WorldWideScience

Sample records for satellite-derived ocean measurements

  1. Comparison of advanced Arctic Ocean model sea ice fields to satellite derived measurements

    OpenAIRE

    Dimitriou, David S.

    1998-01-01

    Approved for public release; distribution is unlimited Numerical models have proven integral to the study of climate dynamics. Sea ice models are critical to the improvement of general circulation models used to study the global climate. The object of this study is to evaluate a high resolution ice-ocean coupled model by comparing it to derived measurements from SMMR and SSM/I satellite observations. Utilized for this study was the NASA Goddard Space Flight (GSFC) Sea Ice Concentration Dat...

  2. Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

    Directory of Open Access Journals (Sweden)

    A. Lana

    2012-09-01

    Full Text Available Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b production fluxes of secondary organic aerosols from biogenic organic volatiles; (c emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN numbers derived from satellite (MODIS. More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (re data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to re were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt showed widespread positive correlations to CCN only at low latitudes. Correlations to re were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud

  3. Oceanic Weather Decision Support for Unmanned Global Hawk Science Missions into Hurricanes with Tailored Satellite Derived Products

    Science.gov (United States)

    Feltz, Wayne; Griffin, Sarah; Velden, Christopher; Zipser, Ed; Cecil, Daniel; Braun, Scott

    2017-04-01

    The purpose of this presentation is to identify in-flight hazards to high-altitude aircraft, namely the Global Hawk. The Global Hawk was used during Septembers 2012-2016 as part of two NASA funded Hurricane Sentinel-3 field campaigns to over-fly hurricanes in the Atlantic Ocean. This talk identifies the cause of severe turbulence experienced over Hurricane Emily (2005) and how a combination of NOAA funded GOES-R algorithm derived cloud top heights/tropical overshooting tops using GOES-13/SEVIRI imager radiances, and lightning information are used to identify areas of potential turbulence for near real-time navigation decision support. Several examples will demonstrate how the Global Hawk pilots remotely received and used real-time satellite derived cloud and lightning detection information to keep the aircraft safely above clouds and avoid regions of potential turbulence.

  4. The annual cycle of satellite-derived sea surface temperature in the southwestern Atlantic Ocean

    Science.gov (United States)

    Podesta, Guillermo P.; Brown, Otis B.; Evans, Robert H.

    1991-01-01

    The annual cycle of sea surface temperature (SST) in the southwestern Atlantic Ocean was estimated using four years (July 1984-July 1988) of NOAA Advanced Very High Resolution Radiometer observations. High resolution satellite observations at 1-km space and daily time resolution were grided at 100-km space and 5-day time intervals to develop an analysis dataset for determination of low frequency SST variability. The integral time scale, a measure of serial correlation, was found to vary from 40 to 60 days in the domain of interest. The existence of superannual trends in the SST data was investigated, but conclusive results could not be obtained. The annual cycle (and, in particular, the annual harmonic) explains a large proportion of the SST variability. The estimated amplitude of the cycle ranges between 5 deg and 13 deg C throughout the study area, with minima in August-September and maxima in February. The resultant climatology is compared with an arbitrary 5-day satellite SST field, and with the COADS/ICE SST climatology. It was found that the higher resolution satellite-based SST climatology resolves boundary current structure and has significantly better structural agreement with the observed field.

  5. Surface radiation at sea validation of satellite-derived data with shipboard measurements

    Directory of Open Access Journals (Sweden)

    Hein Dieter Behr

    2009-03-01

    Full Text Available Quality-controlled and validated radiation products are the basis for their ability to serve the climate and solar energy community. Satellite-derived radiation fluxes are well preferred for this task as they cover the whole research area in time and space. In order to monitor the accuracy of these data, validation with well maintained and calibrated ground based measurements is necessary. Over sea, however, long-term accurate reference data sets from calibrated instruments recording radiation are scarce. Therefore data from research vessels operating at sea are used to perform a reasonable validation. A prerequisite is that the instruments on board are maintained as well as land borne stations. This paper focuses on the comparison of radiation data recorded on board of the German Research Vessel "Meteor" during her 13 months cruise across the Mediterranean and the Black Sea with CM-SAF products using NOAA- and MSG-data (August 2006-August 2007: surface incoming short-wave radiation (SIS and surface downward long-wave radiation (SDL. Measuring radiation fluxes at sea causes inevitable errors, e.g.shadowing of fields of view of the radiometers by parts of the ship. These ship-inherent difficulties are discussed at first. A comparison of pairs of ship-recorded and satellite-derived mean fluxes for the complete measuring period delivers a good agreement: the mean bias deviation (MBD for SIS daily means is −7.6 W/m2 with a median bias of −4 W/m2 and consistently the MBD for monthly means is −7.3 W/m2, for SDL daily means the MBD is 8.1 and 6 W/m2 median bias respectively. The MBD for monthly means is 8.2 W/m2. The variances of the daily means (ship and satellite have the same annual courses for both fluxes. No significant dependence of the bias on the total cloud cover recorded according to WMO (1969 has been found. The results of the comparison between ship-based observations and satellite retrieved surface radiation reveal the good accuracy

  6. Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria

    Directory of Open Access Journals (Sweden)

    Boluwaji M. Olomiyesan

    2016-01-01

    Full Text Available In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005 of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE, mean percentage error (MPE, root mean square error (RMSE, and coefficient of determination (R2. Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.

  7. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    Science.gov (United States)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  8. Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil

    Science.gov (United States)

    Thomas, Claire; Wey, Etienne; Blanc, Philippe; Wald, Lucien

    2016-06-01

    The SoDa website (www.soda-pro.com) is populated with numerous solar-related Web services. Among them, three satellite-derived irradiation databases can be manually or automatically accessed to retrieve radiation values within the geographical coverage of the Meteosat Second Generation (MSG) satellite: the two most advanced versions of the HelioClim-3 database (versions 4 and 5, respectively HC3v4 and HC3v5), and the CAMS radiation service. So far, these databases have been validated against measurements of several stations in Europe and North Africa only. As the quality of such databases depends on the geographical regions and the climates, this paper extends this validation campaign and proposes an extensive comparison on Brazil and global irradiation received on a horizontal surface. Eleven stations from the Brazilian Institute of Space Research (INPE) network offer 1 min observations, and thirty-one stations from the Instituto Nacional de Meteorologia (INMET) network offer hourly observations. The satellite-derived estimates have been compared to the corresponding observations on hourly, daily and monthly basis. The bias relative to the mean of the measurements for HC3v5 is mostly comprised between 1 and 3 %, and that for HC3v4 between 2 and 5 %. These are very satisfactory results and they demonstrate that HC3v5, and to a lesser extent HC3v4, may be used in studies of long-term changes in SSI in Brazil. The situation is not so good with CAMS radiation service for which the relative bias is mostly comprised between 5 and 10 %. For hourly irradiation, the relative RMSE ranges from 15 to 33 %. The correlation coefficient is very large for all stations and the three databases, with an average of 0.96. The three databases reproduce well the hour from hour changes in SSI. The errors show a tendency to increase with the viewing angle of the MSG satellite. They are greater in tropical areas where the relative humidity in the atmosphere is important. It is concluded

  9. Comparison of measured and satellite-derived spectral diffuse attenuation coefficients for the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.

    bands. The performance of the data-driven empirical methods was found to be consistent in all the bands, except at the red band of 670 nm, which is uncorrelated with the measured values and has large errors. The performances of the empirical methods...

  10. High-resolution satellite-derived ocean surface winds in the Nordic-Barents seas region: Implications for ocean modeling (Invited)

    Science.gov (United States)

    Dukhovskoy, D. S.; Bourassa, M. A.; Hughes, P. J.

    2010-12-01

    High-resolution (0.25°) ocean surface wind velocity data derived from satellite observations are used to analyze winds in the Nordic-Barents seas during 2007-2008. For the analysis, a Cross-Calibrated, Multi-Platform (CCMP), multi-instrument ocean surface wind velocity data set is utilized. The product has been developed by National Aeronautics and Space Administration (NASA) within Making Earth Science data records for Use in Research Environments (MEaSUREs) Program. A variational method was used to combine wind measurements derived from satellite-born active and passive remote sensing instruments. In the objective procedure, winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis (DS111.1) were used as the background fields. The ocean surface wind fields are compared with those derived from the National Centers for Environmental Protection/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The NCEP/NCAR fields are commonly used to provide atmospheric forcing for Arctic Ocean models. The utility of using high-resolution winds in the ocean modeling is discussed. In particular, air-sea heat fluxes estimated from the two wind data sets are compared. It is anticipated that wind fields with higher spatial and temporal resolution will better resolve small-scale, short-lived atmospheric systems. As an example, the ice free region in the Nordic and Barents seas is frequently impacted by very intense cyclones known as “polar lows” with wind speeds near to or above gale force. A polar low forms over the sea and predominantly during the winter months. The size of these cyclones varies greatly from 100 to 1000 km. Presumably small-scale cyclones are misrepresented or not resolved in the NCAR fields leading to biases in the air-sea flux calculations in the ocean models. Inaccurate estimates of the air-sea fluxes eventually lead to biases in the Arctic Ocean model solutions.

  11. Improvements of Satellite-derived High Impact Weather Rainfall over Global Oceans and Implications for NWP models

    Science.gov (United States)

    Klepp, C.; Bakan, S.; Graßl, H.

    2003-04-01

    High impact weather precipitation fields of cyclone case studies over global ocean precipitation centers are presented using the technology of the HOAPS-II (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data) data base. All case studies are compared to the Global Precipitation Climatology Project (GPCP) data set and to ECMWF numerical weather prediction output. A detailed in situ rainfall validation is presented using voluntary observing ships (VOS). Results show that only the HOAPS data base recognizes the development of frequently occurring mesoscale cyclones and gales over the North Atlantic and North Pacific ocean as observed by VOS data. In case of landfall these events cause high socio-economic impact to the society. GPCP and the ECMWF model are frequently missing these mesoscale storms. For example, the gale Lothar known as the `Christmas Storm', could have been nowcasted using the HOAPS data base. HOAPS probably allows to give high impact weather warning in the near future on a near real time basis.

  12. Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nagamani, P.V.; Ali, M.M.; Goni, G.J.; Dinezio, P.N.; Pezzullo, J.C.; UdayaBhaskar, T.V.S.; Gopalakrishna, V.V.; Nisha, K.

    , there is a need for satellite-based estimations. One potential solution is to use sea surface height anomalies (SSHAs) from altimeter observations. However, any estimation derived from satellite measurements requires extensive regional validation...

  13. Analysis of Satellite-Derived Arctic Tropospheric BrO Columns in Conjunction with Aircraft Measurements During ARCTAS and ARCPAC

    Science.gov (United States)

    Choi, S.; Wang, Y.; Salawitch, R. J.; Canty, T.; Joiner, J.; Zeng, T.; Kurosu, T. P.; Chance, K.; Richter, A.; Huey, L. G.; hide

    2012-01-01

    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations ofBrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo> 0.7), for solar zenith angle BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.

  14. Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Directory of Open Access Journals (Sweden)

    S. Choi

    2012-02-01

    Full Text Available We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL. Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7, for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.

  15. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  16. Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Directory of Open Access Journals (Sweden)

    S. Choi

    2011-09-01

    Full Text Available We derive estimates of tropospheric BrO column amounts during two Arctic field campaigns in 2008 using information from the satellite UV nadir sensors Ozone Monitoring Instrument (OMI and the second Global Ozone Monitoring Experiment (GOME-2 as well as estimates of stratospheric BrO columns from a model simulation. The sensitivity of the satellite-derived tropospheric BrO columns to various parameters is investigated using a radiative transfer model. We conduct a comprehensive analysis of satellite-derived tropospheric BrO columns including a detailed comparison with aircraft in-situ observations of BrO and related species obtained during the field campaigns. In contrast to prior expectation, tropospheric BrO, when present, existed over a broad range of altitudes. Our results show reasonable agreement between tropospheric BrO columns derived from the satellite observations and columns found using aircraft in-situ BrO. After accounting for the stratospheric contribution to total BrO column, several events of rapid BrO activation due to surface processes in the Arctic are apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low pressure systems, strong surface winds, and high planetary boundary layer heights are associated with the observed tropospheric BrO activation events.

  17. Validation of satellite derived LHF using coare_3.0 scheme and time series data over north-east Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    -6538 versión on-line Gayana (Concepc.) v.68 n.2 supl.TIIProc Concepción 2004 Como citar este artículo Gayana 68(2): 420-426, 2004 VALIDATION OF SATELLITE DERIVED LHF USING COARE_3.0 SCHEME AND TIME SERIES DATA OVER NORTH-EAST INDIAN...

  18. Estimating ground-level PM_{2.5} concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements

    Science.gov (United States)

    Zheng, Yixuan; Zhang, Qiang; Liu, Yang; Geng, Guannan; He, Kebin

    2016-04-01

    Numerous previous studies have revealed that statistical models which combine satellite-derived aerosol optical depth (AOD) and PM2.5 measurements acquired at scattered monitoring sites provide an effective method for deriving continuous spatial distributions of ground-level PM2.5 concentrations. Using the national monitoring networks that have recently been established by central and local governments in China, we developed linear mixed-effects (LMEs) models that integrate Moderate Resolution Imaging Spectroradiometer (MODIS) AOD measurements, meteorological parameters, and satellite-derived tropospheric NO2 column density measurements as predictors to estimate PM2.5 concentrations over three major industrialized regions in China, namely, the Beijing-Tianjin-Hebei region (BTH), the Yangtze River Delta region (YRD), and the Pearl River Delta region (PRD). The models developed for these three regions exploited different predictors to account for their varying topographies and meteorological conditions. Considering the importance of unbiased PM2.5 predictions for epidemiological studies, the correction factors calculated from the surface PM2.5 measurements were applied to correct biases in the predicted annual average PM2.5 concentrations introduced by non-stochastic missing AOD measurements. Leave-one-out cross-validation (LOOCV) was used to quantify the accuracy of our models. Cross-validation of the daily predictions yielded R2 values of 0.77, 0.8 and 0.8 and normalized mean error (NME) values of 22.4%, 17.8% and 15.2% for BTH, YRD and PRD, respectively. For the annual average PM2.5 concentrations, the LOOCV R2 values were 0.85, 0.76 and 0.71 for the three regions, respectively, whereas the LOOCV NME values were 8.0%, 6.9% and 8.4%, respectively. We found that the incorporation of satellite-based NO2 column density into the LMEs model contribute to considerable improvements in annual prediction accuracy for both BTH and YRD. The satisfactory performance of our

  19. Satellite-derived geoid for the estimation of lithospheric cooling and basal heat flux anomalies over the northern Indian Ocean lithosphere

    Indian Academy of Sciences (India)

    S Rajesh; T J Majumdar

    2015-12-01

    The northern Indian Ocean consists of older Bay of Bengal (BOB) oceanic lithosphere with numerous intra-plate loads; whereas, contrasting elements like active Mid-Ocean ridge divergence and slow spreading ridges are present in the relatively younger (<60 Ma) Arabian Sea oceanic lithosphere. The mechanism of lithospheric cooling of young age oceanic lithosphere from the moderately active and slow spreading Carlsberg Ridge is analysed by considering the hypothesis of near lithospheric convective action or whole upper mantle convection. We addressed these issues by studying the marine geoid at different spatial wavelengths and retrieved and compared their lithospheric cooling signatures, plate spreading and distribution of mass and heat anomalies along with seismicity, bathymetry, gravity and isochron age data. Results show that progressive cooling of young-aged oceanic lithosphere from the Mid-Ocean Carlsberg Ridge is because of conductive cooling and those signals are retrieved in the shorter wavelength band (111 < < 1900 km) of constrained residual geoid with mass anomaly sources near to sublithospheric. This shows steadiness in the geoid anomaly decay rate (∼–0.1 m/Ma), consistency in the growth of thermal boundary layer and progressive fall of basal temperature and heat flux (900–300 K and 100–18 mW m−2) with increase of lithospheric age. The above observations are attributed to the fact that the advective–convective action beneath the Mid-Ocean Carlsberg Ridge is driven by the basal temperature gradient between the lithosphere and the near lithospheric low viscose thin layer. But, for the case of old-aged oceanic lithosphere in the BOB, the residual geoid anomaly cooling signals are not prominently seen in the same band as that of the Arabian Sea because of the Ninetyeast Ridge magmatism. However, its cooling anomaly signatures are retrieved at relatively higher band (1335 ≤ ≤ 3081 km) having erratic geoid decay rates (–0.3 to 0.2 m/Ma) owing

  20. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean - New constraints from high-resolution satellite-derived gravity data

    Science.gov (United States)

    Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.

    2016-12-01

    Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.

  1. OW NASA MODIS Aqua Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Moderate Resolution Imaging Spectroradiometer...

  2. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    Directory of Open Access Journals (Sweden)

    G. Zibordi

    2014-12-01

    Full Text Available The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A and the Visible/Infrared Imager/Radiometer Suite (VIIRS, is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC. The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443–547 nm, or equivalent. Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm and red (i.e., 667 nm, or equivalent center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  3. Atmospheric COS measurements and satellite-derived vegetation fluorescence data to evaluate the terrestrial gross primary productivity of CMIP5 model

    Science.gov (United States)

    Peylin, Philippe; MacBean, Natasha; Launois, Thomas; Belviso, Sauveur; Cadule, Patricia; Maignan, Fabienne

    2016-04-01

    Predicting the fate of the ecosystem carbon stocks and their sensitivity to climate change strongly relies on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. The Gross Primary Productivity (GPP) simulated by the different terrestrial models used in CMIP5 show large differences however, not only in terms of mean value but also in terms of phase and amplitude, thus hampering accurate investigations into carbon-climate feedbacks. While the net C flux of an ecosystem (NEE) can be measured in situ with the eddy covariance technique, the GPP is not directly accessible at larger scales and usually estimates are based on indirect measurements combining different tracers. Recent measurements of a new atmospheric tracer, the Carbonyl sulphide (COS), as well as the global measurement of Solar Induced Fluorescence (SIF) from satellite instruments (GOSAT, GOME2) open a new window for evaluating the GPP of earth system models. The use of COS relies on the fact that it is absorbed by the leaves in a similar manner to CO2, while there seems to be nothing equivalent to respiration for COS. Following recent work by Launois et al. (ACP, 2015), there is a potential to evaluate model GPP from atmospheric COS and CO2 measurements, using a transport model and recent parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of COS. Vegetation uptake of COS is modeled as a linear function of GPP and the ratio of COS to CO2 rate of uptake by plants. For the fluorescence, recent measurements of SIF from space appear to be highly correlated with monthly variations of data-driven GPP estimates (Guanter et al., 2012), following a strong dependence of vegetation SIF on photosynthetic activity. These global measurements thus provide new indications on the timing of canopy carbon uptake. In this work, we propose a dual approach that combines the strength of both COS and SIF

  4. Exploration of Loggerhead Shrike Habitats in Grassland National Park of Canada Based on in Situ Measurements and Satellite-Derived Adjusted Transformed Soil-Adjusted Vegetation Index (ATSAVI

    Directory of Open Access Journals (Sweden)

    Li Shen

    2013-01-01

    Full Text Available The population of loggerhead shrike (Lanius ludovicianus excubutirudes in Grassland National Park of Canada (GNPC has undergone a severe decline due to habitat loss and limitation. Shrike habitat availability is highly impacted by the biophysical characteristics of grassland landscapes. This study was conducted in the west block of GNPC. The overall purpose was to extract important biophysical and topographical variables from both SPOT satellite imagery and in situ measurements. Statistical analysis including Analysis of Variance (ANOVA, measuring Coefficient Variation (CV, and regression analysis were applied to these variables obtained from both imagery and in situ measurement. Vegetation spatial variation and heterogeneity among active, inactive and control nesting sites at 20 m × 20 m, 60 m × 60 m and 100 m × 100 m scales were investigated. Results indicated that shrikes prefer to nest in open areas with scattered shrubs, particularly thick or thorny species of smaller size, to discourage mammalian predators. The most important topographical characteristic is that active sites are located far away from roads at higher elevation. Vegetation index was identified as a good indicator of vegetation characteristics for shrike habitats due to its significant relation to most relevant biophysical factors. Spatial variation analysis showed that at all spatial scales, active sites have the lowest vegetation abundance and the highest heterogeneity among the three types of nesting sites. For all shrike habitat types, vegetation abundance decreases with increasing spatial scales while habitat heterogeneity increases with increasing spatial scales. This research also indicated that suitable shrike habitat for GNPC can be mapped using a logistical model with ATSAVI and dead material in shrub canopy as the independent variables.

  5. Measurements and Status at the CERES Ocean Validation Experiment (COVE)

    Science.gov (United States)

    Fabbri, B. E.; Denn, F. M.; Schuster, G. L.; Arduini, R. F.; Madigan, J. J.; Rutan, D. A.

    2014-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a suite of instruments flying on several earth-observing satellites that provides data products of radiant energy from the top of the atmosphere to the Earth's surface. The CERES Ocean Validation Experiment (COVE) was established in 1999 as an ocean surface validation site for CERES and other satellite instruments. COVE is located at Chesapeake Light Station, approximately 25 kilometers east of Virginia (coordinates: 36.90N, 75.71W). COVE measurements include downwelling and upwelling radiant flux at visible and infrared wavelengths, basic meteorological parameters, aerosol optical depth, black carbon, total column water vapor, cloud heights, and more. COVE is part of several networks including the Baseline Surface Radiation Network (BSRN), Aerosol Robotic Network (AERONET), Micro-Pulse Lidar Network (MPLNET) and Global Positioning System Meteorology (GPS-MET). A table will be displayed that outlines the current instrumentation and measurements being collected at COVE. Select data results will be presented, including CERES satellite derived data versus COVE surface observed measurements. Also, climatologies such as black carbon from an Aethalometer will be disclosed. In October 2012, the Department of Energy (D.O.E.) purchased Chesapeake Light with the goal of producing a base station for vertically defined wind profiles. While this project is still in the planning phase, the D.O.E. has allowed our research to continue in its current state.

  6. Estimating Ground-Level Particulate Matter (PM) Concentration using Satellite-derived Aerosol Optical Depth (AOD)

    Science.gov (United States)

    Park, Seohui; Im, Jungho

    2017-04-01

    Atmospheric aerosols are strongly associated with adverse human health effects. In particular, particulate matter less than 10 micrometers and 2.5 micrometers (i.e., PM10 and PM2.5, respectively) can cause cardiovascular and lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). Air quality including PM has typically been monitored using station-based in-situ measurements over the world. However, in situ measurements do not provide spatial continuity over large areas. An alternative approach is to use satellite remote sensing as it provides data over vast areas at high temporal resolution. The literature shows that PM concentrations are related with Aerosol Optical Depth (AOD) that is derived from satellite observations, but it is still difficult to identify PM concentrations directly from AOD. Some studies used statistical approaches for estimating PM concentrations from AOD while some others combined numerical models and satellite-derived AOD. In this study, satellite-derived products were used to estimate ground PM concentrations based on machine learning over South Korea. Satellite-derived products include AOD from Geostationary Ocean Color Imager (GOCI), precipitation from Tropical Rainfall Measuring Mission (TRMM), soil moisture from AMSR-2, elevation from Shuttle Radar Topography Mission (SRTM), and land cover, land surface temperature and normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS). PM concentrations data were collected from 318 stations. A statistical ordinary least squares (OLS) approach was also tested and compared with the machine learning approach (i.e., random forest). PM concentration was estimated during spring season (from March to May) in 2015 that typically shows high concentration of PM. The randomly selected 80% of data were used for model calibration and the remaining 20% were used for validation. The developed models were further tested for prediction of PM

  7. OW NASA SeaWIFS Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)...

  8. Preliminary results on the comparison between satellite derived ground temperature and in-situ measurement of soil CO2 flux and soil temperature at Solfatara of Pozzuoli (Naples, Italy)

    Science.gov (United States)

    Cardellini, Carlo; Silvestri, Malvina; Chiodini, Giovanni; Fabrizia Buongiorno, Maria

    2014-05-01

    temperature (at 10 cm depth) are measured periodically in about 400 point randomly distributed in the Solfatara crater area and in its surroundings. The data measured in 3 surveys performed from 2003 to 2010, in periods roughly correspondent to the available ASTER data, have been elaborated with the geostatistical method of Sequential Gaussian Simulation in order to obtain maps with a spatial resolution of 90X90 m to be compared to the ASTER data. The first results show a quite good correlations between ASTER derived temperatures and both temperatures and CO2 fluxes derived from ground measurement, especially in the most anomalous areas characterized by higher soil CO2 fluxes and temperatures. These first results encourage the possibility to use the satellite derived temperature as proxy of the CO2 fluxes and to implement methods to use long time series of satellite TIR data in a monitoring prospective.

  9. (abstract) Ekman Pumping/Suction and Wind-Driven Ocean Circulation from ERS-1 Scatterometer Measurements Over the Arabian Sea During October 1994-October 1995

    Science.gov (United States)

    Halpern, D.; Freilich, M. H.; Weller, R. A.

    1996-01-01

    Spatial variations of the east-west and north-south components of surface wind stress are critical in studies of ocean circulation and biological-physical interactions because surface wind stress curl produces a vertical velocity in the upper ocean at the bottom of the Ekman Layer.The ERS-1 scatterometer provides reasonable coverage and direct measurements of vector of winds. Three schemes are evaluated relative to high-quality moored-bouy wind observations recorded in the central Arabian Sea, where high surface waves and high atmospheric water content during the southeast monsoon adversely affect the estimation of satellite-derived winds.

  10. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  11. Southern Ocean variability derived from GRACE retrievals, model simulations and in-situ measurements

    Science.gov (United States)

    Böning, C.; Timmermann, R.; Macrander, A.; Schröter, J.; Boebel, O.

    2009-04-01

    The Gravity Recovery and Climate Experiment (GRACE) provides estimates of the Earth's static and time-variant gravity field. Solutions from various processing centres (GFZ, CSR, GRGS, JPL etc.) enable us to determine mass redistributions on the globe. Given that land signals are generally large compared to anomalies over the ocean, an assessment of the latter requires a particularly careful filtering of the data. We utilized the Finite Element Sea-Ice Ocean Model (FESOM) to develop a filtering algorithm which relies on the spatial coherency of ocean bottom pressure (OBP) anomalies. Taking large-scale circulation patterns into account, the new filter yields an improved representation of OBP (i.e. ocean mass) variability in the filtered GRACE data. In order to investigate the representation of Antarctic Circumpolar Current (ACC) variability in the pattern-filtered GRACE retrievals, an analysis of OBP anomalies in FESOM results and in-situ measurements has been performed. A bottom pressure recorder array in the ACC region south of Africa (36°S-58°S, 1°W-7°E) provides data from 2002-2008. Based on anomalies of OBP gradients between individual instruments, these in-situ measurements give an estimate of the overall transport variability as well as of the movement of ACC fronts and transport redistribution between different sectors of the ACC. The validation of simulated and satellite-derived OBP anomaly gradients against these data yields a measure for the representation of this variability in FESOM and GRACE. Furthermore, model simulations are used to assess the relation between transport variations in individual filaments of the Southern Ocean and total transport variability in this and other sectors of the ACC.

  12. Online Assessment of Satellite-Derived Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by

  13. Ocean Ambient Noise Measurement and Theory

    CERN Document Server

    Carey, William M

    2011-01-01

    This book develops the theory of ocean ambient noise mechanisms and measurements, and also describes general noise characteristics and computational methods.  It concisely summarizes the vast ambient noise literature using theory combined with key representative results.  The air-sea boundary interaction zone is described in terms of non-dimensional variables requisite for future experiments.  Noise field coherency, rare directional measurements, and unique basin scale computations and methods are presented.  The use of satellite measurements in these basin scale models is demonstrated.  Finally, this book provides a series of appendices giving in-depth mathematical treatments.  With its complete and careful discussions of both theory and experimental results, this book will be of the greatest interest to graduate students and active researchers working in fields related to ambient noise in the ocean.

  14. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Science.gov (United States)

    Shariatinajafabadi, Mitra; Wang, Tiejun; Skidmore, Andrew K; Toxopeus, Albertus G; Kölzsch, Andrea; Nolet, Bart A; Exo, Klaus-Michael; Griffin, Larry; Stahl, Julia; Cabot, David

    2014-01-01

    Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI) time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI), has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7). Data were collected over three years (2008-2010). Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%), while the Greenland geese followed an earlier stage (GWI 20-40%). Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration), thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  15. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Directory of Open Access Journals (Sweden)

    Mitra Shariatinajafabadi

    Full Text Available Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI, has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7. Data were collected over three years (2008-2010. Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%, while the Greenland geese followed an earlier stage (GWI 20-40%. Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration, thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  16. Satellite-derived methane emissions from inundation in Bangladesh

    Science.gov (United States)

    Peters, C. N.; Bennartz, R.; Hornberger, G. M.

    2017-05-01

    The uncertainty in methane (CH4) source strength of rice fields and wetlands is particularly high in South Asia CH4 budgets. We used satellite observations of CH4 column mixing ratios from Atmospheric Infrared Sounder (AIRS), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Greenhouse Gases Observing Satellite (GOSAT) to estimate the contribution of Bangladesh emissions to atmospheric CH4 concentrations. Using satellite-derived inundation area as a proxy for source area, we developed a simple inverse advection model that estimates average annual CH4 surface fluxes to be 4, 9, and 19 mg CH4 m-2 h-1 in AIRS, SCIAMACHY, and GOSAT, respectively. Despite this variability, our flux estimates varied over a significantly narrower range than reported values for CH4 surface fluxes from a survey of 32 studies reporting ground-based observations between 0 and 260 mg CH4 m-2 h-1. Upscaling our satellite-derived surface flux estimates, we estimated total annual CH4 emissions for Bangladesh to be 1.3 ± 3.2, 1.8 ± 2.0, 3.1 ± 1.6 Tg yr-1, depending on the satellite. Our estimates of total emissions are in line with the median of total emission values for Bangladesh reported in earlier studies.

  17. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE)

    Science.gov (United States)

    Greely, T. M.; Lodge, A.

    2009-12-01

    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  18. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    T. Cohen Liechti

    2011-08-01

    Full Text Available In the framework of the African Dams ProjecT (ADAPT, an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin.

    Three operational and acknowledged high resolution satellite derived estimates: the Tropical Rainfall Measuring Mission product 3B42 (TRMM 3B42, the Famine Early Warning System product 2.0 (FEWS RFE2.0 and the National Oceanic and Atmospheric Administration/Climate Prediction Centre (NOAA/CPC morphing technique (CMORPH are analyzed in terms of spatial and temporal repartition of the precipitations. They are compared to ground data for the wet seasons of the years 2003 to 2009 on a point to pixel basis at daily, 10-daily and monthly time steps and on a pixel to pixel basis for the wet seasons of the years 2003 to 2007 at monthly time steps.

    The general North-South gradient of precipitation is captured by all the analyzed products. Regarding the spatial heterogeneity, FEWS pixels are much more inter-correlated than TRMM and CMORPH pixels. For a rainfall homogeneity threshold criterion of 0.5 global mean correlation coefficient, the area of each subbasin should not exceed a circle of 2.5° latitude/longitude radius for FEWS and a circle of 0.75° latitude/longitude radius for TRMM and CMORPH considering rectangular mesh.

    In terms of reliability, the correspondence of all estimates with ground data increases with the time step chosen for the analysis. The volume ratio computation indicates that CMORPH is overestimating by nearly 1.5 times the rainfall. The statistics of TRMM and FEWS estimates show quite similar results.

    Due to the its lower inter-correlation and longer data set, the TRMM 3B42 product is chosen as input for the hydraulic-hydrologic model of the basin.

