote from the hospital. If widely adopted, the system could save tens of thousands of lives annually in the U.S. alone, medical experts say. The problem in conventional communication with rural areas is the fact that radio signals travel in line of sight. They may be blocked by tall buildings, hills and mountains, or even by the curvature of the Earth, so signal range is sharply limited. Microwave relay towers could solve the problem, but a complete network of repeater towers would be extremely expensive. The satellite provides an obstruction-free relay station in space.

  12. Tactical Satellite 3

    Science.gov (United States)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  13. Stereoscopic observations from meteorological satellites

    Science.gov (United States)

    Hasler, A. F.; Mack, R.; Negri, A.

    two satellites. A general solution for accurate height computation depends on precise navigation of the two satellites. Validation of the geosynchronous satellite stereo using high altitude mountain lakes and vertically pointing aircraft lidar leads to a height accuracy estimate of +/- 500 m for typical clouds which have been studied. Applications of the satellite stereo include: 1) cloud top and base height measurements, 2) cloud-wind height assignment, 3) vertical motion estimates for convective clouds (Mack et al. [13], [14]), 4) temperature vs. height measurements when stereo is used together with infrared observations and 5) cloud emissivity measurements when stereo, infrared and temperature sounding are used together (see Szejwach et al. [15]). When true satellite stereo image pairs are not available, synthetic stereo may be generated. The combination of multispectral satellite data using computer produced stereo image pairs is a dramatic example of synthetic stereoscopic display. The classic case uses the combination of infrared and visible data as first demonstrated by Pichel et al. [16]. Hasler et at. [17], Mosher and Young [18] and Lorenz [19], have expanded this concept to display many channels of data from various radiometers as well as real and simulated data fields. A future system of stereoscopic satellites would be comprised of both low orbiters (as suggested by Lorenz and Schmidt [20], [19]) and a global system of geosynchronous satellites. The low earth orbiters would provide stereo coverage day and night and include the poles. An optimum global system of stereoscopic geosynchronous satellites would require international standarization of scan rate and direction, and scan times (synchronization) and resolution of at least 1 km in all imaging channels. A stereoscopic satellite system as suggested here would make an extremely important contribution to the understanding and prediction of the atmosphere.

  14. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...

  15. Commercial satellite broadcasting for Europe

    Science.gov (United States)

    Forrest, J. R.

    1988-12-01

    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  16. Geography with the environmental satellites

    Directory of Open Access Journals (Sweden)

    J.P. Gastellu Etchegorry

    2013-07-01

    Full Text Available Coarse spatial resolution, high temporal frequency data from the earth polar orbiting (NOAA. HACMM, Nimbus, etc. satellites and from the geostationary (GOES. Meteosat, and GMS satellites are presented to demonstrate their utility for monitoring terrestrial and atmospheric processes. The main characteristics of these ,satellites and of the instruments on board are reviewed. In order to be useful for environmental assessments. the remotely sensed data must be processed (atmospheric and geometric corrections, etc.. The NOAA Center provides a wide range of already processed data. such as meteorological. oceanic, hydrologic and vegetation products; o rough description of these preprocessed data is given in this article. Finally, some examples of applicotions in Southeast Asia and especially in Indonesia, are described, i.e.: agroecosystem, drought and oceanic monitoring. The paper concludes that coarse resolution, high temporal frequency ,satellite data are very valuable for environmental studies. the emphasis being laid on the improve. ment of the crop and drought assessment programmes.

  17. Spacecraft Modularity for Serviceable Satellites

    Science.gov (United States)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  18. Mobile satellite service in the United States

    Science.gov (United States)

    Agnew, Carson E.; Bhagat, Jai; Hopper, Edwin A.; Kiesling, John D.; Exner, Michael L.; Melillo, Lawrence; Noreen, Gary K.; Parrott, Billy J.

    1988-05-01

    Mobile satellite service (MSS) has been under development in the United States for more than two decades. The service will soon be provided on a commercial basis by a consortium of eight U.S. companies called the American Mobile Satellite Consortium (AMSC). AMSC will build a three-satellite MSS system that will offer superior performance, reliability and cost effectiveness for organizations requiring mobile communications across the U.S. The development and operation of MSS in North America is being coordinated with Telesat Canada and Mexico. AMSC expects NASA to provide launch services in exchange for capacity on the first AMSC satellite for MSAT-X activities and for government demonstrations.

  19. Binary Satellite Galaxies

    CERN Document Server

    Evslin, Jarah

    2013-01-01

    Suggestions have appeared in the literature that the following five pairs of Milky Way and Andromeda satellite galaxies are gravitationally bound: Draco and Ursa Minor, Leo IV and V, Andromeda I and III, NGC 147 and 185, and the Magellanic clouds. Under the assumption that a given pair is gravitationally bound, the Virial theorem provides an estimate of its total mass and so its instantaneous tidal radius. For all of these pairs except for the Magellanic clouds the resulting total mass is 2 to 4 orders of magnitude higher than that within the half light radius. Furthermore in the case of each pair except for Leo IV and Leo V, the estimated tidal radius is inferior to the separation between the two satellites. Therefore all or almost all of these systems are not gravitationally bound. We note several possible explanations for the proximities and similar radial velocities of the satellites in each pair, for example they may have condensed from the same infalling structure or they may be bound by a nongravitatio...

  20. TOLNET – A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    Directory of Open Access Journals (Sweden)

    Newchurch Michael J.

    2016-01-01

    Full Text Available Ozone lidars measure continuous, high-resolution ozone profiles critical for process studies and for satellite validation in the lower troposphere. However, the effectiveness of lidar validation by using single-station data is limited. Recently, NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly timeresolved (few minutes tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation. This article briefly describes the concept, stations, major specifications of the TOLNet instruments, and data archiving.

  1. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  2. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  3. Autonomous robotic operations for on-orbit satellite servicing

    Science.gov (United States)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  4. The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment

    CERN Document Server

    Méndez-Lorenzo, P; Lamanna, M; Meyer, X; Lazeyras, M; Bjorgo, E; Retiere, A; Falzone, A; Venuti, N; Maccarone, S; Ugolotti, B

    2007-01-01

    UNOSAT is a United Nations activity to provide access to satellite images and geographic system services for humanitarian operations for rescue or aid activities. UNOSAT is implemented by the UN Institute for Training and Research (UNITAR) and managed by the UN Office for Project Services (UNOPS). In addition, partners from different organizations constitute the UNOSAT consortium. Among these partners, CERN participates actively providing the required computational and storage resources. The critical part of the UNOSAT activity is the storage and processing of large quantities of satellite images. The fast and secure access to these images from any part of the world is mandatory during these activities. Based on two successful CERN-GRID/UNOSAT pilot projects (data storage/compression/download and image access through mobile phone), the GRIDUNOSAT project has consolidated the considerable work undertaken so far in the present activity. The main use case already demonstrated is the delivery of satellite images ...

  5. A fault tolerant design for autonomous attitude control of the DSCS-III communication satellite

    Science.gov (United States)

    Matijevic, J.; Mettler, E.

    1983-01-01

    The first of a new series of satellites, which will provide the principal elements in the Defense Space Communications System (DSCS), was launched on Oct. 31, 1982. This satellite, DSCS-III, is part of a system which will consist of super-high frequency communications satellites in synchronous, equatorial orbits, continuously operating in four widely separate geographic regions. The DSCS-III is designed both to maintain critical communications in the presence of an electronic jamming threat and to survive nuclear radiation exposure. The results of the present investigation are to provide a basis for the design of a spacecraft tolerant of on-board failures, survivable against external threats, and capable of performing its mission autonomously for periods as long as six months.

  6. Satellite virtual atomic clock with pseudorange difference function

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Satellite atomic clocks are the basis of GPS for the control of time and frequency of navigation signals. In the Chinese Area Positioning System (CAPS), a satellite navigation system without the satellite atomic clocks onboard is successfully developed. Thus, the method of time synchronization based on satellite atomic clocks in GPS is not suitable. Satellite virtual atomic clocks are used to implement satellite navigation. With the satellite virtual atomic clocks, the time at which the signals are transmitted from the ground can be delayed into the time that the signals are transmitted from the satellites and the pseudorange measuring can be fulfilled as in GPS. Satellite virtual atomic clocks can implement the navigation, make a pseudorange difference, remove the ephemeris error, and improve the accuracy of navigation positioning. They not only provide a navigation system without satellite clocks, but also a navigation system with pseudorange difference.

  7. Design of the American Mobile Satellite System

    Science.gov (United States)

    Kittiver, Charles

    1991-01-01

    This paper presents an overview of the American Mobile Satellite Corporation (AMSC) Mobile Satellite System (MSS). A summary of the mobile satellite (MSAT) design and overall performance is provided. The design and components of both the forward link and return link transponders are described in detail. The design and operation of a unique hybrid matrix amplifier that offers flexible power distribution is outlined. The conceptual design and performance of three types of land mobile antennas are described.

  8. Global navigation satellite systems and their applications

    CERN Document Server

    Madry, Scott

    2015-01-01

    Dr. Madry, one of the world's leading experts in the field, provides in a condensed form a quick yet comprehensive overview of satellite navigation. This book concisely addresses the latest technology, the applications, the regulatory issues, and the strategic implications of satellite navigation systems. This assesses the strengths and weaknesses of satellite navigation networks and review of all the various national systems now being deployed and the motivation behind the proliferation of these systems.

  9. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Olmstead, Dean A.; Schertler, Ronald J.

    The benefits that will be offered by the NASA-sponsored communication spacecraft ACTS which is scheduled for launch in 1992 are described together with examples of demonstrations on proposed data, video, and voice applications supported by the advanced ACTS technologies. Compared to existing satellite service, the ACTS will provide lower cost, better service, greater convenience, and improved service reliability of telecommunications to customers around the world. In addition, the pioneering ACTS technology will provide many capabilities qualitatively different from those of current satellite systems, such as on-demand assignment, frequency reuse, and the flexible targeting of spot beams directly to the very-small-aperture terminals at customer premises.

  10. Mobile satellite communications for consumers

    Science.gov (United States)

    Noreen, Gary K.

    1991-11-01

    The RadioSat system based on MSAT satellites and scheduled for launch in 1994 is described. The RadioSat system will provide integrated communications and navigation services to consumers, including nationwide digital audio broadcasts, data broadcasts, precision navigation, and two-way voice and data communications. Particular attention is given to the MSAT satellite system capabilities and economics. It is concluded that the RadioSat system will be capable of providing a low-cost, highly flexible two-way communications for consumers that can be adapted to various applications.

  11. Radio broadcasting via satellite

    Science.gov (United States)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  12. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  13. Weather Satellite Enterprise Information Chain

    Science.gov (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  14. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  15. CriticalEd

    DEFF Research Database (Denmark)

    Kjellberg, Caspar Mølholt; Meredith, David

    2014-01-01

    The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made....... Since the comments are not input sequentially, with regard to position, but in arbitrary order, this list must be sorted by copy/pasting the rows into place—an error-prone and time-consuming process. Scholars who produce critical editions typically use off-the-shelf music notation software...... such as Sibelius or Finale. It was hypothesized that it would be possible to develop a Sibelius plug-in, written in Manuscript 6, that would improve the critical editing work flow, but it was found that the capabilities of this scripting language were insufficient. Instead, a 3-part system was designed and built...

  16. French-Language Satellite TV in the Classroom.

    Science.gov (United States)

    Rose, Russell G.

    1995-01-01

    This article describes the elements of satellite technology, provides information on French and other foreign-language programming, and offers suggestions for using satellite television in the classroom. (Author/JL)

  17. Drag-free Small Satellite Platforms for Future Geodesy Missions

    Science.gov (United States)

    Conklin, J. W.; Hong, S.; Nguyen, A.; Serra, P.; Balakrishnan, K.; Buchman, S.; De Bra, D. B.; Hultgren, E.; Zoellner, A.

    2013-12-01

    Continuous satellite geodesy measurements lasting into the foreseeable future are critical for the understanding of our changing planet. It is therefore imperative that we explore ways to reduce costs, while maintaining science return. Small satellite platforms represent a promising path forward if ways can be found to reduce the size, weight, and power of the necessary instrumentation. One key enabling technology is a precision small-scale drag-free system under development at the University of Florida and Stanford University. A drag-free satellite (a) contains and shields a free-floating test mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the satellite. A feedback control system commands thrusters to fly the 'tender' spacecraft with respect to the test mass. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the relative positions of low Earth orbiting drag-free satellites, using laser interferometry for example, the detailed shape of geodesics, and through analysis, the higher order harmonics of the Earth's geopotential can be determined. Drag-free systems can be orders of magnitude more accurate that accelerometer-based systems because they fundamentally operate at extremely low acceleration levels, and are therefore not limited by dynamic range like accelerometers. Since no test mass suspension force is required, larger gaps between the test mass and satellite are possible, which reduces the level of unwanted disturbing forces produced by the satellite itself. The small satellite platform also enables cost-effective constellations, which can increase the temporal resolution of gravity field maps by more-frequently observing given locations on the Earth. Mixed-orbit constellations can also markedly enhance observational strength, decorrelate gravity coefficient estimates, and help address the fundamental aliasing problem that exists with previous missions. The

  18. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  19. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  20. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...

  1. Medicare Program; Hospital Inpatient Prospective Payment Systems for Acute Care Hospitals and the Long-Term Care Hospital Prospective Payment System and Policy Changes and Fiscal Year 2018 Rates; Quality Reporting Requirements for Specific Providers; Medicare and Medicaid Electronic Health Record (EHR) Incentive Program Requirements for Eligible Hospitals, Critical Access Hospitals, and Eligible Professionals; Provider-Based Status of Indian Health Service and Tribal Facilities and Organizations; Costs Reporting and Provider Requirements; Agreement Termination Notices. Final rule.

    Science.gov (United States)

    2017-08-14

    We are revising the Medicare hospital inpatient prospective payment systems (IPPS) for operating and capital-related costs of acute care hospitals to implement changes arising from our continuing experience with these systems for FY 2018. Some of these changes implement certain statutory provisions contained in the Pathway for Sustainable Growth Rate (SGR) Reform Act of 2013, the Improving Medicare Post-Acute Care Transformation Act of 2014, the Medicare Access and CHIP Reauthorization Act of 2015, the 21st Century Cures Act, and other legislation. We also are making changes relating to the provider-based status of Indian Health Service (IHS) and Tribal facilities and organizations and to the low-volume hospital payment adjustment for hospitals operated by the IHS or a Tribe. In addition, we are providing the market basket update that will apply to the rate-of-increase limits for certain hospitals excluded from the IPPS that are paid on a reasonable cost basis subject to these limits for FY 2018. We are updating the payment policies and the annual payment rates for the Medicare prospective payment system (PPS) for inpatient hospital services provided by long-term care hospitals (LTCHs) for FY 2018. In addition, we are establishing new requirements or revising existing requirements for quality reporting by specific Medicare providers (acute care hospitals, PPS-exempt cancer hospitals, LTCHs, and inpatient psychiatric facilities). We also are establishing new requirements or revising existing requirements for eligible professionals (EPs), eligible hospitals, and critical access hospitals (CAHs) participating in the Medicare and Medicaid Electronic Health Record (EHR) Incentive Programs. We are updating policies relating to the Hospital Value-Based Purchasing (VBP) Program, the Hospital Readmissions Reduction Program, and the Hospital-Acquired Condition (HAC) Reduction Program. We also are making changes relating to transparency of accrediting organization survey

  2. Secular motion around synchronously orbiting planetary satellites.

    Science.gov (United States)

    Lara, Martin; San-Juan, Juan F; Ferrer, Sebastián

    2005-12-01

    We investigate the secular motion of a spacecraft around the natural satellite of a planet. The satellite rotates synchronously with its mean motion around the planet. Our model takes into account the gravitational potential of the satellite up to the second order, and the third-body perturbation in Hill's approximation. Close to the satellite, the ratio of rotation rate of the satellite to mean motion of the orbiter is small. When considering this ratio as a small parameter, the Coriolis effect is a first-order perturbation, while the third-body tidal attraction, the ellipticity effect, and the oblateness perturbation remain at higher orders. Then, we apply perturbation theory and find that a third-order approach is enough to show the influence of the satellite's ellipticity in the pericenter dynamics. Finally, we discuss the averaged system in the three-dimensional parametric space, and provide a global description of the flow.

  3. Advanced ISDN satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.

  4. A university-based distributed satellite mission control network for operating professional space missions

    Science.gov (United States)

    Kitts, Christopher; Rasay, Mike

    2016-03-01

    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  5. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  6. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  7. National Satellite Disaster Reduction Application Service

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The groundbreaking ceremony for National Satellite Disaster Reduction Application Service was held on January 22,2008 in Beijing.The establishment of the center will further improve the disaster monitoring system using remote sensing technology and provides a platform for the application of remote sensing technology and satellite constellation in China's disaster reduction and relief services.

  8. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies m...

  9. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth’s land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive.The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  10. The power relay satellite

    Science.gov (United States)

    Glaser, Peter E.

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  11. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  12. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  13. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  14. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  15. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ (Continued) Applications In Global Environment And Natural Disaster Monitoring 1) Application in world crop yield estimation China is now one of the few nations in the world that can provide operational service with both GEO and polar-orbit meteorological satellites.

  16. China Satcom: Innovating Satellite Communication

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China Satellite Communications Group Corporation (China Satcom) is a state-owned large-sized key enterprise formally established on Dec. 19, 2001 according to the general deployment of the State Council on telecommunication system reform. Relying on its complete service system, China Satcom provides various users with specialized and high quality information communication service.

  17. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  18. Communication Satellites 1958 to 1986

    Science.gov (United States)

    1984-10-01

    effort that is still advancing the state of the art . 2-1 3. EXPERIMENTAL SATELLITES Although the performance of communication satellites could be...bandwidths was much beyond the state of the art . The choice of the Delta launch vehicle provided basic design constraints such as size, weight, and... Griego M6/215 A. S. Gilcrest M4/958 T. J. Carr M5/699 C. H. Bredall M5/690 J. B. Bryson M5/669 R. L. Porter M5/692 T. M. Bedbury M5/669 R. D. Smith

  19. Vocoders in mobile satellite communications

    Science.gov (United States)

    Kriedte, W.; Canavesio, F.; dal Degan, N.; Pirani, G.; Rusina, F.; Usai, P.

    Owing to the power constraints that characterize onboard transmission sections, low-bit-rate coders seem suitable for speech communications inside mobile satellite systems. Vocoders that operate at rates below 4.8 kbit/s could therefore be a desirable solution for this application, providing also the redundancy that must be added to cope with the channel error rate. After reviewing the mobile-satellite-systems aspects, the paper outlines the features of two different types of vocoders that are likely to be employed, and the relevant methods of assessing their performances. Finally, some results from computer simulations of the speech transmission systems are reported.

  20. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    Science.gov (United States)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  1. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  2. Geodetic Secor Satellite

    Science.gov (United States)

    1974-06-01

    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  3. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  4. Application of Satellite Laser Ranging Techniques for Space Situational Awareness Efforts

    Science.gov (United States)

    Shappirio, M.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Coyle, D. B.; Hull, S. M.; Stysley, P. R.; Sun, X.; Young, R. P.; Zagwodzki, T.

    2016-09-01

    With the numbers of conjunction avoidance maneuvers for the International Space Station and other Low Earth Orbit satellites rising and likely to continue to increase, the need to develop methods to produce accurate 72+ hour orbital predictions is becoming critical. One emerging solution is to utilize satellite laser ranging techniques to range to debris and refine the initial positions to improve the orbital predictions for objects predicted to experience a close approach. Some stations in Europe have already demonstrated that this technique is possible, but it has not been employed to refine the likelihood of collision. We will present a notional architecture for laser ranging to debris utilizing existing satellite laser ranging or visual tracking facilities. We will also discuss the capabilities of laser ranging for Space Situational Awareness and provide a direct comparison to current visual and radar tracking methods.

