WorldWideScience

Sample records for satellite-inferred burn severity

  1. A new metric for quantifying burn severity: The Relativized Burn Ratio

    Science.gov (United States)

    Sean A. Parks; Gregory K. Dillon; Carol Miller

    2014-01-01

    Satellite-inferred burn severity data have become increasingly popular over the last decade for management and research purposes. These data typically quantify spectral change between pre-and post-fire satellite images (usually Landsat). There is an active debate regarding which of the two main equations, the delta normalized burn ratio (dNBR) and its relativized form...

  2. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  3. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  4. Burn severity of areas reburned by wildfires in the Gila National Forest, New Mexico, USA

    Science.gov (United States)

    Zachary A. Holden; Penelope Morgan; Andrew T. Hudak

    2010-01-01

    We describe satellite-inferred burn severity patterns of areas that were burned and then reburned by wildland fire from 1984 to 2004 within the Gila Aldo Leopold Wilderness Complex, New Mexico, USA. Thirteen fires have burned 27 000 hectares across multiple vegetation types at intervals between fires ranging from 3 yr to 14 yr. Burn severity of reburned areas showed...

  5. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests

    Science.gov (United States)

    Donovan S. Birch; Penelope Morgan; Crystal A. Kolden; John T. Abatzoglou; Gregory K. Dillon; Andrew T. Hudak; Alistair M. S. Smith

    2015-01-01

    Burn severity as inferred from satellite-derived differenced Normalized Burn Ratio (dNBR) is useful for evaluating fire impacts on ecosystems but the environmental controls on burn severity across large forest fires are both poorly understood and likely to be different than those influencing fire extent. We related dNBR to environmental variables including vegetation,...

  6. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury.

    Science.gov (United States)

    Finnerty, Celeste C; McKenna, Colleen F; Cambias, Lauren A; Brightwell, Camille R; Prasai, Anesh; Wang, Ye; El Ayadi, Amina; Herndon, David N; Suman, Oscar E; Fry, Christopher S

    2017-11-01

    Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7 CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P satellite cells in the aetiology of lean

  7. The relationship of field burn severity measures to satellite-derived Burned Area Reflectance Classification (BARC) maps

    Science.gov (United States)

    Andrew Hudak; Penelope Morgan; Carter Stone; Pete Robichaud; Terrie Jain; Jess Clark

    2004-01-01

    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn...

  8. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  9. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece

    Directory of Open Access Journals (Sweden)

    Eleni Dragozi

    2016-07-01

    Full Text Available Monitoring post-fire vegetation response using remotely-sensed images is a top priority for post-fire management. This study investigated the potential of very-high-resolution (VHR GeoEye images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as measured in the field immediately after the fire (2011 and one year after (2012 using the Composite Burn Index (CBI for explaining the post-fire vegetation response, which is measured using VHR satellite imagery. To determine this relationship, we applied redundancy analysis (RDA, which allowed us to identify which satellite variables among VHR spectral bands and Normalized Difference Vegetation Index (NDVI can better express the post-fire vegetation response. Results demonstrated that in the first year after the fire event, variations in the post-fire vegetation dynamics can be properly detected using the GeoEye VHR data. Furthermore, results showed that remotely-sensed NDVI-based variables are able to encapsulate burn severity variability over time. Our analysis showed that, in this specific case, burn severity variations are mildly affected by the topography, while the NDVI index, as inferred from VHR data, can be successfully used to monitor the short-term post-fire dynamics of the vegetation recovery.

  10. Landscape Patterns of Burn Severity in the Soberanes Fire of 2016

    Science.gov (United States)

    Potter, Christopher

    2016-01-01

    The Soberanes Fire started on July 22, 2016 in Monterey County on the California Central Coast from an illegal campfire. This fire burned for 10 weeks at a record cost of more than $208 million for protection and control. A progressive analysis of the normalized burn ratio from the Landsat satellite showed that the final high burn severity (HBS) area for the Soberanes Fire comprised 22 percent of the total area burned, whereas final moderate burn severity (MBS) area comprised about 10 percent of the total area burned of approximately 53,470 ha (132,130 acres). The resulting landscape pattern of burn severity classes from the 2016 Soberanes Fire revealed that the majority of HBS area was located in the elevation zone between 500 and 1000 m, in the slope zone between 15 percent and 30 percent, or on south-facing aspects.

  11. Vegetation burn severity mapping using Landsat-8 and WorldView-2

    Science.gov (United States)

    Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.

    2015-01-01

    We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.

  12. Mapping burned areas and burn severity patterns across the Mediterranean region

    Science.gov (United States)

    Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea

    2010-05-01

    The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In

  13. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  14. Is proportion burned severely related to daily area burned?

    International Nuclear Information System (INIS)

    Birch, Donovan S; Morgan, Penelope; Smith, Alistair M S; Kolden, Crystal A; Hudak, Andrew T

    2014-01-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day. (letters)

  15. Predicting gully rejuvenation after wildfire using remotely sensed burn severity data

    Science.gov (United States)

    Hyde, Kevin; Woods, Scott W.; Donahue, Jack

    2007-05-01

    The loss of surface vegetation and reduced infiltration caused by wildfires can trigger gully rejuvenation, resulting in damage to downstream aquatic resources and risk to human life and property. We developed a spatially explicit metric of burn severity — the Burn Severity Distribution Index (BSDI) — and tested its ability to predict post-fire gully rejuvenation in 1st and 2nd order basins burned in the 2000 Valley Complex fires in the Sapphire Mountains of western Montana. The BSDI was derived from burn severity data interpreted from Landsat 7 satellite imagery using the Normalized Burn Ratio (NBR) method, and ranged from 0.0 for completely unburned basins to 4.0 for basins burned entirely at high severity. In July 2001 rainstorms with peak 30-minute intensities of up to 17 mm h - 1 triggered gully rejuvenation in 66 of the 171 basins examined. The frequency of gully rejuvenation was higher in basins with higher BSDI values, increasing from zero for basins with a BSDI less than 1.3 to 67% for basins with a BSDI greater than 3.0. Binary logistic regression indicated that BSDI was a more significant predictor of gully rejuvenation than basin morphometric variables. The absence of gully rejuvenation in several basins with a high BSDI was attributed to low gradient, dense riparian vegetation, or concentration of high burn severity at lower elevations in the basin. The presence of gully rejuvenation in several basins with a low BSDI was associated with false negative NBR classification errors in northwest aspects, and concentration of severe burn impacts in the drainage headslopes. BSDI is a useful metric for predicting gully rejuvenation after wildfire. The use of the BSDI in Burned Area Emergency Response team assessments could improve the planning, implementation, and monitoring of burned area recovery treatments.

  16. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity

    Science.gov (United States)

    Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O.

    2018-02-01

    Nowadays Earth observation satellites, in particular Landsat, provide a valuable help to forest managers in post-fire operations; being the base of post-fire damage maps that enable to analyze fire impacts and to develop vegetation recovery plans. Sentinel-2A MultiSpectral Instrument (MSI) records data in similar spectral wavelengths that Landsat 8 Operational Land Imager (OLI), and has higher spatial and temporal resolutions. This work compares two types of satellite-based maps for evaluating fire damage in a large wildfire (around 8000 ha) located in Sierra de Gata (central-western Spain) on 6-11 August 2015. 1) burn severity maps based exclusively on Landsat data; specifically, on differenced Normalized Burn Ratio (dNBR) and on its relative versions (Relative dNBR, RdNBR, and Relativized Burn Ratio, RBR) and 2) burn severity maps based on the same indexes but combining pre-fire data from Landsat 8 OLI with post-fire data from Sentinel-2A MSI data. Combination of both Landsat and Sentinel-2 data might reduce the time elapsed since forest fire to the availability of an initial fire damage map. Interpretation of ortho-photograph Pléiades 1 B data (1:10,000) provided us the ground reference data to measure the accuracy of both burn severity maps. Results showed that Landsat based burn severity maps presented an adequate assessment of the damage grade (κ statistic = 0.80) and its spatial distribution in wildfire emergency response. Further using both Landsat and Sentinel-2 MSI data the accuracy of burn severity maps, though slightly lower (κ statistic = 0.70) showed an adequate level for be used by forest managers.

  17. Quantifying soil burn severity for hydrologic modeling to assess post-fire effects on sediment delivery

    Science.gov (United States)

    Dobre, Mariana; Brooks, Erin; Lew, Roger; Kolden, Crystal; Quinn, Dylan; Elliot, William; Robichaud, Pete

    2017-04-01

    Soil erosion is a secondary fire effect with great implications for many ecosystem resources. Depending on the burn severity, topography, and the weather immediately after the fire, soil erosion can impact municipal water supplies, degrade water quality, and reduce reservoirs' storage capacity. Scientists and managers use field and remotely sensed data to quickly assess post-fire burn severity in ecologically-sensitive areas. From these assessments, mitigation activities are implemented to minimize post-fire flood and soil erosion and to facilitate post-fire vegetation recovery. Alternatively, land managers can use fire behavior and spread models (e.g. FlamMap, FARSITE, FOFEM, or CONSUME) to identify sensitive areas a priori, and apply strategies such as fuel reduction treatments to proactively minimize the risk of wildfire spread and increased burn severity. There is a growing interest in linking fire behavior and spread models with hydrology-based soil erosion models to provide site-specific assessment of mitigation treatments on post-fire runoff and erosion. The challenge remains, however, that many burn severity mapping and modeling products quantify vegetation loss rather than measuring soil burn severity. Wildfire burn severity is spatially heterogeneous and depends on the pre-fire vegetation cover, fuel load, topography, and weather. Severities also differ depending on the variable of interest (e.g. soil, vegetation). In the United States, Burned Area Reflectance Classification (BARC) maps, derived from Landsat satellite images, are used as an initial burn severity assessment. BARC maps are classified from either a Normalized Burn Ratio (NBR) or differenced Normalized Burned Ratio (dNBR) scene into four classes (Unburned, Low, Moderate, and High severity). The development of soil burn severity maps requires further manual field validation efforts to transform the BARC maps into a product more applicable for post-fire soil rehabilitation activities

  18. Temporal resolution requirements of satellite constellations for 30 m global burned area mapping

    Science.gov (United States)

    Melchiorre, A.; Boschetti, L.

    2017-12-01

    Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one

  19. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  20. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned

  1. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    Science.gov (United States)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  2. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    Science.gov (United States)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  3. Satellite versus ground-based estimates of burned area: A comparison between MODIS based burned area and fire agency reports over North America in 2007

    Science.gov (United States)

    Stephane Mangeon; Robert Field; Michael Fromm; Charles McHugh; Apostolos Voulgarakis

    2015-01-01

    North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires...

  4. Geostationary satellite estimation of biomass burning in Amazonia during BASE-A

    International Nuclear Information System (INIS)

    Menzel, W.P.; Cutrim, E.C.; Prins, E.M.

    1991-01-01

    This chapter presents the results of using Geostationary Operational Environmental Satellite (GOES) Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) infrared window (3.9 and 11.2 microns) data to monitor biomass burning several times per day in Amazonia. The technique of Matson and Dozier using two window channels was adapted to GOES VAS infrared data to estimate the size and temperature of fires associated with deforestation in the vicinity of Alta Floresta, Brazil, during the Biomass Burning Airborne and Spaceborne Experiment - Amazonia (BASE-A). Although VAS data do not offer the spatial resolution available with AVHRR data 97 km versus 1 km, respectively, this decreased resolution does not seem to hinder the ability of the VAS instrument to detect fires; in some cases it proves to be advantageous in that saturation does not occur as often. VAS visible data are additionally helpful in verifying that the hot spots sensed in the infrared are actually related to fires. Furthermore, the fire plumes can be tracked in time to determine their motion and extent. In this way, the GOES satellite offers a unique ability to monitor diurnal variations in fire activity and transport of related aerosols

  5. Music therapy for children with severe burn injury

    OpenAIRE

    Edwards, Jane

    1998-01-01

    peer-reviewed Music therapy for children with severe burns is a developing field of practice and research interest in pediatric music therapy. The following article presents an overview of the nature of severe burn injury and provides a rationale for the use of music therapy in the Burn Unit. The application of song writing techniques to address needs of children receiving care for severe burns in a hospital setting is presented.

  6. Covering techniques for severe burn treatment: lessons for radiological burn accidents

    International Nuclear Information System (INIS)

    Carsin, H.; Stephanazzi, J.; Lambert, F.; Curet, P.M.; Gourmelon, P.

    2002-01-01

    Covering techniques for severe burn treatment: lessons for radiological burn accidents. After a severe burn, the injured person is weakened by a risk of infection and a general inflammation. The necrotic tissues have to be removed because they are toxic for the organism. The injured person also needs to be covered by a cutaneous envelope, which has to be done by a treatment centre for burned people. The different techniques are the following: - auto grafts on limited burned areas; - cutaneous substitutes to cover temporary extended burned areas. Among them: natural substitutes like xenografts (pork skin, sheep skin,..) or allografts (human skin), - treated natural substitutes which only maintain the extracellular matrix. Artificial skins belong to this category and allow the development of high quality scars, - cell cultures in the laboratory: multiplying the individual cells and grafting them onto the patient. This technique is not common but allows one to heal severely injured patients. X-ray burns are still a problem. Their characteristics are analysed: intensive, permanent, antalgic resistant pain. They are difficult to compare with heat burns. In spite of a small number of known cases, we can give some comments and guidance on radio necrosis cures: the importance of the patients comfort, of ending the pain, of preventing infection, and nutritional balance. At the level of epidermic inflammation and phlyctena (skin blisters), the treatment may be completed by the use of growth factors. At the level of necrosis, after a temporary cover, an auto graft can be considered only if a healthy basis is guaranteed. The use of cellular cultures in order to obtain harmonious growth factors can be argued. (author)

  7. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    Science.gov (United States)

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    Science.gov (United States)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  9. Coagulopathy and its management in patients with severe burns

    NARCIS (Netherlands)

    Glas, G. J.; Levi, M. [=Marcel M.; Schultz, M. J.

    2016-01-01

    Severe burn injury is associated with systemic coagulopathy. The changes in coagulation described in patients with severe burns resemble those found patients with sepsis or major trauma. Coagulopathy in patients with severe burns is characterized by procoagulant changes, and impaired fibrinolytic

  10. [The Nutrition Care of Severe Burn Patients].

    Science.gov (United States)

    Hsieh, Yu-Hsiu

    2016-02-01

    In addition to recent advances in burn patient care techniques such as maintaining warm circumambient temperature, the early excision of wounds, and the use of closed dressing, providing nutrition support through early feeding has proven instrumental in greatly increasing the survival rate of burn patients. Severe burns complicated by many factors initiate tremendous physiological stress that leads to postburn hypermetabolism that includes enhanced tissue catabolism, the loss of muscle mass, and decreases in the body's reservoirs of protein and energy. These problems have become the focus of burn therapy. Treating severe burns aims not only to enhance survival rates but also to restore normal bodily functions as completely as possible. Recent research evaluating the application of anabolic agents and immune-enhance formula for severe burns therapy has generated significant controversy. Inadequate caloric intake is one of the main differences among the related studies, with the effect of many special nutrients such as bran acid amides not taken into consideration. Therefore, considering the sufficiency of caloric and protein intake is critical in assessing effectiveness. Only after patients receive adequate calories and protein may the effect of special nutrients such as glutamine and supplements be evaluated effectively.

  11. A project for monitoring trends in burn severity

    Science.gov (United States)

    Eidenshink, Jeffery C.; Schwind, Brian; Brewer, Ken; Zhu, Zhu-Liang; Quayle, Brad; Howard, Stephen M.

    2007-01-01

    Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle, and Elected officials and leaders of environmental agencies need information about the effects of large wildfires in order to set policy and make management decisions. Recently, the Wildland Fire Leadership Council (WFLC), which implements and coordinates the National Fire Plan (NFP) and Federal Wildland Fire Management Policies (National Fire Plan 2004), adopted a strategy to monitor the effectiveness of the National Fire Plan and the Healthy Forests Restoration Act (HFRA). One component of this strategy is to assess the environmental impacts of large wildland fires and identify the trends of burn severity on all lands across the United States. To that end, WFLC has sponsored a six-year project, Monitoring Trends in Burn Severity (MTBS), which requires the U.S. Department of Agriculture Forest Service (USDA-FS) and the U.S. Geological Survey (USGS) to map and assess the burn severity for all large current and historical fires. Using Landsat data and the differenced Normalized Burn Ratio (dNBR) algorithm, the USGS Center for Earth Resources Observation and Science (EROS) and USDA-FS Remote Sensing Applications Center will map burn severity of all fires since 1984 greater than 202 ha (500ac) in the east, and 404 ha (1,000 ac) in the west. The number of historical fires from this period combined with current fires occurring during the course of the project will exceed 9,000. The MTBS project will generate burn severity data, maps, and reports, which will be available for use at local, state, and national levels to evaluate trends in burn severity and help develop and assess the effectiveness of land management decisions. Additionally, the information developed will provide a baseline from which to monitor the recovery and health of fire-affected landscapes over time. Spatial and tabular data quantifying burn severity will augment existing information used to estimate risk associated with a range

  12. Relations between soil hydraulic properties and burn severity

    NARCIS (Netherlands)

    Moody, J.A.; Ebel, B.A.; Stoof, C.R.; Nyman, P.; Martin, D.A.; McKinley, R.

    2016-01-01

    Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory

  13. Relationship between trace gases and aerosols from biomass burning in Southeast Asia using satellite and emission data

    Science.gov (United States)

    Azuma, Yoshimi; Nakamura, Maya; Kuji, Makoto

    2012-11-01

    Southeast Asia is one of the biggest regions of biomass burning with forest fires and slash-and-burn farming. From the fire events, a large amount of air pollutants are emitted such as carbon monoxide (CO), nitrogen oxide (NOx) and aerosol (black carbon; BC). Biomass burning generally causes not only local, but also transboundary air pollution, and influences the atmospheric environment in the world accordingly. However, impact of air pollutants' emissions from large-scale fire in Southeast Asia is not well investigated compared to other regions such as South America and Africa. In this study, characteristics of the atmospheric environment were investigated with correlative analyses among several satellite data (MOPITT, OMI, and MODIS) and emission inventory (GFEDv3) in Southeast Asia from October 2004 to June 2008 on a monthly basis. As a result, it is suggested that the transboundary air pollution from the biomass burning regions occurred over Southeast Asia, which caused specifically higher air pollutants' concentration at Hanoi, Vietnam in spring dry season.

  14. Myocardial Autophagy after Severe Burn in Rats

    Science.gov (United States)

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  15. Self-esteem in severely burned adults.

    Science.gov (United States)

    Imran Haider Zaidi, Syed Muhammad; Yaqoob, Nazia; Noreen, Sidra

    2017-12-01

    A cross-sectional study was conducted to investigate the level of and gender difference in self-esteem among adult victims of severe burn injuries. Severely burned adults aged 20 to 40 years participated in this investigation from March 2015 to April 2016 in five hospitals of Faisalabad and Lahore. Purposive sampling technique was used and a self-esteem scale was used to assess different dimensions of self-esteem. Out of 40 patients, there were 25 men (62.5%) and 15 women (37.5%) with mean age of 28.28±4.60 years (range: 20-40 years). A significant positive relationship between subscales of self-esteem scale were found: self-acceptance and self-competence r=0.55, pself-acceptance and academic self-competence r=0.47, pself-acceptance and social and physical acceptance r=0.57, pself-competence and academic self-competence r=0.48, pself-competence and social and physical acceptance r=0.50, pself-competence and social and physical acceptance r=0.45, pself-competence among severely burned men and women (t=2.18; pself-competency component of self-esteem among women victims.

  16. Does fire severity influence shrub resprouting after spring prescribed burning?

    Science.gov (United States)

    Fernández, Cristina; Vega, José A.; Fonturbel, Teresa

    2013-04-01

    Prescribed burning is commonly used to reduce the risk of severe wildfire. However, further information about the associated environmental effects is required to help forest managers select the most appropriate treatment. To address this question, we evaluated if fire severity during spring prescribed burning significantly affects the resprouting ability of two common shrub species in shrubland under a Mediterranean climate in NW Spain. Fire behaviour and temperatures were recorded in tagged individuals of Erica australis and Pterospartum tridentatum during prescribed burning. The number and length of resprouted shoots were measured three times (6, 12 and 18 months) after the prescribed burning. The influence of a series of fire severity indicators on some plant resprouting vigour parameters was tested by canonical correlation analysis. Six months and one year after prescribed burning, soil burn severity (measured by the absolute reduction in depth of the organic soil layer, maximum temperatures in the organic soil layer and the mineral soil surface during burning and the post-fire depth of the organic soil layer) reduced the resprouting vigour of E. australis and P. tridentatum. In contrast, direct measurements of fire effects on plants (minimum branch diameter, duration of temperatures above 300 °C in the shrub crown and fireline intensity) did not affect the post-fire plant vigour. Soil burn severity during spring prescribed burning significantly affected the short-term resprouting vigour in a mixed heathland in Galicia. The lack of effects eighteen months after prescribed burning indicates the high resilience of these species and illustrates the need to conciliate fire prevention and conservation goals.

  17. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006

    Science.gov (United States)

    Gregory K. Dillon; Zachery A. Holden; Penelope Morgan; Michael A. Crimmins; Emily K. Heyerdahl; Charles H. Luce

    2011-01-01

    Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn...

  18. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    Science.gov (United States)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  19. Postfire soil burn severity mapping with hyperspectral image unmixing

    Science.gov (United States)

    Peter R. Robichaud; Sarah A. Lewis; Denise Y. M. Laes; Andrew T. Hudak; Raymond F. Kokaly; Joseph A. Zamudio

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after...

  20. Predictors of muscle protein synthesis after severe pediatric burns.

    Science.gov (United States)

    Diaz, Eva C; Herndon, David N; Lee, Jinhyung; Porter, Craig; Cotter, Matthew; Suman, Oscar E; Sidossis, Labros S; Børsheim, Elisabet

    2015-04-01

    Following a major burn, skeletal muscle protein synthesis rate increases but is often insufficient to compensate for massively elevated muscle protein breakdown rates. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that muscle protein synthesis rate would be chronically elevated in severely burned children. The objectives of this study were to characterize muscle protein synthesis rate of burned children over a period of 24 months after injury and to identify predictors that influence this response. A total of 87 children with 40% or greater total body surface area (TBSA) burned were included. Patients participated in stable isotope infusion studies at 1, 2, and approximately 4 weeks after burn and at 6, 12, and 24 months after injury to determine skeletal muscle protein fractional synthesis rate. Generalized estimating equations with log link normal distribution were applied to account for clustering of patients and control for patient characteristics. Patients (8 ± 6 years) had large (62, 51-72% TBSA) and deep (47% ± 21% TBSA third degree) burns. Muscle protein fractional synthesis rate was elevated throughout the first 12 months after burn compared with established values from healthy young adults. Muscle protein fractional synthesis rate was lower in boys, in children older than 3 years, and when burns were greater than 80% TBSA. Muscle protein synthesis is elevated for at least 1 year after injury, suggesting that greater muscle protein turnover is a component of the long-term pathophysiologic response to burn trauma. Muscle protein synthesis is highly affected by sex, age, and burn size in severely burned children. These findings may explain the divergence in net protein balance and lean body mass in different populations of burn patients. Prognostic study, level III.

  1. Modulation of inflammatory and catabolic responses in severely burned children by early burn wound excision in the first 24 hours

    NARCIS (Netherlands)

    Barret, JP; Herndon, DN

    Hypothesis: Early burn wound excision modulates the hypermetabolic response in severe pediatric burn injuries. Design: Before-after trial. Setting: A 30-bed burn referral center in a private, university-affiliated hospital. Methods: We studied 35 severely burned children who were divided into 2

  2. Domestic bioethanol-fireplaces--a new source of severe burn accidents.

    Science.gov (United States)

    Neubrech, Florian; Kiefer, Jurij; Schmidt, Volker J; Bigdeli, Amir K; Hernekamp, J Frederick; Kremer, Thomas; Kneser, Ulrich; Radu, Christian Andreas

    2016-02-01

    Bioethanol-fueled fireplaces are popular interior home decoration accessories. Although their safety is promoted frequently, actual presentations of severe burn injuries in our burn intensive care unit (ICU) have focused the authors on safety problems with these devices. In this article we want to explore the mechanisms for these accidents and state our experiences with this increasingly relevant risk for severe burn injuries. The computerized medical records of all burn intensive care patients in our burn unit between 2000 and 2014 were studied. Since 2010, 12 patients with bioethanol associated burn injuries were identified. Their data was compared to the values of all patients, except the ones injured by bioethanol fireplaces that presented themselves to our burn ICU between the years 2010 and 2014. At time of admission the bioethanol patients had a mean ABSI-score of 4.8 (+/- 2.2 standard deviation (SD)). A mean of 17 percent (+/- 9.1 SD) body surface area was burned. Involvement of face and hands was very common. An operative treatment was needed in 8 cases. A median of 20 days of hospitalization (range 3-121) and a median of 4.5 days on the ICU (range 1-64) were necessary. No patient died. In most cases the injuries happened while refilling or while starting the fire, even though safety instructions were followed. In the control group, consisting of 748 patients, the mean ABSI-score was 5.6 (+/- 2.7 SD). A mean of 16.5 percent (+/- 10.1 SD) body surface area was burned. Treatment required a median of 3 days on the burn ICU (range 1-120). Regarding these parameters, the burden of disease was comparable in both groups. Bioethanol-fueled fireplaces for interior home decoration are a potential source for severe burn accidents even by intended use. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  3. Gut microbiota trajectory in patients with severe burn: A time series study.

    Science.gov (United States)

    Wang, Xinying; Yang, Jianbo; Tian, Feng; Zhang, Li; Lei, Qiucheng; Jiang, Tingting; Zhou, Jihong; Yuan, Siming; Wang, Jun; Feng, Zhijian; Li, Jieshou

    2017-12-01

    This time series experiments aimed to investigate the dynamic change of gut microbiomes after severe burn and its association with enteral nutrition (EN). Seven severely burned patients who suffered from a severe metal dust explosion injury were recruited in this study. The dynamic changes of gut microbiome of fecal samples at six time points (1-3days, 2, 3, 4, 5 and 6weeks after severe burn) were detected using 16S ribosomal RNA pyrosequencing technology. Following the post-burn temporal order, gut microbiota dysbiosis was detected in the gut microbiome after severe burn, then it was gradually resolved. The bio-diversity of gut bacteria was initially decreased, and then returned to normal level. In addition, at the early stage (from 2 to 4weeks), the majority of those patients' gut microbiome were opportunistic pathogen genus, Enterococcus and Escherichia; while at the end of this study, the majority was a beneficial genus, Bacteroides. EN can promote the recovery of gut microbiota, especially in EN well-tolerated patients. Severe burn injury can cause a dramatic dysbiosis of gut microbiota. A trend of enriched beneficial bacteria and diminished opportunistic pathogen bacteria may serve as prognosis microbiome biomarkers of severe burn patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    Science.gov (United States)

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  5. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  6. Improved survival with an innovative approach to the treatment of severely burned patients: development of a burn treatment manual

    OpenAIRE

    Morisada, S.; Nosaka, N.; Tsukahara, K.; Ugawa, T.; Sato, K.; Ujike, Y.

    2015-01-01

    The management of severely burned patients remains a major issue worldwide as indicated by the high incidence of permanent debilitating complications and poor survival rates. In April 2012, the Advanced Emergency & Critical Care Medical Center of the Okayama University Hospital began implementing guidelines for severely burned patients, distributed as a standard burn treatment manual. The protocol, developed in-house, was validated by comparing the outcomes of patients with severe extensive b...

  7. RECENT ADVANCES IN BIOMARKERS IN SEVERE BURNS.

    Science.gov (United States)

    Ruiz-Castilla, Mireia; Roca, Oriol; Masclans, Joan R; Barret, Joan P

    2016-02-01

    The pathophysiology of burn injuries is tremendously complex. A thorough understanding is essential for correct treatment of the burned area and also to limit the appearance of organ dysfunction, which, in fact, is a key determinant of morbidity and mortality. In this context, research into biomarkers may play a major role. Biomarkers have traditionally been considered an important area of medical research: the measurement of certain biomarkers has led to a better understanding of pathophysiology, while others have been used either to assess the effectiveness of specific treatments or for prognostic purposes. Research into biomarkers may help to improve the prognosis of patients with severe burn injury. The aim of the present clinical review is to discuss new evidence of the value of biomarkers in this setting.

  8. Use of multi-sensor active fire detections to map fires in the United States: the future of monitoring trends in burn severity

    Science.gov (United States)

    Picotte, Joshua J.; Coan, Michael; Howard, Stephen M.

    2014-01-01

    The effort to utilize satellite-based MODIS, AVHRR, and GOES fire detections from the Hazard Monitoring System (HMS) to identify undocumented fires in Florida and improve the Monitoring Trends in Burn Severity (MTBS) mapping process has yielded promising results. This method was augmented using regression tree models to identify burned/not-burned pixels (BnB) in every Landsat scene (1984–2012) in Worldwide Referencing System 2 Path/Rows 16/40, 17/39, and 1839. The burned area delineations were combined with the HMS detections to create burned area polygons attributed with their date of fire detection. Within our study area, we processed 88,000 HMS points (2003–2012) and 1,800 Landsat scenes to identify approximately 300,000 burned area polygons. Six percent of these burned area polygons were larger than the 500-acre MTBS minimum size threshold. From this study, we conclude that the process can significantly improve understanding of fire occurrence and improve the efficiency and timeliness of assessing its impacts upon the landscape.

  9. Global estimation of CO emissions using three sets of satellite data for burned area

    Science.gov (United States)

    Jain, Atul K.

    Using three sets of satellite data for burned areas together with the tree cover imagery and a biogeochemical component of the Integrated Science Assessment Model (ISAM) the global emissions of CO and associated uncertainties are estimated for the year 2000. The available fuel load (AFL) is calculated using the ISAM biogeochemical model, which accounts for the aboveground and surface fuel removed by land clearing for croplands and pasturelands, as well as the influence on fuel load of various ecosystem processes (such as stomatal conductance, evapotranspiration, plant photosynthesis and respiration, litter production, and soil organic carbon decomposition) and important feedback mechanisms (such as climate and fertilization feedback mechanism). The ISAM estimated global total AFL in the year 2000 was about 687 Pg AFL. All forest ecosystems account for about 90% of the global total AFL. The estimated global CO emissions based on three global burned area satellite data sets (GLOBSCAR, GBA, and Global Fire Emissions Database version 2 (GFEDv2)) for the year 2000 ranges between 320 and 390 Tg CO. Emissions from open fires are highest in tropical Africa, primarily due to forest cutting and burning. The estimated overall uncertainty in global CO emission is about ±65%, with the highest uncertainty occurring in North Africa and Middle East region (±99%). The results of this study suggest that the uncertainties in the calculated emissions stem primarily from the area burned data.

  10. Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX

    Directory of Open Access Journals (Sweden)

    Lennert Schepers

    2014-02-01

    Full Text Available Uncontrolled, large fires are a major threat to the biodiversity of protected heath landscapes. The severity of the fire is an important factor influencing vegetation recovery. We used airborne imaging spectroscopy data from the Airborne Prism Experiment (APEX sensor to: (1 investigate which spectral regions and spectral indices perform best in discriminating burned from unburned areas; and (2 assess the burn severity of a recent fire in the Kalmthoutse Heide, a heathland area in Belgium. A separability index was used to estimate the effectiveness of individual bands and spectral indices to discriminate between burned and unburned land. For the burn severity analysis, a modified version of the Geometrically structured Composite Burn Index (GeoCBI was developed for the field data collection. The field data were collected in four different vegetation types: Calluna vulgaris-dominated heath (dry heath, Erica tetralix-dominated heath (wet heath, Molinia caerulea (grass-encroached heath, and coniferous woodland. Discrimination between burned and unburned areas differed among vegetation types. For the pooled dataset, bands in the near infrared (NIR spectral region demonstrated the highest discriminatory power, followed by short wave infrared (SWIR bands. Visible wavelengths performed considerably poorer. The Normalized Burn Ratio (NBR outperformed the other spectral indices and the individual spectral bands in discriminating between burned and unburned areas. For the burn severity assessment, all spectral bands and indices showed low correlations with the field data GeoCBI, when data of all pre-fire vegetation types were pooled (R2 maximum 0.41. Analysis per vegetation type, however, revealed considerably higher correlations (R2 up to 0.78. The Mid Infrared Burn Index (MIRBI had the highest correlations for Molinia and Erica (R2 = 0.78 and 0.42, respectively. In Calluna stands, the Char Soil Index (CSI achieved the highest correlations, with R2 = 0

  11. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    Science.gov (United States)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-10-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength for BB aerosol sources. Our previous work shows that to first order, satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the smoke source strength. We now refine the satellite-snapshot method and investigate where applying simple multiplicative emission adjustment factors alone to the widely used Global Fire Emission Database version 3 emission inventory can achieve regional-scale consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport model. The model and satellite AOD are compared globally, over a set of BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. Regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. We refine our approach to address physically based limitations of our earlier work (1) by expanding the number of fire cases from 124 to almost 900, (2) by using scaled reanalysis-model simulations to fill missing AOD retrievals in the MODIS observations, (3) by distinguishing the BB components of the total aerosol load from background aerosol in the near-source regions, and (4) by including emissions from fires too small to be identified explicitly in the satellite observations. The small-fire emission adjustment shows the complimentary nature of correcting for source strength and adding geographically distinct missing sources. Our analysis indicates that the method works best for fire cases where the BB fraction of total AOD is high, primarily evergreen or deciduous forests. In heavily polluted or agricultural burning regions, where smoke and background AOD values tend to be comparable, this approach

  12. Sensitivity of Landsat image-derived burn severity indices to immediate post-fire effects

    Science.gov (United States)

    A. T. Hudak; S. Lewis; P. Robichaud; P. Morgan; M. Bobbitt; L. Lentile; A. Smith; Z. Holden; J. Clark; R. McKinley

    2006-01-01

    The USFS Remote Sensing Applications Center (RSAC) and the USGS Center for Earth Resources Observation and Science (EROS) produce Burned Area Reflectance Classification (BARC) maps as a rapid, preliminary indication of burn severity on large wildfire events. Currently the preferred burn severity index is the delta Normalized Burn Ratio (dNBR), which requires NBR values...

  13. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    Science.gov (United States)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets

  14. Improved survival with an innovative approach to the treatment of severely burned patients: development of a burn treatment manual.

    Science.gov (United States)

    Morisada, S; Nosaka, N; Tsukahara, K; Ugawa, T; Sato, K; Ujike, Y

    2015-09-30

    The management of severely burned patients remains a major issue worldwide as indicated by the high incidence of permanent debilitating complications and poor survival rates. In April 2012, the Advanced Emergency & Critical Care Medical Center of the Okayama University Hospital began implementing guidelines for severely burned patients, distributed as a standard burn treatment manual. The protocol, developed in-house, was validated by comparing the outcomes of patients with severe extensive burns (SEB) treated before and after implementation of these new guidelines at this institution. The patients included in this study had a burn index (BI) ≥30 or a prognostic burn index (PBI = BI + patient's age) ≥100. The survival rate of the patients with BI ≥30 was 65.2% with the traditional treatment and 100% with the new guidelines. Likewise, the survival rate of the patients with PBI ≥100 was 61.1% with the traditional treatment compared to 100% with the new guidelines. Together, these data demonstrate that the new treatment guidelines dramatically improved the treatment outcome and survival of SEB patients.

  15. [Severe ocular burns by calcium carbide in a speleologist: a case report].

    Science.gov (United States)

    Testud, F; Voegtlé, R; Nordmann, J P; Descotes, J

    2002-03-01

    A case of severe ocular burns in an amateur speleologist is reported. The explosion of his acetylene lamp caused the projection of calcium carbide particles, which induced burning of the cornea and conjunctiva in both eyes. He slowly recovered in several months. The pathophysiology of the burns, linked to the in situ production of lime, and their management are discussed.

  16. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  17. Determining the Uncertainties in Prescribed Burn Emissions Through Comparison of Satellite Estimates to Ground-based Estimates and Air Quality Model Evaluations in Southeastern US

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A. G.

    2016-12-01

    Prescribed burning is practiced throughout the US, and most widely in the Southeast, for the purpose of maintaining and improving the ecosystem, and reducing the wildfire risk. However, prescribed burn emissions contribute significantly to the of trace gas and particulate matter loads in the atmosphere. In places where air quality is already stressed by other anthropogenic emissions, prescribed burns can lead to major health and environmental problems. Air quality modeling efforts are under way to assess the impacts of prescribed burn emissions. Operational forecasts of the impacts are also emerging for use in dynamic management of air quality as well as the burns. Unfortunately, large uncertainties exist in the process of estimating prescribed burn emissions and these uncertainties limit the accuracy of the burn impact predictions. Prescribed burn emissions are estimated by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels, their consumption amounts, and the progression of the fire, ground-based estimates are more accurate. In the absence of such information satellites remain as the only reliable source for emission estimation. To determine the level of uncertainty in prescribed burn emissions, we compared estimates derived from a burn permit database and other ground-based information to the estimates by the Biomass Burning Emissions Product derived from a constellation of NOAA and NASA satellites. Using these emissions estimates we conducted simulations with the Community Multiscale Air Quality (CMAQ) model and predicted trace gas and particulate matter concentrations throughout the Southeast for two consecutive burn seasons (2015 and 2016). In this presentation, we will compare model predicted concentrations to measurements at monitoring stations and evaluate if the differences are commensurate with our emission uncertainty estimates. We will also investigate if

  18. Skin bioengineering and stem cells for severe burn treatment

    International Nuclear Information System (INIS)

    Lataillade, J.J.; Trouillas, M.; Alexaline, M.; Brachet, M.; Bey, E.; Duhamel, P.; Leclerc, T.; Bargues, L.

    2015-01-01

    Severely burned patients need definitive and efficient wound coverage. The outcome of massive burns has improved with cultured epithelial auto-grafts (CEA). In spite of its fragility, percentage of success, cost of treatment and long-term tendency to contracture, this surgical technique has been developed in some burn centres. The first improvements involved combining CEA and dermis-like substitutes. Cultured skin substitutes provide faster skin closure and satisfying functional results. These methods have been used successfully in massive burns. A second improvement was to enable skin regeneration by using epidermal stem cells. Stem cells can differentiate into keratinocytes, to promote wound repair and to regenerate skin appendages. Human mesenchymal stem cells foster wound healing and were used in cutaneous radiation syndrome. Skin regeneration and tissue engineering methods remain a complex challenge and offer the possibility of new treatment for injured and burned patients. (authors)

  19. The relation between forest structure and soil burn severity

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; David S. Pilliod

    2006-01-01

    A study funded through National Fire Plan evaluates the relation between pre-wildfire forest structure and post-wildfire soil burn severity across three forest types: dry, moist, and cold forests. Over 73 wildfires were sampled in Idaho, Oregon, Montana, Colorado, and Utah, which burned between 2000 and 2003. Because of the study’s breadth, the results are applicable...

  20. Post-Fire Regeneration and Diversity Response to Burn Severity in Pinus halepensis Mill. Forests

    Directory of Open Access Journals (Sweden)

    Sonsoles González-De Vega

    2018-05-01

    Full Text Available In recent decades, fire regimes have been modified by various factors such as changes in land use, global change or forest management policies. The vulnerability of Mediterranean terrestrial ecosystems is increasing due to more severe and frequent droughts. This study aimed to determine the plant response of ecosystems during the short-term post-fire period by relating alpha diversity, floristic richness and tree recruitment dynamics to burn severity 5 years after a wildfire. Our results conclude that in the short term, Pinus halepensis Mill. stands in southeastern Spain quickly recovered alpha diversity values, mainly in areas burned with low severity. We observed that moderate and high severities affected the ecosystem more significantly, showing higher values for the Shannon Index but lower for the Simpson index. Pine recruitment was higher in burned areas, and we found the highest number of Aleppo pine seedlings under a moderate burn severity. Post-fire regeneration functional groups (obligate seeders and resprouters were promoted under moderate and high burn severity, increasing their abundance. Annual species (mainly herbs colonized burned areas, persisting with higher presence under moderate burn severity. Restoration tools should be focused on reducing fire severity, mainly in areas at high risk of desertification, and promoting resistance, vulnerability and resilience of these ecosystems.

  1. Burn Severities, Fire Intensities, and Impacts to Major Vegation Types from the Cerro Grande Fire

    International Nuclear Information System (INIS)

    Balice, R.G.; Bennett, K.D.; Wright, M.A.

    2005-01-01

    The Cerro Grande Fire resulted in major impacts and changes to the ecosystems that were burned. To partially document these effects, we estimated the acreage of major vegetation types that were burned at selected burn severity levels and fire intensity levels. To accomplish this, we adopted independently developed burn severity and fire intensity maps, in combination with a land cover map developed for habitat management purposes, as a basis for the analysis. To provide a measure of confidence in the acreage estimates, the accuracies of these maps were also assessed. In addition, two other maps of comparable quality were assessed for accuracy: one that was developed for mapping fuel risk and a second map that resulted from a preliminary application of an evolutionary computation software system, called GENIE. According to the burn severity map and the fire intensity map, the Cerro Grande Fire is estimated to have covered 42,885.4 acres and 42,854.7 acres, respectively. Of this, 57.0 percent was burned at low severity and 34.7 percent was burned at high severity. Similarly, 40.0 percent of the Cerro Grande Fire burned at high fire intensity, greater than 70 percent mortality, while 33.1 percent burned at moderately low intensity, 10 to 40 percent mortality. The most frequently burned cover types over the entire Cerro Grande Fire were ponderosa pine forest and mixed conifer forest, at approximately 43 percent each. However, portions of the fire that burned on Los Alamos National Laboratory (LANL) property were predominantly in ponderosa pine forests, whereas the Cerro Grande Fire burned primarily in mixed conifer forests on lands managed by other agencies. Some of the polygons of burn severities and fire intensities were extensive. The two largest burn severity polygons were 10,111 acres and 10,903 acres and these were burned at low severity. The next two largest polygons were 8999 acres (14 square miles) and 1551 acres (2.4 square miles) and both of these polygons

  2. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2004-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  3. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    Science.gov (United States)

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  4. Hot soup! Correlating the severity of liquid scald burns to fluid and biomedical properties.

    Science.gov (United States)

    Loller, Cameron; Buxton, Gavin A; Kerzmann, Tony L

    2016-05-01

    Burns caused by hot drinks and soups can be both debilitating and costly, especially to pediatric and geriatric patients. This research is aimed at better understanding the fluid properties that can influence the severity of skin burns. We use a standard model which combines heat transfer and biomedical equations to predict burn severity. In particular, experimental data from a physical model serves as the input to our numerical model to determine the severity of scald burns as a consequence of actual fluid flows. This technique enables us to numerically predict the heat transfer from the hot soup into the skin, without the need to numerically estimate the complex fluid mechanics and thermodynamics of the potentially highly viscous and heterogeneous soup. While the temperature of the soup is obviously is the most important fact in determining the degree of burn, we also find that more viscous fluids result in more severe burns, as the slower flowing thicker fluids remain in contact with the skin for longer. Furthermore, other factors can also increase the severity of burn such as a higher initial fluid temperature, a greater fluid thermal conductivity, or a higher thermal capacity of the fluid. Our combined experimental and numerical investigation finds that for average skin properties a very viscous fluid at 100°C, the fluid must be in contact with the skin for around 15-20s to cause second degree burns, and more than 80s to cause a third degree burn. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  5. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-01-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2–5.3 km altitude in the forest fire plumes compared to 2.2–3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources. (letter)

  6. Monitoring of Siberian biomass burning smoke from AHI on board geostationary satellite Himawari-8

    Science.gov (United States)

    Sano, I.; Mukai, S.; Yoshida, A.; Nakata, M.; Minoura, H.; Holben, B. N.

    2016-12-01

    High frequency aerosol measurements are demanded for evaluation of the model simulations, monitoring the atmospheric qualities such as Particulate Matter (PM2.5), and so on. Geostationary satellite provides us with the high frequency information of the atmosphere. Japanese Meteorological Agency (JMA) launched the Himawari-8 geostationary satellite in 2014 and has prepared Himawari-9 for launching in 2016. Both satellites carry new generation imagers named Advanced Himawari Imager (AHI). They have 16 multi-channels from short visible to thermal infrared wavelengths with 1 km IFOV for visible and 2 km for infrared. Each observation is done within 10 minutes for the Earth full disk. Then high frequency Earth observations are realized. AHI has frequently observed biomass burning plume around East Siberia and its transportation according to weather system. This work retrieves aerosol properties due to the Siberian smoke plume and its movements based on the measurements with AHI. The results are compared with ground based measurements which have newly deployed at an AERONET/Niigata site in Japan. It is shown here that continuous measurements of aerosols from geostationary satellite combination with the polar orbiting satellite provide us with much detail information of aerosol.

  7. Satellite Remote Sensing of Atmospheric Pollution: the Far-Reaching Impact of Burning in Southern Africa

    Science.gov (United States)

    Fishman, Jack; Al-Saadi, Jassim A.; Neil, Doreen O.; Creilson, John K.; Severance, Kurt; Thomason, Larry W.; Edwards, David R.

    2008-01-01

    When the first observations of a tropospheric trace gas were obtained in the 1980s, carbon monoxide enhancements from tropical biomass burning dominated the observed features. In 2005, an active remote-sensing system to provide detailed information on the vertical distribution of aerosols and clouds was launched, and again, one of the most imposing features observed was the presence of emissions from tropical biomass burning. This paper presents a brief overview of space-borne observations of the distribution of trace gases and aerosols and how tropical biomass burning, primarily in the Southern Hemisphere, has provided an initially surprising picture of the distribution of these species and how they have evolved from prevailing transport patterns in that hemisphere. We also show how interpretation of these observations has improved significantly as a result of the improved capability of trajectory modeling in recent years and how information from this capability has provided additional insight into previous measurements form satellites. Key words: pollution; biomass burning; aerosols; tropical trace gas emissions; Southern Hemisphere; carbon monoxide.

  8. Total inpatient treatment costs in patients with severe burns: towards a more accurate reimbursement model.

    Science.gov (United States)

    Mehra, Tarun; Koljonen, Virve; Seifert, Burkhardt; Volbracht, Jörk; Giovanoli, Pietro; Plock, Jan; Moos, Rudolf Maria

    2015-01-01

    Reimbursement systems have difficulties depicting the actual cost of burn treatment, leaving care providers with a significant financial burden. Our aim was to establish a simple and accurate reimbursement model compatible with prospective payment systems. A total of 370 966 electronic medical records of patients discharged in 2012 to 2013 from Swiss university hospitals were reviewed. A total of 828 cases of burns including 109 cases of severe burns were retained. Costs, revenues and earnings for severe and nonsevere burns were analysed and a linear regression model predicting total inpatient treatment costs was established. The median total costs per case for severe burns was tenfold higher than for nonsevere burns (179 949 CHF [167 353 EUR] vs 11 312 CHF [10 520 EUR], interquartile ranges 96 782-328 618 CHF vs 4 874-27 783 CHF, p <0.001). The median of earnings per case for nonsevere burns was 588 CHF (547 EUR) (interquartile range -6 720 - 5 354 CHF) whereas severe burns incurred a large financial loss to care providers, with median earnings of -33 178 CHF (30 856 EUR) (interquartile range -95 533 - 23 662 CHF). Differences were highly significant (p <0.001). Our linear regression model predicting total costs per case with length of stay (LOS) as independent variable had an adjusted R2 of 0.67 (p <0.001 for LOS). Severe burns are systematically underfunded within the Swiss reimbursement system. Flat-rate DRG-based refunds poorly reflect the actual treatment costs. In conclusion, we suggest a reimbursement model based on a per diem rate for treatment of severe burns.

  9. Assessing variability and long-term trends in burned area by merging multiple satellite fire products

    Directory of Open Access Journals (Sweden)

    L. Giglio

    2010-03-01

    Full Text Available Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001–2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM Visible and Infrared Scanner (VIRS and the Along-Track Scanning Radiometer (ATSR allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997–2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3 estimates of trace gas and aerosol emissions.

  10. The biomass burning contribution to climate–carbon-cycle feedback

    Directory of Open Access Journals (Sweden)

    S. P. Harrison

    2018-05-01

    Full Text Available Temperature exerts strong controls on the incidence and severity of fire. All else equal, warming is expected to increase fire-related carbon emissions, and thereby atmospheric CO2. But the magnitude of this feedback is very poorly known. We use a single-box model of the land biosphere to quantify this positive feedback from satellite-based estimates of biomass burning emissions for 2000–2014 CE and from sedimentary charcoal records for the millennium before the industrial period. We derive an estimate of the centennial-scale feedback strength of 6.5 ± 3.4 ppm CO2 per degree of land temperature increase, based on the satellite data. However, this estimate is poorly constrained, and is largely driven by the well-documented dependence of tropical deforestation and peat fires (primarily anthropogenic on climate variability patterns linked to the El Niño–Southern Oscillation. Palaeo-data from pre-industrial times provide the opportunity to assess the fire-related climate–carbon-cycle feedback over a longer period, with less pervasive human impacts. Past biomass burning can be quantified based on variations in either the concentration and isotopic composition of methane in ice cores (with assumptions about the isotopic signatures of different methane sources or the abundances of charcoal preserved in sediments, which reflect landscape-scale changes in burnt biomass. These two data sources are shown here to be coherent with one another. The more numerous data from sedimentary charcoal, expressed as normalized anomalies (fractional deviations from the long-term mean, are then used – together with an estimate of mean biomass burning derived from methane isotope data – to infer a feedback strength of 5.6 ± 3.2 ppm CO2 per degree of land temperature and (for a climate sensitivity of 2.8 K a gain of 0.09 ± 0.05. This finding indicates that the positive carbon cycle feedback from increased fire provides a substantial

  11. [Advance on human umbilical cord mesenchymal stem cells for treatment of ALI in severe burns].

    Science.gov (United States)

    Wang, Yu; Hu, Xiaohong

    2017-01-01

    Severe burn is often accompanied by multiple organ damage. Acute lung injury (ALI) is one of the most common complications, and often occurs in the early stage of severe burns. If it is not treated in time, it will progress to acute respiratory distress syndrome (ARDS), which will be a serious threat to the lives of patients. At present, the treatment of ALI in patients with severe burn is still remained in some common ways, such as the liquid resuscitation, the primary wound treatment, ventilation support, and anti-infection. In recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been found having some good effects on ALI caused by various causes, but few reports on the efficacy of ALI caused by severe burns were reported. By reviewing the mechanism of stem cell therapy for ALI, therapeutic potential of hUCMSCs in the treatment of severe burns with ALI and a new approach for clinical treatment was provided.