  19. Ceilometer measurements in the Southern Ocean

    Science.gov (United States)

    McDonald, Adrian; Alexander, Simon; French, John; Harvey, Mike; Ichoja, Andrew; Klekociuk, Andrew; Plank, Graeme; Katurji, Marwan

    2016-04-01

    Current climate models display a consistent deficit of reflected shortwave radiation over the Southern Ocean which is mainly due to the poor representation of clouds. Recent work has also shown that reanalysis also perform poorly relative to satellite observations in terms of cloud fraction. In particular, satellite observations have shown that low-level clouds (with tops below 3 km) are ubiquitous over the Southern Ocean. But, most satellite instruments, even the current generation of active satellite instruments, have difficulties in sampling low level clouds. As part of the New Zealand Deep South challenge project focussed on improving the representation of clouds in the Southern Ocean, we have begun to deploy autonomous instruments on 'ships of opportunity'. This study discusses measurements from a Väisälä CL51 laser ceilometer and ancillary instruments on the first two research voyages in the Southern Ocean and initial results. The route of the first voyage covers a return trip from Wellington (New Zealand) to Terra Nova Bay (Antarctica) onboard the R/V Tangaroa and occurred in January to mid-February 2015. The second deployment is onboard the Aurora Australis Australian Antarctic Division supply ship and began in October 2015 and is planned to finish at Macquarie Island in March 2016. The sampling provided by the ships route allows the ceilometer measurements of the height of the cloud base in a region where limited data apart from, potentially biased, satellite measurements of low-level cloud exist. Analysis of the boundary layer height derived from the ceilometer is also presented. The climatological structure derived from the ceilometer measurements is first detailed. We then compare these measurements with satellite and ground-based observations. We then examine variations in these measurements relative to their meteorological context. Details of plans for future voyages are also detailed. We will also present a preliminary analysis of a case study of

  20. Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets

    Energy Technology Data Exchange (ETDEWEB)

    Polo, J.; Wilbert, S.; Ruiz-Arias, J. A.; Meyer, R.; Gueymard, C.; Súri, M.; Martín, L.; Mieslinger, T.; Blanc, P.; Grant, I.; Boland, J.; Ineichen, P.; Remund, J.; Escobar, R.; Troccoli, A.; Sengupta, M.; Nielsen, K. P.; Renne, D.; Geuder, N.; Cebecauer, T.

    2016-07-01

    At any site, the bankability of a projected solar power plant largely depends on the accuracy and general quality of the solar radiation data generated during the solar resource assessment phase. The term 'site adaptation' has recently started to be used in the framework of solar energy projects to refer to the improvement that can be achieved in satellite-derived solar irradiance and model data when short-term local ground measurements are used to correct systematic errors and bias in the original dataset. This contribution presents a preliminary survey of different possible techniques that can improve long-term satellite-derived and model-derived solar radiation data through the use of short-term on-site ground measurements. The possible approaches that are reported here may be applied in different ways, depending on the origin and characteristics of the uncertainties in the modeled data. This work, which is the first step of a forthcoming in-depth assessment of methodologies for site adaptation, has been done within the framework of the International Energy Agency Solar Heating and Cooling Programme Task 46 'Solar Resource Assessment and Forecasting.'

  1. Comparison of several databases of downward solar daily irradiation data at ocean surface with PIRATA measurements

    Science.gov (United States)

    Trolliet, Mélodie; Wald, Lucien

    2017-04-01

    The solar radiation impinging at sea surface is an essential variable in climate system. There are several means to assess the daily irradiation at surface, such as pyranometers aboard ship or on buoys, meteorological re-analyses and satellite-derived databases. Among the latter, assessments made from the series of geostationary Meteosat satellites offer synoptic views of the tropical and equatorial Atlantic Ocean every 15 min with a spatial resolution of approximately 5 km. Such Meteosat-derived databases are fairly recent and the quality of the estimates of the daily irradiation must be established. Efforts have been made for the land masses and must be repeated for the Atlantic Ocean. The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) network of moorings in the Tropical Atlantic Ocean is considered as a reference for oceanographic data. It consists in 17 long-term Autonomous Temperature Line Acquisition System (ATLAS) buoys equipped with sensors to measure near-surface meteorological and subsurface oceanic parameters, including downward solar irradiation. Corrected downward solar daily irradiation from PIRATA were downloaded from the NOAA web site and were compared to several databases: CAMS RAD, HelioClim-1, HelioClim-3 v4 and HelioClim-3 v5. CAMS-RAD, the CAMS radiation service, combines products of the Copernicus Atmosphere Monitoring Service (CAMS) on gaseous content and aerosols in the atmosphere together with cloud optical properties deduced every 15 min from Meteosat imagery to supply estimates of the solar irradiation. Part of this service is the McClear clear sky model that provides estimates of the solar irradiation that should be observed in cloud-free conditions. The second and third databases are HelioClim-1 and HelioClim-3 v4 that are derived from Meteosat images using the Heliosat-2 method and the ESRA clear sky model, based on the Linke turbidity factor. HelioClim-3 v5 is the fourth database and differs from v4 by the

  2. Satellite derived precipitation and freshwater flux variability and its dependence on the North Atlantic Oscillation

    Science.gov (United States)

    Andersson, Axel; Bakan, Stephan; Graßl, Hartmut

    2010-08-01

    The variability of satellite retrieved precipitation and freshwater flux from the `Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data' (HOAPS) is assessed with special emphasis on the `North Atlantic Oscillation' (NAO). To cover also land areas, a novel combination of the satellite derived precipitation climatology with the rain gauge based `Full Data Reanalysis Product Version 4', of the `Global Precipitation Climatology Centre' (GPCC) is used. This yields unique high-resolution, quasi-global precipitation fields compiled from two independent data sources. Over the ocean, the response of the freshwater balance and the related parameters to the NAO is investigated for the first time by using a purely satellite based data set. A strong dependence of precipitation patterns to the state of the NAO is found. On synoptic scale this is in accordance with earlier findings by other satellite based and reanalysis products. Furthermore, the consistency of the combined HOAPS-3/GPCC data set allows also detailed regional analyses of precipitation patterns. The response of HOAPS-3 freshwater flux to the NAO is dominated by precipitation at mid and high latitudes, while for the subtropical regions the feedback of the evaporation is stronger.

  3. Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland

    Science.gov (United States)

    Hall, Dorothy K.; Box, Jason E.; Casey, Kimberly A.; Hook, Simon J.; Shuman, Christopher A.; Steffen, Konrad

    2008-01-01

    The most practical way to get a spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land-surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air-temperature observations from Greenland Climate Network (GC-Net) automatic-weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from -40 to 0 C. The satellite-derived LSTs agree within a relative RMS uncertainty of approx.0.5 C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 X 57 m (ETM+), 90 X 90 m (ASTER), or to 1 X 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty approx.2 C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.

  4. Towards Calibration of Sentinel 3 Data: Validation of Satellite-Derived SST Against In Situ Coastal Observations of the Portuguese Marine Waters

    Science.gov (United States)

    Vicente, Ricardo; Esteves, Rita; Lamas, Luisa; Pinto, Jose Paulo; Almeida, Sara; de Azevedo, Eduardo; Correia, Cecilia; Reis, Francisco

    2016-08-01

    Validation of future Sentinel-3 SLSTR data in the Eastern Atlantic Ocean was analysed here through a comparison of satellite-derived STT against in situ mooring buoys observations.SSTskin retrieved from IR satellite radiometers on- board ERS 1-2, Envisat, and Aqua, and concurrent SSTbulk measured with 14 buoy thermistors located at 1m depth were used to assess the statistical relationships between these datasets, with 20038 match- ups spanning from 1996 to 2015.As expected, results showed consistency between SSTskin and SSTbulk, exhibiting a correlation coefficient on the order of 98 %. Biases of both (A)ATSR and MODIS for day-time suggest a warmer satellite skin retrieval of + 0.15o and + 0.06o, respectively. For the night-time dataset, biases of - 0.25o and - 0.17o for (A)A TSR and MODIS, respectively, indicate cooler skin retrievals and reveal an inversion of the upper ocean thermic gradient. The RMSE ´s found were 0.53o for (A)ATSR and 0.41o for MODIS datasets.

  5. Initialization with diabatic heating from satellite-derived rainfall

    Science.gov (United States)

    Ma, Leiming; Chan, Johnny; Davidson, Noel E.; Turk, Joe

    2007-07-01

    In this paper, a new technique is proposed to improve initialization of a tropical cyclone (TC) prediction model using diabatic heating profiles estimated from a combination of both infrared satellite cloud imagery and satellite-derived rainfall. The method is termed Rainfall-defined Diabatic Heating, RDH. To examine the RDH performance, initialization and forecast experiments are made with the Australia Bureau of Meteorology Research Centre (BMRC) Tropical Cyclone — Limited Area Prediction System (TC-LAPS) for the case of TC Chris, which made landfall on the west coast of Australia during 3-6 Feb 2002. RDH is performed in three steps: 1) based on previous observational and numerical studies, reference diabatic heating profiles are firstly classified into three kinds: convective, stratiform or composite types; 2) NRL (Naval Research Laboratory) 3-hourly gridded satellite rainfall estimates are categorized as one of the three types according to the rain rate; 3) within a nudging phase of 24 h, the model-generated heating at each grid point during the integration is replaced by the reference heating profiles on the basis of the satellite-observed cloud top temperature and rainfall type. The results of sensitivity experiments show that RDH has a positive impact on the model initialization of TC Chris. The heating profiles generated by the model within the observed rainfall area show agreement with that of reference heating. That is, maximum heating is located in the lower troposphere for convective rainfall, and in the upper troposphere for stratiform rainfall. In response to the replaced heating and its impact on the TC structure, the model initial condition and forecasts of the track and intensity are improved.

  6. Temporal Trends in Satellite-Derived Erythemal UVB and Implications for Ambient Sun Exposure Assessment

    Directory of Open Access Journals (Sweden)

    Marvin Langston

    2017-02-01

    Full Text Available Ultraviolet radiation (UVR has been associated with various health outcomes, including skin cancers, vitamin D insufficiency, and multiple sclerosis. Measurement of UVR has been difficult, traditionally relying on subject recall. We investigated trends in satellite-derived UVB from 1978 to 2014 within the continental United States (US to inform UVR exposure assessment and determine the potential magnitude of misclassification bias created by ignoring these trends. Monthly UVB data remotely sensed from various NASA satellites were used to investigate changes over time in the United States using linear regression with a harmonic function. Linear regression models for local geographic areas were used to make inferences across the entire study area using a global field significance test. Temporal trends were investigated across all years and separately for each satellite type due to documented differences in UVB estimation. UVB increased from 1978 to 2014 in 48% of local tests. The largest UVB increase was found in Western Nevada (0.145 kJ/m2 per five-year increment, a total 30-year increase of 0.87 kJ/m2. This largest change only represented 17% of total ambient exposure for an average January and 2% of an average July in Western Nevada. The observed trends represent cumulative UVB changes of less than a month, which are not relevant when attempting to estimate human exposure. The observation of small trends should be interpreted with caution due to measurement of satellite parameter inputs (ozone and climatological factors that may impact derived satellite UVR nearly 20% compared to ground level sources. If the observed trends hold, satellite-derived UVB data may reasonably estimate ambient UVB exposures even for outcomes with long latency phases that predate the satellite record.

  7. Spatial Correlation of Satellite-Derived PM2.5 with Hospital Admissions for Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Ching-Ju Liu

    2016-11-01

    Full Text Available Respiratory diseases, particularly allergic rhinitis, are spatially and temporally correlated with the ground PM2.5 level. A study of the correlation between the two factors should therefore account for spatiotemporal variations. Satellite observation has the advantage of wide spatial coverage over pin-point style ground-based in situ monitoring stations. Therefore, the current study used both ground measurement and satellite data sets to investigate the spatial and temporal correlation of satellite-derived PM2.5 with respiratory diseases. This study used 4-year satellite data and PM2.5 levels of the period at eight stations in Taiwan to obtain the spatial and temporal relationship between aerosol optical depth (AOD and PM2.5. The AOD-PM2.5 model was further examined using the cross-validation (CV technique and was found to have high reliability compared with similar models. The model was used to obtain satellite-derived PM2.5 levels and to analyze the hospital admissions for allergic rhinitis in 2008. The results suggest that adults (18–65 years and children (3–18 years are the most vulnerable groups to the effect of PM2.5 compared with infants and elderly people. This result may be because the two affected age groups spend longer time outdoors. This result may also be attributed to the long-range PM2.5 transport from upper stream locations and the atmospheric circulation patterns, which are significant in spring and fall. The results of the current study suggest that additional environmental factors that might be associated with respiratory diseases should be considered in future studies.

  8. NOAA/NESDIS Satellite Derived Surface Oil Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NESDIS Experimental Marine Pollution Surveillance Report (EMPSR) and the Daily Composite product are new products of the NOAA Satellite Analysis Branch and...

  9. Comparisons between buoy-observed, satellite-derived, and modeled surface shortwave flux over the subtropical North Atlantic during the Subduction Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Waliser, Duane E. [Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook (United States); Weller, Robert A. [Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (United States); Cess, Robert D. [Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook (United States)

    1999-12-27

    satellite-derived climatologies. These comparisons showed much better and more consistent agreement, with relative bias errors ranging from about -1 to 6%. Comparisons to contemporaneous, daily-average satellite derived values show relatively good agreement as well, with relative biases of the order of 2% ({approx}3-9 W m-2) and root-mean-square differences of {approx}10% (25-30 W m-2). Aspects of the role aerosols play in the above results are discussed along with the implications of the above results on the integrity of open-ocean buoy measurements of surface shortwave flux and the possibility of using the techniques developed in this study to remotely monitor the operating condition of buoy-based shortwave radiometers. (c) 1999 American Geophysical Union.

  10. Trends in a satellite-derived vegetation index and environmental variables in a restored brackish lagoon

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-07-01

    Full Text Available We evaluated relative influence of climatic variables on the plant productivity after lagoon restoration. Chilika Lagoon, the largest brackish lake ecosystem in East Asia, experienced severe problems such as excessive dominance of freshwater exotic plants and rapid debasement of biodiversity associated with decreased hydrologic connectivity between the lagoon and the ocean. To halt the degradation of the lagoon ecosystem, the Chilika Development Authority implemented a restoration project, creating a new channel to penetrate the barrier beach of the lagoon. Using a satellite-derived normalized difference vegetation index (NDVI dataset, we compared the trend of vegetation changes after the lagoon restoration, from April 1998 to May 2014. The time series of NDVI data were decomposed into trend, seasonal, and random components using a local regression method. The results were visualized to understand the traits of spatial distribution in the lagoon. The NDVI trend, indicative of primary productivity, decreased rapidly during the restoration period, and gradually increased (slope coefficient: 2.1×10−4, p<0.05 after two years of restoration. Level of seawater exchange had more influences on plant productivity than local precipitation in the restored lagoon. Higher El Niño/Southern Oscillation increased sea level pressure, and caused intrusion of seawater into the lagoon, and the subsequently elevated salinity decreased the annual mean NDVI. Our findings suggest that lagoon restoration plans for enhancing interconnectivity with the ocean should consider oceanographic effects due to meteorological forcing, and long-term NDVI results can be used as a valuable index for adaptive management of the restoration site.

  11. A Review of Global Satellite-derived Snow Products

    Science.gov (United States)

    Frei, Allan; Tedesco, Marco; Lee, Shihyan; Foster, James; Hall, Dorothy K.; Kelly, Richard; Robinson, David A.

    2012-01-01

    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow.

  12. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    Ocean flow moves sea water through the Earth's magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding...... of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for the six major tidal constituents and compare their amplitudes with the spectra of night time observatory and satellite magnetic measurements for the Indian Ocean. The magnetic variations at the solar S2, K1......, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  13. High resolution satellite derived erodibility factors for WRF/Chem windblown dust simulations in Argentina

    Science.gov (United States)

    Cremades, Pablo Gabriel; Fernandez, Rafael Pedro; Allend, David; Mulena, Celeste; Puliafito, Salvador Enrique

    2017-04-01

    A proper representation of dust sources is critical to accurately predict atmospheric particle concentrations in regional windblown dust simulations. The Weather Research and Forecasting model with Chemistry (WRF/Chem) includes a topographic-based erodibility map originally conceived for global scale modeling, which fails to identify the geographical location of dust sources in many regions of Argentina. Therefore, this study aims at developing a method to obtain a high-resolution erodibility map suitable for regional or local scale modeling using WRF/Chem. We present two independent approaches based on global methods to estimate soil erodibility using satellite retrievals, i.e. topography from the Shuttle Radar Topography Mission (SRTM) and surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). Simulation results of a severe Zonda wind episode in the arid central-west Argentina serve as bases for the analysis of these methods. Simulated dust concentration at surface level is compared with particulate matter measurements at one site in Mendoza city. In addition, we use satellite aerosol optical depth (AOD) retrievals to investigate model performance in reproducing spatial distribution of dust emissions. The erodibility map based on surface reflectance from MODIS improves the representation of small scale features, and increases the overall dust aerosol loading with respect to the standard map included by default. Simulated concentrations are in good agreement with measurements as well as satellite derived dust spatial distribution.

  14. Model-simulated and Satellite-derived Leaf Area Index (LAI) Comparisons Across Multiple Spatial Scales

    Science.gov (United States)

    Iiames, J. S., Jr.; Cooter, E. J.

    2016-12-01

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric conditions yielding sub-optimal values, or complete non-returns. The United States Environmental Protection Agency's Exposure Methods and Measurements and Computational Exposure Divisions are investigating the viability of supplemental modelled LAI inputs into satellite-derived data streams to support various regional and local scale air quality models for retrospective and future climate assessments. In this present study, one-year (2002) of plot level stand characteristics at four study sites located in Virginia and North Carolina (USA) are used to calibrate species-specific plant parameters in a semi-empirical biogeochemical model. The Environmental Policy Integrated Climate (EPIC) model was designed primarily for managed agricultural field crop ecosystems, but also includes managed woody species that span both xeric and mesic sites (e.g., mesquite, pine, oak, etc.). LAI was simulated using EPIC at a 4 km2 and 12 km2 grid coincident with the regional Community Multiscale Air Quality Model (CMAQ) grid. LAI comparisons were made between model-simulated and MODIS-derived LAI. Field/satellite-upscaled LAI was also compared to the corresponding MODIS LAI value. Preliminary results show field/satellite-upscaled LAI (1 km2) was 1.5 to 3 times smaller than that with the corresponding 1 km2 MODIS LAI for all four sites across all dates, with the largest discrepancies occurring at leaf-out and leaf senescence periods. Simulated LAI/MODIS LAI comparison results will be presented at the conference. Disclaimer: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S. Environmental Protection Agency funded and conducted the research described in this paper. Although

  15. Validation of Satellite-Derived Sea Surface Temperatures for Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2005-01-01

    Full Text Available In order to validate the Advanced Very High Resolution Radiometer (AVHRR-derived sea surface temperatures (SST of the waters around Taiwan, we generated a match-up data set of 961 pairs, which included in situ SSTs and concurrent AVHRR measurements for the period of 1998 to 2002. Availability of cloud-free images, i.e., images with more than 85% of cloud-free area in their coverage, was about 2.23% of all AVHRR images during the study period. The range of in situ SSTs was from _ to _ The satellite derived-SSTs through MCSST and NLSST algorithms were linearly related to the in situ SSTs with correlation coefficients of 0.985 and 0.98, respectively. The MCSSTs and NLSSTs had small biases of 0.009 _ and 0.256 _ with root mean square deviations of 0.64 _ and 0.801 _ respectively, therefore the AVHRR-based MCSSTs and NLSSTs had high accuracy in the seas around Taiwan.

  16. Relating watershed nutrient loads to satellite derived estuarine water quality

    Science.gov (United States)

    Lehrter, J. C.; Le, C.

    2015-12-01

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems. This is partially due to a lack of observations. In many systems, satellite remote sensing of water quality variables may be used to supplement limited field observations and improve understanding of linkages to nutrients. Here, we present the results from a field and satellite ocean color study that quantitatively links nutrients to variations in estuarine water quality endpoints. The study was conducted in Pensacola Bay, Florida, an estuary in the northern Gulf of Mexico that is impacted by watershed nutrients. We developed new empirical band ratio algorithms to retrieve phytoplankton biomass as chlorophyll a (chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM) from the MEdium Resolution Imaging Spectrometer (MERIS). MERIS had suitable spatial resolution (300-m) for the scale of Pensacola Bay (area = 370 km2, mean depth = 3.4 m) and a spectral band centered at wavelength 709 nm that was used to minimize the effect of organic matter on chla retrieval. The algorithms were applied to daily MERIS remote sensing reflectance (level 2) data acquired from 2003 to 2011 to calculate nine-year time-series of mean monthly chla, CDOM, and SPM concentrations. The MERIS derived time-series were then analyzed for statistical relations with time-series of mean monthly river discharge and river loads of nitrogen, phosphorus, dissolved organic carbon, and SPM. Regression analyses revealed significant relationships between river loads and MERIS water quality variables. The simple regression models provide quantitative predictions about how much chla, CDOM, and SPM concentrations in Pensacola Bay will increase with increased river loading, which is necessary information

  17. Satellite-Derived Extinction at A Desert Site

    Science.gov (United States)

    Walker, P. L.; Blomshield, F. S.

    2002-12-01

    We have been conducting research aimed at enabling determination of desert optical environments from meteorological and satellite observations. To this end we have been making Rotating Shadowband Radiometer measurements, collecting aerosol size distributions, visibility and meteorological data continuously for the past 2 years in the Indian Wells Valley of the Mojave Desert of California. These data present an opportunity to validate satellite retrieval of atmospheric optical depth. Specifically, MISR-derived optical depths are compared to those derived from Shadowband measurements. A crude measure of extinction can be made by dividing the optical depth by the height of the mixing layer. The validity of this procedure is determined by comparison with extinction directly measured by nephelometers and calculated from measured aerosol size distributions.

  18. Validation of satellite data with IASOA observatories and shipboard measurements in Arctic Ocean

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Mazilkina, Alexandra; Valiullin, Denis; Stanichny, Sergey

    2016-04-01

    the comparison of field experiments data, satellite-derived the causes of underestimation of the values of turbulent heat fluxes in the Arctic modern reanalysis are investigated. The IASI and AIRS satellite methane data were validated with in situ measurements (Tiksi, Ny-Ålesund, Pallas, Sodankylä). The study was supported by RSF grant # 14-37-00053.

  19. Evaluation of satellite derived spectral diffuse attenuation coefficients

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.

    wavelengths and are found to deviate from the measured values in the red band of 670nm. It compared well for lower values of K sub(d) in the blue green bands and overestimated at larger values of K sub(d). The comparison is good within 20% of error for bands...

  20. On the use of satellite-derived CH

    NARCIS (Netherlands)

    Pandey, S.; Houweling, S.; Krol, M.; Aben, I.; Röckmann, T.

    2015-01-01

    We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2

  1. An intercomparison exercise for oceanic carbon dioxide measurements

    Science.gov (United States)

    Dickson, Andrew G.

    The Joint Scientific Committee on Oceanic Research (SCOR)/United Nations Educational, Scientific, and Cultural Organization (UNESCO/International Council for the Exploration of the Sea (ICES)/International Association for Physical Sciences of the Ocean (IAPSO) Panel on Oceanographic Tables and Standards (JPOTS) recently established a Sub-Panel on Standards for Carbon Dioxide Measurements. The terms of reference for this subpanel are coordination and assessment of work done toward preparing carbon dioxide standards for oceanographic measurements, and development of recommendations for the production and use of such standards. Members are A. G. Dickson (Scripps Institution of Oceanography, La Jolla, Calif.), chairman; F. Culkin (Institute of Oceanographic Sciences, Wormley, U.K.), A. Poisson (Universite Pierre et Marie Curie, Paris), C. S. Wong (Institute of Ocean Sciences, Sidney, Canada), and F. J. Millero (University of Miami, Miami, Fla.).

  2. Adequacy of satellite derived rainfall data for stream flow modeling

    Science.gov (United States)

    Artan, G.; Gadain, Hussein; Smith, Jody L.; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  3. Intercomparison of satellite-derived cloud analyses for the Arctic Ocean in spring and summer

    Science.gov (United States)

    Mcguffie, K.; Barry, R. G.; Schweiger, A.; Newell, J.; Robinson, D. A.

    1988-01-01

    Several methods of deriving Arctic cloud information, primarily from satellite imagery, have been intercompared. The comparisons help in establishing what cloud information is most readily determined in polar regions from satellite data analysis. The analyses for spring-summer conditions show broad agreement, but subjective errors affecting some geographical areas and cloud types are apparent. The results suggest that visible and thermal infrared data may be insufficient for adequate cloud mapping over some Arctic surfaces.

  4. Field Evaluation of Ocean Wave Measurement With GPS Buoys

    Science.gov (United States)

    2010-09-01

    surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and prototype GPS buoys were...receivers to measure ocean surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and...the coast near Bodega Bay, CA. .............................................................................................17 Figure 4. R/P FLIP

  5. Image sensors for radiometric measurements in the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A.E.

    the sensors at a stabilised moderately cool temperature of 15 deg. C and to intelligently control the exposure time of the device, so as to reliably measure flux levels in the range 1 W/m super(2)/nm to 10/6 W/m super(2)/nm commonly encountered in the ocean...

  6. Utilizing Satellite-derived Precipitation Products in Hydrometeorological Applications

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Teng, W. L.; Kempler, S. J.; Huffman, G. J.

    2012-12-01

    Each year droughts and floods happen around the world and can cause severe property damages and human casualties. Accurate measurement and forecast are important for preparedness and mitigation efforts. Through multi-satellite blended techniques, significant progress has been made over the past decade in satellite-based precipitation product development, such as, products' spatial and temporal resolutions as well as timely availability. These new products are widely used in various research and applications. In particular, the TRMM Multi-satellite Precipitation Analysis (TMPA) products archived and distributed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) provide 3-hourly, daily and monthly near-global (50° N - 50° S) precipitation datasets for research and applications. Two versions of TMPA products are available, research (3B42, 3B43, rain gauge adjusted) and near-real-time (3B42RT). At GES DISC, we have developed precipitation data services to support hydrometeorological applications in order to maximize the TRMM mission's societal benefits. In this presentation, we will present examples of utilizing TMPA precipitation products in hydrometeorological applications including: 1) monitoring global floods and droughts; 2) providing data services to support the USDA Crop Explorer; 3) support hurricane monitoring activities and research; and 4) retrospective analog year analyses to improve USDA's world agricultural supply and demand estimates. We will also present precipitation data services that can be used to support hydrometeorological applications including: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC; 3) Simple Subset Wizard (http://disc.sci.gsfc.nasa.gov/SSW/ ) for data subsetting and format conversion; 4) Data

  7. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

    Science.gov (United States)

    2013-09-30

    Radiometric Measurement Lian Shen Department of Mechanical Engineering & St. Anthony Falls Laboratory University of Minnesota Minneapolis, MN...information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00...2013 4. TITLE AND SUBTITLE Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  8. A Satellite-Derived Upper-Tropospheric Water Vapor Transport Index for Climate Studies

    Science.gov (United States)

    Jedlovec, Gray J.; Lerner, Jeffrey A.; Atkinson, Robert J.

    1998-01-01

    A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of Geostationary Operational Environmental Satellite GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the cloud-free region of the upper troposphere sensed by the 6.7- microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the water vapor transport index (WVTI), which represents the magnitude of the two-dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure, and other associated parameters were averaged to produce monthly fields for June, July, and August (JJA) of 1987 and 1988 over the Americas and surrounding oceanic regions, The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 40-Year Reanalysis Project was used to help to validate the index. Although the goal of this research was to describe the formulation and utility of the WVTI, considerable insight was obtained into the interannual variability of upper-level water vapor transport. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP-NCAR were 2-3 times larger than that determined from GOES. This difference resulted from large zonal wind differences and an apparent overestimate of upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly

  9. Handling of subpixel structures in the application of satellite derived irradiance data for solar energy system analysis - a review

    Science.gov (United States)

    Beyer, Hans Georg

    2016-04-01

    With the increasing availability of satellite derived irradiance information, this type of data set is more and more in use for the design and operation of solar energy systems, most notably PV- and CSP-systems. By this, the need for data measured on-site is reduced. However, due to basic limitations of the satellite-derived data, several requirements put by the intended application cannot be coped with this data type directly. Traw satellite information has to be enhanced in both space and time resolution by additional information to be fully applicable for all aspects of the modelling od solar energy systems. To cope with this problem, several individual and collaborative projects had been performed in the recent years or are ongoing. Approaches are on one hand based on pasting synthesized high-resolution data into the low-resolution original sets. Pre-requite is an appropriate model, validated against real world data. For the case of irradiance data, these models can be extracted either directly from ground measured data sets or from data referring to the cloud situation as gained from the images of sky cameras or from monte -carlo initialized physical models. The current models refer to the spatial structure of the cloud fields. Dynamics are imposed by moving the cloud structures according to a large scale cloud motion vector, either extracted from the dynamics interfered from consecutive satellite images or taken from a meso-scale meteorological model. Dynamic irradiance information is then derived from the cloud field structure and the cloud motion vector. This contribution, which is linked to subtask A - Solar Resource Applications for High Penetration of Solar Technologies - of IEA SHC task 46, will present the different approaches and discuss examples in view of validation, need for auxiliary information and respective general applicability.

  10. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Science.gov (United States)

    Pedinotti, V.; Boone, A.; Decharme, B.; Crétaux, J. F.; Mognard, N.; Panthou, G.; Papa, F.; Tanimoun, B. A.

    2012-06-01

    During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002-2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA). Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong reduction of the

  11. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Directory of Open Access Journals (Sweden)

    V. Pedinotti

    2012-06-01

    Full Text Available During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002–2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA. Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong

  12. An Autonomous Ozone Instrument for Atmospheric Measurements from Ocean Buoys

    Science.gov (United States)

    Hintsa, E. J.; Rawlins, W. T.; Sholkovitz, E. R.; Hosom, D. S.; Allsup, G. P.; Purcell, M. J.; Scott, D. R.; Mulhall, P.

    2002-05-01

    Tropospheric ozone is an oxidant, a greenhouse gas, and a pollutant. Because of its adverse health effects, there are numerous monitoring stations on land but none over the oceans. We have built an ozone instrument for deployment anywhere at sea from ocean buoys, to study ozone chemistry over the oceans, intercontinental transport of pollution, diurnal and seasonal cycles of ozone, and to make baseline and long-term time series measurements of ozone in remote locations. The instrument uses direct (Beer's Law) absorption of UV radiation in a dual-path cell, with ambient and ozone-free air alternately switched between the two paths, to measure ozone. Ozone can be measured at a rate of 1 Hz, with a precision of about 1 ppb at sea level. The air inlet and outlet have valves which close automatically under high wind conditions or rain to protect the ozone sensor. The instrument has been packaged for deployment at sea, and tested on a 3-meter discus buoy with other instruments in coastal waters in fall 2001. It can operate autonomously or be controlled via line-of-sight modem or a satellite link. We will present the details of the instrument, and laboratory and buoy test data from its first deployment, including a comparison with a nearby ozone monitoring station on land. We will also present an evaluation of the instrument's performance and describe plans for improvements. In summer 2002, the ozone measurement system will be operated at the Martha's Vineyard Coastal Observatory; in the future we anticipate deploying on the Bermuda Testbed Mooring, followed by use on the open ocean to measure long-range transport of ozone.

  13. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    Science.gov (United States)

    2015-03-31

    2. REPORT DATE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND...WORK UNIT NUMBER 1. REPORT DATE (DD-MM-YYYY) 16. SECURITY CLASSIFICATION OF: PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 31-03-2015...Final March 2013 -- February 2015 Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements N00014-13-1-0352 Yue, Dick K.P

  14. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature.

    Science.gov (United States)

    Laureano-Rosario, Abdiel E; Garcia-Rejon, Julian E; Gomez-Carro, Salvador; Farfan-Ale, Jose A; Muller-Karger, Frank E

    2017-08-01

    Accurately predicting vector-borne diseases, such as dengue fever, is essential for communities worldwide. Changes in environmental parameters such as precipitation, air temperature, and humidity are known to influence dengue fever dynamics. Furthermore, previous studies have shown how oceanographic variables, such as El Niño Southern Oscillation (ENSO)-related sea surface temperature from the Pacific Ocean, influences dengue fever in the Americas. However, literature is lacking on the use of regional-scale satellite-derived sea surface temperature (SST) to assess its relationship with dengue fever in coastal areas. Data on confirmed dengue cases, demographics, precipitation, and air temperature were collected. Incidence of weekly dengue cases was examined. Stepwise multiple regression analyses (AIC model selection) were used to assess which environmental variables best explained increased dengue incidence rates. SST, minimum air temperature, precipitation, and humidity substantially explained 42% of the observed variation (r(2)=0.42). Infectious diseases are characterized by the influence of past cases on current cases and results show that previous dengue cases alone explained 89% of the variation. Ordinary least-squares analyses showed a positive trend of 0.20±0.03°C in SST from 2006 to 2015. An important element of this study is to help develop strategic recommendations for public health officials in Mexico by providing a simple early warning capability for dengue incidence. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enceladus's measured physical libration requires a global subsurface ocean

    CERN Document Server

    Thomas, P C; Tiscareno, M S; Burns, J A; Joseph, J; Loredo, T J; Helfenstein, P; Porco, C

    2015-01-01

    Several planetary satellites apparently have subsurface seas that are of great interest for, among other reasons, their possible habitability. The geologically diverse Saturnian satellite Enceladus vigorously vents liquid water and vapor from fractures within a south polar depression and thus must have a liquid reservoir or active melting. However, the extent and location of any subsurface liquid region is not directly observable. We use measurements of control points across the surface of Enceladus accumulated over seven years of spacecraft observations to determine the satellite's precise rotation state, finding a forced physical libration of 0.120 $\\pm$ 0.014{\\deg} (2{\\sigma}). This value is too large to be consistent with Enceladus's core being rigidly connected to its surface, and thus implies the presence of a global ocean rather than a localized polar sea. The maintenance of a global ocean within Enceladus is problematic according to many thermal models and so may constrain satellite properties or requ...