  5. Fault-tolerant onboard digital information switching and routing for communications satellites

    Science.gov (United States)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.; Kim, Heechul

    1993-01-01

    The NASA Lewis Research Center is developing an information-switching processor for future meshed very-small-aperture terminal (VSAT) communications satellites. The information-switching processor will switch and route baseband user data onboard the VSAT satellite to connect thousands of Earth terminals. Fault tolerance is a critical issue in developing information-switching processor circuitry that will provide and maintain reliable communications services. In parallel with the conceptual development of the meshed VSAT satellite network architecture, NASA designed and built a simple test bed for developing and demonstrating baseband switch architectures and fault-tolerance techniques. The meshed VSAT architecture and the switching demonstration test bed are described, and the initial switching architecture and the fault-tolerance techniques that were developed and tested are discussed.

  6. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.

    2009-03-12

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  7. Critical reading and critical thinking Critical reading and critical thinking

    Directory of Open Access Journals (Sweden)

    Loni Kreis Taglieber

    2008-04-01

    Full Text Available The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of no use due to the enormous amount of it. The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of

  8. Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  9. Landsat—Earth observation satellites

    Science.gov (United States)

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  10. Small satellites and their regulation

    CERN Document Server

    Jakhu, Ram S

    2014-01-01

    Since the launch of UoSat-1 of the University of Surrey (United Kingdom) in 1981, small satellites proved regularly to be useful, beneficial, and cost-effective tools. Typical tasks cover education and workforce development, technology demonstration, verification and validation, scientific and engineering research as well as commercial applications. Today the launch masses range over almost three orders of magnitude starting at less than a kilogram up to a few hundred kilograms, with budgets of less than US$ 100.00 and up to millions within very short timeframes of sometimes less than two years. Therefore each category of small satellites provides specific challenges in design, development and operations. Small satellites offer great potentials to gain responsive, low-cost access to space within a short timeframe for institutions, companies, regions and countries beyond the traditional big players in the space arena. For these reasons (particularly the low cost of construction, launch and operation), small (m...

  11. Satellite Imaging with Adaptive Optics on a 1 M Telescope

    Science.gov (United States)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.

    2016-09-01

    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  12. Expanding Access with Satellite-Enabled Distance Education

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2006-12-01

    Full Text Available Education and training became increasingly critical for citizens of every nation during the last century, and that paradigm will be no less true, throughout the 21st Century. As the world progresses fully into an information society, access to information and to a knowledge-based work force is a precondition for any country to remain competitive. Education, and increasingly distant education (DE, plays a vital role in turning human resources into knowledge workers. Information and communications technologies (ICT have provided new ways to educate and to disseminate information that is crucial for creating these competitive, knowledge-based work forces. Modern DE, enabled by ICT-based networks and the Internet tools, offers great advantages that are leveling the global playing field, in terms of providing access and opportunities for specialized training and education. Using satellite technology in DE may be imperative to developing countries, where the majority of their populations are scattered in rural and remote areas. Where the traditional brick and mortar classrooms cannot easily reach, satellite-powered DE systems can. Through literature review and rational analysis, this paper examines how satellite-assisted DE systems expand education access.

  13. Future large broadband switched satellite communications networks

    Science.gov (United States)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  14. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    Science.gov (United States)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  15. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  16. State Geography Using NOAA Polar-Orbiting Satellites.

    Science.gov (United States)

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  17. Integration of Mobil Satellite and Cellular Systems

    Science.gov (United States)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  18. Advanced tracking and data relay satellite system

    Science.gov (United States)

    Stern, Daniel

    1992-01-01

    The purpose of this communication satellite system are as follows: to provide NASA needs for satellite tracking and communications through the year 2012; to maintain and augment the current TDRS system when available satellite resources are expended in the latter part of the decade; to provide the necessary ground upgrade to support the augmented services; and to introduce new technology to reduce the system life cycle cost. It is concluded that no ATDRS spacecraft requirement for new modulation techniques, that data rate of 650 MBps is required, and that Space Station Freedom requirement is for 650 MBps data some time after the year 2000.

  19. Identification of geostationary satellites using polarization data from unresolved images

    Science.gov (United States)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  20. Reinventing the Solar Power Satellite

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  1. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  2. Astronomy from satellite clusters

    Science.gov (United States)

    Stachnik, R.; Labeyrie, A.

    1984-03-01

    Attention is called to the accumulating evidence that giant space telescopes, comprising a number of separate mirrors on independent satellites, are a realistic prospect for providing research tools of extraordinary power. The ESA-sponsored group and its counterpart in the US have reached remarkably similar conclusions regarding the basic configuration of extremely large synthetic-aperture devices. Both share the basic view that a cluster of spacecraft is preferable to a single monolithic structure. The emphasis of the US group has been on a mission that sweeps across as many sources as possible in the minimum time; it is referred to as SAMSI (Spacecraft Array for Michelson Spatial Interferometry). The European group has placed more emphasis on obtaining two-dimensional images. Their system is referred to as TRIO because, at least initially, it involves three independent systems. Detailed descriptions are given of the two systems.

  3. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  4. Critical reading and critical thinking

    Directory of Open Access Journals (Sweden)

    Loni Kreis Taglieber

    2003-01-01

    Full Text Available The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of no use due to the enormous amount of it.

  5. Testing a satellite automatic nutation control system. [on synchronous meteorological satellite

    Science.gov (United States)

    Hrasiar, J. A.

    1974-01-01

    Testing of a particular nutation control system for the synchronous meteorological satellite (SMS) is described. The test method and principles are applicable to nutation angle control for other satellites with similar requirements. During its ascent to synchronous orbit, a spacecraft like the SMS spins about its minimum-moment-of-inertia axis. An uncontrolled spacecraft in this state is unstable because torques due to fuel motion increase the nutation angle. However, the SMS is equipped with an automatic nutation control (ANC) system which will keep the nutation angle close to zero. Because correct operation of this system is critical to mission success, it was tested on an air-bearing table. The ANC system was mounted on the three-axis air-bearing table which was scaled to the SMS and equipped with appropriate sensors and thrusters. The table was spun up in an altitude chamber and nutation induced so that table motion simulated spacecraft motion. The ANC system was used to reduce the nutation angle. This dynamic test of the ANC system met all its objectives and provided confidence that the ANC system will control the SMS nutation angle.

  6. Chinese Satellites Serve Beijing Olympic Games

    Institute of Scientific and Technical Information of China (English)

    Ren Shufang

    2008-01-01

    @@ METEOROLOGICAL SATELLITES PROVIDING WEATHER SERVICES As the opening and closing ceremonies and many competition events such as athletics, football, cycling and sailing etc., were held in open air stadiums, field or on water, it was of great importance to provide exact weather forecasts and on-time climate information to prepare for disastrous weather so as to ensure the Olympic Games proceeded smoothly. For this purpose, China launched the meteorological satellite service project in 2002 to safeguard the 2008 Beijing Olympic Games.

  7. Traffic planning for the Anik-E satellites

    Science.gov (United States)

    Gray, Douglas A.

    Traffic planning is required to insure effective use of the dual band Anik E series of communications satellites. A trilateral orbital agreement reached with the United States and Mexico allows Canada four dual band satellite positions. This paper outlines the traffic planning process, describes satellite coordination, and provides highlights of the implementation of the Trilateral Orbital Plan. Constraints affecting traffic assignments include satellite health, the need for satellite diversity, and existing earth network facilities. Anik E will provide voice, television, and data communications over 24 C-band channels.

  8. Future Satellite Gravimetry and Earth Dynamics

    CERN Document Server

    Flury, Jakob

    2005-01-01

    Currently, a first generation of dedicated satellite missions for the precise mapping of the Earth’s gravity field is in orbit (CHAMP, GRACE, and soon GOCE). The gravity data from these satellite missions provide us with very new information on the dynamics of planet Earth. In particular, on the mass distribution in the Earth’s interior, the entire water cycle (ocean circulation, ice mass balance, continental water masses, and atmosphere), and on changes in the mass distribution. The results are fascinating, but still rough with respect to spatial and temporal resolution. Technical progress in satellite-to-satellite tracking and in gravity gradiometry will allow more detailed results in the future. In this special issue, Earth scientists develop visions of future applications based on follow-on high-precision satellite gravimetry missions.

  9. Capture of Irregular Satellites at Jupiter

    CERN Document Server

    Nesvorny, D; Deienno, R

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early Solar System instability when encounters between the outer planets occurred (Nesvorny, Vokrouhlicky & Morbidelli 2007, AJ 133; hereafter NVM07). NVM07 already showed that the irregular satellites of Saturn, Uranus and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary d...

  10. Regulation of satellite cell function in sarcopenia

    Directory of Open Access Journals (Sweden)

    Stephen E Alway

    2014-09-01

    Full Text Available The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell function that is impacted by the environment (niche of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia, and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration. While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.

  11. The Arctic Regional Communications Small SATellite (ARCSAT)

    Science.gov (United States)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  12. Conditional Cripto overexpression in satellite cells promotes myogenic commitment and enhances early regeneration.

    Science.gov (United States)

    Prezioso, Carolina; Iaconis, Salvatore; Andolfi, Gennaro; Zentilin, Lorena; Iavarone, Francescopaolo; Guardiola, Ombretta; Minchiotti, Gabriella

    2015-01-01

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal skeletal muscle regeneration and a promising target for future therapy. Indeed, Cripto is expressed both in myogenic and inflammatory cells in skeletal muscle after acute injury and it is required in the satellite cell compartment to achieve effective muscle regeneration. A critical requirement to further explore the in vivo cellular contribution of Cripto in regulating skeletal muscle regeneration is the possibility to overexpress Cripto in its endogenous configuration and in a cell and time-specific manner. Here we report the generation and the functional characterization of a novel mouse model for conditional expression of Cripto, i.e., the Tg:DsRed (loxP/loxP) Cripto-eGFP mice. Moreover, by using a satellite cell specific Cre-driver line we investigated the biological effect of Cripto overexpression in vivo, and provided evidence that overexpression of Cripto in the adult satellite cell compartment promotes myogenic commitment and differentiation, and enhances early regeneration in a mouse model of acute injury.

  13. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  14. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  15. The Omninet mobile satellite system

    Science.gov (United States)

    Salmasi, A.; Curry, W.

    Mobile Satellite System (MSS) design offering relatively low cost voice, data, and position location services to nonmetropolitan areas of North America is proposed. The system provides spectrally efficient multiple access and modulation techniques, and flexible user interconnection to public and private switched networks. Separate UHF and L-band satellites employing two 9.1 m unfurlable antennas each, achieve a 6048 channel capacity and utilize spot beams. Mobile terminals have modular design and employ 5 dBi omnidirectional antennas. Gateway stations (with two 5 m Ku-band antennas) and base stations (with a single 1.8 m Ku-band antenna) transmit terrestrial traffic to the satellite, where traffic is then transponded via an L-band or UHF downlink to mobile users. The Network Management Center uses two 5-m antennas and incorporates the Integrated-Adaptive Mobile Access Protocol to assure demand assignment of satellite capacity. Preliminary implementation of this low-risk system involves a mobile alphanumeric data service employing receive-only terminals at Ku-band projected for 1987, and plans for the launching of L-band receive-only packages as early as 1988.

  16. Thinking Critically about Critical Thinking

    Science.gov (United States)

    Mulnix, Jennifer Wilson

    2012-01-01

    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  17. Enhancement of computer program SPECTRAN to provide optional synthesis of 1/12 octave-band and critical-band spectra from 1/3 octave-band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young-Soo [Argonne National Lab., IL (United States); Liebich, R.E. [Raytheon Environmental Services Company, Cambridge, MA (United States)

    1997-07-01

    This paper describes greatly enhanced version of the computer program SPECTRAN, which was initially presented in Paper No. 96-RA104.01, at the A&WMA 89th Annual Meeting in June 1996. The program has had three basic upgrades since that time. The first is provision of an option to use either batch-mode input from previously prepared data files or a {open_quotes}user-friendly{close_quotes} interactive input routine. The latter is primarily for first-time users and those having only one, or very few, spectra to process. The second improvement is the synthesis of 1/12 octave-band spectra from 1/3 octave-band spectra, with {open_quotes}tone correction,{close_quotes} in a manner similar to that used in the original version of the program. The third fundamental improvement is addition of a unique new capability to synthesize classic {open_quotes}critical-band{close_quotes} spectra from 1/3 octave-band input spectra. Critical-band spectra are also termed {open_quotes}equivalent-rectangular-bandwidth (ERB){close_quotes} and {open_quotes}equal-contribution-to-speech (ECS){close_quotes} spectra.

  18. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  19. Satellite Cells in Muscular Dystrophy - Lost in Polarity.

    Science.gov (United States)

    Chang, Natasha C; Chevalier, Fabien P; Rudnicki, Michael A

    2016-06-01

    Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.

  20. Results from an experiment that collected visible-light polarization data using unresolved imagery for classification of geosynchronous satellites

    Science.gov (United States)

    Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis; Strong, David

    2015-05-01

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, their polarization signature may change enough to allow discrimination of identical satellites launched at different times. Preliminary data suggests this optical signature may lead to positive identification or classification of each satellite by an automated process on a shorter timeline. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. Following a rigorous calibration, polarization data was collected during two nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. When Stokes parameters were plotted against time and solar phase angle, the data indicates that a polarization signature from unresolved images may have promise in classifying specific satellites.

  1. Toward critical bioethics.

    Science.gov (United States)

    Árnason, Vilhjálmur

    2015-04-01

    This article deals with the question as to what makes bioethics a critical discipline. It considers different senses of criticism and evaluates their strengths and weaknesses. A primary method in bioethics as a philosophical discipline is critical thinking, which implies critical evaluation of concepts, positions, and arguments. It is argued that the type of analytical criticism that restricts its critical role to critical thinking of this type often suffers from other intellectual flaws. Three examples are taken to demonstrate this: premature criticism, uncritical self-understanding of theoretical assumptions, and narrow framing of bioethical issues. Such flaws can lead both to unfair treatment of authors and to uncritical discussion of topics. In this context, the article makes use of Häyry's analysis of different rationalities in bioethical approaches and argues for the need to recognize the importance of communicative rationality for critical bioethics. A radically different critical approach in bioethics, rooted in social theory, focuses on analyses of power relations neglected in mainstream critical thinking. It is argued that, although this kind of criticism provides an important alternative in bioethics, it suffers from other shortcomings that are rooted in a lack of normative dimensions. In order to complement these approaches and counter their shortcomings, there is a need for a bioethics enlightened by critical hermeneutics. Such hermeneutic bioethics is aware of its own assumptions, places the issues in a wide context, and reflects critically on the power relations that stand in the way of understanding them. Moreover, such an approach is dialogical, which provides both a critical exercise of speech and a normative dimension implied in the free exchange of reasons and arguments. This discussion is framed by Hedgecoe's argument that critical bioethics needs four elements: to be empirically rooted, theory challenging, reflexive, and politely skeptical.

  2. Satellite Networks: Architectures, Applications, and Technologies

    Science.gov (United States)

    Bhasin, Kul (Compiler)

    1998-01-01

    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled.

  3. Satellite mobile data service for Canada

    Science.gov (United States)

    Egan, Glenn R.; Sward, David J.

    A commercial mobile satellite system which is to be constructed and operated in Canada is examined. This is done in two phases. First, mobile data services was introduced. Hub equipment and 3000 mobile data terminals were supplied. Over the satellite tests were performed. The mobile data service provides full two way digital messaging automatic vehicle location and fleet management services. The second phase is to construct, launch and make operational the MSAT satellite and associated network control facilities. The implementation is examined of the mobile data service in Canada, including the technical description. Marketing and applications are also examined.

  4. Technical developments in international satellite business services

    Science.gov (United States)

    Tan, P. P.

    At the conception of International Satellite Business Services (ISBS), it was a primary objective to provide flexibility for accommodating a variety of service requirements which might be established by mutual agreement between users. The design guidelines are to ensure that the space segment is efficiently utilized, while other satellite services are protected from interference. Other considerations are related to an acceptable earth segment cost, maximum connectivity in worldwide services, the capability of growth and a reasonably smooth transition into future systems, and the maintenance of high performance objectives. Attention is given to a system overview, the characteristics of satellites for ISBS, and technological developments with some application possibilities for ISBS.

  5. Micro satellite mapping of plant genomes

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2001-01-01

    Full Text Available Micro satellites are DNA markers, based on the repeated nucleotide sequences number polymorphism. They belong to a group of PCR markers and are mainly used as an addition to other types of markers. Their characteristics and technical aspects of their application are discussed in the present study. Furthermore, some results obtained by the use of the micro satellite DNA in genetic mapping of plant genomes are also presented. Although micro satellites provide the identification of genotypes within a species, inadequacy of comparative mapping of different species is their serious blemish. .

  6. Satellite Meteorology Education & Training Resources from COMET

    Science.gov (United States)

    Abshire, W. E.; Dills, P. N.; Weingroff, M.; Lee, T. F.

    2012-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on geostationary and polar-orbiting remote sensing platforms. These materials focus on the capabilities and applications of current and next-generation satellites and their relevance to operational forecasters and other user communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, and other user communities, COMET stimulates greater use of satellite data observations and products. This presentation provides an overview of COMET's recent satellite education efforts in the area of polar orbiting satellites. COMET has a new module on Suomi NPP, which describes the satellite system and discusses the improvements that it is bringing to forecasting, numerical weather prediction, and environmental monitoring. COMET has also published an updated version of its module on the VIIRS instrument. "Imaging with VIIRS: A Convergence of Technologies and Experience, 2nd Edition" covers the instrument's enhanced capabilities by examining the systems that contributed to its development. Special attention is paid to the Day/Night Visible channel as VIIRS is the first instrument on a civilian satellite to image atmospheric and terrestrial features with and without moonlight. An upcoming module will exclusively focus on nighttime imaging with the VIIRS Day/Night Band (DNB). "Applications of the VIIRS Day-Night Band" will introduce the capabilities of DNB imagery to a wide audience ranging from forecasters and emergency managers to wildfire fighters and oceanographers. DNB products will be compared to traditional satellite products made from infrared data, including the "fog" product. Users will learn how DNB

  7. Spacecraft design project: High latitude communications satellite

    Science.gov (United States)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry

    1989-01-01

    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  8. Satellites of spiral galaxies

    Science.gov (United States)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1993-01-01

    We present a survey of satellites around a homogeneous set of late-type spirals with luminosity similar to that of the Milky Way. On average, we find fewer than 1.5 satellites per primary, but we argue that we can treat the survey as an ensemble and so derive the properties of the halo of a 'typical' isolated spiral. The projected density profile of the ensemble falls off approximately as 1/r. Within 50 kpc the azimuthal distribution of satellites shows some evidence for the 'Holmberg effect', an excess near the minor axis of the primary; however, at larger projected distances, the distribution appears isotropic. There is a weak but significant correlation between the size of a satellite and its distance from its primary, as expected if satellites are tidally truncated. Neither Hubble type nor spectral characteristics correlate with apparent separation. The ensemble of satellites appears to be rotating at about 30 km/s in the same direction as the galactic disk. Satellites on prograde orbits tend to be brighter than those on retrograde orbits. The typical velocity difference between a satellite and its primary shows no clear dependence either on apparent separation, or on the rotation speed of the primary. Thus our survey demonstrates that isolated spiral galaxies have massive halos that extend to many optical radii.

  9. Communication satellite technology trends

    Science.gov (United States)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  10. Comparison of INMARSAT and ATS3 satellite communication

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-29

    There exists a need to provide communication through a satellite- based network which allows a user to communicate from a remote site to a fixed site. This discussion provides a comparison, both technical and financial, between the existing ATS3 satellite system and the commercial INMARSAT system. This comparison identified the limitations of each system to provide various types of communication.