  12. Selected Geomagnetic Measurements From Several Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 17 million selected magnetic observations from several orbiting low-altitude satellites are contained in this digital collection. Except for MAGSAT, all...

  13. Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients.

    Science.gov (United States)

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2006-08-01

    Glutamine is an important energy source for immune cells. It is a necessary nutrient for cell proliferation, and serves as specific fuel for lymphocytes, macrophages, and enterocytes when it is present in appropriate concentrations. The purpose of this clinical study was to observe the effects of enteral nutrition supplemented with glutamine granules on immunologic function in severely burned patients. Forty-eight severely burned patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trail. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, Gln and B group patents were given glutamine granules or placebo (glycine) at 0.5 g/kgd for 14 days with oral feeding or tube feeding, respectively. The plasma level of glutamine and several indices of immunologic function including lymphocyte transformation ratio, neutrophil phagocytosis index (NPI), CD4/CD8 ratio, the content of immunoglobulin, complement C3, C4 and IL-2 levels were determined. Moreover, wound healing rate of burn area was observed and then hospital stay was recorded. The results showed significantly reduced plasma glutamine and damaged immunological function after severe burn Indices of cellular immunity function were remarkably decreased from normal controls. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P0.05). In addition, wound healing was better and hospital stay days were reduced in Gln group (46.59+/-12.98 days versus 55.68+/-17.36 days, Pburn; supplemented glutamine granules with oral feeding or tube feeding abate the degree of immunosuppression, improve immunological function

  14. Recent progress in biomass burning research: a perspective from analyses of satellite data and model studies. (Invited)

    Science.gov (United States)

    Logan, J. A.

    2010-12-01

    Significant progress has been made in using satellite data to provide bottom-up constraints on biomass burning (BB) emissions. However, inverse studies with CO satellite data imply that tropical emissions are underestimated by current inventories, while model simulations of the ARCTAS period imply that the FLAMBE estimates of extratropical emissions are significantly overestimated. Injection heights of emissions from BB have been quantified recently using MISR data, and these data provide some constraints on 1-d plume models. I will discuss recent results in these areas, highlighting future research needs.

  15. Can we make an early 'do not resuscitate' decision in severe burn patients?

    Science.gov (United States)

    Yüce, Yücel; Acar, Hakan Ahmet; Erkal, Kutlu Hakan; Tuncay, Erhan

    2017-03-01

    The present study was conducted to examine topic of issuing early do-not-resuscitate (DNR) order at first diagnosis of patients with severe burn injuries in light of current law in Turkey and the medical literature. DNR requires withholding cardiopulmonary resuscitation in event of respiratory or cardiac arrest and allowing natural death to occur. It is frequently enacted for terminal cancer patients and elderly patients with irreversible neurological disorders. Between January 2009 and December 2014, 29 patients (3.44%) with very severe burns were admitted to burn unit. Average total burn surface area (TBSA) was 94.24% (range: 85-100%), and in 10 patients, TBSA was 100%. Additional inhalation burns were present in 26 of the patients (89.65%). All of the patients died, despite every medical intervention. Mean survival was 4.75 days (range: 1-24 days). Total of 17 patients died within 72 hours. Lethal dose 50 (% TBSA at which certain group has 50% chance of survival) rate of our burn center is 62%. Baux indices were used for prognostic evaluation of the patients; mean total Baux score of the patients was 154.13 (range: 117-183). It is well known that numerous problems may be encountered during triage of severely burned patients in Turkey. These patients are referred to burn centers and are frequently transferred via air ambulance between cities, and even countries. They are intubated and mechanical ventilation is initiated at burn center. Many interventions are performed to treat these patients, such as escharotomy, fasciotomy, tangential or fascial excision, central venous catheterization and tracheostomy, or hemodialysis. Yet despite such interventions, these patients die, typically within 48 to 96 hours. Integrity of the body is often lost as result of aggressive intervention with no real benefit, and there are also economic costs to hospital related to use of materials, bed occupancy, and distribution of workforce. For these reasons, as well as patient comfort

  16. Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments

    Science.gov (United States)

    Preusse, Peter; Eckermann, Stephen D.; Offermann, Dirk; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    Gravity wave temperature fluctuations acquired by the CRISTA instrument are compared to previous estimates of zonal-mean gravity wave temperature variance inferred from the LIMS, MLS and GPS/MET satellite instruments during northern winter. Careful attention is paid to the range of vertical wavelengths resolved by each instrument. Good agreement between CRISTA data and previously published results from LIMS, MLS and GPS/MET are found. Key latitudinal features in these variances are consistent with previous findings from ground-based measurements and some simple models. We conclude that all four satellite instruments provide reliable global data on zonal-mean gravity wave temperature fluctuations throughout the middle atmosphere.

  17. Recent shift from forest to savanna burning in the Amazon Basin observed by satellite

    International Nuclear Information System (INIS)

    Ten Hoeve, J E; Jacobson, M Z; Remer, L A; Correia, A L

    2012-01-01

    The numbers of fires detected on forest, savanna and transition lands during the 2002–10 biomass burning seasons in Amazonia are shown using fire count data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). The ratio of forest fires to savanna fires has varied substantially over the study period, with a maximum ratio of 0.65:1 in 2005 and a minimum ratio of 0.27:1 in 2009, with the four lowest years occurring in 2007–10. The burning during the droughts of 2007 and 2010 is attributed to a higher number of savanna fires relative to the drought of 2005. A decrease in the regional mean single scattering albedo of biomass burning aerosols, consistent with the shift from forest to savanna burning, is also shown. During the severe drought of 2010, forest fire detections were lower in many areas compared with 2005, even though the drought was more severe in 2010. This result suggests that improved fire management practices, including stricter burning regulations as well as lower deforestation burning, may have reduced forest fires in 2010 relative to 2005 in some areas of the Amazon Basin. (letter)

  18. A decadal glimpse on climate and burn severity influences on ponderosa pine post-fire recovery

    Science.gov (United States)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.; Smith, A.; Khalyani, A. H.

    2016-12-01

    Climate change is predicted to affect plants at the margins of their distribution. Thus, ecosystem recovery after fire is likely to vary with climate and may be slowest in drier and hotter areas. However, fire regime characteristics, including burn severity, may also affect vegetation recovery. We assessed vegetation recovery one and 9-15 years post-fire in North American ponderosa pine ecosystems distributed across climate and burn severity gradients. Using climate predictors derived from downscaled 1993-2011 climate normals, we predicted vegetation recovery as indicated by Normalized Burn Ratio derived from 1984-2012 Landsat time series imagery. Additionally, we collected field vegetation measurements to examine local topographic controls on burn severity and post-fire vegetation recovery. At a regional scale, we hypothesized a positive relationship between precipitation and recovery time and a negative relationship between temperature and recovery time. At the local scale, we hypothesized southern aspects to recovery slower than northern aspects. We also predicted higher burn severity to slow recovery. Field data found attenuated ponderosa pine recovery in hotter and drier regions across all burn severity classes. We concluded that downscaled climate data and Landsat imagery collected at commensurate scales may provide insight into climate effects on post-fire vegetation recovery relevant to ponderosa pine forest managers.

  19. Burn Severity and Its Impact on Soil Properties: 2016 Erskine Fire in the Southern Sierra Nevada

    Science.gov (United States)

    Haake, S.; Guo, J.; Krugh, W. C.

    2017-12-01

    Wildfire frequency in the southern Sierra Nevada has increased over the past decades. The effects of wildfires on soils can increase the frequency of slope failure and debris flow events, which pose a greater risk to people, as human populations expand into foothill and mountainous communities of the Sierra Nevada. Alterations in the physical properties of burned soils are one such effect that can catalyze slope failure and debris flow events. Moreover, the degree of a soil's physical alteration resulting from wildfire is linked to fire intensity. The 2016 Erskine fire occurred in the southern Sierra Nevada, burning 48,019 acres, resulting in soils of unburned, low, moderate, and high burn severities. In this study, the physical properties of soils with varying degrees of burn severity are explored within the 2016 Erskine fire perimeter. The results constrain the effects of burn severity on soil's physical properties. Unburned, low, moderate, and high burn severity soil samples were collected within the Erskine fire perimeter. Alterations in soils' physical properties resulting from burn severity are explored using X-ray diffractometry analysis, liquid limit, plastic limit, and shear strength tests. Preliminary results from this study will be used to assess debris flow and slope failure hazard models within burned areas of the Kern River watershed in the southern Sierra Nevada.

  20. The effect of seasonality on burn incidence, severity and outcome in Central Malawi.

    Science.gov (United States)

    Tyson, Anna F; Gallaher, Jared; Mjuweni, Stephen; Cairns, Bruce A; Charles, Anthony G

    2017-08-01

    In much of the world, burns are more common in cold months. However, few studies have described the seasonality of burns in sub-Saharan Africa. This study examines the effect of seasonality on the incidence and outcome of burns in central Malawi. A retrospective analysis was performed at Kamuzu Central Hospital and included all patients admitted from May 2011 to August 2014. Demographic data, burn mechanism, total body surface area (%TBSA), and mortality were analyzed. Seasons were categorized as Rainy (December-February), Lush (March-May), Cold (June-August) and Hot (September-November). A negative binomial regression was used to assess the effect of seasonality on burn incidence. This was performed using both the raw and deseasonalized data in order to evaluate for trends not attributable to random fluctuation. A total of 905 patients were included. Flame (38%) and Scald (59%) burns were the most common mechanism. More burns occurred during the cold season (41% vs 19-20% in the other seasons). Overall mortality was 19%. Only the cold season had a statistically significant increase in burn . The incidence rate ratios (IRR) for the hot, lush, and cold seasons were 0.94 (CI 0.6-1.32), 1.02 (CI 0.72-1.45) and 1.6 (CI 1.17-2.19), respectively, when compared to the rainy season. Burn severity and mortality did not differ between seasons. The results of this study demonstrate the year-round phenomenon of burns treated at our institution, and highlights the slight predominance of burns during the cold season. These data can be used to guide prevention strategies, with special attention to the implications of the increased burn incidence during the cold season. Though burn severity and mortality remain relatively unchanged between seasons, recognizing the seasonal variability in incidence of burns is critical for resource allocation in this low-income setting. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  1. Impact of facial burns: relationship between depressive symptoms, self-esteem and scar severity.

    Science.gov (United States)

    Hoogewerf, Cornelis Johannes; van Baar, Margriet Elisabeth; Middelkoop, Esther; van Loey, Nancy Elisa

    2014-01-01

    This study assessed the role of self-reported facial scar severity as a possible influencing factor on self-esteem and depressive symptoms in patients with facial burns. A prospective multicentre cohort study with a 6 months follow-up was conducted including 132 patients with facial burns. Patients completed the Patient and Observer Scar Assessment Scale, the Rosenberg Self-esteem Scale and the Hospital Anxiety and Depression Scale. Structural Equation Modeling was used to assess the relations between depressive symptoms, self-esteem and scar severity. The model showed that patient-rated facial scar severity was not predictive for self-esteem and depressive symptoms six months post-burn. There was, however, a significant relationship between early depressive symptoms and both patient-rated facial scar severity and subsequent self-esteem. The variables in the model accounted for 37% of the variance in depressive symptoms six months post-burn and the model provided a moderately well-fitting representation of the data. The study suggests that self-esteem and depressive symptoms were not affected by self-reported facial scar severity but that earlier depressive symptoms were indicative for a more severe self-reported facial scar rating. Therefore, routine psychological screening during hospitalisation is recommended in order to identify patients at risk and to optimise their treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [Improving myocardial mechanics parameters of severe burn rabbits with oral fluid resuscitation].

    Science.gov (United States)

    Ruan, Jing; Zhang, Bing-qian; Wang, Guang; Luo, Zhong-hua; Zheng, Qing-yi; Zheng, Jian-sheng; Huang, Yue-sheng; Xiao, Rong

    2008-08-01

    To investigate the protective effect of oral fluid resuscitation on cardiac function in severe burn rabbits. One hundred and fifty rabbits were randomly divided into normal control group (NC group, n = 6, without treatment), burn group (B group, n = 42, without fluid therapy), immediate oral fluid resuscitation group (C group, n = 42), delayed oral fluid resuscitation group (D group, n = 30) and delayed and rapid oral fluid resuscitation group (E group, n = 30). The rabbits in B, C, D, E groups were subjected to 40% TBSA full-thickness burn, then were treated with fluid therapy immediately after burn (C group), at 6 hour after burn (D, E groups). The myocardial mechanics parameters including mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), LV +/- dp/dt max were observed at 2, 6, 8, 12, 24, 36 and 48 post burn hour (PBH). Urine output was also examined. The level of LVSP, LV +/- dp/dt max in B roup were significantly lower than those in NC group. The level of LVSP, LV +/- dp/dt max in the C and E group were singnificantly increased during 24 hour after burn. The level of LV + dp/dt max and LV-dp/dt max in C group peaked at 8 PBH (892 +/- 116 kPa/s) and at 6PBH (724 +/- 149 kPa/s) respectively. The levels of LV +/- dp/dt max, LVSP in D group at each time point were similar to B group (P > 0.05). Both the levels of LV +/- dp/dt max in E group peaked at 8 PBH. The level of LVEDP was no obvious difference between B and other groups at each time point (P > 0.05). The changes of MAP and urine output on 24 PBH in each group were similar to above indices. Effective oral fluid therapy in severe burn rabbits during 24 hours after burn can ameliorate myocardial mechanics parameters. The amount of fluid resuscitation can be estimated according to relevant formula for delayed fluid resuscitation in burn rabbits.

  3. Development of Metabolic Indicators of Burn Injury: Very Low Density Lipoprotein (VLDL and Acetoacetate Are Highly Correlated to Severity of Burn Injury in Rats

    Directory of Open Access Journals (Sweden)

    Maria-Louisa Izamis

    2012-07-01

    Full Text Available Hypermetabolism is a significant sequela to severe trauma such as burns, as well as critical illnesses such as cancer. It persists in parallel to, or beyond, the original pathology for many months as an often-fatal comorbidity. Currently, diagnosis is based solely on clinical observations of increased energy expenditure, severe muscle wasting and progressive organ dysfunction. In order to identify the minimum number of necessary variables, and to develop a rat model of burn injury-induced hypermetabolism, we utilized data mining approaches to identify the metabolic variables that strongly correlate to the severity of injury. A clustering-based algorithm was introduced into a regression model of the extent of burn injury. As a result, a neural network model which employs VLDL and acetoacetate levels was demonstrated to predict the extent of burn injury with 88% accuracy in the rat model. The physiological importance of the identified variables in the context of hypermetabolism, and necessary steps in extension of this preliminary model to a clinically utilizable index of severity of burn injury are outlined.

  4. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  5. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    Science.gov (United States)

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  6. Complex Relationships of the Effects of Topographic Characteristics and Susceptible Tree Cover on Burn Severity

    Directory of Open Access Journals (Sweden)

    Hyun-Joo Lee

    2018-01-01

    Full Text Available Forest fires and burn severity mosaics have profound impacts on the post-fire dynamics and complexity of forest ecosystems. Numerous studies have investigated the relationship between topographic variables and susceptible tree covers with regard to burn severity. However, these relationships have not been fully elucidated, because most studies have assumed linearity in these relationships. Therefore, we examined the linearity and the nonlinearity in the relationships between topographic variables and susceptible tree covers with burn severity by comparing linear and nonlinear models. The site of the Samcheok fire, the largest recorded forest fire in Korea, was used as the study area. We generated 802 grid cells with a 500-m resolution that encompassed the entire study area and collected a dataset that included the topographic variables and percentage of red pine trees, which are the most susceptible tree cover types in Korea. We used conventional linear models and generalized additive models to estimate the linear and the nonlinear models based on topographic variables and Japanese red pine trees. The results revealed that the percentage of red pine trees had linear effects on burn severity, reinforcing the importance of silviculture and forest management to lower burn severity. Meanwhile, the topographic variables had nonlinear effects on burn severity. Among the topographic variables, elevation had the strongest nonlinear effect on burn severity, possibly by overriding the effects of susceptible fuels over elevation effects or due to the nonlinear effects of topographic characteristics on pre-fire fuel conditions, including the spatial distribution and availability of susceptible tree cover. To validate and generalize the nonlinear effects of elevation and other topographic variables, additional research is required at different fire sites with different tree cover types in different geographic locations.

  7. Acute insulin resistance mediated by advanced glycation endproducts in severely burned rats.

    Science.gov (United States)

    Zhang, Xing; Xu, Jie; Cai, Xiaoqing; Ji, Lele; Li, Jia; Cao, Bing; Li, Jun; Hu, Dahai; Li, Yan; Wang, Haichang; Xiong, Lize; Xiao, Ruiping; Gao, Feng

    2014-06-01

    Hyperglycemia often occurs in severe burns; however, the underlying mechanisms and importance of managing postburn hyperglycemia are not well recognized. This study was designed to investigate the dynamic changes of postburn hyperglycemia and the underlying mechanisms and to evaluate whether early glycemic control is beneficial in severe burns. Prospective, randomized experimental study. Animal research laboratory. Sprague-Dawley rats. Anesthetized rats were subjected to a full-thickness burn injury comprising 40% of the total body surface area and were randomized to receive vehicle, insulin, and a soluble form of receptor for advanced glycation endproducts treatments. An in vitro study was performed on cultured H9C2 cells subjected to vehicle or carboxymethyllysine treatment. We found that blood glucose change presented a distinct pattern with two occurrences of hyperglycemia at 0.5- and 3-hour postburn, respectively. Acute insulin resistance evidenced by impaired insulin signaling and glucose uptake occurred at 3-hour postburn, which was associated with the second hyperglycemia and positively correlated with mortality. Mechanistically, we found that serum carboxymethyllysine, a dominant species of advanced glycation endproducts, increased within 1-hour postburn, preceding the occurrence of insulin resistance. More importantly, treatment of animals with soluble form of receptor for advanced glycation endproducts, blockade of advanced glycation endproducts signaling, alleviated severe burn-induced insulin resistance. In addition, early hyperglycemic control with insulin not only reduced serum carboxymethyllysine but also blunted postburn insulin resistance and reduced mortality. These findings suggest that severe burn-induced insulin resistance is partly at least mediated by serum advanced glycation endproducts and positively correlated with mortality. Early glycemic control with insulin or inhibition of advanced glycation endproducts with soluble form of receptor

  8. [Clinical and biological monitoring of nutritional status in severe burns].

    Science.gov (United States)

    Bargues, L; Cottez-Gacia, S; Jault, P; Renard, C; Vest, P

    2009-01-01

    Burn patients are subject to hypermetabolism and catabolic states. Aim was to evaluate our current practice in nutrition. Twenty-one severely burned patients were prospectively included during three months period. Body weight was measured at least two times in a week during all stay in burn ICU. Biological markers of inflammation (C-reactive protein, CRP) and nutrition (prealbumin) were performed weekly. Protocol included early nasogastric feeding, tolerated gastric stasis less than 250 mL at four hours nasogastric aspirations, caloric target value of 40 Kcal/kg per day and measurement of total daily calorie intakes. Patient demographics showed a mean percent total body surface burn of 51.1+/-27 % (range 20-90), age of 38.7+/-13.1 years (range 18-67) and 57.3 % of smoke inhalation. All patients were ventilated and 19 patients survived. Length of stay was 75.7+/-47 days (range 22-184). Patients received only 58.9+/-10 % of calorie intakes recommended by French burn society. Loss of body mass was 15.2+/-9 kg (range 3-31) or 19.1+/-10 % of admission weight (range 5-37). Erosion of body mass was not correlated with burned surface (p=0.08), calorie intakes (p=0.26), smoke inhalation (p=0.46), lengths of stay (p=0.53), lengths of ventilation (p=0.08) or nutrition (p=0.12), days of antibiotic (p=0.72), number of dressing changes (p=0.6) or surgery (p=0.64). Biological parameters showed CRP decreasing and prealbumin improving values. New strategies of nutrition are necessary to improve outcome and reduce body mass loss in burns.

  9. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  10. 78 FR 57486 - Eligibility of Disabled Veterans and Members of the Armed Forces With Severe Burn Injuries for...

    Science.gov (United States)

    2013-09-19

    ... Members of the Armed Forces With Severe Burn Injuries for Financial Assistance in the Purchase of an... ``severe burn injury (as determined pursuant to regulations prescribed by the Secretary)'' as one of the... severe burn injuries, the Chairman of the Senate Committee on Veterans' Affairs explained that, ``[d]ue...

  11. 77 FR 66419 - Eligibility of Disabled Veterans and Members of the Armed Forces With Severe Burn Injuries for...

    Science.gov (United States)

    2012-11-05

    ... Members of the Armed Forces With Severe Burn Injuries for Financial Assistance in the Purchase of an... the Armed Forces with Severe Burn Injuries for Financial Assistance in the Purchase of an Automobile... (U.S.C.), by reformatting the statute and adding ``severe burn injury (as determined pursuant to...

  12. Two new risk factors for heterotopic ossification development after severe burns.

    Directory of Open Access Journals (Sweden)

    Laurent Thefenne

    Full Text Available Life after severe burns is conditioned by the remaining sequelae. The pathophysiology and risk factors of Heterotopic Ossification (HO after burns are still poorly understood. The aim of this study was to determine: 1 the incidence of HO after burns and 2 the risk factors associated with HO development, in a large retrospective study.A case-control study of patients admitted to the burns intensive care unit of Percy Hospital, Paris, from the 1st January 2009 to the 31st December 2013 and then admitted to one of three centres specialised in the rehabilitation of patients with burns. Multivariate analysis was carried out to analyse the relationship between HO development and demographic and clinical data.805 patients were included. 32 patients (4.0% developed a total of 74 heterotopic ossifications, that is a little higher incidence than the incidence found in the literature. The epidemiological characteristics of the population studied was similar to the literature. HOs were mainly localized around the elbows, followed by the hips, shoulders and knees. Each case-patient was paired with 3 control-patients. There were significant associations between HO development and the length of stay in the burns intensive care unit, the extent and depth of the burns, the occurrence of pulmonary or cutaneous infections, use of curare and use of an air-fluidized bed.In addition to recognized risk factors (duration of stay in the intensive care burns unit, extent and depth of burns, pulmonary and cutaneous infections, the use of curare and the use of a fluidized bed (with the duration of use were significantly associated with HO formation.

  13. Live Skin Allograft in the Management of Severe Burns

    African Journals Online (AJOL)

    skin substitute should in some way be incorporated into the healing wound as ... liquid nitrogen or they may be lyophilized and freeze- dried (4, 5). ... more severe the burn the greater the degree of immunosuppresion. ... Humby knife under spinal anesthesia. .... Alloantibody Effect on Skin Graft Survival in Mice. Hiroshima J ...

  14. Propranolol attenuates hemorrhage and accelerates wound healing in severely burned adults.

    Science.gov (United States)

    Ali, Arham; Herndon, David N; Mamachen, Ashish; Hasan, Samir; Andersen, Clark R; Grogans, Ro-Jon; Brewer, Jordan L; Lee, Jong O; Heffernan, Jamie; Suman, Oscar E; Finnerty, Celeste C

    2015-05-04

    Propranolol, a nonselective β-blocker, exerts an indirect effect on the vasculature by leaving α-adrenergic receptors unopposed, resulting in peripheral vasoconstriction. We have previously shown that propranolol diminishes peripheral blood following burn injury by increasing vascular resistance. The purpose of this study was to investigate whether wound healing and perioperative hemodynamics are affected by propranolol administration in severely burned adults. Sixty-nine adult patients with burns covering ≥ 30% of the total body surface area (TBSA) were enrolled in this IRB-approved study. Patients received standard burn care with (n = 35) or without (control, n = 34) propranolol. Propranolol was administered within 48 hours of burns and given throughout hospital discharge to decrease heart rate by approximately 20% from admission levels. Wound healing was determined by comparing the time between grafting procedures. Blood loss was determined by comparing pre- and postoperative hematocrit while factoring in operative graft area. Data were collected between first admission and first discharge. Demographics, burn size, and mortality were comparable in the control and propranolol groups. Patients in the propranolol group received an average propranolol dose of 3.3 ± 3.0 mg/kg/day. Daily average heart rate over the first 30 days was significantly lower in the propranolol group (P operative intervention is optimal.

  15. 77 FR 70389 - Eligibility of Disabled Veterans and Members of the Armed Forces With Severe Burn Injuries for...

    Science.gov (United States)

    2012-11-26

    ... Members of the Armed Forces With Severe Burn Injuries for Financial Assistance in the Purchase of an... reformatting the statute and adding ``severe burn injury (as determined pursuant to regulations prescribed by...)(iv), VA proposes to amend 38 CFR 3.808 to define the term ``severe burn injury.'' In the proposed...

  16. Two-year follow-up of outcomes related to scarring and distress in children with severe burns.

    Science.gov (United States)

    Wurzer, Paul; Forbes, Abigail A; Hundeshagen, Gabriel; Andersen, Clark R; Epperson, Kathryn M; Meyer, Walter J; Kamolz, Lars P; Branski, Ludwik K; Suman, Oscar E; Herndon, David N; Finnerty, Celeste C

    2017-08-01

    We assessed the perception of scarring and distress by pediatric burn survivors with burns covering more than one-third of total body surface area (TBSA) for up to 2 years post-burn. Children with severe burns were admitted to our hospital between 2004 and 2012, and consented to this IRB-approved-study. Subjects completed at least one Scars Problems and/or Distress questionnaire between discharge and 24 months post burn. Outcomes were modeled with generalized estimating equations or using mixed linear models. Significance was accepted at p body areas over time (p self-conscious with respect to their body image even 2 years after burn injury. Implications for Rehabilitation According to self-assessment questionnaires, severely burned children perceive significant improvements in scarring and distress during the first 2 years post burn. Significant improvements were seen in reduction of pain, itching, sleeping disturbances, tightness, range of motion, and strength (p body areas. The rehabilitation team should provide access to wigs or other aids to pediatric burn survivors to address these needs.

  17. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice

    Science.gov (United States)

    Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui

    2018-01-01

    The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349

  18. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    Science.gov (United States)

    Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.

  19. Clostridium difficile infections in patients with severe burns

    Science.gov (United States)

    2011-01-01

    placards indicating that hand hygiene should involve soap and water. Periodic hand hygiene compliance surveys have indicated relatively consistent...care unit: epidemiology, costs, and colonization pressure. Infect Control Hosp Epidemiol 2007;28:123–30. [6] Marcon AP, Gamba MA, Vianna LA. Nosocomial ...Clostridium difficile infections in patients with severe burns§ Scott J. Crabtree a, Janelle L. Robertson a,b, Kevin K. Chung c, Evan M. Renz b,c

  20. Severe burn injuries caused by bioethanol-design fireplaces-an overview on recreational fire threats.

    Science.gov (United States)

    Kraemer, Robert; Knobloch, Karsten; Lorenzen, Johan; Breuing, Karl H; Koennecker, Soeren; Rennekampff, Hans-Oliver; Vogt, Peter M

    2011-01-01

    Commercially available bioethanol-fueled fireplaces have become increasingly popular additions for interior home decoration in Europe and more recently in the United States. These fireplaces are advertised as smokeless, ecologically friendly, and do not require professional installation, formal gas lines, or venting. Although manufacturers and businesses promote their safety, recent presentations of injuries have alerted the authors to the relevant danger bioethanol fireplaces can pose for the incautious user. Are bioethanol fireplaces going to become the future threat in domestic burn accidents beside common barbeque burns? A Medline literature search on barbeque and domestic fireplace accidents was performed to compare and stratify the injury patterns reported and to identify a risk profile for contemporary bioethanol-fueled fireplaces. To exemplify, two representative clinical cases of severe burn accidents caused by bioethanol-fueled fireplaces, both treated in the burn unit of the authors, are being presented. Design fireplaces are being recognized as an increasing source of fuel and fire-related danger in the home. This risk may be underestimated by the uninformed customer, resulting in severe burn injuries. Because bioethanol-fueled fireplaces have become more commonplace, they may overtake barbecue-related injury as the most common domestic burn injury.

  1. Transcriptome modulation by hydrocortisone in severe burn shock: ancillary analysis of a prospective randomized trial.

    Science.gov (United States)

    Plassais, Jonathan; Venet, Fabienne; Cazalis, Marie-Angélique; Le Quang, Diane; Pachot, Alexandre; Monneret, Guillaume; Tissot, Sylvie; Textoris, Julien

    2017-06-16

    Despite shortening vasopressor use in shock, hydrocortisone administration remains controversial, with potential harm to the immune system. Few studies have assessed the impact of hydrocortisone on the transcriptional response in shock, and we are lacking data on burn shock. Our objective was to assess the hydrocortisone-induced transcriptional modulation in severe burn shock, particularly modulation of the immune response. We collected whole blood samples during a randomized controlled trial assessing the efficacy of hydrocortisone administration in burn shock. Using whole genome microarrays, we first compared burn patients (n = 32) from the placebo group to healthy volunteers to describe the transcriptional modulation induced by burn shock over the first week. Then we compared burn patients randomized for either hydrocortisone administration or placebo, to assess hydrocortisone-induced modulation. Study groups were similar in terms of severity and major outcomes, but shock duration was significantly reduced in the hydrocortisone group. Many genes (n = 1687) were differentially expressed between burn patients and healthy volunteers, with 85% of them exhibiting a profound and persistent modulation over seven days. Interestingly, we showed that hydrocortisone enhanced the shock-associated repression of adaptive, but also innate immunity. We found that the initial host response to burn shock encompasses wide and persistent modulation of gene expression, with profound modulation of pathways associated with metabolism and immunity. Importantly, hydrocortisone administration may worsen the immunosuppression associated with severe injury. These data should be taken into account in the risk ratio of hydrocortisone administration in patients with inflammatory shock. ClinicalTrials.gov, NCT00149123 . Registered on 6 September 2005.

  2. Siberian and North American Biomass Burning Contributions to the Processes that Influenced the 2008 Arctic Aircraft and Satellite Field Campaigns

    Science.gov (United States)

    Soja, A. J.; Stocks, B. J.; Carr, R.; Pierce, R. B.; Natarajan, M.; Fromm, M.

    2009-05-01

    Current climate change scenarios predict increases in biomass burning in terms of increases in fire frequency, area burned, fire season length and fire season severity, particularly in boreal regions. Climate and weather control fire danger, which strongly influences the severity of fire events, and these in turn, feed back to the climate system through direct and indirect emissions, modifying cloud condensation nuclei and altering albedo (affecting the energy balance) through vegetative land cover change and deposition. Additionally, fire emissions adversely influence air quality and human health downwind of burning. The boreal zone is significant because this region stores the largest reservoir of terrestrial carbon, globally, and will experience climate change impacts earliest. Boreal biomass burning is an integral component to several of the primary goals of the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARCPAC (Aerosol, Radiation, and Cloud Processes affecting Arctic Climate) 2008 field campaigns, which include its implication for atmospheric composition and climate, aerosol radiative forcing, and chemical processes with a focus on ozone and aerosols. Both the spring and summer phases of ARCTAS and ARCPAC offered substantial opportunities for sampling fresh and aged biomass burning emissions. However, the extent to which spring biomass burning influenced arctic haze was unexpected, which could inform our knowledge of the formation of arctic haze and the early deposition of black carbon on the icy arctic surface. There is already evidence of increased extreme fire seasons that correlate with warming across the circumboreal zone. In this presentation, we discuss seasonal and annual fire activity and anomalies that relate to the ARCTAS and ARCPAC spring (April 1 - 20) and summer (June 18 - July 13) periods across Siberia and North America, with particular emphasis on fire danger and fire behavior as they relate

  3. Examining Spatial Variation in the Effects of Japanese Red Pine (Pinus densiflora on Burn Severity Using Geographically Weighted Regression

    Directory of Open Access Journals (Sweden)

    Hyun-Joo Lee

    2017-05-01

    Full Text Available Burn severity has profound impacts on the response of post-fire forest ecosystems to fire events. Numerous previous studies have reported that burn severity is determined by variables such as meteorological conditions, pre-fire forest structure, and fuel characteristics. An underlying assumption of these studies was the constant effects of environmental variables on burn severity over space, and these analyses therefore did not consider the spatial dimension. This study examined spatial variation in the effects of Japanese red pine (Pinus densiflora on burn severity. Specifically, this study investigated the presence of spatially varying relationships between Japanese red pine and burn severity due to changes in slope and elevation. We estimated conventional ordinary least squares (OLS and geographically weighted regression (GWR models and compared them using three criteria; the coefficients of determination (R2, Akaike information criterion for small samples (AICc, and Moran’s I-value. The GWR model performed considerably better than the OLS model in explaining variation in burn severity. The results provided strong evidence that the effect of Japanese red pine on burn severity was not constant but varied spatially. Elevation was a significant factor in the variation in the effects of Japanese red pine on burn severity. The influence of red pine on burn severity was considerably higher in low-elevation areas but became less important than the other variables in high-elevation areas. The results of this study can be applied to location-specific strategies for forest managers and can be adopted to improve fire simulation models to more realistically mimic the nature of fire behavior.

  4. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm

  5. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Safai, P. D.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-09-01

    Agriculture crop residue burning in the tropics is a major source of the global atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. In this paper, we study the effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India during a smoke event that occurred between 09 and 17 November 2013, with the help of satellite measurements and model simulation data. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains (IGP) over large regions. Additionally, ECMWF winds at 850 hPa have been used to trace the source, path and spatial extent of smoke events. Most of the smoke aerosols, during the study period, travel from a west-to-east pathway from the source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO show a layer of thick smoke extending from surface to an altitude of about 3 km. Smoke aerosols emitted from biomass burning activity from Punjab have been found to be a major contributor to the deterioration of local air quality over the NE Indian region due to their long range transport.

  6. Improving satellite-based post-fire evapotranspiration estimates in semi-arid regions

    Science.gov (United States)

    Poon, P.; Kinoshita, A. M.

    2017-12-01

    Climate change and anthropogenic factors contribute to the increased frequency, duration, and size of wildfires, which can alter ecosystem and hydrological processes. The loss of vegetation canopy and ground cover reduces interception and alters evapotranspiration (ET) dynamics in riparian areas, which can impact rainfall-runoff partitioning. Previous research evaluated the spatial and temporal trends of ET based on burn severity and observed an annual decrease of 120 mm on average for three years after fire. Building upon these results, this research focuses on the Coyote Fire in San Diego, California (USA), which burned a total of 76 km2 in 2003 to calibrate and improve satellite-based ET estimates in semi-arid regions affected by wildfire. The current work utilizes satellite-based products and techniques such as the Google Earth Engine Application programming interface (API). Various ET models (ie. Operational Simplified Surface Energy Balance Model (SSEBop)) are compared to the latent heat flux from two AmeriFlux eddy covariance towers, Sky Oaks Young (US-SO3), and Old Stand (US-SO2), from 2000 - 2015. The Old Stand tower has a low burn severity and the Young Stand tower has a moderate to high burn severity. Both towers are used to validate spatial ET estimates. Furthermore, variables and indices, such as Enhanced Vegetation Index (EVI), Normalized Difference Moisture Index (NDMI), and the Normalized Burn Ratio (NBR) are utilized to evaluate satellite-based ET through a multivariate statistical analysis at both sites. This point-scale study will able to improve ET estimates in spatially diverse regions. Results from this research will contribute to the development of a post-wildfire ET model for semi-arid regions. Accurate estimates of post-fire ET will provide a better representation of vegetation and hydrologic recovery, which can be used to improve hydrologic models and predictions.

  7. Peatland water repellency: Importance of soil water content, moss species, and burn severity

    Science.gov (United States)

    Moore, P. A.; Lukenbach, M. C.; Kettridge, N.; Petrone, R. M.; Devito, K. J.; Waddington, J. M.

    2017-11-01

    Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.

  8. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  9. [Clinical study on the postburn change in the hypothalamus-pituitary-adrenal hormones in severely burned patients].

    Science.gov (United States)

    Li, Hong-mian; Liang, Zi-qian; Luo, Zuo-jie

    2003-06-01

    To investigate the postburn dynamic changes in the hypothalamus-pituitary-adrenal hormones in severely burned patients. Fifty burn patients were enrolled in the study. The plasma contents of total GC (cortisol), ACTH and aldosterone (ALDO) and urinary contents of 17-OHO and 17-KS were determined with radio-immunological assay (RIA) method after burn injury to compare with the normal values which were well established clinically. The postburn plasma and urinary contents of the above indices were increased evidently with two peak values in shock and infectious stages, whilst the majority of he indices were lower than the normal values after 6 postburn weeks (PBWs). The values of these hormones were the lowest in dying patients. On the other hand, the values approached normal levels in those patients whose burn wounds were healing. Increases of the plasma and urinary levels of hypothalamus-pituitary -adrenal hormones in severely burned patients were constantly seen. Burn shock and infection seemed to be the two major factors in inducing postburn stress reaction in burn victims. Abrupt decrease of the hormone levels in plasma and or urine indicated adrenal failure predicting a poor prognosis of the burn patients.

  10. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  11. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    Science.gov (United States)

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  12. Burn Severities, Fire Intensities, and Impacts to Major Vegetation Types from the Cerro Grande Fire

    Energy Technology Data Exchange (ETDEWEB)

    Balice, Randy G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, Kathryn D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2004-12-15

    The Cerro Grande Fire resulted in major impacts and changes to the ecosystems that were burned. To partially document these effects, we estimated the acreage of major vegetation types that were burned at selected burn severity levels and fire intensity levels. To accomplish this, we adopted independently developed burn severity and fire intensity maps, in combination with a land cover map developed for habitat management purposes, as a basis for the analysis. To provide a measure of confidence in the acreage estimates, the accuracies of these maps were also assessed. In addition, two other maps of comparable quality were assessed for accuracy: one that was developed for mapping fuel risk and a second map that resulted from a preliminary application of an evolutionary computation software system, called GENIE.

  13. Substantial Underestimation of Post-harvest Burning Emissions in East China as Seen by Multi-species Space Observations

    Science.gov (United States)

    Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Lerot, C.; Van Roozendael, M.

    2015-12-01

    Crop residue burning is an important contributor to global biomass burning. In the North China Plain, one of the largest and densely populated world plains, post-harvest crop burning is a common agricultural management practice, allowing for land clearing from residual straw and preparation for the subsequent crop cultivation. The most extensive crop fires occur in the North China Plain in June after the winter wheat comes to maturity, and have been blamed for spikes in air pollution leading to serious health problems. Estimating harvest season burning emissions is therefore of primary importance to assess air quality and define best policies for its improvement in this sensitive region. Bottom-up approaches, either based on crop production and emission factors, or on satellite burned area and fire radiative power products, have been adopted so far, however, these methods crucially depend, among other assumptions, on the satellite skill to detect small fires, and could lead to underestimation of the actual emissions. The flux inversion of atmospheric observations is an alternative, independent approach for inferring the emissions from crop fires. Satellite column observations of formaldehyde (HCHO) exhibit a strong peak over the North China Plain in June, resulting from enhanced pyrogenic emissions of a large suite of volatile organic compounds (VOCs), precursors of HCHO. We use vertical columns of formaldehyde retrieved from the OMI instrument between 2005 and 2012 as constraints in an adjoint inversion scheme built on IMAGESv2 CTM, and perform the optimization of biogenic, pyrogenic, and anthropogenic emission parameters at the model resolution. We investigate the interannual variability of the top-down source, quantify its importance for the atmospheric composition on the regional scale, and explore its uncertainties. The OMI-based crop burning source is compared with the corresponding anthropogenic flux in the North China Plain, and is evaluated against HCHO

  14. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Springtime is also the peak season for biomass burning in southeastern Asia. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), TOMS (Total Ozone Mapping Spectrometer) and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. A column satellite-surface perspective of Asian aerosols will be presented

  15. Role of autophagy and its molecular mechanisms in mice intestinal tract after severe burn.

    Science.gov (United States)

    Zhang, Duan Y; Qiu, Wei; Jin, PeiS; Wang, Peng; Sun, Yong

    2017-10-01

    Severe burn can lead to hypoxia/ischemia of intestinal mucosa. Autophagy is the process of intracellular degradation, which is essential for cell survival under stresses, such as hypoxia/ischemia and nutrient deprivation. The present study was designed to investigate whether there were changes in intestinal autophagy after severe burn in mice and further to explore the effect and molecular mechanisms of autophagy on intestinal injury. This study includes three experiments. Kunming species mice were subjected to 30% total body surface area third-degree burn. First, we determined protein of LC3 (light chain 3), beclin-1, and cleaved-caspase3 by Western blotting and immunohistochemical (paraffin) staining to investigate whether there were changes in intestinal autophagy after severe burn in mice. Then, changes of the status of enteric damage postburn were measured by observing intestinal mucosa morphology under a magnifier, hematoxylin and eosin staining, enzyme-linked immunosorbent assay, Western blotting under the condition that the intestinal autophagy was respectively activated by rapamycin and inhibited by 3-methyladenine. Finally, protein of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, LC3-II and beclin-1 were assayed, and mice were treated with compound C before burn. The protein of LC3 and beclin-1 were observed at 1 hour postburn and increased to peak-point at 24 hours, reaching the normal level at 96 hours. The cleaved caspase-3 expression increased at 1 hour postburn, but the peak point occurred at 12 hours and had dropped to normal level at 72 hours. In addition, rapamycin enhanced intestinal autophagy and alleviated burn-induced gut damage, while 3-methyladenine showed the against behavior. The AMPK/mTOR pathway which was inhibited decreased the expression of phosphorylated AMPK, LC3-II, and beclin-1, increasing the expression of phosphorylated mTOR. Intestinal autophagy is activated and response to intestinal

  16. [Preclinical treatment of severe burn trauma due to an electric arc on an overhead railway cable].

    Science.gov (United States)

    Spelten, O; Wetsch, W A; Hinkelbein, J

    2013-09-01

    Severe burns due to electrical accidents occur rarely in Germany but represent a challenge for emergency physicians and their team. Apart from extensive burns cardiac arrhythmia, neurological damage caused by electric current and osseous injury corresponding to the trauma mechanism are also common. It is important to perform a survey of the pattern of injuries and treat acute life-threatening conditions immediately in the field. Furthermore, specific conditions related to burns must be considered, e.g. fluid resuscitation, thermal management and analgesia. In addition, a correct strategy for further medical care in an appropriate hospital is essential. Exemplified by this case guidelines for the treatment of severe burns and typical pitfalls are presented.

  17. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants.

    Science.gov (United States)

    Becky K. Kerns; Walter G. Thies; Christine G. Niwa

    2006-01-01

    We investigated herbaceous richness and cover in relation to fire season and severity, and other variables, five growing seasons following prescribed fires. Data were collected from six stands consisting of three randomly applied treatments: no burn, spring burn, and fall burn. Fall burns had significantly more exotic/native annual/biennial (an/bi) species and greater...

  18. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2017-03-01

    Full Text Available Post-fire forest regeneration is strongly influenced by abiotic and biotic heterogeneity in the pre- and post-fire environments, including fire regimes, species characteristics, landforms, hydrology, regional climate, and soil properties. Assessing these drivers is key to understanding the long-term effects of fire disturbances on forest succession. We evaluated multiple factors influencing patterns of variability in a post-fire boreal Larch (Larix sibirica forest in Siberia. A time-series of remote sensing images was analyzed to estimate post-fire recovery as a response variable across the burned area in 1996. Our results suggested that burn severity and water content were primary controllers of both Larch forest recruitment and green vegetation cover as defined by the forest recovery index (FRI and the fractional vegetation cover (FVC, respectively. We found a high rate of Larch forest recruitment in sites of moderate burn severity, while a more severe burn was the preferable condition for quick occupation by vegetation that included early seral communities of shrubs, grasses, conifers and broadleaf trees. Sites close to water and that received higher solar energy during the summer months showed a higher rate of both recovery types, defined by the FRI and FVC, dependent on burn severity. In addition to these factors, topographic variables and pre-fire condition were important predictors of post-fire forest patterns. These results have direct implications for the post-fire forest management in the Siberian boreal Larch region.

  19. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...... implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications...

  20. Impact of stress-induced diabetes on outcomes in severely burned children.

    Science.gov (United States)

    Finnerty, Celeste C; Ali, Arham; McLean, Josef; Benjamin, Nicole; Clayton, Robert P; Andersen, Clark R; Mlcak, Ronald P; Suman, Oscar E; Meyer, Walter; Herndon, David N

    2014-04-01

    Post-burn hyperglycemia leads to graft failure, multiple organ failure, and death. A hyperinsulinemic-euglycemic clamp is used to keep serum glucose between 60 and 110 mg/dL. Because of frequent hypoglycemic episodes, a less-stringent sliding scale insulin protocol is used to maintain serum glucose levels between 80 and 160 mg/dL after elevations >180 mg/dL. We randomized pediatric patients with massive burns into 2 groups, patients receiving sliding scale insulin to lower blood glucose levels (n = 145) and those receiving no insulin (n = 98), to determine the differences in morbidity and mortality. Patients 0 to 18 years old with burns covering ≥ 30% of the total body surface area and not randomized to receive anabolic agents were included in this study. End points included glucose levels, infections, resting energy expenditure, lean body mass, bone mineral content, fat mass, muscle strength, and serum inflammatory cytokines, hormones, and liver enzymes. Maximal glucose levels occurred within 6 days of burn injury. Blood glucose levels were age dependent, with older children requiring more insulin (p patients not receiving insulin, only in patients who received insulin (p patients receiving insulin (p Burn-induced hyperglycemia develops in a subset of severely burned children. Length of stay was reduced in the no insulin group, and there were no deaths in this group. Administration of insulin positively impacted bone mineral content and muscle strength, but increased resting energy expenditure, hypoglycemic episodes, and mortality. New glucose-lowering strategies might be needed. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

    Directory of Open Access Journals (Sweden)

    R. J. Parker

    2016-08-01

    Full Text Available The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño-driven drought further desiccating the already-drier-than-normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically driven forest degradation and previous large fire events. It is expected that the 2015–2016 Indonesian fires will have emitted globally significant quantities of greenhouse gases (GHGs to the atmosphere, as did previous El Niño-driven fires in the region. The form which the carbon released from the combustion of the vegetation and peat soils takes has a strong bearing on its atmospheric chemistry and climatological impacts. Typically, burning in tropical forests and especially in peatlands is expected to involve a much higher proportion of smouldering combustion than the more flaming-characterised fires that occur in fine-fuel-dominated environments such as grasslands, consequently producing significantly more CH4 (and CO per unit of fuel burned. However, currently there have been no aircraft campaigns sampling Indonesian fire plumes, and very few ground-based field campaigns (none during El Niño, so our understanding of the large-scale chemical composition of these extremely significant fire plumes is surprisingly poor compared to, for example, those of southern Africa or the Amazon.Here, for the first time, we use satellite observations of CH4 and CO2 from the Greenhouse gases Observing SATellite (GOSAT made in large-scale plumes from the 2015 El Niño-driven Indonesian fires to probe aspects of their chemical composition. We demonstrate significant modifications in the concentration of these species in the regional atmosphere around Indonesia, due to the fire emissions.Using CO and fire radiative power (FRP data from the Copernicus Atmosphere Service, we identify fire-affected GOSAT soundings and show that peaks in fire activity are followed by

  2. Structural Equation Modeling on Life-world Integration in People with Severe Burns

    Directory of Open Access Journals (Sweden)

    Gyeong Suk Lee, PhD, RN

    2013-09-01

    Conclusion: Physical function should be directly improved to adjust to life-world integration. A comprehensive integration approach is also necessary to help people with severe burns successfully return to society.

  3. TNF-α/IL-10 ratio correlates with burn severity and may serve as a risk predictor of increased susceptibility to infections

    Directory of Open Access Journals (Sweden)

    Amy Tsurumi

    2016-10-01

    Full Text Available Severe burn injury renders patients susceptible to multiple infection episodes, however identifying specific patient groups at high risk remains challenging. Burn-induced inflammatory response dramatically modifies the levels of various cytokines. Whether these changes could predict susceptibility to infections remains unknown. The aim of this study was to determine the early changes in the pro- to anti-inflammatory cytokine ratio and investigate its ability to predict susceptibility to repeated infections after severe burn trauma. The patient population consisted of 34 adult patients having early (≤48 hours since injury blood draws following severe (≥20% total burn surface area (TBSA burn injury, and suffering from a first infection episode at least one day after blood collection. Plasma TNF-α and IL-10 levels were measured to explore the association between the TNF-α/IL-10 ratio, hypersusceptibility to infections, burn size (TBSA, and common severity scores (Acute Physiology and Chronic Health Evaluation (APACHEII, Baux, modified Baux (R-Baux, Ryan Score, Abbreviated Burn Severity Index (ABSI. TNF-α/IL10 plasma ratio measured shortly after burn trauma was inversely correlated with burn size and the injury severity scores investigated, and was predictive of repeated infections (≥3 infection episodes outcome (AUROC [95%CI] of 0.80 [0.63–0.93]. Early measures of circulating TNF-α/IL10 ratio may be a previously unidentified biomarker associated with burn injury severity and predictive of the risk of hypersusceptibility to repeated infections.

  4. Normalized burn ratios link fire severity with patterns of avian occurrence

    Science.gov (United States)

    Rose, Eli T.; Simons, Theodore R.; Klein, Rob; McKerrow, Alexa

    2016-01-01

    ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.MethodsWe identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat™ imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.ResultsAgreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.ConclusionsDNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.

  5. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Science.gov (United States)

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  6. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  7. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring.

    Science.gov (United States)

    van der Wal, Martijn B A; Vloemans, Jos F P M; Tuinebreijer, Wim E; van de Ven, Peter; van Unen, Ella; van Zuijlen, Paul P M; Middelkoop, Esther

    2012-01-01

    Long-term outcome of burn scars as well as the relation with clinically relevant parameters has not been studied quantitatively. Therefore, we conducted a detailed analysis on the clinical changes of burn scars in a longitudinal setup. In addition, we focused on the differences in scar quality in relation to the depth, etiology of the burn wound and age of the patient. Burn scars of 474 patients were subjected to a scar assessment protocol 3, 6, and 12 months postburn. Three different age groups were defined (≤5, 5-18, and ≥18 years). The observer part of the patient and observer scar assessment scale revealed a significant (p burned (p  0.230) have no significant influence on scar quality when corrected for sex, total body surface area burned, time, and age or etiology, respectively. © 2012 by the Wound Healing Society.