  16. Calibration of the Distributed Hydrological Model mHM using Satellite derived Land Surface Temperature

    Science.gov (United States)

    Zink, M.; Samaniego, L. E.; Cuntz, M.

    2012-12-01

    A combined investigation of the water and energy balance in hydrologic models can lead to a more accurate estimation of hydrological fluxes and state variables, such as evapotranspiration and soil moisture. Hydrologic models are usually calibrated against discharge measurements, and thus are only trained on information of few points within a catchment. This procedure does not take into account any spatio-temporal variability of fluxes or state variables. Satellite data are a useful source of information to account for this spatial distributions. The objective of this study is to calibrate the distributed hydrological model mHM with satellite derived Land Surface Temperature (LST) fields provided by the Land Surface Analysis - Satellite Application Facility (LSA-SAF). LST is preferred to other satellite products such as soil moisture or evapotranspiration due to its higher precision. LST is obtained by solving the energy balance by assuming that the soil heat flux and the storage term are negligible on a daily time step. The evapotranspiration is determined by closing the water balance in mHM. The net radiation is calculated by using the incoming short- and longwave radiation, albedo and emissivity data provided by LSA-SAF. The Multiscale Parameter Regionalization technique (MPR, Samaniego et al. 2010) is used to determine the aerodynamic resistance among other parameters. The optimization is performed within the time period 2008-2010 using three objective functions that consider 1) only discharge, 2) only LST, and 3) a combination of both. The proposed method is applied to seven major German river basins: Danube, Ems, Main, Mulde, Neckar, Saale, and Weser. The annual coefficient of correlation between LSA-SAF incoming shortwave radiation and 28 meteorological stations operated by the German Weather Service (DWD) is 0.94 (RMSE = 29 W m-2) in 2009. LSA-SAF incoming longwave radiation could be further evaluated at two eddy covariance stations with a very similar

  17. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Directory of Open Access Journals (Sweden)

    W. Tang

    2014-09-01

    Full Text Available Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3 regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 State Implementation Plan (SIP modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB and normalized mean error (NME by up to 0.1. A sector-based discrete Kalman filter (DKF inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx-Decoupled Direct Method (DDM model to adjust Texas NOx emissions using a high resolution Ozone Monitoring Instrument (OMI NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCD is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The sector-based DKF inversion tends to scale down area and non-road NOx emissions by 50%, leading to a 2–5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using inverted NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05 and increases the model correlation with ground measurement in O3 simulations and makes O3 more sensitive to NOx emissions in the O3 non-attainment areas.

  18. Assessment and Intercomparison of Satellite-derived Start-of-Season (SOS) Measures in Eurasia for 1982-2006%1982-2006年欧亚大陆植被生长季开始时间遥感监测分析

    Institute of Scientific and Technical Information of China (English)

    刘玲玲; 刘良云; 胡勇

    2012-01-01

    Vegetation phenology is one of the most direct and sensitive indicators of seasonal and interanual variations of environmental conditions.Phenological changes reflect quick change of terrestrial ecosystems in response to climate change.Satellite remote-sensing techniques capture canopy reflectance and can be used for studies of vegetation phenology.In this study,satellite-derived Start of Season(SOS) dates are obtained from the GIMMS AVHRR NDVI dataset by different methods such as Dynamic Threshold method,Delayed Moving Average methods,Double Logistic analysis and Savitzky-Golay method.The derived SOS data are compared and analyzed for the ecoregions from China to Russia,and the Dynamic Threshold method is decided to be most suitable for Eurasia scale.Based on the analysis of the changes of vegetation phenology and the response of phenology to climate change from 1982 to 2006,it is concluded that the Dynamic Threshold method has high retrieval rate for the SOS dates in Eurasia,and the data show a stable trend along the latitudinal gradient.The retrieved SOS dates for boreal forests and tundra ecosystems are most stable in the long term,while in the vegetation areas of low latitudes the dates show higher variability.It is found that from 1982 to 2006,there is a trend of SOS dates becoming earlier for the majority of vegetation types,and the forest coverage areas show even stronger trend of SOS dates becoming earlier,with a change rate of 11.45-15.61 days/25 years,due to global warming.With the exception of the closed to open(15%) shrubland(5 m),for most other types of vegetation,there is a negative correlation between vegetation phenology and the average temperature of the month.In other words,for each one degree increase,there is 1.32-3.47 days decrease to SOS date in spring,which is consistent with global warming in recent years.%植被物候是环境条件季节和年际变化最直观、最敏感的生物指示器,物候变化可以反映陆地生态系统对

  19. Comparison of Satellite-Derived Wind Measurements with Other Wind Measurement Sensors

    Science.gov (United States)

    Susko, Michael; Herman, Leroy

    1995-01-01

    The purpose of this paper is to compare the good data from the Jimsphere launches with the data from the satellite system. By comparing the wind speeds from the Fixed Pedestal System 16 (FPS-16) Radar/Jimsphere Wind System and NASA's 50-MHz Radar Wind Profiler, the validation of winds from Geostationary Operational Environmental Satellite 7 (GOES-7) is performed. This study provides an in situ data quality check for the GOES-7 satellite winds. Comparison was made of the flowfields in the troposphere and the lower stratosphere of case studies of pairs of Jimsphere balloon releases and Radar Wind Profiler winds during Space Shuttle launches. The mean and standard deviation of the zonal component statistics, the meridional component statistics, and the power spectral density curves show good agreement between the two wind sensors. The standard deviation of the u and v components for the STS-37 launch (consisting of five Jimsphere/Radar Wind Profiler data sets) was 1.92 and 1.67 m/s, respectively; for the STS-43 launch (there were six Jimsphere/Wind Profiler data sets) it was 1.39 and 1.44 m/s, respectively. The overall standard deviation was 1.66 m/s for the u component and 1.55 m/s tor the v component, and a standard deviation of 2.27 m/s tor the vector wind difference. The global comparison of satellite with Jimsphere balloon vector winds shows a standard deviation of 3.15 m/s for STS-43 and 4.37 m/s for STS-37. The overall standard deviation of the vector wind was 3.76 m/s, with a root-mean-square vector difference of 4.43 m/s. These data have demonstrated that this unique comparison of the Jimsphere and satellite winds provides excellent ground truth and a frame of reference during testing and validation of satellite data

  20. a Diagnostic Approach to Obtaining Planetary Boundary Layer Winds Using Satellite-Derived Thermal Data

    Science.gov (United States)

    Belt, Carol Lynn

    The feasibility of using satellite-derived thermal data to generate realistic synoptic-scale winds within the planetary boundary layer (PBL) is examined. Diagnostic "modified Ekman" wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite-derived winds based on 62 predawn (0921 GMT 19 April 1979) TIROS-N soundings are compared to similarly-derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface. Horizontal moisture divergence, moisture advection, velocity divergence and relative vorticity are computed at 300 m AGL using satellite-derived winds and moisture data. Results show excellent agreement with corresponding RAOB-derived values. Areas of horizontal moisture convergence, velocity convergence, and positive vorticity are nearly coincident and align in regions which later develop intense convection. Vertical motion at 1600 m AGL is computed using stepwise integration of the satellite winds through the PBL. Values and patterns are similar to those obtained using the RAOB-derived winds. Regions of maximum upward motion correspond with areas of greatest moisture convergence and the convection that later develops.

  1. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye

    2016-10-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30 years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and evaluate their applicability for agricultural drought evaluation when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ rainfall measurements across Chile were initially compared to the satellite-based precipitation estimates. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite-based estimates. Nine statistics were used to evaluate the performance of satellite products to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to

  2. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze

  3. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  4. Application of satellite derived information for disaster risk reduction: vulnerability assessment for southwest coast of Pakistan

    Science.gov (United States)

    Rafiq, Lubna; Blaschke, Thomas; Zeil, Peter

    2010-10-01

    The SW-coast of Pakistan is vulnerable to natural disasters, such as cyclones and tsunamis. Lack of spatially referenced information is a major hinder for proper disaster risk management programs in Pakistan, but satellite remote sensing being reliable, fast and spatially referenced information can be used as an important component in various natural disaster risk reduction activities. This study aimed to investigate vulnerability of coastal communities to cyclone and tsunamis based on satellite derived information. It is observed that SPOT-5 is relevant source on threatened features with respect to certain vulnerabilities like road, settlements, infrastructure and used in preparation of hazard zonation and vulnerability maps. Landsat ETM found very useful in demarcation of flood inundated areas. The GIS integrated evaluation of LANDSAT and ASTER GDEM helps identify low lying areas most susceptible to flooding and inundation by cyclone surges and tsunamis. The GIS integrated evaluation of SPOT, LANDSAT and ASTER GDEM data helps identify areas and infrastructure most vulnerable to cyclone surges and tsunami. Additionally, analysis of the vulnerability of critical infrastructures (schools, hospitals) within hazard zones provides indicators for the degree of spatial exposure to disaster. Satellite derived information in conjunction with detailed surveys of hazard prone areas can provide comprehensive vulnerability and risk analysis.

  5. A Combined Satellite-Derived Drought Indicator to Support Humanitarian Aid Organizations

    Directory of Open Access Journals (Sweden)

    Markus Enenkel

    2016-04-01

    Full Text Available Governments, aid organizations and researchers are struggling with the complexity of detecting and monitoring drought events, which leads to weaknesses regarding the translation of early warnings into action. Embedded in an advanced decision-support framework for Doctors without Borders (Médecins sans Frontières, this study focuses on identifying the added-value of combining different satellite-derived datasets for drought monitoring and forecasting in Ethiopia. The core of the study is the improvement of an existing drought index via methodical adaptations and the integration of various satellite-derived datasets. The resulting Enhanced Combined Drought Index (ECDI links four input datasets (rainfall, soil moisture, land surface temperature and vegetation status. The respective weight of each input dataset is calculated for every grid point at a spatial resolution of 0.25 degrees (roughly 28 kilometers. In the case of data gaps in one input dataset, the weights are automatically redistributed to other available variables. Ranking the years 1992 to 2014 according to the ECDI-based warning levels allows for the identification of all large-scale drought events in Ethiopia. Our results also indicate a good match between the ECDI-based drought warning levels and reported drought impacts for both the start and the end of the season.

  6. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  7. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?

    Science.gov (United States)

    Ryan, J. C.; Hubbard, A.; Irvine-Fynn, T. D.; Doyle, S. H.; Cook, J. M.; Stibal, M.; Box, J. E.

    2017-06-01

    Calibration and validation of satellite-derived ice sheet albedo data require high-quality, in situ measurements commonly acquired by up and down facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite-derived albedo can only be justified when the measured surface is homogeneous at the length-scale of both satellite pixel and in situ footprint. Here we use digital imagery acquired by an unmanned aerial vehicle to evaluate point-to-pixel albedo comparisons across the western, ablating margin of the Greenland Ice Sheet. Our results reveal that in situ measurements overestimate albedo by up to 0.10 at the end of the melt season because the ground footprints of AWS-mounted pyranometers are insufficient to capture the spatial heterogeneity of the ice surface as it progressively ablates and darkens. Statistical analysis of 21 AWS across the entire Greenland Ice Sheet reveals that almost half suffer from this bias, including some AWS located within the wet snow zone.

  8. The Application of Jason-Measurements to Estimate the Global Near Surface Ocean Circulation for Climate Research

    Science.gov (United States)

    Niiler, Pearn P.

    2004-01-01

    The scientific objective of this research program were to utilize drifter and satellite sea level data for the determination of time mean and time variable surface currents of the global ocean. To accomplish these tasks has required the processing of drifter data to include a wide variety of different configurations of drifters into a uniform format and to process the along track satellite altimeter data for computing the geostrophic current components normal to the track. These tasks were accomplished, which resulted in an increase of drifter data by about 40% and the development of new algorithms for obtaining satellite derived geostrophic velocity data that was consistent with the drifter observations of geostrophic time-variable currents. The methodologies and the research results using these methodologies were reported in the publications listed in this paper.

  9. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    Directory of Open Access Journals (Sweden)

    Hu Yongxiang

    2016-01-01

    On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL data that are collocated with in-water optical measurements.

  10. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    Science.gov (United States)

    Kozai, Katsutoshi

    2003-12-01

    An attempt is made to estimate the trajectory of the spilled oil from the sunken tanker Nakhodka occurred on January 2, 1997 in the Japan Sea by fusing two microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. In this study 'fusion' is defined as the method of more reliable prediction for the trajectory of spilled oil than before. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced drift vectors are derived from ADEOS/NSCAT scatterometer data These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of spilled oil from the sunken tanker Nakhodka. The distribution of component of spill vector is mostly accounted for by the distribution of geostrophic velocity component during the study period with some discrepancies during March, 1997.

  11. Intercomparison tests of moored current measurements in the upper ocean

    Science.gov (United States)

    Halpern, David; Weller, Robert A.; Briscoe, Melbourne G.; Davis, Russ E.; McCullough, James R.

    1981-01-01

    During the August-September 1977 Mixed Layer Experiment (Mile) and the July-September 1978 Joint Air-Sea Interaction (Jasin) project, moored current measurements were made in the upper ocean with Savonius rotor and vane vector-averaging current meters (VACM), dual orthogonal propeller vector-measuring current meters (VMCM), and dual orthogonal acoustic travel-time vector-averaging current meters (ACM). Wind speeds and significant wave heights reached 20ms-1 and 5 m. The influence of mooring motion upon ACM, VACM, and VMCM measurements are described. In the mixed layer above about 30 m depth where mean currents are relatively large, the effect of a surface-following buoy upon ACM, VACM, and VMCM velocity fluctuations at frequencies less than 0.3 cph was negligible; at frequencies above 4 cph, the VACM data contained the largest amount of mooring induced contamination. Below the mixed layer at depths greater than about 75 m, a subsurface mooring should be used; however, when a surface-following buoy was used, then VMCM data better approximated the spectrum of the fluctuations than VACM data. A spar-buoy should not be used to measure currents at depths as deep as 80 m. The frequency-dependent differences between VACM and VMCM and between VACM and ACM measurements are described. At frequencies less than 0.3 cph, the differences between the VACM and ACM or the VMCM records were not significant with 95% confidence limits, were always positive, and above 80 m depth were less than 20%. At frequencies above 4 cph, the VACM-VMCM differences were about 5 times larger than the VACM-ACM differences.

  12. Can satellite-derived water surface changes be used to calibrate a hydrodynamic model?

    Science.gov (United States)

    Revilla-Romero, Beatriz; Beck, Hylke; Salamon, Peter; Burek, Peter; de Roo, Ad; Thielen, Jutta

    2015-04-01

    The limited availability of recent ground observational data is one of the main challenges for validation of hydrodynamic models. This is especially relevant for real-time global applications such as flood forecasting models. In this study, we aim to use remotely-sensed data from the Global Flood Detection System (GFDS) as a proxy of river discharge time series and test its value through calibration of the hydrological model LISFLOOD. This was carried out for the time period 1998-2010 at 40 sites in Africa, Europe, North America and South America by calibrating the parameters that control the flow routing and groundwater processes. We compared the performance of the calibrated simulated discharge time series that used satellite-derived data with the ground discharge time series. Furthermore, we compared it with the independent calibrated run that used ground data and also, to the non-calibrated simulated discharge time series. The non-calibrated set up used a set of parameters which values were predefined by expert-knowledge. This is currently being used by the LISFLOOD set up model embedded in the pre-operational Global Flood Awareness System (GloFAS). The results of this study showed that the satellite surface water changes from the Global Flood Detection System can be used as a proxy of river discharge data, through the demonstration of its added value for model calibration and validation. Using satellite-derived data, the skill scores obtained by the calibrated simulated model discharge improved when comparing to non-calibrated simulated time series. Calibration, post-processing and data assimilation strategies of satellite data as a proxy for streamflow data within the global hydrological model are outlined and discussed.

  13. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements.

    Science.gov (United States)

    Lu, Xiaomei; Hu, Yongxiang; Pelon, Jacques; Trepte, Charles; Liu, Katie; Rodier, Sharon; Zeng, Shan; Lucker, Patricia; Verhappen, Ron; Wilson, Jamie; Audouy, Claude; Ferrier, Christophe; Haouchine, Said; Hunt, Bill; Getzewich, Brian

    2016-12-12

    A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30° off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180° scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.

  14. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles

    Science.gov (United States)

    2017-01-01

    closer to the freezing point than in 2014 (Fig. 5). This at least reduces the initial potential for the ocean to melt the ice cover in 2014. The...consequent reduced melting early in the summer delays the onset of sea- ice - albedo feed back in accelerating melt throughout the season and thus reduces...the melt -back of the ice edge. The reduction in upper ocean temperatures may also explain our 2014 visual observations of isolated thin layers of

  15. How Well Has Global Ocean Heat Content Variability Been Measured?

    Science.gov (United States)

    Nelson, A.; Weiss, J.; Fox-Kemper, B.; Fabienne, G.

    2016-12-01

    We introduce a new strategy that uses synthetic observations of an ensemble of model simulations to test the fidelity of an observational strategy, quantifying how well it captures the statistics of variability. We apply this test to the 0-700m global ocean heat content anomaly (OHCA) as observed with in-situ measurements by the Coriolis Dataset for Reanalysis (CORA), using the Community Climate System Model (CCSM) version 3.5. One-year running mean OHCAs for the years 2005 onward are found to faithfully capture the variability. During these years, synthetic observations of the model are strongly correlated at 0.94±0.06 with the actual state of the model. Overall, sub-annual variability and data before 2005 are signi cantly a ffected by the variability of the observing system. In contrast, the sometimes-used weighted integral of observations is not a good indicator of OHCA as variability in the observing system contaminates dynamical variability.

  16. Reagentless and calibrationless silicate measurement in oceanic waters.

    Science.gov (United States)

    Giraud, William; Lesven, Ludovic; Jońca, Justyna; Barus, Carole; Gourdal, Margaux; Thouron, Danièle; Garçon, Véronique; Comtat, Maurice

    2012-08-15

    Determination of silicate concentration in seawater without addition of liquid reagents was the key prerequisite for developing an autonomous in situ electrochemical silicate sensor (Lacombe et al., 2007) [11]. The present challenge is to address the issue of calibrationless determination. To achieve such an objective, we chose chronoamperometry performed successively on planar microelectrode (ME) and ultramicroelectrode (UME) among the various possibilities. This analytical method allows estimating simultaneously the diffusion coefficient and the concentration of the studied species. Results obtained with ferrocyanide are in excellent agreement with values of the imposed concentration and diffusion coefficient found in the literature. For the silicate reagentless method, successive chronoamperometric measurements have been performed using a pair of gold disk electrodes for both UME and ME. Our calibrationless method was tested with different concentrations of silicate in artificial seawater from 55 to 140×10(-6) mol L(-1). The average value obtained for the diffusion coefficient of the silicomolybdic complex is 2.2±0.4×10(-6) cm(2) s(-1), consistent with diffusion coefficient values of molecules in liquid media. Good results were observed when comparing known concentration of silicate with experimentally derived ones. Further work is underway to explore silicate determination within the lower range of oceanic silicate concentration, down to 0.1×10(-6) mol L(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Measuring ocean acidification: new technology for a new era of ocean chemistry.

    Science.gov (United States)

    Byrne, Robert H

    2014-05-20

    Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world's oceans. Among the best-documented seawater effects are a worldwide increase in open-ocean acidity and large-scale declines in calcium carbonate saturation states. The susceptibility of some young, fast-growing calcareous organisms to adverse impacts highlights the potential for biological and economic consequences. Many important aspects of seawater CO2 chemistry can be only indirectly observed at present, and important but difficult-to-observe changes can include shifts in the speciation and possibly bioavailability of some life-essential elements. Innovation and invention are urgently needed to develop the in situ instrumentation required to document this era of rapid ocean evolution.

  18. Measuring the Radius of the Earth from a Mountain Top Overlooking the Ocean

    Science.gov (United States)

    Gangadharan, Dhevan

    2009-01-01

    A clear view of the ocean may be used to measure the radius of the Earth. To an observer looking out at the ocean, the horizon will always form some angle [theta] with the local horizontal plane. As the observer's elevation "h" increases, so does the angle [theta]. From measurements of the elevation "h" and the angle [theta],…

  19. Linking Satellite-Derived Fire Counts to Satellite-Derived Weather Data in Fire Prediction Models to Forecast Extreme Fires in Siberia

    Science.gov (United States)

    Westberg, D. J.; Soja, A. J.; Stackhouse, P. W.

    2009-12-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. The Canadian Fire Weather Index (FWI), developed by the Canadian Forestry Service, is used for this comparison, and it is calculated using local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The FWI assesses daily forest fire burning potential. Large-scale FWI are calculated at the NASA Langley Research Center (LaRC) using NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data. The GEOS-4 reanalysis weather data are 3-hourly interpolated to 1-hourly data at a 1ox1o resolution and the GPCP precipitation data are also at 1ox1o resolution. In previous work focusing on the fire season in Siberia in 1999 and 2002, we have shown the combination of GEOS-4 weather data and Global Precipitation Climatology Project (GPCP) precipitation data compares well to ground-based weather data when used as inputs for FWI calculation. The density and accuracy of Siberian surface station data can be limited, which leads to results that are not representative of the spatial reality. GEOS-4/GPCP-dervied FWI can serve to spatially enhance current and historic FWI, because these data are spatially and temporally consistency. The surface station and model reanalysis derived fire weather indices compared well spatially, temporally and quantitatively, and increased fire activity compares well with increasing FWI ratings. To continue our previous work, we statistically compare satellite-derived fire counts to FWI categories at

  20. Assessment of Satellite-Derived Essential Climate Variables in the Terrestrial Domain: Overview and Status of the CEOS LPV Subgroup

    Science.gov (United States)

    Roman, M. O.

    2015-12-01

    The validation of satellite-derived terrestrial observations has perennially faced the challenge of finding a consistent set of in-situ measurements that can both cover a wide range of surface conditions and provide timely and traceable product accuracy and uncertainty information. The Committee on Earth Observation Satellites (CEOS), the space arm of the Group on Earth Observations (GEO), plays a key role in coordinating the land product validation process. The Land Product Validation (LPV) sub-group of the CEOS Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. This paper will provide a status of LPV subgroup focus area activities, which cover seven Global Climate Observing System (GCOS) terrestrial Essential Climate Variables (ECVs): (1) Snow Cover, (2) Surface Albedo, (3) Land Cover, (4) Leaf Area Index, (5) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), (6) Active Fires, and (7) Soil Moisture; as well as two additional variables (Land Surface Phenology and Land Surface Temperature), which are deemed of high priority of the LPV community. A primary focus of LPV is the implementation of a global validation framework for product intercomparison and validation (fig. 1). This framework is based on a citable protocol, fiducial reference data, and automated subsetting. Ideally, each of these parts will be integrated into an online platform where quantitative tests are run, and standardized intercomparison and validation results reported for all products used in the validation exercise. The establishment of consensus guidelines for in situ measurements as well as inter-comparison of trends derived from independently-obtained reference data and derived products will enhance coordination of the scientific needs of the Earth system communities with global LPV activities (http://lpvs.gsfc.nasa.gov/).

  1. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    Science.gov (United States)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and

  2. VM-ADCP measured upper ocean currents in the southeastern Arabian Sea and Equatorial Indian Ocean during December, 2000

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Suryanarayana, A.; Somayajulu, Y.K.; Raikar, V.; Tilvi, V.

    The Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents in the upper 200 m along the cruise track covering the southeastern Arabian Sea and the Eastern Equatorial Indian Ocean during northern winter monsoon (10-31 December...

  3. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Arias, Jose A.; Tovar-Pescador, Joaquin [Department of Physics, University of Jaen (Spain); Cebecauer, Tomas [European Commission, Joint Research Centre, Ispra (Italy); GeoModel s.r.o., Bratislava (Slovakia); Institute of Geography, Slovak Academy of Sciences, Bratislava (Slovakia); Suri, Marcel [European Commission, Joint Research Centre, Ispra (Italy); GeoModel s.r.o., Bratislava (Slovakia)

    2010-09-15

    Downscaling of the Meteosat-derived solar radiation ({proportional_to}5 km grid resolution) is based on decomposing the global irradiance and correcting the systematic bias of its components using the elevation and horizon shadowing that are derived from the SRTM-3 digital elevation model (3 arc sec resolution). The procedure first applies the elevation correction based on the difference between coarse and high spatial resolution. Global irradiance is split into direct, diffuse circumsolar and diffuse isotropic components using statistical models, and then corrections due to terrain shading and sky-view fraction are applied. The effect of reflected irradiance is analysed only in the theoretical section. The method was applied in the eastern Andalusia, Spain, and the validation was carried out for 22 days on April, July and December 2006 comparing 15-min estimates of the satellite-derived solar irradiance and observations from nine ground stations. Overall, the corrections of the satellite estimates in the studied region strongly reduced the mean bias of the estimates for clear and cloudy days from roughly 2.3% to 0.4%. (author)

  4. Poverty, health and satellite-derived vegetation indices: their inter-spatial relationship in West Africa.

    Science.gov (United States)

    Sedda, Luigi; Tatem, Andrew J; Morley, David W; Atkinson, Peter M; Wardrop, Nicola A; Pezzulo, Carla; Sorichetta, Alessandro; Kuleszo, Joanna; Rogers, David J

    2015-03-01

    Previous analyses have shown the individual correlations between poverty, health and satellite-derived vegetation indices such as the normalized difference vegetation index (NDVI). However, generally these analyses did not explore the statistical interconnections between poverty, health outcomes and NDVI. In this research aspatial methods (principal component analysis) and spatial models (variography, factorial kriging and cokriging) were applied to investigate the correlations and spatial relationships between intensity of poverty, health (expressed as child mortality and undernutrition), and NDVI for a large area of West Africa. This research showed that the intensity of poverty (and hence child mortality and nutrition) varies inversely with NDVI. From the spatial point-of-view, similarities in the spatial variation of intensity of poverty and NDVI were found. These results highlight the utility of satellite-based metrics for poverty models including health and ecological components and, in general for large scale analysis, estimation and optimisation of multidimensional poverty metrics. However, it also stresses the need for further studies on the causes of the association between NDVI, health and poverty. Once these relationships are confirmed and better understood, the presence of this ecological component in poverty metrics has the potential to facilitate the analysis of the impacts of climate change on the rural populations afflicted by poverty and child mortality. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Evaluation of a physically-based snow model with infrared and microwave satellite-derived estimates

    Science.gov (United States)

    Wang, L.

    2013-05-01

    Snow (with high albedo, as well as low roughness and thermal conductivity) has significant influence on the land-atmosphere interactions in the cold climate and regions of high elevation. The spatial and temporal variability of the snow distribution on a basin scale greatly determines the timing and magnitude of spring snowmelt runoff. For improved water resources management, a physically-based distributed snow model has been developed and applied to the upper Yellow River Basin to provide the outputs of snow variables as well as streamflows from 2001 to 2005. Remotely-sensed infrared information from MODIS satellites has been used to evaluate the model's outputs of spatially-distributed snow cover extent (SCE) and land surface temperature (LST); while the simulated snow depth (SD) and snow water equivalent (SWE) have been compared with the microwave information from SSM/I and AMSR-E satellites. In general, the simulated streamflows (including spring snowmelt) agree fairly well with the gauge-based observations; while the modeled snow variables show acceptable accuracies through comparing to various satellite-derived estimates from infrared or microwave information.;

  6. Measuring Ocean Literacy in Pre-Service Teachers: Psychometric Properties of the Greek Version of the Survey of Ocean Literacy and Experience (SOLE)

    Science.gov (United States)

    Markos, Angelos; Boubonari, Theodora; Mogias, Athanasios; Kevrekidis, Theodoros

    2017-01-01

    The aim of the present study was to respond to the increasing demand for comprehensive tools for the measurement of ocean literacy, by investigating the psychometric characteristics of a Greek version of the Survey of Ocean Literacy and Experience (SOLE), an instrument that assesses conceptual understanding of general ocean sciences content,…

  7. Measuring Ocean Literacy in Pre-Service Teachers: Psychometric Properties of the Greek Version of the Survey of Ocean Literacy and Experience (SOLE)

    Science.gov (United States)

    Markos, Angelos; Boubonari, Theodora; Mogias, Athanasios; Kevrekidis, Theodoros

    2017-01-01

    The aim of the present study was to respond to the increasing demand for comprehensive tools for the measurement of ocean literacy, by investigating the psychometric characteristics of a Greek version of the Survey of Ocean Literacy and Experience (SOLE), an instrument that assesses conceptual understanding of general ocean sciences content,…

  8. Ocean Surface Wave Optical Roughness: Analysis of Innovative Measurements

    Science.gov (United States)

    2013-12-16

    Banner et al., 2013]. RESULTS To provide the context of our new results for FY13, during the SBC experiment, diurnal processes were the...fluxes during the Santa Barbara Channel (hereafter SBC ) and central Pacific Ocean studies of Hawaii (hereafter HI). Full details are provided in Zappa et...heat flux is within 1.1 W m -2 of the TOGA-COARE 3.0 model prediction for SBC and within 2.1 Wm -2 for the Pacific Ocean south of Hawaii. The TOGA

  9. Dynamic Validation of Envisat ASAR Derived Ocean Swell Against Directional Buoy Measurements in Pacific Ocean

    Science.gov (United States)

    Wang, He; Mouche, Alexis; Husson, Romain; Chapron, Bertrand

    2016-08-01

    Advanced Synthetic Aperture Radar (ASAR) in wave mode aboard Envisat satellite from ESA provides the unique 10-years swell spectra dataset on a continuous and global basis for scientific community. In this paper, a method of a dynamical validation approach for SAR swell spectra is developed, in which the in situ buoy spectra are reconstructed, partitioned, and retro- propagated to the vicinity of satellite observation along the great circle based upon the linear wave theory. More than 40,000 ASAR-buoy swell partitions are dynamically collocated for the full mission of Envisat, making this study the first to provide detailed quality assessment for ASAR derived ocean swell spectra. Comparison results show a general statistics of 0.40 m, 44.99 m and 16.89 ̊ for swell height, peak wavelength and direction RMSE, indicating a good agreement with buoy in-situ in Pacific Ocean.

  10. Eddy correlation measurements of oxygen uptake in deep ocean sediments

    DEFF Research Database (Denmark)

    Berg, P.; Glud, Ronnie Nøhr; Hume, A.

    2010-01-01

    Abstract: We present and compare small sediment-water fluxes of O-2 determined with the eddy correlation technique, with in situ chambers, and from vertical sediment microprofiles at a 1450 m deep-ocean site in Sagami Bay, Japan. The average O-2 uptake for the three approaches, respectively, was ...

  11. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    , and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  12. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean

    NARCIS (Netherlands)

    Tagliabue, A.; Mtshali, T.; Aumont, O.; Bowie, A.R.; Klunder, M.B.; Roychoudhury, A.N.; Swart, S.

    2012-01-01

    Due to its importance as a limiting nutrient for phytoplankton growth in large regions of the world's oceans, ocean water column observations of concentration of the trace-metal iron (Fe) have increased markedly over recent decades. Here we compile >13 000 global measurements of dissolved Fe (dFe) a

  13. Multi-site assimilation of a terrestrial biosphere model (BETHY) using satellite derived soil moisture data

    Science.gov (United States)

    Wu, Mousong; Sholze, Marko

    2017-04-01

    We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.