  11. Fault Management Architectures and the Challenges of Providing Software Assurance

    Science.gov (United States)

    Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek

    2015-01-01

    The satellite systems Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most is system complexity due to a need to establish a multi-dimensional structure across hardware, software and operations. This structure is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. These architecture, implementation and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (VV) is challenging. A breakout session at the 2012 NASA Independent Verification Validation (IVV) Annual Workshop titled VV of Fault Management: Challenges and Successes exposed these issues in terms of VV for a representative set of architectures. NASA's IVV is funded by NASA's Software Assurance Research Program (SARP) in partnership with NASA's Jet Propulsion Laboratory (JPL) to extend the work performed at the Workshop session. NASA IVV will extract FM architectures across the IVV portfolio and evaluate the data set for robustness, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This work focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures, visibility, and associated VVIVV techniques provides a data set that can enable higher assurance that a satellite system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the satellite community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the

  12. Using multi-country household surveys to understand who provides reproductive and maternal health services in low- and middle-income countries: a critical appraisal of the Demographic and Health Surveys.

    Science.gov (United States)

    Footman, K; Benova, L; Goodman, C; Macleod, D; Lynch, C A; Penn-Kekana, L; Campbell, O M R

    2015-05-01

    The Demographic and Health Surveys (DHS) are a vital data resource for cross-country comparative analyses. This study is part of a set of analyses assessing the types of providers being used for reproductive and maternal health care across 57 countries. Here, we examine some of the challenges encountered using DHS data for this purpose, present the provider classification we used, and provide recommendations to enable more detailed and accurate cross-country comparisons of healthcare provision. We used the most recent DHS surveys between 2000 and 2012; 57 countries had data on family planning and delivery care providers and 47 countries had data on antenatal care. Every possible response option across the 57 countries was listed and categorised. We then developed a classification to group provider response options according to two key dimensions: clinical nature and profit motive. We classified the different types of maternal and reproductive healthcare providers, and the individuals providing care. Documented challenges encountered during this process were limitations inherent in household survey data based on respondents' self-report; conflation of response options in the questionnaire or at the data processing stage; category errors of the place vs. professional for delivery; inability to determine whether care received at home is from the public or private sector; a large number of negligible response options; inconsistencies in coding and analysis of data sets; and the use of inconsistent headings. To improve clarity, we recommend addressing issues such as conflation of response options, data on public vs. private provider, inconsistent coding and obtaining metadata. More systematic and standardised collection of data would aid international comparisons of progress towards improved financial protection, and allow us to better characterise the incentives and commercial nature of different providers. © 2015 The Authors. Tropical Medicine & International Health

  13. Satellite ATM Networks: Architectures and Guidelines Developed

    Science.gov (United States)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  14. Satellite orbital conjunction reports assessing threatening encounters in space (SOCRATES)

    Science.gov (United States)

    Kelso, T. S.; Alfano, S.

    2006-05-01

    While many satellite operators are aware of the possibility of a collision between their satellite and another object in earth orbit, most seem unaware of the frequency of near misses occurring each day. Until recently, no service existed to advise satellite operators of an impending conjunction of a satellite payload with another satellite, putting the responsibility for determining these occurrences squarely on the satellite operator's shoulders. This problem has been further confounded by the lack of a timely, comprehensive data set of satellite orbital element sets and computationally efficient tools to provide predictions using industry-standard software. As a result, hundreds of conjunctions within 1 km occur each week, with little or no intervention, putting billions of dollars of space hardware at risk, along with their associated missions. As a service to the satellite operator community, the Center for Space Standards & Innovation (CSSI) offers SOCRATES-Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. Twice each day, CSSI runs a list of all satellite payloads on orbit against a list of all objects on orbit using the catalog of all unclassified NORAD two-line element sets to look for conjunctions over the next seven days. The runs are made using STK/CAT-Satellite Tool Kit's Conjunction Analysis Tools-together with the NORAD SGP4 propagator in STK. This paper will discuss how SOCRATES works and how it can help satellite operators avoid undesired close approaches through advanced mission planning.

  15. Hydrogen Peroxide Propulsion for Smaller Satellites

    OpenAIRE

    Whitehead, John

    1998-01-01

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable bench top propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  16. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Science.gov (United States)

    1980-01-01

    Potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS) are discussed. A detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation is provided followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system.

  17. International Collaboration in Satellite Observations for Disaster Management

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  18. International Collaboration in Satellite Observations for Disaster Management

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  19. Combining Satellite and Ground Magnetic Measurements to Improve Estimates of Electromagnetic Induction Transfer Functions

    Science.gov (United States)

    Balasis, G.; Egbert, G. D.

    2005-12-01

    Electromagnetic (EM) induction studies using satellite and ground-based magnetic data may ultimately provide critical new constraints on the electrical conductivity of Earth's mantle. Unlike ground-based observatories, which leave large areas of the Earth (especially the ocean basins) unsampled, satellites have the potential for nearly complete global coverage. However, because the number of operating satellites is limited, spatially complex (especially non-zonal) external current sources are sampled relatively poorly by satellites at any fixed time. The comparatively much larger number of ground-based observatories provides more complete synoptic sampling of external source structure. By combining data from both satellites and observatories models of external sources can be improved, leading to more reliable global mapping of Earth conductivity. For example, estimates of EM induction transfer functions estimated from night-side CHAMP data have been previously shown to have biases which depend systematically on local time (LT). This pattern of biases suggests that a purely zonal model does not adequately describe magnetospheric sources. As a first step toward improved modeling of spatial complexity in sources, we have applied empirical orthogonal function (EOF) methods to exploratory analysis of night-side observatory data. After subtraction of the predictions of the CM4 comprehensive model, which includes a zonally symmetric storm-time correction based on Dst, we find significant non-axisymmetric, but large scale coherent variability in the mid-latitude night-side observatory residuals. Over the restricted range of local times (18:00-6:00) and latitudes (50°S to 50°N) considered, the dominant spatial mode of variability is reasonably approximated by a q21 quadrupole spherical harmonic. Temporal variability of this leading EOF mode is well correlated with Dst. Strategies for moving beyond this initial exploratory EOF analysis to combine observatory data with

  20. Is it restoration or reconciliation? California's experience restoring the Sacramento - San Joaquin River Delta provides lessons learned and pathways forward to sustain critical ecosystem functions and services in a highly managed riverine delta.

    Science.gov (United States)

    Viers, J. H.; Kelsey, R.

    2014-12-01

    Reconciling the needs of nature and people in California's Sacramento - San Joaquin River Delta represents one of the most critical ecosystem management imperatives in western North America. Over 150 years the Delta has been managed for near-term human benefits and in the process 95% of riverine and deltaic wetlands have been lost throughout the region. Despite extensive land conversion and alteration of hydrological and physical processes, the Delta remains important habitat for migratory birds and is home to over 60% of California's native fish species. It is also the waterwheel for the state's vast water distribution network and is maintained by a system of constructed levees that are at risk from catastrophic failure due to sea level rise, floods, and/or seismic activity. Such a collapse would have dire consequences for > 25M humans and world's 10th largest economy that depend on its freshwater. Thus, the ultimate cost of this ecosystem alteration and simplification is a riverscape that is no longer reliable for nature or people. For 30 years, attempts to 'restore' Delta ecosystems and improve reliability have met with mixed results. For example, reconnection of floodplains to floodwaters has resulted in improved ecological health for native fishes and recharge to localized aquifers. Uncoordinated releases of discharges below dams, however, have resulted in diminished water quality and populations of indicator species. Attempts to create wildlife friendly farms have been countered by an increase in perennial agriculture and commensurate increases in irrigation water demand. From these lessons learned, we demonstrate three key components of a reconciled Delta that will be necessary in the future: 1) full restoration of critical habitats, reconnecting land and water to rebuild ecosystem function; 2) landscape redesign, incorporating natural and engineered infrastructure to create a biologically diverse, resilient landscape to support both agriculture and natural

  1. Satellite medical centers project

    Science.gov (United States)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  2. Customer premise service study for 30/20 GHz satellite system

    Science.gov (United States)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  3. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  4. How Critical Is Critical Thinking?

    Science.gov (United States)

    Shaw, Ryan D.

    2014-01-01

    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  5. 'Whose failure counts?' A critical reflection on definitions of failure for community health volunteers providing HIV self-testing in a community-based HIV/TB intervention study in urban Malawi.

    Science.gov (United States)

    Sambakunsi, Rodrick; Kumwenda, Moses; Choko, Augustine; Corbett, Elizabeth L; Desmond, Nicola Ann

    2015-12-01

    The category of community health worker applied within the context of health intervention trials has been promoted as a cost-effective approach to meeting study objectives across large populations, relying on the promotion of the concept of 'community belonging' to encourage altruistic volunteerism from community members to promote health. This community-based category of individuals is recruited to facilitate externally driven priorities defined by large research teams, outside of the target research environment. An externally defined intervention is then 'brought to' the community through locally recruited community volunteers who form a bridge between the researchers and participants. The specific role of these workers is context-driven and responsive to the needs of the intervention. This paper is based on the findings from an annual evaluation of community health worker performance employed as community counsellors to deliver semi-supervised HIV self-testing (HIVST) at community level of a large HIV/TB intervention trial conducted in urban Blantyre, Malawi. A performance evaluation was conducted to appraise individual service delivery and assess achievements in meeting pre-defined targets for uptake of HIVST with the aim of improving overall uptake of HIVST. Through an empirical 'evaluation of the evaluation' this paper critically reflects on the position of the community volunteer through the analytical lens of 'failure', exploring the tensions in communication and interpretation of intervention delivery between researchers and community volunteers and the differing perspectives on defining failure. It is concluded that community interventions should be developed in collaboration with the population and that information guiding success should be clearly defined.

  6. The Principle of Navigation Constellation Composed of SIGSO Communication Satellites

    CERN Document Server

    Ji, Hai-Fu; Ai, Guo-Xiang; Shi, Hu-Li

    2012-01-01

    The Chinese Area Positioning System (CAPS), a navigation system based on GEO communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of navigation constellation composed of Slightly Inclined Geostationary Orbit (SIGSO) communication satellites. SIGSO satellites are derived from end-of-life Geostationary Orbit (GEO) satellites under inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performence. The constellation composed of two GEO satellites and four SIGSO satellites with inclination of 5 degrees can provide the most territory of China with 24-hour maximum PDOP less than 42. With synthetic utilization of the truncated precise (TP) code and physical augmentation factor in fo...

  7. Mobile satellite plans and status

    Science.gov (United States)

    Anderson, Roy E.

    1987-03-01

    A method for implementing a mobile satellite system (MSS) in the U.S. and Canada, and the services such a system would provide are described. The MSS is to provide mobile communications that are unlimited in range and unaffected by local terrain features. The system's communications can be either voice or digital, and the small, automatic transponders located in vehicles will respond automatically with the data needed to determine the location of the vehicle. Surveys reveal that there are markets for radio telephones and data and dispatch services. Consideration is given to the regulatory status of the MSS.

  8. Toward a Gramscian Critical Rhetoric.

    Science.gov (United States)

    Zompetti, Joseph P.

    1997-01-01

    Contends A. Gramsci can provide a perspective on the cultural dominance of rhetoric and formation of a critical "telos"--his work can contribute to understanding critical rhetoric. Demonstrates that Gramscian notions can extend critical rhetoric into an enterprise that permits critical self-reflexivity and praxis and create new…

  9. Planetary satellites - an update

    Science.gov (United States)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  10. Evaluating NOx Emissions Using Satellite Observations

    Science.gov (United States)

    Frost, G. J.; Kim, S.; Brioude, J.; McKeen, S. A.; Trainer, M.; Heckel, A.; Hilboll, A.; Richter, A.; Burrows, J. P.; Gleason, J. F.; Boersma, K. F.; Hsie, E.; Lee, S.; Angevine, W. M.; Granier, C.; Peischl, J.; Ryerson, T. B.; Fehsenfeld, F. C.

    2012-12-01

    Atmospheric NO2 columns retrieved from satellites can provide a useful top-down assessment of bottom-up NOx emissions inventories. We present three case studies of an approach to evaluate NOx emissions at a sector level by comparing satellite retrievals to regional chemical-transport model calculations of NO2 columns. In the first example, the atmospheric impact of implementing NOx controls at eastern US power plants is demonstrated. In the second study, we use NOx monitors at western US power plants to calibrate our satellite-model comparisons. We then apply our approach to evaluate bottom-up estimates of NOx emissions from western US cities. In the third example, we validate our satellite-model approach using in-situ aircraft measurements and assess NOx emissions from power plants, cities, industrial facilities, and ports in eastern Texas. We conclude with some general insights on the usefulness of this approach and suggestions for future areas of research.

  11. A new digital land mobile satellite system

    Science.gov (United States)

    Schneider, Philip

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  12. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  13. Satellite-Based Quantum Communications

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; McCabe, Kevin P [Los Alamos National Laboratory; Newell, Raymond T [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  14. Trends In Satellite Communication

    Science.gov (United States)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.

    1988-01-01

    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  15. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  16. Biological satellite Kosmos-936

    Science.gov (United States)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  17. Small Satellite Transporter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  18. Using multi-country household surveys to understand who provides reproductive and maternal health services in low- and middle-income countries: a critical appraisal of the Demographic and Health Surveys

    Science.gov (United States)

    Footman, K; Benova, L; Goodman, C; Macleod, D; Lynch, C A; Penn-Kekana, L; Campbell, O M R

    2015-01-01

    Objective The Demographic and Health Surveys (DHS) are a vital data resource for cross-country comparative analyses. This study is part of a set of analyses assessing the types of providers being used for reproductive and maternal health care across 57 countries. Here, we examine some of the challenges encountered using DHS data for this purpose, present the provider classification we used, and provide recommendations to enable more detailed and accurate cross-country comparisons of healthcare provision. Methods We used the most recent DHS surveys between 2000 and 2012; 57 countries had data on family planning and delivery care providers and 47 countries had data on antenatal care. Every possible response option across the 57 countries was listed and categorised. We then developed a classification to group provider response options according to two key dimensions: clinical nature and profit motive. Results We classified the different types of maternal and reproductive healthcare providers, and the individuals providing care. Documented challenges encountered during this process were limitations inherent in household survey data based on respondents’ self-report; conflation of response options in the questionnaire or at the data processing stage; category errors of the place vs. professional for delivery; inability to determine whether care received at home is from the public or private sector; a large number of negligible response options; inconsistencies in coding and analysis of data sets; and the use of inconsistent headings. Conclusions To improve clarity, we recommend addressing issues such as conflation of response options, data on public vs. private provider, inconsistent coding and obtaining metadata. More systematic and standardised collection of data would aid international comparisons of progress towards improved financial protection, and allow us to better characterise the incentives and commercial nature of different providers. Objectif Les enqu

  19. DFH-3 Satellite Platform

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    The DFH-3 satellite platform is designed and developed by China Academy of Space Technology (CAST). It is a medium capability communications satellite platform. The platform adopts threeaxis attitude stabilization control system, having solar array output power of 1.7kW by the end of its design lifetime of 8 years. Its mass is 2100kg with payload capacity of 220kg.

  20. The Archimedes satellite system

    Science.gov (United States)

    Taylor, Stuart C.; Shurvinton, William D.

    1992-03-01

    Archimedes is a satellite system conceived by the European Space Agency (ESA) to effectively serve the European market for Mobile Radio Services (MRS). This paper describes the requirements and technical design of the Archimedes satellite system. The underlying assumptions and trade-offs behind the design are detailed and the design is compared and contrasted against alternative design solutions, both technically and economically. A path forward for the development of the system is indicated.

  1. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz

    1997-01-01

    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  2. Design and analysis of the satellite laser communications network

    Science.gov (United States)

    Ren, Pei-an; Qian, Fengchen; Liu, Qiang; Jin, Linlin

    2015-02-01

    A satellite laser communications network structure with two layers and multiple domains has been proposed, which performance has been simulated by OPENT. To simulation, we design several OPNET models of the network's components based on a satellite constellation with two layers and multiple domains, as network model, node model, MAC layer protocol and optical antenna model. The network model consists of core layer and access layer. The core network consists of four geostationary orbit (GEO) satellites which are uniformly distributed in the geostationary orbit. The access network consists of 6 low Earth orbit (LEO) satellites which is the walker delta (walk-δ) constellation with three orbit planes. In access layer, each plane has two satellites, and the constellation is stably. The satellite constellation presented for space laser network can meet the demand of coverage in the middle and low latitude by a few satellites. Also several terminal device models such as the space laser transmitter, receiver, protocol layer module and optical antenna have been designed according to the inter-satellite links in different orbits t from GEO to LEO or GEO to ground. The influence to network of different transmitting throughput, receiving throughput, network protocol and average time delay are simulated. Simulation results of network coverage, connectivity and traffic load performance in different scenes show that the satellite laser network presented by the paper can be fit for high-speed satellite communications. Such analysis can provide effective reference for the research of satellite laser networking and communication protocol.

  3. Satellite formation. II

    Science.gov (United States)

    Harris, A. W.

    1978-01-01

    A satellite formation model is extended to include evolution of planetary ring material and elliptic orbital motion. In this model the formation of the moon begins at a later time in the growth of the earth, and a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus, the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.

  4. National Satellite Forest Monitoring systems for REDD+

    Science.gov (United States)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  5. 14/12-GHz-band satellite communication services

    Science.gov (United States)

    Hayashi, Kunihiro; Nagaki, Kiyoaki; Mori, Yasuo

    1990-01-01

    Three new systems for integrated TV-relay services have been developed: Satellite Video Comunication Service (SVCS) and Satellite Digital Communication Service (SDCS), with Japan's 14/12-GHz-band commercial communication satellites. These systems have been in commercial use since May 1989. Usually SVCS and SDCS have been provided using Ka-band (30/20 GHz-band) of CS-2 and Cs-3. This paper provides an overview of the design, the performance, and the systems of the new 14/12-GHz-band satellite communication services.

  6. Configurable software for satellite graphics

    Energy Technology Data Exchange (ETDEWEB)

    Hartzman, P D

    1977-12-01

    An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The level of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.

  7. The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats

    Science.gov (United States)

    Chakravarthy, M. V.; Booth, F. W.; Spangenburg, E. E.

    2001-01-01

    Approximately 50% of humans older than 85 years have physical frailty due to weak skeletal muscles. This indicates a need for determining mechanisms to combat this problem. A critical cellular factor for postnatal muscle growth is a population of myogenic precursor cells called satellite cells. Given the complex process of sarcopenia, it has been postulated that, at some point in this process, a limited satellite cell proliferation potential could become rate-limiting to the regrowth of old muscles. It is conceivable that if satellite cell proliferative capacity can be maintained or enhanced with advanced age, sarcopenia could potentially be delayed or prevented. Therefore, the purposes of this paper are to describe whether IGF-I can prevent muscular atrophy induced by repeated cycles of hindlimb immobilization, increase the in vitro proliferation in satellite cells from these muscles and, if so, the molecular mechanisms by which IGF-I mediates this increased proliferation. Our results provide evidence that IGF-I can enhance aged muscle regrowth possibly through increased satellite cell proliferation. The results also suggest that IGF-I enhances satellite cell proliferation by decreasing the cell cycle inhibitor, p27Kip1, through the PI3'-K/Akt pathway. These data provide molecular evidence for IGF-I's rescue effect upon aging-associated skeletal muscle atrophy.