  8. Contribution of Bacterial and Viral infections to Attributable Mortality in Patients with Severe Burns: An Autopsy Series

    Science.gov (United States)

    2010-01-01

    and related mortality following severe burns. Burns 2008;3(4):1108 12. [5] Nash G , Foley FD. Herpetic infection of the middle and lower respiratory...Albrecht M, Griffith M, Murray C, Chung K, Horvath E, Ward J, et al. Impact of Acinetobacter infection on the mortality of burn patients. J Am Coll... Mason AD. Survival benefit conferred by topical antimicrobial preparations in burn patients: a historical perspective. J Trauma 2004;56:863 6. [27

  9. Understanding the Environmental and Climate Impacts of Biomass Burning in Northern Sub-Saharan Africa

    Science.gov (United States)

    Ichoku, Charles; Gatebe, Charles; Bolten, John; Policelli, Fritz; Habib, Shahid; Lee, Jejung; Wang, Jun; Wilcox, Eric; Adegoke, Jimmy

    2011-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding'of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  10. Importance of risk factors in the development of complications of infectious and inflammatory genesis in patients with severe burns

    Directory of Open Access Journals (Sweden)

    B. V. Guzenko

    2013-06-01

    Full Text Available Introduction. Infectious and inflammatory complications , such as pneumonia and burn sepsis, often develop in patients with extensive burns, thus causing high mortality. The aim of the work was to determine the risk factors for the development of infectious and inflammatory complications in patients with burns. Materials and methods. The study involved 140 burned patients divided into two groups: Group 1 – 78 patients who underwent necrectomy within 3-7 days after the burn, Group 2 (control – 62 patients with necrectomy performed in later period. Results of the research. In the 1st group pneumonia was diagnosed in 11 (14.10 ± 3.94% patients, sepsis – in 13 (16.67 ± 4.22%. In the control group pneumonia was diagnosed in 20 (32.26 ± 5.94% patients, sepsis – in 23 (37.10 ± 6.13% (p < 0.05. In the burned patients of the main group the development of infectious and inflammatory complications was observed mainly in patients over 45 years of age (43%, that is 2.9 times more often than in the patients of younger age (p < 0.05. In patients with the severity index of burn damage exceeding 90 units complications were diagnosed in 32.14 ± 6.24% of cases, which is 7 times more than in the other subgroup (p < 0.05. In the control group patients with the severity index of destruction exceeding 90 units had complications in 56.41 ± 7.94% of cases, which is 2.6 times more than in patients with less severity index (p = 0.004. If the total area of the skin burns was over 40%, the number of sepsis and pneumonia complications significantly increased in both groups, and was 1.7 times greater than in patients with a smaller area of the burn. If the area of deep skin burns was over 25%, the number of cases of pneumonia and sepsis in patients of the main group increased in 2.4 times, and in the control group it was in 1.6 times higher. Among patients with area of deep burns exceeding 40% the incidence of sepsis and pneumonia was 78% (p = 0.03 in the main

  11. Outcome predictors and quality of life of severe burn patients admitted to intensive care unit

    Directory of Open Access Journals (Sweden)

    Buoninsegni Laura

    2010-04-01

    Full Text Available Abstract Background Despite significant medical advances and improvement in overall mortality rate following burn injury, the treatment of patients with extensive burns remains a major challenge for intensivists. We present a study aimed to evaluate the short- and the long-term outcomes of severe burn patients (total body surface area, TBSA > 40% treated in a polyvalent intensive care unit (ICU and to assess the quality of life of survivors, one year after the injury using the EuroQol-5D (EQ-5D questionnaire. Methods A prospective-observational study was performed in an ICU of a University-affiliated hospital. Logistic regression analysis was used to identify the factors predicting in-hospital mortality. The EQ-5D questionnaire was used to asses participant's long term self-reported general health. Results During a period of five years, 50 patients participated in the study. Their mean age was 53.8 ± 19.8; they had a mean of %TBSA burned of 54.5 ± 18.1. 44% and 10% of patients died in the ICU and in the ward after ICU discharge, respectively. Baux index, SAPS II and SOFA on admission to the ICU, infectious and respiratory complications, and time of first burn wound excision were found to have a significant predictive value for hospital mortality. The level of health of all survivors was worse than before the injury. Problems in the five dimensions studied were present as follows: mobility (moderate 68.5%; extreme 0%, self-care (moderate 21%; extreme 36.9%, usual activities (moderate 68.5%; extreme 21%, pain/discomfort (moderate 68.5%; extreme 10.5%, anxiety/depression (moderate 36.9%; extreme 42.1%. Conclusions In severe burn patients, Baux index, severity of illness on admission to the ICU, complications, and time of first burn wound excision were the major contributors to hospital mortality. Quality of life was influenced by consequences of injury both in psychological and physical health.

  12. How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods

    Science.gov (United States)

    C. Alina Cansler; Donald. McKenzie

    2012-01-01

    Remotely sensed indices of burn severity are now commonly used by researchers and land managers to assess fire effects, but their relationship to field-based assessments of burn severity has been evaluated only in a few ecosystems. This analysis illustrates two cases in which methodological refinements to field-based and remotely sensed indices of burn severity...

  13. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event

    Science.gov (United States)

    Susan J. Prichard; Maureen C. Kennedy

    2014-01-01

    Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State...

  14. Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province

    Science.gov (United States)

    Westerling, A.L.; Gershunov, A.; Cayan, D.R.; Barnett, T.P.

    2002-01-01

    A statistical forecast methodology exploits large-scale patterns in monthly U.S. Climatological Division Palmer Drought Severity Index (PDSI) values over a wide region and several seasons to predict area burned in western U.S. wildfires by ecosystem province a season in advance. The forecast model, which is based on canonical correlations, indicates that a few characteristic patterns determine predicted wildfire season area burned. Strong negative associations between anomalous soil moisture (inferred from PDSI) immediately prior to the fire season and area burned dominate in most higher elevation forested provinces, while strong positive associations between anomalous soil moisture a year prior to the fire season and area burned dominate in desert and shrub and grassland provinces. In much of the western U.S., above- and below-normal fire season forecasts were successful 57% of the time or better, as compared with a 33% skill for a random guess, and with a low probability of being surprised by a fire season at the opposite extreme of that forecast.

  15. Spatial patterns of ponderosa pine regeneration in high-severity burn patches

    Science.gov (United States)

    Suzanne M. Owen; Carolyn H. Sieg; Andrew J. Sanchez. Meador; Peter Z. Fule; Jose M. Iniguez; L. Scott. Baggett; Paula J. Fornwalt; Michael A. Battaglia

    2017-01-01

    Contemporary wildfires in southwestern US ponderosa pine forests can leave uncharacteristically large patches of tree mortality, raising concerns about the lack of seed-producing trees, which can prevent or significantly delay ponderosa pine regeneration. We established 4-ha plots in high-severity burn patches in two Arizona wildfires, the 2000 Pumpkin and 2002 Rodeo-...

  16. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  17. Identifying individual fires from satellite-derived burned area data

    CSIR Research Space (South Africa)

    Archibald, S

    2009-07-01

    Full Text Available An algorithm for identifying individual fires from the Modis burned area data product is introduced for southern Africa. This algorithm gives the date of burning, size of fire, and location of the centroid for all fires identified over 8 years...

  18. Quantifying Fire Impact on Alaskan Tundra from Satellite Observations and Field Measurements

    Science.gov (United States)

    Loboda, T. V.; Chen, D.; He, J.; Jenkins, L. K.

    2017-12-01

    Wildfire is a major disturbance agent in Alaskan tundra. The frequency and extent of fire events obtained from paleo, management, and satellite records may yet underestimate the scope of tundra fire impact. Field measurements, collected within the NASA's ABoVE campaign, revealed unexpectedly shallow organic soils ( 15 cm) across all sampled sites of the Noatak valley with no significant difference between recently burned and unburned sites. In typical small and medium-sized tundra burns vegetation recovers rapidly and scars are not discernable in 30 m optical satellite imagery by the end of the first post-fire season. However, field observations indicate that vegetation and subsurface characteristics within fire scars of different ages vary across the landscape. In this study we develop linkages between fire-induced changes to tundra and satellite-based observations from optical, thermal, and microwave imagers to enable extrapolation of in-situ observations to cover the full extent of Alaskan tundra. Our results show that recent ( 30 years) fire history can be reconstructed from optical observations (R2 0.65, pfire history can be determined for 4 years post fire primarily due to increased soil moisture at burned sites. Field measurements suggest that the relatively quick SAR signal dissipation results from more even distribution of surface moisture through the soil column with increases in Active Layer Thickness (ALT). Similar to previous long-term field studies we find an increase in shrub fraction and shrub height within burns over time at the landscape scale; however, the strength and significance of the relationship between shrub fraction and time since fire is governed by burn severity with more severe burns predictably (p post-fire shrub cover. Although reasonably well-correlated to each other when adjusted for topography (R2 0.35, p < 0.001), neither ALT nor soil temperature can be directly linked to optical or thermal brightness observations with acceptable

  19. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    Science.gov (United States)

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  20. Hypertonic lactated saline resuscitation reduces the risk of abdominal compartment syndrome in severely burned patients.

    Science.gov (United States)

    Oda, Jun; Ueyama, Masashi; Yamashita, Katsuyuki; Inoue, Takuya; Noborio, Mitsuhiro; Ode, Yasumasa; Aoki, Yoshiki; Sugimoto, Hisashi

    2006-01-01

    Secondary abdominal compartment syndrome is a lethal complication after resuscitation from burn shock. Hypertonic lactated saline (HLS) infusion reduces early fluid requirements in burn shock, but the effects of HLS on intraabdominal pressure have not been clarified. Patients admitted to our burn unit between 2002 and 2004 with burns > or =40% of the total body surface area without severe inhalation injury were entered into a fluid resuscitation protocol using HLS (n = 14) or lactated Ringer's solution (n = 22). Urine output was monitored hourly with a goal of 0.5 to 1.0 mL/kg per hour. Hemodynamic parameters, blood gas analysis, intrabladder pressure as an indicator of intraabdominal pressure (IAP), and the peak inspiratory pressure were recorded. Pulmonary compliance and the abdominal perfusion pressure were also calculated. In the HLS group, the amount of intravenous fluid volume needed to maintain adequate urine output was less at 3.1 +/- 0.9 versus 5.2 +/- 1.2 mL/24 h per kg per percentage of total body surface area, and the peak IAP and peak inspiratory pressure at 24 hours after injury were significantly lower than those in the lactated Ringer's group. Two of 14 patients (14%) in the HLS group and 11 of 22 patients (50%) developed IAH within 20.8 +/- 7.2 hours after injury. In patients with severe burn injury, a large intravenous fluid volume decreases abdominal perfusion during the resuscitative period because of increased IAP. Our data suggest that HLS resuscitation could reduce the risk of secondary abdominal compartment syndrome with lower fluid load in burn shock patients.

  1. Laboratory Studies of Carbon Emission from Biomass Burning for use in Remote Sensing

    Science.gov (United States)

    Wald, Andrew E.; Kaufman, Yoram J.

    1998-01-01

    Biomass burning is a significant source of many trace gases in the atmosphere. Up to 25% of the total anthropogenic carbon dioxide added to the atmosphere annually is from biomass burning. However, this gaseous emission from fires is not directly detectable from satellite. Infrared radiance from the fires is. In order to see if infrared radiance can be used as a tracer for these emitted gases, we made laboratory measurements to determine the correlation of emitted carbon dioxide, carbon monoxide and total burned biomass with emitted infrared radiance. If the measured correlations among these quantities hold in the field, then satellite-observed infrared radiance can be used to estimate gaseous emission and total burned biomass on a global, daily basis. To this end, several types of biomass fuels were burned under controlled conditions in a large-scale combustion laboratory. Simultaneous measurements of emitted spectral infrared radiance, emitted carbon dioxide, carbon monoxide, and total mass loss were made. In addition measurements of fuel moisture content and fuel elemental abundance were made. We found that for a given fire, the quantity of carbon burned can be estimated from 11 (micro)m radiance measurements only within a factor of five. This variation arises from three sources, 1) errors in our measurements, 2) the subpixel nature of the fires, and 3) inherent differences in combustion of different fuel types. Despite this large range, these measurements can still be used for large-scale satellite estimates of biomass burned. This is because of the very large possible spread of fire sizes that will be subpixel as seen by Moderate Resolution Imaging Spectroradiometer (MODIS). Due to this large spread, even relatively low-precision correlations can still be useful for large-scale estimates of emitted carbon. Furthermore, such estimates using the MODIS 3.9 (micro)m channel should be even more accurate than our estimates based on 11 (micro)m radiance.

  2. Unsupported inferences of high-severity fire in historical dry forests of the western United States: Response to Williams and Baker

    Science.gov (United States)

    Fulé, Peter Z.; Swetnam, Thomas W.; Brown, Peter M.; Falk, Donald A.; Peterson, David L.; Allen, Craig D.; Aplet, Gregory H.; Battaglia, Mike A.; Binkley, Dan; Farris, Calvin; Keane, Robert E.; Margolis, Ellis Q.; Grissino-Mayer, Henri; Miller, Carol; Sieg, Carolyn Hull; Skinner, Carl; Stephens, Scott L.; Taylor, Alan

    2014-01-01

    Reconstructions of dry western US forests in the late 19th century in Arizona, Colorado and Oregon based on General Land Office records were used by Williams & Baker (2012; Global Ecology and Biogeography, 21, 1042–1052; hereafter W&B) to infer past fire regimes with substantial moderate and high-severity burning. The authors concluded that present-day large, high-severity fires are not distinguishable from historical patterns. We present evidence of important errors in their study. First, the use of tree size distributions to reconstruct past fire severity and extent is not supported by empirical age–size relationships nor by studies that directly quantified disturbance history in these forests. Second, the fire severity classification of W&B is qualitatively different from most modern classification schemes, and is based on different types of data, leading to an inappropriate comparison. Third, we note that while W&B asserted ‘surprising’ heterogeneity in their reconstructions of stand density and species composition, their data are not substantially different from many previous studies which reached very different conclusions about subsequent forest and fire behaviour changes. Contrary to the conclusions of W&B, the preponderance of scientific evidence indicates that conservation of dry forest ecosystems in the western United States and their ecological, social and economic value is not consistent with a present-day disturbance regime of large, high-severity fires, especially under changing climate

  3. Missense Variant in MAPK Inactivator PTPN5 Is Associated with Decreased Severity of Post-Burn Hypertrophic Scarring.

    Directory of Open Access Journals (Sweden)

    Ravi F Sood

    Full Text Available Hypertrophic scarring (HTS is hypothesized to have a genetic mechanism, yet its genetic determinants are largely unknown. The mitogen-activated protein kinase (MAPK pathways are important mediators of inflammatory signaling, and experimental evidence implicates MAPKs in HTS formation. We hypothesized that single-nucleotide polymorphisms (SNPs in MAPK-pathway genes would be associated with severity of post-burn HTS.We analyzed data from a prospective-cohort genome-wide association study of post-burn HTS. We included subjects with deep-partial-thickness burns admitted to our center who provided blood for genotyping and had at least one Vancouver Scar Scale (VSS assessment. After adjusting for HTS risk factors and population stratification, we tested MAPK-pathway gene SNPs for association with the four VSS variables in a joint regression model. In addition to individual-SNP analysis, we performed gene-based association testing.Our study population consisted of 538 adults (median age 40 years who were predominantly White (76% males (71% admitted to our center from 2007-2014 with small-to-moderate-sized burns (median burn size 6% total body surface area. Of 2,146 SNPs tested, a rare missense variant in the PTPN5 gene (rs56234898; minor allele frequency 1.5% was significantly associated with decreased severity of post-burn HTS (P = 1.3×10-6. In gene-based analysis, PTPN5 (P = 1.2×10-5 showed a significant association and BDNF (P = 9.5×10-4 a borderline-significant association with HTS severity.We report PTPN5 as a novel genetic locus associated with HTS severity. PTPN5 is a MAPK inhibitor expressed in neurons, suggesting a potential role for neurotrophic factors and neuroinflammatory signaling in HTS pathophysiology.

  4. Adjunctive hyperbaric oxygen therapy in severe burns: Experience in Taiwan Formosa Water Park dust explosion disaster.

    Science.gov (United States)

    Chiang, I-Han; Chen, Shyi-Gen; Huang, Kun-Lun; Chou, Yu-Ching; Dai, Niann-Tzyy; Peng, Chung-Kan

    2017-06-01

    Despite major advances in therapeutic strategies for the management of patients with severe burns, significant morbidity and mortality is observed. Hyperbaric oxygen therapy (HBOT) increases the supply of oxygen to burn areas. The aim of this study was to determine whether HBOT is effective in the treatment of major thermal burns. On June 27, 2015 in New Taipei, Taiwan, a mass casualty disaster occurred as fire erupted over a large crowd, injuring 499 people. Fifty-three victims (20 women and 33 men) were admitted to Tri-Service General Hospital. Thirty-eight patients underwent adjunctive HBOT (HBOT group), and 15 patients received routine burn therapy (control group). Serum procalcitonin (PCT) level, a sepsis biomarker, was measured until it reached normal levels (burn care combined with adjunctive HBOT improves sepsis control compared with standard treatment without HBOT. Prospective studies are required to define the role of HBOT in extensive burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  5. Diarrhea in severely burned children.

    Science.gov (United States)

    Thakkar, Kalpesh; Kien, C Lawrence; Rosenblatt, Judah I; Herndon, David N

    2005-01-01

    Diarrhea is a common problem in critically ill patients. Our patients are fed a high-carbohydrate enteral formula. We hypothesized that diarrhea in our patients may be related to the osmotic effects of unabsorbed carbohydrate in the small intestine and colon. We studied 19 patients, 3 months to 17 years, with burns >40% total body surface area. Each subject was studied weekly for up to 4 weeks postburn. Breath H2 concentration was measured. For the 24-hour period before the breath H2 measurement, the enteral carbohydrate intake, stool volume, and total enteral fluid volume were recorded. At each of several weekly intervals for each subject, the times when stool volume and enteral carbohydrate intake were each maximal were noted. Maximal stool volume ranged from 12 to 69 mL/kg/d. At the time point of maximal carbohydrate intake, diarrhea (stool volume >10 mL/kg/d) occurred in 18 of 19 patients, and maximal stool volume occurred in 10 of 19. Breath H2 concentration (ppm/5% CO2; mean +/- SEM) was 5.5 +/- 3.5 at the time of maximal carbohydrate intake, and was 25 +/- 20 at maximal stool volume. There were no correlations among breath H2 concentration, stool volume, enteral fluid intake, and enteral carbohydrate intake. Almost all the subjects had diarrhea over several weeks postburn. The lack of correlation of either carbohydrate intake or breath H2 with stool volume suggests that diarrhea in these patients may be caused by factors other than carbohydrate malabsorption. These data do not support altering nutrition support because of watery diarrhea.

  6. Historic global biomass burning emissions for CMIP6 (BB4CMIP based on merging satellite observations with proxies and fire models (1750–2015

    Directory of Open Access Journals (Sweden)

    M. J. E. van Marle

    2017-09-01

    Full Text Available Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr−1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and

  7. Post-fire burn severity and vegetation response following eight large wildfires across the Western United States

    Science.gov (United States)

    Leigh B. Lentile; Penelope Morgan; Andrew T. Hudak; Michael J. Bobbitt; Sarah A. Lewis; Alistair M. S. Smith; Peter R. Robichaud

    2007-01-01

    Vegetation response and burn severity were examined following eight large wildfires that burned in 2003 and 2004: two wildfires in California chaparral, two each in dry and moist mixed-conifer forests in Montana, and two in boreal forests in interior Alaska. Our research objectives were: 1) to characterize one year post-fire vegetation recovery relative to initial fire...

  8. Upper gastrointestinal bleeding in severely burned patients: a case-control study to assess risk factors, causes, and outcome.

    Science.gov (United States)

    Kim, Young Jin; Koh, Dong Hee; Park, Se Woo; Park, Sun Man; Choi, Min Ho; Jang, Hyun Joo; Kae, Sea Hyub; Lee, Jin; Byun, Hyun Woo

    2014-01-01

    To determine the risk factors, causes, and outcome of clinically important upper gastrointestinal bleeding that occurs in severely burned patients. The charts of all patients admitted to the burn intensive care unit were analyzed retrospectively over a 4-year period (from January 2006 to December 2009). Cases consisted of burned patients who developed upper gastrointestinal bleeding more than 24 hours after admission to the burn intensive care unit. Controls were a set of patients, in the burn intensive care unit, without upper gastrointestinal bleeding matched with cases for age and gender. Cases and controls were compared with respect to the risk factors of upper gastrointestinal bleeding and outcomes. During the study period, clinically important upper gastrointestinal bleeding occurred in 20 patients out of all 964 patients. The most common cause of upper gastrointestinal bleeding was duodenal ulcer (11 of 20 cases, 55%). In the multivariate analysis, mechanical ventilation (p = 0.044) and coagulopathy (p = 0.035) were found to be the independent predictors of upper gastrointestinal bleeding in severely burned patients. Upper gastrointestinal hemorrhage tends to occur more frequently after having prolonged mechanical ventilation and coagulopathy.

  9. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  10. Methods to reduce intraocular pressure on secondary glaucoma after severe eye burns

    Directory of Open Access Journals (Sweden)

    A. V. Solovieva

    2014-07-01

    Full Text Available Purpose: Show the results of treatment of secondary glaucoma after severe eye burns.Methods: We observed 70 patients (108 eyes with severe burns the eyes and their consequences, secondary glaucoma was observed in 40 patients (58 eyes. All patients with secondary glaucoma received traditional antihypertensive therapy, with its failure to resort to antiglaucomatous surgery. Cataract extraction performed in 24 cases, 16 of them in combination with other surgery: the reconstruction of the anterior chamber, penetrating keratoplasty, sinustrabeculectomy, diode laser cyclocoagulation. Diode laser cy- clocoagulation performed 42 times in 8 of them in combination with other antiglaucomatous surgery: cataract surgery, reconstruction of the anterior chamber. Sinustrabeculectomy in patients with secondary glaucoma was performed in 7 cases, 4 of them with collagen implant drainage. Ahmed glaucoma drainage implant performed in 5 cases.Results: In 23 out of 58 (39.6% of long-term compensation glaucoma IOP was achieved antihypertensive therapy without sur- gery. After cataract extraction resistant compensated IOP was achieved in 10 cases, a temporary (1 to 42 months — in 11 cases, IOP is not reduced in 2 cases. After completing diode laser cyclocoagulation stable normalization of IOP occurred in 16 cases, the temporary (from 1 month to 2 years — in 20 cases, 4 cases of IOP reduction was not achieved. As a result sinustrabeculectomy in 4 cases IOP decreased, in one case the hypotensive effect is not there. After implantation Ahmed glaucoma valve in 2 cases was achieved stable normalization of IOP, in the 2 cases — the temporary; in 1 case developed endophthalmitis, and the device was removed.Conclusion: the immediate effect of antiglaucomatous treatment was 96.6%, but the high incidence of IOP decompensation (73.7% suggesting the need for continuous follow-up patients after severe eye burn injury, and a readiness to use other methods to reduce IOP.

  11. Methods to reduce intraocular pressure on secondary glaucoma after severe eye burns

    Directory of Open Access Journals (Sweden)

    A. V. Solovieva

    2012-01-01

    Full Text Available Purpose: Show the results of treatment of secondary glaucoma after severe eye burns.Methods: We observed 70 patients (108 eyes with severe burns the eyes and their consequences, secondary glaucoma was observed in 40 patients (58 eyes. All patients with secondary glaucoma received traditional antihypertensive therapy, with its failure to resort to antiglaucomatous surgery. Cataract extraction performed in 24 cases, 16 of them in combination with other surgery: the reconstruction of the anterior chamber, penetrating keratoplasty, sinustrabeculectomy, diode laser cyclocoagulation. Diode laser cy- clocoagulation performed 42 times in 8 of them in combination with other antiglaucomatous surgery: cataract surgery, reconstruction of the anterior chamber. Sinustrabeculectomy in patients with secondary glaucoma was performed in 7 cases, 4 of them with collagen implant drainage. Ahmed glaucoma drainage implant performed in 5 cases.Results: In 23 out of 58 (39.6% of long-term compensation glaucoma IOP was achieved antihypertensive therapy without sur- gery. After cataract extraction resistant compensated IOP was achieved in 10 cases, a temporary (1 to 42 months — in 11 cases, IOP is not reduced in 2 cases. After completing diode laser cyclocoagulation stable normalization of IOP occurred in 16 cases, the temporary (from 1 month to 2 years — in 20 cases, 4 cases of IOP reduction was not achieved. As a result sinustrabeculectomy in 4 cases IOP decreased, in one case the hypotensive effect is not there. After implantation Ahmed glaucoma valve in 2 cases was achieved stable normalization of IOP, in the 2 cases — the temporary; in 1 case developed endophthalmitis, and the device was removed.Conclusion: the immediate effect of antiglaucomatous treatment was 96.6%, but the high incidence of IOP decompensation (73.7% suggesting the need for continuous follow-up patients after severe eye burn injury, and a readiness to use other methods to reduce IOP.

  12. [Fatal hyperpyrexia in an adolescent patient with severe burns after a traffic accident].

    Science.gov (United States)

    Jaehn, T; Sievers, R; Junger, A; Graunke, F; Blings, A; Reichert, B

    2016-07-01

    After a motorcycle accident a 16-year-old patient suffered severe burns to 40.5 % of the total body surface area (TBSA) of which 37 % were deep subdermal burns. After tangential and partly epifascial necrosectomy, Integra® was used as a temporary dermis replacement material for the lower extremities, combined with extensive negative pressure wound therapy (NPWT). In the further course of the treatment the patient developed uncontrollable hyperpyrexia with a fatal outcome. Possible influencing factors, such as the dermis replacement material combined with NPWT over large areas as well as the differential diagnoses propofol infusion syndrome, heatstroke and malignant hyperthermia are discussed.

  13. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    Science.gov (United States)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  14. [Effects of hydrogen on the lung damage of mice at early stage of severe burn].

    Science.gov (United States)

    Qin, C; Bian, Y X; Feng, T T; Zhang, J H; Yu, Y H

    2017-11-20

    Objective: To investigate the effects of hydrogen on the lung damage of mice at early stage of severe burn. Methods: One hundred and sixty ICR mice were divided into sham injury, hydrogen, pure burn, and burn+ hydrogen groups according to the random number table, with 40 mice in each group. Mice in pure burn group and burn+ hydrogen group were inflicted with 40% total body surface area full-thickness scald (hereafter referred to as burn) on the back, while mice in sham injury group and hydrogen group were sham injured. Mice in hydrogen group and burn+ hydrogen group inhaled 2% hydrogen for 1 h at post injury hour (PIH) 1 and 6, respectively, while mice in sham injury group and pure burn group inhaled air for 1 h. At PIH 24, lung tissue of six mice in each group was harvested, and then pathological changes of lung tissue were observed by HE staining and the lung tissue injury pathological score was calculated. Inferior vena cava blood and lung tissue of other eight mice in each group were obtained, and then content of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) in serum and lung tissue was determined by enzyme-linked immunosorbent assay. Activity of superoxide dismutase (SOD) in serum and lung tissue was detected by spectrophotometry. After arterial blood of other six mice in each group was collected for detection of arterial partial pressure of oxygen (PaO(2)), the wet and dry weight of lung tissue were weighted to calculate lung wet to dry weight ratio. The survival rates of the other twenty mice in each group during post injury days 7 were calculated. Data were processed with one-way analysis of variance, LSD test and log-rank test. Results: (1) At PIH 24, lung tissue of mice in sham injury group and hydrogen group showed no abnormality. Mice in pure burn group were with pulmonary interstitial edema, serious rupture of alveolar capillary wall, and infiltration of a large number of inflammatory cells. Mice in burn+ hydrogen group were with mild

  15. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire?

    Science.gov (United States)

    Wilkinson, S. L.; Moore, P. A.; Flannigan, M. D.; Wotton, B. M.; Waddington, J. M.

    2018-01-01

    Climate change mediated drying of boreal peatlands is expected to enhance peatland afforestation and wildfire vulnerability. The water table depth-afforestation feedback represents a positive feedback that can enhance peat drying and consolidation and thereby increase peat burn severity; exacerbating the challenges and costs of wildfire suppression efforts and potentially shifting the peatland to a persistent source of atmospheric carbon. To address this wildfire management challenge, we examined burn severity across a gradient of drying in a black spruce dominated peatland that was partially drained in 1975-1980 and burned in the 2016 Fort McMurray Horse River wildfire. We found that post-drainage black spruce annual ring width increased substantially with intense drainage. Average (±SD) basal diameter was 2.6 ± 1.2 cm, 3.2 ± 2.0 cm and 7.9 ± 4.7 cm in undrained (UD), moderately drained (MD) and heavily drained (HD) treatments, respectively. Depth of burn was significantly different between treatments (p threshold will aid in developing effective adaptive management techniques and protecting boreal peatland carbon stocks.

  16. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    Science.gov (United States)

    Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.

  17. A multi-sensor burned area algorithm for crop residue burning in northwestern India: validation and sources of error

    Science.gov (United States)

    Liu, T.; Marlier, M. E.; Karambelas, A. N.; Jain, M.; DeFries, R. S.

    2017-12-01

    A leading source of outdoor emissions in northwestern India comes from crop residue burning after the annual monsoon (kharif) and winter (rabi) crop harvests. Agricultural burned area, from which agricultural fire emissions are often derived, can be poorly quantified due to the mismatch between moderate-resolution satellite sensors and the relatively small size and short burn period of the fires. Many previous studies use the Global Fire Emissions Database (GFED), which is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product MCD64A1, as an outdoor fires emissions dataset. Correction factors with MODIS active fire detections have previously attempted to account for small fires. We present a new burned area classification algorithm that leverages more frequent MODIS observations (500 m x 500 m) with higher spatial resolution Landsat (30 m x 30 m) observations. Our approach is based on two-tailed Normalized Burn Ratio (NBR) thresholds, abbreviated as ModL2T NBR, and results in an estimated 104 ± 55% higher burned area than GFEDv4.1s (version 4, MCD64A1 + small fires correction) in northwestern India during the 2003-2014 winter (October to November) burning seasons. Regional transport of winter fire emissions affect approximately 63 million people downwind. The general increase in burned area (+37% from 2003-2007 to 2008-2014) over the study period also correlates with increased mechanization (+58% in combine harvester usage from 2001-2002 to 2011-2012). Further, we find strong correlation between ModL2T NBR-derived burned area and results of an independent survey (r = 0.68) and previous studies (r = 0.92). Sources of error arise from small median landholding sizes (1-3 ha), heterogeneous spatial distribution of two dominant burning practices (partial and whole field), coarse spatio-temporal satellite resolution, cloud and haze cover, and limited Landsat scene availability. The burned area estimates of this study can be used to build

  18. Infection in burn patients in a referral center in Colombia.

    Science.gov (United States)

    Ramirez-Blanco, Carlos Enrique; Ramirez-Rivero, Carlos Enrique; Diaz-Martinez, Luis Alfonso; Sosa-Avila, Luis Miguel

    2017-05-01

    Worldwide, burns are responsible for more than 300,000 deaths annually; infection is a major cause of morbidity and mortality in these patients. Early identification and treatment of infection improves outcome. Toward this end it's necessary to identify the institutions flora and organisms that most frequently produces infection. To characterize infections developed by burn patients hospitalized at the University Hospital of Santander (HUS). Burn patients hospitalized in the HUS from January 1 to December 2014 were followed. Medical information regarding infections, laboratory and pathology reports were obtained. Statistical analysis with measures of central tendency, proportions, global and specific incidence density plus overall and specific incidence was obtained. For the microbiological profile proportions were established. 402 burn patients were included, 234 (58.2%) men and 168 (41.8%) women, aged between 6 days and 83 years, median 12.5 years. The burn agents include scald (52.5%), fire (10.0%), gasoline (9.2%), electricity (7.5%), among others. Burn area ranged from 1% to 80% TBS. Cumulative mortality was 1.5%. 27.8% of burned patients had one or more infections. Identified infections include folliculitis (27.0%), urinary tract infection (19.0%), infection of the burn wound (10.4%), pneumonia (8.6%), Central venous catheter (7.4%), bloodstream infection (7.4%) and skin grafts infection (4.3%) among others. Bacteria were responsible for 88.5% of the cases and fungi 11.5%. The most frequently isolated germs were P. aeruginosa, A. baumannii, E. coli, S. aureus and K. pneumoniae. Most gram-negative bacteria were sensitive to Amikacin, gram positive bacteria were sensitive to multiple antibiotics. Burns is a severe trauma that occurs in adult and pediatric patients, has several causative agents and can compromise the patient's life. The burned patient is at risk for a variety of infections. According to the type of infection it is possible to infer the most

  19. Biomass burning emissions of reactive gases estimated from satellite data analysis and ecosystem modeling for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks-Genovese, Vanessa; Klooster, Steven; Torregrosa, Alicia

    2002-10-01

    To produce a new daily record of trace gas emissions from biomass burning events for the Brazilian Legal Amazon, we have combined satellite advanced very high resolution radiometer (AVHRR) data on fire counts together for the first time with vegetation greenness imagery as inputs to an ecosystem biomass model at 8 km spatial resolution. This analysis goes beyond previous estimates for reactive gas emissions from Amazon fires, owing to a more detailed geographic distribution estimate of vegetation biomass, coupled with daily fire activity for the region (original 1 km resolution), and inclusion of fire effects in extensive areas of the Legal Amazon (defined as the Brazilian states of Acre, Amapá, Amazonas, Maranhao, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins) covered by open woodland, secondary forests, savanna, and pasture vegetation. Results from our emissions model indicate that annual emissions from Amazon deforestation and biomass burning in the early 1990s total to 102 Tg yr-1 carbon monoxide (CO) and 3.5 Tg yr-1 nitrogen oxides (NOx). Peak daily burning emissions, which occurred in early September 1992, were estimated at slightly more than 3 Tg d-1for CO and 0.1 Tg d-1for NOx flux to the atmosphere. Other burning source fluxes of gases with relatively high emission factors are reported, including methane (CH4), nonmethane hydrocarbons (NMHC), and sulfur dioxide (SO2), in addition to total particulate matter (TPM). We estimate the Brazilian Amazon region to be a source of between one fifth and one third for each of these global emission fluxes to the atmosphere. The regional distribution of burning emissions appears to be highest in the Brazilian states of Maranhao and Tocantins, mainly from burning outside of moist forest areas, and in Pará and Mato Grosso, where we identify important contributions from primary forest cutting and burning. These new daily emission estimates of reactive gases from biomass burning fluxes are designed to be used as

  20. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets.

    Directory of Open Access Journals (Sweden)

    Kristofer Lasko

    Full Text Available Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI Ultraviolet Aerosol Index (UVAI satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC concentration data for 5 years from 2012-2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in

  1. Impact of facial burns: relationship between depressive symptoms, self-esteem and scar severity

    NARCIS (Netherlands)

    Hoogewerf, C.J.; van Baar, M.E.; Middelkoop, E.; van Loey, N.E.

    2014-01-01

    Objective: This study assessed the role of self-reported facial scar severity as a possible influencing factor on self-esteem and depressive symptoms in patients with facial burns. Method: A prospective multicentre cohort study with a 6 months follow-up was conducted including 132 patients with

  2. Impact of facial burns : relationship between depressive symptoms, self-esteem and scar severity

    NARCIS (Netherlands)

    Hoogewerf, Cornelis Johannes; van Baar, Margriet Elisabeth; Middelkoop, Esther; Van Loey, N.E.E.

    2014-01-01

    OBJECTIVE: This study assessed the role of self-reported facial scar severity as a possible influencing factor on self-esteem and depressive symptoms in patients with facial burns. METHOD: A prospective multicentre cohort study with a 6 months follow-up was conducted including 132 patients with

  3. 14 year follow-up for a severe electrical burn to mouth and lip: case report.

    Science.gov (United States)

    Valencia, Roberto; Garcia, Javier; Espinosa, Roberto; Saadia, Marc; Valencia, Evaristo

    2010-01-01

    Electrical burns range from 4 to 7% of the total burn accidents and many of them affect primarily children biting on a live wire. Great confusion exists in the literature about the proper management of electrical burns to the mouth in the acute and late phases. 14 year results are shown in a severe electrical burn sustained in a 1 year 2 months old girl, involving 90% of the lips and commissures, tongue, alveolar ridges and teeth (primary central incisors and permanent dental germs). Two weeks after she was out of danger, an active splint expansion device was built and used for 8 months to prevent secondary microstomia. Later a new active splint device was used for a year after lip plastic surgery. At age 13, orthopedics and orthodontics were accomplished with a lip tattoo completed at age 15. No matter how good the final esthetic and occlusal results are, prevention is always the best option.

  4. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  5. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    Science.gov (United States)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care

  6. Outcome after burns: An observational study on burn scar maturation and predictors for severe scarring

    NARCIS (Netherlands)

    van der Wal, M.B.A.; Vloemans, J.F.P.M.; Tuinebreijer, W.E.; van de Ven, P.M.; van Unen, E.; van Zuijlen, P.P.M.; Middelkoop, E.

    2012-01-01

    Long-term outcome of burn scars as well as the relation with clinically relevant parameters has not been studied quantitatively. Therefore, we conducted a detailed analysis on the clinical changes of burn scars in a longitudinal setup. In addition, we focused on the differences in scar quality in

  7. The view of severely burned patients and healthcare professionals on the blind spots in the aftercare process: a qualitative study.

    Science.gov (United States)

    Christiaens, Wendy; Van de Walle, Elke; Devresse, Sophie; Van Halewyck, Dries; Benahmed, Nadia; Paulus, Dominique; Van den Heede, Koen

    2015-08-01

    In most Western countries burn centres have been developed to provide acute and critical care for patients with severe burn injuries. Nowadays, those patients have a realistic chance of survival. However severe burn injuries do have a devastating effect on all aspects of a person's life. Therefore a well-organized and specialized aftercare system is needed to enable burn patients to live with a major bodily change. The aim of this study is to identify the problems and unmet care needs of patients with severe burn injuries throughout the aftercare process, both from patient and health care professional perspectives in Belgium. By means of face-to-face interviews (n = 40) with individual patients, responsible physicians and patient organizations, current experiences with the aftercare process were explored. Additionally, allied healthcare professionals (n = 17) were interviewed in focus groups. Belgian burn patients indicate they would benefit from a more integrated aftercare process. Quality of care is often not structurally embedded, but depends on the good intentions of local health professionals. Most burn centres do not have a written discharge protocol including an individual patient-centred care plan, accessible to all caregivers involved. Patients reported discontinuity of care: nurses working at general wards or rehabilitation units are not specifically trained for burn injuries, which sometimes leads to mistakes or contradictory information transmission. Also professionals providing home care are often not trained for the care of burn injuries. Some have to be instructed by the patient, others go to the burn centre to learn the right skills. Finally, patients themselves underestimate the chronic character of burn injuries, especially at the beginning of the care process. The variability in aftercare processes and structures, as well as the failure to implement locally developed best-practices on a wider scale emphasize the need for a comprehensive network

  8. Predictors of muscle protein synthesis after severe pediatric burns

    Science.gov (United States)

    Objectives: Following a major burn, muscle protein synthesis rate increases but in most patients, this response is not sufficient to compensate the also elevated protein breakdown. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that skeletal muscle prot...

  9. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  10. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA

    Science.gov (United States)

    Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W.

    2009-01-01

    Multispectral satellite data have become a common tool used in the mapping of wildland fire effects. Fire severity, defined as the degree to which a site has been altered, is often the variable mapped. The Normalized Burn Ratio (NBR) used in an absolute difference change detection protocol (dNBR), has become the remote sensing method of choice for US Federal land management agencies to map fire severity due to wildland fire. However, absolute differenced vegetation indices are correlated to the pre-fire chlorophyll content of the vegetation occurring within the fire perimeter. Normalizing dNBR to produce a relativized dNBR (RdNBR) removes the biasing effect of the pre-fire condition. Employing RdNBR hypothetically allows creating categorical classifications using the same thresholds for fires occurring in similar vegetation types without acquiring additional calibration field data on each fire. In this paper we tested this hypothesis by developing thresholds on random training datasets, and then comparing accuracies for (1) fires that occurred within the same geographic region as the training dataset and in similar vegetation, and (2) fires from a different geographic region that is climatically and floristically similar to the training dataset region but supports more complex vegetation structure. We additionally compared map accuracies for three measures of fire severity: the composite burn index (CBI), percent change in tree canopy cover, and percent change in tree basal area. User's and producer's accuracies were highest for the most severe categories, ranging from 70.7% to 89.1%. Accuracies of the moderate fire severity category for measures describing effects only to trees (percent change in canopy cover and basal area) indicated that the classifications were generally not much better than random. Accuracies of the moderate category for the CBI classifications were somewhat better, averaging in the 50%-60% range. These results underscore the difficulty in

  11. Clinical Trial of Imipenem/Cilastatin in Severely Burned and Infected Patients

    Science.gov (United States)

    1987-07-01

    34"OT FILE CO.Y CLINICAL TRIAL OF IMIPENEM /CILASTATIN IN SEVERELY BURNED AND INFECTED PATIENTS Gary R. Culbertson, M.D., Albert T. McManus, PH.D., D T...NOV 1 3 1987 San Antonio, Texas b H Imipenem /cilastatin was examined for safety and effi- ,-;Opportunistic organisms causing infections in cacy in a...All of the clinical failures were in the pulmonary in ec- imipenem /cilastatin, a novel thienamycin alti- tion group. No serious toxicity or side

  12. Clinical and protein metabolic efficacy of glutamine granules-supplemented enteral nutrition in severely burned patients.

    Science.gov (United States)

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2005-05-01

    As an abundant amino acid in the human body, glutamine has many important metabolic roles that may protect or promote tissue integrity and enhance the immune system. A relative deficiency of glutamine in such patients could compromise recovery and result in prolonged illness and an increase in late mortality. The purpose of this clinical study is to observe the effects of enteral supplement with glutamine granules on protein metabolism in severely burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trial. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, glutamine and B group patents were supplemented with glutamine granules or placebo (glycine) at 0.5 g/kg per day for 14 days with oral feeding or tube feeding, respectively. The level of plasma glutamine, plasma protein content, urine nitrogen and urine 3-methylhistidine (3-MTH) excretion were determined, wound healing rate of the burned area and hospital stay were recorded. The results showed that there were significant reductions in plasma glutamine level and abnormal protein metabolism. After supplement with glutamine granules for 14 days, the plasma glutamine concentration was significantly higher than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P0.05). On the other hand, the amount of urine nitrogen and 3-MTH excreted in Gln group were significantly lower than that in B group. In addition, wound healing was faster and hospital stay days were shorter in Gln group than B group (46.59+/-12.98 days versus 55.68+/-17.36 days, P<0.05). These indicated that supplement glutamine granules with oral feeding or tube feeding could abate the degree of glutamine depletion

  13. High-severity fire: evaluating its key drivers and mapping its probability across western US forests

    Science.gov (United States)

    Parks, Sean A.; Holsinger, Lisa M.; Panunto, Matthew H.; Jolly, W. Matt; Dobrowski, Solomon Z.; Dillon, Gregory K.

    2018-04-01

    Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we used boosted regression trees to model high-severity fire as a function of live fuel, topography, climate, and fire weather. We found that live fuel, on average, was the most important factor driving high-severity fire among ecoregions (average relative influence = 53.1%) and was the most important factor in 14 of 19 ecoregions. Fire weather was the second most important factor among ecoregions (average relative influence = 22.9%) and was the most important factor in five ecoregions. Climate (13.7%) and topography (10.3%) were less influential. We also predicted the probability of high-severity fire, were a fire to occur, using recent (2016) satellite imagery to characterize live fuel for a subset of ecoregions in which the model skill was deemed acceptable (n = 13). These ‘wall-to-wall’ gridded ecoregional maps provide relevant and up-to-date information for scientists and managers who are tasked with managing fuel and wildland fire. Lastly, we provide an example of the predicted likelihood of high-severity fire under moderate and extreme fire weather before and after fuel reduction treatments, thereby demonstrating how our framework and model predictions can potentially serve as a performance metric for land management agencies tasked with reducing hazardous fuel across large landscapes.

  14. Global biomass burning - Atmospheric, climatic, and biospheric implicati ons [Introduction

    International Nuclear Information System (INIS)

    Zhu, Zhiliang; Teuber, K.B.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands

  15. A small single-nozzle rainfall simulator to measure erosion response on different burn severities in southern British Columbia, Canada

    Science.gov (United States)

    Covert, Ashley; Jordan, Peter

    2010-05-01

    To study the effects of wildfire burn severity on runoff generation and soil erosion from high intensity rainfall, we constructed an effective yet simple rainfall simulator that was inexpensive, portable and easily operated by two people on steep, forested slopes in southern British Columbia, Canada. The entire apparatus, including simulator, pumps, hoses, collapsible water bladders and sample bottles, was designed to fit into a single full-sized pick-up truck. The three-legged simulator extended to approximately 3.3 metres above ground on steep slopes and used a single Spraying Systems 1/2HH-30WSQ nozzle which can easily be interchanged for other sized nozzles. Rainfall characteristics were measured using a digital camera which took images of the raindrops against a grid. Median drop size and velocity 5 cm above ground were measured and found to be 3/4 of the size of natural rain drops of that diameter class, and fell 7% faster than terminal velocity. The simulator was used for experiments on runoff and erosion on sites burned in 2007 by two wildfires in southern British Columbia. Simulations were repeated one and two years after the fires. Rainfall was simulated at an average rate of 67 mm hr-1 over a 1 m2 plot for 20 minutes. This rainfall rate is similar to the 100 year return period rainfall intensity for this duration at a nearby weather station. Simulations were conducted on five replicate 1 m2 plots in each experimental unit including high burn severity, moderate burn severity, unburned, and unburned with forest floor removed. During the simulation a sample was collected for 30 seconds every minute, with two additional samples until runoff ceased, resulting in 22 samples per simulation. Runoff, overland flow coefficient, infiltration and sediment yield were compared between treatments. Additional simulations were conducted immediately after a 2009 wildfire to test different mulch treatments. Typical results showed that runoff on plots with high burn

  16. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  17. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    Science.gov (United States)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  18. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  19. [Severe burns of lower limb due to association of hot water and citrullus colocynthis].

    Science.gov (United States)

    Fejjal, N; Gharib, N E; El Mazouz, S; Abbassi, A; Belmahi, A

    2011-06-30

    The case is reported of a patient suffering from severe burns through having used Citrullus colocynthis as a medicinal plant together with hot water. This led to carbonization of the foot and to its amputation. A description of the plant and its toxicity is given.

  20. Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol

    CSIR Research Space (South Africa)

    Roy, DP

    2005-10-10

    Full Text Available on the spatial extent and timing of burning, as clouds may preclude hotspot detection and because the satellite may not overpass when burning occurs (Justice et al. 2002). Algorithms that use multi-temporal satellite data to map the areas affected by the passage... independent reference data from aircraft observations of prescribed fires and wildfires (Kaufman et al. 1998). However, aircraft campaigns are expensive to undertake in a regionally representative manner and are difficult to coordinate with cloud...

  1. Skin graft fixation in severe burns: use of topical negative pressure.

    Science.gov (United States)

    Kamolz, L P; Lumenta, D B; Parvizi, D; Wiedner, M; Justich, I; Keck, M; Pfurtscheller, K; Schintler, M

    2014-09-30

    Over the last 50 years, the evolution of burn care has led to a significant decrease in mortality. The biggest impact on survival has been the change in the approach to burn surgery. Early excision and grafting has become a standard of care for the majority of patients with deep burns; the survival of a given patient suffering from major burns is invariably linked to the take rate and survival of skin grafts. The application of topical negative pressure (TNP) therapy devices has demonstrated improved graft take in comparison to conventional dressing methods alone. The aim of this study was to analyze the impact of TNP therapy on skin graft fixation in large burns. In all patients, we applied TNP dressings covering a %TBSA of >25. The following parameters were recorded and documented using BurnCase 3D: age, gender, %TBSA, burn depth, hospital length-of-stay, Baux score, survival, as well as duration and incidence of TNP dressings. After a burn depth adapted wound debridement, coverage was simultaneously performed using split-thickness skin grafts, which were fixed with staples and covered with fatty gauzes and TNP foam. The TNP foam was again fixed with staples to prevent displacement and finally covered with the supplied transparent adhesive film. A continuous subatmospheric pressure between 75-120 mm Hg was applied (VAC®, KCI, Vienna, Austria). The first dressing change was performed on day 4. Thirty-six out of 37 patients, suffering from full thickness burns, were discharged with complete wound closure; only one patient succumbed to their injuries. The overall skin graft take rate was over 95%. In conclusion, we consider that split thickness skin graft fixation by TNP is an efficient method in major burns, notably in areas with irregular wound surfaces or subject to movement (e.g. joint proximity), and is worth considering for the treatment of aged patients.

  2. Biomass Burning, Land-Cover Change, and the Hydrological Cycle in Northern Sub-Saharan Africa

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; hide

    2016-01-01

    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25%of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (greater than 75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7% /yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28% /yr of the total NSSA land area, with most of it (0.18% /yr) coming from savanna.During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5 deg-10 deg latitude),where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm/d. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback

  3. "Fire Moss" Cover and Function in Severely Burned Forests of the Western United States

    Science.gov (United States)

    Grover, H.; Doherty, K.; Sieg, C.; Robichaud, P. R.; Fulé, P. Z.; Bowker, M.

    2017-12-01

    With wildfires increasing in severity and extent throughout the Western United States, land managers need new tools to stabilize recently burned ecosystems. "Fire moss" consists of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argentum. These mosses colonize burned landscapes quickly, aggregate soils, have extremely high water holding capacity, and can be grown rapidly ex-situ. In this talk, I will focus on our efforts to understand how Fire Moss naturally interacts with severely burned landscapes. We examined 14 fires in Arizona, New Mexico, Washington, and Idaho selecting a range of times since fire, and stratified plots within each wildfire by winter insolation and elevation. At 75+ plots we measured understory plant cover, ground cover, Fire Moss cover, and Fire Moss reproductive effort. On plots in the Southwest, we measured a suite of soil characteristics on moss covered and adjacent bare soil including aggregate stability, shear strength, compressional strength, and infiltration rates. Moss cover ranged from 0-75% with a mean of 16% across all plots and was inversely related to insolation (R2 = .32, p = stability and infiltration rates as adjacent bare ground. These results will allow us to model locations where Fire Moss will naturally increase postfire hillslope soil stability, locations for targeting moss restoration efforts, and suggest that Fire Moss could be a valuable tool to mitigate post wildfire erosion.