  14. Developing a new global network of river reaches from merged satellite-derived datasets

    Science.gov (United States)

    Lion, C.; Allen, G. H.; Beighley, E.; Pavelsky, T.

    2015-12-01

    In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water extent, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope must be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcsecond spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus ~2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our preliminary results for a portion of South America and demonstrate the strengths and weaknesses of the method.

  15. Spatial and Quantitative Comparison of Satellite-Derived Land Cover Products over China

    Institute of Scientific and Technical Information of China (English)

    GAO Hao; JIA Gen-Suo

    2012-01-01

    Because land cover plays an important role in global climate change studies, assessing the agreement among different land cover products is critical. Significant discrepancies have been reported among satellite-derived land cover products, especially at the regional scale. Dif- ferent classification schemes are a key obstacle to the comparison of products and are considered the main fac- tor behind the disagreement among the different products. Using a feature-based overlap metric, we investigated the degree of spatial agreement and quantified the overall and class-specific agreement among the Moderate Resolution Imaging Spectoradiometer (MODIS), Global Land Cover 2000 (GLC2000), and the National Land Cover/Use Data- sets (NLCD) products, and the author assessed the prod- ucts by ground reference data at the regional scale over China. The areas with a low degree of agreement mostly occurred in heterogeneous terrain and transition zones, while the areas with a high degree of agreement occurred in major plains and areas with homogeneous vegetation. The overall agreement of the MODIS and GLC2000 products was 50.8% and 52.9%, and the overall accuracy was 50.3% and 41.9%, respectively. Class-specific agree- ment or accuracy varied significantly. The high-agreement classes are water, grassland, cropland, snow and ice, and bare areas, whereas classes with low agreement are shru- bland and wetland in both MODIS and GLC2000. These characteristics of spatial patterns and quantitative agree- ment could be partly explained by the complex landscapes, mixed vegetation, low separability of spectro-temporal- texture signals, and coarse pixels. The differences of class definition among different the classification schemes also affects the agreement. Each product had its advantages and limitations, but neither the overall accuracy nor the class-specific accuracy could meet the requirements of climate modeling.

  16. Using GIS data and satellite derived irradiance to optimize siting of PV installations in Switzerland

    Science.gov (United States)

    Kahl, Annelen; Nguyen, Viet-Anh; Bartlett, Stuart; Sossan, Fabrizio; Lehning, Michael

    2016-04-01

    For a successful distribution strategy of PV installations, it does not suffice to choose the locations with highest annual total irradiance. Attention needs to be given to spatial correlation patterns of insolation to avoid large system-wide variations, which can cause extended deficits in supply or might even damage the electrical network. One alternative goal instead is to seek configurations that provide the smoothest energy production, with the most reliable and predictable supply. Our work investigates several scenarios, each pursuing a different strategy for a future renewable Switzerland without nuclear power. Based on an estimate for necessary installed capacity for solar power [Bartlett, 2015] we first use heuristics to pre-select realistic placements for PV installations. Then we apply optimization methods to find a subset of locations that provides the best possible combined electricity production. For the first part of the selection process, we use a DEM to exclude high elevation zones which would be difficult to access and which are prone to natural hazards. Then we use land surface cover information to find all zones with potential roof area, deemed suitable for installation of solar panels. The optimization employs Principal Component Analysis of satellite derived irradiance data (Surface Incoming Shortwave Radiation (SIS), based on Meteosat Second Generation sensors) to incorporate a spatial aspect into the selection process that does not simply maximize annual total production but rather provides the most robust supply, by combining regions with anti-correlated cloud cover patterns. Depending on the initial assumptions and constraints, the resulting distribution schemes for PV installations vary with respect to required surface area, annual total and lowest short-term production, and illustrate how important it is to clearly define priorities and policies for a future renewable Switzerland.

  17. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts

    Science.gov (United States)

    Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.

    2017-05-01

    In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.

  18. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2014-09-30

    Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. This report covers our grant... ice cover in 2014. The consequent reduced melting early in the summer delays the onset of sea- ice -albedo feed back in accelerating melt throughout the...season and thus reduces the melt -back of the ice edge. The reduction in upper ocean temperatures may also explain our 2014 visual observations of

  19. Direct Measurements of the Baroclinic Instability in the Ocean

    Science.gov (United States)

    Sadek, Mahmoud; Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey

    2016-11-01

    The ocean is mechanically driven by wind and buoyancy at the surface which produce sloping isopycnals with a reservoir of available potential energy (APE). Large scale APE can be converted to kinetic energy via the baroclinic instability, which produces mesoscale eddies. Mesoscale eddies are ubiquitous in mid- and high-latitudes, and play a primary role in determining the strength and trajectories of currents and in generating intrinsic climate variability. The widespread belief that mesoscale eddies are generated through baroclinic instability is based on general accord between observations and linear stability analysis and the predicted behavior of nonlinear models. However, these models are unable to give us quantitative evidence of the extent to which the instability is responsible for eddy generation at various locations in the ocean. To this end, we implement a new coarse-graining framework, recently developed to study flow on a sphere, to directly analyze the baroclinic instability as a function of scale and geographic location, and implement it using strongly eddying high-resolution simulations in the North Atlantic and in the Southern Ocean. The results give us new information about location and intensity of the instability in both physical and spectral space. Partial support was provided by National Science Foundation (NSF) Grant OCE-1259794, US Department of Energy (US DOE) Grant DE-SC0014318, and the LANL LDRD program through Project Number 20150568ER.

  20. Acoustic doppler methods for remote measurements of ocean flows - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  1. Mesoscale Ocean Altimetry Requirements and Impact of GPS-R measurements for Ocean Mesoscale Circulation Mapping

    CERN Document Server

    Le Traon, P Y; Ruffini, G; Cardellach, E

    2002-01-01

    In the framework of the PARIS Beta project, fundamental milestones have been reached for the definition of future GNSS-R (Global Navigation Satellite System signal Reflections) altimetry missions (the PARIS concept). The most important one is the confirmation of the significant impact that GNSS-R data can have on mesoscale oceanography, as we discuss here. In this report, we first briefly review the contribution of satellite altimetry to mesoscale oceanography. We then summarise recent results obtained on the mapping capabilities of existing and future altimeter missions. From these analyses, refined requirements for mesoscale ocean altimetry (in terms of space/time sampling and accuracy) are derived. A review of on-going and planned altimetric missions is then performed and we analyse how these configurations match the user requirements. Then we will describe the simulation approach and impact analysis of GPS-R data.

  2. Estimation of glacier mass balance: An approach based on satellite-derived transient snowlines and a temperature index driven by meteorological observations

    Science.gov (United States)

    Tawde, S. A.; Kulkarni, A. V.; Bala, G.

    2015-12-01

    In the Himalaya, large area is comprised of glaciers and seasonal snow, mainly due to its high elevated mountain ranges. Long term and continuous assessment of glaciers in this region is important for climatological and hydrological applications. However, rugged terrains and severe weather conditions in the Himalaya lead to paucity in field observations. Therefore, in recent decades, glacier dynamics are extensively monitored using remote sensing in inaccessible terrain like Himalaya. Estimation of glacier mass balance using empirical relationship between mass balance and area accumulation ratio (AAR) requires an accurate estimate of equilibrium-line altitude (ELA). ELA is defined as the snowline at the end of the hydrological year. However, identification of ELA, using remote sensing is difficult because of temporal gaps, cloud cover and intermediate snowfall on glaciers. This leads to large uncertainty in glacier mass-balance estimates by the conventional AAR method that uses satellite-derived highest snowline in ablation season as an ELA. The present study suggests a new approach to improve estimates of ELA location. First, positions of modelled snowlines are optimized using satellite-derived snowlines in the early melt season. Secondly, ELA at the end of the glaciological year is estimated by the melt and accumulation models driven using in situ temperature and precipitation records. From the modelled ELA, mass balance is estimated using the empirical relationship between AAR and mass balance. The modelled mass balance is validated using field measurements on Chhota Shigri and Hamtah glaciers, Himachal Pradesh, India. The new approach shows a substantial improvement in glacier mass-balance estimation, reducing bias by 46% and 108% for Chhota Shigiri and Hamtah glaciers respectively. The cumulative mass loss reconstructed from our approach is 0.85 Gt for nine glaciers in the Chandra basin from 2001 to 2009. The result of the present study is in agreement with

  3. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment.

    Science.gov (United States)

    Cole, Ella F; Long, Peter R; Zelazowski, Przemyslaw; Szulkin, Marta; Sheldon, Ben C

    2015-11-01

    Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation

  4. Principle and geomorphological applicability of summit level and base level technique using Aster Gdem satellite-derived data and the original software Baz

    Directory of Open Access Journals (Sweden)

    Akihisa Motoki

    2015-05-01

    Full Text Available This article presents principle and geomorphological applicability of summit level technique using Aster Gdem satellite-derived topographicdata. Summit level corresponds to thevirtualtopographic surface constituted bylocalhighest points, such as peaks and plateau tops, and reconstitutes palaeo-geomorphology before the drainage erosion. Summit level map is efficient for reconstitution of palaeo-surfaces and detection of active tectonic movement. Base level is thevirtualsurface composed oflocallowest points, as valley bottoms. The difference between summit level and base level is called relief amount. Thesevirtualmapsareconstructed by theoriginalsoftwareBaz. Themacroconcavity index, MCI, is calculated from summit level and relief amount maps. The volume-normalised three-dimensional concavity index, TCI, is calculated from hypsometric diagram. The massifs with high erosive resistance tend to have convex general form and low MCI and TCI. Those with low resistance have concave form and high MCI and TCI. The diagram of TCI vs. MCI permits to distinguish erosive characteristics of massifs according to their constituent rocks. The base level map for ocean bottom detects the basement tectonic uplift which occurred before the formation of the volcanic seamounts.

  5. Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-08-01

    Full Text Available The primary measure of the quality of sea surface temperature (SST fields obtained from satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ values. Because such matchups tend to be widely separated, these bias and variance estimates are not necessarily a good measure of small scale (several pixels gradients in these fields because one of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, which tends to have large spatial scales compared with the pixel separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields appropriate for the study of submesoscale processes and, in particular, of processes associated with near-surface fronts, both of which have recently seen a rapid increase in interest. In this study, two methods are examined to address this problem, one based on spectra of the SST data and the other on their variograms. To evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-Radiometer Suite (VIIRS and Advanced Very High Resolution Radiometer (AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime, along-scan (along-track, spectral estimates were found to be approximately 0.05 K (0.08 K and the corresponding nighttime values of 0.02 K (0.03 K. Daytime estimates based on the variogram were found to be 0.08 K (0.10 K with the corresponding nighttime values of 0.04 K (0.06 K. Taken together, AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given the similarity of

  6. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    Science.gov (United States)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  7. An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass

    Science.gov (United States)

    Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; hide

    2015-01-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  8. Spatial and Temporal Variability of Satellite-Derived Cloud and Surface Characteristics During FIRE-ACE

    Science.gov (United States)

    Maslanik, J. A.; Key, J.; Fowler, C. W.; Nguyen, T.; Wang, X.a

    2000-01-01

    Advanced very high resolution radiometer (AVHRR) products calculated for the western Arctic for April-July 1998 are used to investigate spatial, temporal, and regional patterns and variability in energy budget parameters associated with ocean- ice-atmosphere interactions over the Arctic Ocean during the Surface Heat Budget of the Arctic Ocean (SHEBA) project and the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). The AVHRR-derived parameters include cloud fraction, clear-sky and all-sky skin temperature and broadband albedo, upwelling and downwelling shortwave and longwave radiation, cloud top pressure and temperature, and cloud optical depth. The remotely sensed products generally agree well with field observations at the SHEBA site, which in turn is shown to be representative of a surrounding region comparable in size to a climate-model grid cell. Time series of products for other locations in the western Arctic illustrate the magnitude of spatial variability during the study period and provide spatial and temporal detail useful for studying regional processes. The data illustrate the progression of reduction in cloud cover, albedo decrease, and the considerable heating of the open ocean associated with the anomalous decrease in sea ice cover in the eastern Beaufort Sea that began in late spring. Above-freezing temperatures are also recorded within the ice pack, suggesting warming of the open water areas within the ice cover.

  9. Finite frequency P-wave traveltime measurements on ocean bottom seismometers and hydrophones in the western Indian Ocean

    Science.gov (United States)

    Tsekhmistrenko, Maria; Sigloch, Karin; Hosseini, Kasra; Barruol, Guilhem

    2016-04-01

    From 2011 to 2014, the RHUM-RUM project (Reunion Hotspot Upper Mantle - Reunions Unterer Mantel) instrumented a 2000x2000km2 area of Indian Ocean seafloor, islands and Madagascar with broadband seismometers and hydrophones. The central component was a 13-month deployment of 57 German and French Ocean Bottom Seismometers (OBS) in 2300-5600 m depth. This was supplemented by 2-3 year deployments of 37 island stations on Reunion, Mauritius, Rodrigues, the southern Seychelles, the Iles Eparses and southern Madagascar. Two partner projects contributed another 30+ stations on Madagascar. Our ultimate objective is multifrequency waveform tomography of the entire mantle column beneath the Reunion hotspot. Ideally we would use all passbands that efficiently transmit body waves but this meets practical limits in the noise characteristics of ocean-bottom recordings in particular. Here we present the preliminary data set of frequency-dependent P-wave traveltime measurements on seismometers and hydrophones, obtained by cross-correlation of observed with predicted waveforms. The latter are synthesized from fully numerical Green's functions and carefully estimated, broadband source time functions. More than 200 teleseismic events during the 13-month long deployment yielded usable P-waveform measurements. We present our methods and discuss data yield and quality of ocean-bottom versus land seismometers, and of OBS versus broadband hydrophones. Above and below the microseismic noise band, data yields are higher than within it, especially for OBS. The 48 German OBS, equipped with Guralp 60 s sensors, were afflicted by relatively high self-noise compared to the 9 French instruments equipped with Nanometrics Trillium 240 s sensors. The HighTechInc (model HTI-01 and HTI-04-PCA/ULF) hydrophones (100 s corner period) functioned particularly reliably but their waveforms are relatively more challenging to model due to reverberations in the water column. We obtain ~15000 combined cross

  10. Precipitation Ground Validation over the Oceans

    Science.gov (United States)

    Klepp, C.; Bakan, S.

    2012-04-01

    State-of-the-art satellite derived and reanalysis based precipitation climatologies show remarkably large differences in detection, amount, variability and temporal behavior of precipitation over the oceans. The uncertainties are largest for light precipitation within the ITCZ and for cold season high-latitude precipitation including snowfall. Our HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data, www.hoaps.org) precipitation retrieval exhibits fairly high accuracy in such regions compared to our ground validation data. However, the statistical basis for a conclusive validation has to be significantly improved with comprehensive ground validation efforts. However, existing in-situ instruments are not designed for precipitation measurements under high wind speeds on moving ships. To largely improve the ground validation data basis of precipitation over the oceans, especially for snow, the systematic data collection effort of the Initiative Pro Klima funded project at the KlimaCampus Hamburg uses automated shipboard optical disdrometers, called ODM470 that are capable of measuring liquid and solid precipitation on moving ships with high accuracy. The main goal of this project is to constrain the precipitation retrievals for HOAPS and the new Global Precipitation Measurement (GPM) satellite constellation. Currently, three instruments are long-term mounted on the German research icebreaker R/V Polarstern (Alfred Wegner Institut) since June 2010, on R/V Akademik Ioffe (P.P.Shirshov Institute of Oceanology, RAS, Moscow, Russia) since September 2010 and on R/V Maria S. Merian (Brise Research, University of Hamburg) since December 2011. Three more instruments will follow shortly on further ships. The core regions for these long-term precipitation measurements comprise the Arctic Ocean, the Nordic Seas, the Labrador Sea, the subtropical Atlantic trade wind regions, the Caribbean, the ITCZ, and the Southern Oceans as far south to Antarctica. This

  11. Radar and Laser Sensors for High Frequency Ocean Wave Measurement.

    Science.gov (United States)

    Kennedy, C. R.

    2016-02-01

    Experimental measurement of air-sea fluxes invariably take place using shipbourne instrumentation and simultaneous measurement of wave height and direction is desired. A number of researchers have shown that range measuring sensors combined with inertial motion compensation can be successful on board stationary or very slowly moving ships. In order to measure wave characteristics from ships moving at moderate to full speed the sensors are required to operate at higher frequency so as to overcome the Doppler shift caused by ship motion. This work presents results from some preliminary testing of laser, radar and ultrasonic range sensors in the laboratory and on board ship. The characteristics of the individual sensors are discussed and comparison of the wave spectra produced by each is presented.

  12. Validation of Satellite Derived Primary Production Models in the Northeast Atlantic

    Science.gov (United States)

    Lobanova, P. V.; Bashmachnikov, I. L.; Brotas, V.

    2016-08-01

    With all the variety of models used for calculation of primary production of phytoplankton (PP) from remote sensing data, a choice of the most realistic one for a particular ocean region remains a non-trivial issue. In this work, we estimate PP in the Northeast Atlantic Ocean (200 - 510 N and 100 - 400 W) from 1998 to 2005 using three frequently used models: VGPM (Vertically Generalized Production Model), PSM (Platt and Sathyendranath Model) and Aph-PP model (Absorption Based Model). The modeled results are then compared with in situ observations of PP. The results show a close similarity in PP patterns obtained by different models, but the absolute modeled values differ substantially. In the Northeast Atlantic, PSM is found reproducing better the observed seasonal and spatial variability of PP as compared to the two other models. However, PSM slightly underestimates the PP values.

  13. Improved oceanographic measurements fom SAR altimetry: Results and scientific roadmap from ESA cryosat plus for oceans project

    DEFF Research Database (Denmark)

    Cotton, P. D.; Andersen, Ole Baltazar; Stenseng, Lars

    . The objective of the CryoSat Plus for Oceans (CP4O) project was to develop and evaluate new ocean products from CryoSat data and so maximize the scientific return of CryoSat over oceans. The main focus of CP4O has been on the additional measurement capabilities that are offered by the SAR mode of the SIRAL...... altimeter, with further work in developing improved geophysical corrections. CP4O has developed SAR based ocean products for application in four themes: Open Oceans, Coastal Oceans, Polar Oceans and Sea Floor Topography. The team has developed a number of new processing schemes and compared and evaluated...... the resultant data products. This work has clearly demonstrated the improved ocean measuring capability offered by SAR mode altimetry and has also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. This paper presents an overview of the major...

  14. The HOAPS-II climatology - Release II of the satellite-derived freshwater flux climatology

    Science.gov (United States)

    Fennig, K.; Klepp, C.; Bakan, S.; Schulz, J.; Graßl, H.

    2003-04-01

    HOAPS-II (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) is the improved global climatology of sea surface parameters and surface energy and freshwater fluxes derived from satellite radiances for the time period July 1987 until the recent dates. Data from polar orbiting radiometers, all available Special Sensor Microwave/Imager (SSM/I) radiometers and the Advanced Very High Resolution Radiometer (AVHRR), have been used to get global fields of surface meteorological and oceanographic parameters but also latent heat flux, evaporation, precipitation and net freshwater flux as well as the wind speed, water vapor- and total water content over ice free ocean areas for various averaging periods and grid sizes including scan orientated data in the NetCDF data format. All retrieval methods have been validated with in situ data on a global scale with a focus on precipitation validation. The new release of the data base is freely available to the community. Additionally, applications of the HOAPS-II data base will demonstrate its ability to detect ground validated High Impact Weather over global oceans that the Global Precipitation Climatology Project (GPCP) climatology and the ECMWF model is frequently missing. Nowcasting of model-unpredicted storms is a high potential application of this new data base.

  15. Microwave remote sensing measurements of oil pollution on the ocean

    Science.gov (United States)

    Croswell, W. F.; Blume, H.-J. C.; Johnson, J. W.

    1981-01-01

    Microwave and optical remote sensors were flown over fresh and weathered crude oil released from a surface research vessel and also over a slick formed on the sea by frozen oleyl alcohol cubes released from a helicopter. For the crude oil experiments, microwave radiometric measurements at 1.43, 2.65, 22, and 31 GHz are reported, along with the variable incidence angle scattering measurements at 13.9 GHz. For these experiments, unusual depressions in the L-band brightness temperature were observed, possibly related to dispersants applied to the crude oil. Similar depressions, but with much larger values, were observed over the oleyl alcohol monomolecular slicks. Images obtained at 31 and 22 GHz were used to infer oil volume, yielding values which bound the known amounts spilled. Ku band measurements obtained in repeated passes over crude oil slicks are also discussed.

  16. Optical Measurements and Modeling to Estimate Concentrations and Fluxes of Organic Matter in the Southern Ocean

    Science.gov (United States)

    Stramski, Dariusz; Mitchell, B. Greg; Marra, John W. (Technical Monitor)

    2001-01-01

    This project was a collaboration between two Principal Investigators, Dr. Dariusz Stramski and Dr. Greg Mitchell of Scripps Institution of Oceanography, University of California San Diego. Our overall goal was to conduct optical measurements and modeling to estimate concentrations of organic matter in the Southern Ocean in support of the U.S. JGOFS Process Study in this region. Key variables and processes of high relevance to accomplish the JGOFS goals include time and space resolution of phytoplankton pigments, particulate organic carbon, and the formation and export of organic carbon. Our project focused on establishing the fundamental relationships for parameterization of these variables and processes in terms of the optical properties of seawater, and developing understanding of why the Southern Ocean differs from other low-latitude systems, or has differentiation within. Our approach builds upon historical observations that optical properties provide a useful proxy for key reservoirs of organic matter such as chlorophyll alpha (Chl) and particulate organic carbon (POC) concentrations, which are of relevance to the JGOFS objectives. We carried out detailed studies of in situ and water sample optical properties including spectral reflectance, absorption, beam attenuation, scattering, and backscattering coefficients. We evaluated the ability to estimate Chl from the spectral reflectance (ocean color) in the Southern Ocean. We examined relationships between the ocean optical properties and particulate organic carbon. We developed, for the first time, an algorithm for estimating particulate organic carbon concentration in the surface ocean from satellite imagery of ocean color. With this algorithm, we obtained maps of POC distribution in the Southern Ocean showing the seasonal progression of POC in the austral spring-summer season. We also developed a semianalytical reflectance model for the investigated polar waters based on our field measurements of absorption

  17. Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    Science.gov (United States)

    Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy

    2014-01-01

    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.

  18. Heat flow measurements on the Lomonosov Ridge, Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    XIAO Wentao; ZHANG Tao; ZHENG Yulong; GAO Jinyao

    2013-01-01

    Heat flow was measured on the Lomonosov Ridge during the 5th Chinese National Arctic Expedition in 2012. To derive the time-temperature curve, resistivity data were transformed to temperature by the resistivity-temperature program. Direct reading and linear regression methods were used to calculate the equilibrium temperature, which were regressed against the depth of the probes in sediment to derive the geothermal gradient. Then, heat flow was calculated as the product of geothermal gradient and thermal conductivity of sediments. The heat flow values on the basis of the two methods were similar (i.e., 67.27 mW/m2 and 63.99 mW/m2, respectively). The results are consistent with the measurements carried out at adjacent sites. The age of the Lomonosov Ridge predicted by the heat flow-age model was 62 Ma, which is in accordance with the inference that the ridge was separated from Eurasia at about 60 Ma.

  19. Measurements by Ocean Bottom Gravimeter at Harima-nada in Seto Inland Sea, Japan

    Science.gov (United States)

    Joshima, Masato; Ishihara, Takemi; Koizumi, Kin-Ichiro; Seama, Nobukazu; Oshida, Atsushi; Fujimoto, Hiromi; Kanazawa, Toshihiko

    Gravity measurements on the sea bottom using an ocean bottom gravimeter(OBG) and a small survey vessel of 8.5 tons were performed at Harima-nada, in the Seto Inland Sea, Japan. Measurements at one bottom station were completed in about 30 minutes including 2 mile transit from the previous station, and 23 new data were obtained during 4 days. The measurement noise on the shallow sea-bottom was reduced considerably by attaching an anchor to the rope between the deployed ocean bottom gravimeter and the ship, and by keeping the ship almost fixed to the deployed anchor. The measurement accuracy is better than 0.005 mgal at the base station and is better than 0.05 mgal for the sea bottom measurements with the anchor. The new measurements combined with old data revealed the presence of high gravity anomaly zone running in Harima-nada sub-parallel to the Median Tectonic Line.

  20. Black Carbon in Marine Dissolved Organic Carbon: Abundance and Radiocarbon Measurements in the Global Ocean

    Science.gov (United States)

    Coppola, A. I.; Walker, B. D.; Druffel, E. R. M.

    2014-12-01

    Compound specific radiocarbon analysis is a powerful tool for understanding the cycling of individual components, such as black carbon (BC) produced from biomass burning and fossil fuel combustion, within bulk pools, like the marine dissolved organic carbon pool. Here, we use a solid phase extraction method and a wide range of solvent polarities to concentrate dissolved organic carbon from seawater. Then we isolate BC in sufficient quantities for radiocarbon analysis. We report the radiocarbon age of BC, concentrations and its relative structure, from coastal and open ocean surface samples. We will discuss our progress towards measuring these quantities in dissolved organic carbon collected from the Pacific and Atlantic oceans to understand the fate, transformation and cycling of BC in the world ocean. These measurements are paired with bulk DOC Δ14C profiles, providing insight into the role of BC as a missing sink in the ultra-refractory DOC pool.

  1. Comparison of Microwave Backscatter Measurements and Small-scale Surface Wave Measurements Made from the Dutch Ocean Research Tower "Noordwijk"

    NARCIS (Netherlands)

    Snoeij, P.; Halsema, D. van; Oost, W.A.; Calkoen, C.J.; Vogelzang, J.; Waas, S.; Jaehne, B.

    1991-01-01

    To improve the understanding of the interaction between microwaves and water waves the VIERS-l project started in 1986 with the preparation of two wind/wave tank experiments and an ocean tower experiment. In February 1988, combined measurements of microwave backscatter, wind, waves and gas exchange

  2. Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients

    Science.gov (United States)

    Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara

    2014-02-01

    The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.

  3. Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures

    Directory of Open Access Journals (Sweden)

    Y.-R. Lee

    2012-10-01

    Full Text Available Surface skin temperatures of the Version 5 Level 3 products of MODIS and AIRS/AMSU have been compared in terms of monthly anomaly trends and climatology over the globe during the period from September 2002 to August 2011. The MODIS temperatures in the 50° N–50° S region tend to systematically be ~1.7 K colder over land and ~0.5 K warmer over ocean than the AIRS/AMSU temperatures. Over high latitude ocean the MODIS values are ~5.5 K warmer than the AIRS/AMSU. The discrepancies between the annual averages of the two sensors are as much as ~12 K in the sea ice regions. Both MODIS and AIRS/AMSU show cooling trends from −0.05 ± 0.06 to −0.14 ± 0.07 K (9 yr−1 over the globe, but warming trends (0.02 ± 0.12–0.15 ± 0.19 K (9 yr−1 in the high latitude regions. The disagreement between the two sensors results mainly from the differences in ice/snow emissivity between MODIS infrared and AMSU microwave, and also in their observational local times.

  4. Geothermal Gradient Drilling and Measurements Ascension Island, South Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.; Adams, M.C.

    1984-07-01

    This technical report on the Phase II geothermal exploration of Ascension Island documents the data collected during thermal gradient drilling and the subsequent thermal and fluid chemical investigations. It also documents the completion of the Phase II exploration strategy which was proposed at the end of the Phase I--Preliminary Examination of Ascension Island. The thermal gradient drilling resulted in seven holes which range from 206 to 1750 ft (53-533 m) deep, with a cumulative footage of 6563 ft (2000 m). The drilling procedure and the problems encountered during the drilling have been explained in detail to provide information valuable for any subsequent drilling program on the island. In addition, the subsurface geology encountered in the holes has been documented and, where possible, correlated with other holes or the geology mapped on the surface of the island. Temperatures measured in the holes reach a maximum of 130 F (54.4 C) at 1285 ft (391.7 m) in hole GH-6. When the temperatures of all holes are plotted against elevation, the holes can be classed into three distinct groups, those which have no thermal manifestations, those with definite geothermal affinities, and one hole which is intermediate between the other two. From consideration of this information, it is clear that the highest geothermal potential on the island is in the Donkey Flat area extending beneath Middleton Ridge, and in the Cricket Valley area. Because of the greater drilling depths and the remote nature of the Cricket Valley area, it is recommended that future exploration concentrate in the area around Middleton Ridge.

  5. Utilization of satellite-derived estimates of meteorological and land surface characteristics in the Land Surface Model for vast agricultural region territory

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena

    2015-04-01

    data from named radiometers. All technologies have been adapted to the study area. Verification of the AVHRR- and MODIS-derived LST estimates has been performed through comparison with ground-measured temperatures and analogous estimates obtained from remaining sensors. The reliability of SEVIRI-derived LST estimates has been verified by comparison with similar synchronous SEVIRI-derived estimates produced in LSA SAF (Land Surface Analysis Satellite Applications Facility, Lisbon, Portugal). Correctness of LAI estimates has been confirmed by comparing time behavior of satellite- and ground-based LAI during vegetation season. Satellite-derived estimates of precipitation have been built using the Multi Threshold Method (MTM) developed for automatic pixel-by-pixel classification of AVHRR and SEVIRI data. The method is intended for the cloud detection and identification of its types, estimation of the maximum liquid water content and water content of the cloud layer, allocation of precipitation zones and determination of instantaneous maximum intensities of precipitation in the pixel range around the clock throughout the year independently of the land surface type. Measurement data from five AVHRR channels or from eleven SEVIRI channels as well as their differences have been used in the MTM as predictors. To validate the methodology, ground-based observation data on daily precipitation sums at agricultural meteorological stations of the study region have been used. The probability of correct precipitation zone detection from satellite data is at least 70% (80-85% in some cases) when compared with ground-based observations. In the frame of this approach the transition from the rainfall intensity estimation to the calculation of their daily values has been accomplished. In the study the AVHRR- and SEVIRI-derived daily, monthly and annual sums of precipitation for the region of interest have been calculated. The daily and monthly sums have been found to be in good agreement

  6. Improved oceanographic measurements fom SAR altimetry: Results and scientific roadmap from ESA cryosat plus for oceans project

    DEFF Research Database (Denmark)

    Cotton, P. D.; Andersen, Ole Baltazar; Stenseng, Lars

    altimeter, with further work in developing improved geophysical corrections. CP4O has developed SAR based ocean products for application in four themes: Open Oceans, Coastal Oceans, Polar Oceans and Sea Floor Topography. The team has developed a number of new processing schemes and compared and evaluated...... the resultant data products. This work has clearly demonstrated the improved ocean measuring capability offered by SAR mode altimetry and has also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. This paper presents an overview of the major...