  8. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  9. COMPARATIVE ASSESSMENT OF VERY HIGH RESOLUTION SATELLITE AND AERIAL ORTHOIMAGERY

    Directory of Open Access Journals (Sweden)

    P. Agrafiotis

    2015-03-01

    Full Text Available This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO provided by NCMA S.A (Hellenic Cadastre from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  10. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    Science.gov (United States)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  11. Critical Test Of Gamma Ray Burst Theories

    CERN Document Server

    Dado, Shlomo

    2016-01-01

    Long and precise follow-up measurements of the X-ray afterglow (AG) of very intense gamma ray bursts (GRBs) provide a critical test of GRB afterglow theories. Here we show that the power-law decline with time of X-ray AG of GRB 130427A, the longest measured X-ray AG of an intense GRB with the Swift, Chandra and XMM Newton satellites, and of all other well measured late-time X-ray afterglow of intense GRBs, is that predicted by the cannonball (CB) model of GRBs from their measured spectral index, while it disagrees with that predicted by the widely accepted fireball (FB) models of GRBs.

  12. Critical Muralism

    Science.gov (United States)

    Rosette, Arturo

    2009-01-01

    This study focuses on the development and practices of Critical Muralists--community-educator-artist-leader-activists--and situates these specifically in relation to the Mexican mural tradition of los Tres Grandes and in relation to the history of public art more generally. The study examines how Critical Muralists address artistic and…

  13. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  14. Ocean tidal dissipation and its role in solar system satellite evolution

    Science.gov (United States)

    Chen, Erinna M.

    The history of satellites in the Solar System is quite diverse. For example, satellites like Io and Enceladus exhibit active volcanism currently, while satellites like Ganymede and Tethys show signs of geologic activity in the deep past, but not at present. The energy dissipated by tides has been identified as a major heat source for satellites, but calculations for satellite tidal dissipation primarily focus on dissipation in a solid layer, such as the ice shell. An exciting discovery of the NASA spacecraft missions Galileo and Cassini is that global-scale, deep, liquid water oceans are present on many of the outer Solar System satellites. Tyler (2008) suggested that tidal dissipation due to flow in these oceans could potentially be a significant and previously neglected source of heat. However, a critical free parameter in Tyler's model is the effective turbulent viscosity in the ocean. The value of the effective viscosity is unconstrained and because the amount of tidal dissipation scales with this parameter, the amount of ocean tidal dissipation is also unconstrained. In order to address this uncertainty, we developed a numerical model that solves the shallow-water equations on a spherical shell and includes a nonlinear bottom friction parameterization for viscous dissipation. The bottom friction coefficient has a well-established value in the terrestrial literature; however, the nonlinearity of this term in the equations of motion make the model far more computationally expensive than a model that includes turbulent viscosity. Thus, we provide numerically-derived scalings that map the bottom friction coefficient and satellite parameters to an equivalent effective turbulent viscosity. Because tides depend on both the thermal structure of a satellite as well as characteristics of the satellite's orbit, models that couple thermal and orbital evolution are required to understand the history of a satellite. We use our numerically-derived scalings to adapt a coupled

  15. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  16. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  17. SPACEWAY: Providing affordable and versatile communication solutions

    Science.gov (United States)

    Fitzpatrick, E. J.

    1995-01-01

    By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world.

  18. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  19. Radiated EMC& EMI Management During Design Qualification and Test Phases on LEO Satellites Constellation

    Science.gov (United States)

    Blondeaux, H.; Terral, M.; Gutierrez-Galvan, R.; Baud, C.

    2016-05-01

    The aim of the proposed paper is to present the global radiated EMC/EMI approach applied by Thales Alenia Space in the frame of a telecommunication Low Earth Orbit (LEO) satellites constellation program. The paper will present this approach in term of analyses, of specific characterisation and of sub-system and satellite tests since first design reviews up-to satellite qualification tests on Prototype Flight Model (PFM) and to production tests on reduced FMs. The global aim is : 1 - to reduce risk and cost (units EMC delta qualification, EMC tests at satellite level for the 81 Space Vehicles (SV) through appropriated EMC analyses (in term of methodologies and contours) provided in the frame of design reviews.2 - to early anticipate potential critical case to reduce the impact in term of engineering/qualification/test extra cost and of schedule.3 - to secure/assure the payload and SV design/layout.4 - to define and optimize the EMC/EMI test campaigns to be performed on Prototype Flight Model (PFM) for complete qualification and on some FMs for industrial qualification/validation.The last part of the paper is dedicated to system Bite Error Rate (BER) functional test performed on PFM SV to demonstrate the final compatibility between the three on-board payloads and to the Internal EMC tests performed on PFM and some FMs to demonstrate the SV panel RF shielding efficiency before and after environmental tests and the Thales Alenia Space (TAS) and Orbital AKT (OATK) workmanships reproducibility.

  20. Artificial Satellites and How to Observe Them

    CERN Document Server

    Schmude, Jr , Richard

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what it is they are observing. This is the basis for the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Every amateur astronomer sees "stars" that aren't natural objects steadily slide across the background of the sky. Artificial satellites can be seen on any night, and some are as bright as the planets. But can you identify which satellite or spent launch vehicle casing you are seeing? Do you know how to image it? Artificial Satellites and How to Observe Them describes all of the different satellites that can be observed, including communication, scientific, spy satellites, and of course, the International Space Station. Richard Schmude describes how to recognize them and even how to predict their orbits. The book tells how to observe artificial satellites with the unaided eye, binoculars and with telesc...

  1. Implementing an operating room pharmacy satellite.

    Science.gov (United States)

    Powell, P J; Maland, L; Bair, J N; McCall, J D; Wong, K C

    1983-07-01

    Implementation of an operating room (OR) pharmacy satellite is described, and its impact on cost-effectiveness and efficiency of drug distribution is analyzed. The OR satellite provided pharmacy coverage for 30-35 patients per day in 10 centralized surgical suites, 2 obstetric suites, and 1 burn-unit suite in a 401-bed teaching hospital. Objectives of the satellite were to consolidate accountability for drug distribution and control, reduce controlled substance loss and waste, reduce inventory costs, and improve recording of patient charges. Stock on the OR supply cart was reduced, controlled substances were dispensed to anesthesiologists from the satellite, and a system of standardized anesthesiology exchange trays was developed. A new billing form served as both the charging document and replacement list. Reduction in the medication cart stock resulted in smaller discrepancies in patient charges. For the five most commonly used controlled substances, accounting discrepancies were reduced. Inventory turnover increased and inventory dollar value and cost per patient were reduced. The percent of nurses who believed that a pharmacist should work in the area increased from 31% before implementation of the satellite to 95% after. The pilot OR pharmacy satellite was a financial success. Efficiency and effectiveness in drug distribution and control were improved, and communication between pharmacists and other medical personnel working in the OR areas was enhanced.

  2. Capture of irregular satellites at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-03-20

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  3. Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    Science.gov (United States)

    Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.

    1992-01-01

    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.

  4. Interoperability of satellite-based augmentation systems for aircraft navigation

    Science.gov (United States)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  5. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes.

    Science.gov (United States)

    Morena, Deborah; Maestro, Nicola; Bersani, Francesca; Forni, Paolo Emanuele; Lingua, Marcello Francesco; Foglizzo, Valentina; Šćepanović, Petar; Miretti, Silvia; Morotti, Alessandro; Shern, Jack F; Khan, Javed; Ala, Ugo; Provero, Paolo; Sala, Valentina; Crepaldi, Tiziana; Gasparini, Patrizia; Casanova, Michela; Ferrari, Andrea; Sozzi, Gabriella; Chiarle, Roberto; Ponzetto, Carola; Taulli, Riccardo

    2016-03-17

    Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity.

  6. Strategies for nanoplasmonic core-satellite biomolecular sensors: Theory-based Design

    Science.gov (United States)

    Ross, Benjamin M.; Waldeisen, John R.; Wang, Tim; Lee, Luke P.

    2009-11-01

    We present a systematic theoretical study of core-satellite gold nanoparticle assemblies using the Generalized Multiparticle Mie formalism. We consider the importance of satellite number, satellite radius, the core radius, and the satellite distance, and we present approaches to optimize spectral shift due to satellite attachment or release. This provides clear strategies for improving the sensitivity and signal-to-noise ratio for molecular detection, enabling simple colorimetric assays. We quantify the performance of these strategies by introducing a figure of merit. In addition, we provide an improved understanding of the nanoplasmonic interactions that govern the optical response of core-satellite nanoassemblies.

  7. Strategies for nanoplasmonic core-satellite biomolecular sensors: Theory-based Design.

    Science.gov (United States)

    Ross, Benjamin M; Waldeisen, John R; Wang, Tim; Lee, Luke P

    2009-11-09

    We present a systematic theoretical study of core-satellite gold nanoparticle assemblies using the Generalized Multiparticle Mie formalism. We consider the importance of satellite number, satellite radius, the core radius, and the satellite distance, and we present approaches to optimize spectral shift due to satellite attachment or release. This provides clear strategies for improving the sensitivity and signal-to-noise ratio for molecular detection, enabling simple colorimetric assays. We quantify the performance of these strategies by introducing a figure of merit. In addition, we provide an improved understanding of the nanoplasmonic interactions that govern the optical response of core-satellite nanoassemblies.

  8. Ravens satellite mission concept study

    CERN Document Server

    Donovan, Eric F

    2011-01-01

    The concept for Ravens satellite mission was proposed in response to a CSA AO for potential Canadian mission contributions to the International Living With a Star (ILWS) program. Ravens was conceived of to fill an important gap in the ILWS program: global imaging. Ravens will build on the heritage of world-class global imaging carried out in Canada. It would do much more than provide global observations to complete the system level capabilities of ILWS. Ravens would be comprised of two satellites on elliptical polar orbits, relatively phased on those orbits to provide the first-ever continuous (ie., 24 hours per day 7 days per week) global imaging of the northern hemisphere auroral and polar cap regions. This would provide the first-ever unbroken sequences of global images of the auroral response during long duration geomagnetic processes like storms and steady magnetospheric convection events. Ravens could track the spatio-temporal evolution of the global electron and proton auroral distribution, and would o...

  9. Critical proximity

    Directory of Open Access Journals (Sweden)

    Simon, Jane

    2010-01-01

    Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.

  10. Critical Proximity

    Directory of Open Access Journals (Sweden)

    Jane Simon

    2010-09-01

    Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.

  11. Educational Applications of Communications Satellites in Canada. New Technologies in Canadian Education Series. Paper 12.

    Science.gov (United States)

    Richmond, J. Murray

    Canada has explored the use of satellites as a means to provide information and communications services to geographically isolated populations since 1962. Between 1972 and 1984, five series of satellites known as Anik A, B, C, and D and Hermes were launched. Each satellite provided expanded communications services, and each led to research and…

  12. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  13. Satellite Meteorology Education Resources Freely Available from COMET°

    Science.gov (United States)

    Abshire, W. E.; Dills, P. N.

    2011-12-01

    The COMET° Program (www.comet.ucar.edu) receives funding from NOAA NESDIS, EUMETSAT, and the Meteorological Service of Canada to support education and training efforts in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on the application of products from geostationary and polar-orbiting remote sensing platforms. Recently, COMET's satellite education programs have focused on both current and next generation satellites and their relevance to operational forecasters and other communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, MSC, and other user communities, COMET stimulates greater utilization of satellite data and products. COMET also continues to broaden the scope of its training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System between NOAA and EUMETSAT, while Meteosat Second Generation imaging capabilities provide an authentic proving ground for the next-generation GOES-R imager. This presentation provides an overview of COMET's recent satellite education efforts including courses and publications that focus on topics like multispectral RGB products, detecting atmospheric dust, and climate monitoring from satellites. Over 50 satellite-focused self-paced online materials are freely available via the Satellite Topic area of the MetEd Web site (www.meted.ucar.edu/topics/modules/satellite) and COMET's Environmental Satellite Resource Center (ESRC)(www.meted.ucar.edu/esrc). The ESRC, another important resource developed for use by the geosciences and education communities, is a searchable, database driven Web site that provides easy access to a wide range of useful information and training materials on Earth-observing satellites. Simple free online registration is required to access all training materials and the

  14. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  15. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  16. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  17. AVS on satellite

    Science.gov (United States)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  18. Seamless Handovers in Cobra Teardrop Satellite Arrays

    Science.gov (United States)

    Draim, John E.; Cefola, Paul J.; Ernandes, Kenneth J.

    2007-06-01

    Satellite systems provide the most efficient and possibly the only means of achieving two-way global communications with mobile systems (ships, aircraft, and vehicular traffic). To date, such systems have used only circular orbits, either GEO or LEO. Medium altitude elliptical constellations, on the other hand, can provide an efficient and affordable alternative to these architectures. Users also benefit from their very high average and minimum elevation angles, resulting in minimum signal attenuation. Cobra Teardrop is unique in that it employs time synchronized 8-h left- and right-leaning elliptical orbits giving mid-latitude observers the illusion of viewing a single satellite continuously orbiting almost directly overhead! In reality, observers see six different satellites per day, for 4 h each (while in their active duty cycles). By design, Teardrop satellites are physically in very close proximity at the handover points. This favorable geometry can be utilized to achieve a seamless handover from one satellite to the other (not requiring any electronic buffering). Handover is accomplished at the precise instant that the total path lengths from the transmitting station through both satellites to the receiving station are exactly equal. In these improved Cobra Teardrop arrays, an order of magnitude increase in global communications capacity (equivalent GEO slots) can be realized over earlier Basic Cobra systems. For decades into the future, these new orbital systems could satisfy a widely expanding range of commercial, government, and military high data rate communication requirements. These would include, but not be limited to, satellite cellular, air traffic control, meteorological, and combat net radio systems. With these arrays, a much larger number of system operators could be supported, without mutual electronic interference, than would ever be possible with circular orbits.

  19. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  20. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  1. Satellite cells from dystrophic muscle retain regenerative capacity

    Directory of Open Access Journals (Sweden)

    Luisa Boldrin

    2015-01-01

    Full Text Available Duchenne muscular dystrophy is an inherited disorder that is characterized by progressive skeletal muscle weakness and wasting, with a failure of muscle maintenance/repair mediated by satellite cells (muscle stem cells. The function of skeletal muscle stem cells resident in dystrophic muscle may be perturbed by being in an increasing pathogenic environment, coupled with constant demands for repairing muscle. To investigate the contribution of satellite cell exhaustion to this process, we tested the functionality of satellite cells isolated from the mdx mouse model of Duchenne muscular dystrophy. We found that satellite cells derived from young mdx mice contributed efficiently to muscle regeneration within our in vivo mouse model. To then test the effects of long-term residence in a dystrophic environment, satellite cells were isolated from aged mdx muscle. Surprisingly, they were as functional as those derived from young or aged wild type donors. Removing satellite cells from a dystrophic milieu reveals that their regenerative capacity remains both intact and similar to satellite cells derived from healthy muscle, indicating that the host environment is critical for controlling satellite cell function.

  2. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  3. Declassified intelligence satellite photographs

    Science.gov (United States)

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  4. Oceanography from satellites

    Science.gov (United States)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  5. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Science.gov (United States)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  6. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  7. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    for an efficient hybrid terrestrial-satellite communication system. Two integrated HAP-satellite scenarios are presented, in which the HAP is used to overcome some of the shortcomings of satellite- based communications. Moreover, it is shown that the integration of HAPs with satellite systems can be used......Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element...

  8. Integration Of GPS And GLONASS Systems In Geodetic Satellite Measurements

    Science.gov (United States)

    Maciuk, Kamil

    2015-12-01

    The article shows the results of satellites measurements elaborations using GPS & GLONASS signals. The aim of this article is to define the influence of adding GLONASS signals on position determination accuracy. It especially concerns areas with big horizon coverages. Object of the study were analysis of DOP coefficients, code and RTK solutions, and usage of satellite techniques in levelling. The performed studies and analysis show that integrated GPS-GLONASS satellite measurements provide possibility to achieve better results than measurements using single navigation satellite system (GPS).

  9. Nutation damper for the AMPTE-IRM satellite: Final Report

    Science.gov (United States)

    Truckenbrodt, A.; Schultysik, B.; Mehltretter, J. P.

    1983-01-01

    The design, computations, and testing of the nutation damper for the AMPTE-IRM satellite are described. The nutation motions of the satellite excite fluid oscillations in the closed tube system; kinetic energy is destroyed (converted to heat) through tube/fluid friction, constriction of the stream by cross sectional change, and formation of turbulence by stream enlargement. This energy is extracted from the satellite such that nutation is reduced. Tests were carried out in a pendulum testing device and the time constants were calculated. Findings showed that the damper remained within the originally specified values and provided for good dynamic behavior of the satellite.

  10. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  11. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  12. Satellite communications for the next generation telecommunication services and networks

    Science.gov (United States)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  13. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    Science.gov (United States)

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  14. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    Science.gov (United States)

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  15. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  16. Cybersecurity threats to satellite communications: Towards a typology of state actor responses

    Science.gov (United States)

    Housen-Couriel, Deborah

    2016-11-01

    Cybersecurity threats to satellite communications are a relatively new phenomenon, yet have quickly come to the forefront of concern for the sustainability of satellite systems due to the vulnerabilities that such threats may exploit and negatively impact. These vulnerabilities are mission-critical: they include launch systems, communications, telemetry, tracking and command, and mission completion. They and other aspects of satellite communications depend heavily on secure and resilient cyber capabilities for all stages of the satellite's lifespan. Because of the inherently global nature of both satellite and cyberspace activities, these capabilities rely significantly on international cooperation for setting a baseline of agreed legal norms that protect satellites and satellite communications. This critical cooperation is relevant during all mission phases, from planning to final wrap-up. Under optimal circumstances, the norms and standards protecting satellites and satellite transmissions are developed and enforced by those nation-state actors that are committed to system operability and overall mission sustainability for those satellites launched under their aegis and responsibility. However, when breaches of international law do occur in the form of hostile cyber events that cause damage to satellite communications, a range of measures should be available to the victim state, provided by the appropriate legal regime or regimes. This article proposes that a comprehensive and integrative multi-stakeholder review be undertaken in the near future of the measures available under international law for responding to hostile acts directed at satellite systems and communications, in a manner that takes into account both existing regimes of international law reviewed herein, as well as considerations of cybersecurity. These measures will depend upon the characterization of hostile interference with satellite transmissions in accordance with a proposed typology of

  17. Use of Advanced Solar Cells for Commercial Communication Satellites

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  18. Remote Observation of Volcanos by Small Satellite Formations

    Science.gov (United States)

    Schilling, Klaus; Zakšek, Klemen

    2016-07-01

    Volcanic eruptions, severe storms, or desert dust can seriously jeopardize the safety of the air traffic. To prevent encounters of airplanes with such clouds it is necessary to accurately monitor the cloud top heights, which is impossible using currently operational satellites. The most commonly used method for satellite cloud height estimation compares brightness temperature of the cloud with the atmospheric temperature profile. Because of its many uncertainties we propose to exploit the formation of four satellites providing images for photogrammetric analysis. Simultaneous observations from multiple satellites is necessary, because clouds can move with velocities over several m/s. With the proposed mission, we propose a formation of nano-satellites that simultaneously observe the clouds from different positions and orientations. The proposed formation of four satellites will fly in the same orbit with a distance between each satellite of 100 km on the height of 600 km. There are autonomous reaction capabilities realized to focus all satellites on the same surface point for joint observations, enabling by postprocessing 3D surface images. Each satellite will carry a camera operating in visible spectrum providing data with 35 m spatial resolution. Such data will make possible to monitor multilayer clouds with a vertical accuracy of 200 m.

  19. Critical Schwinger Pair Production.

    Science.gov (United States)

    Gies, Holger; Torgrimsson, Greger

    2016-03-04

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality.

  20. COSPAR report to United Nations 2004: satellite dynamics

    Science.gov (United States)

    Willis, Pascal

    2004-01-01

    The COSPAR Panel on Satellite Dynamics (PSD) is concerned with the determination of the position, velocity and orientation in space of artificial and natural satellites around the Earth or in the outer space. The following report highlighs representative activities of this panel and provides general information on related international aspects.

  1. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  2. Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  3. What Makes Critical Thinking Critical for Adult ESL Students

    Science.gov (United States)

    Miekley, Joshua P.