  4. Sustained oxidative stress causes late acute renal failure via duplex regulation on p38 MAPK and Akt phosphorylation in severely burned rats.

    Directory of Open Access Journals (Sweden)

    Yafei Feng

    Full Text Available BACKGROUND: Clinical evidence indicates that late acute renal failure (ARF predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. MATERIALS AND METHODS: Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area. Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. RESULTS: Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. CONCLUSIONS: These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation.

  5. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    The natural variations of the Earth's magnetic field of periods spanning from milliseconds to decades can be used to infer the conductivity-depth profile of the Earth's interior. Satellites provide a good spatial coverage of magnetic measurements, and forthcoming missions will probably allow...... for observations lasting several years, which helps to reduce the statistical error of the estimated response functions. Two methods are used to study the electrical conductivity of the Earth's mantle in the period range from hours to months. In the first, known as the potential method, a spherical harmonic...... days, this difference probably is not caused purely by differences in mantle conductivity (for which one would expect less difference for the longer periods). Further studies with data from recently launched and future satellites are needed....

  6. Assessment of burn-specific health-related quality of life and patient scar status following burn.

    Science.gov (United States)

    Oh, Hyunjin; Boo, Sunjoo

    2017-11-01

    This study assessed patient-perceived levels of scar assessment and burn-specific quality of life (QOL) in Korean burn patients admitted to burn care centers and identified differences in scar assessment and QOL based on various patient characteristics. A cross-sectional descriptive study using anonymous paper-based survey methods was conducted with 100 burn patients from three burn centers specializing in burn care in South Korea. Mean subject age was 44.5 years old, and 69% of the subjects were men. The overall mean QOL was 2.91 out of 5. QOL was lowest for the work subdomain (2.25±1.45) followed by the treatment regimen subdomain (2.32±1.16). The subjects' mean total scar assessment score was 35.51 out of 60, and subjects were most unsatisfied with scar color. Subjects with low income, flame-source burns, severe burns, visible scars, and scars on face or hand reported significantly lower QOL. Subjects with severe burn degree and burn range perceived their burn scar condition to be worse than that of others. The results show that burn subjects experience the most difficulties with their work and the treatment regimen. Subjects with severe burn and visible scarring have a reduced QOL and a poor scar status. Scar management intervention may improve QOL of burn patients especially those with severe burn and visible scars. Further studies are warranted to evaluate the relationship between scar assessment and QOL. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  7. Toll like receptors gene expression of human keratinocytes cultured of severe burn injury.

    Science.gov (United States)

    Cornick, Sarita Mac; Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Cezillo, Marcus V B; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0). This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  8. Safe method for release of severe post burn neck contracture under tumescent local anaesthesia and ketamine

    Directory of Open Access Journals (Sweden)

    Agarwal Pawan

    2004-01-01

    Full Text Available Severe post burn neck contracture results in difficult intubation, which can be life threatening and can result in multiple serious complications and sequels. Thirty patients with age ranging from 12 to 50 years were operated under local tumescent anesthesia supplemented with intravenous ketamine for release of post burn neck contracture and split skin grafted. This technique obviates the need for endotracheal intubation. There were no complications attributed to this anesthesia technique. There was no graft loss and blood loss was minimal.

  9. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.

    2016-12-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  10. Resiliency characteristics and Rorschach variables in children and adolescents with severe burns.

    Science.gov (United States)

    Holaday, M; Terrell, D

    1994-01-01

    Three raters classified 40 children and adolescents (ages 8 to 19 years) with severe burns who were placed in two groups designated as Resilient (N = 28) and Nonresilient (N = 12). Nine hypothesized differences in Rorschach responding between groups were developed through a review of the literature and operationalized through descriptive statements from a rating scale now being developed. The Resilient group gave more Cooperative Movement responses than the Nonresilient group (p = 0.0270), and they were more likely to have D scores that were within the normal range (p = 0.0700). The Nonresilient group had lower Egocentricity Index scores than the Resilient group (p = 0.0368) and more often had a positive Coping Deficit Index (p = 0.1285). Texture, Diffuse Shading, and Passive: Active responses appeared similar between groups. Differences found concerning Experience Actual and Z frequency were not statistically significant. Possible interventions addressing the emotional needs of burned children and adolescents such as strengthening certain personality characteristics are noted.

  11. Severe childhood burns in the Czech Republic: risk factors and prevention

    Science.gov (United States)

    Čelko, Alexander Martin; Dáňová, Jana; Barss, Peter

    2009-01-01

    Abstract Objective To assess risk factors for paediatric burn injuries in the Czech Republic and to suggest preventive measures. Methods This study included all children aged 0–16 years hospitalized during 1993–2000 at the Prague Burn Centre and data from the Czech Ministry of Health on national paediatric burn hospitalizations during 1996–2006. Personal, equipment and environmental risk factors were identified from hospital records. Findings The incidence of burn admissions among 0–14 year-olds increased from 85 to 96 per 100 000 between 1996 and 2006, mainly due to a 13% increase among 1–4 year-olds. Between 1993–2000 and 2006, the proportion of burn victims in the country hospitalized at the Prague Burn Centre increased from 9% to 21%. Detailed data were available on 1064 children (64% boys). Around 31% of all burn hospitalizations were in 1 year-olds. Some 79% of burns occurred at home: 70% in the kitchen, 14% in the living room or bedroom and 11% in the bathroom. Of the 18% occurring outdoors, 80% involved boys. Scalds from hot liquids accounted for 70% of all burns. The mean hospital stay was 22 days for boys and 18 days for girls. Conclusion Most burns involved scalds from hot liquids at home: beverages in kitchens and water in bathrooms. There is a need for passive preventive measures, such as redesigned domestic cooking and eating areas, safer electrical kettles and temperature control devices for bathrooms. Educational programmes should be developed for parents and caregivers. A national plan for child burn prevention with specific targets would be helpful. PMID:19551256

  12. Using acute kidney injury severity and scoring systems to predict outcome in patients with burn injury

    Directory of Open Access Journals (Sweden)

    George Kuo

    2016-12-01

    Conclusion: Our results revealed that AKI stage has considerable discriminative power for predicting mortality. Compared with other prognostic models, AKI stage is easier to use to assess outcome in patients with severe burn injury.

  13. Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data

    Science.gov (United States)

    Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.

    2006-01-01

    GRACE satellite gravity data is used to estimate terrestrial (surface plus ground) water storage within the Congo Basin in Africa for the period of April, 2002 - May, 2006. These estimates exhibit significant seasonal (30 +/- 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of approximately 280 km(exp 3) of water over the 50-month span of data. We also combine GRACE and precipitation data set (CMAP, TRMM) to explore the relative contributions of the source term to the seasonal hydrological balance within the Congo Basin. We find that the seasonal water storage tends to saturate for anomalies greater than 30-44 mm of equivalent water thickness. Furthermore, precipitation contributed roughly three times the peak water storage after anomalously rainy seasons, in early 2003 and 2005, implying an approximately 60-70% loss from runoff and evapotranspiration. Finally, a comparison of residual land water storage (monthly estimates minus best-fitting trends) in the Congo and Amazon Basins shows an anticorrelation, in agreement with the 'see-saw' variability inferred by others from runoff data.

  14. [Influence of three-level collaboration network of pediatric burns treatment in Anhui province on treatment effects of burn children].

    Science.gov (United States)

    Xia, Z G; Zhou, X L; Kong, W C; Li, X Z; Song, J H; Fang, L S; Hu, D L; Cai, C; Tang, Y Z; Yu, Y X; Wang, C H; Xu, Q L

    2018-03-20

    Objective: To explore the influence of three-level collaboration network of pediatric burns in Anhui province on treatment effects of burn children. Methods: The data of medical records of pediatric burn children transferred from Lu'an People's Hospital and Fuyang People's Hospital to the First Affiliated Hospital of Anhui Medical University from January 2014 to December 2015 and January 2016 to September 2017 (before and after establishing three-level collaboration network of pediatric burns treatment) were analyzed: percentage of transferred burn children to hospitalized burn children in corresponding period, gender, age, burn degree, treatment method, treatment result, occurrence and treatment result of shock, and operative and non-operative treatment time and cost. Rehabilitation result of burn children transferred back to local hospitals in 2016 and 2017. Data were processed with t test, chi-square test, Mann-Whitney U test, and Fisher's exact test. Results: (1) Percentage of burn children transferred from January 2014 to December 2015 was 34.3% (291/848) of the total number of hospitalized burn children in the same period of time, which was close to 30.4% (210/691) of burn children transferred from January 2016 to September 2017 ( χ (2)=2.672, P >0.05). (2) Gender, age, burn degree, and treatment method of burn children transferred from the two periods of time were close ( χ (2)=3.382, Z =-1.917, -1.911, χ (2)=3.133, P >0.05). (3) Cure rates of children with mild, moderate, and severe burns transferred from January 2016 to September 2017 were significantly higher than those of burn children transferred from January 2014 to December 2015 ( χ (2)=11.777, 6.948, 4.310, P burns transferred from the two periods of time were close ( χ (2)=1.181, P >0.05). (4) Children with mild and moderate burns transferred from the two periods of time were with no shock. The incidence of shock of children with severe burns transferred from January 2014 to December 2015 was 6

  15. Severe Vaginal Burns in a 5-Year-Old Girl Due to an Alkaline Battery in the Vagina.

    Science.gov (United States)

    Semaan, Alexander; Klein, Tobias; Vahdad, Mohammad Reza; Boemers, Thomas M; Pohle, Rebecca

    2015-10-01

    The ingestion or insertion of alkaline batteries in the body can cause severe damage to hollow organs. We report here a case of severe vaginal burns in a young patient caused by an alkaline battery. A 5-year-old girl presented to our outpatient department with pelvic pain and vaginal discharge. Further workup suggested the presence of a vaginal foreign body. Under general anesthesia, an alkaline battery was removed from her vagina, which showed severe burns with partial-thickness necrosis. Complete healing was confirmed at 3 months after initial presentation. In this rare case of an alkaline battery present in the vagina of a prepubescent girl, we discuss the available treatment and management options in comparison to similar previously reported cases. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  16. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data

    OpenAIRE

    D. Chang; Y. Song

    2009-01-01

    Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads...

  17. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    Science.gov (United States)

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in

  18. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  19. The Evolution of Successful Satellite Science to Air Quality Application Projects: From Inception to Realization

    Science.gov (United States)

    Soja, A. J.

    2012-12-01

    Teams of scientist have been working for almost a decade with state, local, regional and federal Air Quality regulators and scientists on several projects that have been focused on improving biomass burning emissions within our nation's National Emissions Inventory (NEI). Initially, the NEI was based strictly on ground-based information that often used data aggregated from previous years reported at the county-centroid and completely ignored the spatial domain of all fires. This methodology resulted in gross inaccuracies; however it was an ingrained system and the users and organizations were largely comfortable. Improvements were viewed as too costly. Our task was to convince regulators, managers and users of the value that could be added by using satellite data to enhance the NEI. Certainly, there were individuals that understood the value of using satellite data, but they needed support to convince the establishment of the intrinsic, cost-effective value of publically-available satellite data. It was essential to present arguments, as well as requested verification and validation statistics, in the format that most suited the objectives of application organizations. This process incorporated: knowledge of state-of-the-art satellite data, algorithms and science; a working knowledge of the users applications and requirements; interacting with individuals with a variety of skill sets and goals; and perhaps most importantly, listening to the goals and responsibilities of the user community and fully communicating. Today, the Environmental Protection Agency and several state and regional organizations are using satellite data to estimate biomass burnings emissions at daily and annual scales for a number of critical environmental management and policy activities including regulation setting and regional strategy development for attainment of the National Ambient Air Quality Standards (NAAQS). We continue to work at the local, state and federal levels to improve the

  20. Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury.

    Science.gov (United States)

    Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Lanziani, Larissa Elias; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  1. An experimental comparison between forced convection burn-out in freon 12 flowing vertically upwards through uniformly and non-uniformly heated round tubes

    International Nuclear Information System (INIS)

    Stevens, G.F.; Elliott, D.F.; Wood, R.W.

    1965-05-01

    Some correlations of forced convection burn-out data are based on the approximate linearity of the relationship between burn-out heat flux and the channel-averaged quality at the burn-out point. These correlations perform satisfactorily on data obtained from uniformly heated configurations. Therefore the further inference is sometimes made that the burn-out heat flux is uniquely related to the quality, and that the burn-out in non-uniformly heated configurations can be calculated from measurements made with uniform heating. This report presents burn-out data for Freon 12 flowing vertically upwards through both uniformly and non-uniformly heated round tubes. This data shows that the quality at burn-out does depend on the heat flux profile, and that the inference mentioned above is not justified. (author)

  2. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece

    OpenAIRE

    Eleni Dragozi; Ioannis Z. Gitas; Sofia Bajocco; Dimitris G. Stavrakoudis

    2016-01-01

    Monitoring post-fire vegetation response using remotely-sensed images is a top priority for post-fire management. This study investigated the potential of very-high-resolution (VHR) GeoEye images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece) during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as measured in the field immediately after the fire (2011) and one year after (2012) using the Composite Burn ...

  3. Pyogenic cervical spondylitis with quadriplegia as a complication of severe burns: Report of a case.

    Science.gov (United States)

    Asakage, Naoki; Katami, Atsuo; Takekawa, Satoru; Suzuki, Tetsuya; Goto, Michitoshi; Fukai, Ryuta

    2006-01-01

    We report a case of cervical pyogenic spondylitis complicated by epidural abscess with quadriplegia during treatment of severe burns. The patient was a 49-year-old man with 3rd-degree burns to 20% of his body, involving the lower extremities. We performed escharectomy of the 3rd-degree necrosis on days 7 and 16, followed by the first skin graft on day 23. Pseudomonas aeruginosa was detected in the postoperative graft wound culture. On day 23 after the skin graft, he became febrile and began to experience cervical pain and muscle weakness of the extremities. By day 24, quadriplegia had developed. A cervical vertebral magnetic resonance imaging (MRI) scan showed pyogenic spondylitis with an epidural abscess, which was causing the quadriplegia. We treated the patient by performing curettage of the pyogenic lesion and anterior fixation of the cervical vertebral bodies. The fact that P. aeruginosa was detected in the pyogenic focus culture indicated that burn wound sepsis was responsible for the infection. This case reinforces that acting on a strong suspicion helps to establish a diagnosis and initiate appropriate treatment early.

  4. The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology

    Science.gov (United States)

    Sheel Bansal; Till Jochum; David A. Wardle; Marie-Charlotte Nilsson

    2014-01-01

    Fire has an important role for regeneration of many boreal forest tree species, and this includes both wildfire and prescribed burning following clear-cutting. Depending on the severity, fire can have a variety of effects on above- and belowground properties that impact tree seedling establishment. Very little is known about the impacts of ground fire severity on post-...

  5. A protocol guided by transpulmonary thermodilution and lactate levels for resuscitation of patients with severe burns.

    Science.gov (United States)

    Berger, Mette M; Que, Yok Ai

    2013-11-11

    Over-resuscitation is deleterious in many critically ill conditions, including major burns. For more than 15 years, several strategies to reduce fluid administration in burns during the initial resuscitation phase have been proposed, but no single or simple parameter has shown superiority. Fluid administration guided by invasive hemodynamic parameters usually resulted in over-resuscitation. As reported in the previous issue of Critical Care, Sánchez-Sánchez and colleagues analyzed the performance of a 'permissive hypovolemia' protocol guided by invasive hemodynamic parameters (PiCCO, Pulsion Medical Systems, Munich, Germany) and vital signs in a prospective cohort over a 3-year period. The authors' results confirm that resuscitation can be achieved with below-normal levels of preload but at the price of a fluid administration greater than predicted by the Parkland formula (2 to 4 mL/kg per% burn). The classic approach based on an adapted Parkland equation may still be the simplest until further studies identify the optimal bundle of resuscitation goals.

  6. Progress Towards Improved MOPITT-based Biomass Burning Emission Inventories for the Amazon Basin

    Science.gov (United States)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Wiedinmyer, C.; Arellano, A. F.; Fischer, E. V.; González-Alonso, L.; Val Martin, M.; Gatti, L. V.; Miller, J. B.; Gloor, M.; Domingues, L. G.; Correia, C. S. D. C.

    2016-12-01

    The 17-year long record of carbon monoxide (CO) concentrations from the MOPITT satellite instrument is uniquely suited for studying the interannual variability of biomass burning emissions. Data assimilation methods based on Ensemble Kalman Filtering are currently being developed to infer CO emissions within the Amazon Basin from MOPITT measurements along with additional datasets. The validity of these inversions will depend on the characteristics of the MOPITT CO retrievals (e.g., retrieval biases and vertical resolution) as well as the representation of chemistry and dynamics in the chemical transport model (CAM-Chem) used in the data assimilation runs. For example, the assumed vertical distribution ("injection height") of the biomass burning emissions plays a particularly important role. We will review recent progress made on a project to improve biomass burning emission inventories for the Amazon Basin. MOPITT CO retrievals over the Amazon Basin are first characterized, focusing on the MOPITT Version 6 "multispectral" retrieval product (exploiting both thermal-infrared and near-infrared channels). Validation results based on in-situ vertical profiles measured between 2010 and 2013 are presented for four sites in the Amazon Basin. Results indicate a significant negative bias in MOPITT retrieved lower-tropospheric CO concentrations. The seasonal and geographical variability of smoke injection height over the Amazon Basin is then analyzed using a MISR plume height climatology. This work has led to the development of a new fire emission injection height parameterization that was implemented in CAM-Chem and GEOS-Chem.. Finally, we present initial data assimilation results for the Amazon Basin and evaluate the results using available field campaign measurements.

  7. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity

  8. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  9. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  10. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  11. The total satellite population of the Milky Way

    Science.gov (United States)

    Newton, Oliver; Cautun, Marius; Jenkins, Adrian; Frenk, Carlos S.; Helly, John C.

    2018-05-01

    The total number and luminosity function of the population of dwarf galaxies of the Milky Way (MW) provide important constraints on the nature of the dark matter and on the astrophysics of galaxy formation at low masses. However, only a partial census of this population exists because of the flux limits and restricted sky coverage of existing Galactic surveys. We combine the sample of satellites recently discovered by the Dark Energy Survey (DES) survey with the satellites found in Sloan Digital Sky Survey (SDSS) Data Release 9 (together these surveys cover nearly half the sky) to estimate the total luminosity function of satellites down to MV = 0. We apply a new Bayesian inference method in which we assume that the radial distribution of satellites independently of absolute magnitude follows that of subhaloes selected according to their peak maximum circular velocity. We find that there should be at least 124^{+40}_{-27}(68% CL, statistical error) satellites brighter than MV = 0 within 300kpc of the Sun. As a result of our use of new data and better simulations, and a more robust statistical method, we infer a much smaller population of satellites than reported in previous studies using earlier SDSS data only; we also address an underestimation of the uncertainties in earlier work by accounting for stochastic effects. We find that the inferred number of faint satellites depends only weakly on the assumed mass of the MW halo and we provide scaling relations to extend our results to different assumed halo masses and outer radii. We predict that half of our estimated total satellite population of the MW should be detected by the Large Synoptic Survey Telescope (LSST). The code implementing our estimation method is available online.†

  12. Simulating high spatial resolution high severity burned area in Sierra Nevada forests for California Spotted Owl habitat climate change risk assessment and management.

    Science.gov (United States)

    Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.

    2017-12-01

    Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.

  13. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    Science.gov (United States)

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    oxidative capacity while decreasing resting energy expenditure in severely burned children.

  14. Health-related quality of life 6 months after burns among hospitalized patients: Predictive importance of mental disorders and burn severity.

    Science.gov (United States)

    Palmu, Raimo; Partonen, Timo; Suominen, Kirsi; Saarni, Samuli I; Vuola, Jyrki; Isometsä, Erkki

    2015-06-01

    Major burns are likely to have a strong impact on health-related quality of life (HRQoL). We investigated the level of and predictors for quality of life at 6 months after acute burn. Consecutive acute adult burn patients (n=107) admitted to the Helsinki Burn Centre were examined with a structured diagnostic interview (SCID) at baseline, and 92 patients (86%) were re-examined at 6 months after injury. During follow-up 55% (51/92) suffered from at least one mental disorder. The mean %TBSA was 9. TBSA of men did not differ from that of women. Three validated instruments (RAND-36, EQ-5, 15D) were used to evaluate the quality of life at 6 months. All the measures (RAND-36, EQ-5, 15D) consistently indicated mostly normal HRQoL at 6 months after burn. In the multivariate linear regression model, %TBSA predicted HRQoL in one dimension (role limitations caused by physical health problems, p=0.039) of RAND-36. In contrast, mental disorders overall and particularly major depressive disorder (MDD) during follow-up (p-values of 0.001-0.002) predicted poor HRQoL in all dimensions of RAND-36. HRQoL of women was worse than that of men. Self-perceived HRQoL among acute burn patients at 6 months after injury seems to be mostly as good as in general population studies in Finland. The high standard of acute treatment and the inclusion of small burns (%TBSAburn itself on HRQoL. Mental disorders strongly predicted HRQoL at 6 months. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  15. The early enteral feeding and rehabilitation of severely burned patients%严重烧伤患者的早期肠道营养与康复

    Institute of Scientific and Technical Information of China (English)

    邢德荣

    2002-01-01

    Objective To explore the effect of rehabilitation through analysis the early enteral feeding on the prevention of enteral infection in severely burned patients .Method A total of 22 patients with severe burns were randomly divided into an early enteral feeding group (EF) and a delayed enteral feeding group (DF). The levels of serum endotoxin were detected in the members of both groups in 1, 3, and 5 days .Result The levels of serum endotoxin in severely burned patients were significantly higher than in normal subjects (P< 0.01) . The levels of serum endotoxin in the EF group were significantly lower than in the DF group (P< 0.01). Conclusion Early enteral feeding may decrease enterogenic infection and it helps the nutrition support, improve the patient resistance, facilitate the repair of damaged tissue , so it contributes to the rehabilitation of burned patients.

  16. A comparison of wet and dry season ozone and CO over Brazil using in situ and satellite measurements

    International Nuclear Information System (INIS)

    Watson, C.E.; Fishman, J.; Gregory, G.L.; Sachse, G.W.

    1991-01-01

    Several field experiments have measured the regional effects of biomass burning. Two such experiments, designed to understand the chemistry of the Amazon rainforest during both the wet season and dry season, were conducted in the Amazon Basin. The first experiment, ABLE-2A (Amazon Boundary Layer Experiment), took place from July to August 1985, the early dry season, when biomass burning was just beginning. The second experiment, ABLE-2B, took place during the wet season, from April to May 1987, when little biomass burning was occurring. Comparing ABLE ozone data with tropospheric ozone concentrations derived from satellite data, using the method described by Fishman et al., shows a strong correlation between the direct measurements and the derived ozone concentrations, as well as a direct correlation of both to biomass burning. This comparison gives credence to the use of space-based platforms to monitor global chemistry and, in this case, the regional effects of biomass burning

  17. Analysis of the burns profile and the admission rate of severely burned adult patient to the National Burn Center of Chile after the 2010 earthquake.

    Science.gov (United States)

    Albornoz, Claudia; Villegas, Jorge; Sylvester, Marilu; Peña, Veronica; Bravo, Iside

    2011-06-01

    Chile is located in the Ring of Fire, in South America. An earthquake 8.8° affected 80% of the population in February 27th, 2010. This study was conducted to assess any change in burns profile caused by the earthquake. This was an ecologic study. We compared the 4 months following the earthquake in 2009 and 2010. age, TBSA, deep TBSA, agent, specific mortality rate and rate of admissions to the National burn Center of Chile. Mann-Whitney test and a Poisson regression were performed. Age, agent, TBSA and deep TBSA percentages did not show any difference. Mortality rate was lower in 2010 (0.52 versus 1.22 per 1,000,000 habitants) but no meaningful difference was found (Poisson regression p = 0.06). Admission rate was lower in 2010, 4.6 versus 5.6 per 1,000,000 habitants, but no differences were found (p = 0.26). There was not any admissions directly related to the earthquake. As we do not have incidence registries in Chile, we propose to use the rate of admission to the National Burn Reference Center as an incidence estimator. There was not any significant difference in the burn profile, probably because of the time of the earthquake (3 am). We conclude the earthquake did not affect the way the Chilean people get burned. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  18. Top-down Estimates of Isoprene Emissions in Australia Inferred from OMI Satellite Data.

    Science.gov (United States)

    Greenslade, J.; Fisher, J. A.; Surl, L.; Palmer, P. I.

    2017-12-01

    Australia is a global hotspot for biogenic isoprene emission factors predicted by process-based models such as the Model of Emissions of Gases and Aerosols from Nature (MEGAN). It is also prone to increasingly frequent temperature extremes that can drive episodically high emissions. Estimates of biogenic isoprene emissions from Australia are poorly constrained, with the frequently used MEGAN model overestimating emissions by a factor of 4-6 in some areas. Evaluating MEGAN and other models in Australia is difficult due to sparse measurements of emissions and their ensuing chemical products. In this talk, we will describe efforts to better quantify Australian isoprene emissions using top-down estimates based on formaldehyde (HCHO) observations from the OMI satellite instrument, combined with modelled isoprene to HCHO yields obtained from the GEOS-Chem chemical transport model. The OMI-based estimates are evaluated using in situ observations from field campaigns conducted in southeast Australia. We also investigate the impact on the inferred emission of horizontal resolution used for the yield calculations, particularly in regions on the boundary between low- and high-NOx chemistry. The prevalence of fire smoke plumes roughly halves the available satellite dataset over Australia for much of the year; however, seasonal averages remain robust. Preliminary results show that the top-down isoprene emissions are lower than MEGAN estimates by up to 90% in summer. The overestimates are greatest along the eastern coast, including areas surrounding Australia's major population centres in Sydney, Melbourne, and Brisbane. The coarse horizontal resolution of the model significantly affects the emissions estimates, as many biogenic emitting regions lie along narrow coastal stretches. Our results confirm previous findings that the MEGAN biogenic emission model is poorly calibrated for the Australian environment and suggests that chemical transport models driven by MEGAN are likely

  19. Severe burning treatment tested on lowland pine sites

    Science.gov (United States)

    S. Little; E. B. Moore

    1953-01-01

    Since the prescribed use of fire is a fairly new silvicultural technique for preparing seedbeds for pine in the New Jersey pine region, it has been used rather cautiously. Burning treatments have been made in the winter, when periodic light fires can be easily controlled. The treatments have been used almost exclusively on upland sites.

  20. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L.

    2004-01-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs

  1. A statistical inference approach for the retrieval of the atmospheric ozone profile from simulated satellite measurements of solar backscattered ultraviolet radiation

    Science.gov (United States)

    Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.

    1994-01-01

    NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.

  2. Young Children's Acute Stress After a Burn Injury: Disentangling the Role of Injury Severity and Parental Acute Stress.

    Science.gov (United States)

    Haag, Ann-Christin; Landolt, Markus A

    2017-09-01

    Although injury severity and parental stress are strong predictors of posttraumatic adjustment in young children after burns, little is known about the interplay of these variables. This study aimed at clarifying mediation processes between injury severity and mother's, father's, and young child's acute stress. Structural equation modeling was used to examine the relationships between injury severity and parental and child acute stress. Parents of 138 burn-injured children (ages 1-4 years) completed standardized questionnaires on average 19 days postinjury. Sixteen children (11.7%) met Diagnostic and Statistical Manual of Mental Disorders, 5th edition, preschool criteria for posttraumatic stress disorder (excluding time criterion). The model revealed a significant mediation of maternal acute stress, with the effect of injury severity on a child's acute stress mediated by maternal acute stress. Paternal acute stress failed to serve as a mediating variable. Our findings confirm mothers' crucial role in the posttraumatic adjustment of young children. Clinically, mothers' acute stress should be monitored. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Satellite Remote Sensing of Severe Haze Pollution over Eastern China on June, 2012

    Science.gov (United States)

    Christopher, S. A.; Feng, N.; Guo, Y.; Hong, S.

    2012-12-01

    Severe yellow haze hit a vast portion of Eastern China during the second week on June, 2012, as large area in Hubei, Henan, Hunan, Jiangsu, Anhui, Jiangxi, Shandong, Zhejiang provinces and Shanghai city were covered by lingering haze. This massive haze conditions caused considerable inconvenience to people's daily lives. Previous global air quality studies have also shown that Eastern China is one of regions with highest fine particulate matter (PM2.5) concentrations around the world. In this study, we estimate spatial and temporal variations of PM2.5 concentrations using satellite observations of this severe haze pollution on June, 2012. Satellite derived Aerosol Optical Thickness (AOT), sites measured hourly PM2.5 and meteorological fields from surface are statistically correlated based on a multiple regression model. We also explore the utility of higher spatial resolution aerosol retrieval from MODIS. Both satellite-derived and in-situ values have peak daily mean concentrations of approximately 400 μg m-3 on June 12th, 2012 in the City of Wuhan, which is nearly 10 times of the primary standard of PM2.5 concentration of China's "Ambient Air Quality Standards" (35 μg m-3). Cities in the Eastern China, e.g. Nanjing, Hangzhou and Nanchang, have also witnessed similar peak values, along with heavy smog during the same period. Satellite observations in this case study demonstrate that the transport of smoke plumes can be one of the main drivers of regional haze pollution over Eastern China. Comparing to the U.S., current limited ground-based stations is one of the biggest problem to develop the PM2.5 monitoring program over China. Our results may suggest the potential of combining satellite remote sensing with atmospheric model to map the PM2.5 spatial concentration over the nationwide level, which can further accelerate the construction of PM2.5 monitoring network over China.

  4. Infections in critically ill burn patients.

    Science.gov (United States)

    Hidalgo, F; Mas, D; Rubio, M; Garcia-Hierro, P

    2016-04-01

    Severe burn patients are one subset of critically patients in which the burn injury increases the risk of infection, systemic inflammatory response and sepsis. The infections are usually related to devices and to the burn wound. Most infections, as in other critically ill patients, are preceded by colonization of the digestive tract and the preventative measures include selective digestive decontamination and hygienic measures. Early excision of deep burn wound and appropriate use of topical antimicrobials and dressings are considered of paramount importance in the treatment of burns. Severe burn patients usually have some level of systemic inflammation. The difficulty to differentiate inflammation from sepsis is relevant since therapy differs between patients with and those without sepsis. The delay in prescribing antimicrobials increases morbidity and mortality. Moreover, the widespread use of antibiotics for all such patients is likely to increase antibiotic resistance, and costs. Unfortunately the clinical usefulness of biomarkers for differential diagnosis between inflammation and sepsis has not been yet properly evaluated. Severe burn injury induces physiological response that significantly alters drug pharmacokinetics and pharmacodynamics. These alterations impact antimicrobials distribution and excretion. Nevertheless the current available literature shows that there is a paucity of information to support routine dose recommendations. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  5. SEMANTIC PATCH INFERENCE

    DEFF Research Database (Denmark)

    Andersen, Jesper

    2009-01-01

    Collateral evolution the problem of updating several library-using programs in response to API changes in the used library. In this dissertation we address the issue of understanding collateral evolutions by automatically inferring a high-level specification of the changes evident in a given set ...... specifications inferred by spdiff in Linux are shown. We find that the inferred specifications concisely capture the actual collateral evolution performed in the examples....

  6. Osteomyelitis in burn patients requiring skeletal fixation

    NARCIS (Netherlands)

    Barret, JP; Desai, MH; Herndon, DN

    Deep and severe burns often present with the exposure of musculoskeletal structures and severe deformities. Skeletal fixation, suspension and/or traction are part of their comprehensive treatment. Several factors put burn patients at risk for osteomyelitis, osteosynthesis material being one of them.

  7. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  8. Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery

    Science.gov (United States)

    Chen, Gang; Metz, Margaret R.; Rizzo, David M.; Dillon, Whalen W.; Meentemeyer, Ross K.

    2015-04-01

    Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major threats to forest health. This study examines the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels), and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions. Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery, high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation efficiency in the process of segmentation and object-based variable extraction, leading to complicated variable selection for succeeding modeling. Hence, we also assessed two widely used band reduction algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation of image objects and the subsequent performance of burn severity models using either PCA or MNF derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and MNF components were evaluated, which accounted for 10% and 20% of the total number of the original 50 spectral bands, respectively. Results show that if no band reduction was applied the models developed for the three stages of disease progression had relatively

  9. Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX)

    Science.gov (United States)

    Myhre, G.; Hoyle, C. R.; Berglen, T. F.; Johnson, B. T.; Haywood, J. M.

    2008-12-01

    The radiative forcing associated with biomass burning aerosols has been calculated over West Africa using a chemical transport model. The model simulations focus on the period of January˜February 2006 during the Dust and Biomass-burning Experiment (DABEX). All of the main aerosol components for this region are modeled including mineral dust, biomass burning (BB) aerosols, secondary organic carbon associated with BB emissions, and carbonaceous particles from the use of fossil fuel and biofuel. The optical properties of the BB aerosol are specified using aircraft data from DABEX. The modeled aerosol optical depth (AOD) is within 15-20% of data from the few available Aerosol Robotic Network (AERONET) measurement stations. However, the model predicts very high AOD over central Africa, which disagrees somewhat with satellite retrieved AOD from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). This indicates that BB emissions may be too high in central Africa or that very high AOD may be incorrectly screened out of the satellite data. The aerosol single scattering albedo increases with wavelength in our model and in AERONET retrievals, which contrasts with results from a previous biomass burning aerosol campaign. The model gives a strong negative radiative forcing of the BB aerosols at the top of the atmosphere (TOA) in clear-sky conditions over most of the domain, except over the Saharan desert where surface albedos are high. The all-sky TOA radiative forcing is quite inhomogeneous with values varying from -10 to 10 W m-2. The regional mean TOA radiative forcing is close to zero for the all-sky calculation and around -1.5 W m-2 for the clear-sky calculation. Sensitivity simulations indicate a positive regional mean TOA radiative forcing of up to 3 W m-2.

  10. Plasma NGAL predicts early acute kidney injury no earlier than s-creatinine or cystatin C in severely burned patients.

    Science.gov (United States)

    Rakkolainen, Ilmari; Vuola, Jyrki

    2016-03-01

    Neutrophil gelatinase-associated lipocalin (NGAL) is a novel biomarker used in acute kidney injury (AKI) diagnostics. Studies on burn patients have highlighted it as a promising biomarker for early detection of AKI. This study was designed to discover whether plasma NGAL is as a biomarker superior to serum creatinine and cystatin C in detecting AKI in severely burned patients. Nineteen subjects were enrolled from March 2013 to September 2014 in the Helsinki Burn Centre. Serum creatinine, cystatin C, and plasma NGAL were collected from the patients at admission and every 12h during the first 48h and thereafter daily until seven days following admission. AKI was defined by acute kidney injury network criteria. Nine (47%) developed AKI during their intensive care unit stay and two (11%) underwent renal replacement therapy. All biomarkers were significantly higher in the AKI group but serum creatinine- and cystatin C values reacted more rapidly to changes in kidney function than did plasma NGAL. Plasma NGAL tended to rise on average 72h±29h (95% CI) later in patients with early AKI than did serum creatinine. Area-under-the-curve values calculated for each biomarker were 0.92 for serum creatinine, 0.87 for cystatin C, and 0.62 for plasma NGAL predicting AKI by the receiver-operating-characteristic method. This study demonstrated serum creatinine and cystatin C as faster and more reliable biomarkers than plasma NGAL in detecting early AKI within one week of injury in patients with severe burns. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. The Use of Virtual Reality Facilitates Dialectical Behavior Therapy® "Observing Sounds and Visuals" Mindfulness Skills Training Exercises for a Latino Patient with Severe Burns: A Case Study.

    Science.gov (United States)

    Gomez, Jocelyn; Hoffman, Hunter G; Bistricky, Steven L; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J; Linehan, Marsha M

    2017-01-01

    Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions

  12. Improving satellite retrievals of NO2 in biomass burning regions

    Science.gov (United States)

    Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.

    2010-12-01

    The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the

  13. FIVE-YEAR OUTCOMES AFTER LONG-TERM OXANDROLONE ADMINISTRATION IN SEVERELY BURNED CHILDREN: A RANDOMIZED CLINICAL TRIAL.

    Science.gov (United States)

    Reeves, Patrick T; Herndon, David N; Tanksley, Jessica D; Jennings, Kristofer; Klein, Gordon L; Mlcak, Ronald P; Clayton, Robert P; Crites, Nancy N; Hays, Joshua P; Andersen, Clark; Lee, Jong O; Meyer, Walter; Suman, Oscar E; Finnerty, Celeste C

    2016-04-01

    Administration of oxandrolone, a nonaromatizable testosterone analog, to children for 12 months following severe burn injury has been shown to improve height, increase bone mineral content (BMC), reduce cardiac work, and augment muscle strength. Surprisingly, the increase in BMC persists well beyond the period of oxandrolone administration. This study was undertaken to determine if administration of oxandrolone for 2 years yields greater effects on long-term BMC and bone mineral density (BMD). Patients between 0 and 18 years of age with ≥30% of total body surface area burned were consented to an IRB-approved protocol and randomized to receive either placebo (n = 84) or 0.1 mg/kg oxandrolone orally twice daily for 24 months (n = 35). Patients were followed prospectively from the time of admission until 5 years postburn in a single-center, intent-to-treat setting. Height, weight, BMC, and BMD were recorded annually through 5 years postinjury. The long-term administration of oxandrolone for 16 ± 1 months postburn (range, 12.1-25.2 months) significantly increased whole-body (WB) BMC (p patients who were in growth spurt years (7-18 years). When adjusted for height, sex, and age, LS BMD was found to significantly increase with long-term oxandrolone administration (p patients receiving oxandrolone exhibited LS BMD z scores below -2.0 as compared with controls, indicating a significantly reduced risk for future fracture with oxandrolone administration. Long-term oxandrolone patients had significantly greater height velocity than controls throughout the first 2-year postburn (p patients receiving long-term oxandrolone to previously described patients receiving 12 months of oxandrolone revealed that long-term oxandrolone administration imparted significantly greater increases in WB-BMC, WB-BMD, and LS-BMD (p burned pediatric patients significantly improves WB BMC, LS BMC, LS BMD, and height velocity. The administration of long-term oxandrolone was more efficacious than

  14. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    Science.gov (United States)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  15. Prehospital cooling of severe burns: Experience of the Emergency ...

    African Journals Online (AJOL)

    Only cooling performed by the patient, their family, bystanders or prehospital staff was recorded. Cooling performed by the Edendale Hospital ED staff was not included. Duration of cooling with water was documented as per the report given by the patient. Variables assessed included age, gender, time of burn, day of week,.

  16. Surgical treatment and management of the severely burn patient: Review and update.

    Science.gov (United States)

    Gacto-Sanchez, P

    Since one of the main challenges in treating acute burn injuries is preventing infection, early excising of the eschar and covering of the wound becomes critical. Non-viable tissue is removed by initial aggressive surgical debridement. Many surgical options for covering the wound bed have been described, although split-thickness skin grafts remain the standard for the rapid and permanent closure of full-thickness burns. Significant advances made in the past decades have greatly improved burns patient care, as such that major future improvements in survival rates seem to be more difficult. Research into stem cells, grafting, biomarkers, inflammation control, and rehabilitation will continue to improve individualized care and create new treatment options for these patients. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  17. A Method of Mapping Burned Area Using Chinese FengYun-3 MERSI Satellite Data

    Science.gov (United States)

    Shan, T.

    2017-12-01

    Wildfire is a naturally reoccurring global phenomenon which has environmental and ecological consequences such as effects on the global carbon budget, changes to the global carbon cycle and disruption to ecosystem succession. The information of burned area is significant for post disaster assessment, ecosystems protection and restoration. The Medium Resolution Spectral Imager (MERSI) onboard FENGYUN-3C (FY-3C) has shown good ability for fire detection and monitoring but lacks recognition among researchers. In this study, an automated burned area mapping algorithm was proposed based on FY-3C MERSI data. The algorithm is generally divided into two phases: 1) selection of training pixels based on 1000-m resolution MERSI data, which offers more spectral information through the use of more vegetation indices; and 2) classification: first the region growing method is applied to 1000-m MERSI data to calculate the core burned area and then the same classification method is applied to the 250-m MERSI data set by using the core burned area as a seed to obtain results at a finer spatial resolution. An evaluation of the performance of the algorithm was carried out at two study sites in America and Canada. The accuracy assessment and validation were made by comparing our results with reference results derived from Landsat OLI data. The result has a high kappa coefficient and the lower commission error, indicating that this algorithm can improve the burned area mapping accuracy at the two study sites. It may then be possible to use MERSI and other data to fill the gaps in the imaging of burned areas in the future.

  18. The Fire Locating and Modeling of Burning Emissions (FLAMBE) Project

    Science.gov (United States)

    Reid, J. S.; Prins, E. M.; Westphal, D.; Richardson, K.; Christopher, S.; Schmidt, C.; Theisen, M.; Eck, T.; Reid, E. A.

    2001-12-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE) project was initiated by NASA, the US Navy and NOAA to monitor biomass burning and burning emissions on a global scale. The idea behind the mission is to integrate remote sensing data with global and regional transport models in real time for the purpose of providing the scientific community with smoke and fire products for planning and research purposes. FLAMBE is currently utilizing real time satellite data from GOES satellites, fire products based on the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) are generated for the Western Hemisphere every 30 minutes with only a 90 minute processing delay. We are currently collaborating with other investigators to gain global coverage. Once generated, the fire products are used to input smoke fluxes into the NRL Aerosol Analysis and Prediction System, where advection forecasts are performed for up to 6 days. Subsequent radiative transfer calculations are used to estimate top of atmosphere and surface radiative forcing as well as surface layer visibility. Near real time validation is performed using field data collected by Aerosol Robotic Network (AERONET) Sun photometers. In this paper we fully describe the FLAMBE project and data availability. Preliminary result from the previous year will also be presented, with an emphasis on the development of algorithms to determine smoke emission fluxes from individual fire products. Comparisons to AERONET Sun photometer data will be made.

  19. Regional biomass burning trends in India: Analysis of satellite fire data

    Indian Academy of Sciences (India)

    humans have dramatically influenced biomass burn- ing for agricultural needs ... implications for climatic change as a result of land- scape change ... Comprehensive modelling-based emission esti- mates of .... Cloud coverage could be also a ...

  20. [Effects of early enteral nutrition in the treatment of patients with severe burns].

    Science.gov (United States)

    Wu, Y W; Liu, J; Jin, J; Liu, L J; Wu, Y F

    2018-01-20

    Objective: To investigate the effects of early enteral nutrition (EEN) in the treatment of patients with severe burns. Methods: Medical records of 52 patients with severe burns hospitalized in the three affiliations of authors from August to September in 2014 were retrospectively analyzed and divided into EEN group ( n =28) and non-early enteral nutrition (NEEN) group ( n =24) according to the initiation time of enteral nutrition. On the basis of routine treatment, enteral nutrition was given to patients in group EEN within post injury day (POD) 3, while enteral nutrition was given to patients in group NEEN after POD 3. The following items were compared between patients of the two groups, such as the ratio of enteral nutrition intake to total energy intake, the ratio of parenteral nutrition intake to total energy intake, the ratio of total energy intake to energy target on POD 1, 2, 3, 4, 5, 6, 7, 14, 21, and 28, the levels of prealbumin, serum creatinine, blood urea nitrogen, total bilirubin, direct bilirubin, and Acute Physiology and Chronic Health Evaluation Ⅱ (APACHE Ⅱ) score on POD 1, 3, 7, 14, and 28, the first operation time, the number of operations, and the frequencies of abdominal distension, diarrhea, vomiting, aspiration, catheter blockage, and low blood sugar within POD 28. Data were processed with χ (2)test, t test, Wilcoxon rank sum test, and Bonferroni correction. Results: (1) The ratio of parenteral nutrition intake to total energy intake of patients in group EEN on POD 1 was obviously lower than that in group NEEN ( Z =2.078, P 0.05). On POD 28, the prealbumin level of patients in group EEN was obviously higher than that in group NEEN ( t =3.163, P 0.05). (3) The APACHE Ⅱ scores of patients in group EEN were (22.5±3.1) and (15.6±3.8) points respectively on POD 1 and 3, which were close to (23.6±3.0) and (17.6±4.2) points of patients in group NEEN ( t =1.352, 1.733, P >0.05). The APACHE Ⅱ scores of patients in group EEN on POD 7, 14

  1. Accuracy of burn size estimation in patients transferred to adult Burn Units in Sydney, Australia: an audit of 698 patients.

    Science.gov (United States)

    Harish, Varun; Raymond, Andrew P; Issler, Andrea C; Lajevardi, Sepehr S; Chang, Ling-Yun; Maitz, Peter K M; Kennedy, Peter

    2015-02-01

    The purpose of this study was to compare burn size estimation between referring centres and Burn Units in adult patients transferred to Burn Units in Sydney, Australia. A review of all adults transferred to Burn Units in Sydney, Australia between January 2009 and August 2013 was performed. The TBSA estimated by the referring institution was compared with the TBSA measured at the Burns Unit. There were 698 adults transferred to a Burns Unit. Equivalent TBSA estimation between the referring hospital and Burns Unit occurred in 30% of patients. Overestimation occurred at a ratio exceeding 3:1 with respect to underestimation, with the difference between the referring institutions and Burns Unit estimation being statistically significant (Pburn-injured patients as well as in patients transferred more than 48h after the burn (Pburn (Pburns (≥20% TBSA) were found to have more satisfactory burn size estimations compared with less severe injuries (burn size assessment by referring centres. The systemic tendency for overestimation occurs throughout the entire TBSA spectrum, and persists with increasing time after the burn. Underestimation occurs less frequently but rises with increasing time after the burn and with increasing TBSA. Severe burns (≥20% TBSA) are more accurately estimated by the referring hospital. The inaccuracies in burn size assessment have the potential to result in suboptimal treatment and inappropriate referral to specialised Burn Units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  2. View of OMS burn from the payload bay

    Science.gov (United States)

    1982-01-01

    View of Orbital Maneuvering System (OMS) burn from the payload bay. The closed cradles which held the communication satellites Columbia deployed are visible in the center of the frame. Parts of the spacecraft's wings can be seen on both the port and starboard sides can be seen. The vertical stabilizer is flanked by the twin OMS pods.

  3. Sedation and Analgesia in Burn

    Directory of Open Access Journals (Sweden)

    Özkan Akıncı

    2011-07-01

    Full Text Available Burn injury is one of the most serious injuries that mankind may face. In addition to serious inflammation, excessive fluid loss, presence of hemodynamic instability due to intercurrent factors such as debridements, infections and organ failure, very different levels and intensities of pain, psychological problems such as traumatic stress disorder, depression, delirium at different levels that occur in patient with severe burn are the factors which make it difficult to provide the patient comfort. In addition to a mild to moderate level of baseline permanent pain in burn patients, which is due to tissue damage, there is procedural pain as well, which occurs by treatments such as grafting and dressings, that are severe, short-term burst style 'breakthrough' pain. Movement and tactile stimuli are also seen in burn injury as an effect to sensitize the peripheral and central nervous system. Even though many burn centers have established protocols to struggle with the pain, studies show that pain relief still inadequate in burn patients. Therefore, the treatment of burn pain and the prevention of possible emergence of future psychiatric problems suc as post-traumatic stress disorder, the sedative and anxiolytic agents should be used as a recommendation according to the needs and hemodynamic status of individual patient. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 26-30

  4. Effects of radiation, burn and combined radiation-burn injury on hemodynamics

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianming; Xiao Jiasi

    1996-01-01

    Changes in hemodynamics after radiation, burn and combined radiation burn injury within eight hours post injury were studied. The results indicate: (1) Shock of rats in the combined injury group is more severe than that in the burn group. One of the reasons is that the blood volume in the combined injury group is less than that in the burn group. Radiation injury plays an important role in this effect, which enhances the increase in vascular permeability and causes the loss of plasma. (2) Decrease in cardiac output and stroke work and increase in vascular resistance in the combined radiation burn group are more drastic than those in the burn group, which may cause and enhance shock. Replenishing fluid is useful for recovery of hemodynamics. (3) Rb uptake is increased in the radiation group which indicates that compensated increase of myocardial nutritional blood flow may take place before the changes of hemodynamics and shock. Changes of Rb uptake in the combined injury group is different from that in the radiation groups and in the burn group. The results also suggest that changes of ion channel activities may occur to a different extent after injury. (4) Verapamil is helpful to the recovery of hemodynamics post injury. It is better to combine verapamil with replenishing fluid

  5. Global analysis of the persistence of the spectral signal associated with burned areas

    Science.gov (United States)

    Melchiorre, A.; Boschetti, L.

    2015-12-01

    Systematic global burned area maps at coarse spatial resolution (350 m - 1 km) have been produced in the past two decades from several Earth Observation (EO) systems (including MODIS, Spot-VGT, AVHRR, MERIS), and have been extensively used in a variety of applications related to emissions estimation, fire ecology, and vegetation monitoring (Mouillot et al. 2014). There is however a strong need for moderate to high resolution (10-30 m) global burned area maps, in order to improve emission estimations, in particular on heterogeneous landscapes and for local scale air quality applications, for fire management and environmental restoration, and in support of carbon accounting (Hyer and Reid 2009; Mouillot et al. 2014; Randerson et al. 2012). Fires causes a non-permanent land cover change: the ash and charcoal left by the fire can be visible for a period ranging from a few weeks in savannas and grasslands ecosystems, to over a year in forest ecosystems (Roy et al. 2010). This poses a major challenge for designing a global burned area mapping system from moderate resolution (10-30 m) EO data, due to the low revisit time frequency of the satellites (Boschetti et al. 2015). As a consequence, a quantitative assessment of the permanence of the spectral signature of burned areas at global scale is a necessary step to assess the feasibility of global burned area mapping with moderate resolution sensors. This study presents a global analysis of the post-fire reflectance of burned areas, using the MODIS MCD45A1 global burned area product to identify the location and timing of burning, and the MO(Y)D09 global surface reflectance product to retrieve the time series of reflectance values after the fire. The result is a spatially explicit map of persistence of burned area signal, which is then summarized by landcover type, and by fire zone using the subcontinental regions defined by Giglio et al. (2006).