  7. Statistical modeling of phenological phases in Poland based on coupling satellite derived products and gridded meteorological data

    Science.gov (United States)

    Czernecki, Bartosz; Jabłońska, Katarzyna; Nowosad, Jakub

    2016-04-01

    The aim of the study was to create and evaluate different statistical models for reconstructing and predicting selected phenological phases. This issue is of particular importance in Poland where national-wide phenological monitoring was abandoned in the middle of 1990s and the reactivated network was established in 2006. Authors decided to evaluate possibilities of using a wide-range of statistical modeling techniques to create synthetic archive dataset. Additionally, a robust tool for predicting the most distinguishable phenophases using only free of charge data as predictors was created. Study period covers the years 2007-2014 and contains only quality-controlled dataset of 10 species and 14 phenophases. Phenological data used in this study originates from the manual observations network run by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB). Three kind of data sources were used as predictors: (i) satellite derived products, (ii) preprocessed gridded meteorological data, and (iii) spatial properties (longitude, latitude, altitude) of the monitoring site. Moderate-Resolution Imaging Spectroradiometer (MODIS) level-3 vegetation products were used for detecting onset dates of particular phenophases. Following indices were used: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (fPAR). Additionally, Interactive Multisensor Snow and Ice Mapping System (IMS) products were chosen to detect occurrence of snow cover. Due to highly noisy data, authors decided to take into account pixel reliability information. Besides satellite derived products (NDVI, EVI, FPAR, LAI, Snow cover), a wide group of observational data and agrometeorological indices derived from the European Climate Assessment & Dataset (ECA&D) were used as a potential predictors: cumulative growing degree days (GDD), cumulative growing precipitation days (GPD

  8. Analysis of ocean diurnal variations from the Korean Geostationary Ocean Color Imager measurements using the DINEOF method

    Science.gov (United States)

    Liu, Xiaoming; Wang, Menghua

    2016-10-01

    High-frequency images of the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)) derived from the Korean Geostationary Ocean Color Imager (GOCI) provide a unique opportunity to study diurnal variation of water turbidity in coastal regions of the Bohai Sea, Yellow Sea, and East China Sea. However, there are many missing pixels in the original GOCI-derived Kd(490) images due to clouds and various other reasons. Data Interpolating Empirical Orthogonal Function (DINEOF) is a method to reconstruct missing data in geophysical datasets based on the Empirical Orthogonal Function (EOF). It utilizes both temporal and spatial coherencies of data to infer a solution at the missing locations. In this study, the DINEOF is applied to GOCI-derived Kd(490) data in the Yangtze River mouth and the Yellow River mouth regions, and the DINEOF reconstructed Kd(490) data are used to fill in the missing pixels. In fact, DINEOF has been used to fill in gaps in ocean color chlorophyll-a and turbidity data from the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) in previous studies. Our GOCI validation results show that the bias between the reconstructed data and the original Kd(490) value is quite small (<∼5%). The standard deviation of the reconstructed/original ratio is ∼0.25 and ∼0.30 for the mouths in the Yangtze River and Yellow River, respectively. In addition, GOCI high temporal resolution measurements in Kd(490) can capture sub-diurnal variation due to the tidal forcing. The spatial patterns and temporal functions of the first three EOF modes are also examined. The first EOF mode characterizes the general mean spatial distribution of the region, while the second and third EOF modes represent the variations due to the tidal forcing in the region.

  9. Distribution and composition of suspended particulate matter in the Atlantic Ocean: Direct measurements and satellite data

    Science.gov (United States)

    Lisitzin, A. P.; Klyuvitkin, A. A.; Burenkov, V. I.; Kravchishina, M. D.; Politova, N. V.; Novigatsky, A. N.; Shevchenko, V. P.; Klyuvitkina, T. S.

    2016-01-01

    The main purpose of this work is to study the real distribution and spatial-temporal variations of suspended particulate matter and its main components in surface waters of the Atlantic Ocean on the basis of direct and satellite measurements for development of new and perfection of available algorithms for converting satellite data. The distribution fields of suspended particulate matter were calculated and plotted for the entire Atlantic Ocean. It is established that its distribution in the open ocean is subordinate to the latitudinal climatic zonality. The areas with maximum concentrations form latitudinal belts corresponding to high-productivity eutrophic and mesotrophic waters of the northern and southern temperate humid belts and with the equatorial humid zone. Phytoplankton, the productivity of which depends primarily on the climatic zonality, is the main producer of suspended particulate matter in the surface water layer.

  10. Atlantic Ocean Carbon Experiment (acex): Implementation of Eddy Covariance Implementation of Eddy Covariance CO2 Flux Measurements on the SW Atlantic Ocean and Results from the Second Cruise

    Science.gov (United States)

    Schultz, C.; Pezzi, L. P.; Miller, S. D.; Martins, L. G.; Araujo, R. G.; Acevedo, O. C.; Moller, O.; Souza, R.; Tavano, V. M.; Farias, P.; Casagrande, F.

    2013-05-01

    The project observational and numerical study of heat, momentum and CO2 fluxes at the ocean-atmosphere interface in the South Atlantic Ocean - Atlantic Ocean Carbon Experiment (ACEx) combines observational and modeling approaches to characterize heat, momentum and CO2 fluxes at the ocean-atmosphere interface in the South Atlantic Ocean. This project is part of an innovative initiative aimed at providing a better understanding of the chemical, physical and dynamic processes of ocean-atmosphere interaction in micro and meso-scales at the South Atlantic Ocean, as well as fluxes across this interface. The ACEx project has performed three cruises so far, collecting measurements with CTDs and XBTs, launching radiosondes, and deploying a micro-meteorological tower to make in situ measurements of heat, momentum and CO2 fluxes. Our successful deployment of this tower represents the first use of a CO2 flux measurement system using eddy covariance technique in the Southwestern Atlantic Ocean. In this work, we present results from the second ACEx cruise, in which the crew onboard the Hydro-oceanographic Vessel Cruzeiro do Sul took measurements at 31 stations between Paranaguá (PR) and Chuí (RS). In addition to physical data, this cruise collected phytoplankton and nutrient data, allowing carbonic gas fluxes to be analyzed and compared with both physical and biological forcings. The highest chlorophyll concentrations were found in water derived from the La Plata River, which showed low salinity waters close to the surface. The influence of these waters was observed mainly at the southernmost stations of the cruise, coincident with increases on the CO2 fluxes that had remained slightly negative until then. This suggests that the biological forcings might have a significant impact on the gas fluxes in this area, through both respiration and the consumption of organic matter. We are currently working to apply circulation and biogeochemical models to evaluate the importance of

  11. Assessment and adjustment of sea surface salinity products from Aquarius in the southeast Indian Ocean based onin situ measurement and MyOcean modeled data

    Institute of Scientific and Technical Information of China (English)

    XIA Shenzhen; KE Changqing; ZHOU Xiaobing; ZHANG Jie

    2016-01-01

    Thein situ sea surface salinity (SSS) measurements from a scientific cruise to the western zone of the southeast Indian Ocean covering 30°-60°S, 80°-120°E are used to assess the SSS retrieved from Aquarius (Aquarius SSS). Wind speed and sea surface temperature (SST) affect the SSS estimates based on passive microwave radiation within the mid- to low-latitude southeast Indian Ocean. The relationships among thein situ, Aquarius SSS and wind-SST corrections are used to adjust the Aquarius SSS. The adjusted Aquarius SSS are compared with the SSS data from MyOcean model. Results show that: (1) Before adjustment: compared with MyOcean SSS, the Aquarius SSS in most of the sea areas is higher; but lower in the low-temperature sea areas located at the south of 55°S and west of 98°E. The Aquarius SSS is generally higher by 0.42 on average for the southeast Indian Ocean. (2) After adjustment: the adjustment greatly counteracts the impact of high wind speeds and improves the overall accuracy of the retrieved salinity (the mean absolute error of the Zonal mean is improved by 0.06, and the mean error is -0.05 compared with MyOcean SSS). Near the latitude 42°S, the adjusted SSS is well consistent with the MyOcean and the difference is approximately 0.004.

  12. Satellite-derived primary productivity and its spatial and temporal variability in the China seas%中国近海初级生产力的遥感研究及其时空演化

    Institute of Scientific and Technical Information of China (English)

    檀赛春; 石广玉

    2006-01-01

    temporal variability of satellite-derived ocean primary productivity may be influenced by physicochemical environmental conditions, such as the chlorophyll-a concentration, sea surface temperature, photosynthetically available radiation, the seasonally reversed monsoon, river discharge, upwelling, and the Kuroshio and coastal currents.

  13. A new approach to measure the ocean temperature using Brillouin lidar

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Zhiwei Lü; Yongkang Dong; Weiming He

    2006-01-01

    @@ An approach of lidar measurements of ocean temperature through measuring the spectral linewidth of the backscattered Brillouin lines is presented. An empirical equation for the temperature as a function of Brillouin linewidth and salinity is derived. Theoretical results are in good agreement with the experimental data. The equation also reveals the dependence of the temperature on the salinity and Brillouin linewidth.It is shown that the uncertainty of the salinity has very little impact on the temperature measurement.The uncertainty of this temperature measurement methodology is approximately 0.02 ℃.

  14. Data Filtering and Assimilation of Satellite Derived Aerosol Optical Depth Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite observations of the Earth often contain excessive noise and extensive data voids. Aerosol measurements, for instance, are obscured and contaminated by...

  15. Data Filtering and Assimilation of Satellite Derived Aerosol Optical Depth Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite observations of the Earth often contain excessive noise and extensive data voids. Aerosol measurements, for instance, are obscured and contaminated by...

  16. Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements

    Directory of Open Access Journals (Sweden)

    Julia A. Busch

    2016-10-01

    Full Text Available Marine processes are observed with sensors from both the ground and space over large spatio-temporal scales. Citizen-based contributions can fill observational gaps and increase environmental stewardship amongst the public. For this purpose, tools and methods for citizen science need to (1 complement existing datasets; and (2 be affordable, while appealing to different user and developer groups. In this article, tools and methods developed in the 7th Framework Programme of European Union (EU FP 7 funded project Citclops (citizens’ observatories for coast and ocean optical monitoring are reviewed. Tools range from a stand-alone smartphone app to devices with Arduino and 3-D printing, and hence are attractive to a diversity of users; from the general public to more specified maker- and open labware movements. Standardization to common water quality parameters and methods allows long-term storage in regular marine data repositories, such as SeaDataNet and EMODnet, thereby providing open data access. Due to the given intercomparability to existing remote sensing datasets, these tools are ready to complement the marine datapool. In the future, such combined satellite and citizen observations may set measurements by the engaged public in a larger context and hence increase their individual meaning. In a wider sense, a synoptic use can support research, management authorities, and societies at large.

  17. The Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite Data (HOAPS): A climatological atlas of satellite-derived air-sea interaction parameters over the world oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Grassl, H.; Jost, V.; Schulz, J.; RameshKumar, M.R.; Bauer, P.; Schluessel, P.

    temperature, specific humidity at air and sea surface temperature, difference in humidity, Dalton number, wind speed and the air sea fluxes such as latent heat, sensible heat and longwave radiation. The atlas also provides the hydrological cycle parameters..., the humidity difference, wind speed, the Dalton num- ber used for the parameterisation of latent heat flux, latent heat flux, sensible heat flux, net longwave radiation at the surface, evaporation, rainfall, and the freshwater flux computed as their difference...

  18. Ozone in the Boundary Layer air over the Arctic Oceanmeasurements during the TARA expedition

    Directory of Open Access Journals (Sweden)

    J. W. Bottenheim

    2009-03-01

    Full Text Available A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N – 88° N latitude. The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June after Polar sunrise. At other times of the year ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30–40 nmol mol−1 and summer minima of ca. 20 nmol mol−1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above −20°C during most ODEs (ozone depletion episodes. Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads developed in the spring of 2007.

  19. The CORA dataset: validation and diagnostics of ocean temperature and salinity in situ measurements

    Science.gov (United States)

    Cabanes, C.; Grouazel, A.; von Schuckmann, K.; Hamon, M.; Turpin, V.; Coatanoan, C.; Guinehut, S.; Boone, C.; Ferry, N.; Reverdin, G.; Pouliquen, S.; Le Traon, P.-Y.

    2012-03-01

    The French program Coriolis as part of the French oceanographic operational system produces the COriolis dataset for Re-Analysis (CORA) on a yearly basis which is based on temperature and salinity measurements on observed levels from different data types. The latest release of CORA covers the period 1990 to 2010. To qualify this dataset, several tests have been developed to improve in a homogeneous way the quality of the raw dataset and to fit the level required by the physical ocean re-analysis activities (assimilation and validation). These include some simple tests, climatological tests and a model background check based on a global ocean reanalysis. Visual quality control (QC) is performed on all suspicious temperature (T) and salinity (S) profiles identified by the tests and quality flags are modified in the dataset if necessary. In addition, improved diagnostic tools were developed - including global ocean indicators - which give information on the potential and quality of the CORA dataset for all applications. This Coriolis product is available on request through the MyOcean Service Desk (http://www.myocean.eu/).

  20. Measurements of Ocean Surface Turbulence and Wave-Turbulence Interactions (PREPRINT)

    Science.gov (United States)

    2008-02-19

    SUBTITLE Measurements of ocean surface turbulence and wave-turbulence interactions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...corrects the directional spreading caused by the conventional MLM technique (Isobe et al., 1984, Capon, 1969), and the Maximum Entropy Method (MEM, Lygre...5245-5248 (1998). Isobe, M., Kondo, K. & Horikawa, K. Extension of MLM for estimating directional wave spec- trum. Symposium on description and

  1. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    OpenAIRE

    J. Lee; Worden, J.; D. Noone; K. Bowman; A. Eldering; A. LeGrande; Li, J.-L. F.; Schmidt, G; Sodemann, H.

    2010-01-01

    We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES) over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently...

  2. Oceanic residual depth measurements, the plate cooling model, and global dynamic topography

    Science.gov (United States)

    Hoggard, Mark J.; Winterbourne, Jeff; Czarnota, Karol; White, Nicky

    2017-03-01

    Convective circulation of the mantle causes deflections of the Earth's surface that vary as a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. The complex architecture of continental lithosphere means that measurement of present-day dynamic topography is more straightforward in the oceanic realm. Here we present an updated methodology for calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness variations, for subsidence of oceanic lithosphere as a function of age and for non-hydrostatic geoid height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this methodology to a global database of 1936 seismic surveys located on oceanic crust and generate 2297 spot measurements of residual topography, including 1161 with crustal corrections. The resultant anomalies have amplitudes of ±1 km and wavelengths of ˜1000 km. Spectral analysis of our database using cross-validation demonstrates that spherical harmonics up to and including degree 30 (i.e., wavelengths down to 1300 km) are required to accurately represent these observations. Truncation of the expansion at a lower maximum degree erroneously increases the amplitude of inferred long-wavelength dynamic topography. There is a strong correlation between our observations and free-air gravity anomalies, magmatism, ridge seismicity, vertical motions of adjacent rifted margins, and global tomographic models. We infer that shorter wavelength components of the observed pattern of dynamic topography may be attributable to the presence of thermal anomalies within the shallow asthenospheric mantle.

  3. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    Science.gov (United States)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  4. Validation of Satellite-Derived Land Surface Temperature Products - Methods and Good Practice

    Science.gov (United States)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Biard, J.; Ghent, D.

    2014-12-01

    Land Surface Temperature (LST) is a key variable for surface water and energy budget calculations that can be obtained globally and operationally from satellite observations. LST is used for many applications, including weather forecasting, short-term climate prediction, extreme weather monitoring, and irrigation and water resource management. In order to maximize the usefulness of LST for research and studies it is necessary to know the uncertainty in the LST measurement. Multiple validation methods and activities are necessary to assess LST compliance with the quality specifications of operational users. This work presents four different validation methods that have been widely used to determine the uncertainties in LST products derived from satellite measurements. 1) The temperature based validation method involves comparisons with ground-based measurements of LST. The method is strongly limited by the number and quality of available field stations. 2) Scene-based comparisons involve comparing a new satellite LST product with a heritage LST product. This method is not an absolute validation and satellite LST inter-comparisons alone do not provide an independent validation measurement. 3) The radiance-based validation method does not require ground-based measurements and is usually used for large scale validation effort or for LST products with coarser spatial resolution (> 1km). 4) Time series comparisons are used to detect problems that can occur during the instrument's life, e.g. calibration drift, or unrealistic outliers due to cloud coverage. This study enumerates the sources of errors associated with each method. The four different approaches are complementary and provide different levels of information about the quality of the retrieved LST. The challenges in retrieving the LST from satellite measurements are discussed using results obtained for MODIS and VIIRS. This work contributes to the objective of the Land Product Validation (LPV) sub-group of the

  5. Oceanic CO{sub 2} measurements for the WOCE hydrographic survey in the Pacific Ocean, 1990--1991: Shore based analyses. Technical data report

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, P.R.; Keeling, C.D.; Emanuele, G. III

    1991-12-31

    The Office of Health and Environmental Research, of the US Department of Energy (DOE), actively supports global survey investigations of carbon dioxide in the oceans. This large scale study is in conjunction with the hydrographic program of the World Ocean Circulation Experiment (WOCE/HP). On ocean cruises operated by WOCE/HP, carbon dioxide analysis groups, from various oceanographic institutions, perform shipboard chemical measurements of the inorganic carbon system in the ocean. Measurements of total dissolved inorganic carbon (DIC) are of central importance to this carbon survey. Shipboard measurements of DIC were made by employing a coulometric technique. The majority of coulometric measurements were made on an integrated automatic device, the Single Operator Multi-Parameter Metabolic Analyzer (SOMMA). In addition to DIC determinations, shipboard analytical groups measured at least one additional parameter of sea water carbon chemistry. This was done to more fully characterize the inorganic carbon system of the sea water sample. This thechnical data report presents DIC and ALK measurements performed in the SIO laboratory on replicate samples collected on the five expedition legs of the WOCE/HP cruises.

  6. Extensive under-ice turbulence microstructure measurements in the central Arctic Ocean in 2015

    Science.gov (United States)

    Rabe, Benjamin; Janout, Markus; Graupner, Rainer; Hoelemann, Jens; Hampe, Hendrik; Hoppmann, Mario; Horn, Myriel; Juhls, Bennet; Korhonen, Meri; Nikolopoulos, Anna; Pisarev, Sergey; Randelhoff, Achim; Savy, John-Philippe; Villacieros, Nicolas

    2016-04-01

    The Arctic Ocean is a strongly stratified low-energy environment, where tides are weak and the upper ocean is protected by an ice cover during much of the year. Interior mixing processes are dominated by double diffusion. The upper Arctic Ocean features a cold surface mixed layer, which, separated by a sharp halocline, protects the sea ice from the warmer underlying Atlantic- and Pacific-derived water masses. These water masses carry nutrients that are important for the Arctic ecosystem. Hence vertical fluxes of heat, salt, and nutrients are crucial components in understanding the Arctic ecosystem. Yet, direct flux measurements are difficult to obtain and hence sparse. In 2015, two multidisciplinary R/V Polarstern expeditions to the Arctic Ocean resulted in a series of under-ice turbulence microstructure measurements. These cover different locations across the Eurasian and Makarov Basins, during the melt season in spring and early summer as well as during freeze-up in late summer. Sampling was carried out from ice floes with repeated profiles resulting in 4-24 hour-long time series. 2015 featured anomalously warm atmospheric conditions during summer followed by unusually low temperatures in September. Our measurements show elevated dissipation rates at the base of the mixed layer throughout all stations, with significantly higher levels above the Eurasian continental slope when compared with the Arctic Basin. Additional peaks were found between the mixed layer and the halocline, in particular at stations where Pacific Summer water was present. This contribution provides first flux estimates and presents first conclusions regarding the impact of atmospheric and sea ice conditions on vertical mixing in 2015.

  7. Ice-tethered measurement platforms in the Arctic Ocean: a contribution by the FRAM infrastructure program

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel

    2016-04-01

    The Arctic Ocean has been in the focus of many studies during recent years, investigating the state, the causes and the implications of the observed rapid transition towards a thinner and younger sea-ice cover. However, consistent observational datasets of sea ice, ocean and atmosphere are still sparse due to the limited accessibility and harsh environmental conditions. One important tool to fill this gap has become more and more feasible during recent years: autonomous, ice-tethered measurement platforms (buoys). These drifting instruments independently transmit their data via satellites, and enable observations over larger areas and over longer time periods than manned expeditions, even throughout the winter. One aim of the newly established FRAM (FRontiers in Arctic marine Monitoring) infrastructure program at the Alfred-Wegener-Institute is to realize and maintain an interdisciplinary network of buoys in the Arctic Ocean, contributing to an integrated, Arctic-wide observatory. The additional buoy infrastructure, ship-time, and developments provided by FRAM are critical elements in the ongoing international effort to fill the large data gaps in a rapidly changing Arctic Ocean. Our focus is the particularly underrepresented Eurasian Basin. Types of instruments range from snow depth beacons and ice mass balance buoys for monitoring ice growth and snow accumulation, over radiation and weather stations for energy budget estimates, to ice-tethered profiling systems for upper ocean monitoring. Further, development of new bio-optical and biogeochemical buoys is expected to enhance our understanding of bio-physical processes associated with Arctic sea ice. The first set of FRAM buoys was deployed in September 2015 from RV Polarstern. All datasets are publicly available on dedicated web portals. Near real time data are reported into international initiatives, such as the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). The

  8. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-01-01

    The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192

  9. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion.

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-03-30

    The Earth's surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data.

  10. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    Directory of Open Access Journals (Sweden)

    Junjie Wang

    2015-08-01

    Full Text Available Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD with a wavelet threshold denoising model (i.e., CEEMD-Wavelet. This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method.

  11. HOAPS precipitation validation with ship-borne rain and snow measurements over the Ocean

    Science.gov (United States)

    Bumke, Karl; Schröder, Marc; Fennig, Karsten

    2013-04-01

    Measuring precipitation over the oceans is still a challenging task. The main reason for a lack of such data can be attributed to the difficulty of measuring precipitation on moving platforms under high wind speeds. The progress in satellite technology has provided the possibility to retrieve global data sets from space, including precipitation. Levizzani et al. (2007) showed that precipitation over the oceans can be derived with sufficient accuracy from passive microwave radiometry. On the other hand, Andersson et al. (2011) pointed out that even state-of-the-art satellite retrievals and reanalysis data sets still disagree on global precipitation with respect to amounts, patterns, variability and temporal behaviour. This creates the need for ship-based precipitation validation data using instruments capable of accurately measuring rain rates even under high wind speed conditions. In the present study we use ship rain gauges (Hasse et al., 1998) and optical disdrometers (Großklaus et al., 1998), the latter is also capable to measure snow (Lempio et al., 2007). Measurements are point-to-area collocated against Hamburg Ocean Atmosphere Parameters and fluxes from Satellite (HOAPS) data (Andersson et al., 2011). The used HOAPS-S data subset contains all retrieved physical parameters at the native SSM/I (Special Sensor Microwave Imager) pixel-level resolution of approximately 50 km for each individual satellite. The algorithm does not discriminate between rain and snowfall. The satellite data is compared to the in situ measurement by the nearest neighbour approach. Therefore, it must be ensured that both observations are related to each other, which can be determined by the decorrelation length. At least a number of 660 precipitation events are at our disposal including 127 snow events. The statistical analysis follows the recommendations given by the World Meteorological Organization (WMO) for dichotomous or binary forecasts (WWRP/WGNE: http://www

  12. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes

    Directory of Open Access Journals (Sweden)

    Dilip K. Prasad

    2016-03-01

    Full Text Available We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds. The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS, moderate-resolution imaging spectroradiometer (MODIS, sea-viewing wide field-of-view sensor (SeaWiFS, coastal zone color scanner (CZCS, ocean and land colour instrument (OLCI, and visible infrared imaging radiometer suite (VIIRS sensors. Results are also shown for CIMEL’s SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included.

  13. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes

    Science.gov (United States)

    Prasad, Dilip K.; Agarwal, Krishna

    2016-01-01

    We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds). The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument (OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for CIMEL’s SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included. PMID:27011185

  14. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes.

    Science.gov (United States)

    Prasad, Dilip K; Agarwal, Krishna

    2016-03-22

    We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds). The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument (OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for CIMEL's SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included.

  15. The relationship between satellite-derived indices and species diversity across African savanna ecosystems

    Science.gov (United States)

    Mapfumo, Ratidzo B.; Murwira, Amon; Masocha, Mhosisi; Andriani, R.

    2016-10-01

    The ability to use remotely sensed diversity is important for the management of ecosystems at large spatial extents. However, to achieve this, there is still need to develop robust methods and approaches that enable large-scale mapping of species diversity. In this study, we tested the relationship between species diversity measured in situ with the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in the NDVI (CVNDVI) derived from high and medium spatial resolution satellite data at dry, wet and coastal savanna woodlands. We further tested the effect of logging on NDVI along the transects and between transects as disturbance may be a mechanism driving the patterns observed. Overall, the results of this study suggest that high tree species diversity is associated with low and high NDVI and at intermediate levels is associated with low tree species diversity and NDVI. High tree species diversity is associated with high CVNDVI and vice versa and at intermediate levels is associated with high tree species diversity and CVNDVI.

  16. Estimation of oceanic rainfall using passive and active measurements from SeaWinds spaceborne microwave sensor

    Science.gov (United States)

    Ahmad, Khalil Ali

    The Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel failure caused a premature end to the ADEOS-II satellite mission. SeaWinds operates at a frequency of 13.4 GHz, and was originally designed to measure the speed and direction of the ocean surface wind vector by relating the normalized radar backscatter measurements to the near surface wind vector through a geophysical model function (GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously measures the polarized radiometric emission from the surface and atmosphere, utilizing a ground signal processing algorithm known as the QuikSCAT/ SeaWinds Radiometer (QRad/SRad). This dissertation presents the development and validation of a mathematical inversion algorithm that combines the simultaneous active radar backscatter and the passive microwave brightness temperatures observed by the SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically based, and has been developed using collocated measurements from SeaWinds, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and Numerical Weather Prediction (NWP) wind fields from the National Centers for Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate the accuracy of the retrievals, examples of the passive-only, as well as the combined active/passive rain estimates from SeaWinds are presented, and comparisons are made with the standard

  17. Changes in satellite-derived impervious surface area at US historical climatology network stations

    Science.gov (United States)

    Gallo, Kevin; Xian, George

    2016-10-01

    The difference between 30 m gridded impervious surface area (ISA) between 2001 and 2011 was evaluated within 100 and 1000 m radii of the locations of climate stations that comprise the US Historical Climatology Network. The amount of area associated with observed increases in ISA above specific thresholds was documented for the climate stations. Over 32% of the USHCN stations exhibited an increase in ISA of ⩾20% between 2001 and 2011 for at least 1% of the grid cells within a 100 m radius of the station. However, as the required area associated with ISA change was increased from ⩾1% to ⩾10%, the number of stations that were observed with a ⩾20% increase in ISA between 2001 and 2011 decreased to 113 (9% of stations). When the 1000 m radius associated with each station was examined, over 52% (over 600) of the stations exhibited an increase in ISA of ⩾20% within at least 1% of the grid cells within that radius. However, as the required area associated with ISA change was increased to ⩾10% the number of stations that were observed with a ⩾20% increase in ISA between 2001 and 2011 decreased to 35 (less than 3% of the stations). The gridded ISA data provides an opportunity to characterize the environment around climate stations with a consistently measured indicator of a surface feature. Periodic evaluations of changes in the ISA near the USHCN and other networks of stations are recommended to assure the local environment around the stations has not significantly changed such that observations at the stations may be impacted.

  18. Satellite-derived determination of PM10 concentration and of the associated risk on public health

    Science.gov (United States)

    Sarigiannis, Dimosthenis; Sifakis, Nicolaos I.; Soulakellis, Nikos; Tombrou, Maria; Schaefer, Klaus P.

    2004-02-01

    Recent studies worldwide have revealed the relation between urban air pollution, particularly fine aerosols, and human health. The current state of the art in air quality assessment, monitoring and management comprises analytical measurements and atmospheric transport modeling. Earth observation from satellites provides an additional information layer through the calculation of synoptic air pollution indicators, such as atmospheric turbidity. Fusion of these data sources with ancillary data, including classification of population vulnerability to the adverse health effects of fine particulate and, especially, PM10 pollution, in the ambient air, integrates them into an optimally managed environmental information processing tool. Several algorithms pertaining to urban air pollution assessment using HSR satellite imagery have been developed and applied to urban sites in Europe such as Athens, Greece, the Po valley in Northern Italy, and Munich, Germany. Implementing these computational procedures on moderate spatial resolution (MSR) satellite data and coupling the result with the output of HSR data processing provides comprehensive and dynamic information on the spatial distribution of PM10 concentration. The result of EO data processing is corrected to account for the relative importance of the signal due to anthropogenic fine particles, concentrated in the lower troposphere. Fusing the corrected maps of PM10 concentration with data on vulnerable population distribution and implementation of epidemiology-derived exposure-response relationships results in the calculation of indices of the public health risk from PM10 concentration in the ambient air. Results from the pilot application of this technique for integrated environmental and health assessment in the urban environment are given.

  19. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Science.gov (United States)

    Cheng, S. J.; Steiner, A. L.; Hollinger, D. Y.; Bohrer, G.; Nadelhoffer, K. J.

    2016-07-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect the effect of diffuse light on CO2 uptake to sky conditions. We mechanistically link and quantify effects of cloud optical thickness (τc) to surface light and plant canopy CO2 uptake by comparing satellite retrievals of τc to ground-based measurements of diffuse and total photosynthetically active radiation (PAR; 400-700 nm) and gross primary production (GPP) in forests and croplands. Overall, total PAR decreased with τc, while diffuse PAR increased until an average τc of 6.8 and decreased with larger τc. When diffuse PAR increased with τc, 7-24% of variation in diffuse PAR was explained by τc. Light-use efficiency (LUE) in this range increased 0.001-0.002 per unit increase in τc. Although τc explained 10-20% of the variation in LUE, there was no significant relationship between τc and GPP (p > 0.05) when diffuse PAR increased. We conclude that diffuse PAR increases under a narrow range of optically thin clouds and the dominant effect of clouds is to reduce total plant-available PAR. This decrease in total PAR offsets the increase in LUE under increasing diffuse PAR, providing evidence that changes within this range of low cloud optical thickness are unlikely to alter the magnitude of terrestrial CO2 fluxes.

  20. Detecting shifts in tropical moisture imbalances with satellite-derived isotope ratios in water vapor

    Science.gov (United States)

    Bailey, A.; Blossey, P. N.; Noone, D.; Nusbaumer, J.; Wood, R.

    2017-06-01

    As global temperatures rise, regional differences in evaporation (E) and precipitation (P) are likely to become more disparate, causing the drier E-dominated regions of the tropics to become drier and the wetter P-dominated regions to become wetter. Models suggest that such intensification of the water cycle should already be taking place; however, quantitatively verifying these changes is complicated by inherent difficulties in measuring E and P with sufficient spatial coverage and resolution. This paper presents a new metric for tracking changes in regional moisture imbalances (e.g., E-P) by defining δDq—the isotope ratio normalized to a reference water vapor concentration of 4 mmol mol-1—and evaluates its efficacy using both remote sensing retrievals and climate model simulations in the tropics. By normalizing the isotope ratio with respect to water vapor concentration, δDq isolates the portion of isotopic variability most closely associated with shifts between E- and P-dominated regimes. Composite differences in δDq between cold and warm phases of El Niño-Southern Oscillation (ENSO) verify that δDq effectively tracks changes in the hydrological cycle when large-scale convective reorganization takes place. Simulated δDq also demonstrates sensitivity to shorter-term variability in E-P at most tropical locations. Since the isotopic signal of E-P in free tropospheric water vapor transfers to the isotope ratios of precipitation, multidecadal observations of both water vapor and precipitation isotope ratios should provide key evidence of changes in regional moisture imbalances now and in the future.

  1. Ecosystem evaluation (1989-2012) of Ramsar wetland Deepor Beel using satellite-derived indices.

    Science.gov (United States)

    Mozumder, Chitrini; Tripathi, N K; Tipdecho, Taravudh

    2014-11-01

    The unprecedented urban growth especially in developing countries has laid immense pressure on wetlands, finally threatening their existence altogether. A long-term monitoring of wetland ecosystems is the basis of planning conservation measures for a sustainable development. Deepor Beel, a Ramsar wetland and major storm water basin of the River Brahmaputra in the northeastern region of India, needs particular attention due to its constant degradation over the past decades. A rule-based classification algorithm was developed using Landsat (2011)-derived indices, namely Normalised Difference Water Index (NDWI), Modified Normalised Difference Water Index (MNDWI), Normalised Difference Pond Index (NDPI), Normalised Difference Vegetation Index (NDVI) and field data as ancillary information. Field data, ALOS AVNIR and Google Earth images were used for accuracy assessment. A fuzzy accuracy assessment of the classified data sets showed an overall accuracy of 82 % for MAX criteria and 90 % for RIGHT criteria. The rules were used to classify major wetland cover types during low water season (January) in 1989, 2001 and 2012. The statistical analysis of the classified wetland showed heavy manifestation in aquatic vegetation and other features indicating severe eutrophication over the past 23 years. This degradation was closely related to major contributing anthropogenic factors, such as a railway line construction, growing croplands, waste disposal and illegal human settlements in the wetland catchment. In addition, the landscape development index (LDI) indicated a rapid increase in the impact of the surrounding land use on the wetland from 1989 to 2012. The techniques and results from this study may prove useful for top-down landscape analyses of this and other freshwater wetlands.

  2. Modeling of groundwater draft based on satellite-derived crop acreage estimation over an arid region of northwest India

    Science.gov (United States)

    Bhadra, Bidyut Kumar; Kumar, Sanjay; Paliwal, Rakesh; Jeyaseelan, A. T.