    2014-01-01

    Critical-thinking skills help to prepare adult education students for a successful transition to college degree programs and for job advancement. Yet fostering critical thinking poses a challenge to ESL instructors. Brookfield (2012) provides a way forward for adult educators when he explains that the crux of critical thinking is to discover one's…

  4. Satellite-aided mobile radio concepts study: Concept definition of a satellite-aided mobile and personal radio communication system

    Science.gov (United States)

    Anderson, R. E.

    1979-01-01

    The satellite system requires the use of a large satellite antenna and spacecraft array power of about 12 kW or more depending on the operating frequency. Technology developments needed include large offset reflector multibeam antennas, satellite electrical power sybsystems providing greater than 12 kW of power, signal switching hardware, and linearized efficient solid state amplifiers for the satellite-aided mobile band. Presently there is no frequency assignment for this service, and it is recommended that an allocation be pursued. The satellite system appears to be within reasonable extrapolation of the state of the art. It is further recommended that the satellite-aided system spacecraft definition studies and supporting technology development be initiated.

  5. Sizes and Shapes of Neptune's Inner Satellites

    Science.gov (United States)

    Karkoschka, E.

    2002-09-01

    I measured resolved images of the inner Neptunian satellites by Voyager 2. The best-fitting tri-axial radii are 48x30x26 km for Naiad, 54x50x26 km for Thalassa, 90x74x64 km for Despina, 102x92x72 km for Galatea, and 108x102x84 km for Larissa. These sizes are within uncertainty limits by Thomas and Veverka (1991) who provided a shape for Larissa (104x89 km), radii with assumed spherical shapes for Despina (74 km) and Galatea (79 km) and estimated radii based on assumed albedos for Naiad (29 km) and Thalassa (40 km). The uncertainties of the new radii are smaller. Estimates of volumes and masses of Naiad and Galatea need to be increased by some 50 percent, which is interesting since Galatea's gravity is considered to cause the unique arcs of Neptune's Adams ring. The moderately elongated shapes of the medium-sized satellites Despina and Galatea, and the strongly elongated shapes of the small satellites Naiad and Thalassa are typical for bodies of their size, although the shape of Thalassa is almost oblate (like a lens) while the shapes of other, strongly elongated satellites such as Naiad are closer to prolate (like a cigar). While previous uncertainties allowed the same reflectivity for the inner six Neptunian satellites, this is no longer true. There is a trend of albedos increasing with distance from Neptune, similar to the trend observed for the Uranian satellites. By estimating phase curves, I predict brighter albedos for inner six Neptunian satellites (0.07-0.10) than for the inner 10 Uranian satellites (0.05-0.07), opposite to previous estimates, which could be tested using recent images by the Hubble Space Telescope and ground-based observatories. The measured shapes of the inner Neptunian satellites cause orbital light curves, even if their surfaces lack spatial albedo variations. Indeed, photometry by Thomas and Veverka (1991) reveals amplitudes and phases of the light curves consistent with those inferred from the measured shapes, although most data are

  6. Man-made Satellites

    Institute of Scientific and Technical Information of China (English)

    郝昌明

    2005-01-01

    If you watch the sky about an hour after the sun goes down, you may see some “moving stars”. But they're not real stars. They're manmade satellites (卫星). And the biggest of all is the International Space Station (ISS国际空间站).

  7. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)

    A. MAMMANO

    1964-06-01

    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  8. Experimental Satellite Quantum Communications.

    Science.gov (United States)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  9. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    of nearly specular reflections from most solar panels. Our primary purpose in presenting these two plots is to demonstrate the usefulness of...than a transformation for stars because the spectral energy distribution of satellites can change with phase angle and is subject to specular

  10. Creating Better Satellite Conferences.

    Science.gov (United States)

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  11. Ocean surveillance satellites

    Science.gov (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  12. OMV With Satellite

    Science.gov (United States)

    1986-01-01

    This 1986 artist's concept shows the Orbital Maneuvering Vehicle (OMV) towing a satellite. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  13. Advances in satellite oceanography

    Science.gov (United States)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  14. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    Science.gov (United States)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  15. NASA's Impacts Towards Improving International Water Management Using Satellites

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lawford, R. G.; Mohr, K. I.; Lee, C. M.

    2013-12-01

    Key objectives of the NASA's Water Resources and Capacity Building Programs are to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management. This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts to international partners, particularly developing countries. NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and internationally to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. This presentation will outline and describe NASA's international water related research, applications and capacity building programs' efforts to address developing countries critical water challenges in Asia, African and Latin America. This will specifically highlight impacts and case studies from NASA's programs in Water Resources (e.g., drought, snow

  16. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  17. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    arrives at a schedule of costs and payments for all the items and the years in which they will be incurred. The second category of costing problems is one of financing or engineering economics. All the costs are first "present valued" to some reference period using rates of return appropriate to the particular situation. One finally arrives at sets of annual costs which can be used as the basis for setting lease costs or revenue requirements and tariffs. The correspondence between methods using discounted rates of return and capital recovery formulae on one hand and those using various depreciation schedules, such as is typical of regulated industries on the other hand, is discussed. The remainder of the paper is devoted to discussing the relationship between critical parameters, such as replacement schedules, design lifetime, satellite power and Earth station antenna size, and the overall costs. It is shown that optima for these parameters may exist and can be calculated. In particular, the optimization of satellite replacement schedules to minimize the present value of total investment over a very long period is presented, along with simplified versions of the theory suitable for system planning. The choice of EIRP is also discussed and a procedure for choosing the value that minimizes the costs is shown.

  18. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  19. An Educator's Guide to Communication Satellite Technology.

    Science.gov (United States)

    Polcyn, Kenneth A.

    Recent developments in the area of sophisticated communications technology present challenges to the imagination of every educator. This guide provides educational planners with an awareness and understanding of communication satellite technology, its current uses, and some of the tentative plans for educational experimentation. The first part…

  20. Quantitative Cloud Analysis using Meteorological Satellites

    NARCIS (Netherlands)

    Feijt, A.J.

    2000-01-01

    This thesis is about observations of clouds from satellite and ground based instruments. The aim is to reconstruct the three dimensional cloud distributions. This information is used both in climate research and operational meteorological applications. In climate research, cloud observations provide

  1. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  2. Satellite Contributions to Global Change Studies

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need

  3. DFH Satellite Co.,Ltd.

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    DFH Satellite Co.,Ltd. is a hi-tech enterprise founded and sponsored by China Aerospace Science and Technology Corporation(CASC) and one of CASC subsidiaries,China Academy of Space Technology (CAST). The company is mainly engaged in the research and development of small satellites and micro-satellites, Osystem designs and product development for satellite application projects as well as the international exchanges and cooperation.

  4. Critical Quantitative Inquiry in Context

    Science.gov (United States)

    Stage, Frances K.; Wells, Ryan S.

    2014-01-01

    This chapter briefly traces the development of the concept of critical quantitative inquiry, provides an expanded conceptualization of the tasks of critical quantitative research, offers theoretical explanation and justification for critical research using quantitative methods, and previews the work of quantitative criticalists presented in this…

  5. Critical Quantitative Inquiry in Context

    Science.gov (United States)

    Stage, Frances K.; Wells, Ryan S.

    2014-01-01

    This chapter briefly traces the development of the concept of critical quantitative inquiry, provides an expanded conceptualization of the tasks of critical quantitative research, offers theoretical explanation and justification for critical research using quantitative methods, and previews the work of quantitative criticalists presented in this…

  6. EEW Implementation into Critical Infrastructures

    Science.gov (United States)

    Zulfikar, Can; Pinar, Ali

    2016-04-01

    In FP7 MARsite project WP9, the integration algorithm of existing strong motion networks with the critical infrastructures strong motion networks have been studied. In Istanbul, the existing Istanbul Earthquake Early Warning (IEEW) strong motion network consists of 15 stations including 10 on land and 5 ocean bottom stations. The system provides continuous online data and earthquake early warning alert depending on the exceedance of the threshold levels in ground motion acceleration in certain number of station within the certain time interval. The data transmission is provided through the fiber optic cable and satellite line alternatively. The early warning alert is transmitted to the critical infrastructures of Istanbul Natural Gas distribution line and Marmaray Tube Tunnel line in order to activate the local strong motion networks for the automatic shut-off mechanism. Istanbul Natural Gas distribution line has 1.800km steel and 15.200km polyethylene in total 18.000km gas pipeline in Istanbul. There are in total 750 district regulators in the city where the gas pressure is reduced from 20bar to 4bar and from there the gas is transmitted with polyethylene lines to service boxes. Currently, Istanbul Natural Gas Distribution Company (IGDAS) has its own strong motion network with 110 strong motion stations installed at the 110 of 750 district regulators. Once the IGDAS strong motion network is activated by the IEEW network, depending on the exceedance of the ground motion parameters threshold levels the gas flow is stopped at the district regulators. Other than the Earthquake Early Warning operation in IGDAS strong motion network, having the calculated ground motion parameters in the network provides damage maps for the buildings and natural gas pipeline network. The Marmaray Tube Tunnel connects the Europe and Asian sides of Istanbul City by a rail line. The tunnel is 1.4km length and consists of 13segments. There is strong motion monitoring network in the tunnel

  7. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  8. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  9. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......’s Master Environmental Library. At CLS the a priori wind direction is taken from the ECMWF (European Centre of Medium-range Weather Forecasting). It is also possible to use other sources of wind direction e.g. the satellite-based ASCAT wind directions as demonstrated by CLS. The wind direction has to known...

  10. Simobiz-Simulation Tool to Study the Impact of Small Satellites in Mobile Market

    Science.gov (United States)

    Burlacu, M.-M.; Kohlenberg, J.; Prathaban, M.

    2008-08-01

    Interest in small satellites is growing fast world- wide. Businesses, governments, universities and other organizations around the world are starting their own small satellite programs. The surveys conducted by the space agencies and universities shows a promising increase in the use of small satellites for commercial applications. More number of operators offers or plans to offer mobile phone services by satellite. With the help of cost effective small satellite, mobile operators can be able to provide the services cheaper. Hence, it is always interesting to study the effect of low cost small satellite over the mobile market. In this article, we present SmartSim (Small Satellites Mobile Market Simulator) - the new module of Simobiz business simulation game, in which we have implemented two operators, a normal satellite operator and a nanosatellite operator, with specific terminals and services. Our main focus in this work is to understand the future market of small satellite in mobile telecommunication network.

  11. Governing Critical ICT: Elements that Require Attention

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Klaver, M.H.A.

    2015-01-01

    With respect to critical information and communication technologies (ICT), nations most often declare their national critical infrastructure to include telecommunication services and in some cases critical services offered by key Internet Service Providers (ISP). This paper debates whether nations,

  12. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  13. Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China

    Directory of Open Access Journals (Sweden)

    Shanyu Huang

    2015-08-01

    Full Text Available Rice farming in Northeast China is crucially important for China’s food security and sustainable development. A key challenge is how to optimize nitrogen (N management to ensure high yield production while improving N use efficiency and protecting the environment. Handheld chlorophyll meter (CM and active crop canopy sensors have been used to improve rice N management in this region. However, these technologies are still time consuming for large-scale applications. Satellite remote sensing provides a promising technology for large-scale crop growth monitoring and precision management. The objective of this study was to evaluate the potential of using FORMOSAT-2 satellite images to diagnose rice N status for guiding topdressing N application at the stem elongation stage in Northeast China. Five farmers’ fields (three in 2011 and two in 2012 were selected from the Qixing Farm in Heilongjiang Province of Northeast China. FORMOSAT-2 satellite images were collected in late June. Simultaneously, 92 field samples were collected and six agronomic variables, including aboveground biomass, leaf area index (LAI, plant N concentration (PNC, plant N uptake (PNU, CM readings and N nutrition index (NNI defined as the ratio of actual PNC and critical PNC, were determined. Based on the FORMOSAT-2 imagery, a total of 50 vegetation indices (VIs were computed and correlated with the field-based agronomic variables. Results indicated that 45% of NNI variability could be explained using Ratio Vegetation Index 3 (RVI3 directly across years. A more practical and promising approach was proposed by using satellite remote sensing to estimate aboveground biomass and PNU at the panicle initiation stage and then using these two variables to estimate NNI indirectly (R2 = 0.52 across years. Further, the difference between the estimated PNU and the critical PNU can be used to guide the topdressing N application rate adjustments.

  14. Critical Vidders

    DEFF Research Database (Denmark)

    Svegaard, Robin Sebastian Kaszmarczyk

    2015-01-01

    This article will introduce and take a look at a specific subset of the fan created remix videos known as vids, namely those that deal with feminist based critique of media. Through examples, it will show how fans construct and present their critique, and finally broach the topic of the critical ...

  15. Critical Vidders

    DEFF Research Database (Denmark)

    Svegaard, Robin Sebastian Kaszmarczyk

    2015-01-01

    This article will introduce and take a look at a specific subset of the fan created remix videos known as vids, namely those that deal with feminist based critique of media. Through examples, it will show how fans construct and present their critique, and finally broach the topic of the critical...

  16. Quantum Criticality

    OpenAIRE

    Keimer, Bernhard; Sachdev, Subir

    2011-01-01

    This is a review of the basic theoretical ideas of quantum criticality, and of their connection to numerous experiments on correlated electron compounds. A shortened, modified, and edited version appeared in Physics Today. This arxiv version has additional citations to the literature.

  17. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  18. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  19. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  20. NORSEWInD satellite wind climatology

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, Alexis

    is to provide new offshore wind climatology map for the entire area of interest based on satellite remote sensing. This has been based on Synthetic Aperture Radar (SAR) from Envisat ASAR using 9000 scenes re-processed with ECMWF wind direction and CMOD-IFR. The number of overlapping samples range from 450....... QuikSCAT ocean wind vector observations have been analysed for the same four parameters and ASCAT for mean wind speed. All satellite data has been compared to in-situ observations available in the Norsewind project. SSM/I passive microwave wind speed data from 24 years observed around 6 times per day...... are used to estimate trends in offshore winds and interestingly a shift in the seasonal pattern is notice. All satellite-based wind products are valid at 10 m, thus it is desirable to lift winds to higher levels for wind energy products. A method has been suggested to lift winds from 10 m to hub...

  1. Imaging artificial satellites: An observational challenge

    Science.gov (United States)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  2. Investigation on Satellite-borne High-power Solid-state Power Amplifier Technology and Experiment

    OpenAIRE

    Wu Xiao-po; Zhao Hai-yang; Xi Song-tao

    2014-01-01

    Based on the research and development efforts of satellite-borne lumped solid-state transmitters, the design of a satellite-borne high-power microwave amplifier module is introduced. Focusing on satellite-borne applications, aspects of the high-power density thermal design, multipactor proof design, EMC design and so on, which are critical technologies for a solid-state power amplifier, are discussed. Subsequently, experiments are used to verify the concept.

  3. Investigation on Satellite-borne High-power Solid-state Power Amplifier Technology and Experiment

    Directory of Open Access Journals (Sweden)

    Wu Xiao-po

    2014-06-01

    Full Text Available Based on the research and development efforts of satellite-borne lumped solid-state transmitters, the design of a satellite-borne high-power microwave amplifier module is introduced. Focusing on satellite-borne applications, aspects of the high-power density thermal design, multipactor proof design, EMC design and so on, which are critical technologies for a solid-state power amplifier, are discussed. Subsequently, experiments are used to verify the concept.

  4. Satellite Aerodynamics and Density Determination from Satellite Dynamic Response

    Science.gov (United States)

    Karr, G. R.

    1972-01-01

    The aerodynamic drag and lift properties of a satellite are first expressed as a function of two parameters associated with gas-surface interaction at the satellite surface. The dynamic response of the satellite as it passes through the atmosphere is then expressed as a function of the two gas-surface interaction parameters, the atmospheric density, the satellite velocity, and the satellite orientation to the high speed flow. By proper correlation of the observed dynamic response with the changing angle of attack of the satellite, it is found that the two unknown gas-surface interaction parameters can be determined. Once the gas-surface interaction parameters are known, the aerodynamic properties of the satellite at all angles of attack are also determined.

  5. Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems

    Science.gov (United States)

    Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph; Voronka, Nestor; Williams, Scott

    2013-01-01

    Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.

  6. Application of satellite derived information for disaster risk reduction: vulnerability assessment for southwest coast of Pakistan

    Science.gov (United States)

    Rafiq, Lubna; Blaschke, Thomas; Zeil, Peter

    2010-10-01

    The SW-coast of Pakistan is vulnerable to natural disasters, such as cyclones and tsunamis. Lack of spatially referenced information is a major hinder for proper disaster risk management programs in Pakistan, but satellite remote sensing being reliable, fast and spatially referenced information can be used as an important component in various natural disaster risk reduction activities. This study aimed to investigate vulnerability of coastal communities to cyclone and tsunamis based on satellite derived information. It is observed that SPOT-5 is relevant source on threatened features with respect to certain vulnerabilities like road, settlements, infrastructure and used in preparation of hazard zonation and vulnerability maps. Landsat ETM found very useful in demarcation of flood inundated areas. The GIS integrated evaluation of LANDSAT and ASTER GDEM helps identify low lying areas most susceptible to flooding and inundation by cyclone surges and tsunamis. The GIS integrated evaluation of SPOT, LANDSAT and ASTER GDEM data helps identify areas and infrastructure most vulnerable to cyclone surges and tsunami. Additionally, analysis of the vulnerability of critical infrastructures (schools, hospitals) within hazard zones provides indicators for the degree of spatial exposure to disaster. Satellite derived information in conjunction with detailed surveys of hazard prone areas can provide comprehensive vulnerability and risk analysis.

  7. Effective management strategy for establishing an operating room satellite pharmacy.

    Science.gov (United States)

    Brakebill, J I; Schoeneman, P F; Buchanan, B

    1988-11-01

    The steps involved in justifying and implementing an operating room (OR) pharmacy satellite are described. A hospital administrator's viewpoint on the project is included. Objectives of the satellite were to reduce inventory costs, improve control of distribution, reduce loss of revenue and improve patient charging, improve IV compounding and labeling, and significantly improve narcotic control and accountability. The satellite provides comprehensive services 12 hours a day, five days a week. Effective after-hours procedures have been developed to provide efficient drug distribution when the pharmacy is closed. Achieved benefits of the satellite include decreased drug inventory, improved patient charging, accurate labeling, improved IV compounding, and improved pharmacy/surgery relations. The OR pharmacy satellite is a successful cost-effective operation.

  8. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  9. Direct broadcast satellite-radio, space-segment/receiver tradeoffs

    Science.gov (United States)

    Golshan, Nasser

    1993-01-01

    The balance between receiver complexity and the required satellite equivalent isotropically radiated power (EIRP) for Direct Broadcast Satellite-Radio (DBS-R) service is addressed. In general the required receiver complexity and cost can be reduced at the expense of higher space-segment cost by allowing a higher satellite EIRP. The tradeoff outcome is sensitive to the total number of anticipated receivers in a given service area, the number of audio programs, and the required audio quality. An understanding of optimum choice of satellite EIRP for DBS-R under various service requirements is a critical issue at this time when International Radio Consultative Committee (CCIR) is soliciting input in preparation for the International Telecommunications Union (ITU) planning conference for the service.

  10. Optimal design of the satellite constellation arrangement reconfiguration process

    Science.gov (United States)

    Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid

    2016-08-01

    In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.

  11. Mastering operational limitations of LEO satellites - the GomX-3 approach

    NARCIS (Netherlands)

    Nies, Gilles; Stenger, Marvin; Krčál, Jan; Hermanns, Holger; Bisgaard, Morten; Gerhardt, David; Haverkort, Boudewijn; Jongerden, Marijn; Larsen, Kim G.; Wognsen, Erik R.