  6. FIVE-YEAR OUTCOMES AFTER LONG-TERM OXANDROLONE ADMINISTRATION IN SEVERELY BURNED CHILDREN: A RANDOMIZED CLINICAL TRIAL

    OpenAIRE

    Reeves, Patrick T; Herndon, David N; Tanksley, Jessica D; Jennings, Kristofer; Klein, Gordon L; Mlcak, Ronald P; Clayton, Robert P; Crites, Nancy N; Hays, Joshua P; Andersen, Clark; Lee, Jong O; Meyer, Walter; Suman, Oscar E; Finnerty, Celeste C

    2016-01-01

    Administration of oxandrolone, a non-aromatizable testosterone analog, to children for 12 months following severe burn injury has been shown to improve height, increase bone mineral content (BMC), reduce cardiac work, and augment muscle strength. Surprisingly, the increase in BMC persists well beyond the period of oxandrolone administration. This study was undertaken to determine if administration of oxandrolone for 2 years yields greater effects on long-term BMC and bone mineral density (BMD...

  7. The Use of Virtual Reality Facilitates Dialectical Behavior Therapy® “Observing Sounds and Visuals” Mindfulness Skills Training Exercises for a Latino Patient with Severe Burns: A Case Study

    Science.gov (United States)

    Gomez, Jocelyn; Hoffman, Hunter G.; Bistricky, Steven L.; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V.; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J.; Linehan, Marsha M.

    2017-01-01

    Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions

  8. The Use of Virtual Reality Facilitates Dialectical Behavior Therapy® “Observing Sounds and Visuals” Mindfulness Skills Training Exercises for a Latino Patient with Severe Burns: A Case Study

    Directory of Open Access Journals (Sweden)

    Jocelyn Gomez

    2017-09-01

    Full Text Available Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT® by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA severe flame burn injury.Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session.Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home.Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in

  9. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: A biochemical and histopathological study.

    Science.gov (United States)

    Gokakin, Ali Kagan; Deveci, Koksal; Kurt, Atilla; Karakus, Boran Cihat; Duger, Cevdet; Tuzcu, Mehmet; Topcu, Omer

    2013-09-01

    Severe burn induces biochemical mediators such as reactive oxygen species that leads to lipid peroxidation which may have a key role in formation of acute lung injury (ALI). Sildenafil is a selective and potent inhibitor of cyclic guanosine monophosphate specific phosphodiesterase-5. Sildenafil preserves alveolar growth, angiogenesis, reduces inflammation and airway reactivity. The purpose of the present study was to evaluate the effects of different dosages of sildenafil in ALI due to severe scald burn in rats. Twenty-four rats were subjected to 30% total body surface area severe scald injury and were randomly divided into three equal groups as follow: control, 10 and 20mg/kg sildenafil groups. Levels of malondialdehyde (MDA), activities of glutathione peroxidase (Gpx), catalase (Cat), total oxidative stress (TOS), and total antioxidative capacity (TAC) were measured in both tissues and serums. Oxidative stress index (OSI) was calculated. A semi-quantitative scoring system was used for the evaluation of histopatological findings. Sildenafil increased Gpx, Cat, TAC and decreased MDA, TOS and OSI. Sildenafil decreased inflammation scores in lungs. Our results reveal that sildenafil is protective against scald burn related ALI by decreasing oxidative stress and inflammation and the dosage of 10mg/kg could be apparently better than 20mg/kg. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  10. Cost of nursing most frequent procedures performed on severely burned patients

    Directory of Open Access Journals (Sweden)

    Talita de Oliveira Melo

    Full Text Available ABSTRACT Objective: to identify the mean direct cost (MDC of the most frequent procedures performed by nursing professionals on severely burned patients in an Intensive Care Unit. Method: exploratory-descriptive quantitative single-case study. The MDC was calculated by multiplying time (timed spent by nursing professionals in the performance of the procedures by the unit cost of direct labor, and adding the costs of material and medicine/solutions. Results: a MDC of US$ 0.65 (SD=0.36 was obtained for "vital signs monitoring"; US$ 10.00 (SD=24.23 for "intravenous drug administration"; US$ 5.90 (SD=2.75 for "measurement of diuresis"; US$ 0.93 (SD=0.42 for "capillary blood glucose monitoring"; and US$ 99.75 (SD=129.55 for "bandaging". Conclusion: the knowledge developed can support managerial decision-making, contribute to the efficiency distribution of the resources involved and, when possible, provide cost-containment or cost-minimization strategies without impairing the quality of nursing care.

  11. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  12. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.

    Science.gov (United States)

    Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine

    Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover

  13. Analytic studies on satellite detection of severe, two-cell tornadoes

    Science.gov (United States)

    Carrier, G. F.; Dergarabedian, P.; Fendell, F. E.

    1979-01-01

    From funnel-cloud-length interpretation, the severe tornado is characterized by peak swirl speed relative to the axis of rotation of about 90 m/s. Thermohydrodynamic achievement of the pressure deficit from ambient necessary to sustain such swirls requires that a dry, compressionally heated, non-rotating downdraft of initially tropopause-level air lie within an annulus of rapidly swirling, originally low-level air ascending on a near-moist-adiabatic locus of thermodynamic states. The two-cell structure furnishes an observable parameter possibly accessible to a passively instrumented, geosynchronous meteorological satellite with mesoscale resolution, for early detection of a severe tornado. Accordingly, the low-level turnaround region, in which the surface inflow layer separates to become a free ascending layer and for which inviscid modeling suffices, is examined quantitatively. Preliminary results indicate that swirl overshoot, i.e., swirl speeds in the turnaround region in excess of the maximum achieved in the potential vortex, is modest.

  14. Outcomes of burns in the elderly: revised estimates from the Birmingham Burn Centre.

    Science.gov (United States)

    Wearn, Christopher; Hardwicke, Joseph; Kitsios, Andreas; Siddons, Victoria; Nightingale, Peter; Moiemen, Naiem

    2015-09-01

    Outcomes after burn have continued to improve over the last 70 years in all age groups including the elderly. However, concerns have been raised that survival gains have not been to the same magnitude in elderly patients compared to younger age groups. The aims of this study were to analyze the recent outcomes of elderly burn injured patients admitted to the Birmingham Burn Centre, compare data with a historical cohort and published data from other burn centres worldwide. A retrospective review was conducted of all patients ≥65 years of age, admitted to our centre with cutaneous burns, between 2004 and 2012. Data was compared to a previously published historical cohort (1999-2003). 228 patients were included. The observed mortality for the study group was 14.9%. The median age of the study group was 79 years, the male to female ratio was 1:1 and median Total Body Surface Area (TBSA) burned was 5%. The incidence of inhalation injury was 13%. Median length of stay per TBSA burned for survivors was 2.4 days/% TBSA. Mortality has improved in all burn size groups, but differences were highly statistically significant in the medium burn size group (10-20% TBSA, p≤0.001). Burn outcomes in the elderly have improved over the last decade. This reduction has been impacted by a reduction in overall injury severity but is also likely due to general improvements in burn care, improved infrastructure, implementation of clinical guidelines and increased multi-disciplinary support, including Geriatric physicians. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  15. Acute pain management in burn patients

    DEFF Research Database (Denmark)

    Gamst-Jensen, Hejdi; Vedel, Pernille Nygaard; Lindberg-Larsen, Viktoria Oline

    2014-01-01

    OBJECTIVE: Burn patients suffer excruciating pain due to their injuries and procedures related to surgery, wound care, and mobilization. Acute Stress Disorder, Post-Traumatic Stress Disorder, chronic pain and depression are highly prevalent among survivors of severe burns. Evidence-based pain...... patients. The most highly recommended guidelines provided clear and accurate recommendations for the nursing and medical staff on pain management in burn patients. We recommend the use of a validated appraisal tool such as the AGREE instrument to provide more consistent and evidence-based care to burn...

  16. Long-term skeletal muscle mitochondrial dysfunction is associated with hypermetabolism in severely burned children

    Science.gov (United States)

    The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, we determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to two years post-injury. Biopsies were collected from the m. vastus lateralis...

  17. Community integration after burn injuries.

    Science.gov (United States)

    Esselman, P C; Ptacek, J T; Kowalske, K; Cromes, G F; deLateur, B J; Engrav, L H

    2001-01-01

    Evaluation of community integration is a meaningful outcome criterion after major burn injury. The Community Integration Questionnaire (CIQ) was administered to 463 individuals with major burn injuries. The CIQ results in Total, Home Integration, Social Integration, and Productivity scores. The purposes of this study were to determine change in CIQ scores over time and what burn injury and demographic factors predict CIQ scores. The CIQ scores did not change significantly from 6 to 12 to 24 months postburn injury. Home integration scores were best predicted by sex and living situation; Social Integration scores by marital status; and Productivity scores by functional outcome, burn severity, age, and preburn work factors. The data demonstrate that individuals with burn injuries have significant difficulties with community integration due to burn and nonburn related factors. CIQ scores did not improve over time but improvement may have occurred before the initial 6-month postburn injury follow-up in this study.

  18. The efficacy and safety of oxandrolone treatment for patients with severe burns: A systematic review and meta-analysis.

    Science.gov (United States)

    Li, Hui; Guo, Yinan; Yang, Zhenyu; Roy, Mridul; Guo, Qulian

    2016-06-01

    The objective of this systematic review and meta-analysis was to evaluate the efficacy and safety of using oxandrolone in patients with severe burns. PubMed, Medline, Ovid, Cochrane Library, Elsevier Science, ProQuest, and Springer Link databases were searched. Randomized trials were included, and clinically important measures were selected. The outcomes were pooled with Revman 5.2. Other outcomes that could not be pooled were described in detail. Finally, 15 randomized controlled trials (RCTs) were identified for analysis in this review, including 806 participants. 1. Mortality, infection, and hepatic function: Oxandrolone therapy did not affect mortality (relative risk (RR)=0.85, 95% confidence interval (CI)=(0.38, 1.89), P=0.69) or infection (RR=0.87, (0.69, 1.11), P=0.26). The two groups (oxandrolone group vs. control group) showed no significant difference in liver dysfunction (RR=1.15, (0.83, 1.59), P=0.41). All the 15 RCTs reported no incidence of hepatic insufficiency in controls or treatment groups. 2. In the catabolic phase: Treatment with oxandrolone shortened length of stay by 3.02 (2.37, 3.66) days, donor-site healing time by 4.41 (3.41, 5.41) days, the time between surgical procedures by 0.63 (0.11, 1.16) days, as well as reduced weight loss by 5 (3.70, 6.30) kg and nitrogen loss by 8.19 (6.87, 9.52) g/day, with all PTreatment with oxandrolone shortened the length of stay to 6.45 (4.20, 8.69) days, as well as decreased weight loss by 0.86 (0.76, 0.96) kg/week and reduction of lean body mass by 5% (3.34, 6.66), with all Ptreatment led to an additional gain in lean body mass of 3.99% (3.08, 4.89) after 6 months and 10.78% (9.92, 11.64) after 12 months in patients with severe burns, with all Ptreatment of severe burns with oxandrolone is significantly effective without obvious side effects. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  19. Pediatric burn rehabilitation: Philosophy and strategies

    Directory of Open Access Journals (Sweden)

    Shohei Ohgi

    2013-09-01

    Full Text Available Burn injuries are a huge public health issue for children throughout the world, with the majority occurring in developing countries. Burn injuries can leave a pediatric patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Rehabilitation is an essential and integral part of pediatric burn treatment. The aim of this article was to review the literature on pediatric burn rehabilitation from the Medline, CINAHL, and Web of Science databases. An attempt has been made to present the basic aspects of burn rehabilitation, provide practical information, and discuss the goals and conceptualization of rehabilitation as well as the development of rehabilitation philosophy and strategies.

  20. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  1. Children with burns referred for child abuse evaluation: Burn characteristics and co-existent injuries.

    Science.gov (United States)

    Pawlik, Marie-Christin; Kemp, Alison; Maguire, Sabine; Nuttall, Diane; Feldman, Kenneth W; Lindberg, Daniel M

    2016-05-01

    Intentional burns represent a serious form of physical abuse that must be identified to protect children from further harm. This study is a retrospectively planned secondary analysis of the Examining Siblings To Recognize Abuse (ExSTRA) network data. Our objective was to describe the characteristics of burns injuries in children referred to Child Abuse Pediatricians (CAPs) in relation to the perceived likelihood of abuse. We furthermore compare the extent of diagnostic investigations undertaken in children referred to CAPs for burn injuries with those referred for other reasons. Within this dataset, 7% (215/2890) of children had burns. Children with burns were older than children with other injuries (median age 20 months vs. 10 months). Physical abuse was perceived as likely in 40.9% (88) and unlikely in 59.1% (127). Scalds accounted for 52.6% (113) and contact burns for 27.6% (60). Several characteristics of the history and burn injury were associated with a significantly higher perceived likelihood of abuse, including children with reported inflicted injury, absent or inadequate explanation, hot water as agent, immersion scald, a bilateral/symmetric burn pattern, total body surface area ≥10%, full thickness burns, and co-existent injuries. The rates of diagnostic testing were significantly lower in children with burns than other injuries, yet the yield of skeletal survey and hepatic transaminases testing were comparable between the two groups. This would imply that children referred to CAPs for burns warrant the same level of comprehensive investigations as those referred for other reasons. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  3. The Western Australia Population-based Burn Injury Project: Using record linkage to examine long-term effects of burn injury

    Directory of Open Access Journals (Sweden)

    Janine Duke

    2017-04-01

    Both minor and severe burns were associated with increased long-term cardiovascular and musculoskeletal morbidity and mortality. These results identify treatment needs for burn patients for a prolonged time after discharge. Further research that links primary care and pharmaceutical data is required to facilitate identification of at-risk patients and appropriate treatment pathways to reduce post-burn morbidity.

  4. Outpatient presentations to burn centers: data from the Burns Registry of Australia and New Zealand outpatient pilot project.

    Science.gov (United States)

    Gabbe, Belinda J; Watterson, Dina M; Singer, Yvonne; Darton, Anne

    2015-05-01

    Most studies about burn injury focus on admitted cases. To compare outpatient and inpatient presentations at burn centers in Australia to inform the establishment of a repository for outpatient burn injury. Data for sequential outpatient presentations were collected at seven burn centers in Australia between December 2010 and May 2011 and compared with inpatient admissions from these centers recorded by the Burns Registry of Australia and New Zealand for the corresponding period. There were 788 outpatient and 360 inpatient presentations. Pediatric outpatients included more children burns (39% vs 24%). Adult outpatients included fewer males (58% vs 73%) and intentional injuries (3.3% vs 10%), and more scald (46% vs 30%) and contact burns (24% vs 13%). All pediatric, and 98% of adult, outpatient presentations involved a %TBSAburns presenting to burn centers differed to inpatient admission data, particularly with respect to etiology and burn severity, highlighting the importance of the need for outpatient data to enhance burn injury surveillance and inform prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  5. Annual and diurnal african biomass burning temporal dynamics

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2009-05-01

    Full Text Available Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near

  6. The Effect of Prescribed Burns and Wildfire on Vegetation in Bastrop State Park, TX

    Science.gov (United States)

    Justice, C. J.

    2014-12-01

    In 2011, central Texas had its worst drought since the 1950's. This, in conjunction with the strong winds produced by Tropical Storm Lee created conditions that made possible the Bastrop County Complex Fire in September 2011. These record-breaking wildfires burned over 95% of the 6,565-acre Bastrop State Park (BSP). Since 2003, BSP had been using prescribed burns as a management practice to reduce fuel load and prevent high severity wildfires. Although these prescribed fires did not prevent the 2011 wildfires they may have mitigated their effects. This study considered the effect of prescribed burn history and wildfire burn severity on vegetation recovery in BSP since the 2011 wildfire. The hypotheses of this study are that prescribed burn history and wildfire burn severity separately and jointly have affected post wildfire vegetation. To test these hypotheses, data were collected in 2013 from 46 plots across BSP using the Fire Effects Monitoring and Inventory (FIREMON) protocol to determine herbaceous plant density, shrub density, overstory density, and midstory tree density. Data were analyzed using analyses of variance (ANOVA) to determine the effects of prescribed fire and wildfire severity on these vegetation measurements. It was found that more severely burned plots had more herbaceous plants, fewer midstory trees, and lower shrub densities than less severely burned plots. Contrary to an initial hypotheses, there were few relationships between prescribed burn history and wildfire effects. The only significant effect detected for prescribed burning was the positive effect of prescribed fire on midstory tree density, but only for plots that were not severely burned in the wildfire. In this system, burn severity had a greater effect on post-wildfire vegetation than prescribed burns.

  7. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    Science.gov (United States)

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  8. Investigating the depth of thermal burns in elephants

    Directory of Open Access Journals (Sweden)

    A. Shakespeare

    2006-06-01

    Full Text Available Histological examination of burn injuries in elephants revealed that the depth was not as severe as expected from clinical observation. Although the actual burn depth was deep, the thickness of elephant skin, especially the dermis, resulted in the lesions being classified as less severe than expected. Examination of skin samples from selected areas showed that most lesions were either superficial (1st degree or superficial partial-thickness (superficial 2nd degree burns with the occasional deep partial thickness (deep 2nd degree wound. These lesions however, resulted in severe complications that eventually led to the death of a number of the elephants.

  9. Subgroup analysis of continuous renal replacement therapy in severely burned patients.

    Directory of Open Access Journals (Sweden)

    Jaechul Yoon

    Full Text Available Continuous renal replacement therapy (CRRT is administered to critically ill patients with renal injuries as renal replacement or renal support. We aimed to identify predictors of mortality among burn patients receiving CRRT, and to investigate clinical differences according to acute kidney injury (AKI status. This retrospective observational study evaluated 216 Korean burn patients who received CRRT at a burn intensive care unit. Patients were categorized by AKI status. Data were collected regarding arterial pH, laboratory results, ratio of arterial oxygen partial pressure to fractional inspired oxygen (PF ratio, and urine production. Among surviving patients, CRRT duration and the sequential organ failure assessment score were 6.5 days and 4.7 in the non-AKI group and 23.4 days and 7.4 in the AKI group, respectively (p = 0.003 and p = 0.008. On logistic regression analyses, mortality was significantly associated with a pH of 5.0 mEg/L (p = 0.045, creatinine levels of >2.0 mg/dL (p = 0.011, lactate levels of >2 mmol/L (p2 mmol/L, and a platelet count of 2 mg/dL. In the non-AKI group, poor outcomes were associated with lactate levels of >1.5 mmol/L, a PF ratio of 1.2 mg/dL. Duration of the CRRT application and the requirement for either renal replacement or renal support at the initiation of CRRT application are important considerations depending on its application.

  10. Fancy a cup of scald? - The role of hot beverage burns in paediatric burns admissions in Ireland.

    Science.gov (United States)

    McGuire, F; Hegarty, M; Jennings, P; Marsden, P; Smith, L

    2017-06-09

    Burns and scalds are preventable injuries in children that typically occur in the home. This study aimed to examine the role of hot beverage scalds in paediatric burn admissions in order to identify key target audiences for future safety strategies. Using the Hospital Inpatient Enquiry System (HIPE) a retrospective study of paediatric burn admissions in 2014 examined demographics, cause and severity of injury and location of occurrence. There were 233 paediatric discharges (age 0-18 yrs.) with a principal diagnosis of burn injury; 57% of these occurred in children under three years and 95% of these occurred in the home. Scalds caused 74% of burn injuries; hot beverages accounted for least 33% of these of which 77% were partial thickness and 73% were upper body burns. Effective hot beverage scald prevention strategies, targeted towards caregivers in the home, are required.

  11. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  12. Moisture convergence using satellite-derived wind fields - A severe local storm case study

    Science.gov (United States)

    Negri, A. J.; Vonder Haar, T. H.

    1980-01-01

    Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.

  13. Epidermal-dermal crosstalk during burn wound scar maturation

    NARCIS (Netherlands)

    T.E. Hakvoort (Eveline)

    1999-01-01

    textabstractBurn injuries arc among the worst traumas which can happen to man. The larger a burn injury, the more severe the consequences and the highcr the chance of an adverse outcome or even death. In The Netherlands each year 40,000 people visit a general practitioner for treatment of a burn

  14. The Parameters Controlling the Burning Efficiency of In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Jomaas, Grunde

    2017-01-01

    Parameters that control the burning efficiency of in-situ burning of crude oil on water were identified by studying the influence of the initial slick thickness, vaporization order, oil slick diameter, weathering state of the oil, heat losses to the water layer and heat flux to the fuel surface...... on the burning efficiency for light and heavy crude oils. These parameters were studied in several small scale and intermediate scale experimental setups. The results showed that the heat losses to the water layer increase with increasing burning time because the components in a crude oil evaporate from volatile...... to non-volatile. Due to the relatively low heat feedback (reradiation and convection, in kW/m2) to the fuel surface of small scale pool fires, as compared to large scale pool fires, these heat losses were shown to limit the burning efficiency in small scale experiments. By subjecting small scale crude...

  15. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget.

    Science.gov (United States)

    Worden, John R; Bloom, A Anthony; Pandey, Sudhanshu; Jiang, Zhe; Worden, Helen M; Walker, Thomas W; Houweling, Sander; Röckmann, Thomas

    2017-12-20

    Several viable but conflicting explanations have been proposed to explain the recent ~8 p.p.b. per year increase in atmospheric methane after 2006, equivalent to net emissions increase of ~25 Tg CH 4 per year. A concurrent increase in atmospheric ethane implicates a fossil source; a concurrent decrease in the heavy isotope content of methane points toward a biogenic source, while other studies propose a decrease in the chemical sink (OH). Here we show that biomass burning emissions of methane decreased by 3.7 (±1.4) Tg CH 4 per year from the 2001-2007 to the 2008-2014 time periods using satellite measurements of CO and CH 4 , nearly twice the decrease expected from prior estimates. After updating both the total and isotopic budgets for atmospheric methane with these revised biomass burning emissions (and assuming no change to the chemical sink), we find that fossil fuels contribute between 12-19 Tg CH 4 per year to the recent atmospheric methane increase, thus reconciling the isotopic- and ethane-based results.

  16. Inference in `poor` languages

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.

  17. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    OpenAIRE

    Abdelaziz Almostafa; Guozhu Liang; Elsayed Anwer

    2018-01-01

    Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning), erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameter...

  18. Pathophysiologic Response to Burns in the Elderly

    Directory of Open Access Journals (Sweden)

    Marc G. Jeschke

    2015-10-01

    Full Text Available Over the last decades advancements have improved survival and outcomes of severely burned patients except one population, elderly. The Lethal Dose 50 (LD50 burn size in elderly has remained the same over the past three decades, and so has morbidity and mortality, despite the increased demand for elderly burn care. The objective of this study is to gain insights on why elderly burn patients have had such a poor outcome when compared to adult burn patients. The significance of this project is that to this date, burn care providers recognize the extreme poor outcome of elderly, but the reason remains unclear. In this prospective translational trial, we have determined clinical, metabolic, inflammatory, immune, and skin healing aspects. We found that elderly have a profound increased mortality, more premorbid conditions, and stay at the hospital for longer, p  0.05, but a significant increased incidence of multi organ failure, p < 0.05. These clinical outcomes were associated with a delayed hypermetabolic response, increased hyperglycemic and hyperlipidemic responses, inversed inflammatory response, immune-compromisation and substantial delay in wound healing predominantly due to alteration in characteristics of progenitor cells, p < 0.05. In summary, elderly have substantially different responses to burns when compared to adults associated with increased morbidity and mortality. This study indicates that these responses are complex and not linear, requiring a multi-modal approach to improve the outcome of severely burned elderly.

  19. Partial-thickness burn wounds healing by topical treatment

    OpenAIRE

    Saeidinia, Amin; Keihanian, Faeze; Lashkari, Ardalan Pasdaran; Lahiji, Hossein Ghavvami; Mobayyen, Mohammadreza; Heidarzade, Abtin; Golchai, Javad

    2017-01-01

    Abstract Background: Burns are common event and associated with a high incidence of death, disability, and high costs. Centella asiatica (L.) is a medicinal herb, commonly growing in humid areas in several tropical countries that improve wound healing. On the basis of previous studies, we compared the efficacy of Centiderm versus silver sulfadiazine (SSD) in partial thickness burning patients. Methods: Study population comprised burn victims referred to Velayat Burning Hospital at Rasht, Iran...

  20. Methylated spirit burns: an ongoing problem.

    Science.gov (United States)

    Jansbeken, J R H; Vloemans, A F P M; Tempelman, F R H; Breederveld, R S

    2012-09-01

    Despite many educational campaigns we still see burns caused by methylated spirit every year. We undertook a retrospective study to analyse the impact of this problem. We retrospectively collected data of all patients with burns caused by methylated spirit over twelve years from 1996 to 2008. Our main endpoints were: incidence, age, mechanism of injury, total body surface area (TBSA) burned, burn depth, need for surgery and length of hospital stay. Ninety-seven patients with methylated spirit burns were included. During the study period there was no decrease in the number of patients annually admitted to the burn unit with methylated spirit burns. 28% of the patients (n=27) were younger than eighteen years old, 15% (n=15) were ten years old or younger. The most common cause of burns was carelessness in activities involving barbecues, campfires and fondues. Mean TBSA burned was 16% (SD 12.4). 70% (n=68) had full thickness burns. 66% (n=64) needed grafting. Mean length of hospital stay was 23 days (SD 24.7). The use of methylated spirit is an ongoing problem, which continues to cause severe burns in adults and children. Therefore methylated spirit should be banned in households. We suggest sale only in specialised shops, clear labelling and mandatory warnings. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  1. Quality of life and mediating role of patient scar assessment in burn patients.

    Science.gov (United States)

    Oh, Hyunjin; Boo, Sunjoo

    2017-09-01

    In this study, we examined the plausibility of the mediating effect of the levels of patient scar assessment on the relationship between burn severity measured with total body surface area and burn-specific health-related quality of life (HRQL) among patients with burns in South Korea. In this cross sectional descriptive study, we collected data from 100 burn patients in three burn centers specializing in burn care in South Korea. Patient scar assessment, burn specific HRQL, and burn-related characteristics were self-reported with anonymous, paper-based surveys. The findings showed a positive correlation between burn severity, patient scar assessment, and HRQL in burn patients. The evidence of this paper is that quality of life after burns more determined by scar characteristics than burn severity. In the light of the poor HRQL in burn patients, the results of this study support that improving scar status could improve patients' HRQL. Health care providers should keep in mind that patients' perspectives of their scars would be a great indicator of their HRQL, so the providers' focus should be on intensive scar management intervention in their care. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  2. Comparison of tokamak burn cycle options

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1985-01-01

    Experimental confirmation of noninductive current drive has spawned a number of suggestions as to how this technique can be used to extend the fusion burn period and improve the reactor prospects of tokamaks. Several distinct burn cycles, which employ various combinations of Ohmic and noninductive current generation, are possible, and we will study their relative costs and benefits for both a commerical reactor as well as an INTOR-class device. We begin with a review of the burn cycle options

  3. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  4. Ethnicity and etiology in burn trauma.

    Science.gov (United States)

    Papp, Anthony; Haythornthwaite, Jordan

    2014-01-01

    The purpose of this study was to retrieve data from the British Columbia Professional Firefighters Burn Unit registry, with a focus on ethnicity and how it is involved in burn trauma. It is hypothesized that mechanism, severity, and other patient characteristics are significantly different among different ethnic groups. Furthermore, it is believed that these data can be used to augment burn prevention strategies. Data for burn patients admitted from 1979 to 2009 were reviewed from the burn registry. The main focus was with differences seen among the four main ethnicities throughout the analysis, Caucasian, Aboriginal, Asian, and Indoasian, reflecting the population distribution of the region. Age and sex were also considered when looking at burn mechanism, severity, contributing and copresenting factors. Caucasians were the largest group (79.1%) and included the largest male:female ratio (3.3:1), with high numbers of flame injury (53.9%). Caucasians presented with the highest mortality (6.6% compared with 4.1% for all other ethnicities; P workplace (28.9%) injuries with a larger proportion of scald injury (38.9%). Indoasian patients included larger numbers of women (36.4%) and household scald injuries (33.9%) whereas Aboriginals suffered the most flame injuries (60.1%) in rural areas with more frequent contributing factors such as alcohol. The study found multiple significant differences in the burn injury population when segmented by ethnicity. Though the exact reasons for these differences are difficult to say with certainty, it allows a unique opportunity to focus communication and prevention efforts to specific communities.

  5. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    Science.gov (United States)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying

  6. Global burned area and biomass burning emissions from small fires

    NARCIS (Netherlands)

    Randerson, J.T; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often

  7. Predictors of PTSD symptoms in caregivers of pediatric burn survivors

    Directory of Open Access Journals (Sweden)

    Lucía Del Carmen Quezada Berumen

    2015-11-01

    Full Text Available Facing a severe injury in the children is one of the most devastating experiences that parents may face. The aim of this study was to explore the role of resilience showed by fathers and mothers of children with burns, the TBSA burned, age at the time of the burn and time since the burn in PTSD symptoms in caregivers. It was a cross-sectional study where fathers, mothers and guardians of 51 burn patients were evaluated. Results showed that the higher strength and confidence in caregivers, less severity in PTSD symptoms. The post-burn reactions of parents and guardians can affect the responses and welfare of their children. Therefore, a better understanding of factors related to the adaptation in caregivers, better attention by health services.

  8. Animal Models in Burn Research

    Science.gov (United States)

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  9. SAGE: Attribution of Biomass Burning Tracers sampled on the Greenland Ice Sheet in 2013

    Science.gov (United States)

    Soja, A. J.; Choi, H. D.; Polashenski, C.; Thomas, J. L.; Dibb, J. E.; Fairlie, T. D.; Winker, D. M.; Flanner, M.; Bergin, M.; Casey, K.; Ward, J. L.; Chen, J.; Courville, Z.; Trepte, C. R.; Lai, A.; Schauer, J. J.; Shafer, M. M.

    2016-12-01

    The SAGE team traversed and sampled the snow stratigraphy representing 2012-2014 snow accumulation in the northwest sector of the Greenland Ice Sheet (GrIS) and found evidence of aerosol deposition that originated from biomass burning (BB). Black carbon (BC) concentrations (range 2.8-43 ng/g) were closely correlated with ammonium (NH4), both of which are tracers that are indicative of BB events. Data indicated the strongest deposition events occurred in July and August of 2013. Using a combination of these in-situ samples, modeling and satellite data, the transport and attribution of deposited smoke is back-traced from the GrIS to particular fires. The Langley Research Center Trajectory Model (LaTM) is used to track deposition events from pit locations on the GrIS to particular source fires from June through August 2013, which includes 2 months when smoke is known to have strongly impacted the GrIS (July August 2013) and 1 month (June 2013) of relatively low smoke impact. Simulated smoke is injected every 100 vertical meters to 2km ( boundary layer) in the LaTM and run backwards in time and space from sample sites until coincident with fire (MODIS data). Ground-based and satellite data are used to verify transport. As an example, we focus on one case study that traces smoke from fires that started burning on July 22nd and continued to burn through July 26-29. A river of smoke crosses Canada and is transported to the GrIS, arriving August 1st-2nd. Overall, we find the largest BB events do not equate to the largest deposition events, rather this process requires a combination of: intense fires; conducive transport paths; and deposition and preservation opportunities (snowfall). Intensely burning fires produce thick smoke, which is less likely to be dispersed or diluted in transport, and the smoke is injected to higher altitudes, which ensure a faster transport. Because fire severity, extreme fire seasons, general circulation patterns and precipitating snowfall are

  10. Application of the cultured epidermal autograft "JACE(®") for treatment of severe burns: Results of a 6-year multicenter surveillance in Japan.

    Science.gov (United States)

    Matsumura, Hajime; Matsushima, Asako; Ueyama, Masashi; Kumagai, Norio

    2016-06-01

    In the 1970s, Green et al. developed a method that involved culturing keratinocyte sheets and used for treatment of burns. Since then, the take rate of cultured epidermal autograft (CEA) onto fascia, granulation tissue, or allografts has been extensively reported, while that on an artificial dermis in a large case series is not. Moreover, the contribution of CEA to patient survival has not been analyzed in a multicenter study. We conducted a 6-year multicenter surveillance on the application of the CEA "JACE(®") for treatment of burns >30% total body surface area (TBSA) across 118 Japanese hospitals. This surveillance included 216 patients and 718 graft sites for efficacy analysis. The CEA take rate at 4 weeks after grafting was evaluated, and safety was monitored until 52 weeks. In addition, the survival curve obtained in this study and the data obtained from the Tokyo Burn Unit Association (TBUA) were compared. The mean CEA take rates at week 4 were 66% (sites) and 68% (patients), and the rate on the artificial dermis was 65% for 226 sites. CEA application combined with wide split-thickness auto or patch autograft increased the CEA take rate. On comparison with the data obtained from the TBUA, which included data on individuals with burns of the same severity, CEA application was found to contribute to patient survival until 7 weeks after burn. We reported the take rate of CEA based on a 6-year multicenter surveillance. From our results, we found that the application of CEA is a useful treatment for the patients with extensive burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Explanatory Model of Resilience in Pediatric Burn Survivors.

    Science.gov (United States)

    Quezada, Lucía; González, Mónica T; Mecott, Gabriel A

    2016-01-01

    Identifying factors of adjustment in pediatric burn patients may facilitate appropriate mental health interventions postinjury. The aim of this is study was to explore the roles of both the patient's and caregivers' resilience and posttraumatic stress in pediatric burn survivor adjustment. For the purposes of the study, "51 patient-parent/guardian" dyads participated. Patients answered the Resilience Questionnaire for Children and Adolescents, and caregivers answered the Mexican Resilience Scale and the Davidson Trauma Scale. The roles of patient age, time since the burn, and size of burn injury were also considered. Statistical analyses included Spearman's ρ for correlations and structural equation modeling. P less than .05 was considered significant. Patients and caregivers reported high levels of resilience, and the majority of caregivers reported low severity of posttraumatic stress disorder symptoms. Pediatric burn survivors' resilience was associated with being younger at the time of the burn and less severity of intrusive and avoidance symptoms in caregivers; it was also associated with a higher resilience in caregivers. It can be concluded that psychological responses of caregivers of pediatric burn survivors affect the well being and positive adjustment of patients; thus psychological services for caregivers would likely have a double benefit for both caregivers and patients.

  12. Strength and Cardiorespiratory Exercise Rehabilitation for Severely Burned Patients During Intensive Care Units: A Survey of Practice.

    Science.gov (United States)

    Cambiaso-Daniel, Janos; Parry, Ingrid; Rivas, Eric; Kemp-Offenberg, Jennifer; Sen, Soman; Rizzo, Julie A; Serghiou, Michael A; Kowalske, Karen; Wolf, Steven E; Herndon, David N; Suman, Oscar E

    2018-03-22

    Minimizing the deconditioning of burn injury through early rehabilitation programs (RP) in the intensive care unit (ICU) is of importance for improving the recovery time. The aim of this study was to assess current standard of care (SOC) for early ICU exercise programs in major burn centers. We designed a survey investigating exercise RP on the ICU for burn patients with >30% total burned surface area. The survey was composed of 23 questions and submitted electronically via SurveyMonkey® to six major (pediatric and adult) burn centers in Texas and California. All centers responded and reported exercise as part of their RP on the ICU. The characteristics of exercises implemented were not uniform. All centers reported to perform resistive and aerobic exercises but only 83% reported isotonic and isometric exercises. Determination of intensity of exercise varied with 50% of centers using patient tolerance and 17% using vital signs. Frequency of isotonic, isometric, aerobic, and resistive exercise was reported as daily by 80%, 80%, 83%, and 50% of centers, respectively. Duration for all types of exercises was extremely variable. Mobilization was used as a form of exercise by 100% of burn centers. Our results demonstrate that although early RP seem to be integral during burn survivor's ICU stay, no SOC exists. Moreover, early RP are inconsistently administered and large variations exist in frequency, intensity, duration, and type of exercise. Thus, future prospective studies investigating the various components of exercise interventions are needed to establish a SOC and determine how and if early exercise benefits the burn survivor.

  13. ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61)

    International Nuclear Information System (INIS)

    Ragozzine, D.; Brown, M. E.

    2009-01-01

    Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully interacting three-point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the nonspherical primary (described by J 2 ). The nearly coplanar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inclination point to an intriguing tidal history of significant semimajor axis evolution through satellite mean-motion resonances. The orbital solution indicates that Namaka and Haumea are currently undergoing mutual events and that the mutual event season will last for next several years.

  14. Training and burn care in rural India

    Directory of Open Access Journals (Sweden)

    Chamania Shobha

    2010-10-01

    Full Text Available Burn care is a huge challenge in India, having the highest female mortality globally due to flame burns. Burns can happen anywhere, but are more common in the rural region, affecting the poor. Most common cause is flame burns, the culprit being kerosene and flammable flowing garments worn by the women. The infrastructure of healthcare network is good but there is a severe resource crunch. In order to bring a positive change, there will have to be more trained personnel willing to work in the rural areas. Strategies for prevention and training of burn team are discussed along with suggestions on making the career package attractive and satisfying. This will positively translate into improved outcomes in the burns managed in the rural region and quick transfer to appropriate facility for those requiring specialised attention.

  15. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  16. Treatment of burn injuries with keratinocyte cultures

    International Nuclear Information System (INIS)

    Syring, C.; Maenig, H.J.; Von Versen, R.; Bruck, J.

    1999-01-01

    The German Institute for Cell and Tissue Replacement (DIZG) provides burned patients with skin and amnion for a temporary wound closure. Severely burned patients (>60% BSA for adults, >40% BSA for children) were supplied with autologous and allogenic grafts from cultured keratinocytes. The keratinocyte culture is done under GMP-conditions using the method of Rheinwald and Green. The 3T3 fibroblasts were irradiated with 60 Gy and used as feeder cells to produce keratinocyte sheets within 3 weeks. In this time up to 6.000 cm are available. The sheets were harvested by detachment with dispase (1,2 U/ml), fixed to gauze and transported to the hospital. The DIZG has a 3 years experience in the treatment of burns with keratinocyte sheets. The sheets were transplanted to patients in different hospitals, the total transplanted area is about 30.000 cm. This paper describes the experiences with ten severely burned patients treated with keratinocyte sheet

  17. In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens

    in the small scale water basin. Boilovers were also observed during the burning of a heavy crude oil with a substantial light fraction without a water layer, however, which suggests that water is not essential for boilover occurrence. Further studies are required to determine the conditions under which......The fire dynamics and fire chemistry of in-situ burning of crude oil on water was studied in order to improve predictions on the suitability of this oil spill response method. For this purpose, several operational parameters were studied to determine the factors that control the burning efficiency...... of in-situ burning, i.e. the amount of oil (in wt%) removed from the water surface by the burning process. The burning efficiency is the main parameter for expressing the oil removal effectiveness of in-situ burning as response method and is thus relevant for suitability predictions of in-situ burning...

  18. [Heat stroke and burns resulting from use of sauna

    DEFF Research Database (Denmark)

    Runitz, K.; Jensen, T.H.

    2009-01-01

    We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient devel...... developed severe multi-organ failure and critical polyneuropathy. Severe heat stroke is a rare diagnosis in Denmark. The treatment is symptomatic and the prognosis is grave, especially in combination with severe burns Udgivelsesdato: 2009/1/26......We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient...

  19. BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data

    Directory of Open Access Journals (Sweden)

    Aitor Bastarrika

    2014-12-01

    Full Text Available A new supervised burned area mapping software named BAMS (Burned Area Mapping Software is presented in this paper. The tool was built from standard ArcGISTM libraries. It computes several of the spectral indexes most commonly used in burned area detection and implements a two-phase supervised strategy to map areas burned between two Landsat multitemporal images. The only input required from the user is the visual delimitation of a few burned areas, from which burned perimeters are extracted. After the discrimination of burned patches, the user can visually assess the results, and iteratively select additional sampling burned areas to improve the extent of the burned patches. The final result of the BAMS program is a polygon vector layer containing three categories: (a burned perimeters, (b unburned areas, and (c non-observed areas. The latter refer to clouds or sensor observation errors. Outputs of the BAMS code meet the requirements of file formats and structure of standard validation protocols. This paper presents the tool’s structure and technical basis. The program has been tested in six areas located in the United States, for various ecosystems and land covers, and then compared against the National Monitoring Trends in Burn Severity (MTBS Burned Area Boundaries Dataset.

  20. Burning mouth syndrome: an enigmatic disorder.

    Science.gov (United States)

    Javali, M A

    2013-01-01

    Burning mouth syndrome (BMS) is a chronic oral pain or burning sensation affecting the oral mucosa, often unaccompanied by mucosal lesions or other evident clinical signs. It is observed principally in middle-aged patients and postmenopausal women and may be accompanied by xerostomia and altered taste. Burning mouth syndrome is characterized by an intense burning or stinging sensation, preferably on the tongue or in other areas of mouth. This disorder is one of the most common, encountered in the clinical practice. This condition is probably of multifactorial origin; however the exact underlying etiology remains uncertain. This article discusses several aspects of BMS, updates current knowledge about the etiopathogenesis and describes the clinical features as well as the diagnosis and management of BMS patients.

  1. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  2. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1

    Directory of Open Access Journals (Sweden)

    M. Forkel

    2017-12-01

    Full Text Available Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1. SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with

  3. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    Science.gov (United States)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data

  4. From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    Science.gov (United States)

    Tsay, Si-Chee; Hsu, N. Christina; Lau, William K.-M.; Li, Can; Gabriel, Philip M.; Ji, Qiang; Holben, Brent N.; Welton, E. Judd; Nguyen, Anh X.; Janjai, Serm; hide

    2013-01-01

    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships

  5. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  6. Comparison of global inventories of CO_2 emissions from biomass burning during 2002–2011 derived from multiple satellite products

    International Nuclear Information System (INIS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto; Yamaguchi, Yasushi; Chen, Xuehong

    2015-01-01

    This study compared five widely used globally gridded biomass burning emissions inventories for the 2002–2011 period (Global Fire Emissions Database 3 (GFED3), Global Fire Emissions Database 4 (GFED4), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0) and Global Inventory for Chemistry-Climate studies-GFED4 (G-G)). Average annual CO_2 emissions range from 6521.3 to 9661.5 Tg year"−"1 for five inventories, with extensive amounts in Africa, South America and Southeast Asia. Coefficient of Variation for Southern America, Northern and Southern Africa are 30%, 39% and 48%. Globally, the majority of CO_2 emissions are released from savanna burnings, followed by forest and cropland burnings. The largest differences among the five inventories are mainly attributable to the overestimation of CO_2 emissions by FINN1.0 in Southeast Asia savanna and cropland burning, and underestimation in Southern Africa savanna and Amazon forest burning. The overestimation in Africa by G-G also contributes to the differences. - Highlights: • Five widely used global biomass burning emissions inventories were compared. • Global CO_2 emissions compared well while regional differences are large. • The largest differences were found in Southeast Asia and Southern Africa. • Savanna burning emission was the largest contributor to the global emissions. • Variations in savanna burning emission led to the differences among inventories. - Differences of the five biomass burning CO_2 emissions inventories were found in Southeast Asia and Southern Africa due to the variations in savanna burning emissions estimation.

  7. Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations

    Science.gov (United States)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Mommert, M.; Szakáts, R.; Müller, T.; Kiss, L. L.

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  8. Properties of the Irregular Satellite System around Uranus Inferred from K2 , Herschel , and Spitzer Observations

    Energy Technology Data Exchange (ETDEWEB)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Szakáts, R.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Mommert, M. [Department of Physics and Astronomy, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011 (United States); Müller, T., E-mail: farkas.aniko@csfk.mta.hu [Max-Plank-Institut für extraterrestrsiche Pyhsik, Garching (Germany)

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel /PACS and Spitzer /MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  9. Biomass burning: A significant source of nutrients for Andean rainforests

    Science.gov (United States)

    Fabian, P. F.; Rollenbeck, R.; University Of Marburg, Germany

    2010-12-01

    Regular rain and fogwater sampling in the Podocarpus National Park,on the humid eastern slopes of the Ecuadorian Andes,has been carried out since 2002.The samples,accumulated over about 1-week intervals,were analysed for pH,conductivity,and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO4 2-, NO3-, PO4 3- ).Annual deposition rates of these ions which, due to poor acidic soils with low mineralization rates,constitute the dominant nutrient supply to the mountaineous rainforests, and major ion sources could be determined using back trajectories,along with satellite data. While most of the Na, Cl, and K as well as Ca and Mg input was found to originate from natural oceanic and desert dust sources,respectively (P.Fabian et al.,Adv.Geosci.22,85-94, 2009), NO3, NH4, and about 90% of SO4 (about 10 % is from active volcanoes) are almost entirely due to anthropogenic sources,most likely biomass burning. Industrial and transportation emissions and other pollutants,however,act in a similar way as the precursors produced by biomass burning.For quantifying the impacts of biomass burning vs. those of anthropogenic sources other than biomass burning we used recently established emission inventories,along with simplified model calculations on back trajectories.First results yielding significant contributions of biomass burning will be discussed.

  10. Revisiting "Narrow Bipolar Event" intracloud lightning using the FORTE satellite

    Science.gov (United States)

    Jacobson, A. R.; Light, T. E. L.

    2012-02-01

    The lightning stroke called a "Narrow Bipolar Event", or NBE, is an intracloud discharge responsible for significant charge redistribution. The NBE occurs within 10-20 μs, and some associated process emits irregular bursts of intense radio noise, fading at shorter timescales, sporadically during the charge transfer. In previous reports, the NBE has been inferred to be quite different from other forms of lightning strokes, in two ways: First, the NBE has been inferred to be relatively dark (non-luminous) compared to other lightning strokes. Second, the NBE has been inferred to be isolated within the storm, usually not participating in flashes, but when it is in a flash, the NBE has been inferred to be the flash initiator. These two inferences have sufficiently stark implications for NBE physics that they should be subjected to further independent test, with improved statistics. We attempt such a test with both optical and radio data from the FORTE satellite, and with lightning-stroke data from the Los Alamos Sferic Array. We show rigorously that by the metric of triggering the PDD optical photometer aboard the FORTE satellite, NBE discharges are indeed less luminous than ordinary lightning. Referred to an effective isotropic emitter at the cloud top, NBE light output is inferred to be less than ~3 × 108 W. To address isolation of NBEs, we first expand the pool of geolocated intracloud radio recordings, by borrowing geolocations from either the same flash's or the same storm's other recordings. In this manner we generate a pool of ~2 × 105 unique and independent FORTE intracloud radio recordings, whose slant range from the satellite can be inferred. We then use this slant range to calculate the Effective Radiated Power (ERP) at the radio source, in the passband 26-49 MHz. Stratifying the radio recordings by ERP into eight bins, from a lowest bin (140 kW), we document a trend for the radio recordings to become more isolated in time as the ERP increases. The highest

  11. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  12. Assessing the Impact of Fires on Air Quality in the Southeastern U.S. with a Unified Prescribed Burning Database

    Science.gov (United States)

    Garcia Menendez, F.; Afrin, S.

    2017-12-01

    Prescribed fires are used extensively across the Southeastern United States and are a major source of air pollutant emissions in the region. These land management projects can adversely impact local and regional air quality. However, the emissions and air pollution impacts of prescribed fires remain largely uncertain. Satellite data, commonly used to estimate fire emissions, is often unable to detect the low-intensity, short-lived prescribed fires characteristic of the region. Additionally, existing ground-based prescribed burn records are incomplete, inconsistent and scattered. Here we present a new unified database of prescribed fire occurrence and characteristics developed from systemized digital burn permit records collected from public and private land management organizations in the Southeast. This bottom-up fire database is used to analyze the correlation between high PM2.5 concentrations measured by monitoring networks in southern states and prescribed fire occurrence at varying spatial and temporal scales. We show significant associations between ground-based records of prescribed fire activity and the observational air quality record at numerous sites by applying regression analysis and controlling confounding effects of meteorology. Furthermore, we demonstrate that the response of measured PM2.5 concentrations to prescribed fire estimates based on burning permits is significantly stronger than their response to satellite fire observations from MODIS (moderate-resolution imaging spectroradiometer) and geostationary satellites or prescribed fire emissions data in the National Emissions Inventory. These results show the importance of bottom-up smoke emissions estimates and reflect the need for improved ground-based fire data to advance air quality impacts assessments focused on prescribed burning.

  13. [Surgical treatment of burns : Special aspects of pediatric burns].

    Science.gov (United States)

    Bührer, G; Beier, J P; Horch, R E; Arkudas, A

    2017-05-01

    Treatment of pediatric burn patients is very important because of the sheer frequency of burn wounds and the possible long-term ramifications. Extensive burns need special care and are treated in specialized burn centers. The goal of this work is to present current standards in burn therapy and important innovations in the treatment of burns in children so that the common and small area burn wounds and scalds in pediatric patients in day-to-day dermatological practice can be adequately treated. Analysis of current literature, discussion of reviews, incorporation of current guidelines. Burns in pediatric patients are common. Improvement of survival can be achieved by treatment in burn centers. The assessment of burn depth and area is an important factor for proper treatment. We give an overview for outpatient treatment of partial thickness burns. New methods may result in better long-term outcome. Adequate treatment of burn injuries considering current literature and guidelines improves patient outcome. Rational implementation of new methods is recommended.

  14. Root Disease, Longleaf Pine Mortality, and Prescribed Burning

    Energy Technology Data Exchange (ETDEWEB)

    Otrosina, W.J; C.H. Walkinshaw; S.J. Zarnoch; S-J. Sung; B.T. Sullivan

    2001-01-01

    Study to determine factors involved in decline of longleaf pine associated with prescribed burning. Trees having symptoms were recorded by crown rating system based upon symptom severity-corresponded to tree physiological status-increased in hot burn plots. Root pathogenic fungi widespread throughout the study site. Histological studies show high fine root mortality rate in the hot burn treatment. Decline syndrome is complexed by root pathogens, soil factors, root damage and dysfunction.

  15. Posttraumatic Stress and Cognitive Processes in Patients with Burns

    OpenAIRE

    Sveen, Josefin

    2011-01-01

    A severe burn is one of the most traumatic injuries a person can experience. Posttraumatic stress disorder (PTSD) is relatively common after burns, and can be devastating for the individual’s possibilities for recovery. The principal aims were to gain knowledge regarding posttraumatic stress symptoms and cognitive processes after burn and to evaluate methods for assessing symptoms of PTSD up to one year after burn. The psychometric properties of a Swedish version of the Impact of Event Scale-...