    2016-11-01

    Over-exploitation of groundwater for agricultural crops puts stress on the sustainability of natural resources in the arid region of Rajasthan state, India. Hydrogeological study of groundwater levels of the study area during the pre-monsoon (May to June), post-monsoon (October to November) and post-irrigation (February to March) seasons of 2004-2005 to 2011-2012 shows a steady decline of groundwater levels at the rate of 1.28-1.68 m/year, mainly due to excessive groundwater draft for irrigation. Due to the low density of the groundwater observation-well network in the study area, assessment of groundwater draft, and thus groundwater resource management, becomes a difficult task. To overcome the situation, a linear groundwater draft model (LGDM) has been developed based on the empirical relationship between satellite-derived crop acreage and the observed groundwater draft for the year 2003-2004. The model has been validated for a decade, during three year-long intervals (2005-2006, 2008-2009 and 2011-2012) using groundwater draft, estimated through a discharge factor method. Further, the estimated draft was validated through observed pumping data from random sampled villages (2011-2012). The results suggest that the developed LGDM model provides a good alternative to the estimation of groundwater draft based on satellite-based crop area in the absence of groundwater observation wells in arid regions of northwest India.

  3. Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France

    Directory of Open Access Journals (Sweden)

    A. Brut

    2009-08-01

    Full Text Available A CO2-responsive land surface model (the ISBA-A-gs model of Météo-France is used to simulate photosynthesis and Leaf Area Index (LAI in southwestern France for a 3-year period (2001–2003. A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the interannual variability of LAI at a regional scale, is assessed with satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and two products are based on MODIS data. The comparison reveals discrepancies between the satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops than the satellite observations, which may be due to a saturation effect within the satellite signal or to uncertainties in model parameters. The simulated leaf onset presents a significant delay for C3 crops and mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale.

  4. Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France

    Directory of Open Access Journals (Sweden)

    A. Brut

    2009-04-01

    Full Text Available A CO2-responsive land surface model (the ISBA-A-gs model of Météo-France is used to simulate photosynthesis and Leaf Area Index (LAI in southwestern France for a 3-year period (2001–2003. A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the inter-annual variability of LAI at a regional scale, is assessed with two satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and the second is based on MODIS data. The comparison reveals discrepancies between the two satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops and coniferous trees than the satellite observations, which may be due to a saturation effect within the satellite signal. The simulated leaf onset presents a significant delay for mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale.

  5. Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France

    Science.gov (United States)

    Brut, A.; Rüdiger, C.; Lafont, S.; Roujean, J.-L.; Calvet, J.-C.; Jarlan, L.; Gibelin, A.-L.; Albergel, C.; Le Moigne, P.; Soussana, J.-F.; Klumpp, K.

    2009-04-01

    A CO2-responsive land surface model (the ISBA-A-gs model of Météo-France) is used to simulate photosynthesis and Leaf Area Index (LAI) in southwestern France for a 3-year period (2001-2003). A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the inter-annual variability of LAI at a regional scale, is assessed with two satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and the second is based on MODIS data. The comparison reveals discrepancies between the two satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops and coniferous trees than the satellite observations, which may be due to a saturation effect within the satellite signal. The simulated leaf onset presents a significant delay for mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale.

  6. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  7. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2010-07-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become more dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  8. Atmospheric, Non-Tidal Oceanic and Hydrological Loading Effects Observed with GPS Measurements

    Science.gov (United States)

    Boy, J. P.; Memin, A.; Watson, C.; Tregoning, P.

    2014-12-01

    The Copernicus Programme, being Europe's Earth Observation and Monitoring Programme led by the European Union, aims to provide, on a sustainable basis, reliable and timely services related to environmental and security issues. The Sentinel-3 mission forms part of the Copernicus Space Component. Its main objectives, building on the heritage and experience of the European Space Agency's (ESA) ERS and ENVISAT missions, are to measure sea-surface topography, sea- and land-surface temperature and ocean- and land-surface colour in support of ocean forecasting systems, and for environmental and climate monitoring. The series of Sentinel-3 satellites will ensure global, frequent and near-real time ocean, ice and land monitoring, with the provision of observation data in routine, long term (up to 20 years of operations) and continuous fashion, with a consistent quality and a high level of reliability and availability. The Sentinel-3 missions will be jointly operated by ESA and EUMETSAT. ESA will be responsible for the operations, maintenance and evolution of the Sentinel-3 ground segment on land related products and EUMETSAT for the marine products. The Sentinel-3 ground segment systematically acquires, processes and distributes a set of pre-defined core data products. Sentinel-3A is foreseen to be launched at the beginning of November 2015. The paper will give an overview on the mission, its instruments and objectives, the data products provided, the mechanisms to access the mission's data, and if available first results.

  9. The not-so-silent world: Measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean

    Science.gov (United States)

    Haver, Samara M.; Klinck, Holger; Nieukirk, Sharon L.; Matsumoto, Haru; Dziak, Robert P.; Miksis-Olds, Jennifer L.

    2017-04-01

    Anthropogenic noise in the ocean has been shown, under certain conditions, to influence the behavior and health of marine mammals. Noise from human activities may interfere with the low-frequency acoustic communication of many Mysticete species, including blue (Balaenoptera musculus) and fin whales (B. physalus). This study analyzed three soundscapes in the Atlantic Ocean, from the Arctic to the Antarctic, to document ambient sound. For 16 months beginning in August 2009, acoustic data (15-100 Hz) were collected in the Fram Strait (79°N, 5.5°E), near Ascension Island (8°S, 14.4°W) and in the Bransfield Strait (62°S, 55.5°W). Results indicate (1) the highest overall sound levels were measured in the equatorial Atlantic, in association with high levels of seismic oil and gas exploration, (2) compared to the tropics, ambient sound levels in polar regions are more seasonally variable, and (3) individual elements beget the seasonal and annual variability of ambient sound levels in high latitudes. Understanding how the variability of natural and man-made contributors to sound may elicit differences in ocean soundscapes is essential to developing strategies to manage and conserve marine ecosystems and animals.

  10. MAX-DOAS measurements of African continental pollution outflow over the Atlantic Ocean

    Science.gov (United States)

    Behrens, Lisa K.; Hilboll, Andreas; Peters, Enno; Richter, Andreas; Alvarado, Leonardo; Wittrock, Folkard; Burrows, John P.; Vrekoussis, Mihalis

    2017-04-01

    Enhanced levels of atmospheric key pollutants can regularly be identified over the Atlantic Ocean in global trace gas maps retrieved from satellite measurements. The aim of the DFG project COPMAR (Continental outflow of pollutants towards the marine troposphere) was to validate these enhanced values using ship-based measurements and to identify the spatial gradients of the pollutants NO2, CHOCHO, and HCHO over the Atlantic Ocean. Therefore, a multi-axis differential optical absorption spectrometer (MAX-DOAS) was installed on board the research vessel Maria S. Merian for the cruise MSM58/2. This cruise was conducted in October 2016 and went from Ponta Delgada (Azores) to Cape Town (South Africa), crossing between Cape Verde and the African continent. The instrument was continuously scanning the horizon looking towards the African continent, and the ship sailed at nearly constant speed during the whole cruise. In this study, we present the results from the MAX-DOAS measurements for the three species. We discuss the influence of different fit settings and a-priori assumptions on the results and present the observed spatial gradients along the cruise track. Finally, we compare our results with satellite measurements by the GOME-2 and OMI instruments and discuss possible sources of the discrepancies.

  11. Underground measurements of artificial radioactivity in squids from the western Pacific Ocean.

    Science.gov (United States)

    Zeng, Zhi; Mi, Yu-Hao; He, Jian-Hua; Ma, Hao; Cheng, Jian-Ping

    2017-08-01

    To investigate the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident's radiological effect on marine ecosystem, ash samples of squids from the western Pacific Ocean were collected in May 2014 and measured using an underground gamma-ray spectrometer in the underground laboratory JinPing. Low levels of (108m)Ag, (110m)Ag, (134)Cs and (137)Cs were detected, which indicates that the influence of the FDNPP accident on marine ecosystem is lasting but decreasing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    A. Tagliabue

    2012-06-01

    Full Text Available Due to its importance as a limiting nutrient for phytoplankton growth in large regions of the world's oceans, ocean water column observations of concentration of the trace-metal iron (Fe have increased markedly over recent decades. Here we compile >13 000 global measurements of dissolved Fe (dFe and make this available to the community. We then conduct a synthesis study focussed on the Southern Ocean, where dFe plays a fundamental role in governing the carbon cycle, using four regions, six basins and five depth intervals as a framework. Our analysis highlights depth-dependent trends in the properties of dFe between different regions and basins. In general, surface dFe is highest in the Atlantic basin and the Antarctic region. While attributing drivers to these patterns is uncertain, inter-basin patterns in surface dFe might be linked to differing degrees of dFe inputs, while variability in biological consumption between regions covaries with the associated surface dFe differences. Opposite to the surface, dFe concentrations at depth are typically higher in the Indian basin and the Subantarctic region. The inter-region trends can be reconciled with similar ligand variability (although only from one cruise, and the inter-basin difference might be explained by differences in hydrothermal inputs suggested by modelling studies (Tagliabue et al., 2010 that await observational confirmation. We find that even in regions where many dFe measurements exist, the processes governing the seasonal evolution of dFe remain enigmatic, suggesting that, aside from broad Subantarctic – Antarctic trends, biological consumption might not be the major driver of dFe variability. This highlights the apparent importance of other processes such as exogenous inputs, physical transport/mixing or dFe recycling processes. Nevertheless, missing measurements during key seasonal transitions make it difficult to better quantify and understand surface water replenishment

  13. Field measurements of aerosol production from whitecaps in the open ocean

    Directory of Open Access Journals (Sweden)

    S. J. Norris

    2012-10-01

    Full Text Available Simultaneous measurements of near-surface aerosol and bubble spectra were made during five buoy deployments in the open ocean of the North Atlantic and used to estimate aerosol fluxes per unit area of whitecap. The measurements were made during two cruises as part of the SEASAW project, a UK contribution to the international SOLAS program. The mean bubble number concentrations for each deployment are in broad agreement with other open ocean spectra and are consistently one to two orders of magnitude lower than previous laboratory and surf zone studies. This suggests that the aerosol fluxes estimated above open ocean whitecaps will differ to those from over the surf zone and laboratory whitecaps due to the differences in the size and number of bursting bubbles. Production fluxes per unit area of whitecap are estimated from the mean aerosol concentration for each buoy deployment. They are found to increase with wind speed, and span the range of values found by previous laboratory and surf-zone studies for particles with radius at 80% humidity, R80 < 1 μm, but to drop off more rapidly with increasing size for larger particles. A possible cause of this difference in behavior is the significant difference in bubble spectra. Estimates of the mean sea spray flux were made by scaling the whitecap production fluxes with in-situ estimates of whitecap fraction. The sea spray fluxes are also compared with simultaneous individual eddy covariance flux estimates made during the cruise, and with a sea spray source function derived from them.

  14. Assessing Disagreement and Tolerance of Misclassification of Satellite-derived Land Cover Products Used in WRF Model Applications

    Institute of Scientific and Technical Information of China (English)

    GAO Hao; JIA Gensuo

    2013-01-01

    As more satellite-derived land cover products used in the study of global change,especially climate modeling,assessing their quality has become vitally important.In this study,we developed a distance metric based on the parameters used in weather research and forecasting (WRF) to characterize the degree of disagreement among land cover products and to identify the tolerance for misclassification within the International Geosphere Biosphere Programme (IGBP) classification scheme.We determined the spatial degree of disagreement and then created maps of misclassification of Moderate Resolution Imaging Spectoradiometer (MODIS) products,and we calculated overall and class-specific accuracy and fuzzy agreement in a WRF model.Our results show a high level of agreement and high tolerance of misclassification in the WRF model between large-scale homogeneous landscapes,while a low level of agreement and tolerance of misclassification appeared in heterogeneous landscapes.The degree of disagreement varied significantly among seven regions of China.The class-specific accuracy and fuzzy agreement in MODIS Collection 4 and 5 products varied significantly.High accuracy and fuzzy agreement occurred in the following classes:water,grassland,cropland,and barren or sparsely vegetated.Misclassification mainly occurred among specific classes with similar plant functional types and low discriminative spectro-temporal signals.Some classes need to be improved further; the quality of MODIS land cover products across China still does not meet the common requirements of climate modeling.Our findings may have important implications for improving land surface parameterization for simulating climate and for better understanding the influence of the land cover change on climate.

  15. Earth Radioactivity Measurements with a Deep Ocean Anti-neutrino Observatory

    CERN Document Server

    Dye, S T; Learned, J G; Maricic, J; Matsuno, S; Pakvasa, S; Varner, G; Wilcox, M

    2006-01-01

    We consider the detector size, location, depth, backgrounds, and radio-purity required of a mid-Pacific deep-ocean instrument to accomplish the twin goals of making a definitive measurement of the electron anti-neutrino flux due to uranium and thorium decays from Earth's mantle and core, and of testing the hypothesis for a natural nuclear reactor at the core of Earth. We take the experience with the KamLAND detector in Japan as our baseline for sensitivity and background estimates. We conclude that an instrument adequate to accomplish these tasks should have an exposure of at least 10 kilotonne-years (kT-y), should be placed at least at 4 km depth, may be located close to the Hawaiian Islands (no significant background from them), and should aim for KamLAND radio-purity levels, except for radon where it should be improved by a factor of at least 40. With an exposure of 10 kT-y we should achieve a 24% measurement of the U/Th content of the mantle plus core. Exposure at multiple ocean locations for testing late...

  16. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    Science.gov (United States)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  17. Ocean measurements in the Ross and Amundsen Seas, NATHANIEL B PALMER Cruise 07-02, 03 February - 26 March 2007 (NODC Accession 0049900)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are reporting ocean CTD/O profiles and salinity, dissolved oxygen and nutrient measurements from rosette water bottles at 190 stations occupied from the western...

  18. Oceanographic profiles of temperature, salinity, and nutrients measurements collected using bottle in the Atlantic Ocean from the VNIRO institute from 2005-2006 (NCEI Accession 0045650)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profiles of temperature, salinity, and dissolved inorganic nutrients measurements collected using bottle in the Atlantic Ocean from the VNIRO institute...

  19. Oceanographic profile temperature, salinity and pressure measurements collected using moored buoy in the Indian Ocean from 2001-2006 (NODC Accession 0002733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity measurements in the Equatorial Indian from 2001 to 2006 from the TRITON (TRIANGLE TRANS-OCEAN BUOY NETWORK); JAPAN AGENCY FOR MARINE-EARTH...

  20. Principle and geomorphological applicability of summit level and base level technique using Aster Gdem satellite-derived data and the original software Baz

    OpenAIRE

    Akihisa Motoki; Kenji Freire Motoki; Susanna Eleonora Sichel; Samuel da Silva; José Ribeiro Aires

    2015-01-01

    This article presents principle and geomorphological applicability of summit level technique using Aster Gdem satellite-derived topographicdata. Summit level corresponds to thevirtualtopographic surface constituted bylocalhighest points, such as peaks and plateau tops, and reconstitutes palaeo-geomorphology before the drainage erosion. Summit level map is efficient for reconstitution of palaeo-surfaces and detection of active tectonic movement. Base level is thevirtualsurface composed oflocal...

  1. A system for remote measurements of the wind stress over the ocean

    Science.gov (United States)

    Large, William G.; Businger, J. A.

    1988-01-01

    The DISSTRESS system for remote measurements of the surface wind stress over the ocean from ships and buoys is described. It is fully digital, utilizing the inertial dissipation technique. Parallel processing allows anemometer data to be filtered in natural frequency space; that is, the filter cutoffs shift linearly with the mean wind speed of the data to be filtered. The construction of the digital Butterworth bandpass filters is presented in detail. The performance of the system is evaluated by analyzing the results from 28 days of operation during the Frontal Air-Sea Interaction Experiment. The mean wind speed is checked, the anemometer response function is established, and drag coefficients are compared to previous studies. The capability of the system is demonstrated by continuous time series of the friction velocity computed every 20 min. The conclusion is that the surface wind stress can be measured more reliably and accurately (20 percent) with this system than from anemometer wind speeds and a bulk formula.

  2. Determination of the Ocean Tide Constituents Loading Based on GPS Measurements in the Chinese Offshore Islands

    Science.gov (United States)

    Liu, Y.; Wu, Z.; He, X.; Peng, L.

    2015-12-01

    Ocean tide loading largely affects the accuracy of GPS positioning. In turn, GPS measurements could be used to monitor the ocean tide loading effect. In this paper, 67-days GPS observations from two island GPS stations, respectively located in the East China Sea and the South China Sea, were collected and calculated in 30s sampling rate using the Precise Point Positioning (PPP) algorithm. The variation of GPS observed position time series are 2cm in the horizontal and 7cm in the vertical generated by the ocean tide loading effect and other error sources. With the power spectra analysis by the Fast Fourier Transform (FFT), the eigenvalues of the semidiurnal constituents and the diurnal constituents are obtained from the GPS estimates time series. The calculated frequencies are well agreements to the known within the error less than 1.5% for K1,Q1, O1, K2,S2, M2,N2, but P1 within 4.2%. The calculated amplitudes are also well consistent with the results from the global tide models FES2004,NAO.99 and GOT4.7. Their difference in the amplitude are mostly less than 5mm in the horizontal and the vertical direction, except K1 and M2. The maximum amplitude difference occurs in K1 and M2 up to 1.5cm in the vertical direction. In additional, two islands locate at the different transmission Channel, but they give the same calculated frequency in the horizontal and the vertical directional, respectively for 8 tidal constituents. This exhibits they belongs to the same tide wave system as in fact.

  3. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    Abhijit Sarkar; Sujit Basu; A K Varma; Jignesh Kshatriya

    2002-09-01

    The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time series data available for 240 hours in the month of May, 1999 were subjected to an auto-correlation analysis. The analysis indicates an exponential fall of the auto- correlation in the first few hours with a decorrelation time scale of about 6 hours. For a meaningful comparison between satellite derived products and in situ data, satellite data acquired at different time intervals should be used with appropriate `weights', rather than treating the data as concurrent in time. This paper presents a scheme for temporal weighting using the auto-correlation analysis. These temporal `weights' can potentially improve the root mean square (rms) deviation between satellite and in situ measurements. A case study using the TRMM Microwave Imager (TMI) and Indian Ocean buoy wind speed data resulted in an improvement of about 10%.

  4. Measurement of polyethylene pipe parameters during an ocean deployment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoppmann, R. F.; Ritchie, P. L.

    1978-11-15

    Data were acquired on the behavior of the polyethylene upwelling pipe for the GRI/DOE Marine Biomass Biological Test Farm during several phases of pipe assembly and ocean towing and deployment. The pipe is nominally 28 in O.D., 1400 feet long with wall thicknesses of 0.9 and 1.75 inches. The entire effort was conducted over a period of six weeks and was implemented on a strictly non-interference basis with the main Biomass Program. Three types of data were acquired during shore and ocean based operations conducted in the southern California area during the period from 15 September-27 September 1978. Axial strain data were obtained from two rows of 15 transducers each, separated circumferentially by 90/sup 0/ and distributed along the entire length of the pipe. Photographic data were also acquired from helicopter, boat and shore stationed cameras. The third type of data acquired were lowering line tension measurements made during the second successful deployment operation.

  5. Measuring gross and net calcification of a reef coral under ocean acidification conditions: methodological considerations

    Directory of Open Access Journals (Sweden)

    S. Cohen

    2012-07-01

    Full Text Available Ongoing ocean acidification (OA is rapidly altering carbonate chemistry in the oceans. The projected changes will likely have deleterious consequences for coral reefs by negatively affecting their growth. Nonetheless, diverse responses of reef-building corals calcification to OA hinder our ability to decipher reef susceptibility to elevated pCO2. Some of the inconsistencies between studies originate in measuring net calcification (NC, which does not always consider the proportions of the "real" (gross calcification (GC and gross dissolution in the observed response. Here we show that microcolonies of Stylophora pistillata (entirely covered by tissue, incubated under normal (8.2 and reduced (7.6 pH conditions for 16 months, survived and added new skeletal CaCO3, despite low (1.25 Ωarg conditions. Moreover, corals maintained their NC and GC rates under reduced (7.6 pH conditions and displayed positive NC rates at the low-end (7.3 pH treatment while bare coral skeleton underwent marked dissolution. Our findings suggest that S. pistillata may fall into the "low sensitivity" group with respect to OA and that their overlying tissue may be a key determinant in setting their tolerance to reduced pH by limiting dissolution and allowing them to calcify. This study is the first to measure GC and NC rates for a tropical scleractinian corals under OA conditions. We provide a detailed, realistic assessment of the problematic nature of previously accepted methods for measuring calcification (total alkalinity and 45Ca.

  6. Onboard measurement system of atmospheric carbon monoxide over the Pacific Ocean by voluntary observing ships

    Directory of Open Access Journals (Sweden)

    H. Nara

    2011-07-01

    Full Text Available Long-term monitoring of carbon monoxide (CO mixing ratios in the atmosphere over the Pacific Ocean is being carried out on commercial cargo vessels participating in the National Institute for Environmental Studies Voluntary Observing Ships program. The program provides a regular platform for measurement of atmospheric CO along four cruising routes: from Japan to Oceania, from Japan to the United States, from Japan to Canada, and from Japan to Southeast Asia. Flask samples are collected during every cruise for subsequent analysis in the laboratory, and in 2005, continuous shipboard CO measurements were initiated on three of the routes. Here, we describe the system we developed for onboard measurement of CO mixing ratios with a commercially available gas filter correlation CO analyzer. The fully automated system measures CO in ambient air, and the detector sensitivity and background signals are calibrated by referencing the measurements to a CO-in-air standard gas (~1 ppmv and to CO-free air scrubbed with a catalyst, respectively. We examined the artificial production of CO in the high-pressure working gas standards (CO balanced with purified air at ppmv levels during storage by referencing the measurements to CO standard gases maintained as our primary scale before and after use on the ships. The onboard performance of the continuous CO measurement system was evaluated by comparing its data with data from laboratory analyses of flask samples using gas chromatography with a reduction gas detector. The reasonably good consistency between the two independent measurement methods demonstrated the good performance of both methods over the course of 3–5 yr. The continuous measurement system was more useful than the flask sampling method for regionally polluted air masses, which were often encountered on Southeast Asian cruises.

  7. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  8. Varying applicability of four different satellite-derived soil moisture products to global gridded crop model evaluation

    Science.gov (United States)

    Sakai, Toru; Iizumi, Toshichika; Okada, Masashi; Nishimori, Motoki; Grünwald, Thomas; Prueger, John; Cescatti, Alessandro; Korres, Wolfgang; Schmidt, Marius; Carrara, Arnaud; Loubet, Benjamin; Ceschia, Eric

    2016-06-01

    Satellite-derived daily surface soil moisture products have been increasingly available, but their applicability to global gridded crop model (GGCM) evaluation is unclear. This study compares four different soil moisture products with the flux tower site observation at 18 cropland sites across the world where either of maize, soybean, rice and wheat is grown. These products include the first and second versions of Climate Change Initiative Soil Moisture (CCISM-1 and CCISM-2) datasets distributed by the European Space Agency and two different AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System)-derived soil moisture datasets, separately provided by the Japan Aerospace Exploration Agency (AMSRE-J) and U.S. National Aeronautics and Space Administration (AMSRE-N). The comparison demonstrates varying reliability of these products in representing major characteristics of temporal pattern of cropland soil moisture by product and crop. Possible reasons for the varying reliability include the differences in sensors, algorithms, bands and criteria used when estimating soil moisture. Both the CCISM-1 and CCISM-2 products appear the most reliable for soybean- and wheat-growing area. However, the percentage of valid data of these products is always lower than other products due to relatively strict criteria when merging data derived from multiple sources, although the CCISM-2 product has much more data with valid retrievals than the CCISM-1 product. The reliability of the AMSRE-J product is the highest for maize- and rice-growing areas and comparable to or slightly lower than the CCISM products for soybean- and wheat-growing areas. The AMSRE-N is the least reliable in most location-crop combinations. The reliability of the products for rice-growing area is far lower than that of other upland crops likely due to the extensive use of irrigation and patch distribution of rice paddy in the area examined here. We conclude that the CCISM-1, CCISM-2 and AMSRE

  9. Method and application of ocean environmental awareness measurement: Lessons learnt from university students of China.

    Science.gov (United States)

    Umuhire, Marie Louise; Fang, Qinhua

    2016-01-30

    Different studies have proved that enhancing public Ocean Environmental Awareness (OEA) will lead to increased public support for ocean environmental protection. Our study develops a questionnaire to investigate current levels of students' OEA from three aspects including ocean environmental concerns, ocean environment knowledge and willingness to participate in ocean related activities. This questionnaire was applied to students from Xiamen University to understand the OEA of university students in China, of which there are few studies. Using data gathered from a random purposive sample, the OEA level of students in Xiamen University was investigated and then the influencing factors (education, geographical situation, age and gender etc.) were further analyzed. Findings suggest that most students are concerned about the ocean environment but their knowledge is not enough that makes the willingness to participate in ocean related actions limited as well. The results show there is an urgent need to improve students' OEA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements.

    Science.gov (United States)

    Powell, Brian S; Kerry, Colette G; Cornuelle, Bruce D

    2013-10-01

    Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations.

  11. Facilitymetrics for Big Ocean Science: Towards Improved Measurement of Scientific Impact

    Science.gov (United States)

    Juniper, K.; Owens, D.; Moran, K.; Pirenne, B.; Hallonsten, O.; Matthews, K.

    2016-12-01

    Cabled ocean observatories are examples of "Big Science" facilities requiring significant public investments for installation and ongoing maintenance. Large observatory networks in Canada and the United States, for example, have been established after extensive up-front planning and hundreds of millions of dollars in start-up costs. As such, they are analogous to particle accelerators and astronomical observatories, which may often be required to compete for public funding in an environment of ever-tightening national science budget allocations. Additionally, the globalization of Big Science compels these facilities to respond to increasing demands for demonstrable productivity, excellence and competitiveness. How should public expenditures on "Big Science" facilities be evaluated and justified in terms of benefits to the countries that invest in them? Published literature counts are one quantitative measure often highlighted in the annual reports of large science facilities. But, as recent research has demonstrated, publication counts can lead to distorted characterizations of scientific impact, inviting evaluators to calculate scientific outputs in terms of costs per publication—a ratio that can be simplistically misconstrued to conclude Big Science is wildly expensive. Other commonly promoted measurements of Big Science facilities include technical reliability (a.k.a. uptime), provision of training opportunities for Highly Qualified Personnel, generation of commercialization opportunities, and so forth. "Facilitymetrics" is a new empirical focus for scientometrical studies, which has been applied to the evaluation and comparison of synchrotron facilities. This paper extends that quantitative and qualitative examination to a broader inter-disciplinary comparison of Big Science facilities in the ocean science realm to established facilities in the fields of astronomy and particle physics.

  12. Reconstruction of ocean velocities from the synergy between SSH and SST measurements

    Science.gov (United States)

    Isern-Fontanet, Jordi; Turiel, Antonio

    2013-04-01

    Recent advances in our understanding of the dynamics in the upper layers of the ocean have allowed us to develop methodologies to recover high resolution velocities from surface measurements such as Sea Surface Heights (SSH) and Sea Surface Temperatures (SST). These methods are based on the combined use of advanced signal processing techniques, such as wavelet analysis and singularity analysis, with dynamical approaches such as the Surface Quasi-Geostrophic (SQG) equations. Within the SQG framework, SSH and SST are closely related, which can be exploited to develop a synergetic approach that combines existing satellite measurements of these fields that can be used to recover subsurface buoyancy anomaly, surface and subsurface horizontal velocities and vertical velocities in the upper 300-500 m. Sentinel-3 satellite will follow its predecessors, ERS-1/2 and Envisat, and will provide simultaneous measurements of SST (SLSTR instrument) and SSH (SRAL and auxiliary instruments) that can be combined to produce high resolution surface currents. To test the feasibility of this approach for Sentinel-3 satellites we have reconstructed surface currents from AATSR and RA data provided by Envisat and compared results against independent SSH measurements provided Jason-1/2 platforms.

  13. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    Science.gov (United States)

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  14. Influence of measurement uncertainties on fractional solubility of iron in mineral aerosols over the oceans

    Science.gov (United States)

    Meskhidze, Nicholas; Johnson, Matthew S.; Hurley, David; Dawson, Kyle

    2016-09-01

    The atmospheric supply of mineral dust iron (Fe) plays a crucial role in the Earth's biogeochemical cycle and is of specific importance as a micronutrient in the marine environment. Observations show several orders of magnitude variability in the fractional solubility of Fe in mineral dust aerosols, making it hard to assess the role of mineral dust in the global ocean biogeochemical Fe cycle. In this study we compare the operational solubility of mineral dust aerosol Fe associated with the flow-through leaching protocol to the results of the global 3-D chemical transport model GEOS-Chem. According to the protocol, aerosol Fe is defined as soluble by first deionized water leaching of mineral dust through a 0.45 μm pore size membrane followed by acidification and storage of the leachate over a long period of time prior to analysis. To estimate the uncertainty in soluble Fe results introduced by the flow-through leaching protocol, we prescribe an average 50% (range of 30-70%) fractional solubility to sub-0.45 μm sized mineral dust particles that may inadvertently pass the filter and end up in the acidified (at pH ∼ 1.7) leachate for a couple of month period. In the model, the fractional solubility of Fe is either explicitly calculated using a complex mineral aerosol Fe dissolution equations, or prescribed to be 1% and 4% often used by global ocean biogeochemical Fe cycle models to reproduce the broad characteristics of the presently observed ocean dissolved iron distribution. Calculations show that the fractional solubility of Fe derived through the flow-through leaching is higher compared to the model results. The largest differences (∼40%) are predicted to occur farther away from the dust source regions, over the areas where sub-0.45 μm sized mineral dust particles contribute a larger fraction of the total mineral dust mass. This study suggests that different methods used in soluble Fe measurements and inconsistences in the operational definition of

  15. From silk to satellite: Half a century of ocean colour anomalies in the Northeast Atlantic

    KAUST Repository

    Raitsos, Dionysios E.

    2014-04-23

    Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites - the Coastal Zone Colour Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998-2010). Due to the large gap between the two satellite eras and differences in sensor characteristics, comparison of the absolute values retrieved from the two instruments remains challenging. Using a unique in situ ocean colour dataset that spans more than half a century, the two satellite-derived chlorophyll-a (Chl-a) eras are linked to assess concurrent changes in phytoplankton variability and bloom timing over the Northeast Atlantic Ocean and North Sea. Results from this unique re-analysis reflect a clear increasing pattern of Chl-a, a merging of the two seasonal phytoplankton blooms producing a longer growing season and higher seasonal biomass, since the mid-1980s. The broader climate plays a key role in Chl-a variability as the ocean colour anomalies parallel the oscillations of the Northern Hemisphere Temperature (NHT) since 1948. © 2013 John Wiley & Sons Ltd.

  16. Coastal ocean research in sub-Saharan Africa: towards operational oceanography using satellites, in situ measurements and numerical models

    Science.gov (United States)

    Shillington, Frank

    Sub-Saharan Africa is greatly influenced by major western boundary currents of the Indian Ocean, Agulhas Current and the Somali Current (for six months of the year), and the major eastern boundary upwelling current systems of the Atlantic Ocean, with their concomitant nu-trient rich upwelling ecosystems which support large fisheries: the Benguela Upwelling System and the Canary Upwelling System. The location of the tip of placecountry-regionSouth Africa is unique in the world oceans, since it is such the only place where a warm western boundary current can interact with a cold upwelling ecosystem. In addition, the Agulhas Current is unique in that it retroflects 80% of its large volume flux back into the placeIndian Ocean. The interocean transport of warm thermocline water from the Indian to the placeAtlantic ocean is of global importance. Satellite observations of temperature, chlorophyll, sea surface height, and wind and waves have elucidated many of these first order processes. Numerical ocean models forced and constrained by satellite measurements are being increasingly used to place operational oceanography on a sound footing. Partnerships with African and northern hemisphere collaborators (e.g. the new Norwegian Nansen-Tutu Centre for Marine Research, PlaceNamePrinceton PlaceTypeUniversity) will enhance operational oceanography around placeAfrica to the benefit of all its inhabitants. All of the above aspects will be discussed, with specific examples of local innovative space borne techniques.