    2016-01-01

    When working with space systems the keyword is resources. For a satellite in orbit all resources are sparse and the most critical resource of all is power. It is therefore crucial to have detailed knowledge on how much power is available for an energy harvesting satellite in orbit at every time – es

  12. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    Science.gov (United States)

    Johnson, Len; Fabisinski, Leo; Cunningham, Karen; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  13. Inmarsat and personal mobile satellite services

    Science.gov (United States)

    McDougal, Patrick; Barendse, Victor

    Personal communications - mobile satellite services (PC-MSS) hold much promise as a profitable business opportunity for a number of interested operators and manufacturers. What will be their impact on the overall mobile communications landscape, and what role will they play in the drive towards the universal personal communicator? It is the thesis of this paper that PC-MSS can provide one of the critical enabling technologies to allow a more rapid, global assimilation of personal mobile communications. Terrestrial mobile communications are local by definition, both in terms of service reach and regulatory oversight. It is estimated that cellular, and other forms of terrestrial mobile communications, will cover over 50% of the world's population, but only 15% of the land mass area by the year 2000. PC-MSS will allow 'cellular extension' to interested users in the uncovered parts of the world. The market opportunity is established and technical solutions are available. However 'user cooperation' will be required and cross mapping of market needs to the technology solutions is the key to financially viable solutions. The potential political and regulatory hurdles are daunting. Inmarsat, as the existing global MSS partnership, is already introducing PC-MSS products and services in the 1990s. The widespread use of briefcase satphones (Inm-M), laptop-sized data terminals (Inm-C), and pocket satpagers (Inm-paging) will break new ground in reshaping the international regulatory context of mobile communications, and in initiating the optimal public switched network integration necessary for global interconnect. It is suggested that this evolutionary approach, by means of international consensus-building within a global partnership of operators, is an effective and proven method to ensure both a sufficient financial return for investors, and fair and equitable access of these services for all countries and users.

  14. Satellites in Canadian broadcasting

    Science.gov (United States)

    Siocos, C. A.

    The involvement of Canadian broadcasting and related enterprises in satellite telecommunications is surveyed. This includes point-to-point transmissions and direct ones to the general public. The mode of such utilizations is indicated in both these cases. For the forthcoming DBS systems the many types of service offerings and utilization concepts under discussion elasewhere are presented as well as the business prospects and regulatory climate offering them.

  15. Neptune: Minor Satellites

    Science.gov (United States)

    Murdin, P.

    2003-04-01

    All but one of Neptune's minor satellites orbit within or just outside its ringsystem; the exception is the distant object Nereid. Some of them are betterdescribed as `mid-sized' rather than `minor', but are included under thisheading as little is known of them. The inner four, with approximatediameters, are Naiad (60 km), Thalassa (80 km), Despina (150 km) and Galatea(160 km). The first three lie...

  16. Critical scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics

    1996-12-31

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.

  17. Communications satellites - The experimental years

    Science.gov (United States)

    Edelson, B. I.

    1983-10-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  18. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit

  19. Tethered satellite design

    Science.gov (United States)

    Manarini, G.

    1986-01-01

    The capability of the satellite to perform a variety of space operations to be accomplished from the shuttle is reviewed considering use of the satellite with man-in-loop and closed loop modes and deployment (toward or away from Earth, up to 100 km), stationkeeping, retrieval and control of the satellite. Scientific payloads are to be used to perform experiments and scientific investigation for applications such as magnetometry, electrodynamics, atmospheric science, chemical release, communications, plasmaphysics, dynamic environment, and power and thrust generation. The TSS-S will be reused for at least 3 missions after reconfiguration and refurbishment by changing the peculiar mission items such as thermal control, fixed boom for experiments, aerodynamic tail for yaw attitude control, external skin, experiments, and any other feature. The TSS-S is to be composed of three modules in order to allow independent integration of a single module and to facilitate the refurbishment and reconfiguration between flights. The three modules are service, auxiliary propulsion, and payload modules.

  20. A Fast Prediction Algorithm of Satellite Passes

    OpenAIRE

    Palmer, P. L.; Mai, Yan

    2000-01-01

    Low cost, fast access and multi-functional small satellites are being increasingly used to provide and exchange information for a wide variety of professions. They are particularly useful, for example, as a resource in very remote areas where they can provide useful information such as to rescue teams for changing conditions in a disaster zone and monitoring the sea state to warn approaching shipping. Unlike terrestrial communication systems, the receiver/transmitter in these di_erent applica...

  1. International organizations to enable world-wide mobile satellite services

    Science.gov (United States)

    Anglin, Richard L., Jr.

    1993-01-01

    Numbers of systems exist or have been proposed to provide world-wide mobile satellite services (MSS). Developers of these systems have formulated institutional structures they consider most appropriate for profitable delivery of these services. MSS systems provide niche services and complement traditional telecommunications networks; they are not integrated into world-wide networks. To be successful, MSS system operators must be able to provide an integrated suite of services to support the increasing globalization, interconnectivity, and mobility of business. The critical issue to enabling 'universal roaming' is securing authority to provide MSS in all of the nations of the world. Such authority must be secured in the context of evolving trends in international telecommunications, and must specifically address issues of standardization, regulation and organization. Today, only one existing organization has such world-wide authority. The question is how proponents of new MSS systems and services can gain similar authority. Securing the appropriate authorizations requires that these new organizations reflect the objectives of the nations in which services are to be delivered.

  2. Critical Schwinger pair production

    CERN Document Server

    Gies, Holger

    2015-01-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential BKT-type scaling and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting ...

  3. Data Collection Satellite Application in Precision Agriculture

    Science.gov (United States)

    Durào, O.

    2002-01-01

    Agricultural Instrumentation Research Center, Brazilian Agricultural Research Corporation; Space Programs Brazil launched in 1993 its first satellite partially built and entirely designed, integrated, tested and operated in the country. It was the SCD-1 satellite, a small (115 kg. and an octagonal prism with 80 cm. height and an external diameter of 100 cm.) with a payload transponder that receives data from ground platforms spread all over the country (including its sea shore). These data are then retransmitted to a receiving station at every satellite pass. Data collected and received are processed at Data Collection Mission Center for distribution via internet at most 30 min after the satellite pass. The ground platforms are called PCD's and differ in the parameters measured according to its purpose and location. Thus, they are able to measure temperature, rain level, wind direction, solar radiation, carbon monoxide as well as many others, beyond its own location. SCD- 1 had a nominal designed life of one year, but is still functioning. It is a LEO satellite with inclination of 25°. In 1998, the country launched SCD-2, with the same purpose, but in phase with SCD-1 . Other differences were a higher index of Brazilian made components and an active attitude control subsystem for the spin rate provided by the magnetic torque coils (these in accordance with a development strategy previously planned). In 1999 the country launched in cooperation with China a remote sensing satellite (mass of 1.4 ton.) called CBERS-1. This satellite is sun synchronous (98° inclination) and also carries a transponder for data collection/transmission as a secondary payload. Thus, the country has now three satellites with data collection/transmission capabilities, two in low inclination phased orbits and one in polar orbit, providing a nice coverage both geographical and temporal not only to its territory but also to other regions of the world.. At first there were not too many PCD

  4. Videoconferencing via satellite: Opening Congress to the people: Summary report

    Science.gov (United States)

    Wood, F. B.; Coates, V. T.; Chartrand, R. L.; Ericson, R. F.

    1978-01-01

    Action research is presented to evaluate, through actual demonstrations, whether satellite videoconferencing can provide a new mechanism for informed dialog between congressmen and constituents and as a result strengthen the legislative process.

  5. Using satellite imagery for crime mapping in South Africa.

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2002-12-01

    Full Text Available . Increasingly, technologies such as digital orthophotographs, high-resolution satellite imagery and the global positioning system (GPS) are being used for these areas to provide base mapping and application data for geographical information systems (GIS...

  6. NOAA Geostationary Operational Environmental Satellite (GOES) Imager Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Geostationary Operational Environmental Satellite (GOES) series provides continuous measurements of the atmosphere and surface over the Western Hemisphere....

  7. Potentials of satellite imagery for monitoring arctic goose productivity

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper reports upon the exciting possibility that satellite imagery may now provide feasible means for grossly monitoring arctic habitat conditions in a timely...

  8. Commercial satellite imagery comes of age

    Energy Technology Data Exchange (ETDEWEB)

    Jasani, Bhupendra [King' s College, London (United Kingdom). Dept. of War Studies

    2003-05-01

    In the absence of on-site inspections until recently, in the Seventh Quarterly Report to the United Nations Security Council, the Executive Director of the UN Monitoring, Verification and Inspection Commission (UNMOVIC) stated that the imagery acquired over Iraq, which UNMOVIC is receiving through a commercial satellite supplier is continuously, being analysed. Not only this but the report hopes that 'Member States will continue to provide it with imagery from their own assets as such assistance provided to date has proven very valuable' Even after the on-site inspections have begun, satellite imagery over Iraq continues, for example, to be used for inspection planning purposes. This indicates that commercial satellite imagery might finally be used on a routine basis. As the findings by the UNMOVIC are not made public, this paper examines a number of images acquired over Baghdad from different commercial satellite sources and at different times to determine what could be concluded about Iraq's nuclear and chemical weapon activities in the region.

  9. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  10. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    Science.gov (United States)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    of lives. To provide observations-based forecast guidance for TC heavy rain, the Tropical Rainfall Potential (TRaP), an extrapolation forecast generated by accumulating rainfall estimates from satellites with microwave sensors as the storm is translated along the forecast track, was originally developed to predict the maximum rainfall at landfall, as well as the spatial pattern of precipitation. More recently, an enhancement has been made to combine the TRaP forecasts from multiple sensors and various start times into an ensemble (eTRaP). The ensemble approach provides not only more accurate quantitative precipitation forecasts, including more skillful maximum rainfall amount and location, it also produces probabilistic forecasts of rainfall exceeding various thresholds that decision makers can use to make critical risk assessments. Examples of the utilization and performance of eTRaP will be given in the presentation.

  11. Building technological capability within satellite programs in developing countries

    Science.gov (United States)

    Wood, Danielle; Weigel, Annalisa

    2011-12-01

    This paper explores the process of building technological capability in government-led satellite programs within developing countries. The key message is that these satellite programs can learn useful lessons from literature in the international development community. These lessons are relevant to emerging satellite programs that leverage international partnerships in order to establish local capability to design, build and operate satellites. Countries with such programs include Algeria, Nigeria, Turkey, Malaysia and the United Arab Emirates. The paper first provides background knowledge about space activity in developing countries, and then explores the nuances of the lessons coming from the international development literature. Developing countries are concerned with satellite technology because satellites provide useful services in the areas of earth observation, communication, navigation and science. Most developing countries access satellite services through indirect means such as sharing data with foreign organizations. More countries, however, are seeking opportunities to develop satellite technology locally. There are objective, technically driven motivations for developing countries to invest in satellite technology, despite rich debate on this topic. The paper provides a framework to understand technical motivations for investment in satellite services, hardware, expertise and infrastructure in both short and long term. If a country decides to pursue such investments they face a common set of strategic decisions at the levels of their satellite program, their national context and their international relationships. Analysis of past projects shows that countries have chosen diverse strategies to address these strategic decisions and grow in technological capability. What is similar about the historical examples is that many countries choose to leverage international partnerships as part of their growth process. There are also historical examples from

  12. How Critical Is Critical Infrastructure?

    Science.gov (United States)

    2015-09-01

    to Examine Critical Issues Underlying the Planned Rebuilding at the World Trade Center Site. 178 HVS Global Hospitality Services, 2012 Manhattan...Hotel Market Overview (Mineola, NY: HVS Global Hospitality Services, 2012, http://www.hvs.com/Content/3268.pdf. 179 “Key Office Properties,” accessed...premier real estate, luxury shopping, world class hotels, destination dining, and tourism , into an area that produces cumulative consumer spending of

  13. [Critical incidents].

    Science.gov (United States)

    Scheidegger, D

    2005-03-01

    In medicine real severe mishaps are rare. On the other hand critical incidents are frequent. Anonymous critical incident reporting systems allow us to learn from these mishaps. This learning process will make our daily clinical work safer Unfortunately, before these systems can be used efficiently our professional culture has to be changed. Everyone in medicine has to admit that errors do occur to see the need for an open discussion. If we really want to learn from errors, we cannot punish the individual, who reported his or her mistake. The interest is primarily in what has happened and why it has happened and not who has committed this mistake. The cause for critical incidents in medicine is in over 80% the human factor Poor communication, work under enormous stress, conflicts and hierarchies are the main cause. This has been known for many years, therefore have already 15 years ago high-tech industries, like e.g. aviation, started to invest in special courses on team training. Medicine is a typical profession were until now only the individual performance decided about the professional career Communication, conflict management, stress management, decision making, risk management, team and team resource management were subjects that have never been taught during our preor postgraduate education. These points are the most important ones for an optimal teamwork. A multimodular course designed together with Swissair (Human Aspect Development medical, HADmedical) helps to cover, as in aviation, the soft factor and behavioural education in medicine and to prepare professionals in health care to work as a real team.

  14. Critical Mass

    CERN Multimedia

    AUTHOR|(CDS)2070299

    2017-01-01

    Critical Mass is a cycling event typically held on the last Friday of every month; its purpose is not usually formalized beyond the direct action of meeting at a set location and time and traveling as a group through city or town streets on bikes. The event originated in 1992 in San Francisco; by the end of 2003, the event was being held in over 300 cities around the world. At CERN it is held once a year in conjunction with the national Swiss campaing "Bike to work".

  15. An enhanced algorithm to estimate BDS satellite's differential code biases

    Science.gov (United States)

    Shi, Chuang; Fan, Lei; Li, Min; Liu, Zhizhao; Gu, Shengfeng; Zhong, Shiming; Song, Weiwei

    2016-02-01

    This paper proposes an enhanced algorithm to estimate the differential code biases (DCB) on three frequencies of the BeiDou Navigation Satellite System (BDS) satellites. By forming ionospheric observables derived from uncombined precise point positioning and geometry-free linear combination of phase-smoothed range, satellite DCBs are determined together with ionospheric delay that is modeled at each individual station. Specifically, the DCB and ionospheric delay are estimated in a weighted least-squares estimator by considering the precision of ionospheric observables, and a misclosure constraint for different types of satellite DCBs is introduced. This algorithm was tested by GNSS data collected in November and December 2013 from 29 stations of Multi-GNSS Experiment (MGEX) and BeiDou Experimental Tracking Stations. Results show that the proposed algorithm is able to precisely estimate BDS satellite DCBs, where the mean value of day-to-day scattering is about 0.19 ns and the RMS of the difference with respect to MGEX DCB products is about 0.24 ns. In order to make comparison, an existing algorithm based on IGG: Institute of Geodesy and Geophysics, China (IGGDCB), is also used to process the same dataset. Results show that, the DCB difference between results from the enhanced algorithm and the DCB products from Center for Orbit Determination in Europe (CODE) and MGEX is reduced in average by 46 % for GPS satellites and 14 % for BDS satellites, when compared with DCB difference between the results of IGGDCB algorithm and the DCB products from CODE and MGEX. In addition, we find the day-to-day scattering of BDS IGSO satellites is obviously lower than that of GEO and MEO satellites, and a significant bias exists in daily DCB values of GEO satellites comparing with MGEX DCB product. This proposed algorithm also provides a new approach to estimate the satellite DCBs of multiple GNSS systems.

  16. Copernicus Sentinel-1 Satellite And C-SAR Instrument

    Science.gov (United States)

    Panetti, Aniceto; Rostan, Friedhelm; L'Abbate, Michelangelo; Bruno, Claudio; Bauleo, Antonio; Catalano, Toni; Cotogni, Marco; Galvagni, Luigi; Pietropaolo, Andrea; Taini, Giacomo; Venditti, Paolo; Huchler, Markus; Torres, Ramon; Lokaas, Svein; Bibby, David

    2013-12-01

    The Copernicus Sentinel-1 Earth Radar Observatory, a mission funded by the European Union and developed by ESA, is a constellation of two C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational applications such as mapping of global landmasses, coastal zones and monitoring of shipping routes. The Sentinel-1 satellites are built by an industrial consortium led by Thales Alenia Space Italia as Prime Contractor and with Astrium GmbH as SAR Instrument Contractor. The paper describes the general satellite architecture, the spacecraft subsystems, AIT flow and the satellite key performances. It provides also an overview on the C-SAR Instrument, its development status and pre- launch SAR performance prediction.

  17. Global trends in satellite-based emergency mapping.

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  18. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  19. Beyond the Ionosphere: Fifty Years of Satellite Communication

    Science.gov (United States)

    Butrica, Andrew J. (Editor)

    1997-01-01

    The three overlapping stages of satellite communications development outlined provide the three-part framework for the organization of the papers contained in this book. Part 1, 'Passive Origins,' treats the first stage of satellite communications development, extending from the 1940s into the early 1960s, when passive artificial and natural satellites funded by the military and private enterprise established the field. Part 2, 'Creating the Global, Regional, and National Systems,' addresses events that constituted the second stage of development. Early in this stage, which stretched from the 1960s into the 1970s, satellite systems began to make their appearance in the United States, while domestic and international efforts sought to bring order to this new but chaotic, field in the form of Comsat and Intelsat. Part 3, 'The Unfolding of the World System,' explores the development of satellite communications in the remainder of the world, with a strong emphasis on Asia.

  20. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  1. Integration of Quantum Cryptography through Satellite Networks Transmission

    Directory of Open Access Journals (Sweden)

    Skander Aris

    2011-01-01

    Full Text Available Problem statement: The security of the telecommunications satellite has become a crucial issue. The telecommunications can be set using the classical cryptography. But this so-called classical cryptography provides cryptographic security. This means that security is based on the difficulty of some mathematics problems. On the other hand, quantum cryptography provides security without conditions based on the law of quantum physics. This method, called the theoretic information security is evidenced using the theory of information. Approach: In this study, we study whether quantum cryptography can be applied in the frame of the satellite telecommunications network. To do this in our project, we present theories regarding the following issues: Telecommunications Station and Satellite Communication Networks, Quantum Key Distribution, Open Space and Satellites, Analyses in different Scenarios between the Satellite and Earth station. Results: Quantum communications offers many advantages for secure data transmission, in our implementation study, we presented different scenarios of quantum key exchange between satellites and ground stations for possible approach to subsystem with quantum communication in space, capable of generating and detecting entangled photons as well as faint laser pulses. Conclusion: The use of satellites to distribute quantum photon provides a unique solution for long-distance. Moreover, quantum cryptography is a satisfactory solution to improve the safety problem. So, the quantum transmissions are the future of telecommunications.

  2. Towards an Autonomous Turbidimeter Network for Multi-Mission Ocean Colour Satellite Data Validation Activities

    Science.gov (United States)

    Dogliotti, A. I.; Nechad, B.; Ruddick, K. G.; Gossn, J. I.

    2016-08-01

    Satellite-based optical sensors such as MODIS/Aqua, Sentinel-2, Sentinel-3, Landsat-8, Pléiades, SABIA/Mar, PROBA-V , etc. can be used to map turbidity and suspended particulate matter in coastal, estuarine and inland waters as support for water quality monitoring, sediment transport applications such as dredging and fisheries science. However, data quality is a critical problem and in situ data must be gathered from a wide range of test sites in order to provide validation for the diverse range of conditions that can be encountered all over the world. In this context, a network to validate satellite turbidity products called TURBINET is proposed with the goal to establish a long-term (autonomous) international network of collaboration and data-sharing. Joint measurements of turbidity, reflectance and in-water side/back-scattering have been performed in Belgium and Argentina in 2015. Instrument comparisons showed that comparable values could be retrieved using different sensors and field measurements were used to validate a Pléiades high resolution image (2m). The results presented in this work demonstrate the feasibility and usefulness of setting up a network to validate satellite turbidity products.