  16. Psychosocial needs of burns nurses: a descriptive phenomenological inquiry.

    Science.gov (United States)

    Kornhaber, Rachel Anne; Wilson, Anne

    2011-01-01

    The purpose of this qualitative study was to explore the psychosocial needs of nurses who care for patients with severe burn injuries. Burns nurses work in an emotionally challenging and confronting environment, for which they are in need of emotional and clinical support. Exposure to such high levels of stress in this occupational environment has implications for nurses' health and psychosocial well-being. Seven burns nurses were recruited in 2009 from a severe burn injury unit in New South Wales, Australia. A qualitative phenomenological methodology was used to construct themes depicting nurses' experiences. Participants were selected through purposeful sampling, and data were collected through in-depth individual semistructured interviews using open-ended questions. Data were analyzed with Colaizzi's phenomenological method of data analysis. The psychosocial needs of burns nurses were identified and organized into five categories: peer nursing support, informal support, lack of support, multidisciplinary team collaboration, and professional support. The findings clearly demonstrate that support and unity within the workplace are fundamental factors for the psychosocial well-being of nurses caring for patients who have sustained a severe burn injury. Support for nurses in the form of regular professional or collegial debriefing sessions and utilization of employee assistance programs could ease the impact of the stressful environment in which they operate, and could influence staff retention. However, a supportive workplace culture is necessary to encourage nurses to access these services.

  17. The Burns Registry of Australia and New Zealand: progressing the evidence base for burn care.

    Science.gov (United States)

    Cleland, Heather; Greenwood, John E; Wood, Fiona M; Read, David J; Wong She, Richard; Maitz, Peter; Castley, Andrew; Vandervord, John G; Simcock, Jeremy; Adams, Christopher D; Gabbe, Belinda J

    2016-03-21

    Analysis of data from the Burns Registry of Australia and New Zealand (BRANZ) to determine the extent of variation between participating units in treatment and in specific outcomes during the first 4 years of its operation. BRANZ, an initiative of the Australian and New Zealand Burn Association, is a clinical quality registry developed in accordance with the Australian Commission on Safety and Quality in Healthcare national operating principles. Patients with burn injury who fulfil pre-defined criteria are transferred to and managed in designated burn units. There are 17 adult and paediatric units in Australia and New Zealand that manage almost all patients with significant burn injury. Twelve of these units treat adult patients. Data on 7184 adult cases were contributed by ten acute adult burn units to the registry between July 2010 and June 2014.Major outcomes: In-hospital mortality, hospital length of stay, skin grafting rates, and rates of admission to intensive care units. Considerable variations in unit profiles (including numbers of patients treated), in treatment and in outcomes were identified. Despite the highly centralised delivery of care to patients with severe or complex burn injury, and the relatively small number of specialist burn units, we found significant variation between units in clinical management and in outcomes. BRANZ data from its first 4 years of operation support its feasibility and the value of further development of the registry. Based on these results, the focus of ongoing research is to improve understanding of the reasons for variations in practice and of their effect on outcomes for patients, and to develop evidence-informed clinical guidelines for burn management in Australia and New Zealand.

  18. Regional citrate anticoagulation for continuous renal replacement therapy in severe burns-a retrospective analysis of a protocol-guided approach.

    Science.gov (United States)

    Gille, Jochen; Sablotzki, Armin; Malcharek, Michael; Raff, Thomas; Mogk, Martin; Parentin, Torsten

    2014-12-01

    For critically ill patients, the use of regional citrate anticoagulation as part of continuous renal replacement therapy (CRRT) has become increasingly common in recent years. However, there are scarce data on the use of this technique in patients with burns. The aim of this study was to examine the effectiveness, feasibility and complications of regional citrate anticoagulation for CRRT in burn patients, as well as the effects on coagulation and the electrolyte and acid-base balance. This retrospective study included all patients who received renal replacement therapy with citrate anticoagulation to treat acute kidney injury (AKI) between January 1, 2004 and December 31, 2009 at the burn unit of St. Georg Hospital GmbH in Leipzig. During the examination period, 18 patients were treated using CRRT with regional citrate anticoagulation (CVVHDF in the pre-dilution mode). The median patient age was 64 years (49.5; 71), with a median TBSA of 42.5% (33.25; 52.5) and a median ABSI score of 10 (9; 10). The CRRT was initiated on a median of 6 days (4; 8.75) after admission to the hospital and continued for a median duration of 7 days (5; 8). The median dialysis dose was 38.2mlkgBW(-1)h(-1) (31.8; 42.1). The median effective filter operation time was 67h (46; 72). No relevant disorders associated with acid-base balance, electrolytes or coagulation occurred, and there were no bleeding complications. In terms of bleeding risk and electrolyte and acid-base balance, regional citrate anticoagulation may be considered to be an effective, safe and user-friendly procedure for patients with severe burns and AKI. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  19. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    Science.gov (United States)

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  20. South American smoke coverage and flux estimations from the Fire Locating and Modeling of Burning Emissions (FLAMBE') system.

    Science.gov (United States)

    Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.

    2002-05-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.

  1. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  2. Suicide by burning: epidemiological and clinical profiles.

    Science.gov (United States)

    Theodorou, Panagiotis; Phan, Vu T Q; Weinand, Christian; Maegele, Marc; Maurer, Christoph A; Perbix, Walter; Leitsch, Sebastian; Lefering, Rolf; Spilker, Gerald

    2011-04-01

    Self-immolation constitutes a rare form of suicide in developed countries, though it accounts for unique injury characteristics in the burn intensive care unit. The aim of this study was to present the epidemiological and clinical features of patients burned during a suicidal attempt seen in a North Rhine-Westphalia burn intensive care unit (BICU). To address this aim, we undertook a 21-year retrospective study involving patients with thermal injuries admitted to the largest burn unit in Germany. A total of 125 suicide-related burn victims were identified in the study period (9.4%). Comparing the self-immolation group with the rest burn patient cohort, suicide victims were more likely to be single and to act under the influence of alcohol. The suicidal group had a larger extent of burns, higher incidence of inhalation injury, required more surgical procedures, catecholamines, blood transfusions, and a longer BICU stay. Their clinical course was complicated by prolonged intubation period, higher rate of multiple drug-resistant bacteria acquisition and sepsis, leading to a higher mortality rate. Although the proportion of self-immolation victims among all burned patients is not high, the markedly higher severity of their burns and their poorer quality of outcomes makes them an important clinical subgroup for further study.

  3. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    Science.gov (United States)

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located.

  4. Constraint Satisfaction Inference : Non-probabilistic Global Inference for Sequence Labelling

    NARCIS (Netherlands)

    Canisius, S.V.M.; van den Bosch, A.; Daelemans, W.; Basili, R.; Moschitti, A.

    2006-01-01

    We present a new method for performing sequence labelling based on the idea of using a machine-learning classifier to generate several possible output sequences, and then applying an inference procedure to select the best sequence among those. Most sequence labelling methods following a similar

  5. Seasonal and Interannual Variations in BC Emissions From Open Biomass Burning in Southern Africa From 1998 to 2005

    Science.gov (United States)

    Ito, A.; Akimoto, H.

    2006-12-01

    We estimate the emissions of black carbon (BC) from open vegetation fires in southern hemisphere Africa from 1998 to 2005 using satellite information in conjunction with a biogeochemical model. Monthly burned areas at a 0.5-degree resolution are estimated from the Visible and Infrared Scanner (VIRS) fire count product and the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data set associated with the MODIS tree cover imagery in grasslands and woodlands. The monthly fuel load distribution is derived from a 0.5- degree terrestrial carbon cycle model in conjunction with satellite data. The monthly maps of combustion factor and emission factor are estimated using empirical models that predict the effects of fuel conditions on these factors in grasslands and woodlands. Our annual averaged BC emitted per unit area burned is 0.17 g BC m-2 which is consistent with the product of fuel consumption and emission factor typically measured in southern Africa. The BC emissions from open vegetation burning in southern Africa ranged from 0.26 Tg BC yr-1 for 2002 to 0.42 Tg BC yr-1 for 1998. The peak in BC emissions is identical to that from previous top-down estimate using the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data. The sum of monthly emissions during the burning season in 2000 is in good agreement between our estimate (0.38 Tg) and previous estimate constrained by numerical model and measurements (0.47 Tg).

  6. Validation of the MODIS Collection 6 MCD64 Global Burned Area Product

    Science.gov (United States)

    Boschetti, L.; Roy, D. P.; Giglio, L.; Stehman, S. V.; Humber, M. L.; Sathyachandran, S. K.; Zubkova, M.; Melchiorre, A.; Huang, H.; Huo, L. Z.

    2017-12-01

    The research, policy and management applications of satellite products place a high priority on rigorously assessing their accuracy. A number of NASA, ESA and EU funded global and continental burned area products have been developed using coarse spatial resolution satellite data, and have the potential to become part of a long-term fire Essential Climate Variable. These products have usually been validated by comparison with reference burned area maps derived by visual interpretation of Landsat or similar spatial resolution data selected on an ad hoc basis. More optimally, a design-based validation method should be adopted, characterized by the selection of reference data via probability sampling. Design based techniques have been used for annual land cover and land cover change product validation, but have not been widely used for burned area products, or for other products that are highly variable in time and space (e.g. snow, floods, other non-permanent phenomena). This has been due to the challenge of designing an appropriate sampling strategy, and to the cost and limited availability of independent reference data. This paper describes the validation procedure adopted for the latest Collection 6 version of the MODIS Global Burned Area product (MCD64, Giglio et al, 2009). We used a tri-dimensional sampling grid that allows for probability sampling of Landsat data in time and in space (Boschetti et al, 2016). To sample the globe in the spatial domain with non-overlapping sampling units, the Thiessen Scene Area (TSA) tessellation of the Landsat WRS path/rows is used. The TSA grid is then combined with the 16-day Landsat acquisition calendar to provide tri-dimensonal elements (voxels). This allows the implementation of a sampling design where not only the location but also the time interval of the reference data is explicitly drawn through stratified random sampling. The novel sampling approach was used for the selection of a reference dataset consisting of 700

  7. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  8. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    Science.gov (United States)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  9. [Recognizing prevention and treatment of burn sepsis with the concept of holistic integrative medicine].

    Science.gov (United States)

    Huan, J N

    2017-04-20

    Sepsis remains a major cause of death in severe burns. The effect of sepsis management is influenced by its complicated pathophysiologic changes. In order to improve the outcome of burn sepsis, the predisposing factor of sepsis after burn analyzed by advanced technology, the early prevention, antibiotics therapy, and combined treatment in severe burns with sepsis are discussed using the concept of holistic integrative medicine.

  10. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  11. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    A. Bougiatioti

    2016-06-01

    Full Text Available This study investigates the concentration, cloud condensation nuclei (CCN activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days. Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA. An Aerosol Chemical Speciation Monitor (ACSM was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size; larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of  ∼  100 nm at dry conditions sampled. Based on positive matrix factorization (PMF analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 % with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA to more oxidized organic aerosol (OOA-BB can result in a 2-fold increase of the inferred organic

  12. Burning Behaviour of High-Pressure CH4-H2-Air Mixtures

    Directory of Open Access Journals (Sweden)

    Jacopo D'Alessio

    2013-01-01

    Full Text Available Experimental characterization of the burning behavior of gaseous mixtures has been carried out, analyzing spherical expanding flames. Tests were performed in the Device for Hydrogen-Air Reaction Mode Analysis (DHARMA laboratory of Istituto Motori—CNR. Based on a high-pressure, constant-volume bomb, the activity is aimed at populating a systematic database on the burning properties of CH4, H2 and other species of interest, in conditions typical of internal combustion (i.c. engines and gas turbines. High-speed shadowgraph is used to record the flame growth, allowing to infer the laminar burning parameters and the flame stability properties. Mixtures of CH4, H2 and air have been analyzed at initial temperature 293÷305 K, initial pressure 3÷18 bar and equivalence ratio  = 1.0. The amount of H2 in the mixture was 0%, 20% and 30% (vol.. The effect of the initial pressure and of the Hydrogen content on the laminar burning velocity and the Markstein length has been evaluated: the relative weight and mutual interaction has been assessed of the two controlling parameters. Analysis has been carried out of the flame instability, expressed in terms of the critical radius for the onset of cellularity, as a function of the operating conditions.

  13. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  14. Clinical outcome of patients with self-inflicted burns.

    Science.gov (United States)

    Cornet, P A; Niemeijer, A S; Figaroa, G D; van Daalen, M A; Broersma, T W; van Baar, M E; Beerthuizen, G I J M; Nieuwenhuis, M K

    2017-06-01

    Patients with self-inflicted burns (SIB) are thought to have a longer length of stay compared to patients with accidental burns. However, other predictors for a longer length of stay are often not taken into account, e.g. percentage of the body surface area burned, age or comorbidities. Therefore, we wanted to study the outcome of patients with SIB at our burn center. A retrospective, observational study was conducted. All adult patients with acute burns admitted to the burn center of the Martini Hospital Groningen, between January 1, 2009 and December 31, 2013 were included. Data on characteristics of the patient, injury, and outcome (LOS, mortality, discharge destination) were collected. In patients with SIB, suicide attempts (SA) were distinguished from self-harm without the intention to die (non-suicidal self-injury, NSSI). To evaluate differences in outcome, each patient with SIB was matched on variables and total score of the Abbreviated Burn Severity Index (ABSI) to a patient with accidental burns (AB). In total 29 admissions (21 SA and 8 NSSI) were due to SIB and 528 due to accidents. Overall, when compared to AB, there were significant differences with respect to mortality and LOS for SA and/or NSSI. Mortality was higher in the SA group, while the LOS was higher in both the SA and NSSI groups compared to the AB group. However, after matching on ABSI, no statistical significant differences between the SA and SA-match or the NSSI and NSSI-match group were found. With the right and timely treatment, differences in mortality rate or length of stay in hospital could all be explained by the severity of the burn and the intention of the patient. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  15. Aircraft measurement over the Gulf of Tonkin capturing aloft transport of biomass burning

    Science.gov (United States)

    Yang, Xiaoyang; Xu, Jun; Bi, Fang; Zhang, Zhongzhi; Chen, Yunbo; He, Youjiang; Han, Feng; Zhi, Guorui; Liu, Shijie; Meng, Fan

    2018-06-01

    A suite of aircraft measurements was conducted over the Gulf of Tonkin, located downwind to the east of Mainland Southeast Asia (MSE), between March 23rd and April 6th, 2015. To the best of our knowledge, this campaign of 11 flights (totaling 34.4 h) was the first in-flight measurement over the region. Measurements of sulfur dioxide, nitrogen oxides, ozone, carbon monoxide, black carbon and the particulate scattering coefficient were recorded at approximately 1 500 m (low level) and 3 000 m (high level). Significantly higher measurements of black carbon, carbon monoxide and ozone in the high level on March 23rd and April 5th and 6th were directly related to biomass burning in the MSE and were comparable to severe pollution events at the surface. Similarly, relatively low pollutant concentrations were observed at both altitudes between March 23rd and April 5th. A combined analysis of the measurements with meteorology and satellite data verified that the plumes captured at 3 000 m were attributed to transport in the high altitude originating from biomass burning in northern MSE. Furthermore, each plume captured by the measurements in the high level corresponded to heavy regional air pollution caused by biomass burning in northern MSE. In addition, relatively low levels of the measured pollutants corresponded to relatively light pollution levels in MSE and its adjacent areas. Taken together, these results indicated that aircraft measurements were accurate in characterizing the variation in transport and pollutant levels. During the most active season of biomass burning in MSE, pollutant emissions and their regional impact could vary on an episodic basis. Nonetheless, such concentrated emissions from biomass burning is likely to lead to particularly high atmospheric-loading of pollutants at a regional level and, depending on weather conditions, has the potential of being transported over considerably longer distances. Further investigation of the short-term impacts of

  16. Nonparametric predictive inference in statistical process control

    NARCIS (Netherlands)

    Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.

    2000-01-01

    New methods for statistical process control are presented, where the inferences have a nonparametric predictive nature. We consider several problems in process control in terms of uncertainties about future observable random quantities, and we develop inferences for these random quantities hased on

  17. Care for the Critically Injured Burn Patient Modulation of Burn Scars Through Laser Deliver of Stem Cells

    Science.gov (United States)

    2013-10-01

    Miller School of Medicine and the USAISR. To obtain ADSCs, a sample of adipose tissue was surgically removed from the back (front shoulder) region... center of the animal and resulted in better overall similarity in clinical scar morphology. Histologic evaluation of wounds 70 days after burn...isolate and grow tissue fibroblast from the treated and control burn scars. Tissue samples (3 per time point) were decontaminated using several

  18. The Consensus of the Surgical Treatment of Burn Injuries in Belgium

    OpenAIRE

    BRUSSELAERS, NELE; Lafaire, C; Ortiz, S; Jacquemin, D; Monstrey, Stan

    2008-01-01

    On the occasion of the twentieth anniversary of the 'Belgian Association of Burn Injuries' an inventory was made of all surgical techniques used in the five largest Belgian burn centres in order to draw up a consensus document. A questionnaire covering the whole treatment of severely burned patients was sent to the surgeons of each burn unit, ranging, from emergency treatment, through diagnostic techniques, burn surgery and post-healing treatment (scars, contractures). During the past decade,...

  19. Traditional Herbal Remedies for Burn Wound Healing in Canon of Avicenna

    OpenAIRE

    Aliasl, Jale; Khoshzaban, Fariba

    2013-01-01

    Burns are a worldwide problem. The incidence of severe burns has been higher than the combined incidence of tuberculosis and HIV infections. Throughout history there have been many different treatments prescribed for burns. The Canon is the masterpiece of Avicenna’s medical books. The Canon includes a description of 785 simple drugs. Avicenna believed in burn treatment, which follows two goals. The first goal is prevention of blistering and the second goal is treatment of the burn wound after...

  20. Air Pollution Episodes Associated with Prescribed Burns

    Science.gov (United States)

    Hart, M.; Di Virgilio, G.; Jiang, N.

    2017-12-01

    Air pollution events associated with wildfires have been associated with extreme health impacts. Prescribed burns are an important tool to reduce the severity of wildfires. However, if undertaken during unfavourable meteorological conditions, they too have the capacity to trigger extreme air pollution events. The Australian state of New South Wales has increased the annual average area treated by prescribed burn activities by 45%, in order to limit wildfire activity. Prescribed burns need to be undertaken during meteorological conditions that allow the fuel load to burn, while still allowing the burn to remain under control. These conditions are similar to those that inhibit atmospheric dispersion, resulting in a fine balance between managing fire risk and managing ambient air pollution. During prescribed burns, the Sydney air shed can experience elevated particulate matter concentrations, especially fine particulates (PM2.5) that occasionally exceed national air quality standards. Using pollutant and meteorological data from sixteen monitoring stations in Sydney we used generalized additive model and CART analyses to profile the meteorological conditions influencing air quality during planned burns. The insights gained from this study will help improve prescribed burn scheduling in order to reduce the pollution risk to the community, while allowing fire agencies to conduct this important work.

  1. Impact of biomass burning on rainwater acidity and composition in Singapore

    Science.gov (United States)

    Balasubramanian, R.; Victor, T.; Begum, R.

    1999-11-01

    The Indonesian forest fires that took place from August through October 1997 released large amounts of gaseous and particulate pollutants into the atmosphere. The particulate emissions produced a plume that was easily visible by satellite and significantly affected regional air quality in Southeast Asia. This prolonged haze episode provided an unprecedented opportunity to examine the effects of biomass burning on regional atmospheric chemistry. We undertook a comprehensive field study to assess the influence of biomass burning impacted air masses on precipitation chemistry in Singapore. Major inorganic and organic ions were determined in 104 rain samples collected using an automated wet-only sampler from July through December 1997. Mean pH values ranged from 3.79 to 6.20 with a volume-weighted mean of 4.35. There was a substantially large number of rain events with elevated concentrations of these ions during the biomass burning period. The relatively high concentrations of SO2-4, NO-3, and NH+4 observed during the burning period are attributed to a long residence time of air masses, leading to progressive gas to particle conversion of biomass burning emission components. The decrease in pH of precipitation in response to the increased concentrations of acids is only marginal, which is ascribed to neutralization of acidity by NH3 and CaCO3.

  2. Epidemiology of pediatric burns and future prevention strategies-a study of 475 patients from a high-volume burn center in North India.

    Science.gov (United States)

    Dhopte, Amol; Tiwari, V K; Patel, Pankaj; Bamal, Rahul

    2017-01-01

    Pediatric burns have a long-term social impact. This is more apparent in a developing country such as India, where their incidence and morbidity are high. The aim of this study was to provide recent prospective epidemiological data on pediatric burns in India and to suggest future preventive strategies. Children up to 18 years old admitted to the Department of Burns, Plastic & Maxillofacial Surgery, VMMC & Safdarjung Hospital, New Delhi, between January and December 2014 were included in the study. Data regarding age, sex, etiology, total body surface area (TBSA), circumstances of injury, and clinical assessment were collected. The Mann-Whitney test or Kruskal-Wallis test or ANOVA was used to compare involved TBSA among various cohort groups accordingly. Univariate and multivariate linear regression analyses were used to determine the predictors of TBSA. There were a total of 475 patients involved in the study, including seven suicidal burns, all of whom were females with a mean age greater than the cohort average. Age, type of burns, mode of injury, presence or absence of inhalation injury, gender, and time of year (quarter) for admission were found to independently affect the TBSA involved. Electrical burns also formed an important number of presenting burn patients, mainly involving teenagers. Several societal issues have come forth, e.g., child marriage, child labor, and likely psychological problems among female children as suggested by a high incidence of suicidal burns. This study also highlights several issues such as overcrowding, lack of awareness, dangerous cooking practices, and improper use of kerosene oil. There is an emergent need to recognize the problems, formulate strategies, spread awareness, and ban or replace hazardous substances responsible for most burn accidents.

  3. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  4. Inference in Complex Systems Using Multi-Phase MCMC Sampling With Gradient Matching Burn-in

    OpenAIRE

    Lazarus, Alan; Husmeier, Dirk; Papamarkou, Theodore

    2017-01-01

    We propose a novel method for parameter inference that builds on the current research in gradient matching surrogate likelihood spaces. Adopting a three phase technique, we demonstrate that it is possible to obtain parameter estimates of limited bias whilst still adopting the paradigm of the computationally cheap surrogate approximation.

  5. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    Science.gov (United States)

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome.

  6. Pathological changes after bone marrow and skin allograft transplantation in rats inflicted with severe combined radiation-burn injury

    International Nuclear Information System (INIS)

    Zheng Huaien; Cheng Tianmin; Yan Yongtang

    1994-01-01

    Bone marrow and skin allografts from the same donor were transplanted to rats inflicted with 8 Gy γ-radiation combined with third degree burns of 15% body surface area within 6 hr post injury. Pathological changes of hematopoietic tissues and skin allografts were studied. All injured controls died within 7 days post injury without bone marrow regeneration; 50% of treated rats survived with living skin allografts on 50th day post injury. On days 100 and 480 post operation, grafted skin still survived well on recipients with normal ultrastructure. Epidermic cells of skin allografts proliferated on day 5, developed and repaired on day 10. Histological structure of the skin returned to normal on day 30 post operation. The regeneration of bone marrow appeared on 5th day, increased markedly on day 10, and almost completed on day 15 after bone marrow transplantation. However, the regeneration of lymphocytes in cortex of spleen and lymph nodes did not appear until day 15 of BMT. The results show that bone marrow and skin allograft transplantation at early time post injury in most severe combined radiation-burn injury have tremendous beneficial effects, and the skin allograft can survive for a long time

  7. Acute pavement burns: a unique subset of burn injuries: a five-year review of resource use and cost impact.

    Science.gov (United States)

    Silver, Andrew G; Dunford, Gerrit M; Zamboni, William A; Baynosa, Richard C

    2015-01-01

    This study focuses on the hospital care of a rare subset of burn injuries caused by contact with environmentally heated pavement, to further understand the required use of resources. This article aims to show that pavement burns are typically more severe than their flame/scald counterparts. A retrospective review of patients admitted to the burn center with injuries suffered from contact with hot pavement was performed. Patients were stratified on the presence or absence of altered mental status (AMS) and additional inciting factors. A representative sample of similarly sized flame and scald wounds treated in the same time period was compiled for comparison. Those with pavement burns had a significantly greater requirement for operative intervention, repetitive debridements, overall cost/percent burned, and lengthier hospital stays than those with flame/scald burns. Pavement burn victims with AMS were significantly more likely to require an operation, a greater cost/percent burned, and longer hospital stays than those without AMS. Pavement burns are significantly worse than similarly sized scald/flame burns with regards to length of stay and total hospital costs, and the necessity of initial and repetitive operative intervention. These discrepancies are even greater in patients with AMS as a concomitant inciting factor. It is apparent that these wounds often continue to deepen during a patient's stay, likely because of continued pressure on the wounds while recumbent. As such, this article highly recommends pressure off-loading beds and more aggressive debridement in the treatment of these unique injuries.

  8. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    Science.gov (United States)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  9. Control of invasive weeds with prescribed burning

    Science.gov (United States)

    DiTomaso, Joseph M.; Brooks, Matthew L.; Allen, Edith B.; Minnich, Ralph; Rice, Peter M.; Kyser, Guy B.

    2006-01-01

    Prescribed burning has primarily been used as a tool for the control of invasive late-season annual broadleaf and grass species, particularly yellow starthistle, medusahead, barb goatgrass, and several bromes. However, timely burning of a few invasive biennial broadleaves (e.g., sweetclover and garlic mustard), perennial grasses (e.g., bluegrasses and smooth brome), and woody species (e.g., brooms and Chinese tallow tree) also has been successful. In many cases, the effectiveness of prescribed burning can be enhanced when incorporated into an integrated vegetation management program. Although there are some excellent examples of successful use of prescribed burning for the control of invasive species, a limited number of species have been evaluated. In addition, few studies have measured the impact of prescribed burning on the long-term changes in plant communities, impacts to endangered plant species, effects on wildlife and insect populations, and alterations in soil biology, including nutrition, mycorrhizae, and hydrology. In this review, we evaluate the current state of knowledge on prescribed burning as a tool for invasive weed management.

  10. Assessment of Burned Area and Atmospheric Gases from Multi- temporal MODIS Images (2000- 2017) in Nainital District, Uttarakhand

    Science.gov (United States)

    Aggarwal, R.; K V, S. B.; Dhakate, P. M.

    2017-12-01

    Recent times have observed a significant rate of deforestation and forest degradation. One of the major causes of forest degradation is forest fires. Forest fires though have shaped the current forest ecosystem but also have continued to degrade the system by causing loss of flora and fauna. In addition to that, forest fire leads to emission of carbon and other trace gases which contributes to global warming. The hill states in India, particularly Uttarakhand witnesses annual forest fires; which are primarily anthropogenic caused, occurring from March to June. Nainital one of the thirteen districts in Uttarakhand, has been selected as the study site. The region has diverse endemic species of vegetation, ranging from Alpine in North to moist deciduous in South. The increasing forest fire incidents in the region and limited studies on the subject, calls for landscape assessment of the complex Human Environment System (HES). It is in this context, that a greater need for monitoring forest fire incidents has been felt. Remote Sensing and GIS which are robust tool, provides continuous information of an area at various spatial and temporal resolutions. The goal of this study is to map burned area, burned severity and estimate atmospheric gas emissions in forested areas of Nainital by utilizing cloud free MODIS images from 2000- 2017. Multiple spectral indices were generated from pre and post burn dataset of MODIS to conclude the most sensitive band combination. Inter- comparison of results obtained from different spectral indices and the global MODIS MCD45A1 was carried out using linear regression analysis. Additionally, burned area estimation from satellite was compared to figures reported by forest department. There were considerable differences amongst the two which could be primarily due to differences in spatial resolution, and timings of forest fire occurrence and image acquisition. Further, estimation of various atmospheric gases was carried out based on the IPCC

  11. A human-driven decline in global burned area.

    Science.gov (United States)

    Andela, N; Morton, D C; Giglio, L; Chen, Y; van der Werf, G R; Kasibhatla, P S; DeFries, R S; Collatz, G J; Hantson, S; Kloster, S; Bachelet, D; Forrest, M; Lasslop, G; Li, F; Mangeon, S; Melton, J R; Yue, C; Randerson, J T

    2017-06-30

    Fire is an essential Earth system process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite data sets. We found that global burned area declined by 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting that they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Prescribed burning: a topical issue

    Directory of Open Access Journals (Sweden)

    Bovio G

    2013-11-01

    Full Text Available Prescribed burning is a promising technique for the prevention of forest fires in Italy. The research deepened several ecological and operative aspects. However, legal issues need to be thoroughly investigated.

  13. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska

    Science.gov (United States)

    Benjamin M. Jones; Crystal A. Kolden; Randi Jandt; John T. Abatzoglu; Frank Urban; Christopher D. Arp

    2009-01-01

    In 2007, the Anaktuvuk River Fire (ARF) became the largest recorded tundra fire on the North Slope of Alaska. The ARF burned for nearly three months, consuming more than 100,000 ha. At its peak in early September, the ARF burned at a rate of 7000 ha d-1. The conditions potentially responsible for this large tundra fire include modeled record high...

  14. LED phototherapy in full-thickness burns induced by CO2 laser in rats skin.

    Science.gov (United States)

    da Silva Melo, Milene; Alves, Leandro Procópio; Fernandes, Adriana Barrinha; Carvalho, Henrique Cunha; de Lima, Carlos José; Munin, Egberto; Gomes, Mônica Fernandes; Salgado, Miguel Angel Castillo; Zângaro, Renato Amaro

    2018-04-27

    Many studies have been conducted on the treatment of burns because they are important in morbidity and mortality. These studies are mainly focused on improving care and quality of life of patients. The aim of this study was evaluate the LED phototherapy effects in rats skin full-thickness burns induced by CO 2 laser. The animals were divided in NT group that did not received any treatment and LED group that received LED irradiation at 685 nm, 220 mW, and 4.5 J/cm 2 during 40 s by burned area. Biopsies were obtained after 7, 14, and 21 days of treatment and submitted to histological and immunohistochemical analysis. The LED phototherapy shows anti-inflammatory effects, improves angiogenesis, and stimulates the migration and proliferation of fibroblasts. The T CD8+ lymphocytes were more common in burned areas compared to T CD4+ lymphocytes since statistically significant differences were observed in the LED group compared to the NT group after 7 days of treatment. These results showed that LED phototherapy performs positive influence in full-thickness burns repair from the healing process modulated by cellular immune response. The obtained results allowed inferring that burns exhibit a characteristic cell immune response and this cannot be extrapolated to other wounds such as incision and wounds induced by punch, among others.

  15. Assessment of atmospheric impacts of biomass open burning in Kalimantan, Borneo during 2004

    Science.gov (United States)

    Mahmud, Mastura

    2013-10-01

    Biomass burning from the combustion of agricultural wastes and forest materials is one of the major sources of air pollution. The objective of the study is to investigate the major contribution of the biomass open burning events in the island of Borneo, Indonesia to the degradation of air quality in equatorial Southeast Asia. A total of 10173 active fire counts were detected by the MODIS Aqua satellite during August 2004, and consequently, elevated the PM10 concentration levels at six air quality stations in the state of Sarawak, in east Malaysia, which is located in northwestern Borneo. The PM10 concentrations measured on a daily basis were above the 50 μg m-3 criteria as stipulated by the World Health Organization Air Quality Guidelines for most of the month, and exceeded the 24-h Recommended Malaysian Air Quality Guidelines of 150 μg m-3 on three separate periods from the 13th to the 30th August 2004. The average correlation between the ground level PM10 concentrations and the satellite derived aerosol optical depth (AOD) of 0.3 at several ground level air quality stations, implied the moderate relationship between the aerosols over the depth of the entire column of atmosphere and the ground level suspended particulate matter. Multiple regression for meteorological parameters such as rainfall, windspeed, visibility, mean temperature, relative humidity at two stations in Sarawak and active fire counts that were located near the centre of fire activities were only able to explain for 61% of the total variation in the AOD. The trajectory analysis of the low level mesoscale meteorological conditions simulated by the TAPM model illustrated the influence of the sea and land breezes within the lowest part of the planetary boundary layer, embedded within the prevailing monsoonal southwesterlies, in circulating the aged and new air particles within Sarawak.

  16. To burn or not to burn

    International Nuclear Information System (INIS)

    Busch, L.

    1993-01-01

    While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose

  17. Effects of different duration exercise programs in children with severe burns.

    Science.gov (United States)

    Clayton, Robert P; Wurzer, Paul; Andersen, Clark R; Mlcak, Ronald P; Herndon, David N; Suman, Oscar E

    2017-06-01

    Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6 or 12 weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n=42) and after exercise. After 6 weeks (n=18) or 12 weeks (n=24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex isokinetic dynamometer. Oxygen consumption capacity, measured as peak VO 2 , was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Significant improvements in muscle strength, peak VO 2 , and lean body mass were seen after 6 weeks of exercise training (pburn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  18. Analysis of satellite data for sensor improvement (detection of severe storms from space)

    Science.gov (United States)

    Fujita, T. T.

    1984-01-01

    Stereo photography of clouds over southeast Asia was obtained using NOAA-7 and the Japanese GMS. Due to the breakdown of GMS2, GMS1, which had been retired, is being used as the replacement satellite. The launch of GMS should permit the US-Japan stereo experiment to be reactivated. The Lear jet experiment based at Grand Island, Nebraska was successful and provided data on the Redwood Falls clouds & Grand Island thunderstorm; an anvil-top cirrus deck; a circular thunderstorm; and jumping cirrus. The IR temperature field of the thunderstorm which induced the Andrews AFB microburst was analyzed with 1 C accuracy. The microburst and severe thunderstorm project is being planned.

  19. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  20. Burn mortality in patients with preexisting cardiovascular disease.

    Science.gov (United States)

    Knowlin, Laquanda; Reid, Trista; Williams, Felicia; Cairns, Bruce; Charles, Anthony

    2017-08-01

    Burn shock, a complex process, which develops following burn leads to severe and unique derangement of cardiovascular function. Patients with preexisting comorbidities such as cardiovascular diseases may be more susceptible. We therefore sought to examine the impact of preexisting cardiovascular disease on burn outcomes. A retrospective analysis of patients admitted to a regional burn center from 2002 to 2012. Independent variables analyzed included basic demographics, burn mechanism, presence of inhalation injury, TBSA, pre-existing comorbidities, and length of ICU/hospital stay. Bivariate analysis was performed and Poisson regression modeling was utilized to estimate the incidence of being in the ICU and mortality. There were a total of 5332 adult patients admitted over the study period. 6% (n=428) had a preexisting cardiovascular disease. Cardiovascular disease patients had a higher mortality rate (16%) compared to those without cardiovascular disease (3%, pwill likely be a greater number of individuals at risk for worse outcomes following burn. This knowledge can help with burn prognostication. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  1. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    Science.gov (United States)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  2. Novel burn device for rapid, reproducible burn wound generation.

    Science.gov (United States)

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal

  3. In situ oil burning in the marshland environment : soil temperatures resulting from crude oil and diesel fuel burns

    International Nuclear Information System (INIS)

    Bryner, N.P.; Walton, W.D.; Twilley, W.H.; Roadarmel, G.; Mendelssohn, I.A.; Lin, Q.; Mullin, J.V.

    2001-01-01

    The unique challenge associated with oil spill cleanups in sensitive marsh environments was discussed. Mechanical recovery of crude or refined hydrocarbons in wetlands may cause more damage to the marsh than the oil itself. This study evaluated whether in situ burning of oiled marshlands would provide a less damaging alternative than mechanical recovery. This was done through a series of 6 crude oil and 5 diesel fuel burns conducted in a test tank to examine the impact of intentional burning of oil spilled in a wetlands environment. There are several factors which may influence how well such an environment would recover from an in situ oil burn, such as plant species, fuel type and load, water level, soil type, and burn duration. This paper focused on soil, air and water temperatures, as well as total heat fluxes that resulted when 3 plant species were exposed to full-scale in situ burns that were created by burning diesel fuel and crude oil. The soil temperatures were monitored during the test burn at three different soil/water elevations for 700 second burn exposures. A total of 184 plant sods were harvested from marshlands in southern Louisiana and were subjected to the burning fuel. They were instrumental in characterizing the thermal and chemical stress that occur during an in-situ burn. The plants were inserted into the test tanks at various water and soil depths. The results indicated that diesel fuel and crude oil burns produced similar soil temperature profiles at each of three plant sod elevations. Although in-situ burning did not appear to remediate oil that had penetrated into the soil, it did effectively remove floating oil from the water surface, thereby preventing it from potentially contaminating adjacent habitats and penetrating the soil when the water recedes. The regrowth and recovery of the plants will be described in a separate report. 25 refs., 7 tabs., 15 figs

  4. Local cooling does not prevent hyperalgesia following burn injury in humans

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Pedersen, Juri L

    2002-01-01

    One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti-inflammato......One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti...... and mechanical detection thresholds, thermal and mechanical pain responses, area of secondary hyperalgesia), first degree burn injuries were induced on both calves by contact thermodes (12.5 cm(2), 47 degrees C for 7 min). Eight minutes after the burn injury, contact thermodes (12.5 cm(2)) were again applied...... on the burns. One of the thermodes cooled the burn (8 degrees C for 30 min) whereas the other thermode was a non-active dummy on the control burn. Inflammatory and sensory variables were followed for 160 min after end of the cooling procedure. The burn injury induced significant increases in skin temperature...

  5. Mineralogical and micromorphological modifications in soil affected by slash pile burn

    Science.gov (United States)

    M. M. Nobles; W. J. Massman; M. Mbila; G. Butters

    2010-01-01

    Silvicultural practices, such as slash pile burning, are commonly used for fire and ecosystem management. This management technique can drastically alter chemical, physical and biological soil properties due to the high temperatures achieved during the prolonged severe burn. Little is known, however, about the impact of high-temperature slash pile burning on soil...

  6. Evaluating the accuracy of a MODIS direct broadcast algorithm for mapping burned areas over Russia

    Science.gov (United States)

    Petkov, A.; Hao, W. M.; Nordgren, B.; Corley, R.; Urbanski, S. P.; Ponomarev, E. I.

    2012-12-01

    Emission inventories for open area biomass burning rely on burned area estimates as a key component. We have developed an automated algorithm based on MODerate resolution Imaging Spectroradiometer (MODIS) satellite instrument data for estimating burned area from biomass fires. The algorithm is based on active fire detections, burn scars from MODIS calibrated radiances (MOD02HKM), and MODIS land cover classification (MOD12Q1). Our burned area product combines active fires and burn scar detections using spatio-temporal criteria, and has a resolution of 500 x 500 meters. The algorithm has been used for smoke emission estimates over the western United States. We will present the assessed accuracy of our algorithm in different regions of Russia with intense wildfire activity by comparing our results with the burned area product from the Sukachev Institute of Forest (SIF) of the Russian Academy of Sciences in Krasnoyarsk, Russia, as well as burn scars extracted from Landsat imagery. Landsat burned area extraction was based on threshold classification using the Jenks Natural Breaks algorithm to the histogram for each singe scene Normalized Burn Ratio (NBR) image. The final evaluation consisted of a grid-based approach, where the burned area in each 3 km x 3 km grid cell was calculated and compared with the other two sources. A comparison between our burned area estimates and those from SIF showed strong correlation (R2=0.978), although our estimate is approximately 40% lower than the SIF burned areas. The linear fit between the burned area from Landsat scenes and our MODIS algorithm over 18,754 grid cells resulted with a slope of 0.998 and R2=0.7, indicating that our algorithm is suitable for mapping burned areas for fires in boreal forests and other ecosystems. The results of our burned area algorithm will be used for estimating emissions of trace gasses and aerosol particles (including black carbon) from biomass burning in Northern Eurasia for the period of 2002-2011.

  7. Burns education for non-burn specialist clinicians in Western Australia.

    Science.gov (United States)

    McWilliams, Tania; Hendricks, Joyce; Twigg, Di; Wood, Fiona

    2015-03-01

    Burn patients often receive their initial care by non-burn specialist clinicians, with increasingly collaborative burn models of care. The provision of relevant and accessible education for these clinicians is therefore vital for optimal patient care. A two phase design was used. A state-wide survey of multidisciplinary non-burn specialist clinicians throughout Western Australia identified learning needs related to paediatric burn care. A targeted education programme was developed and delivered live via videoconference. Pre-post-test analysis evaluated changes in knowledge as a result of attendance at each education session. Non-burn specialist clinicians identified numerous areas of burn care relevant to their practice. Statistically significant differences between perceived relevance of care and confidence in care provision were reported for aspects of acute burn care. Following attendance at the education sessions, statistically significant increases in knowledge were noted for most areas of acute burn care. Identification of learning needs facilitated the development of a targeted education programme for non-burn specialist clinicians. Increased non-burn specialist clinician knowledge following attendance at most education sessions supports the use of videoconferencing as an acceptable and effective method of delivering burns education in Western Australia. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  8. Detection of frequently-burn locations using multi-temporal Terra/Aqua MODIS fire product (MOD14) in Oudomxay province, Laos

    International Nuclear Information System (INIS)

    Phonekeo, V; Samarakoon, L; Saphangthong, T

    2014-01-01

    Wildfire is natural and man-made disaster that relates to global warming and climate change. Wildfire is prominent disaster that destroys natural resources, and causes enormous danger to human life and property. The study on the spatial and temporal distribution of wildfire is significant to understand wildfire occurrence and behavior. In the past, people usually study on the pattern of wildfire and open-space burning according to the daily number of active fire detected by MODIS sensor onboard of Terra and Aqua satellites for a particular area at the time of satellite over pass. However, there is no study that focused on the active fire that frequently occurred at the same location for a given period of time. Therefore, in this paper, the authors has focused on the study of frequently-burn locations in Oudomxay province of Laos, which has the 3rd highest active fire number in burning season of year 2007-2009 using spatial and statistical analysis of the active fire distribution and occurrence by time and space. The results of the study show that the highest number of burning frequency is 6 and 7 times within the study period and these numbers are located at 3 districts. One is Xai district which has the highest frequently-burn location for 7 times during the study period at the coordinate of N20.72° and E101.88°. The second districts are Beng and Nga districts which has the 2nd highest frequently-burn location for 6 times during the study period at the coordinate of N 20.28°, E101.68°, and N20.17°, E102.02°, respectively. The obtained information on frequently-burn locations in the province would be useful to identify the repeat burning activity by the local people occurred in the same location and allows the forestry and agricultural officers understand the wildfire distribution pattern

  9. Gap analysis of pharmacokinetics and pharmacodynamics in burn patients: a review.

    Science.gov (United States)

    Steele, Amanda N; Grimsrud, Kristin N; Sen, Soman; Palmieri, Tina L; Greenhalgh, David G; Tran, Nam K

    2015-01-01

    Severe burn injury results in a multifaceted physiological response that significantly alters drug pharmacokinetics and pharmacodynamics (PK/PD). This response includes hypovolemia, increased vascular permeability, increased interstitial hydrostatic pressure, vasodilation, and hypermetabolism. These physiologic alterations impact drug distribution and excretion-thus varying the drug therapeutic effect on the body or microorganism. To this end, in order to optimize critical care for the burn population it is essential to understand how burn injury alters PK/PD parameters. The purpose of this article is to describe the relationship between burn injury and drug PK/PD. We conducted a literature review via PubMed and Google to identify burn-related PK/PD studies. Search parameters included "pharmacokinetics," "pharmacodynamics," and "burns." Based on our search parameters, we located 38 articles that studied PK/PD parameters specifically in burns. Twenty-seven articles investigated PK/PD of antibiotics, 10 assessed analgesics and sedatives, and one article researched an antacid. Out of the 37 articles, there were 19 different software programs used and eight different control groups. The mechanisms behind alterations in PK/PD in burns remain poorly understood. Dosing techniques must be adapted based on burn injury-related changes in PK/PD parameters in order to ensure drug efficacy. Although several PK/PD studies have been undertaken in the burn population, there is wide variation in the analytical techniques, software, and study sample sizes used. In order to refine dosing techniques in burns and consequently improve patient outcomes, there must be harmonization among PK/PD analyses.

  10. Producing remote sensing-based emission estimates of prescribed burning in the contiguous United States for the U.S. Environmental Protection Agency 2011 National Emissions Inventory

    Science.gov (United States)

    McCarty, J. L.; Pouliot, G. A.; Soja, A. J.; Miller, M. E.; Rao, T.

    2013-12-01

    Prescribed fires in agricultural landscapes generally produce smaller burned areas than wildland fires but are important contributors to emissions impacting air quality and human health. Currently, there are a variety of available satellite-based estimates of crop residue burning, including the NOAA/NESDIS Hazard Mapping System (HMS) the Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation (SMARTFIRE 2), the Moderate Resolution Imaging Spectroradiometer (MODIS) Official Burned Area Product (MCD45A1)), the MODIS Direct Broadcast Burned Area Product (MCD64A1) the MODIS Active Fire Product (MCD14ML), and a regionally-tuned 8-day cropland differenced Normalized Burn Ratio product for the contiguous U.S. The purpose of this NASA-funded research was to refine the regionally-tuned product utilizing higher spatial resolution crop type data from the USDA NASS Cropland Data Layer and burned area training data from field work and high resolution commercial satellite data to improve the U.S. Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The final product delivered to the EPA included a detailed database of 25 different atmospheric emissions at the county level, emission distributions by crop type and seasonality, and GIS data. The resulting emission databases were shared with the U.S. EPA and regional offices, the National Wildfire Coordinating Group (NWGC) Smoke Committee, and all 48 states in the contiguous U.S., with detailed error estimations for Wyoming and Indiana and detailed analyses of results for Florida, Minnesota, North Dakota, Oklahoma, and Oregon. This work also provided opportunities in discovering the different needs of federal and state partners, including the various geospatial abilities and platforms across the many users and how to incorporate expert air quality, policy, and land management knowledge into quantitative earth observation-based estimations of prescribed fire emissions. Finally, this work

  11. Ash and burn control through fishbones

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, V.; Miley, G.H.

    1989-01-01

    The thermal alphas will accumulate in the center of the ignited thermonuclear plasma in the long pulse experiments. This accumulation increases the Z{sub eff} leading to increased synchrotron losses and decreases the effective fuel density which reduces the power output. Also the ignited plasma is burn-unstable and its temperature is expected to increase above the design point until a stable equilibrium is reached at a higher temperature. This higher operating temperature is not expected to be beneficial. Thus we are faced with the dual problem of ash accumulation and thermonuclear burn instability in the steadily burning tokamak plasma. So some means of controlling them is desirable. Several control schemes for both problems have been proposed. But it is felt that we need alternatives with more desirable characteristics. In this paper, we explore the use of fishbones' as possible scheme that will achieve the dual purpose of ash and burn control. 3 refs.

  12. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Badarinath, K.V.S.; Vermote, Eric

    2011-01-01

    Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1σ) and 0.32 (-1σ). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for 'full accounting of GHG's and aerosols', for addressing the air quality in the study area. - Highlights: → MODIS data could capture rice and wheat residue burning events. → The total FRP was high during the rice burning season than the wheat. → MODIS AOD variations coincided well with rice burning events than wheat. → AOD values exceeding one suggested intense air pollution. - This research work highlights the satellite derived fire products and their potential in characterizing the agricultural residue burning events and air pollution.

  13. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI Data for Burned Area Discrimination

    Directory of Open Access Journals (Sweden)

    Haiyan Huang

    2016-10-01

    Full Text Available Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance and atmospherically corrected (surface reflectance images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence and non-parametric (decision tree approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms.

  14. Fusarium spp infections in a pediatric burn unit: nine years of experience.

    Science.gov (United States)

    Rosanova, María Teresa; Brizuela, Martín; Villasboas, Mabel; Guarracino, Fabian; Alvarez, Veronica; Santos, Patricia; Finquelievich, Jorge

    2016-01-01

    Fusarium spp are ubiquitous fungi recognized as opportunistic agents of human infections, and can produce severe infections in burn patients. The literature on Fusarium spp infections in pediatric burn patients is scarce. To describe the clinical and epidemiological features as well as outcome of Fusarium spp infections in pediatric burn patients. Retrospective, descriptive study of Fusarium spp infections in a specialized intensive care burn unit. In 15 patients Fusarium spp infections were diagnosed. Median age was 48 months. Direct fire injury was observed in ten patients. The median affected burn surface area was 45%. Twelve patients had a full thickness burn. Fourteen patients had a Garces Index ≥3. Fungal infection developed at a median of 11 days after burn injury. Fungi were isolated from burn wound in 14 patients and from the bone in one patient. Amphotericin B was the drug of choice for treatment followed by voriconazole. Median time of treatment completion was 23 days. One patient (7%) died of fungal infection-related causes. In our series Fusarium spp was an uncommon pathogen in severely burnt patients. The burn wound was the most common site of infection and mortality was low. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  15. Air-Freshener Burns: A New Paradigm in Burns Etiology?

    OpenAIRE

    Sarwar, Umran; Nicolaou, M.; Khan, M. S.; Tiernan, E.

    2011-01-01

    Objectives: We report a rare case of burns following the use of automated air-fresheners. Methods: We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. Results: A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms re...

  16. Air-freshener burns: a new paradigm in burns etiology?

    Science.gov (United States)

    Sarwar, Umran; Nicolaou, M; Khan, M S; Tiernan, E

    2011-10-01

    We report a rare case of burns following the use of automated air-fresheners. We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms resulting in a seven-day hospital admission. The burns were treated conservatively. To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale.

  17. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  18. Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab State, India

    Directory of Open Access Journals (Sweden)

    Darshan Singh

    2010-02-01

    Full Text Available The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD and Ångström exponent (α values exhibited larger day to day variation during crop residue burning period. The monthly mean Ångström exponent "α" and turbidity parameter "β" values during October 2007 were 1.31±0.31 and 0.36±0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI and Nitrogen dioxide (NO2 showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning.

  19. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2002-01-01

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  20. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999

    Science.gov (United States)

    Harden, J.W.; Neff, J.C.; Sandberg, D.V.; Turetsky, M.R.; Ottmar, R.; Gleixner, G.; Fries, T.L.; Manies, K.L.

    2004-01-01

    Wildfires represent one of the most common disturbances in boreal regions, and have the potential to reduce C, N, and Hg stocks in soils while contributing to atmospheric emissions. Organic soil layers of the forest floor were sampled before and after the FROSTFIRE experimental burn in interior Alaska, and were analyzed for bulk density, major and trace elements, and organic compounds. Concentrations of carbon, nutrients, and several major and trace elements were significantly altered by the burn. Emissions of C, N, and Hg, estimated from chemical mass balance equations using Fe, Al, and Si as stable constituents, indicated that 500 to 900 g C and up to 0 to 4 ?? 10-4 g Hg/M2 were lost from the site. Calculations of nitrogen loss range from -4 to +6 g/m2 but were highly variable (standard deviation 19), with some samples showing increased N concentrations post-burn potentially from canopy ash. Noncombustible major nutrients such as Ca and K also were inherited from canopy ash. Thermogravimetry indicates a loss of thermally labile C and increase of lignin-like C in char and ash relative to unburned counterparts. Overall, atmospheric impacts of boreal fires include large emissions of C, N and Hg that vary greatly as a function of severe fire weather and its access to deep organic layers rich in C, N, and Hg. In terrestrial systems, burning rearranges the vertical distribution of nutrients in fuels and soils, the proximity of nutrients and permafrost to surface biota, and the chemical composition of soil including its nutrient and organic constituents, all of which impact C cycling. Copyright 2004 by the American Geophysical Union.