  17. Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements

    Science.gov (United States)

    Hu,Yongxiang

    2009-01-01

    CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.

  18. Analysis of the PKT correction for direct CO2 flux measurements over the ocean

    Directory of Open Access Journals (Sweden)

    S. Landwehr

    2013-10-01

    Full Text Available Eddy covariance measurements of air–sea CO2 fluxes can be affected by cross-sensitivities of the CO2 measurement to water vapour, resulting in order-of-magnitude biases. Well established causes for these biases are (i cross-sensitivity of the broadband non-dispersive infrared sensors due to band-broadening and spectral overlap (commercial sensors typically correct for this and (ii the effect of air density fluctuations (removed by determining the CO2 mixing ratio respective to dry air. However, another bias related to water vapour fluctuations has recently been observed with open-path sensors, and was attributed to sea salt build-up and water films on sensor optics. Two very different approaches have been used to deal with these water vapour-related biases. Miller et al. (2010 employed a membrane drier to physically eliminate 97% of the water vapour fluctuations in the sample air before it enters the gas analyser. Prytherch et al. (2010a on the other hand, employed the empirical (Peter K. Taylor, PKT post-processing correction to correct open-path sensor data. In this paper, we test these methods side by side using data from the Surface Ocean Aerosol Production (SOAP experiment in the Southern Ocean. The air–sea CO2 flux was directly measured with four closed-path analysers, two of which were positioned down-stream of a membrane dryer. The CO2 fluxes from the two dried gas analysers matched each other and were in general agreement with common parametrisations. The flux estimates from the un-dried sensors agreed with the dried sensors only during periods with low latent heat flux (≤ 7 W m−2. When latent heat flux was higher, CO2 flux estimates from the un-dried sensors exhibited large scatter and an order-of magnitude bias. We applied the PKT correction to the flux data from the un-dried analysers and found that it did not remove the bias when compared to the data from the dried gas analyser. Our detailed analysis of the correction

  19. Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean

    Science.gov (United States)

    Bailleul, B.; Park, J.; Brown, C. M.; Bidle, K. D.; Lee, S.; Falkowski, P. G.

    2016-02-01

    For decades, a lack of understanding of how respiration is influenced by light has been stymying our ability to quantitatively analyze how phytoplankton allocate carbon in situ and the biological mechanisms that participate to the fate of blooms. Using membrane inlet mass spectrometry (MIMS), the light dependencies of gross photosynthesis and oxygen uptake rates were measured during the bloom demises of two prymnesiophytes, in two open ocean regions. In the North Atlantic, dominated by Emiliania huxleyi, respiration was independent of irradiance and was higher than the gross photosynthetic rate at all irradiances. In the Amundsen Sea (Antarctica), dominated by Phaeocystis antarctica, the situation was very different. Dark respiration was one order of magnitude lower than the maximal gross photosynthetic rate. ut the oxygen uptake rate increased by 10 fold at surface irradiances, where it becomes higher than gross photosynthesis. Our results suggest that the light dependence of oxygen uptake in P. antarctica has two sources: one is independent of photosynthesis, and is possibly associated with the photo-reduction of O2 mediated by dissolved organic matter; the second reflects the activity of an oxidase fueled in the light with photosynthetic electron flow. Interestingly, these dramatic light-dependent changes in oxygen uptake were not reproduced in nutrient-replete P. antarctica cultures, in the laboratory. Our measurements highlight the importance of improving our understanding of oxygen consuming reactions in the euphotic zone, which is critical to investigating the physiology of phytoplankton and tracing the fate of phytoplankton blooms.

  20. Hybrid Atmospheric, Land, and Oceanic (HALO) Measurements for Next-Generation Remote Sensing Applications

    Science.gov (United States)

    Bernhard, G. H.; Morrow, J. H.; Booth, C. R.; Hooker, S.

    2011-12-01

    In response to the need for oceanographers to be able to make atmospheric and oceanic observations during mission calibration exercises, NASA partnered with Biospherical Instruments Inc to develop a new class of instruments based on very small and highly accurate microradiometers. These innovative radiometers have been developed as part of a new vicarious calibration paradigm called the Optical Sensors for Planetary Radiant Energy (OSPREy) project with emphasis on achieving greater spectral resolution in optically complex (coastal) waters. An OSPREy sensor suite includes radiometers equipped with cosine diffusers and robotic shadow bands to measure global and diffuse irradiance, as well as radiometers with 2.5° field-of-view radiance optics mounted on pointing units to measure the Sun, Moon, sky, and sea. OSPREy sensors are temperature-stabilized, hybrid instruments consisting of up to 19 fixed-wavelength (filter) microradiometers (spanning 320 to 1640 nm) and a Zeiss spectrograph (300 to 785 or 1100 nm). The filter channels have a bandwidth of 10 nm, a dynamic range of 10 orders of magnitude, and can sample simultaneously at rates up to 20 Hz. Sensors are NIST traceable and can be calibrated using a new instrument called the OSPREy Transfer Radiometer (OXR). OSPREy radiance radiometers have a nine-position filter-wheel in line with the spectrograph fiber optics to permit hyperspectral polarimetric measurements, direct-Sun viewing, stray-light correction, and dark current measurements. A miniature camera is integrated in radiance sensors for locating the Sun (accuracy of ±0.02°) and verifying the condition of all targets (cloud-free solar disk, cloud presence in sky data, and sea surface debris or foam detection). The pointing device has an angular velocity of up to 50° per second for sky observations, including almucantar and principle plane scans. Atmospheric data from a field commissioning exercise are presented, focusing on global, diffuse, and direct

  1. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean- New constraints from high-resolution satellite-derived gravity data

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Chaubey, A; Mishra, A; Kumar, S.; Rajawat, A

    is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned...

  2. Real-time Data Assimilation of Satellite Derived Ice Concentration into the Arctic Cap Nowcast/Forecast System (ACNFS)

    Science.gov (United States)

    2011-09-01

    North America , Technology Solutions Group Stennis Space Center, MS 39529 USA M.W. Phelps Jacobs Engineering Stennis Space Center, MS 39529 USA...precipitation rates (i.e., snowfall ); a model of ice dynamics that predicts the velocity field of the ice pack based on a model of the material strength of the...the Data Assimilation and Model Evaluation Experiments North Atlantic data, the International Bathymetric Chart of the Arctic Ocean data, the

  3. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies

    Science.gov (United States)

    Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha

    2014-05-01

    Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science

  4. Torricelli and the ocean of air: the first measurement of barometric pressure.

    Science.gov (United States)

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  5. Novel Measurements and Techniques for Outlet Glacier Fjord Ice/Ocean Interactions

    Science.gov (United States)

    Behar, A.; Howat, I. M.; Holland, D. M.; Ahlstrom, A. P.; Larsen, S. H.

    2014-12-01

    Glacier fjord bathymetry and conditions indicate that they play fundamental roles for outlet glacier dynamics and thus knowledge of these parameters is extremely beneficial to upcoming models that predict changes. In particular, the bathymetry of a fjord gives important information about the exchange between fjord waters close to marine-terminating glaciers and the shelf and ocean. Currently, only sparse bathymetric data near the ice fronts are available for the majority of fjords in Greenland. The challenge in obtaining these measurements is that the fjord melange environment is a terrible one for mechanical gear, or ship or any other kind of access. There is hope however, and this work focuses on novel ways of obtaining this data using a multitude of upcoming technologies and techniques that are now being tested and planned. The span of the techniques described include but are not limited to: 1) manned helicopter-based live-reading instruments and deployable/retriavable sensor packages http://www.motionterra.com/fjord/ 2) remote or autonomous unmanned miniature boats (Depth/CTD), and 3) UAV's that either read live data or deploy small sensors that can telemeter their data (ice-flow trackers, image acquisition, etc.). A review of current results obtained at Jakobshavn and Upernavik Glaciers will be given as well as a description of the techniques and hardware used.

  6. MyOSD 2014: Evaluating Oceanographic Measurements Contributed by Citizen Scientists in Support of Ocean Sampling Day.

    Science.gov (United States)

    Schnetzer, Julia; Kopf, Anna; Bietz, Matthew J; Buttigieg, Pier Luigi; Fernandez-Guerra, Antonio; Ristov, Aleksandar Pop; Glöckner, Frank Oliver; Kottmann, Renzo

    2016-03-01

    The first Ocean Sampling Day (OSD) took place on June 21, 2014. In a coordinated effort, an internationally distributed group of scientists collected samples from marine surface waters in order to study microbial diversity on a single day with global granularity. Concurrently, citizen scientists enriched the OSD initiative through the MyOSD project, providing additional oceanographic measurements crucial to the contextualization of microbial diversity. Clear protocols, a user-friendly smartphone application, and an online web-form guided citizens in accurate data acquisition, promoting quality submissions to the project's information system. To evaluate the coverage and quality of MyOSD data submissions, we compared the sea surface temperature measurements acquired through OSD, MyOSD, and automatic in situ systems and satellite measurements. Our results show that the quality of citizen-science measurements was comparable to that of scientific measurements. As 79% of MyOSD measurements were conducted in geographic areas not covered by automatic in situ or satellite measurement, citizen scientists contributed significantly to worldwide oceanographic data gathering. Furthermore, survey results indicate that participation in MyOSD made citizens feel more engaged in ocean issues and may have increased their environmental awareness and ocean literacy.

  7. MyOSD 2014: Evaluating Oceanographic Measurements Contributed by Citizen Scientists in Support of Ocean Sampling Day

    Directory of Open Access Journals (Sweden)

    Julia Schnetzer

    2015-11-01

    Full Text Available The first Ocean Sampling Day (OSD took place on June 21, 2014. In a coordinated effort, an internationally distributed group of scientists collected samples from marine surface waters in order to study microbial diversity on a single day with global granularity. Concurrently, citizen scientists enriched the OSD initiative through the MyOSD project, providing additional oceanographic measurements crucial to the contextualization of microbial diversity. Clear protocols, a user-friendly smartphone application, and an online web-form guided citizens in accurate data acquisition, promoting quality submissions to the project’s information system. To evaluate the coverage and quality of MyOSD data submissions, we compared the sea surface temperature measurements acquired through OSD, MyOSD, and automatic in situ systems and satellite measurements. Our results show that the quality of citizen-science measurements was comparable to that of scientific measurements. As 79% of MyOSD measurements were conducted in geographic areas not covered by automatic in situ or satellite measurement, citizen scientists contributed significantly to worldwide oceanographic data gathering. Furthermore, survey results indicate that participation in MyOSD made citizens feel more engaged in ocean issues and may have increased their environmental awareness and ocean literacy.

  8. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements

    Science.gov (United States)

    Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R.

    2012-11-01

    A new estimate of the Global Ocean 3D geostrophic circulation from the surface down to 1500 m depth (Surcouf3D) has been computed for the 1993-2008 period using an observation-based approach that combines altimetry with temperature and salinity through the thermal wind equation. The validity of this simple approach was tested using a consistent dataset from a model reanalysis. Away from the boundary layers, errors are less than 10% in most places, which indicate that the thermal wind equation is a robust approximation to reconstruct the 3D oceanic circulation in the ocean interior. The Surcouf3D current field was validated in the Atlantic Ocean against in-situ observations. We considered the ANDRO current velocities deduced at 1000 m depth from Argo float displacements as well as velocity measurements at 26.5°N from the RAPID-MOCHA current meter array. The Surcouf3D currents show similar skill to the 3D velocities from the GLORYS Mercator Ocean reanalysis in reproducing the amplitude and variability of the ANDRO currents. In the upper 1000 m, high correlations are also found with in-situ velocities measured by the RAPID-MOCHA current meters. The Surcouf3D current field was then used to compute estimates of the Atlantic Meridional Overturning Circulation (AMOC) through the 25°N section, showing good comparisons with hydrographic sections from 1998 and 2004. Monthly averaged AMOC time series are also consistent with the RAPID-MOCHA array and with the GLORYS Mercator Ocean reanalysis over the April 2004-September 2007 period. Finally a 15 years long time series of monthly estimates of the AMOC was computed. The AMOC strength has a mean value of 16 Sv with an annual (resp. monthly) standard deviation of 2.4 Sv (resp. 7.1 Sv) over the 1993-2008 period. The time series, characterized by a strong variability, shows no significant trend.

  9. A decade of physical and biogeochemical measurements in the Northern Indian Ocean.

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Sardesai, S.; Ramaiah, N.

    of the coupling between the physical and biogeochemical fields in the northern Indian Ocean over the seasonal scale have enhanced tremendously, a sustained regional observational network including repeat sections, moored arrays and drifters is needed...

  10. Ocean currents measured by Shipboard Acoustic Doppler Current Profilers (SADCP) from global oceans accumulated at Joint Archive for SADCP from 2004 to 2013 (NODC Accession 0123302)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  11. Ocean currents measured by shipboard ADCP from global oceans from the Joint Archive for Shipboard ADCP holdings from 2000-07 to 2012-02 (NODC Accession 0093159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  12. Ocean Acidification from space: recent advances

    Science.gov (United States)

    Sabia, Roberto; Shutler, Jamie; Land, Peter; Fernandez-Prieto, Diego; Donlon, Craig; Reul, Nicolas

    2017-04-01

    satellite data sources. The overarching long-term objectives are to develop new algorithms and data processing strategies to overcome the relative immaturity of OA satellite products currently available, and to produce a global, temporally evolving, quasi-operational suite of OA satellite-derived data. References: [1] Land, P., J. Shutler, H. Findlay, F. Girard-Ardhuin, R. Sabia, N. Reul, J.-F. Piolle, B. Chapron, Y. Quilfen, J. Salisbury, D. Vandemark, R. Bellerby, and P. Bhadury, "Salinity from space unlocks satellite-based assessment of ocean acidification", Environmental Science & Technology, DOI: 10.1021/es504849s, Publication Date (Web): January 8, 2015 [2] Salisbury, J., D. Vandemark, B. Jönsson, W. Balch, S. Chakraborty, S. Lohrenz, B. Chapron, B. Hales, A. Mannino, J.T. Mathis, N. Reul, S.R. Signorini, R. Wanninkhof, and K.K. Yates. 2015. How can present and future satellite missions support scientific studies that address ocean acidification? Oceanography 28(2):108-121, http://dx.doi.org/10.5670/oceanog.2015.35. [3] Sabia R., D. Fernández-Prieto, J. Shutler, C. Donlon, P. Land, N. Reul, Remote Sensing of Surface Ocean pH Exploiting Sea Surface Salinity Satellite Observations, IGARSS '15 (International Geoscience and Remote Sensing Symposium), Milano, Italy, July 27 -31, 2015.

  13. Ocean color measurements onboard a jet ski: consistency for calval exercise of high-resolution satellite imagery?

    Science.gov (United States)

    Martiny, Nadège; Dehouck, Aurélie; Froidefond, Jean-Marie; Sénéchal, Nadia

    2009-01-01

    An original data set has been acquired on the 5th of April 2008 during the international field experiment ECORS-Truc Vert 2008 (SW France) in the nearshore zone over a complex bathymetry and in moderate turbid waters (SPM RAMSES sensors which measure simultaneous atmospheric downwelling irradiances Ed and in-water upwelling radiances Lu in the 350-950nm range. Water samples have also been collected at different stages of the jet-ski trajectory (3-25m water depth) in order to assess the concentrations of the ocean constituents (SPM and Chl-a). In the current study we present a methodology to validate FORMOSAT-2 high-resolution ocean color data using "jetski" reflectance measurements, which first require a detailed analysis. The reflectance spectra measurements are shown to be consistent: (i) they are typical of the presence of mineral particles with light absorption at short wavelengths; (ii) their shape and magnitude depend on the depth and the water type (turbidity); (iii) some of them, especially in low turbid waters, are similar to other reflectance spectra measured northward from a ship (Gironde mouth). Thus, the use of "jet-ski" ocean color measurements appears to be adequate for remote sensing calval activities in shallow case-2 waters.

  14. A global compilation of over 13 000 dissolved iron measurements: focus on distributions and processes in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    A. Tagliabue

    2011-11-01

    Full Text Available Due to its importance as a limiting nutrient for phytoplankton growth in large regions of the world's oceans, ocean water column observations of concentration of the trace-metal iron (Fe have increased markedly over recent decades. Here we compile > 13 000 global measurements of dissolved Fe (dFe and make this available to the community. We then conduct a synthesis study focussed on the Southern Ocean, where dFe plays a fundamental role in governing the carbon cycle, using four regions, six basins and five depth intervals as a framework. Our analysis reveals the importance of biological activity and dFe inputs in governing the inter-region and inter-basin differences in surface dFe, respectively. In deep waters, the major controls of inter-region and inter-basin dFe variability are ligand distributions and deep dFe inputs or water mass characteristics, respectively. We find that even in regions where many dFe measurements exist, the processes governing the seasonal evolution of dFe remain enigmatic, suggesting that, aside from broad sub-Antarctic-Antarctic trends, biological activity might not the major driver of dFe variability. Nevertheless, missing measurements during key seasonal transitions make it difficult to better quantify and understand surface water replenishment processes and the seasonal Fe cycle. Statistical differences exist in the measured dFe between measurements taken over the period 1989–2002 and 2003–2008, which may reflect progress in clean sampling and analysis techniques. Finally, we detail the degree of seasonal coverage by region, basin and depth. By synthesising prior measurements we suggest a role for different processes and highlight key gaps in understanding, which we hope can help structure future research efforts in the Southern Ocean.

  15. The Atlantic Meridional Transect: Spatially Extensive Calibration and Validation of Optical Properties and Remotely Sensed Measurements of Ocean Colour

    Science.gov (United States)

    Aiken, James; Hooker, Stanford

    1997-01-01

    Twice a year, the Royal Research Ship (RRS) James Clark Ross (JCR) steams a meridional transect of the atlantic Ocean between Grimsly (UK) and Stanley (Falkland Islands) with a port call in Montevideo (Uruguay), as part of the annual research activities of the British Antarctic Survey (BAS). In September, the JCR sails from the UK, and the following April it makes the return trip. The ship is operated by the BAS for the Natural Environment Research Council (NERC). The Atlantic Meridional Transect (AMT) Program exploits the passage of the JCR from approximately 50 deg. N to 50 deg. S with a primary objective to investigate physical and biological processes, as well as to measure the mesi-to-basin-scale bio-optical properties of the atlantic Ocean. The calibration and validation of remotely sensed observations of ocean colour is an inherent objective of these studies: first, by relating in situ measurements of water leaving radiance to satellite measurement, and second, by measuring the bio-optically active constituents of the water.

  16. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    Science.gov (United States)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-01-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop yields and

  17. Analysis of Dual-Frequency Ocean Backscatter Measurements at Ku- and Ka-Bands Using Near-Nadir Incidence GPM Radar Data

    OpenAIRE

    NOUGUIER, Frederic; Mouche, Alexis; Rascle, Nicolas; Chapron, Bertrand; Vandemark, Douglas

    2016-01-01

    Global colocalized ocean surface measurements using the Global Precipitation Measurement near-nadir dual-frequency Ku- and Ka-band microwave measurements are analyzed and compared. Focusing on the Ka and Ku cross-sections fall-off with incidence angles, the contemporaneous measurements enable to more precisely document differing ocean scattering characteristics for both microwave frequencies. Sensitivity with wind speed and significant wave height is further reported using global comparisons ...

  18. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Science.gov (United States)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  19. The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements

    Directory of Open Access Journals (Sweden)

    C. Cabanes

    2013-01-01

    Full Text Available The French program Coriolis, as part of the French operational oceanographic system, produces the COriolis dataset for Re-Analysis (CORA on a yearly basis. This dataset contains in-situ temperature and salinity profiles from different data types. The latest release CORA3 covers the period 1990 to 2010. Several tests have been developed to ensure a homogeneous quality control of the dataset and to meet the requirements of the physical ocean reanalysis activities (assimilation and validation. Improved tests include some simple tests based on comparison with climatology and a model background check based on a global ocean reanalysis. Visual quality control is performed on all suspicious temperature and salinity profiles identified by the tests, and quality flags are modified in the dataset if necessary. In addition, improved diagnostic tools have been developed – including global ocean indicators – which give information on the quality of the CORA3 dataset and its potential applications. CORA3 is available on request through the MyOcean Service Desk (http://www.myocean.eu/.

  20. Dynamic Simulations of Realistic Upper-Ocean Flow Processes to Support Measurement and Data Analysis

    Science.gov (United States)

    2015-09-30

    shear turbulence . The more uniform mean velocity profile is related to the strong mixing effect of the Langmuir circulations. This mixing effect...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Dynamic Simulations of Realistic Upper-Ocean Flow ...and evolution of Langmuir cells in simulations ; quantify the statistics of Langmuir turbulence . • Investigate the onset of wave breaking; quantify

  1. Comparison of Polarimetric SAR Techniques for the Measurement of Directional Ocean Wave Spectra

    Science.gov (United States)

    2005-07-25

    II . ORIENTATION ANGLE INTENSITY MODULATION The first polarimetric SAR technique has been investigated for improving the visibility of...Buoy, Bodega Bay). Modulations in the polarization orientation angle induced by azimuth traveling ocean waves in the study area were visible in the

  2. A global ocean inventory of anthropogenic mercury based on water column measurements

    NARCIS (Netherlands)

    Lamborg, C.H.; Hammerschmidt, C.R.; Bowman, K.L.; Swarr, G.J.; Munson, K.M.; Ohnemus, D.C.; Lam, P.L.; Heimbürger, L.-E.; Rijkenberg, M.J.A.; Saito, M.A.

    2014-01-01

    Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by

  3. The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements

    Science.gov (United States)

    Cabanes, C.; Grouazel, A.; von Schuckmann, K.; Hamon, M.; Turpin, V.; Coatanoan, C.; Paris, F.; Guinehut, S.; Boone, C.; Ferry, N.; de Boyer Montégut, C.; Carval, T.; Reverdin, G.; Pouliquen, S.; Le Traon, P.-Y.

    2013-01-01

    The French program Coriolis, as part of the French operational oceanographic system, produces the COriolis dataset for Re-Analysis (CORA) on a yearly basis. This dataset contains in-situ temperature and salinity profiles from different data types. The latest release CORA3 covers the period 1990 to 2010. Several tests have been developed to ensure a homogeneous quality control of the dataset and to meet the requirements of the physical ocean reanalysis activities (assimilation and validation). Improved tests include some simple tests based on comparison with climatology and a model background check based on a global ocean reanalysis. Visual quality control is performed on all suspicious temperature and salinity profiles identified by the tests, and quality flags are modified in the dataset if necessary. In addition, improved diagnostic tools have been developed - including global ocean indicators - which give information on the quality of the CORA3 dataset and its potential applications. CORA3 is available on request through the MyOcean Service Desk (http://www.myocean.eu/).

  4. A global ocean inventory of anthropogenic mercury based on water column measurements

    NARCIS (Netherlands)

    Lamborg, C.H.; Hammerschmidt, C.R.; Bowman, K.L.; Swarr, G.J.; Munson, K.M.; Ohnemus, D.C.; Lam, P.L.; Heimbürger, L.-E.; Rijkenberg, M.J.A.; Saito, M.A.

    2014-01-01

    Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by

  5. Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation

    Science.gov (United States)

    Vogel, Ronald L.; Brown, Christopher W.

    2016-07-01

    Improving forecasts of salinity from coastal hydrodynamic models would further our predictive capacity of physical, chemical, and biological processes in the coastal ocean. However, salinity is difficult to estimate in coastal and estuarine waters at the temporal and spatial resolution required. Retrieving sea surface salinity (SSS) using satellite ocean color radiometry may provide estimates with reasonable accuracy and resolution for coastal waters that could be assimilated into hydrodynamic models to improve SSS forecasts. We evaluated the applicability of satellite SSS retrievals from two algorithms for potential assimilation into National Oceanic and Atmospheric Administration's Chesapeake Bay Operational Forecast System (CBOFS) hydrodynamic model. Of the two satellite algorithms, a generalized additive model (GAM) outperformed that of an artificial neural network (ANN), with mean bias and root-mean-square error (RMSE) of 1.27 and 3.71 for the GAM and 3.44 and 5.01 for the ANN. However, the RMSE for the SSS predicted by CBOFS (2.47) was lower than that of both satellite algorithms. Given the better precision of the CBOFS model, assimilation of satellite ocean color SSS retrievals will not improve CBOFS forecasts of SSS in Chesapeake Bay. The bias in the GAM SSS retrievals suggests that adding a variable related to precipitation may improve its performance.

  6. Microstructure measurements along a quasi-meridional transect in the northeastern Atlantic Ocean

    NARCIS (Netherlands)

    Jurado, E.; van der Woerd, H.J.; Dijkstra, H.A.

    2012-01-01

    This study presents vertical profiles of turbulence parameters obtained in the upper 100 m of the northeastern Atlantic Ocean along a transect from tropical permanently stratified waters to subpolar seasonally stratified waters in July–August 2009. The focus is to fully characterize the vertical mix

  7. Scientific opportunities using satellite surface wind stress measurements over the ocean

    Science.gov (United States)

    1982-01-01

    Scientific opportunities that would be possible with the ability to collect wind data from space are highlighted. Minimum requirements for the space platform and ground data reduction system are assessed. The operational uses that may develop in government and commercial applications of these data are reviewed. The opportunity to predict the large-scale ocean anomaly called El Nino is highlighted.

  8. Oceanic Wind Speed and Wind Stress Estimation from Ambient Noise Measurements.

    Science.gov (United States)

    1977-02-01

    it was found that noise records may be used to monitor wind speed and wind stress over the ocean. Time series of wind speeds can be produced from...wind direction, the wind stress has also been estimated and vector-averaged. The monthly mean stress from the authors’ data is higher than values

  9. Method for transferring data between at least one lagrangian buoy for measuring currents for ocean and costal environments and a base station, and lagrangian buoy for measuring currents for ocean and costal environments

    OpenAIRE

    Martínez-Ledesma, Miquel; Álvarez, Alberto; Vizoso, Guillermo; Tintoré, Joaquín

    2011-01-01

    [EN] Method for transferring data between at least one lagrangian buoy for measuring currents for ocean and coastal environments and a base station, which comprises capturing data by the buoy by means of the parameter-measuring sensors and the GPS receiver and storing said data in a first file which is segmented into packets of a maximum length defined by the SBD Iridium protocol for the subsequent sending thereof to the base station. The invention also relates to the lagrangian buoy for meas...

  10. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    Science.gov (United States)

    Pisso, I.; Myhre, C. Lund; Platt, S. M.; Eckhardt, S.; Hermansen, O.; Schmidbauer, N.; Mienert, J.; Vadakkepuliyambatta, S.; Bauguitte, S.; Pitt, J.; Allen, G.; Bower, K. N.; O'Shea, S.; Gallagher, M. W.; Percival, C. J.; Pyle, J.; Cain, M.; Stohl, A.

    2016-12-01

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol m-2 s-1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH4 fluxes from the Svalbard continental platform below 0.2 Tg yr-1. All estimates are in the lower range of values previously reported.

  11. Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and polarimetric measurements over ocean

    Science.gov (United States)

    Xu, Feng; Dubovik, Oleg; Zhai, Peng-Wang; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Litvinov, Pavel; Bovchaliuk, Andrii; Garay, Michael J.; van Harten, Gerard; Davis, Anthony B.

    2016-07-01

    An optimization approach has been developed for simultaneous retrieval of aerosol properties and normalized water-leaving radiance (nLw) from multispectral, multiangular, and polarimetric observations over ocean. The main features of the method are (1) use of a simplified bio-optical model to estimate nLw, followed by an empirical refinement within a specified range to improve its accuracy; (2) improved algorithm convergence and stability by applying constraints on the spatial smoothness of aerosol loading and Chlorophyll a (Chl a) concentration across neighboring image patches and spectral constraints on aerosol optical properties and nLw across relevant bands; and (3) enhanced Jacobian calculation by modeling and storing the radiative transfer (RT) in aerosol/Rayleigh mixed layer, pure Rayleigh-scattering layers, and ocean medium separately, then coupling them to calculate the field at the sensor. This approach avoids unnecessary and time-consuming recalculations of RT in unperturbed layers in Jacobian evaluations. The Markov chain method is used to model RT in the aerosol/Rayleigh mixed layer and the doubling method is used for the uniform layers of the atmosphere-ocean system. Our optimization approach has been tested using radiance and polarization measurements acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over the AERONET USC_SeaPRISM ocean site (6 February 2013) and near the AERONET La Jolla site (14 January 2013), which, respectively, reported relatively high and low aerosol loadings. Validation of the results is achieved through comparisons to AERONET aerosol and ocean color products. For comparison, the USC_SeaPRISM retrieval is also performed by use of the Generalized Retrieval of Aerosol and Surface Properties algorithm (Dubovik et al., 2011). Uncertainties of aerosol and nLw retrievals due to random and systematic instrument errors are analyzed by truth-in/truth-out tests with three Chl a concentrations, five aerosol loadings

  12. SACRA – global data sets of satellite-derived crop calendars for agricultural simulations: an estimation of a high-resolution crop calendar using satellite-sensed NDVI

    Directory of Open Access Journals (Sweden)

    S. Kotsuki

    2015-01-01

    Full Text Available To date, many studies have performed numerical estimations of food production and agricultural water demand to understand the present and future supply–demand relationship. A crop calendar (CC is an essential input datum to estimate food production and agricultural water demand accurately with the numerical estimations. CC defines the date or month when farmers plant and harvest in cropland. This study aims to develop a new global data set of a satellite-derived crop calendar for agricultural simulations (SACRA and reveal advantages and disadvantages of the satellite-derived CC compared to other global products. We estimate global CC at a spatial resolution of 5 min (≈10 km using the satellite-sensed NDVI data, which corresponds well to vegetation growth and death on the land surface. We first demonstrate that SACRA shows similar spatial pattern in planting date compared to a census-based product. Moreover, SACRA reflects a variety of CC in the same administrative unit, since it uses high-resolution satellite data. However, a disadvantage is that the mixture of several crops in a grid is not considered in SACRA. We also address that the cultivation period of SACRA clearly corresponds to the time series of NDVI. Therefore, accuracy of SACRA depends on the accuracy of NDVI used for the CC estimation. Although SACRA shows different CC from a census-based product in some regions, multiple usages of the two products are useful to take into consideration the uncertainty of the CC. An advantage of SACRA compared to the census-based products is that SACRA provides not only planting/harvesting dates but also a peak date from the time series of NDVI data.

  13. Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology

    Directory of Open Access Journals (Sweden)

    Javier Cadena

    2012-03-01

    Full Text Available The Ocean Bottom Seismometer (OBS is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal–to-Noise Ratio (SNR based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth’s crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

  14. Ocean bottom seismometer: design and test of a measurement system for marine seismology.

    Science.gov (United States)

    Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A; Owen, Tim; Cadena, Javier

    2012-01-01

    The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal-to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth's crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

  15. Temporal and spatial characteristics of surface ozone depletion events from measurements over the Arctic Ocean

    Science.gov (United States)

    Halfacre, J. W.; Knepp, T. N.; Stephens, C. R.; Pratt, K. A.; Shepson, P.; Simpson, W. R.; Peterson, P. K.; Walsh, S. J.; Matrai, P. A.; Bottenheim, J. W.; Netcheva, S.; Perovich, D. K.; Richter, A.

    2012-12-01

    Arctic tropospheric ozone depletion events (ODEs) have been studied primarily from coastal sites since the mid 1980s with only a few studies occurring over the Arctic Ocean, the hypothesized site of initiation. Despite a multitude of studies, some basic characteristics of ODEs remain poorly defined, including their temporal, spatial, and meteorological characteristics. Several deployments of autonomous, ice-tethered buoys (O-Buoys) were used to elucidate such characteristics from both the Arctic Ocean and coastal sites. The apparent first order decays imply an ozone lifetime (median of 11 hours) that would correspond to a very large BrO concentration, relative to BrO observations obtained from the buoys. These results suggest that ODEs involve a large, unaccounted for source of bromine atoms, that there is a significant contribution from other mechanisms possibly not involving bromine, or that the majority of observed ODEs represent advection of previously-depleted air to the buoy site, even in the Arctic Ocean. Using backward air mass trajectories, the spatial scales for ODEs (defined by time periods with O3 ≤ 15 nmol/mol) were estimated to be ~1800 km (mode), suggesting that most of the lower troposphere above the Arctic Ocean is frequently, at least partially, depleted of ozone. Using the same method, areas estimated to be highly depleted of O3 (ice-tethered O-Buoys provide unique data to study the characteristics of ODEs; however, more remote and simultaneous surface observations over the Arctic Ocean are necessary to enable study of both the site(s) and mechanism(s) of ODE initiation.