  3. Satellite-based enhancement of archaeological marks through data fusion techniques

    Science.gov (United States)

    Lasaponara, Rosa; Masini, Nicola; Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano

    2008-10-01

    The application of space technology to archaeological research has been paid great attention worldwide, mainly because the current availability of very high resolution (VHR) satellite imagery, such as, IKONOS (1999) and QuickBird (2001), provide valuable data for searching large areas to find potential archaeological sites. Data from VHR satellite can be very useful for the identification, management and documentation of archaeological resources. Archaeological investigation based on the use of VHR satellite images may take benefits from the integration and synergic use of both panchromatic and multispectral data. This can be achieved by using pansharpening techniques, which allow multispectral and panchromatic images to be merged. The two basic frameworks of pansharpening techniques are Component Substitution (CS), such as Intensity-Hue-Saturation (IHS) Gram-Schmidt (GS), and multiresolution analysis (MRA), such as wavelets and Laplacian pyramids (LP). In this paper, both Gram-Schmidt and Laplacian pyramids with context adaptive (CA) detail injection models were used. QB images were processed for a relevant archaeological area in Southern Italy, the ancient Siris-Heraclea, a very significant test area because it is characterized by the presence of both surface and subsurface ancient remains. Outcomes of different pansharpening techniques have been qualitatively evaluated for both surface and subsurface remains. The visual inspection clearly suggests that the quantitative evaluation of the fusion performance for archaeological applications is a critical issue, and "ad hoc" local (i.e. context-adaptive) indices need to be developed.

  4. Soil Moisture Drought Monitoring and Forecasting Using Satellite and Climate Model Data over Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuejun; Tang, Qiuhong; Liu, Xingcai; Leng, Guoyong; Li, Zhe

    2017-01-01

    Real-time monitoring and predicting drought development with several months in advance is of critical importance for drought risk adaptation and mitigation. In this paper, we present a drought monitoring and seasonal forecasting framework based on the Variable Infiltration Capacity (VIC) hydrologic model over Southwest China (SW). The satellite precipitation data are used to force VIC model for near real-time estimate of land surface hydrologic conditions. As initialized with satellite-aided monitoring, the climate model-based forecast (CFSv2_VIC) and ensemble streamflow prediction (ESP)-based forecast (ESP_VIC) are both performed and evaluated through their ability in reproducing the evolution of the 2009/2010 severe drought over SW. The results show that the satellite-aided monitoring is able to provide reasonable estimate of forecast initial conditions (ICs) in a real-time manner. Both of CFSv2_VIC and ESP_VIC exhibit comparable performance against the observation-based estimates for the first month, whereas the predictive skill largely drops beyond 1-month. Compared to ESP_VIC, CFSv2_VIC shows better performance as indicated by the smaller ensemble range. This study highlights the value of this operational framework in generating near real-time ICs and giving a reliable prediction with 1-month ahead, which has great implications for drought risk assessment, preparation and relief.

  5. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  6. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  7. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  8. The Galilean Satellites

    Science.gov (United States)

    1998-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission

  9. Future communications satellite applications

    Science.gov (United States)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  10. HETE Satellite Power Subsystem

    OpenAIRE

    1993-01-01

    The HETE (High-Energy Transient Experiment) satellite a joint project between MIT's Center for Space Research and AeroAstro. is a high-energy gamma-ray burst/X-Ray/UV observatory platform. HETE will be launched into a 550 km circular orbit with an inclination of 37.7°, and has a design lifetime of 18 months. This paper presents a description of the spacecraft's power subsystem, which collects, regulates, and distributes power to the experiment payload modules and to the various spacecraft sub...

  11. The Role of Baryons in Creating Statistically Significant Planes of Satellites around Milky Way-Mass Galaxies

    CERN Document Server

    Ahmed, Sheehan H; Christensen, Charlotte R

    2016-01-01

    We investigate whether the inclusion of baryonic physics influences the formation of thin, coherently rotating planes of satellites such as those seen around the Milky Way and Andromeda. For four Milky Way-mass simulations, each run both as dark matter-only and with baryons included, we are able to identify a planar configuration that significantly maximizes the number of plane satellite members. The maximum plane member satellites are consistently different between the dark matter-only and baryonic versions of the same run due to the fact that satellites are both more likely to be destroyed and to infall later in the baryonic runs. Hence, studying satellite planes in dark matter-only simulations is misleading, because they will be composed of different satellite members than those that would exist if baryons were included. Additionally, the destruction of satellites in the baryonic runs leads to less radially concentrated satellite distributions, a result that is critical to making planes that are statistica...

  12. Vulnerability of critical infrastructures : identifying critical nodes.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  13. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Shin Fujimaki

    2016-01-01

    Full Text Available Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  14. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

    Directory of Open Access Journals (Sweden)

    Bo-jiang Li

    2015-08-01

    Full Text Available The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

  15. Deep and shallow structures in the Arctic region imaged by satellite magnetic and gravity data

    Science.gov (United States)

    Gaina, Carmen; Panet, Isabelle; Shephard, Grace

    2016-07-01

    , volcanic crust, but, as in the case of other oceanic Large Igneous Provinces, only deep sea drilling will be able to reveal the true nature of the underlying crust at the core of the Arctic. The oldest continental crust, usually found in the cratonic areas and as Proterozoic accreted crust, generates the largest positive magnetic anomalies. This crust contains large and deep volcanic bodies in the North American shield, Greenland, the Baltic shield in Eurasia and the Siberian platform in NE Asia, and are imaged by the satellite data. Furthermore, satellite data is not only restricted to revealing crustal and lithospheric depths. Recent workflows have shown that subducted remnants of ocean basins, now located in the lower mantle, as well as large, antipodal features on the core-mantle boundary, can be imaged by satellite gravity. Seismic tomography provides evidence for an extinct Mesozoic Arctic ocean lying around 1400 km under present-day Greenland. However, the variable resolution of seismic tomography at high latitudes, as well as ambiguity in plate reconstructions, renders the existence of the slab open to interpretation. Critically, the current location of the slab also matches perturbations in long-wavelength gravity gradients, providing further support for a deep density anomaly and a slab origin. Gravity data therefore provides a complementary and independent link in linking surface events and deep mantle structure in frontier regions like the Arctic. By revealing the present-day structure, satellite-derived magnetics and gravity offer a critical component in our understanding of Arctic history, over timescales of millions of years and scales of thousands of kilometers.

  16. Criticality in Plasma Membranes

    Science.gov (United States)

    Machta, Benjamin; Papanikolaou, Stefanos; Sethna, James; Veatch, Sarah

    2011-03-01

    We are motivated by recent observations of micron-sized critical fluctuations in the 2d Ising Universality class in plasma membrane vesicles that are isolated from cortical cytoskeleton. We construct a minimal model of the plasma membrane's interaction with intact cytoskeleton which explains why large scale phase separation has not been observed in Vivo. In addition, we use analytical techniques from conformal field theory and numerical simulations to investigate the form of effective forces mediated by the membrane's proximity to criticality. We show that the range of this force is maximized near a critical point and we quantify its usefulness in mediating communication using techniques from information theory. Finally we use theoretical techniques from statistical physics in conjunction with Monte-Carlo simulations to understand how criticality can be used to increase the efficiency of membrane bound receptor mediated signaling. We expect that this sort of analysis will be broadly useful in understanding and quantifying the role of lipid ``rafts'' in a wide variety of membrane bound processes. Generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over relatively large distances.

  17. Observing tectonic plate motions and deformations from satellite laser ranging

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  18. Observing tectonic plate motions and deformations from satellite laser ranging

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  19. The TAOS/STEP Satellite

    OpenAIRE

    Edwards, David; Hosken, Robert

    1995-01-01

    The Technology for Autonomous Operational Survivability / Space Test Experiments Platform (TAOS/STEP) satellite was launched on a Taurus booster from Vandenberg Air Force Base into a nearly circular, 105 degree inclined orbit on March 13, 1994. The purpose of this satellite is twofold: 1) to test a new concept in multiple procurements of fast-track modular satellites and 2) to test a suite of Air Force Phillips Laboratory payloads in space. The TAOS payloads include the Microcosm Autonomous N...

  20. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  1. Globally Gridded Satellite observations for climate studies

    Science.gov (United States)

    Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.

    2011-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  2. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  3. Satellite Communications: The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Dr. Ranjit Singh

    2014-05-01

    Full Text Available India has launched as many as 73 Indian satellites as of today since its first attempt in 1975. Besides serving traditional markets of telephony and broadcasting, satellites are on the frontiers of advanced applications as telemedicine, distance learning, environment monitoring, remote sensing, and so on. Satellite systems are optimized for services such as Internet access, virtual private networks and personal access. Costs have been coming down in recent years to the point where satellite broadband is becoming competitive. This article is an attempt to view this important topic from Indian perspective. India’s Project GAGAN, GPS Aided Geo Augmented Navigation is discussed.

  4. Business Use of Satellite Communications.

    Science.gov (United States)

    Edelson, Burton I.; Cooper, Robert S.

    1982-01-01

    Reviews business communications development and discusses business applications of satellite communications, system technology, and prospects for future developments in digital transmission systems. (JN)

  5. Correcting Errors in Catchment-Scale Satellite Rainfall Accumulation Using Microwave Satellite Soil Moisture Products

    Science.gov (United States)

    Ryu, D.; Crow, W. T.

    2011-12-01

    Streamflow forecasting in the poorly gauged or ungauged catchments is very difficult mainly due to the absence of the input forcing data for forecasting models. This challenge poses a threat to human safety and industry in the areas where proper warning system is not provided. Currently, a number of studies are in progress to calibrate streamflow models without relying on ground observations as an effort to construct a streamflow forecasting systems in the ungauged catchments. Also, recent advances in satellite altimetry and innovative application of the optical has enabled mapping streamflow rate and flood extent in the remote areas. In addition, remotely sensed hydrological variables such as the real-time satellite precipitation data, microwave soil moisture retrievals, and surface thermal infrared observations have the great potential to be used as a direct input or signature information to run the forecasting models. In this work, we evaluate a real-time satellite precipitation product, TRMM 3B42RT, and correct errors of the product using the microwave satellite soil moisture products over 240 catchments in Australia. The error correction is made by analyzing the difference between output soil moisture of a simple model forced by the TRMM product and the satellite retrievals of soil moisture. The real-time satellite precipitation products before and after the error correction are compared with the daily gauge-interpolated precipitation data produced by the Australian Bureau of Meteorology. The error correction improves overall accuracy of the catchment-scale satellite precipitation, especially the root mean squared error (RMSE), correlation, and the false alarm ratio (FAR), however, only a marginal improvement is observed in the probability of detection (POD). It is shown that the efficiency of the error correction is affected by the surface vegetation density and the annual precipitation of the catchments.

  6. Therapy Provider Phase Information

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Therapy Provider Phase Information dataset is a tool for providers to search by their National Provider Identifier (NPI) number to determine their phase for...

  7. The Next Landsat Satellite: The Landsat Data Continuity Mission

    Science.gov (United States)

    Rons, James R.; Dwyer, John L.; Barsi, Julia A.

    2012-01-01

    The Landsat program is one of the longest running satellite programs for Earth observations from space. The program was initiated by the launch of Landsat 1 in 1972. Since then a series of six more Landsat satellites were launched and at least one of those satellites has been in operations at all times to continuously collect images of the global land surface. The Department of Interior (DOI) U.S. Geological Survey (USGS) preserves data collected by all of the Landsat satellites at their Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota. This 40-year data archive provides an unmatched record of the Earth's land surface that has undergone dramatic changes in recent decades due to the increasing pressure of a growing population and advancing technologies. EROS provides the ability for anyone to search the archive and order digital Landsat images over the internet for free. The Landsat data are a public resource for observing, characterizing, monitoring, trending, and predicting land use change over time providing an invaluable tool for those addressing the profound consequences of those changes to society. The most recent launch of a Landsat satellite occurred in 1999 when Landsat 7 was placed in orbit. While Landsat 7 remains in operation, the National Aeronautics and Space Administration (NASA) and the DOI/ USGS are building its successor satellite system currently called the Landsat Data Continuity Mission (LDCM). NASA has the lead for building and launching the satellite that will carry two Earth-viewing instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will take images that measure the amount of sunlight reflected by the land surface at nine wavelengths of light with three of those wavelengths beyond the range of human vision. T1RS will collect coincident images that measure light emitted by the land surface as a function of surface temperature at two longer wavelengths well beyond the

  8. Modular approach for satellite communication ground terminals

    Science.gov (United States)

    Gould, G. R.

    1984-01-01

    The trend in satellite communications is toward completely digital, time division multiple access (TDMA) systems with uplink and downlink data rates dictated by the type of service offered. Trunking terminals will operate in the 550 MBPS (megabit per second) region uplink and downlink, whereas customer premise service (CPS) terminals will operate in the 25 to 10 MBPS region uplink and in the 200 MBPS region downlink. Additional criteria for the ground terminals will be to maintain clock sychronization with the system and burst time integrity to within a matter of nanoseconds, to process required order-fire information, to provide adaptive data scrambing, and to compensate for variations in the user input output data rates, and for changes in range in the satellite communications links resulting from satellite perturbations in orbit. To achieve the required adaptability of a ground terminal to the above mentioned variables, programmable building blocks can be developed that will meet all of these requirements. To maintain system synchronization, i.e., all bursted data arriving at the satellite within assigned TDMA windows, ground terminal transmit data rates and burst timing must be maintained within tight tolerances. With a programmable synchronizer as the heart of the terminal timing generation, variable data rates and burst timing tolerances are achievable. In essence, the unit inputs microprocessor generated timing words and outputs discrete timing pulses.

  9. Delivery of satellite based broadband services

    Science.gov (United States)

    Chandrasekhar, M. G.; Venugopal, D.

    2007-06-01

    Availability of speedy communication links to individuals and organizations is essential to keep pace with the business and social requirements of this modern age. While the PCs have been continuously growing in processing speed and memory capabilities, the availability of broadband communication links still has not been satisfactory in many parts of the world. Recognizing the need to give fillip to the growth of broadband services and improve the broadband penetration, the telecom policies of different counties have placed special emphasis on the same. While emphasis is on the use of fiber optic and copper in local loop, satellite communications systems will play an important role in quickly establishing these services in areas where fiber and other communication systems are not available and are not likely to be available for a long time to come. To make satellite communication systems attractive for the wide spread of these services in a cost effective way special emphasis has to be given on factors affecting the cost of the bandwidth and the equipment. As broadband services are bandwidth demanding, use of bandwidth efficient modulation technique and suitable system architecture are some of the important aspects that need to be examined. Further there is a need to re-look on how information services are provided keeping in view the user requirements and broadcast capability of satellite systems over wide areas. This paper addresses some of the aspects of delivering broadband services via satellite taking Indian requirement as an example.

  10. LTE Adaptation for Mobile Broadband Satellite Networks

    Directory of Open Access Journals (Sweden)

    Bastia Francesco

    2009-01-01

    Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.

  11. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    Science.gov (United States)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  12. NASA's mobile satellite communications program; ground and space segment technologies

    Science.gov (United States)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-10-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  13. NASA's mobile satellite communications program; ground and space segment technologies

    Science.gov (United States)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  14. 47 CFR 4.3 - Communications providers covered by the requirements of this part.

    Science.gov (United States)

    2010-10-01

    ... communications. (d) Satellite communications providers use space stations as a means of providing the public with... communications. “Satellite operators” refer to entities that operate space stations but do not necessarily... future modifications to the existing SS7 architecture that will provide the functional equivalency of...

  15. Inter-satellite links for satellite autonomous integrity monitoring

    Science.gov (United States)

    Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco

    2011-01-01

    A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.

  16. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  17. The satellite total solar irradiance database

    Science.gov (United States)

    Willson, R. C.

    2009-12-01

    A precise knowledge of the total solar irradiance (TSI) over time is essential to understanding the physics of solar luminosity variation and its impact on the Earth in the form of climate change. A National Research Council study found that sustained trends as small as 0.25% per century were the most likely forcing for ‘little ice age’ climate minima during the 12th - 19th centuries. Recent phenomenological analyses of TSI observations and proxies indicate that TSI variation is an important climate change forcing on many timescales including the industrial era. The profound sociological and economic implications of understanding the relative climate change contributions of natural and anthropogenic forcings makes it essential that the satellite TSI database be precisely sustained into the foreseeable future. There are currently three satellite TSI monitoring experiments in operation: SOHO/VIRGO, ACRIMSAT/ACRIM3 and SORCE/TIM, in order of deployment (1996, 2000 and 2003, resp.). Results reported on their ‘native scales show the same basic variations in TSI over time, yet some smaller variations detected by ACRIM3 are less well defined or absent in the results of VIRGO and TIM. There is also a scale difference issue: TIM results are 0.35% lower than those of ACRIM3 and VIRGO, outside the ± 0.1% uncertainty bounds predicted for ACRIM3 and VIRGO, and well outside TIM’s ± 0.01% uncertainty design goal. TIM’s failure to achieve 0.01% uncertainty in flight demonstrates that the TSI monitoring paradigm shift of relying on measurement accuracy rather than a redundant/overlap strategy to provide long term traceability cannot be realized with current ‘ambient temperature’ technology. The only viable monitoring approach for the foreseeable future continues to be the redundant/overlap strategy that has provided the 31 year satellite TSI database to date with useful traceability. Intercomparisons of flight experiments at their levels of mutual precision can

  18. Communication Satellite Payload Special Check out Equipment (SCOE) for Satellite Testing

    Science.gov (United States)

    Subhani, Noman

    2016-07-01

    This paper presents Payload Special Check out Equipment (SCOE) for the test and measurement of communication satellite Payload at subsystem and system level. The main emphasis of this paper is to demonstrate the principle test equipment, instruments and the payload test matrix for an automatic test control. Electrical Ground Support Equipment (EGSE)/ Special Check out Equipment (SCOE) requirements, functions and architecture for C-band and Ku-band payloads are presented in details along with their interface with satellite during different phases of satellite testing. It provides test setup, in a single rack cabinet that can easily be moved from payload assembly and integration environment to thermal vacuum chamber all the way to launch site (for pre-launch test and verification).

  19. Satellite Data Inform Forecasts of Crop Growth

    Science.gov (United States)

    2015-01-01

    During a Stennis Space Center-led program called Ag 20/20, an engineering contractor developed models for using NASA satellite data to predict crop yield. The model was eventually sold to Genscape Inc., based in Louisville, Kentucky, which has commercialized it as LandViewer. Sold under a subscription model, LandViewer software provides predictions of corn production to ethanol plants and grain traders.

  20. NRL Satellite Support for DYNAMO Field Program

    Science.gov (United States)

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NRL Satellite Support for DYNAMO Field Program Jeffrey...Jeff.Hawkins@nrlmry.navy.mil Document Number: N0001412WX20870 LONG-TERM GOALS To provide the ONR-sponsored DYNAMO field program with a...the Indian Ocean. OBJECTIVES Develop a NRL-MRY near real-time web page that enables DYNAMO field program participants to view the evolving

  1. Satellite Attitude Control Using Atmospheric Drag

    Science.gov (United States)

    2007-03-01

    Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In...yaw axes and provide magnetic damping on both the pitch and yaw axes. The satellite resem- bles a shuttlecock used in badminton (see Figure 2.2). The...Control Using Atmospheric Drag Guettler, David B., Captain, USAF Air Force Institute of Technology Graduate School of Engineering and Management (AFIT

  2. A Survey of Satellite Communications System Vulnerabilities

    Science.gov (United States)

    2008-06-01

    Myers, Raymond M. Nuber, Jaime L. Prieto , Jr., and Eric R. Wiswell, “Fast Packet Vs. Circuit Switch and Bent Pipe Satellite Network Architectures...2008. 81. Howell, Alan , “INMARSAT HORIZONS PROGRAM,” Institution of Electrical Engineers, Savoy Place, London, 1998. 82. http://www.infosec.gov.hk...ntia-rpt/02- 393/02-393.pdf, NTIA Report 02-393, pages 1-20, May 2002. 134. Sardella, Alan , “Securing Provider Backbone Networks: Packet Filters

  3. Excitation of inclinations in ring-satellite systems

    Science.gov (United States)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1984-01-01

    Resonant gravitational interactions between a ring and a satellite produce secular variations of their orbital inclinations. Interactions at vertical resonances, analogous to Lindblad resonances but involving inclinations instead of eccentricities, excite inclinations. There is no inclination analog of the corotation resonance. An equatorial ring changes the inclination of a nearby satellite in qualitatively the same way that a satellite in an equatorial orbit changes the inclination of a nearby ring. Viscous dissipation in a ring leads to an equilibrium value of its inclination. These results provide a basis for discussing the origins of the inclinations of planetary rings.