  1. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    International Nuclear Information System (INIS)

    Rodríguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-01-01

    Several occupational distributions for satellite galaxies more massive than m * ≈ 4 × 10 7 M ☉ around Milky-Way (MW)-sized hosts are presented and used to predict the internal dynamics of these satellites as a function of m * . For the analysis, a large galaxy group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations fully constrained with currently available observations, namely the galaxy stellar mass function decomposed into centrals and satellites, and the two-point correlation functions at different masses. We find that 6.6% of MW-sized galaxies host two satellites in the mass range of the Small and Large Magellanic Clouds (SMC and LMC, respectively). The probabilities of the MW-sized galaxies having one satellite equal to or larger than the LMC, two satellites equal to or larger than the SMC, or three satellites equal to or larger than Sagittarius (Sgr) are ≈0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the MW, N s (≥m * ) , down to the mass of the Fornax dwarf is within the 1σ distribution of all the MW-sized galaxies. We find that MW-sized hosts with three satellites more massive than Sgr (as the MW) are among the most common cases. However, the most and second most massive satellites in these systems are smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. We conclude that the distribution N s (≥m * ) for MW-sized galaxies is quite broad, the particular case of the MW being of low frequency but not an outlier. The halo mass of MW-sized galaxies correlates only weakly with N s (≥m * ). Then, it is not possible to accurately determine the MW halo mass by means of its N s (≥m * ); from our catalog, we constrain a lower limit of 1.38 × 10 12 M ☉ at the 1σ level. Our analysis strongly suggests that the abundance of massive subhalos should agree with the abundance of massive satellites in all MW-sized hosts, i.e., there is not a missing (massive) satellite problem

  2. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune

    Science.gov (United States)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2018-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or ;airsheds,; for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM10 anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM10 increases by 16.34 μg m-3, visibility decreases by 0.155 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM2.5 in the 2013 post-monsoon burning season, which coincided

  3. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  4. Seasonal and interannual variations in CO and BC emissions from open biomass burning in Southern Africa during 1998-2005

    Science.gov (United States)

    Ito, Akinori; Ito, Akihiko; Akimoto, Hajime

    2007-06-01

    We estimate the emissions of carbon monoxide (CO) and black carbon (BC) from open vegetation fires in the Southern Hemisphere Africa from 1998 to 2005 using satellite information in conjunction with a biogeochemical model. Monthly burned areas at a 0.5-degree resolution are estimated from the Visible InfraRed Scanner (VIRS) fire count product and the MODerate resolution Imaging Spectroradiometer (MODIS) burned area data set associated with the MODIS tree cover imagery in grasslands and woodlands. The monthly fuel load distributions are derived from a 0.5-degree terrestrial carbon cycle model in conjunction with satellite data. The monthly maps of combustion factors and emission factors are estimated using empirical models that predict the effects of fuel conditions on these factors in grasslands and woodlands. Our annually averaged effective CO and BC emissions per area burned are 27 g CO m-2 and 0.17 g BC m-2 which are consistent with the products of fuel consumption and emission factors typically measured in southern Africa. The CO and BC emissions from open vegetation burning in southern Africa range from 45 Tg CO yr-1 and 0.26 Tg BC yr-1 for 2002 to 75 Tg CO yr-1 and 0.42 Tg BC yr-1 for 1998. The monthly averaged burned areas from VIRS fire counts peak earlier than modeled CO emissions. This characteristic delay between burned areas and emissions is mainly explained by significant changes in combustion factors for woodlands in our model. Consequently, the peaks in CO and BC emissions from our bottom-up approach are identical to those from previous top-down estimates using the Measurement Of the Pollution In The Troposphere (MOPITT) and the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data.

  5. Mapping burned areas using dense time-series of Landsat data

    Science.gov (United States)

    Hawbaker, Todd J.; Vanderhoof, Melanie; Beal, Yen-Ju G.; Takacs, Joshua; Schmidt, Gail L.; Falgout, Jeff T.; Williams, Brad; Brunner, Nicole M.; Caldwell, Megan K.; Picotte, Joshua J.; Howard, Stephen M.; Stitt, Susan; Dwyer, John L.

    2017-01-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete. Consequently, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables (ECVs), including information about burned area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient boosted regression models to generate burn probability surfaces using band values and spectral indices from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in combination with a region growing process. The algorithm can be applied anywhere Landsat and training data are available. For this study, BAECV products were generated for the conterminous United States from 1984 through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability and a burn classification. We compared the BAECV burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring Trends in Burn Severity (MTBS; 1984–2013) data. We found that the BAECV products mapped 36% more burned area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the GFED were especially high in the West and East where the

  6. BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Anderes, Ethan [Department of Statistics, University of California, Davis, CA 95616 (United States); Wandelt, Benjamin D.; Lavaux, Guilhem [Sorbonne Universités, UPMC Univ Paris 06 and CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris (France)

    2015-08-01

    The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.

  7. An overview of acute burn management in the Emergency Centre

    Directory of Open Access Journals (Sweden)

    Adaira Landry

    2013-03-01

    Full Text Available Despite the frequency and severity of burns in Low Income Countries, including many in Africa, there is a paucity of research and funding for these populations to aid in prevention, treatment and recovery of burn patients. The objectives of this paper are four-fold. First, by addressing the pathophysiology of burns the reader may strengthen understanding of the clinical progression of burns. Second, through describing proper assessment of burn patients one will learn how to decide if patients can be discharged, admitted or transferred to burn centre. Third, the inclusion of treatments solidifies the steps necessary to manage a patient in a hospital setting. Lastly, the overall goal of the paper, is to raise awareness that more research, publication and funding is required to create a better understanding of burns in Africa and why they continue to be devastating social and economic burdens.

  8. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries.

    Science.gov (United States)

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Ismail, Ahmad Fauzi; Rajasekar, Rathanasamy

    Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4-50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries.

  9. Nutritional management of the burn patient | Prins | South African ...

    African Journals Online (AJOL)

    Burn injury, the most severe type of injury from a metabolic point of view, is characterised by the most profound alterations in basal metabolic rate and urinary nitrogen excretion. In addition, requirements for and/or metabolism of macro- and micronutrients are altered or increased. The major improvement in burn survival can ...

  10. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    Science.gov (United States)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  11. Treatment and follow-up results of children with electrical burn who observed in burn intensive care unit

    Directory of Open Access Journals (Sweden)

    Çiğdem Aliosmanoğlu

    2011-06-01

    Full Text Available Electrical burns are infrequent relative to other injuries, but they are associated with high morbidity and mortality. The aim of this study was to assess management and follow-up results of pediatric patients’ who observed in intensive care unit and also review the precautions for preventing electrical burns.Materials and methods: Totally 22 patients aged under 17 years who were observed in the burn intensive care unit of Şanlıurfa Education and Research Hospital during the period between July 2009-October 2010. Cases were investigated retrospectively. The patients’ age, gender, total burn surface area, length of stay in hospital, musculo-skeletal system complication, cardiovascular system complication, kidney damage and attempts were recorded.Results: Of the 22 cases, 19 (86.3% were male and 3 (13.7% were female. The mean age of the patients was 11.5 years. In 10 (45.4% children burns were occurred in workplace and working area and 12 (54.6% were occurred in the home environment. Depth of burns were third degree in 10 (45.4% children and second degree in 12 (54.6%. The mean percentage of burn surface area was 25.9%. The mean length of stay in hospital was 17 days. Debridement and grafting were performed to 12 (54.6% cases and 10 (45.4% children were treated with dressings. No patient had increased creatinine kinase levels, oliguria, myoglobuinuria and arrhythmia. The mean hospitalization time was 17 days.Conclusion: Nearly half of patients underwent debridement plus grafting. None of our patients developed renal failure other severe system dysfunction.

  12. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  13. Effects of burn location and investigator on burn depth in a porcine model.

    Science.gov (United States)

    Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek

    2016-02-01

    In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (Plocations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  14. Uncertainty analysis of moderate- versus coarse-scale satellite fire products for quantifying agricultural burning: Implications for Air Quality in European Russia, Belarus, and Lithuania

    Science.gov (United States)

    McCarty, J. L.; Krylov, A.; Prishchepov, A. V.; Banach, D. M.; Potapov, P.; Tyukavina, A.; Rukhovitch, D.; Koroleva, P.; Turubanova, S.; Romanenkov, V.

    2015-12-01

    Cropland and pasture burning are common agricultural management practices that negatively impact air quality at a local and regional scale, including contributing to short-lived climate pollutants (SLCPs). This research focuses on both cropland and pasture burning in European Russia, Lithuania, and Belarus. Burned area and fire detections were derived from 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS), 30 m Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data. Carbon, particulate matter, volatile organic carbon (VOCs), and harmful air pollutants (HAPs) emissions were then calculated using MODIS and Landsat-based estimates of fire and land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fire detections occurring in March - June and smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout this region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands and pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times higher than the 1 km MODIS active fire estimates. In general, European Russia is the main source of agricultural burning emissions compared to Lithuania and Belarus. On average, all cropland burning in European Russia as detected by the MCD45A1 MODIS Burned Area Product emitted 17.66 Gg of PM10 while annual burning of pasture in Smolensk Oblast, Russia as detected by Landsat burn scars emitted 494.85 Gg of PM10, a 96% difference. This highlights that quantifying the contribution of pasture burning and burned area versus cropland burning in agricultural regions is important for accurately

  15. Effects of prescribed burning on marsh-elevation change and the risk of wetland loss

    Science.gov (United States)

    McKee, Karen L.; Grace, James B.

    2012-01-01

    nutrient addition had no detectable influence on elevation dynamics. 3. Burning decreased standing and fallen plant litter, reducing fuel load. Hurricanes Gustav and Ike also removed fallen litter from all plots. 4. Aboveground and belowground production rates varied annually but were unaffected by burning and nutrient treatments. 5. Decomposition (of a standard cellulose material) in upper soil layers was increased in burned plots but was unaffected by nutrient treatments. 6. Soil physicochemistry was unaffected by burning or nutrient treatments. 7. The elevation deficit (difference between rate of submergence and vertical land development) prior to hurricanes was less in burned plots (6.2 millimeters per year [mm yr-1]) compared to nonburned plots (7.2 mm yr-1). 8. Storm sediments delivered by Hurricane Ike raised elevations an average of 7.4 centimeters (cm), which countered an elevation deficit that had accrued over 11 years. Our findings provide preliminary insights into elevation dynamics occurring in brackish marshes of the Texas Chenier Plain under prescribed fire management. The results of this study indicate that prescribed burning conducted at 3- to 5-year intervals is not likely to negatively impact the long-term sustainability of S. patens-dominated brackish marshes at McFaddin National Wildlife Refuge and may offset existing elevation deficits by ≈ 1 mm yr-1. The primary drivers of elevation change varied in time and space, leading to a more complex situation in terms of predicting how disturbances may alter elevation trajectories. The potential effect of burning on elevation change in other marshes will depend on several site-specific factors, including geomorphic/ sedimentary setting, tide range, local rate of relative sea level rise, plant species composition, additional management practices (for example, for flood control), and disturbance types and frequency (for example, hurricanes or herbivore grazing). Increasing the scope of inference would require

  16. The effects of sildenafil in liver and kidney injury in a rat model of severe scald burn: a biochemical and histopathological study.

    Science.gov (United States)

    Gökakın, Ali Kağan; Atabey, Mustafa; Deveci, Koksal; Sancakdar, Enver; Tuzcu, Mehmet; Duger, Cevdet; Topcu, Omer

    2014-09-01

    Severe burn induces systemic inflammation and reactive oxygen species leading to lipid peroxidation which may play role in remote organs injury. Sildenafil is a selective and potent inhibitor of cyclic guanosine monophosphate specific phosphodiesterase-5. Sildenafil reduces oxidative stress and inflammation in distant organs. The aim of the present study was to evaluate the effects of different dosages of sildenafil in remote organs injury. A total of thirty-two rats were randomly divided into four equal groups. The groups were designated as follows: Sham, Control, 10, and T20 mg/kg sildenafil treatment groups. Levels of malondialdehyde (MDA), vascular endothelial growth factor (VEGF), VEGF receptor (Flt-1), activities of glutathione peroxidase (Gpx), levels of total antioxidative capacity (TAC), and total oxidant status (TOS) were measured in both tissues and serum, and a semi-quantitative scoring system was used for the evaluation of histopathological findings. Sildenafil increased levels of Gpx, and Flt-1, and decreased MDA and VEGF levels in tissues. Sildenafil also increased serum levels of TAC and Flt-1 and decreased TOS, OSI, and VEGF. Sildenafil decreased inflammation scores in remote organs in histopathological evaluation. It has protective effects in severe burn-related remote organ injuries by decreasing oxidative stress and inflammation.

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  18. Effects of past burning frequency on plant species structure and composition in dry dipterocarp forest

    Science.gov (United States)

    Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.

    2009-04-01

    Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency

  19. Burn Control Mechanisms in Tokamaks

    Science.gov (United States)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  20. Epidemiological Study Of Burn Cases And Their Mortality Experiences Amongst Adults From A Tertiary Level Care Centre

    Directory of Open Access Journals (Sweden)

    Kumar P

    1997-01-01

    Full Text Available Research question: How to use hospital statistics in establishing epidemiology of burns amongst adults? Objectives: To identify epidemiological determinants for Ii Various burn injuries and ii their mortality experiences. Study design: Hospital based study carried out for a period of one year (1st January 1991 to 31st December 1991. Settings: Wards of department of Burn & Plastic Surgery, BJ Medical College, Ahmedabad. Participants: 386 adults (20 years and above admitted at the centre for burn injuries during 1991. Study variables: Epidemiological determinants (age, sex, temporal, place, etc. for various burn injuries and the determinants of mortality (type of burn, extent of burn, referral time lag etc. Outcome profile: Common profile of burn victims with relation to the epidemiological factors and other factors responsible for high mortality in burn cases. Statistical analysis: Chi- square and Z tests. Results:Burns occured more in females specially in the age group of 20-24 years. Eighty five percent were flame burns. Flame burns were more in females, while electric burns were more in males. Burns were less during monsoon (27.7% than winter (32.6% and summer (39.6%, but electric burns were twice more common during monsoon. Maximum burns (81.9% were domestic, occurring mainly either in kitchen or living room. They were seen more in late evening. Sixty two percent cases were severe as total burn surface area (TBSA was >40%. Case fatality correlated positively with TBSA and death was almost universal with TBSA >60%. Early referral reduced fatality significantly in less severe burns (TBSA<40% but failed to influence it in severe burns. Appraisal of alleged suicide cases (2.6% and of stove bursting (4.4% revealed that young females carry additional risk of burn injuries.

  1. Radioisotopic studies on pulmonary function in experimental burn shock

    International Nuclear Information System (INIS)

    Lambrecht, W.; Barcikowski, S.; Maziarz, Z.; Zajgner, J.; Markiewicz, A.

    1980-01-01

    Disturbances in pulmonary ventilation and perfusion, which can initiate severe complications, often lead to many therapeutic failures in burn shock. Early recognition of respiratory disturbances is often required to improve results of treatment of burn shock. The authors investigated changes in pulmonary ventilation and perfusion in napalm-burnt rabbits using 133 Xe. Simultaneously, they determined effect of treatment with cytochrome C on pulmonary ventilation and perfusion in animals burnt with napalm. It was found that in napalm-burnt rabbits burn shock was accompanied by a significant deterioration in pulmonary ventilation and perfusion. The most marked changes were observed one and two days after burn. It was also found a beneficial effect of treatment with cytochrome C on alveolar ventilation. The authors pointed out the usefulness of radioisotopic investigations of pulmonary ventilation and perfusion in burn shock. (author)

  2. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    OpenAIRE

    M. Parrington; P. I. Palmer; D. K. Henze; D. W. Tarasick; E. J. Hyer; R. C. Owen; D. Helmig; C. Clerbaux; K. W. Bowman; M. N. Deeter; E. M. Barratt; P.-F. Coheur; D. Hurtmans; M. George; J. R. Worden

    2011-01-01

    We analyse the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model, and observations from in situ and satellite instruments. In comparison to observations from the PICO-NARE observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES) and Infrared Atmospheric Sounding Instrument (IASI) satellite instr...

  3. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands.

    Science.gov (United States)

    Zhu, Chunmao; Kobayashi, Hideki; Kanaya, Yugo; Saito, Masahiko

    2017-07-05

    Pollutants emitted from wildfires in boreal Eurasia can be transported to the Arctic, and their subsequent deposition could accelerate global warming. The Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product is the basis of fire emission products. However, uncertainties due to the "moderate resolution" (500 m) characteristic of the MODIS sensor could be introduced. Here, we present a size-dependent validation of MCD64A1 with reference to higher resolution (better than 30 m) satellite products (Landsat 7 ETM+, RapidEye, WorldView-2, and GeoEye-1) for six ecotypes over 12 regions of boreal Eurasia. We considered the 2012 boreal Eurasia burning season when severe wildfires occurred and when Arctic sea ice extent was historically low. Among the six ecotypes, we found MCD64A1 burned areas comprised only 13% of the reference products in croplands because of inadequate detection of small fires (Eurasia (15,256 km 2 ) could have been ~16% greater than suggested by MCD64A1 (13,187 km 2 ) when applying the correction factors proposed in this study. This implies the effects of wildfire emissions in boreal Eurasia on Arctic warming could be greater than currently estimated.

  4. Early postoperative alterations of ventilation parameters after tracheostomy in major burn injuries

    Directory of Open Access Journals (Sweden)

    Mailänder, Peter

    2010-01-01

    Full Text Available Purpose: In patients with major burn injuries mechanical ventilation is often required for longer periods. Tracheostomy (TS plays an integral role in airway management. We investigated the effect of TS on ventilation parameters within 8 hours after TS. Materials: A retrospective analysis of severely burned patients admitted to the burn unit of a German University Hospital was performed. Ventilation parameters 8 hours before and after TS were registered. Results: A retrospective analysis of 20 patients which received surgical TS was performed. Mean age was 52±19 years. Mean abbreviated burned severity index (ABSI was 8.3±2.2. A mechanical ventilation was required for 14.3±4.8 days. TS was performed on day 7±4. Inspiratory oxygen concentration (FiO2 (p<0.001, peak inspiratory pressure (p<0.001, positive end-expiratory pressure (p=0.003 and pulmonary resistance (p<0.001 were reduced significantly after TS. The arterial partial pressure of oxygen/FiO2-ratio increased significantly after TS (p<0.001. Conclusions: We demonstrate that TS reduces invasiveness of ventilation in severely burned patients and by this can optimize lung protective ventilation strategy.

  5. MERIS burned area algorithm in the framework of the ESA Fire CCI Project

    Science.gov (United States)

    Oliva, P.; Calado, T.; Gonzalez, F.

    2012-04-01

    The Fire-CCI project aims at generating long and reliable time series of burned area (BA) maps based on existing information provided by European satellite sensors. In this context, a BA algorithm is currently being developed using the Medium Resolution Imaging Spectrometer (MERIS) sensor. The algorithm is being tested over a series of ten study sites with a area of 500x500 km2 each, for the period of 2003 to 2009. The study sites are located in Canada, Colombia, Brazil, Portugal, Angola, South Africa, Kazakhstan, Borneo, Russia and Australia and include a variety of vegetation types characterized by different fire regimes. The algorithm has to take into account several limiting aspects that range from the MERIS sensor characteristics (e.g. the lack of SWIR bands) to the noise presented in the data. In addition the lack of data in some areas caused either because of cloud contamination or because the sensor does not acquire full resolution data over the study area, provokes a limitation difficult to overcome. In order to overcome these drawbacks, the design of the BA algorithm is based on the analysis of maximum composites of spectral indices characterized by low values of temporal standard deviation in space and associated to MODIS hot spots. Accordingly, for each study site and year, composites of maximum values of BAI are computed and the corresponding Julian day of the maximum value and number of observations in the period are registered by pixel . Then we computed the temporal standard deviation for pixels with a number of observations greater than 10 using spatial matrices of 3x3 pixels. To classify the BAI values as burned or non-burned we extract statistics using the MODIS hot spots. A pixel is finally classified as burned if it satisfies the following conditions: i) it is associated to hot spots; ii) BAI maximum is higher than a certain threshold and iii) the standard deviation of the Julian day is less than a given number of days.

  6. The relation between tree burn severity and forest structure in the Rocky Mountains

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham

    2007-01-01

    Many wildfire events have burned thousands of hectares across the western United States, such as the Bitterroot (Montana), Rodeo-Chediski (Arizona), Hayman (Colorado), and Biscuit (Oregon) fires. These events led to Congress enacting the Healthy Forest Restoration Act of 2003, which, with other policies, encourages federal and state agencies to decrease wildfire risks...

  7. Impact of a Newly Implemented Burn Protocol on Surgically Managed Partial Thickness Burns at a Specialized Burns Center in Singapore.

    Science.gov (United States)

    Tay, Khwee-Soon Vincent; Chong, Si-Jack; Tan, Bien-Keem

    2016-03-01

    This study evaluated the impact of a newly implemented protocol for superficial to mid-dermal partial thickness burns which involves early surgery and rapid coverage with biosynthetic dressing in a specialized national burns center in Singapore. Consecutive patients with 5% or greater total body surface area (TBSA) superficial to mid-dermal partial thickness burns injury admitted to the Burns Centre at the Singapore General Hospital between August and December 2014 for surgery within 48 hours of injury were prospectively recruited into the study to form the protocol group. Comparable historical cases from the year 2013 retrieved from the burns center audit database were used to form the historical control group. Demographics (age, sex), type and depth of burns, %TBSA burnt, number of operative sessions, and length of stay were recorded for each patient of both cohorts. Thirty-nine burns patients managed under the new protocol were compared with historical control (n = 39) comparable in age and extensiveness of burns. A significantly shorter length of stay (P burns was observed in the new protocol group (0.74 day/%TBSA) versus historical control (1.55 day/%TBSA). Fewer operative sessions were needed under the new protocol for burns 10% or greater TBSA burns (P protocol for surgically managed burns patients which involves early surgery and appropriate use of biosynthetic dressing on superficial to mid-dermal partial thickness burns. Clinically, shorter lengths of stay, fewer operative sessions, and decreased need for skin grafting of burns patient were observed.

  8. In-situ burning of spilled oil

    International Nuclear Information System (INIS)

    Tennyson, E.J.

    1992-01-01

    This presentation provided an overview of results from the Minerals Management Service's (MMS) funded research on in situ burning of spilled oil. The program began in 1983 to determine the limitations of this innovative response strategies. Specific physical variables evaluated were slick thickness, degree of weathering (sparging), sea state, wind velocities, air and water temperatures, degrees of emulsification and degree of ice-coverage. All of the oils tested burned with 50 to 95 percent removal ratios as long as emulsification had not occurred. Slick thickness of 3mm or thicker were required to sustain ignition and extinguishment occurred when the slick reached approximately 1mm thick. The next phase of the research involved quantitative analysis of the pollutants created by in situ burning including chemical composition of the parent oil, burn residue, and airborne constituents. These studies were conducted at the National Institute of Standards and Technology (NIST) with emphasis on particulate, and gaseous components created by the burning process. Research efforts over several years, and a variety of crude oils, yielded data which indicated that aldehydes ketones, dioxans, furans, and polyaromatic compounds (PAHS) were not formed in the burning process. The airborne pollutants reflected similar concentrations of these compounds that were present in the parent oil. Lighter molecular weight PAHs tended to be converted to higher molecular weight compounds. Heavier molecular weight compounds are considered less acutely toxic than lighter molecular weight PAHS. Predominant burn products released into the air were by weight: 75% carbon dioxide, 12% water vapor, 10% soot, 3% carbon monoxide and 0.2% other products including those listed above

  9. Satellite-based Analysis of CO Variability over the Amazon Basin

    Science.gov (United States)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Tilmes, S.; Wiedinmyer, C.

    2017-12-01

    Pyrogenic emissions from the Amazon Basin exert significant influence on both climate and air quality but are highly variable from year to year. The ability of models to simulate the impact of biomass burning emissions on downstream atmospheric concentrations depends on (1) the quality of surface flux estimates (i.e., emissions inventories), (2) model dynamics (e.g., horizontal winds, large-scale convection and mixing) and (3) the representation of atmospheric chemical processes. With an atmospheric lifetime of a few months, carbon monoxide (CO) is a commonly used diagnostic for biomass burning. CO products are available from several satellite instruments and allow analyses of CO variability over extended regions such as the Amazon Basin with useful spatial and temporal sampling characteristics. The MOPITT ('Measurements of Pollution in the Troposphere') instrument was launched on the NASA Terra platform near the end of 1999 and is still operational. MOPITT is uniquely capable of measuring tropospheric CO concentrations using both thermal-infrared and near-infrared observations, resulting in the ability to independently retrieve lower- and upper-troposphere CO concentrations. We exploit the 18-year MOPITT record and related datasets to analyze the variability of CO over the Amazon Basin and evaluate simulations performed with the CAM-chem chemical transport model. We demonstrate that observed differences between MOPITT observations and model simulations provide important clues regarding emissions inventories, convective mixing and long-range transport.

  10. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  11. Poverty, population density, and the epidemiology of burns in young children from Mexico treated at a U.S. pediatric burn facility.

    Science.gov (United States)

    Patel, Dipen D; Rosenberg, Marta; Rosenberg, Laura; Foncerrada, Guillermo; Andersen, Clark R; Capek, Karel D; Leal, Jesus; Lee, Jong O; Jimenez, Carlos; Branski, Ludwik; Meyer, Walter J; Herndon, David N

    2018-03-07

    Children 5 and younger are at risk for sustaining serious burn injuries. The causes of burns vary depending on demographic, cultural and socioeconomic variables. At this pediatric burn center we provided medical care to children from Mexico with severe injuries. The purpose of this study was to understand the impact of demographic distribution and modifiable risk factors of burns in young children to help guide prevention. A retrospective chart review was performed with children 5 and younger from Mexico who were injured from 2000-2013. The medical records of 447 acute patients were reviewed. Frequency counts and percentages were used to identify geographic distribution and calculate incidence of burns. Microsoft Powermap software was used to create a geographical map of Mexico based on types of burns. A binomial logistic regression was used to model the incidence of flame burns as opposed to scald burns in each state with relation to population density and poverty percentage. In all statistical tests, alpha=0.05 for a 95% level of confidence. Burns were primarily caused by flame and scald injuries. Admissions from flame injuries were mainly from explosions of propane tanks and gas lines and house fires. Flame injuries were predominantly from the states of Jalisco, Chihuahua, and Distrito Federal. Scalds were attributed to falling in large containers of hot water or food on the ground, and spills of hot liquids. Scald injuries were largely from the states of Oaxaca, Distrito Federal, and Hidalgo. The odds of a patient having flame burns were significantly associated with poverty percentage (ppoverty led to decrease in odds of a flame burn, but an increase in the odds of scald burns. Similarly, we found that increasing population density led to a decrease in the odds of a flame burn, but an increase in the odds of a scald burn. Burns in young children from Mexico who received medical care at this pediatric burn center were attributed to flame and scalds. Potential

  12. Protocol for a systematic review of quantitative burn wound microbiology in the management of burns patients.

    Science.gov (United States)

    Kwei, Johnny; Halstead, Fenella D; Dretzke, Janine; Oppenheim, Beryl A; Moiemen, Naiem S

    2015-11-06

    Sepsis from burn injuries can result from colonisation of burn wounds, especially in large surface area burns. Reducing bacterial infection will reduce morbidity and mortality, and mortality for severe burns can be as high as 15 %. There are various quantitative and semi-quantitative techniques to monitor bacterial load on wounds. In the UK, burn wounds are typically monitored for the presence or absence of bacteria through the collection and culture of swabs, but no absolute count is obtained. Quantitative burn wound culture provides a measure of bacterial count and is gaining increased popularity in some countries. It is however more resource intensive, and evidence for its utility appears to be inconsistent. This systematic review therefore aims to assess the evidence on the utility and reliability of different quantitative microbiology techniques in terms of diagnosing or predicting clinical outcomes. Standard systematic review methods aimed at minimising bias will be employed for study identification, selection and data extraction. Bibliographic databases and ongoing trial registers will be searched and conference abstracts screened. Studies will be eligible if they are prospective studies or systematic reviews of burn patients (any age) for whom quantitative microbiology has been performed, whether it is compared to another method. Quality assessment will be based on quality assessment tools for diagnostic and prognostic studies and tailored to the review as necessary. Synthesis is likely to be primarily narrative, but meta-analysis may be considered where clinical and methodological homogeneity exists. Given the increasing use of quantitative methods, this is a timely systematic review, which will attempt to clarify the evidence base. As far as the authors are aware, it will be the first to address this topic. PROSPERO, CRD42015023903.

  13. [Effects of lung protective ventilation strategy combined with lung recruitment maneuver on patients with severe burn complicated with acute respiratory distress syndrome].

    Science.gov (United States)

    Li, Xiaojian; Zhong, Xiaomin; Deng, Zhongyuan; Zhang Xuhui; Zhang, Zhi; Zhang, Tao; Tang, Wenbin; Chen, Bib; Liu, Changling; Cao, Wenjuan

    2014-08-01

    To investigate the effects of lung protective ventilation strategy combined with lung recruitment maneuver on ARDS complicating patients with severe burn. Clinical data of 15 severely burned patients with ARDS admitted to our burn ICU from September 2011 to September 2013 and conforming to the study criteria were analyzed. Right after the diagnosis of acute lung injury/ARDS, patients received mechanical ventilation with lung protective ventilation strategy. When the oxygenation index (OI) was below or equal to 200 mmHg (1 mmHg = 0. 133 kPa), lung recruitment maneuver was performed combining incremental positive end-expiratory pressure. When OI was above 200 mmHg, lung recruitment maneuver was stopped and ventilation with lung protective ventilation strategy was continued. When OI was above 300 mmHg, mechanical ventilation was stopped. Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, variables of blood gas analysis (pH, PaO2, and PaCO2) were obtained by blood gas analyzer, and the OI values were calculated; hemodynamic parameters including heart rate, mean arterial pressure (MAP), central venous pressure (CVP) of all patients and the cardiac output (CO), extravascular lung water index (EVLWI) of 4 patients who received pulse contour cardiac output (PiCCO) monitoring were monitored. Treatment measures and outcome of patients were recorded. Data were processed with analysis of variance of repeated measurement of a single group and LSD test. (1) Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, the levels of PaO2 and OI of patients were respectively (77 ± 8), (113 ± 5), (142 ± 6) mmHg, and (128 ± 12), (188 ± 8), (237 ± 10) mmHg. As a whole, levels of PaO2 and OI changed significantly at different time points (with F values respectively 860. 96 and 842. 09, P values below

  14. Methylated spirit burns following traditional hair dressing practice.

    Science.gov (United States)

    Michael, Afieharo I; Iyun, Ayodele O

    2018-02-01

    Methylated spirit burns have been reported following domestic uses such as igniting fondues. It has also been used as an accelerant for self-immolation. We report the first documented case of severe methylated spirit burns sustained during traditional hair dressing. Increased awareness on the dangers of methylated spirit as well as making it less readily available for domestic use is warranted. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  15. Pumice stones as potential in-situ burning enhancer

    DEFF Research Database (Denmark)

    Rojas Alva, U.; Andersen, Bjørn Skjønning; Jomaas, Grunde

    2018-01-01

    Small-scale and mid-scale experiments were conducted in order to evaluate pumice stones as a potential enhancement for in-situ burning (ISB). Four oil types, several emulsification degrees of one crude oil were studied. In general, it was observed that the pumice stones did not improve the burning...... and after the burn, thus bringing the oil into the water column. Finally, the species production of CO and CO2 was not reduced. Based on the presented results, pumice stones have a negative impact on the efficiency of ISB, and they are ruled out as an ISB enhancer and should not be used in relation to ISB....

  16. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    Science.gov (United States)

    Parrington, M.; Palmer, P. I.; Henze, D. K.; Tarasick, D. W.; Hyer, E. J.; Owen, R. C.; Helmig, D.; Clerbaux, C.; Bowman, K. W.; Deeter, M. N.; Barratt, E. M.; Coheur, P.-F.; Hurtmans, D.; Jiang, Z.; George, M.; Worden, J. R.

    2012-02-01

    We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES) and Infrared Atmospheric Sounding Instrument (IASI) satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as -20 ppbv, -50 pptv, and -20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately -3 ppbv (-8%) and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere, reducing the mean model bias from 5.5 to 4.0 ppbv

  17. Observations of inner plasmasphere irregularities with a satellite-beacon radio-interferometer array

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Hoogeveen, G.; Carlos, R.C.; Wu, G.; Fejer, B.G.; Kelley, M.C.

    1996-01-01

    A radio-interferometer array illuminated by 136-MHz beacons of several geosynchronous satellites has been used to study small (≥10 13 m -2 ) transient disturbances in the total electron content along the lines of sight to the satellites. High-frequency (f>3 mHz) electron content oscillations are persistently observed, particularly during night and particularly during geomagnetically disturbed periods. The oscillations move across the array plane at speeds in the range 200 endash 2000 m/s, with propagation azimuths that are strongly peaked in lobes toward the western half-plane. Detailed analysis of this azimuth behavior, involving comparison between observations on various satellite positions, indicates compellingly that the phase oscillations originate in radio refraction due to geomagnetically aligned plasma density perturbations in the inner plasmasphere. The motion of the phase perturbations across the array plane is caused by EXB drift of the plasma medium in which the irregularities are embedded. We review the statistics of 2.5 years of around-the-clock data on the local time, magnetic disturbance, seasonal, and line-of-sight variations of these observed irregularities. We compare the irregularities close-quote inferred electrodynamic drifts to what is known about midlatitude plasma drift from incoherent scatter. Finally, we show in detail how the observation of these irregularities provides a unique and complementary monitor of inner plasmasphere irregularity incidence and zonal drift.copyright 1996 American Geophysical Union

  18. Estimating the Mass of the Milky Way Using the Ensemble of Classical Satellite Galaxies

    Science.gov (United States)

    Patel, Ekta; Besla, Gurtina; Sohn, Sangmo Tony; Mandel, Kaisey

    2018-06-01

    High precision proper motions are currently available for approximately 20% of the Milky Way's known satellite galaxies. Often, the 6D phase space information of each satellite is used separately to constrain the mass of the MW. In this talk, I will discuss the Bayesian framework outlined in Patel et al. 2017b to make inferences of the MW's mass using satellite properties such as specific orbital angular momentum, rather than just position and velocity. By extending this framework from one satellite to a population of satellites, we can now form simultaneous MW mass estimates using the Illustris-Dark cosmological simulation that are unbiased by high speed satellites such as Leo I (Patel et al., submitted). Our resulting MW mass estimates reduce the current factor of two uncertainty in the mass range of the MW and show promising signs for improvement as upcoming ground- and space-based observatories obtain proper motions for additional MW satellite galaxies.

  19. Automated Burned Area Delineation Using IRS AWiFS satellite data

    Science.gov (United States)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi

  20. Supporting biodiversity by prescribed burning in grasslands - A multi-taxa approach.

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid D; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2016-12-01

    There are contrasting opinions on the use of prescribed burning management in European grasslands. On the one hand, prescribed burning can be effectively used for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. On the other hand burning can have a detrimental impact on grassland biodiversity by supporting competitor grasses and by threatening several rare and endangered species, especially arthropods. We studied the effects of prescribed burning in alkaline grasslands of high conservation interest. Our aim was to test whether dormant-season prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in East-Hungary: in three sites, a prescribed fire was applied in November 2011, while three sites remained unburnt. We studied the effects of burning on soil characteristics, plant biomass and on the composition of vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soil pH, organic matter, potassium and phosphorous did not change, but soluble salt content increased significantly in the burnt sites. Prescribed burning had several positive effects from the nature conservation viewpoint. Shannon diversity and the number of flowering shoots were higher, and the cover of the dominant grass Festuca pseudovina was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control. The key finding of our study was that prescribed burning did not decrease the abundance and diversity of arthropod taxa. Species-level analyses showed that out of the most abundant invertebrate species, 10 were not affected, 1 was negatively and 1 was positively affected by burning. Moreover, our results suggest that prescribed burning leaving unburnt patches can be a viable management tool in open landscapes, because it supports plant diversity and does not threaten

  1. Instant hot noodles: do they need to burn?

    Science.gov (United States)

    Wu, C; Tan, A L; Maze, D A E; Holland, A J A

    2013-03-01

    Scalds and contact burns in children may occur as the result of spillage of hot food and drinks, including instant hot noodles. This study sought to determine the frequency of noodle burns in children and investigate the thermal properties of instant hot noodles. Data on instant hot noodle burns in children were retrieved from the New South Wales Severe Burn Injury Database between 2005 and 2010. Five widely available brands of instant hot noodles, including three cup and two packet varieties, were prepared following the manufacturer's instructions. For each preparation the initial temperature after cooking was recorded, together with the time to cool to 50°C. 291 children sustained instant hot noodle burns over the 6 year study period, representing 5.4% of all children referred to our burns unit. Over a third received inadequate first aid. Cup noodles cooked with boiling water reached the highest temperature of over 80°C and took the longest time to cool to 50°C: on average 52.3 min. Cup noodles in smaller, narrower containers achieved higher post-cooking temperatures compared to noodles in wider, bowel shaped containers. Packet noodles cooked in a Microwave oven attained lower peak temperatures and shorter cooling times compared to cup noodles. Although relatively uncommon in children, instant hot noodle burns often received inadequate first aid. When cooked according to manufacturer's instructions, noodles generally exceeded temperatures sufficient to cause a burn. Consumers and parents need to be aware of the risks of burn when preparing these foods. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. [Burn injuries to military personnel during the Six Day War].

    Science.gov (United States)

    Dreyfuss, U Y

    2000-05-01

    About 2500 soldiers were injured during the Six Day War (June 1967) of whom 115 suffered from burns. In 34 of them 15% or more of their body surface was involved and 11 died. Typical features of these burn cases were supplementary injuries, a high rate of infection, and long periods of hospitalization. Prophylactic antibiotics were not useful. The general condition of many deteriorated during the first week after injury, indicating the importance of treating severe burns in specialized facilities.

  3. Biomass burning aerosol detection over Buenos Aires City, August 2009

    International Nuclear Information System (INIS)

    Otero, L A; Ristori, P R; Pawelko, E E; Pallotta, J V; D'Elia, R L; Quel, E J

    2011-01-01

    At the end of August 2009, a biomass burning aerosol intrusion event was detected at the Laser and Applications Research Center, CEILAP (CITEFA-CONICET) (34.5 deg. S - 58.5 deg. W) at Villa Martelli, in Buenos Aires, Argentina. This center has a sunphotometer from the AERONET-NASA global network, UV solar radiation sensors, a meteorological station and an aerosol lidar system. The aerosol origin was determined by means of back-trajectories and satellite images. This work studies the aerosol air mass optical characterization and their effect in UV solar radiation.

  4. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  5. [Enteral nutrition in burn patients].

    Science.gov (United States)

    Pereira, J L; Garrido, M; Gómez-Cía, T; Serrera, J L; Franco, A; Pumar, A; Relimpio, F; Astorga, R; García-Luna, P P

    1992-01-01

    Nutritional support plays an important role in the treatment of patients with burns. Due to the severe hypercatabolism that develops in these patients, oral support is insufficient in most cases, and this makes it essential to initiate artificial nutritional support (either enteral or parenteral). Enteral nutrition is more physiological than parenteral, and data exist which show that in patients with burns, enteral nutrition exercises a protective effect on the intestine and may even reduce the hypermetabolic response in these patients. The purpose of the study was to evaluate the effectiveness and tolerance of enteral nutritional support with a hypercaloric, hyperproteic diet with a high content of branched amino acids in the nutritional support of patients suffering from burns. The study included 12 patients (8 males and 4 females), admitted to the Burns Unit. Average age was 35 +/- 17 years (range: 21-85 years). The percentage of body surface affected by the burns was 10% in two cases, between 10-30% in three cases, between 30-50% in five cases and over 50% in two cases. Initiation of the enteral nutrition was between twenty-four hours and seven days after the burn. The patients were kept in the unit until they were discharged, and the average time spent in the unit was 31.5 days (range: 17-63 days). Total energetic requirements were calculated based on Harris-Benedict, with a variable aggression factor depending on the body surface burned, which varied from 2,000 and 4,000 cal day. Nitrogenous balance was determined on a daily basis, and plasmatic levels of total proteins, albumin and prealbumin on a weekly basis. There was a significant difference between the prealbumin values at the initiation and finalization of the enteral nutrition (9.6 +/- 2.24 mg/dl compared with 19.75 +/- 5.48 mg/dl; p diet was very good, and only mild complications such as diarrhoea developed in two patients. Enteral nutrition is a suitable nutritional support method for patients with

  6. Assessing burn depth in tattooed burn lesions with LASCA Imaging

    Science.gov (United States)

    Krezdorn, N.; Limbourg, A.; Paprottka, F.J.; Könneker; Ipaktchi, R.; Vogt, P.M

    2016-01-01

    Summary Tattoos are on the rise, and so are patients with tattooed burn lesions. A proper assessment with regard to burn depth is often impeded by the tattoo dye. Laser speckle contrast analysis (LASCA) is a technique that evaluates burn lesions via relative perfusion analysis. We assessed the effect of tattoo skin pigmentation on LASCA perfusion imaging in a multicolour tattooed patient. Depth of burn lesions in multi-coloured tattooed and untattooed skin was assessed using LASCA. Relative perfusion was measured in perfusion units (PU) and compared to various pigment colours, then correlated with the clinical evaluation of the lesion. Superficial partial thickness burn (SPTB) lesions showed significantly elevated perfusion units (PU) compared to normal skin; deep partial thickness burns showed decreased PU levels. PU of various tattoo pigments to normal skin showed either significantly lower values (blue, red, pink) or significantly increased values (black) whereas orange and yellow pigment showed values comparable to normal skin. In SPTB, black and blue pigment showed reduced perfusion; yellow pigment was similar to normal SPTB burn. Deep partial thickness burn (DPTB) lesions in tattoos did not show significant differences to normal DPTB lesions for black, green and red. Tattoo pigments alter the results of perfusion patterns assessed with LASCA both in normal and burned skin. Yellow pigments do not seem to interfere with LASCA assessment. However proper determination of burn depth both in SPTB and DPTB by LASCA is limited by the heterogenic alterations of the various pigment colours. PMID:28149254

  7. Emissions of organic air toxics from open burning: a comprehensive review

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P M [United States Environmental Protection Agency, NC (United States). Air Pollution Prevention and Control Division, National Risk Management Research Laboratory; Lutes, C C; Santoianni, D A [ARCADIS G and M, Durham, NC (United States)

    2004-07-01

    Emissions from open burning, on a mass pollutant per mass fuel (emission factor) basis, are greater than those from well-controlled combustion sources. Some types of open burning (e.g. biomass) are large sources on a global scale in comparison to other broad classes of sources (e.g. mobile and industrial sources). A detailed literature search was performed to collect and collate available data reporting emissions of organic air toxics from open burning sources. The sources that were included in this paper are: Accidental Fires, Agricultural Burning of Crop Residue, Agricultural Plastic Film, Animal Carcasses, Automobile Shredder Fluff Fires, Camp Fires, Car-Boat-Train (the vehicle not cargo) Fires, Construction Debris Fires, Copper Wire Reclamation, Crude Oil and Oil Spill Fires, Electronics Waste, Fiberglass, Fireworks, Grain Silo Fires, Household Waste, Land Clearing Debris (biomass), Landfills/Dumps, Prescribed Burning and Savanna/Forest Fires, Structural Fires, Tire Fires, and Yard Waste Fires. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic compound (VOC) and polycyclic aromatic hydrocarbon (PAH) data were available for many of the sources. Non-PAH semi-volatile organic compound (SVOC) data were available for several sources. Carbonyl and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran (PCDD/F) data were available for only a few sources. There were several known sources for which no emissions data were available at all. It is desirable that emissions from those sources be tested so that the relative degree of hazard they pose can be assessed. Several observations were made including: Biomass open burning sources typically emitted less VOCs than open burning sources with anthropogenic fuels on a mass emitted per mass burned basis, particularly those where polymers were concerned. Biomass open burning sources typically emitted less SVOCs and PAHs than anthropogenic sources on a mass

  8. Initial evaluation and management of the critical burn patient.

    Science.gov (United States)

    Vivó, C; Galeiras, R; del Caz, Ma D P

    2016-01-01

    The major improvement in burn therapy is likely to focus on the early management of hemodynamic and respiratory failures in combination with an aggressive and early surgical excision and skin grafting for full-thickness burns. Immediate burn care by first care providers is important and can vastly alter outcomes, and it can significantly limit burn progression and depth. The goal of prehospital care should be to cease the burning process as well as prevent future complications and secondary injuries for burn shock. Identifying burn patients appropriate for immediate or subacute transfer is an important step in reducing morbidity and mortality. Delays in transport to Burn Unit should be minimized. The emergency management follows the principles of the Advanced Trauma Life Support Guidelines for assessment and stabilization of airway, breathing, circulation, disability, exposure and environment control. All patients with suspected inhalation injury must be removed from the enclosure as soon as possible, and immediately administer high-flow oxygen. Any patient with stridor, shortness of breath, facial burns, singed nasal hairs, cough, soot in the oral cavity, and history of being in a fire in an enclosed space should be strongly considered for early intubation. Fibroscopy may also be useful if airway damage is suspected and to assess known lung damage. Secondary evaluation following admission to the Burn Unit of a burned patient suffering a severe thermal injury includes continuation of respiratory support and management and treatment of inhalation injury, fluid resuscitation and cardiovascular stabilization, pain control and management of burn wound. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  9. Satisfaction with life after burn: A Burn Model System National Database Study.

    Science.gov (United States)

    Goverman, J; Mathews, K; Nadler, D; Henderson, E; McMullen, K; Herndon, D; Meyer, W; Fauerbach, J A; Wiechman, S; Carrougher, G; Ryan, C M; Schneider, J C

    2016-08-01

    While mortality rates after burn are low, physical and psychosocial impairments are common. Clinical research is focusing on reducing morbidity and optimizing quality of life. This study examines self-reported Satisfaction With Life Scale scores in a longitudinal, multicenter cohort of survivors of major burns. Risk factors associated with Satisfaction With Life Scale scores are identified. Data from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) Burn Model System (BMS) database for burn survivors greater than 9 years of age, from 1994 to 2014, were analyzed. Demographic and medical data were collected on each subject. The primary outcome measures were the individual items and total Satisfaction With Life Scale (SWLS) scores at time of hospital discharge (pre-burn recall period) and 6, 12, and 24 months after burn. The SWLS is a validated 5-item instrument with items rated on a 1-7 Likert scale. The differences in scores over time were determined and scores for burn survivors were also compared to a non-burn, healthy population. Step-wise regression analysis was performed to determine predictors of SWLS scores at different time intervals. The SWLS was completed at time of discharge (1129 patients), 6 months after burn (1231 patients), 12 months after burn (1123 patients), and 24 months after burn (959 patients). There were no statistically significant differences between these groups in terms of medical or injury demographics. The majority of the population was Caucasian (62.9%) and male (72.6%), with a mean TBSA burned of 22.3%. Mean total SWLS scores for burn survivors were unchanged and significantly below that of a non-burn population at all examined time points after burn. Although the mean SWLS score was unchanged over time, a large number of subjects demonstrated improvement or decrement of at least one SWLS category. Gender, TBSA burned, LOS, and school status were associated with SWLS scores at 6 months

  10. [Nosocomial infection due to Trichosporon asahii in a critical burned patient].

    Science.gov (United States)

    Tamayo Lomas, Luis; Domínguez-Gil González, Marta; Martín Luengo, Ana Isabel; Eiros Bouza, José María; Piqueras Pérez, José María

    2015-01-01

    Invasive fungal infection is an important cause of morbimortality in patients with severe burns. The advances in burn care therapy have considerably extended the survival of seriously burned patients, exposing them to infectious complications, notably fungal infections, with increased recognition of invasive infections caused by Candida species. However, some opportunistic fungi, like Trichosporon asahii, have emerged as important causes of nosocomial infection. A case of nosocomial infection due to T. asahii in a severely ill burned patient successfully treated with voriconazole is presented. The management of invasive fungal infections in burned patients, from diagnosis to selection of the therapeutic protocol, is often a challenge. Early diagnosis and treatment are associated with a better prognosis. In this case report, current treatment options are discussed, and a review of previously published cases is presented. Due to the difficulty in the diagnosis of invasive mycoses and their high associated mortality rates, it is advisable to keep a high degree of clinical suspicion of trichosporonosis in susceptible patients, including burned patients. The isolation of T. asahii in clinical specimens of this type of host must raise clinical alert, since it may precede an invasive infection. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  11. Meta-learning framework applied in bioinformatics inference system design.

    Science.gov (United States)

    Arredondo, Tomás; Ormazábal, Wladimir

    2015-01-01

    This paper describes a meta-learner inference system development framework which is applied and tested in the implementation of bioinformatic inference systems. These inference systems are used for the systematic classification of the best candidates for inclusion in bacterial metabolic pathway maps. This meta-learner-based approach utilises a workflow where the user provides feedback with final classification decisions which are stored in conjunction with analysed genetic sequences for periodic inference system training. The inference systems were trained and tested with three different data sets related to the bacterial degradation of aromatic compounds. The analysis of the meta-learner-based framework involved contrasting several different optimisation methods with various different parameters. The obtained inference systems were also contrasted with other standard classification methods with accurate prediction capabilities observed.

  12. Burning issues

    International Nuclear Information System (INIS)

    Raloff, J.

    1993-01-01

    The idea of burning oil slicks at sea has intrigued oil-cleanup managers for more than a decade, but it wasn't until the advent of fireproof booms in the mid-1980's and a major spill opportunity (the March 1989 Exxon Valdez) that in-situ burning got a real sea trial. The results of this and other burning experiments indicate that, when conditions allow it, nothing can compete with fire's ability to remove oil from water. Burns have the potential to remove as much oil in one day as mechanical devices can in one month, along with minimal equipment, labor and cost. Reluctance to burn in appropriate situations comes primarily from the formation of oily, black smoke. Analysis of the potentially toxic gases have been done, indicating that burning will not increase the levels of polluting aldehydes, ketones, dioxins, furans, and PAHs above those that normally evaporate from spilled oil. This article contains descriptions of planned oil fires and the discussion on the advantages and concerns of such a policy

  13. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    Science.gov (United States)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. Ionospheric and satellite observations for studying the dynamic behavior of typhoons and the detection of severe storms and tsunamis

    Science.gov (United States)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.