  4. Study on fault locating technology for satellite power system

    Institute of Scientific and Technical Information of China (English)

    LONG Bing; JIANG Xing-wei; SONG Zheng-ji

    2005-01-01

    It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.

  5. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    Science.gov (United States)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  6. EQUIVALENT BASELINE AND INTERFEROMETRIC PHASE OF CLUSTER SATELLITE SAR

    Institute of Scientific and Technical Information of China (English)

    Gong Min; Zhang Chuanwu; Huang Shunji

    2005-01-01

    The change of the equivalent baseline and interferometric phase of cluster SAR satellites is analyzed when the constellation circles around the Earth and the satellites rotate around the center at the same time. The letter provides assessment of baseline error and phase error which influence the precision of height measurement in the across-track interferometric mode. The mathematical model of cluster satellite movement is built, simulation analyses and the curve of height error are presented. The simulation results show that height measurement error can be compensated by the formulae derived in this letter, therefore, the Digital Elevation Models (DEM's) are recovered accurately.

  7. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  8. Multicast Routing in Satellite Network

    Institute of Scientific and Technical Information of China (English)

    郭惠玲; 宋姝; 李磊; 刘志涛; 郭鹏程

    2004-01-01

    There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-layer satellite MPLs networks. It has advantages of saving space and reducing extra charge.

  9. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  10. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    Science.gov (United States)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  11. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    Energy Technology Data Exchange (ETDEWEB)

    Springer, H K; Miller, W O; Levatin, J L; Pertica, A J; Olivier, S S

    2010-09-06

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  12. The SPOT satellite

    Science.gov (United States)

    Fouquet, J.-P.

    1981-03-01

    The background, objectives and data products of the French SPOT remote sensing satellite system are presented. The system, which was developed starting in 1978 with the subsequent participation of Sweden and Belgium, is based on a standard multimission platform with associated ground control station and a mission-specific payload, which includes two High-Resolution Visible range instruments allowing the acquisition of stereoscopic views from different orbits. Mission objectives include the definition of future remote sensing systems, the compilation of a cartographic and resources data base, the study of species discrimination and production forecasting based on frequent access and off-nadir viewing, the compilation of a stereoscopic data base, and platform and instrument qualification, for possible applications in cartography, geology and agriculture. Standard data products will be available at three levels of preprocessing: radiometric correction only, precision processing for vertical viewing, and cartographic quality processing.

  13. Satellite altimetry and hydrologic modeling of poorly-gauged tropical watershed

    Science.gov (United States)

    Sulistioadi, Yohanes Budi

    Fresh water resources are critical for daily human consumption. Therefore, a continuous monitoring effort over their quantity and quality is instrumental. One important model for water quantity monitoring is the rainfall-runoff model, which represents the response of a watershed to the variability of precipitation, thus estimating the discharge of a channel (Bedient and Huber, 2002, Beven, 2012). Remote sensing and satellite geodetic observations are capable to provide critical hydrological parameters, which can be used to support hydrologic modeling. For the case of satellite radar altimetry, limited temporal resolutions (e.g., satellite revisit period) prohibit the use of this method for a short (less than weekly) interval monitoring of water level or discharge. On the other hand, the current satellite radar altimeter footprints limit the water level measurement for rivers wider than 1 km (Birkett, 1998, Birkett et al., 2002). Some studies indeed reported successful retrieval of water level for small-size rivers as narrow as 80 m (Kuo and Kao, 2011, Michailovsky et al., 2012); however, the processing of current satellite altimetry signals for small water bodies to retrieve accurate water levels, remains challenging. To address this scientific challenge, this study poses two main objectives: (1) to monitor small (40--200 m width) and medium-sized (200--800 m width) rivers and lakes using satellite altimetry through identification and choice of the over-water radar waveforms corresponding to the appropriately waveform-retracked water level; and (2) to develop a rainfall-runoff hydrological model to represent the response of mesoscale watershed to the variability of precipitation. Both studies address the humid tropics of Southeast Asia, specifically in Indonesia, where similar studies do not yet exist. This study uses the Level 2 radar altimeter measurements generated by European Space Agency's (ESA's) Envisat (Environmental Satellite) mission. The first study

  14. On the value of satellite-based river discharge and river flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  15. Microdischarge plasma thrusters for small satellite propulsion

    Science.gov (United States)

    Raja, Laxminarayan

    2009-10-01

    Small satellites weighing less than 100 kg are gaining importance in the defense and commercial satellite community owing to advantages of low costs to build and operate, simplicity of design, rapid integration and testing, formation flying, and multi-vehicle operations. The principal challenge in the design and development of small satellite subsystems is the severe mass, volume, and power constraints posed by the overall size of the satellite. The propulsion system in particular is hard to down scale and as such poses a major stumbling block for small satellite technology. Microdischarge-based miniaturized plasma thrusters are potentially a novel solution to this problem. In its most basic form a microdischarge plasma thruster is a simple extension of a cold gas micronozzle propulsion device, where a direct or alternating current microdischarge is used to preheat the gas stream to improve to specific impulse of the device. We study a prototypical thruster device using a detailed, self-consistent coupled plasma and fluid flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Unique computational challenges associated with microdischarge modeling in the presence of high-speed flows are addressed. Compared to a cold gas micronozzle, a significant increase in specific impulse (50 to 100 %) is obtained from the power deposition in the diverging supersonic section of the thruster nozzle. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the concept as simple and effective approach to realizing a relatively high-specific impulse thruster device at small geometric scales.

  16. Earth rotation parameters from satellite techniques

    Science.gov (United States)

    Thaller, Daniela; Beutler, Gerhard; Jäggi, Adrian; Meindl, Michael; Dach, Rolf; Sosnica, Krzysztof; Baumann, Christian

    2013-04-01

    It has been demonstrated since several years that satellite techniques are capable of determining Earth Rotation Parameters (ERPs) with a daily or even sub-daily resolution. Especially Global Navigation Satellite Systems (GNSS) with their huge amount of observations can determine time series of polar motion (PM) and length of day (LOD) rather well. But also SLR with its spherical satellites whose orbital motions are easy to model and that allow long orbital arc lengths can deliver valuable contributions to Earth rotation. We analyze GNSS solutions (using GPS and GLONASS) and SLR solutions (using LAGEOS) regarding their potential of estimating polar motion and LOD with daily and subdaily temporal resolution. A steadily improving modeling applied in the analysis of space-geodetic data aims at improved time series of geodetic parameters, e.g., the ERPs. The Earth's gravity field and especially its temporal variations are one point of interest for an improved modeling for satellite techniques. For modeling the short-periodic gravity field variations induced by mass variations in the atmosphere and the oceans the GRACE science team provides the Atmosphere and Ocean Dealiasing (AOD) products. They contain 6-hourly gravity fields of the atmosphere and the oceans. We apply these corrections in the analysis of satellite-geodetic data and show the impact on the estimated ERPs. It is well known that the degree-2 coefficients of the Earth's gravity field are correlated with polar motion and LOD. We show to what extent temporal variations in the degree-2 coefficients are influencing the ERP estimates.

  17. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  18. Advanced satellite communication system

    Science.gov (United States)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  19. Satellite-Friendly Protocols and Standards

    Science.gov (United States)

    Koudelka, O.; Schmidt, M.; Ebert, J.; Schlemmer, H.; Kastner, S.; Riedler, W.

    2002-01-01

    developed system is based on a hardware architecture using FPGAs (Field-Programmable Gate Arrays). This provides means to configure the satellite gateway for different standards and to optimise the transmission parameters for varying user traffic, thus increasing the efficiency significantly. The paper describes the flexible system architecture and focuses particularly on the DAMA access scheme and the chosen quality-of-service implementation. Emphasis has been put on the support of IP Version 6. Different standards (e.g. RCS and possible follow-ups) and the possibility to support them are discussed.

  20. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    torqueing of fasteners and thread locking. Finally, the implementation of process documentation and verification procedures is discussed to provide a comprehensive overview of the design and fabrication of this representative LEO satellite.

  1. Sky alert! when satellites fail

    CERN Document Server

    Johnson, Les

    2013-01-01

    How much do we depend on space satellites? Defense, travel, agriculture, weather forecasting, mobile phones and broadband, commerce...the list seems endless. But what would our live be like if the unimaginable happened and, by accident or design, those space assets disappeared? Sky Alert! explores what our world would be like, looking in turn at areas where the loss could have catastrophic effects. The book - demonstrates our dependence on space technology and satellites; - outlines the effect on our economy, defense, and daily lives if satellites and orbiting spacecraft were destroyed; - illustrates the danger of dead satellites, spent rocket stages, and space debris colliding with a functioning satellites; - demonstrates the threat of dramatically increased radiation levels associated with geomagnetic storms; - introduces space as a potential area of conflict between nations.

  2. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C....... This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from...... satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results...

  3. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2014-07-01

    Full Text Available Low Earth Orbit (LEO satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a region of the Earth where the satellite is seen at a minimum predefined elevation angle. The satellite’s coverage area on the Earth depends on orbital parameters. The communication under low elevation angles can be hindered by natural barriers. For safe communication and for savings within a link budget, the coverage under too low elevation is not always provided. LEO satellites organized in constellations act as a convenient network solution for real time global coverage. Global coverage model is in fact the complementary networking process of individual satellite’s coverage. Satellite coverage strongly depends on elevation angle. To conclude about the coverage variation for low orbiting satellites at low elevation up to 10º, the simulation for attitudes from 600km to 1200km is presented through this paper.

  4. The Communications Satellite as Educational Tool.

    Science.gov (United States)

    Long, Peter

    1982-01-01

    Drawing on the experiences of several countries, the author describes satellite technology, discusses the feasibility of satellite use in traditional educational institutions, and analyzes the role of satellites in social development. (SK)

  5. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  6. Status of the Third Miniature Sensor Technology Integration Satellite Mission

    OpenAIRE

    Barnhart, David; Hurtz, Rick; McClelland, Jim; Cellarius, Mark; Meyers, AI

    1994-01-01

    The MSTI-3 satellite is the third in a series established to test, in realistic scenarios, miniature spacecraft and sensor technologies for missile detection and tracking on low-cost, low-earth orbit technology demonstration satellites. Cooperative demonstrations are planned to combine MSTI-provided target track file information, with interceptor technology tests, to fully demonstrate technologies associated with theater missile defense (TMO) targeting. The program is sponsored by the Ballist...

  7. Fifth generation lithospheric magnetic field model from CHAMP satellite measurements

    OpenAIRE

    Maus, S.; Hermann Lühr; Martin Rother; Hemant, K.; Balasis, G.; Patricia Ritter; Claudia Stolle

    2007-01-01

    Six years of low-orbit CHAMP satellite magnetic measurements have provided an exceptionally high-quality data resource for lithospheric magnetic field modeling and interpretation. Here we describe the fifth-generation satellite-only magnetic field model MF5. The model extends to spherical harmonic degree 100. As a result of careful data selection, extensive corrections, filtering, and line leveling, the model has low noise levels, even if evaluated at the Earth's surface. The model is particu...

  8. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    1998-07-13

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  9. Orbit Propagation and Determination of Low Earth Orbit Satellites

    OpenAIRE

    Ho-Nien Shou

    2014-01-01

    This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan t...

  10. Traditional Literacy and Critical Thinking

    Science.gov (United States)

    Dando, Priscille

    2016-01-01

    How school librarians focus on activating critical thinking through traditional literacy development can proactively set the stage for the deep thinking that occurs in all literacy development. The critical-thinking skills students build while becoming accomplished readers and writers provide the foundation for learning in a variety of…

  11. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  12. Dependent rational providers.

    Science.gov (United States)

    Brothers, Kyle B

    2011-04-01

    Provider claims to conscientious objection have generated a great deal of heated debate in recent years. However, the conflicts that arise when providers make claims to the "conscience" are only a subset of the more fundamental challenges that arise in health care practice when patients and providers come into conflict. In this piece, the author provides an account of patient-provider conflict from within the moral tradition of St. Thomas Aquinas. He argues that the practice of health care providers should be understood as a form of practical reasoning and that this practical reasoning must necessarily incorporate both "moral" and "professional" commitments. In order to understand how the practical reasoning of provider should account for the needs and commitments of the patient and vice versa, he explores the account of dependence provided by Alasdair MacIntyre in his book Dependent Rational Animals. MacIntyre argues that St. Thomas' account of practical reasoning should be extended and adapted to account for the embodied vulnerability of all humans. In light of this insight, providers must view patients not only as the subjects of their moral reflection but also as fellow humans upon whom the provider depends for feedback on the effectiveness and relevance of her practical reasoning. The author argues that this account precludes responsive providers from adopting either moral or professional conclusions on the appropriateness of interventions outside the individual circumstances that arise in particular situations. The adoption of this orientation toward patients will neither eradicate provider-patient conflict nor compel providers to perform interventions to which they object. But this account does require that providers attend meaningfully to the suffering of patients and seek feedback on whether their intervention has effectively addressed that suffering.

  13. Advances in precision orbit determination of GRACE satellites

    Science.gov (United States)

    Bettadpur, Srinivas; Save, Himanshu; Kang, Zhigui

    The twin Gravity Recovery And Climate Experiment (GRACE) satellites carry a complete suite of instrumentation essential for precision orbit determination (POD). Dense, continuous and global tracking is provided by the Global Positioning System receivers. The satellite orientation is measured using two star cameras. High precision measurements of non-gravitational accel-erations are provided by accelerometers. Satellite laser ranging (SLR) retroreflectors are used for collecting data for POD validation. Additional validation is provided by the highly precise K-Band ranging system measuring distance changes between the twin GRACE satellites. This paper presents the status of POD for GRACE satellites. The POD quality will be vali-dated using the SLR and K-Band ranging data. The POD quality improvement from upgraded modeling of the GPS observations, including the transition to the new IGS05 standards, will be discussed. In addition, the contributions from improvements in the gravity field modeling -partly arising out of GRACE science results -will be discussed. The aspects of these improve-ments that are applicable for the POD of other low-Earth orbiting satellites will be discussed as well.

  14. Efficient mission control for the 48-satellite Globalstar Constellation

    Science.gov (United States)

    Smith, Dan

    1994-11-01

    The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200] . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds] Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.

  15. Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE

    Science.gov (United States)

    Hall, Forrest G.; Huemmrich, Karl F.; Goetz, Scott J.; Sellers, Piers J.; Nickeson, Jaime E.

    1992-11-01

    caused by differences among the satellite and ground sensors in spatial resolution, atmospheric effects, and calibration. (5) Afternoon cumulus in the study area required both the Landsat and the SPOT satellites for monitoring of the vegetation dynamics. This result implies the need for multiple polar orbiters, or geosynchronous satellites in an operational implementation. We found that canopy Fpar, the fraction of incident photosynthetically active radiation absorbed by a canopy, can be estimated with an error of about 10% using remote sensing, provided that regional variability in the reflectance of the canopy substrate is dealt with properly. We also found that spectral vegetation indices (VIs) respond primarily to the photosynthetically active radiation absorbed by the live or green component of the canopy as opposed to its necrotic or dead vegetation. This is of critical importance since radiation absorption by the live part of the canopy is the rate-limiting process for photosynthesis and other key process rates such as evaporation. We found for the FIFE study area the surface moisture content at O to 10 cm to be another key rate-limiting variable in photosynthesis and evaporation. At gravimetric soil moisture levels below 20%, photosynthesis and evaporation were strongly attenuated. Only microwave sensors have shown potential for satellite remote sensing of soil moisture and only in the top few centimeters. Hydrological models may also play a critical role in monitoring root zone soil moisture levels, but additional research is needed. From our review of the research of others in FIFE we conclude that downwelling shortwave radiation and surface albedo are also amenable to remote sensing. Unfortunately, from our research we also found that the remote estimation of surface temperature to useful accuracies is problematical; consequently, the use of thermal infrared measurements to infer sensible heat flux is probably not feasible to acceptable accuracies.

  16. An Orbiting Standards Platform for communication satellite system RF measurements

    Science.gov (United States)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  17. An introduction to critical paths.

    Science.gov (United States)

    Coffey, Richard J; Richards, Janet S; Remmert, Carl S; LeRoy, Sarah S; Schoville, Rhonda R; Baldwin, Phyllis J

    2005-01-01

    A critical path defines the optimal sequencing and timing of interventions by physicians, nurses, and other staff for a particular diagnosis or procedure. Critical paths are developed through collaborative efforts of physicians, nurses, pharmacists, and others to improve the quality and value of patient care. They are designed to minimize delays and resource utilization and to maximize quality of care. Critical paths have been shown to reduce variation in the care provided, facilitate expected outcomes, reduce delays, reduce length of stay, and improve cost-effectiveness. The approach and goals of critical paths are consistent with those of total quality management (TQM) and can be an important part of an organization's TQM process.

  18. [Survey of analytical works for drugs at emergency and critical care centers with high-performance instruments provided by the Ministry of Health and Welfare (at present: Ministry of Health, Labour, and Welfare) in fiscal 1998--continuation of survey with 2008 survey results as point of reference].

    Science.gov (United States)

    Saito, Takeshi; Tominaga, Aya; Nozawa, Mayu; Unei, Hiroko; Hatano, Yayoi; Fujita, Yuji; Iseki, Ken; Hori, Yasushi

    2013-09-01

    In a 2008 survey of the 73 emergency and critical care centers around the nation that were equipped with the drug and chemical analytical instrument provided by the Ministry of Welfare (currently the Ministry of Health, Labour, and Welfare) in 1998, 36 of those facilities were using the analytical instruments. Of these 36 facilities, a follow-up survey of the 17 facilities that recorded 50 or analyses per year. Responses were gained from 16 of the facilities and we learned that of those, 14 facilities (87.5%) were conducting analyses using the instrument. There was a positive mutual correlation between the annual number of cases of the 14 facilities conducting analyses with the instrument and the number of work hours. Depending on the instrument in use, average analytical instrument parts and maintenance expenses were roughly three million yen and consumables required a maximum three million yen for analysis of 51-200 cases per year. From this, we calculate that such expenses can be covered under the allowed budget for advanced emergency and critical care centers of 5,000 NHI points (1 point = 10 yen). We found there were few facilities using the instrument for all 15 of the toxic substances recommended for testing by the Japanese Society for Clinical Toxicology. There tended to be no use of the analytical instrument for compounds with no toxicology cases. However, flexible responses were noted at each facility in relation to frequently analyzed compounds. It is thought that a reevaluation of compounds subject to analysis is required.

  19. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    Science.gov (United States)

    Wolff, David B.; Fisher, Brad L.

    2011-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25deg terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSR-E over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU

  20. Critical care cardiology.

    Science.gov (United States)

    Marks, S L; Abbott, J A

    1998-11-01

    Emergency management of the patient with cardiac disease is an important part of veterinary practice. Although the causes of cardiac disease may be diverse, the understanding of basic pathophysiology will enable the clinician to formulate a rational diagnostic and therapeutic plan. The veterinary clinician must be able to triage the emergency patient, assess the clinical condition, and provide appropriate therapy. Close monitoring of the critically ill patient is crucial to patient survival and will help tailor therapy.