  16. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  17. [Fat grafting in facial burns sequelae].

    Science.gov (United States)

    Viard, R; Bouguila, J; Voulliaume, D; Comparin, J-P; Dionyssopoulos, A; Foyatier, J-L

    2012-06-01

    Fat graft is now part of the armamentarium in face plastic surgery. It is successfully used in burn scars. The aim of our study is the discussion of the value of this technique in optimizing cosmetic result of burns face sequelae. Fifteen adult patients (10 females and five males) with scars resulting from severe burns 2 to 9 years previously were selected. The patients were treated by injection of adipose tissue harvested from abdominal subcutaneous fat and processed according to Coleman's technique. Two to three injections were administered at the dermohypodermal junction. Ages, sexes, aetiology of burn, facial burn sequelae, recipient sites, quantity of fat injected, aesthetic results are discussed. Patient age ranged from 21 to 55 years (average: 38). The mean follow-up of the study was 66 months (23-118). Patients received 7.5 (5-11) facial restorative surgeries before fat graft. Patients underwent two sessions of fat transfer, 33cc average per session. We did not report any complications. The clinical appearance, discussed by three surgeons and subjective patient feelings, after a 6-month follow-up period, suggests considerable improvement in the mimic features, skin texture, and thickness. The result is good in 86% of cases and acceptable in the other cases. Burns sequelae offer local conditions which justify special cannula can cross fibrosis and explaining the value of multiplying the sessions. Indications for lipostructure include four distinct nosological situations, sometimes combined. Lipostructure can restore a missing relief, filling a localized depression, reshape a lack of face volume or smooth a scarring skin. Fat graft seems to complete and improve the results of the standard surgical approach in burned face. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Ketamine hydrochloride - an adjunct for analgesia in dogs with burn wounds : clinical communication

    Directory of Open Access Journals (Sweden)

    K. Joubert

    1998-07-01

    Full Text Available The management of pain in patients with burn wounds is complex and problematic. Burn-wound pain is severe, inconsistent and underestimated. Patients experience severe pain, especially during procedures, until wound healing has occurred. A multi-modality approach is needed for effective management of pain, which requires an understanding of the mechanisms of pain. Altered pharmacokinetics and pharmacodynamics in burn-wound patients makes drug actions unpredictable. Opioids alone are seldom sufficient for pain control. The multi-modality approach includes the use of opioids and non-steroidal antiinflammatory, anxiolytic and alternative drugs. Ketamine has been found to be a useful agent for analgesia in burn-wound patients; a dose of 10 mg/kg qid per os was found to be an effective adjunct to pain therapy.

  19. A human-driven decline in global burned area

    Science.gov (United States)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  20. Improving biomass burning pollution predictions in Singapore using AERONET and Lidar observations.

    Science.gov (United States)

    Hardacre, Catherine; Chew, Boon Ning; Gan, Christopher; Burgin, Laura; Hort, Matthew; Lee, Shao Yi; Shaw, Felicia; Witham, Claire

    2016-04-01

    Every year millions of people are affected by poor air quality from trans-boundary smoke haze emitted from large scale biomass burning in Asia. These fires are a particular problem in the Indonesian regions of Sumatra and Kalimantan where peat fires, lit to clear land for oil palm plantations and agriculture, typically result in high levels of particulate matter (PM) emissions. In June 2013 and from August-October 2015 the combination of widespread burning, meteorological and climatological conditions resulted in severe air pollution throughout Southeast Asia. The Met Office of the United Kingdom (UKMO) and the Hazard and Risk Impact Assessment Unit of the Meteorological Service of Singapore (MSS) have developed a quantitative haze forecast to provide a reliable, routine warning of haze events in the Singapore region. The forecast system uses the UKMO's Lagrangian particle dispersion model NAME (Numerical Atmosphere-dispersion Modelling Environment) in combination with high resolution, satellite based emission data from the Global Fire Emissions System (GFAS). The buoyancy of biomass burning smoke and it's rise through the atmosphere has a large impact on the amount of air pollution at the Earth's surface. This is important in Singapore, which is affected by pollution that has travelled long distances and that will have a vertical distribution influenced by meteorology. The vertical distribution of atmospheric aerosol can be observed by Lidar which provides information about haze plume structure. NAME output from two severe haze periods that occurred in June 2013 and from August-October 2015 was compared with observations of total column aerosol optical depth (AOD) from AERONET stations in Singapore and the surrounding region, as well as vertically resolved Lidar data from a station maintained by MSS and from MPLNET. Comparing total column and vertically resolved AOD observations with NAME output indicates that the model underestimates PM concentrations throughout

  1. [Risk factors for development of hypomagnesemia in the burned patient].

    Science.gov (United States)

    Durán-Vega, Héctor César; Romero-Aviña, Francisco Javier; Gutiérrez-Salgado, Jorge Eduardo; Silva-Díaz, Teresita; Ramos-Durón, Luis Ernesto; Carrera-Gómez, Francisco Javier

    2004-01-01

    Electrolyte abnormalities are common in the severely burned patient. There is little information with regard to the frequency and magnitude of hypomagnesemia, as well as on risk factors for this condition. We performed an observational, retrospective analysis of 35 burned patients treated at the Plastic and Reconstructive Surgery Service at the Hospital Central Sur PEMEX, Mexico City. We determined serum magnesium behavior and divided patients into two groups: the first included 11 patients with burns and hypomagnesemia, and the second, 24 patients with burns but without hypomagnesemia. Risk factor identification was performed. We found patient at risk was the one with more than 40% of 2nd or 3rd degree total burned body area, in day 4 or 10 after the burn, and with hypokalemia, hypocalcemia, or both, and without intravenous (i.v.) supplementation of magnesium. The best way to prevent or avoid major complications is to identify the high-risk patient, or to diagnose earlier.

  2. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    Science.gov (United States)

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  3. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    Science.gov (United States)

    Lasaponara, R.

    2009-04-01

    fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal

  4. Temporal characterisation of soil-plant natural recovery related to fire severity in burned Pinus halepensis Mill. forests.

    Science.gov (United States)

    Moya, D; González-De Vega, S; García-Orenes, F; Morugán-Coronado, A; Arcenegui, V; Mataix-Solera, J; Lucas-Borja, M E; De Las Heras, J

    2018-05-28

    Despite Mediterranean ecosystems' high resilience to fire, both climate and land use change, and alterations in fire regimes increase their vulnerability to fire by affecting the long-term natural recovery of ecosystem services. The objective of this work is to study the effects of fire severity on biochemical soil indicators, such as chemical composition or enzymatic activity, related to time after fire and natural vegetation recovery (soil-plant interphase). Soil samples from three wildfires occurring 3, 15 and 21 years ago were taken in the south-eastern Iberian Peninsula (semiarid climate). Sampling included three fire severity levels in naturally regenerated (and changing to shrublands) Pinus halepensis Mill. forests. In the short-term post-fire period, phosphorus concentration, electrical conductivity and urease activity were positively linked to fire severity, and also influenced β-glucosidade activity in a negative relationship. During the 15-21-year post-fire period, the effects related to medium-high fire severity were negligible and soil quality indicators were linked to natural regeneration success. The results showed that most soil properties recovered in the long term after fire (21 years). These outcomes will help managers and stakeholders to implement management tools to stabilise soils and to restore burned ecosystems affected by medium-high fire severity. Such knowledge can be considered in adaptive forest management to reduce the negative effects of wildfires and desertification, and to improve the resilience of vulnerable ecosystems in a global change scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Time series for water levels in virtual gauge stations in the Amazon basin using satellite radar altimetry

    Directory of Open Access Journals (Sweden)

    Juan Gabriel León Hernández

    2009-01-01

    Full Text Available Using satellite altimeter radar technology for monitoring changes in water levels at continental scale is a relatively recent ad- vance. Several studies have demonstrated the interest being shown in applying this technology to monitoring the hydrographic patterns of large-scale basins worldwide. The current study presents the inference of time series representing changes in water le- vel for bodies of water by defining virtual gauge stations deduced for two very different rivers in terms of their biophysical and to- pographic characteristics; the two rivers were the Rio Negro in the Brazilian Amazon Basin and the Caqueta River on the Colombian side. The differences between the two rivers revealed the limits of satellite radar altimeter when applied to continental waters (±20cm and ±40 cm precision for Río Negro and Río Caquetá, respectively. However, applying this technology seems very promising, since new missions have been scheduled to be put into orbit by the end of 2008.

  6. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Science.gov (United States)

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  7. [Lymphocyte metabolism in children with extensive burns].

    Science.gov (United States)

    Artem'ev, S A; Nazarov, I P; Kamzalakova, N I; Bulygin, G V

    2009-01-01

    The results of the study lead to the conclusion that the development of burn disease in children is accompanied by significant lymphocytic structural metabolic changes that determine the functional capabilities of cells and the immune system as a whole. There is an evident activation of the glutathione antioxidant system, a drastic activation of enzymes that ensure Krebs cycle reactions, as well as activation of anaerobic processes. The above changes are mainly caused by the activated sympathoadrenal system that is characteristic of stresses. The knowledge about the metabolic mechanisms responsible for the development of cellular reactions to burn shock and burn disease permits specification of the elements of the pathogenesis of these severe conditions and substantiation of the possibility of using metabolic correction in the complex treatment of children with the above pathology.

  8. Impact of anesthesia, analgesia, and euthanasia technique on the inflammatory cytokine profile in a rodent model of severe burn injury.

    Science.gov (United States)

    Al-Mousawi, Ahmed M; Kulp, Gabriela A; Branski, Ludwik K; Kraft, Robert; Mecott, Gabriel A; Williams, Felicia N; Herndon, David N; Jeschke, Marc G

    2010-09-01

    Anesthetics used in burn and trauma animal models may be influencing results by modulating inflammatory and acute-phase responses. Accordingly, we determined the effects of various anesthetics, analgesia, and euthanasia techniques in a rodent burn model. Isoflurane (ISO), ketamine-xylazine (KX), or pentobarbital (PEN) with or without buprenorphine were administered before scald-burn in 72 rats that were euthanized without anesthesia by decapitation after 24 h and compared with unburned shams. In a second experiment, 120 rats underwent the same scald-burn injury using KX, and 24 h later were euthanized under anesthesia or carbon dioxide (CO2). In addition, we compared euthanasia by exsanguination with that of decapitation. Serum cytokine levels were determined by an enzyme-linked immunosorbent assay. In the first experiment, ISO was associated with elevation of cytokine-induced neutrophil chemoattractant 2 (CINC-2) and monocyte chemotactic protein 1 (MCP-1), and KX and PEN was associated with elevation of CINC-1,CINC-2, IL-6, and MCP-1. Pentobarbital also decreased IL-1". IL-6 increased significantly when ISO or PEN were combined with buprenorphine. In the second experiment, euthanasia performed by exsanguination under ISO was associated with reduced levels of IL-1", CINC-1, CINC-2, and MCP-1, whereas KX reduced CINC-2 and increased IL-6 levels. Meanwhile, PEN reduced levels of IL-1" and MCP-1, and CO2 reduced CINC-2 and MCP-1. In addition,decapitation after KX, PEN, or CO2 decreased IL-1" and MCP-1, although we found no significant difference between ISO and controls. Euthanasia by exsanguination compared with decapitation using the same agent also led to modulation of several cytokines. Differential expression of inflammatory markers with the use of anesthetics and analgesics should be considered when designing animal studies and interpreting results because these seem to have a significant modulating impact. Our findings indicate that brief anesthesia with ISO

  9. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    Science.gov (United States)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  10. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  11. Active inference and learning.

    Science.gov (United States)

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Ryu

    2018-06-01

    Full Text Available The worst forest fire in South Korea occurred in April 2000 on the eastern coast. Forest recovery works were conducted until 2005, and the forest has been monitored since the fire. Remote sensing techniques have been used to detect the burned areas and to evaluate the recovery-time point of the post-fire processes during the past 18 years. We used three indices, Normalized Burn Ratio (NBR, Normalized Difference Vegetation Index (NDVI, and Gross Primary Production (GPP, to temporally monitor a burned area in terms of its moisture condition, vegetation biomass, and photosynthetic activity, respectively. The change of those three indices by forest recovery processes was relatively analyzed using an unburned reference area. The selected unburned area had similar characteristics to the burned area prior to the forest fire. The temporal patterns of NBR and NDVI, not only showed the forest recovery process as a result of forest management, but also statistically distinguished the recovery periods at the regions of low, moderate, and high fire severity. The NBR2.1 for all areas, calculated using 2.1 μm wavelengths, reached the unburned state in 2008. The NDVI for areas with low and moderate fire severity levels became significantly equal to the unburned state in 2009 (p > 0.05, but areas with high severity levels did not reach the unburned state until 2017. This indicated that the surface and vegetation moisture conditions recovered to the unburned state about 8 years after the fire event, while vegetation biomass and health required a longer time to recover, particularly for high severity regions. In the case of GPP, it rapidly recovered after about 3 years. Then, the steady increase in GPP surpassed the GPP of the reference area in 2015 because of the rapid growth and high photosynthetic activity of young forests. Therefore, the concluding scientific message is that, because the recovery-time point for each component of the forest ecosystem is

  13. On-board processing for telecommunications satellites

    Science.gov (United States)

    Nuspl, P. P.; Dong, G.

    1991-01-01

    In this decade, communications satellite systems will probably face dramatic challenges from alternative transmission means. To balance and overcome such competition, and to prepare for new requirements, INTELSAT has developed several on-board processing techniques, including Satellite-Switched TDMA (SS-TDMA), Satellite-Switched FDMA (SS-FDMA), several Modulators/Demodulators (Modem), a Multicarrier Multiplexer and Demodulator MCDD), an International Business Service (IBS)/Intermediate Data Rate (IDR) BaseBand Processor (BBP), etc. Some proof-of-concept hardware and software were developed, and tested recently in the INTELSAT Technical Laboratories. These techniques and some test results are discussed.

  14. Long standing intra oral acid burn

    NARCIS (Netherlands)

    Kumar, V.V.; Ebenezer, S.; Lobbezoo, F.

    2015-01-01

    Oral burn due to ingestion of corrosive substances can bring about debilitating consequences. It often brings mortality, and the survivors can have severe impairment of functions, especially in relation to the stomatognathic and gastrointestinal systems. This article presents a long-standing case

  15. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats.

    Science.gov (United States)

    Song, J; Yin, J; Sallam, H S; Bai, T; Chen, Y; Chen, J D Z

    2013-10-01

    Delayed gastric emptying (GE) is common in patients with severe burns. This study was designed to investigate effects and mechanisms of electroacupuncture (EA) on gastric motility in rats with burns. Male rats (intact and vagotomized) were implanted with gastric electrodes, chest and abdominal wall electrodes for investigating the effects of EA at ST-36 (stomach-36 or Zusanli) on GE, gastric slow waves, autonomic functions, and plasma interleukin 6 (IL-6) 6 and 24 h post severe burns. (i) Burn delayed GE (P Electroacupuncture improved GE 6 and 24 h post burn (P Electroacupuncture improved burn-induced gastric dysrhythmia. The percentage of normal slow waves was increased with EA 6 and 24 h post burn (P = 0.02). (iii) Electroacupuncture increased vagal activity assessed by the spectral analysis of heart rate variability (HRV). The high-frequency component reflecting vagal component was increased with EA 6 (P = 0.004) and 24 h post burn (P = 0.03, vs sham-EA). (iv) Electroacupuncture attenuated burn-induced increase in plasma IL-6 at both 6 (P = 0.03) and 24 h post burn (P = 0.003). Electroacupuncture at ST-36 improves gastric dysrhythmia and accelerates GE in rats with burns. The improvement seems to be mediated via the vagal pathway involving the inflammatory cytokine IL-6. © 2013 John Wiley & Sons Ltd.

  16. Deep sole burns in several participants in a traditional festival of the firewalking ceremony in Kee-lung, Taiwan--clinical experiences and prevention strategies.

    Science.gov (United States)

    Chang, Shun-Cheng; Hsu, Chih-Kang; Tzeng, Yuan-Sheng; Teng, Shou-Cheng; Fu, Ju-Peng; Dai, Niann-Tzyy; Chen, Shyi-Gen; Chen, Tim-Mo; Feng, Chun-Che

    2012-11-01

    Firewalking is a common Taoist cleansing ceremony in Taiwan, but burns associated with the practice have rarely been reported. We analyzed the patients with plantar burns from one firewalking ceremony. In one firewalking ceremony, 12 Taoist disciples suffered from contact burns to the soles of their feet while walking over burning coals. Eight of them had at least second-degree burns over areas larger than 1% of their total body surface areas (TBSAs). The age, sex, medical history, date of injury, time taken to traverse the fire pit, depth and TBSA of the burns, treatment, length of stay, and outcome were recorded and analyzed. Deep, disseminated second- to third-degree burns were noted and healing took as long as three weeks in some patients. Because disseminated hypertrophic scars form after burns, the soles involved regain much of their tensile strength while walking. The patients experienced only a few difficulties in their daily lives three months after injury. From our experience treating patients with deep disseminated second- to third-degree plantar burns caused by firewalking, we conclude that they should be treated conservatively, with secondary healing rather than a skin graft. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  17. Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES

    Directory of Open Access Journals (Sweden)

    Vivienne H. Payne

    2011-11-01

    Full Text Available We use the Tropospheric Emission Spectrometer (TES aboard the NASA Aura satellite to determine the concentrations of the trace gases ammonia (NH3 and formic acid (HCOOH within boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN and ethylene (C2H4 by TES. We focus on two fresh Canadian plumes observed by TES in the summer of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-B campaign. We use TES retrievals of NH3 and HCOOH within the smoke plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively relative to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with previous aircraft and satellite estimates, and can complement ground-based studies that have greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low ( < 0.1 and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke plumes.

  18. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    Science.gov (United States)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  19. Geostatistical inference using crosshole ground-penetrating radar

    DEFF Research Database (Denmark)

    Looms, Majken C; Hansen, Thomas Mejer; Cordua, Knud Skou

    2010-01-01

    of the subsurface are used to evaluate the uncertainty of the inversion estimate. We have explored the full potential of the geostatistical inference method using several synthetic models of varying correlation structures and have tested the influence of different assumptions concerning the choice of covariance...... reflection profile. Furthermore, the inferred values of the subsurface global variance and the mean velocity have been corroborated with moisturecontent measurements, obtained gravimetrically from samples collected at the field site....

  20. Effect of gamma-hydroxybutyrate on keratinocytes proliferation: A preliminary prospective controlled study in severe burn patients

    Science.gov (United States)

    Rousseau, Anne-Françoise; Bargues, Laurent; Bever, Hervé Le; Vest, Philippe; Cavalier, Etienne; Ledoux, Didier; Piérard, Gérald E.; Damas, Pierre

    2014-01-01

    Background: Hypermetabolism and hyposomatotropism related to severe burns lead to impaired wound healing. Growth hormone (GH) boosts wound healing notably following stimulation of the production of insulin-like growth factor-1 (IGF1), a mitogen factor for keratinocytes. Gamma-hydroxybutyrate (GHB) stimulates endogenous GH secretion. Aim: To assess effects of GHB sedation on keratinocytes proliferation (based on immunohistochemical techniques). Design: Monocentric, prospective, controlled trial. Materials and Methods: Patients (aging 18-65 years, burn surface area >30%, expected to be sedated for at least one month) were alternately allocated, at the 5th day following injury, in three groups according to the intravenous GHB dose administered for 21 days: Evening bolus of 50 mg/kg (Group B), continuous infusion at the rate of 10 mg/kg/h (Group C), or absence of GHB (Group P). They all received local standard cares. Immunohistochemistry (Ki67/MIB-1, Ulex europaeus agglutinin-1 and Mac 387 antibodies) was performed at D21 on adjacent unburned skin sample for assessing any keratinocyte activation. Serum IGF1 levels were measured at initiation and completion of the protocol. Statistical Analysis: Categorical variables were compared with Chi-square test. Comparisons of medians were made using Kruskal-Wallis test. Post hoc analyses were performed using Mann-Whitney test with Bonferroni correction for multiple comparisons. A P study (Group B: n = 5, Group C: n = 5, Group P: n = 4). Continuous administration of GHB was associated with a significant higher Ki67 immunolabeling at D21 (P = 0.049) and with a significant higher increase in the IGF1 concentrations at D21 (P = 0.024). No adverse effects were disclosed. Conclusions: Our preliminary data support a positive effect of GHB on keratinocyte proliferation and are encouraging enough to warrant large prospective studies. PMID:25024938

  1. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  2. The use of ATSR active fire counts for estimating relative patterns of biomass burning - A study from the boreal forest region

    NARCIS (Netherlands)

    Kasischke, Eric S.; Hewson, Jennifer H.; Stocks, Brian; van der Werf, Guido; Randerson, James T.

    2003-01-01

    Satellite fire products have the potential to construct inter-annual time series of fire activity, but estimating area burned requires considering biases introduced by orbiting geometry, fire behavior, and the presence of clouds and smoke. Here we evaluated the performance of fire counts from the

  3. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  4. In-situ burning of oil spills: Review and research properties

    International Nuclear Information System (INIS)

    Fingas, M.

    1992-01-01

    In-situ burning of oil spills has been tried over the past thirty years but has never been fully-accepted as an oil-spill cleanup option - largely because of the lack of understanding of the combustion products and the principles governing the combustibility of oil-on-water. Extensive research is currently underway to understand the many facets of burning oil. A consortium of over 15 agencies in the United States and Canada have joined forces to study burning and to conduct large scale experiments. This effort will result in data which should lead to broader acceptance of in-situ burning as an acceptable spill countermeasures alternative. Burning has distinct advantages over other counter-measures. First and foremost, it offers the potential to rapidly remove large quantities of oil. In-situ burning has the potential to remove as much oil in one day as several mechanical devices could in one month. Application of in-situ burning could prevent a large amount of shoreline contamination and damage to biota by removing oil before it spreads and moves to other areas. Secondly, in-situ burning requires minimal equipment and much less labor than any other technique. It can be applied in areas where other methods cannot be used because of distances and lack of infra-structure. Thirdly, burning of oil is a final solution compared to mechanical recovery. When oil is recovered mechanically it still has to be transported, stored and disposed of. Fourth and finally, burning may be the only option available in certain situations. Oil amongst ice and on ice are examples of situations where practical alternatives to burning do not exist. There are disadvantages to burning. The first and most visible disadvantage is the large black smoke plume that burning oil produces. The second disadvantage is that the oil must be a minimum thickness to burn

  5. The evidence-based topical therapies for management of minor burns in outpatient clinic

    Directory of Open Access Journals (Sweden)

    Siphora Dien

    2015-08-01

    Full Text Available Burns are often seen in clinics or hospitals. Majority of burns are minor burns, which can be managed in outpatient setting with satisfactory result. The healing outcome depends on physician’s knowledge and competencies in burn pathogenesis and basic principles of burn care. Initial treatment of burns consists of emergency evaluation, assessment of depth and severity of burns and considerations for referral. The principles of minor wound therapy include cooling, cleansing, pain management, and topical therapy. Recently, many topical agents are available and indicated for first to second degree burn. Silver sulfadiazine (SSD is the standard treatment; however, it has some limitations. Scientific evidences showed that topical antibiotics do not reduce the incidence of local infection, invasive infection, and mortality of infection. Burns heal faster with hydrogel dressings and some other dressings compared to SSD. There are insufficient evidences to support the use of aloe vera, honey, and negative pressure wound therapy in burns. Moist exposed burn ointment (MEBO® has been demonstrated to have equal efficacy to SSD.

  6. [Ischemic cholangiopathy induced by extended burns].

    Science.gov (United States)

    Cohen, Laurence; Angot, Emilie; Goria, Odile; Koning, Edith; François, Arnaud; Sabourin, Jean-Christophe

    2013-04-01

    Ischemic cholangiopathy is a recently described entity occurring mainly after hepatic grafts. Very few cases after intensive care unit (ICU) for extended burn injury were reported. We report the case of a 73-year-old woman consulting in an hepatology unit, for a jaundice appearing during a hospitalisation in an intensive care unit and increasing from her leaving from ICU, where she was treated for an extended burn injury. She had no pre-existing biological features of biliary disease. Biological tests were normal. Magnetic resonance imaging acquisitions of biliary tracts pointed out severe stenosing lesions of diffuse cholangiopathy concerning intrahepatic biliary tract, mainly peri-hilar. Biopsie from the liver confirmed the diagnosis, showing a biliary cirrhosis with bile infarcts. This case is the fourth case of ischemic cholangiopathy after extended burn injury, concerning a patient without a prior history of hepatic or biliary illness and appearing after hospitalisation in intensive care unit. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Burns resulting from spontaneous combustion of electronic cigarettes: a case series.

    Science.gov (United States)

    Sheckter, Clifford; Chattopadhyay, Arhana; Paro, John; Karanas, Yvonne

    2016-01-01

    Electronic cigarette (e-cigarette) sales have grown rapidly in recent years, coinciding with a public perception that they are a safer alternative to traditional cigarettes. However, there have been numerous media reports of fires associated with e-cigarette spontaneous combustion. Three severe burns caused by spontaneous combustion of e-cigarettes within a 6-month period were treated at the Santa Clara Valley Medical Center Burn Unit. Patients sustained partial and full-thickness burns. Two required hospitalization and surgical treatment. E-cigarettes are dangerous devices and have the potential to cause significant burns. Consumers and the general public should be made aware of these life-threatening devices.

  8. Bacterial infections in burn patients at a burn hospital in Iran.

    Science.gov (United States)

    Ekrami, Alireza; Kalantar, Enayat

    2007-12-01

    The major challenge for a burn team is nosocomial infection in burn patients, which is known to cause over 50% of burn deaths. Most studies on infection in burn patients focus on burn wound infection, whereas other nosocomial infections in these patients are not well described. We undertook this study to determine three types of nosocomial infections viz., burn wound infection, urinary tract infection, and blood stream infection in burn patients in a burn hospital in Iran. During the one year period (May 2003 to April 2004), 182 patients were included in this study. Blood, urine and wound biopsy samples were taken 7 and 14 days after admission to Taleghani Burn hospital. Isolation and identification of microorganisms was done using the standard procedure. Disk diffusion test were performed for all the isolates for antimicrobial susceptibility. Of the 182 patients, 140 (76.9%) acquired at least one type of infection of the 140, 116 patients (82.8%) were culture positive on day 7 while 24 (17.2%) on 14 days after admission. Primary wound infection was most common (72.5%), followed by blood stream (18.6%) and urinary tract infections (8.9 %). The microorganisms causing infections were Pseudomonas aeruginosa (37.5%), Staphylococcus aureus (20.2%), and Acinetobacter baumanni (10.4%). Among these isolates P. aeruginosa was found to be 100 per cent resistant to amikacin, gentamicin , carbenicillin, ciprofloxacin, tobramycin and ceftazidime; 58 per cent of S. aureus and 60 per cent of coagulase negative Staphylococcus were methicillin resistant. High prevalence of nosocomial infections and the presence of multidrug resistant bacteria, and methicillin resistant S. aureus in patients at Taleghani Burn Hospital suggest continuous surveillance of burn infections and develop strategies for antimicrobial resistance control and treatment of infectious complications.

  9. Estimation of CO2 emissions from fossil fuel burning by using satellite measurements of co-emitted gases: a new method and its application to the European region

    Science.gov (United States)

    Berezin, Evgeny V.; Konovalov, Igor B.; Ciais, Philippe; Broquet, Gregoire

    2014-05-01

    ) measurements, respectively. Uncertainties in the CO2 emission estimates are evaluated by means of the Monte-Carlo experiment. In this study, our method is applied to the case of fossil fuel CO2 emissions from the European region. Taking into account that the uncertainty in available bottom-up estimates of the total CO2 emissions from that region is believed to be rather small, the case considered enables validation of our method, understanding its advantages and limitations, as well as examination of feasibility of its application to the world's regions with potentially much larger uncertainties in CO2 emissions. References: 1. Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., Beekmann, M., and Schulze, E.-D.: Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns, Atmos. Chem. Phys., 13, 9415-9438, doi:10.5194/acp-13-9415-2013, 2013. 2. Konovalov, I. B., Berezin, E. V., Ciais, P., Broquet, G., Beekmann, M., Hadji-Lazaro, J., Clerbaux, C., Andreae, M. O., Kaiser, J. W., and Schulze, E.-D.: Constraining CO2 emissions from open biomass burning by satellite observations of co-emitted species: a method and its application to wildfires in Siberia, submitted to Atmos. Chem. Phys.

  10. Biomass Burning Observation Project (BBOP) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, LI [Brookhaven National Lab. (BNL), Upton, NY (United States); Sedlacek, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  11. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    Science.gov (United States)

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  12. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  13. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    Science.gov (United States)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  14. Burning Mouth Syndrome

    Science.gov (United States)

    ... Care Home Health Info Health Topics Burning Mouth Burning Mouth Syndrome (BMS) is a painful, complex condition often described ... or other symptoms. Read More Publications Cover image Burning Mouth Syndrome Publication files Download Language English PDF — Number of ...

  15. Small high temperature gas-cooled reactors with innovative nuclear burning

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Ismail; Sekimoto, Hiroshi

    2008-01-01

    Since the innovative concept of CANDLE (Constant Axial shape of Neutron Flux, nuclide densities and power shape During Life of Energy producing reactor) burning strategy was proposed, intensive research works have been continuously conducted to evaluate the feasibility and the performance of the burning strategy on both fast and thermal reactors. We learned that one potential application of the burning strategy for thermal reactors is for the High Temperature Gas-Cooled Reactors (HTGR) with prismatic/block-type fuel elements. Several characteristics of CANDLE burning strategy such as constant reactor characteristics during burn-up, no need for burn-up reactivity control mechanism, proportionality of core height with core lifetime, sub-criticality of fresh fuel elements, etc. enable us to design small sized HTGR with a high degree of safety easiness of operation and maintenance, and long core lifetime which are required for introducing the reactors into remote areas or developing countries with limited infrastructures and resources. In the present work, we report our evaluation results on small sized block-type HTGR designs with CANDLE burning strategy and compared with other existing small HTGR designs including the ones with pebble fuel elements, under both uranium and thorium fuel cycles. (author)

  16. Burning plasmas in ITER for energy source

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki

    2002-01-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  17. Burning plasmas in ITER for energy source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Nobuyuki [Atomic Energy Commission, Tokyo (Japan)

    2002-10-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  18. Review of the use of povidone-iodine (PVP-I) in the treatment of burns.

    Science.gov (United States)

    Steen, M

    1993-01-01

    Local infection and burn wound sepsis are one of the most severe problems in the treatment of thermally injured patients. Early surgical treatment and the use of topical antiseptics led to a decrease in the infection rate and significantly improved the survival rate of burns patients within the last twenty-five years. Many antiseptics are used in the treatment of burns. Silver nitrate, silver sulphadiazine, sulfamylon and povidone-iodine (PVP-I) are the most common substances used worldwide in burn care facilities. Clinical studies demonstrate that treatment with PVP-I is the most effective against bacterial and fungal infection. Several methodological problems however arise from direct comparison between these antiseptics, and local and systemic adverse effects can make the right choice difficult. Some case reports documented possible side effects in the treatment of patients with PVP-I, leading to general concerns about this treatment. Absorption of iodine and possible changes in thyroid hormones are well known, but evaluation of the clinical consequences is controversial. Reports of severe metabolic acidosis and renal insufficiency with lethal results have condemned the use of PVP-I in the treatment of extensive burns. The case reports, however, dealt with patients suffering from general morbidity and sepsis and therefore these single reports may not be generally valid. Local treatment of burns may cause further problems. The beneficial effect of a decrease of bacterial counts in deeper tissue may be confounded by other effects delaying wound healing, as shown in some experimental studies. Controlled clinical investigations on burn patients however are still missing. The paper will discuss these topics in detail referring to the treatment of burns with PVP-I. It is based on a critical review of the literature and the author's own experience in burns therapy.

  19. The Predictive Value of Scores Used in Intensive Care Unit for Burn Patients Prognostic.

    Science.gov (United States)

    Novac, M; Dragoescu, Alice; Stanculescu, Andreea; Duca, Lucica; Cernea, Daniela

    2014-01-01

    Statistical evaluation of the prognosis of burned patients based on the analysis of prognostic scores as quickly and easily obtainable that track the evolution of burned patient in ICU. Material / Methods: The prospective study included 92 patients were performed with severe burns on 35-67% body surface large area, aiming to establish a cut-off score for each studied and statistically significant prognostic parameter for assessing the risk of mortality. The control group was represented by 20 patients with burns on the body surface of 0.05) sex (male / female), but we had p cut-off. Quantification of variables by calculating the area under the ROC curve (AUC), sensitivity and sensitivity, positive predictive value (PPV) and negative predictive value (NPV), allowed a better appreciation of these prognostic scores. These systems applicable to the burned patient scores, making a cut-off of each index / mortality probability score, he can manifest usefulness in medical decision making process and strategy to reduce the risk of death in patients with severe burns.

  20. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  1. Educational Materials - Burn Wise

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  2. Burns injury in children: Is antibiotic prophylaxis recommended?

    Directory of Open Access Journals (Sweden)

    Jamila Chahed

    2014-01-01

    Full Text Available Background: Wound infection is the most frequent complication in burn patients. There is a lack of guidelines on the use of systemic antibiotics in children to prevent this complication. Patients and Methods: A prospective study is carried out on 80 patients to evaluate the role of antibiotic prophylaxis in the control of infections. Results: The mean age was 34 months (9 months to 8 years. There was a male predominance with sex ratio of 1.66. The mean burn surface size burn was 26.5% with total burn surface area ranging from 5% to 33%, respectively. According to American Burn Association 37% (30/80 were severe burns with second and third degree burns >10% of the total surface body area in children aged <10 years old. Scalds represented 76.2% (61/80 of the burns. Burns by hot oil were 11 cases (13.7%, while 8 cases (10% were flame burns. The random distribution of the groups was as follow: Group A (amoxicilline + clavulanic acid = 25 cases, Group B (oxacilline = 20 cases and Group C (no antibiotics = 35 cases. Total infection rate was 20% (16/80, distributed as follow: 8 cases (50% in Group C, 5 cases (31.2% in Group A and 3 cases in Group B (18.7%. Infection rate in each individual group was: 22.9% (8 cases/35 in Group C, 20% (5 cases/25 in Group A and 15% (3 cases/20 in Group B (P = 0.7. They were distributed as follow: Septicaemia 12 cases/16 (75%, wound infection 4 cases/16 (25%. Bacteria isolated were with a decreasing order: Staphylococcus aureus (36.3%, Pseudomonas (27.2%, Escherichia coli (18.1%, Klebsiella (9% and Enterobacteria (9%. There is a tendency to a delayed cicatrisation (P = 0.07 in case of hot oil burns (65.18 ± 120 days than by flame (54.33 ± 19.8 days than by hot water (29.55 ± 26.2 days. Otherwise no toxic shock syndrome was recorded in this study. Conclusion: It is concluded that adequate and careful nursing of burn wounds seems to be sufficient to prevent complications and to obtain cicatrisation. Antibiotics are

  3. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA experiment

    Directory of Open Access Journals (Sweden)

    G. Pereira

    2016-06-01

    Full Text Available Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM and the Fire Inventory from NCAR (FINN are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP and the Global Fire Assimilation System (GFAS are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September–31 October 2012. Aerosol optical thickness (AOT550 nm derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO emission estimates exhibit significant linear correlations (r, p  >  0.05 level, Student t test between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model

  4. Rocket and satellite observations of electric fields and ion convection in the dayside auroral ionosphere

    International Nuclear Information System (INIS)

    Marklund, G.; Heelis, R.A.

    1984-06-01

    Electric field observations from two high-altitude rocket flights in the polar cusp have been combined with satellite observations of ion drifts to infer details of the electric field and convection pattern of the dayside auroral ionosphere. A region of shear flow reversal can be inferred from the electric field observations on one flight near 15.30 MLT 20 minutes after the Dynamics Explorer 2 satellite crossed through the same region. The drift patterns observed by the two spacecrafts were very similar although shifted by 0.5 degrees, a shift which is expected from the observed change in the interplanetary magnetic field (IMF) B(sub)Z component during this time. A region of rotational flow reversal was covered by the other flight shortly after magnetic noon, at the same time the DE-2 satellite travelled along roughly the dawn-dusk meridian. By joining points of equal potential, integrated from the two datasets and assuming the reversal boundary to be an equipotential, the instantaneous convection pattern could be drawn showing crescent-shaped convection contours in the dusk cell and more circular shaped contours in the dawn cell. (author)

  5. Fatty infiltration of the liver in severely burned pediatric patients : Autopsy findings and clinical implications

    NARCIS (Netherlands)

    Barret, JP; Jeschke, MG; Herndon, DN

    2001-01-01

    Background. Trauma induces hypermetabolic responses that are characterized by the mobilization of all available substrates. The marked increase of peripheral lipolysis after a burn can lead to the development of fatty liver, which has been associated with immunodepression and increased mortality.

  6. Small-scale structure of the geodynamo inferred from Ørsted and Magsat satellite data

    DEFF Research Database (Denmark)

    Hulot, G.; Eymin, C.; Langlais, B.

    2002-01-01

    The 'geodynamo' in the Earth's liquid outer core produces a magnetic field that dominates the large and medium length scales of the magnetic field observed at the Earth's surface(1,2). Here we use data from the currently operating Danish Oersted(3) satellite, and from the US Magsat(2) satellite...... that operated in 1979/80, to identify and interpret variations in the magnetic field over the past 20 years, down to length scales previously inaccessible. Projected down to the surface of the Earth's core, we found these variations to be small below the Pacific Ocean, and large at polar latitudes...... and in a region centred below southern Africa. The flow pattern at the surface of the core that we calculate to account for these changes is characterized by a westward flow concentrated in retrograde polar vortices and an asymmetric ring where prograde vortices are correlated with highs (and retrograde vortices...

  7. How is the chlorophyll count affected by burned and unburned marsh areas?

    Science.gov (United States)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  8. Review of high burn-up RIA and LOCA database and criteria

    International Nuclear Information System (INIS)

    Vitanza, C.; Hrehor, M.

    2006-01-01

    This document is intended to provide regulators, their technical support organizations and industry with a concise review of existing fuel experimental data at RIA and LOCA conditions and considerations on how these data affect fuel safety criteria at increasing burn-up. It mostly addresses experimental results relevant to BWR and PWR fuel and it encompasses several contributions from the various experts that participated in the CSNI SEGFSM activities. It also covers the information presented at the joint CSNI/CNRA Topical Discussion on high burn-up fuel issues that took place on this subject in December 2004. The report is organized in the following way: the CABRI RIA database (14 tests), the NSRR database (26 tests) and other databases, RIA failure thresholds, comparison of failure thresholds for the HZP case, LOCA database ductility tests and quench tests, LOCA safety limit, provisional burn-up dependent criterion for Zr-4. The conclusions are as follows. On RIA, there is a well-established testing method and a significant and relatively consistent database from NSRR and Cabri tests, especially on high burn-up Zr-2 and Zr-4 cladding. It is encouraging that several correlations have been proposed for the RIA fuel failure threshold. Their predictions are compared and discussed in this paper for a representative PWR case. On LOCA, there are two different test methods, one based on ductility determinations and the other based on 'integral' quench tests. The LOCA database at high burn-up is limited to both testing methods. Ductility tests carried out with pre-hydrided non-irradiated cladding show a pronounced hydrogen effect. Data for actual high burn-up specimens are being gathered in various laboratories and will form the basis for a burn-up dependent LOCA limit. A provisional burn-up dependent criterion is discussed in the paper

  9. Burning mouth syndrome: a review on diagnosis and treatment.

    Science.gov (United States)

    Coculescu, E C; Radu, A; Coculescu, B I

    2014-01-01

    Burning mouth syndrome (BMS) is defined as a chronic pain condition characterized by a burning sensation in the clinically healthy oral mucosa. It is difficult to diagnose BMS because there is a discrepancy between the severity, extensive objective pain felt by the patient and the absence of any clinical changes of the oral mucosa. This review presents some aspects of BMS, including its clinical diagnosis, classification, differential diagnosis, general treatment, evolution and prognosis.

  10. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2012-02-01

    Full Text Available We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES and Infrared Atmospheric Sounding Instrument (IASI satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as −20 ppbv, −50 pptv, and −20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately −3 ppbv (−8% and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere

  11. Acute Kidney Injury: It's not just the 'big' burns.

    Science.gov (United States)

    Kimmel, L A; Wilson, S; Walker, R G; Singer, Y; Cleland, H

    2018-02-01

    Acute Kidney Injury (AKI) complicates the management of at least 25% of patients with severe burns and is associated with long term complications. Most research focuses on the patients with more severe burns, and whether the same factors are associated with the development of AKI in patients with burns between 10 and 19% total body surface area (TBSA) is unknown. The aims of this study were to examine the incidence of, and factors associated with, the development of AKI in patients with %TBSA≥10, as well as the relationship with hospital metrics such as length of stay (LOS). Retrospective medical record review of consecutive burns patients admitted to The Alfred Hospital, the major adult burns centre in Victoria, Australia. Demographic and injury details were recorded. Factors associated with AKI were determined using multiple logistic regression. Between 2010 and June 2014, 300 patients were admitted with burn injury and data on 267 patients was available for analysis. Median age was 54.5 years with 78% being male. Median %TBSA was 15 (IQR 12, 20). The AKI incidence, as measured by the RIFLE criteria, was 22.5%, including 15% (27/184) in patients with %TBSA 10-19. Factors associated with AKI included increasing age and %TBSA (OR 1.05 p<0.001) as well as increased surgeries (p<0.041) and a cardiac comorbidity (p<0.01). All patients with renal comorbidity developed AKI. In the %TBSA 10-19 cohort, only increasing age (OR 1.05 p<0.001) was associated with AKI. After accounting for confounding factors, the probability of discharge from hospital in Non-AKI group was greater than for the AKI patients at all time points (P<0.001). This is the first study to show an association between patients with %TBSA 10-19 and AKI. Given the association between AKI and complications, prospective research is needed to further understand AKI in burns with the aim of risk reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Current issues in burn wound infections.

    Science.gov (United States)

    Dodd, D; Stutman, H R

    1991-01-01

    As we have emphasized, the diagnosis of burn wound infections in the high-risk burned child can be difficult and depends on a very high degree of suspicion and daily clinical evaluation of the burn wound site by consistent observers. Appropriate precautions include meticulous hand-washing and the use of gloves when handling the wound site and prophylactic application of a topical antibacterial agent such as SSD cream. Wound therapy should include routine vigorous surgical débridement. Surveillance wound cultures should be done weekly to determine the emergency of colonization and aid in the selection of empiric antimicrobial regimens when these are appropriate. Wound biopsy for histological examination and quantitative culture is highly recommended in the severely ill child with an unclear etiology or site of infection. If, despite these measures, sepsis ensues, then systemic antibiotics must be started empirically as an adjuctive therapy to surgical débridement. Knowledge of the organisms colonizing a wound will prove useful in choosing an antibiotic regimen while awaiting definitive results of blood and wound biopsy cultures. Without this information, early burn sepsis therapy should focus on gram-positive organisms, while infection later in the course should raise suspicion of nosocomial pathogens such as P. aeruginosa, other enteric bacilli, and C. albicans. An initial regimen might include nafcillin plus ceftazidime or an aminoglycoside, with anaerobic coverage depending on considerations noted previously. Once the causative agent is identified, therapy must be modified accordingly. Amphotericin B and acyclovir use should be guided by positive cultures from the burn wound site along with systemic evidence of dissemination. Available studies do not yet make clear the role of empiric immunotherapy with intravenous gamma globulin in the burned child. Therefore, its use cannot be recommended at the present time, although the development of specific

  13. Modeling of multi-strata forest fire severity using Landsat TM data

    Science.gov (United States)

    Q. Meng; R.K. Meentemeyer

    2011-01-01

    Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which...

  14. Quantifying the influence of boreal biomass burning emissions on tropospheric oxidant chemistry over the North Atlantic using BORTAS measurements

    Science.gov (United States)

    Parrington, Mark; Palmer, Paul I.; Rickard, Andrew; Young, Jennifer; Lewis, Ally; Lee, James; Henze, Daven; Tarasick, David; Hyer, Edward; Yantosca, Robert; Bowman, Kevin; Worden, John; Griffin, Debora; Franklin, Jonathan; Helmig, Detlev

    2013-04-01

    We use the GEOS-Chem chemistry transport model to quantify the impact of boreal biomass burning on tropospheric oxidant chemistry over the North Atlantic region during summer of 2011. The GEOS-Chem model is used at a spatial resolution of 1/2 degree latitude by 2/3 degree longitude for a domain covering eastern North America, the North Atlantic Ocean and western Europe. We initialise the model with biomass burning emissions from the Fire Locating and Monitoring of Burning Emissions (FLAMBE) inventory and use a modified chemical mechanism providing a detailed description of ozone photochemistry in boreal biomass burning outflow derived from the Master Chemical Mechanism (MCM). We evaluate the 3-D model distribution of ozone and tracers associated with biomass burning against measurements made by the UK FAAM BAe-146 research aircraft, ozonesondes, ground-based and satellite instruments as part of the BORTAS experiment between 12 July and 3 August 2011. We also use the GEOS-Chem model adjoint to fit the model to BORTAS measurements to analyse the sensitivity of the model chemical mechanism and ozone distribution to wildfire emissions in central Canada.

  15. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    Science.gov (United States)

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  16. An evolutionary framework for the Jovian and Saturnian satellites

    International Nuclear Information System (INIS)

    Stevenson, R.J.

    1987-01-01

    The position of the satellite within the protonebula, the influence of the parent planet, particularly the relative effects of tidal (gravitational) as opposed to radiogenic (internal) heat generating processes, as well as the type of ice, exert a control on the evolutionary histories of the Jovian and Saturnian satellites. The landscapes of the moons are modified by surface deformational processes (tectonic activity derived from within the body) and externally derived cratering. The geological history of the Galilean satellites is deduced from surface stratigraphic successions of geological units. Io and Europa, with crater-free surfaces, are tectonically more advanced than crater-saturated Callisto. Two thermal-drive models are proposed based on: an expression for externally derived gravitational influences between two bodies; and internal heat generation via radiogenic decay (expressed by surface area/volume ratio). Both parameters, for the Galilean satellites, are plotted against an inferred product of tectonic processes - the age of the surface terrain. From these diagrams, the tectonic evolutionary state of the more distant Saturnian system are predicted. These moons are fitted into an evolutionary framework for the Solar System. 34 refs.; 4 figs.; 2 tabs

  17. Satellite Eye for Galathea 3. Annual report 2006

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Sørensen, Peter; Pedersen, Leif Toudal

    The Satellite Eye for Galathea 3 project is collecting satellite images from many satellites and, in particular, from the European ENVISAT satellite along the Galathea 3 global route. The expedition takes place from 11 August 2006 to 27 April 2007. Prior to the expedition several satellite images...... Vædderen, pupils in the classrooms and the public at any moment can take a look at the conditions seen from the eyes of the Earth observing satellites....

  18. Serum albumin levels in burn people are associated to the total body surface burned and the length of hospital stay but not to the initiation of the oral/enteral nutrition.

    Science.gov (United States)

    Pérez-Guisado, Joaquín; de Haro-Padilla, Jesús M; Rioja, Luis F; Derosier, Leo C; de la Torre, Jorge I

    2013-01-01

    Serum albumin levels have been used to evaluate the severity of the burns and the nutrition protein status in burn people, specifically in the response of the burn patient to the nutrition. Although it hasn't been proven if all these associations are fully funded. The aim of this retrospective study was to determine the relationship of serum albumin levels at 3-7 days after the burn injury, with the total body surface area burned (TBSA), the length of hospital stay (LHS) and the initiation of the oral/enteral nutrition (IOEN). It was carried out with the health records of patients that accomplished the inclusion criteria and were admitted to the burn units at the University Hospital of Reina Sofia (Córdoba, Spain) and UAB Hospital at Birmingham (Alabama, USA) over a 10 years period, between January 2000 and December 2009. We studied the statistical association of serum albumin levels with the TBSA, LHS and IOEN by ANOVA one way test. The confidence interval chosen for statistical differences was 95%. Duncan's test was used to determine the number of statistically significantly groups. Were expressed as mean±standard deviation. We found serum albumin levels association with TBSA and LHS, with greater to lesser serum albumin levels found associated to lesser to greater TBSA and LHS. We didn't find statistical association with IOEN. We conclude that serum albumin levels aren't a nutritional marker in burn people although they could be used as a simple clinical tool to identify the severity of the burn wounds represented by the total body surface area burned and the lenght of hospital stay.

  19. Deciding Where to Burn: Stakeholder Priorities for Prescribed Burning of a Fire-Dependent Ecosystem

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2011-03-01

    Full Text Available Multiagency partnerships increasingly work cooperatively to plan and implement fire management. The stakeholders that comprise such partnerships differ in their perceptions of the benefits and risks of fire use or nonuse. These differences inform how different stakeholders prioritize sites for burning, constrain prescribed burning, and how they rationalize these priorities and constraints. Using a survey of individuals involved in the planning and implementation of prescribed fire in the Onslow Bight region of North Carolina, we examined how the constraints and priorities for burning in the longleaf pine (Pinus palustris ecosystem differed among three stakeholder groups: prescribed burn practitioners from agencies, practitioners from private companies, and nonpractitioners. Stakeholder groups did not differ in their perceptions of constraints to burning, and development near potentially burned sites was the most important constraint identified. The top criteria used by stakeholders to decide where to burn were the time since a site was last burned, and a site's ecosystem health, with preference given to recently burned sites in good health. Differences among stakeholder groups almost always pertained to perceptions of the nonecological impacts of burning. Prescribed burning priorities of the two groups of practitioners, and particularly practitioners from private companies, tended to be most influenced by nonecological impacts, especially through deprioritization of sites that have not been burned recently or are in the wildland-urban interface (WUI. Our results highlight the difficulty of burning these sites, despite widespread laws in the southeast U.S. that limit liability of prescribed burn practitioners. To avoid ecosystem degradation on sites that are challenging to burn, particularly those in the WUI, conservation partnerships can facilitate demonstration projects involving public and private burn practitioners on those sites. In summary

  20. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from