  16. A robust method for removal of glint effects from satellite ocean colour imagery

    Directory of Open Access Journals (Sweden)

    R. K. Singh

    2014-12-01

    Full Text Available Removal of the glint effects from satellite imagery for accurate retrieval of water-leaving radiances is a complicated problem since its contribution in the measured signal is dependent on many factors such as viewing geometry, sun elevation and azimuth, illumination conditions, wind speed and direction, and the water refractive index. To simplify the situation, existing glint correction models describe the extent of the glint-contaminated region and its contribution to the radiance essentially as a function of the wind speed and sea surface slope that often lead to a tremendous loss of information with a considerable scientific and financial impact. Even with the glint-tilting capability of modern sensors, glint contamination is severe on the satellite-derived ocean colour products in the equatorial and sub-tropical regions. To rescue a significant portion of data presently discarded as "glint contaminated" and improving the accuracy of water-leaving radiances in the glint contaminated regions, we developed a glint correction algorithm which is dependent only on the satellite derived Rayleigh Corrected Radiance and absorption by clear waters. The new algorithm is capable of achieving meaningful retrievals of ocean radiances from the glint-contaminated pixels unless saturated by strong glint in any of the wavebands. It takes into consideration the combination of the background absorption of radiance by water and the spectral glint function, to accurately minimize the glint contamination effects and produce robust ocean colour products. The new algorithm is implemented along with an aerosol correction method and its performance is demonstrated for many MODIS-Aqua images over the Arabian Sea, one of the regions that are heavily affected by sunglint due to their geographical location. The results with and without sunglint correction are compared indicating major improvements in the derived products with sunglint correction. When compared to the

  17. Estimating Uncertainties in Bio-Optical Products Derived from Satellite Ocean Color Imagery Using an Ensemble Approach

    Science.gov (United States)

    2011-01-01

    We propose a methodology to quantify errors and produce uncertainty maps for satellite-derived ocean color bio -optical products using ensemble...retrievals of bio -optical properties from satellite ocean color imagery are related to a variety of factors, including sensor calibration, atmospheric...correction, and the bio -optical inversion algorithms. Errors propagate, amplify, and intertwine along the processing path, so it is important to

  18. Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

    Science.gov (United States)

    Feistel, R.; Wielgosz, R.; Bell, S. A.; Camões, M. F.; Cooper, J. R.; Dexter, P.; Dickson, A. G.; Fisicaro, P.; Harvey, A. H.; Heinonen, M.; Hellmuth, O.; Kretzschmar, H.-J.; Lovell-Smith, J. W.; McDougall, T. J.; Pawlowicz, R.; Ridout, P.; Seitz, S.; Spitzer, P.; Stoica, D.; Wolf, H.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  19. Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview.

    Science.gov (United States)

    Feistel, R; Wielgosz, R; Bell, S A; Camões, M F; Cooper, J R; Dexter, P; Dickson, A G; Fisicaro, P; Harvey, A H; Heinonen, M; Hellmuth, O; Kretzschmar, H-J; Lovell-Smith, J W; McDougall, T J; Pawlowicz, R; Ridout, P; Seitz, S; Spitzer, P; Stoica, D; Wolf, H

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth's radiation balance, atmospheric water vapour is the strongest "greenhouse" gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  20. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  1. Autonomous Measurements of Oceanic Dissolved Nitrate from Commercially Available Profiling Floats Equipped with ISUS

    Science.gov (United States)

    2013-09-30

    required CTD checks and calibration . If the ISUS were on the upper cap, the position of the fiber optics, and the resulting ISUS calibration , might...intervals between October of 2009 and May of 2013. The ISUS sensor is generally stable over this time with the exception of jump in calibration of ∼1 µmol...Situ Ultraviolet Spectrophotometer : sensor integration into the Apex profiling float. Journal of Atmospheric and Oceanic Technology, 30, 1854-1866

  2. Classification of Tropical Oceanic Precipitation using High Altitude Aircraft: Microwave and Electric Field Measurements

    Science.gov (United States)

    Hood, Robbie E.; Cecil, Daniel; LaFontaine, Frank J.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald; Marks, Frank, Jr.; Zipser, Edward

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration ER-2 high altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scans collected by the National Oceanic and Atmospheric Administration WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  3. Measurement of turbulence in the oceanic mixed layer using Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    S. G. George

    2012-09-01

    Full Text Available Turbulence in the surface layer of the ocean contributes to the transfer of heat, gas and momentum across the air-sea boundary. As such, study of turbulence in the ocean surface layer is becoming increasingly important for understanding its effects on climate change. Direct Numerical Simulation (DNS techniques were implemented to examine the interaction of small-scale wake turbulence in the upper ocean layer with incident electromagnetic radar waves. Hydrodynamic-electromagnetic wave interaction models were invoked to demonstrate the ability of Synthetic Aperture Radar (SAR to observe and characterise surface turbulent wake flows. A range of simulated radar images are presented for a turbulent surface current field behind a moving surface vessel, and compared with the surface flow fields to investigate the impact of turbulent currents on simulated radar backscatter. This has yielded insights into the feasibility of resolving small-scale turbulence with remote-sensing radar and highlights the potential for extracting details of the flow structure and characteristics of turbulence using SAR.

  4. Investigating the usefulness of satellite derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system

    Directory of Open Access Journals (Sweden)

    E. N. Koffi

    2015-01-01

    Full Text Available We investigate the utility of satellite measurements of chlorophyll fluorescence (Fs in constraining gross primary productivity (GPP. We ingest Fs measurements into the Carbon-Cycle Data Assimilation System (CCDAS which has been augmented by the fluorescence component of the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE model. CCDAS simulates well the patterns of Fs suggesting the combined model is capable of ingesting these measurements. However simulated Fs is insensitive to the key parameter controlling GPP, the carboxylation capacity (Vcmax. Simulated Fs is sensitive to both the incoming absorbed photosynthetically active radiation (aPAR and leaf chlorophyll concentration both of which are treated as perfectly known in previous CCDAS versions. Proper use of Fs measurements therefore requires enhancement of CCDAS to include and expose these variables.

  5. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  6. Improvements of Satellite Derived Cyclonic Rainfall Over The North Atlantic and Implications Upon The Air-sea Interaction

    Science.gov (United States)

    Klepp, C.; Bakan, S.; Grassl, H.

    out why the con vective cluster rainfall is systematically absent in the NWP models. These mesoscale storm clusters contribute up to 25% to the total amount of rainfall in North Atlantic cyclones. Systematically neglecting these rainfall equiva lents of 1 Sv of freshwater flux into the North Atlantic account for large errors in the water cycle. Further analysis of VOS and HOAPS (Hamburg Ocean and Atmosphere Parameters and Fluxes from Satellite 1 Data) data points out the climatological importance of the cyclones for the water- and energy cycle over the North Atlantic. 2

  7. Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications

    Science.gov (United States)

    Heim, B.; Abramova, E.; Doerffer, R.; Günther, F.; Hölemann, J.; Kraberg, A.; Lantuit, H.; Loginova, A.; Martynov, F.; Overduin, P. P.; Wegner, C.

    2014-08-01

    Enhanced permafrost warming and increased Arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. We used optical operational satellite data from the ocean colour sensor MERIS (Medium-Resolution Imaging Spectrometer) aboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigenous matter on the shallow Laptev Sea shelf. Despite the high cloud coverage in summer that is inherent to this Arctic region, time series from MERIS satellite data from 2006 on to 2011 could be acquired and were processed using the Case-2 Regional Processor (C2R) for optically complex surface waters installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using ocean colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS C2R parameters with surface water sampling data from the Russian-German ship expeditions LENA2008, LENA2010 and TRANSDRIFT-XVII taking place in August 2008 and August and September 2010 in the southern Laptev Sea. The shallow Siberian shelf waters are optically not comparable to the deeper, more transparent waters of the Arctic Ocean. The inner-shelf waters are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of suspended particulate matter and coloured dissolved organic matter. We compared the field-based measurements with the satellite data that are closest in time. The match-up analyses related to LENA2008 and LENA2010 expedition data show the technical limits of matching in optically highly heterogeneous and dynamic shallow inner-shelf waters. The match-up analyses using the data from the marine TRANSDRIFT expedition were constrained by several days' difference between a match-up pair of satellite-derived and in situ parameters but are also based on

  8. In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets

    Science.gov (United States)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Viezee, W.; Li, Q.; Jacob, D. J.; Blake, D.; Sachse, G.; Harward, C. N.; Fuelberg, H.; Kiley, C. M.; Zhao, Y.; Kondo, Y.

    2003-10-01

    We report the first in situ measurements of hydrogen cyanide (HCN) and methyl cyanide (CH3CN, acetonitrile) from the Pacific troposphere (0-12 km) obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission (February-April 2001). Mean HCN and CH3CN mixing ratios of 243 ± 118 (median 218) ppt and 149 ± 56 (median 138) ppt, respectively, were measured. These in situ observations correspond to a mean tropospheric HCN column of 4.2 × 1015 molecules cm-2 and a CH3CN column of 2.5 × 1015 molecules cm-2. This is in good agreement with the 0-12 km HCN column of 4.4 (±0.6) × 1015 molecules cm-2 derived from infrared solar spectroscopic observations over Japan. Mixing ratios of HCN and CH3CN were greatly enhanced in pollution outflow from Asia and were well correlated with each other as well as with known tracers of biomass combustion (e.g., CH3Cl, CO). Volumetric enhancement (or emission) ratios (ERs) relative to CO in free tropospheric plumes, likely originating from fires, were 0.34% for HCN and 0.17% for CH3CN. ERs with respect to CH3Cl and CO in selected biomass burning (BB) plumes in the free troposphere and in boundary layer pollution episodes are used to estimate a global BB source of 0.8 ± 0.4 Tg (N) yr-1 for HCN and 0.4 ± 0.1 Tg (N) yr-1 for CH3CN. In comparison, emissions from industry and fossil fuel combustion are quite small (CN indicated reduced mixing ratios in the marine boundary layer (MBL). Using a simple box model, the observed gradients across the top of the MBL are used to derive an oceanic loss rate of 8.8 × 10-15 g (N) cm-2 s-1 for HCN and 3.4 × 10-15 g (N) cm-2 s-1 for CH3CN. An air-sea exchange model is used to conclude that this flux can be maintained if the oceans are undersaturated in HCN and CH3CN by 27% and 6%, respectively. These observations also correspond to an open ocean mean deposition velocity (vd) of 0.12 cm s-1 for HCN and 0.06 cm s-1 for CH3CN. It is inferred that oceanic loss is a

  9. Measurements of vertical distributions of bromine oxide, iodine oxide, oxygenated hydrocarbons and ozone over the Eastern Tropical Pacific Ocean

    Science.gov (United States)

    Volkamer, R. M.; Baidar, S.; Dix, B. K.; Apel, E. C.; Hornbrook, R. S.; Pierce, B.; Gao, R.

    2012-12-01

    As part of the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment 17 research flights were conducted with the NSF/NCAR GV aircraft equipped with a combination of chemical in-situ sensors, and remote sensing instruments to characterize air-sea exchange of reactive halogen species, oxygenated hydrocarbons, and aerosols, and their transport into the free troposphere, over different ocean environments of the Humboldt current in the Eastern Tropical Pacific Ocean (42S to 14N Lat.; 70W to 105W Long.). This presentation presents measurements of the spatial distributions of halogen oxide radicals, oxygenated hydrocarbons, and discusses their impact on ozone destruction rates, and the oxidation of atmospheric mercury. Air mass history is assessed by means of the Real-time Air Quality Modeling System (RAQMS), a global meteorological, chemical and aerosol assimilation/forecasting system that assimilates real-time stratospheric ozone retrievals from the Microwave Limb Sounder (MLS), total column ozone from the Ozone Monitoring Instrument (OMI), and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS). Reactive halogen species and organic carbon are important in the atmosphere, because they modify HOx radical abundances, influence the reactive chemistry and lifetime of climate active gases (e.g., ozone, methane, dimethyl sulfide), modify aerosol-cloud interactions; halogen radicals can further oxidize atmospheric mercury.

  10. Effects of shallow-layer reverberation on measurement of teleseismic P-wave travel times for ocean bottom seismograph data

    Science.gov (United States)

    Obayashi, Masayuki; Ishihara, Yasushi; Suetsugu, Daisuke

    2017-03-01

    We conducted synthetic experiments to evaluate the effects of shallow-layer reverberation in oceanic regions on P-wave travel times measured by waveform cross-correlation. Time shift due to waveform distortion by the reverberation was estimated as a function of period. Reverberations in the crystalline crust advance the P-waves by a frequency-independent time shift of about 0.3 s in oceans. Sediment does not affect the time shifts in the mid-ocean regions, but effects as large as -0.8 s or more occur where sediment thickness is greater than 600 m for periods longer than 15 s. The water layer causes time delays (+0.3 s) in the relatively shallow (time shift may influence mantle images obtained if the reverberation effects are not accounted for in seismic tomography. We propose a simple method to correct relative P-wave travel times at two sites for shallow-layer reverberation by the cross-convolution of the crustal responses at the two sites. [Figure not available: see fulltext. Caption: .

  11. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    Science.gov (United States)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  12. Oceanographic profile plankton, Temperature Salinity and other measurements collected using bottle from various platforms in the South Pacific Ocean from 1997 to 1998 (NODC Accession 0014651)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen, nutrients, and other measurements found in the bottle dataset taken from the SNP-1, HUAMANGA (fishing boat) and other platforms in...

  13. Temperature profiles and current measurements from the Nathaniel B. Palmer during the 1997 Dovetail cruise in the Southern Ocean (NODC Accession 9900243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection includes temperature profiles from CTD casts and current measurements from hull-mounted ADCP system aboard the research vessel Nathaniel B....

  14. Oceanographic profile chlorophyll, nutrients and other measurements collected using surface seawater intake from the Caribbean, Pacific and Atlantic Ocean from 1999 - 2002 (NODC Accession 0001009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A set of phytoplankton pigment measurements collected on eight quarterly transects from France to New Caledonia is analyzed in order to identify the main assemblages...

  15. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates

    Science.gov (United States)

    Schlitzer, Reiner

    fluxes are systematically higher than the satellite-based values by factors between 2 and 5. This discrepancy is significant, and an attempt to reconcile the low satellite-derived productivity values with ocean-interior nutrient budgets failed. Too low productivity estimates from satellite chlorophyll observations in the polar and sub-polar Southern Ocean could arise because of the inability of the satellite sensors to detect frequently occurring sub-surface chlorophyll patches, and to a poor calibration of the conversion algorithms in the Southern Ocean because of the very limited amount of direct measurements.

  16. Final Technical Report: Ocean CO{sub 2} Measurements for the WOCE Hydrographic Survey in the Pacific Ocean, 1992-1995 Field Years: Shore Based Analysis of Dissolved Inorganic Carbon January 1, 1993-April 15, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Charles D.

    1998-04-15

    Participation in the hydrographic survey of the world ocean circulation experiment (WOCE) began in December 1990 with a two year grant from DOE for shore related analyses of inorganic carbon in sea water. These analyses were intended to assure that the measurements carried out under difficult laboratory conditions on board ships were consistent with measurements made under more carefully controlled shore laboratory conditions.

  17. Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the Pan-Arctic scale

    NARCIS (Netherlands)

    Urban, M.; Eberle, J.; Hüttich, C.; Schmullius, C.; Herold, M.

    2013-01-01

    Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and (Advanced) Along Track Scanning Radiometer ((A)ATSR) are pr

  18. Comparison of Inorganic Carbon System Parameters Measured in the Atlantic Ocean from 1990 to 1998 and Recommended Adjustments

    Energy Technology Data Exchange (ETDEWEB)

    Wanninkhof, R.

    2003-05-21

    As part of the global synthesis effort sponsored by the Global Carbon Cycle project of the National Oceanic and Atmospheric Administration (NOAA) and U.S. Department of Energy, a comprehensive comparison was performed of inorganic carbon parameters measured on oceanographic surveys carried out under auspices of the Joint Global Ocean Flux Study and related programs. Many of the cruises were performed as part of the World Hydrographic Program of the World Ocean Circulation Experiment and the NOAA Ocean-Atmosphere Carbon Exchange Study. Total dissolved inorganic carbon (DIC), total alkalinity (TAlk), fugacity of CO{sub 2}, and pH data from twenty-three cruises were checked to determine whether there were systematic offsets of these parameters between cruises. The focus was on the DIC and TAlk state variables. Data quality and offsets of DIC and TAlk were determined by using several different techniques. One approach was based on crossover analyses, where the deep-water concentrations of DIC and TAlk were compared for stations on different cruises that were within 100 km of each other. Regional comparisons were also made by using a multiple-parameter linear regression technique in which DIC or TAlk was regressed against hydrographic and nutrient parameters. When offsets of greater than 4 {micro}mol/kg were observed for DIC and/or 6 {micro}mol/kg were observed for TAlk, the data taken on the cruise were closely scrutinized to determine whether the offsets were systematic. Based on these analyses, the DIC data and TAlk data of three cruises were deemed of insufficient quality to be included in the comprehensive basinwide data set. For several of the cruises, small adjustments in TAlk were recommended for consistency with other cruises in the region. After these adjustments were incorporated, the inorganic carbon data from all cruises along with hydrographic, chlorofluorocarbon, and nutrient data were combined as a research quality product for the scientific community.

  19. Equilibrator-based measurements of dissolved nitrous oxide in the surface ocean using an integrated cavity output laser absorption spectrometer

    Directory of Open Access Journals (Sweden)

    I. Grefe

    2013-07-01

    Full Text Available A laser-based analyser for nitrous oxide, carbon monoxide and water vapour was coupled to an equilibrator for continuous high-resolution dissolved gas measurements in the surface ocean. Results for nitrous oxide measurements from laboratory tests and field deployments are presented here. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol−1 for standard gases and equilibrator measurements. The same precision was achieved for replicate standard gas analyses within 1 h of each other. The accuracy of the equilibrator measurements was verified by comparison with purge-and-trap GC-MS measurements of N2O concentrations in discrete samples from the Southern Ocean and showed agreement to within the 2% measurement uncertainty of the GC-MS method. Measured atmospheric N2O mole fractions agreed with AGAGE values to within 0.4%. The equilibrator response time to concentration changes in water was 142 to 203 s, depending on the headspace flow rate. The system was tested at sea during a north-to-south transect of the Atlantic Ocean. While the subtropical gyres were slightly undersaturated, the equatorial region was a source of nitrous oxide to the atmosphere. The ability to measure at high temporal and spatial resolution revealed sub-mesoscale variability in dissolved N2O concentrations. The magnitude of the observed saturation is in agreement with published data. Mean sea-to-air fluxes in the tropical and subtropical Atlantic ranged between −1.6 and 0.11 μmol m−2d−1 and confirm that the subtropical Atlantic is not an important source region for N2O to the atmosphere, compared to average global fluxes of 0.6 to 2.4 μmol m−2d−1. The system can be easily modified for autonomous operation on voluntary observing ships (VOS. Further work should include an interlaboratory comparison exercise with other methods of dissolved N2O analyses.

  20. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  1. Classification of Tropical Oceanic Precipitation using High-Altitude Aircraft Microwave and Electric Field Measurements.

    Science.gov (United States)

    Hood, Robbie E.; Cecil, Daniel J.; Lafontaine, Frank J.; Blakeslee, Richard J.; Mach, Douglas M.; Heymsfield, Gerald M.; Marks, Frank D., Jr.; Zipser, Edward J.; Goodman, Michael

    2006-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the NASA ER-2 high-altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower-altitude horizontal reflectivity scans collected by the NOAA WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  2. Classification of Tropical Oceanic Precipitation using High-Altitude Aircraft Microwave and Electric Field Measurements

    Science.gov (United States)

    Hood, Robbie E.; Cecil, Daniel J.; LaFontaine, Frank J.; Blakeslee, Richard J.; Mach, Douglas m.; Heymsfield, Gerald M.; Marks, Frank D., Jr.; Zipser, Edward J.

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the NASA ER-2 high-altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower-altitude horizontal reflectivity scans collected by the NOAA WP3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  3. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  4. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  5. Sampling errors for satellite-derived tropical rainfall - Monte Carlo study using a space-time stochastic model

    Science.gov (United States)

    Bell, Thomas L.; Abdullah, A.; Martin, Russell L.; North, Gerald R.

    1990-01-01

    Estimates of monthly average rainfall based on satellite observations from a low earth orbit will differ from the true monthly average because the satellite observes a given area only intermittently. This sampling error inherent in satellite monitoring of rainfall would occur even if the satellite instruments could measure rainfall perfectly. The size of this error is estimated for a satellite system being studied at NASA, the Tropical Rainfall Measuring Mission (TRMM). First, the statistical description of rainfall on scales from 1 to 1000 km is examined in detail, based on rainfall data from the Global Atmospheric Research Project Atlantic Tropical Experiment (GATE). A TRMM-like satellite is flown over a two-dimensional time-evolving simulation of rainfall using a stochastic model with statistics tuned to agree with GATE statistics. The distribution of sampling errors found from many months of simulated observations is found to be nearly normal, even though the distribution of area-averaged rainfall is far from normal. For a range of orbits likely to be employed in TRMM, sampling error is found to be less than 10 percent of the mean for rainfall averaged over a 500 x 500 sq km area.

  6. Influence of Desert Dust Intrusions on Ground-based and Satellite Derived Ultraviolet Irradiance in Southeastern Spain

    Science.gov (United States)

    Krotkov, Nickolay A.; Anton, Manuel; Valenzuela, Antonio; Roman, Roberto; Lyamani, Hassan; Arola, Antti; Olmo, Francisco J.; Alados-Arboledas

    2012-01-01

    The desert dust aerosols strongly affect propagation of solar radiation through the atmosphere, reducing surface irradiance available for photochemistry and photosynthesis. This paper evaluates effects of desert dust on surface UV erythemal irradiance (UVER), as measured by a ground-based broadband UV radiometer and retrieved from the satellite Ozone Monitoring Instrument (OMI) at Granada (southern Spain) from January 2006 to December 2010. The dust effects are characterized by the transmittance ra tio of the measured UVER to the corresponding modeled clear sky value. The transmittance has an exponential dependency on aerosol optical depth (AOD), with minimum values of approximately 0.6 (attenuation of approximately 40%). The OMI UVER algorithm does not account for UV aerosol absorption, which results in overestimation of the ground-based UVER especially during dust episodes with a mean relative difference up to 40%. The application of aerosol absorption post-correction method reduces OMI bias up to approximately 13%. The results highlight great effect of desert dust on the surface UV irradiance in regions like southern Spain, where dust intrusions from Sahara region are very frequent.

  7. Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories

    Science.gov (United States)

    Whitburn, S.; Van Damme, M.; Kaiser, J. W.; van der Werf, G. R.; Turquety, S.; Hurtmans, D.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.

    2015-11-01

    Vegetation fires emit large amounts of nitrogen compounds in the atmosphere, including ammonia (NH3). These emissions are still subject to large uncertainties. In this study, we analyze time series of monthly NH3 total columns (molec cm-2) from the IASI sounder on board MetOp-A satellite and their relation with MODIS fire radiative power (MW) measurements. We derive monthly NH3 emissions estimates for four regions accounting for a major part of the total area affected by fires (two in Africa, one in central South America and one in Southeast Asia), using a simplified box model, and we compare them to the emissions from both the GFEDv3.1 and GFASv1.0 biomass burning emission inventories. In order to strengthen the analysis, we perform a similar comparison for carbon monoxide (CO), also measured by IASI and for which the emission factors used in the inventories to convert biomass burned to trace gas emissions are thought to be more reliable. In general, a good correspondence between NH3 and CO columns and the FRP is found, especially for regions in central South America with correlation coefficients of 0.82 and 0.66, respectively. The comparison with the two biomass burning emission inventories GFASv1.0 and GFEDv3.1 shows good agreements, particularly in the time of the maximum of emissions for the central South America region and in the magnitude for the region of Africa south of the equator. We find evidence of significant non-pyrogenic emissions for the regions of Africa north of the equator (for NH3) and Southeast Asia (for NH3 and CO). On a yearly basis, total emissions calculated from IASI measurements for the four regions reproduce fairly well the interannual variability from the GFEDv3.1 and GFASv1.0 emissions inventories for NH3 but show values about 1.5-2 times higher than emissions given by the two biomass burning emission inventories, even when assuming a fairly long lifetime of 36 h for that species.

  8. Operational ocean models in the Adriatic Sea: a skill assessment

    Directory of Open Access Journals (Sweden)

    J. Chiggiato

    2008-02-01

    Full Text Available In the framework of the Mediterranean Forecasting System (MFS project, the performance of regional numerical ocean forecasting systems is assessed by means of model-model and model-data comparison. Three different operational systems considered in this study are: the Adriatic REGional Model (AREG; the Adriatic Regional Ocean Modelling System (AdriaROMS and the Mediterranean Forecasting System General Circulation Model (MFS-GCM. AREG and AdriaROMS are regional implementations (with some dedicated variations of POM and ROMS, respectively, while MFS-GCM is an OPA based system. The assessment is done through standard scores. In situ and remote sensing data are used to evaluate the system performance. In particular, a set of CTD measurements collected in the whole western Adriatic during January 2006 and one year of satellite derived sea surface temperature measurements (SST allow to asses a full three-dimensional picture of the operational forecasting systems quality during January 2006 and to draw some preliminary considerations on the temporal fluctuation of scores estimated on surface quantities between summer 2005 and summer 2006.

    The regional systems share a negative bias in simulated temperature and salinity. Nonetheless, they outperform the MFS-GCM in the shallowest locations. Results on amplitude and phase errors are improved in areas shallower than 50 m, while degraded in deeper locations, where major models deficiencies are related to vertical mixing overestimation. In a basin-wide overview, the two regional models show differences in the local displacement of errors. In addition, in locations where the regional models are mutually correlated, the aggregated mean squared error was found to be smaller, that is a useful outcome of having several operational systems in the same region.

  9. Variability of satellite derived chlorophyll-a in the southern Caspian Sea following an invasion of ctenophore Mnemiopsis leidyi

    Science.gov (United States)

    Moradi, Masoud

    2013-01-01

    The comb jellyfish Mnemiopsis leidyi invaded vastly the whole Caspian Sea in summer 2001. Sea-viewing wide field-of-view sensor and moderate resolution imaging spectroradiometer (MODIS) satellite data from 1998 to 2006 and bio-optical field measurements along six transects in the southern Caspian Sea from 2001 to 2006 were used to detect the relationships between M. leidyi abundances with satellite driven sea surface temperature (SST) and chlorophyll-a. MODIS chlorophyll-a and SST monthly composite average value showed a positive linear correlation with M. leidyi abundance in the southern Caspian Sea. Spatiotemporal distribution of MODIS chlorophyll-a high-level patches (˜5 mg.m-3) were also confirmed with the highest recorded M. leidyi and the lowest zooplankton abundances. However, there are several other factors that affect the concentration of chlorophyll-a, and it is not clear how much of the chlorophyll-a variation is related to M. leidyi abundances.

  10. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. Sommar

    2010-06-01

    Full Text Available Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0, divalent gaseous mercury species HgIIX2(g (acronym RGM and mercury attached to particles (PHg and some long-lived trace gases (carbon monoxide CO and ozone O3 were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July–September 2005 during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska – Chukchi Penninsula – Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen. The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N.

    During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m−3 compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m−3. In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably

  11. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. Sommar

    2009-10-01

    Full Text Available Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0, divalent mercury HgII(g (acronym RGM and mercury attached to particles (PHg and some long-lived trace gases (carbon monoxide CO and ozone O3 were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July–September, 2005 during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska – Chukchi Penninsula – Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen. The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N.

    During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0} pulse in the water was spilled with some time-delay into the air samples collected ~20 m a.s.l. Several episodes of elevated Hg0(g were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m−3 compared to the marine boundary layer over ice-free oceanic waters (1.55±0.21 ng m−3. In addition, an overall majority of the variance in the temporal series of Hg0 concentrations was observed during July. Atmospheric boundary layer {O3} mixing ratios decreased when initially sailing northward. In the Arctic, an O

  12. Identification of atmospheric fronts over the ocean with microwave measurements of water vapor and rain

    Science.gov (United States)

    Katsaros, Kristina B.; Bhatti, Iftekhar; Mcmurdie, Lynn A.; Patty, Grant W.

    1989-01-01

    This paper describes some basic research techniques and algorithms developed to diagnose fronts in cyclonic storms over the ocean with data from satellite-borne microwave radiometers. Methods are developed for flagging strong gradients in integrated atmospheric water vapor and the presence of rain by using data from the SSMR on board the polar orbiting Seasat and Nimbus-7 satellites. Examination of 65 frontal systems showed that the water vapor gradient flag correctly identified 86 percent of the fronts, while the precipitation flagged 91 percent. The two types of flags emphasize different portions of the cyclone and are therefore complementary. Ultimately, these techniques are intended for operational use with data from the Special Sensor Microwave Imager which was launched in June 1987 on a satellite in the Defense Meteorological Satellite Program (DMSP).

  13. Use of Flow Cytometry to Measure Biogeochemical Rates and Processes in the Ocean

    Science.gov (United States)

    Lomas, Michael W.; Bronk, Deborah A.; van den Engh, Ger

    2011-01-01

    An important goal of marine biogeochemists is to quantify the rates at which elements cycle through the ocean's diverse microbial assemblage, as well as to determine how these rates vary in time and space. The traditional view that phytoplankton are producers and bacteria are consumers has been found to be overly simplistic, and environmental metagenomics is discovering new and important microbial metabolisms at an accelerating rate. Many nutritional strategies previously attributed to one microorganism or functional group are also or instead carried out by other groups. To tease apart which organism is doing what will require new analytical approaches. Flow cytometry, when combined with other techniques, has great potential for expanding our understanding of microbial interactions because groups can be distinguished optically, sorted, and then collected for subsequent analyses. Herein, we review the advances in our understanding of marine biogeochemistry that have arisen from the use of flow cytometry.

  14. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    Directory of Open Access Journals (Sweden)

    Wenquan Zhu

    Full Text Available Carbon Flux Phenology (CFP can affect the interannual variation in Net Ecosystem Exchange (NEE of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands, using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU by more than 70% and End of Carbon Uptake (ECU by more than 60%. The Root Mean Square Error (RMSE of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  15. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    Science.gov (United States)

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-01-01

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  16. A photogrammetric DEM of Greenland based on 1978-1987 aerial photos: validation and integration with laser altimetry and satellite-derived DEMs

    Science.gov (United States)

    Korsgaard, N. J.; Kjaer, K. H.; Nuth, C.; Khan, S. A.

    2014-12-01

    Here we present a DEM of Greenland covering all ice-free terrain and the margins of the GrIS and local glaciers and ice caps. The DEM is based on the 3534 photos used in the aero-triangulation which were recorded by the Danish Geodata Agency (then the Geodetic Institute) in survey campaigns spanning the period 1978-1987. The GrIS is covered tens of kilometers into the interior due to the large footprints of the photos (30 x 30 km) and control provided by the aero-triangulation. Thus, the data are ideal for providing information for analysis of ice marginal elevation change and also control for satellite-derived DEMs.The results of the validation, error assessments and predicted uncertainties are presented. We test the DEM using Airborne Topographic Mapper (IceBridge ATM) as reference data; evaluate the a posteriori covariance matrix from the aero-triangulation; and co-register DEM blocks of 50 x 50 km to ICESat laser altimetry in order to evaluate the coherency.We complement the aero-photogrammetric DEM with modern laser altimetry and DEMs derived from stereoscopic satellite imagery (AST14DMO) to examine the mass variability of the Northeast Greenland Ice Stream (NEGIS). Our analysis suggests that dynamically-induced mass loss started around 2003 and continued throughout 2014.

  17. Chaotic Lagrangian transport and mixing in the ocean

    CERN Document Server

    Prants, S V

    2015-01-01

    Dynamical systems theory approach has been successfully used in physical oceanography for the last two decades to study mixing and transport of water masses in the ocean. The basic theoretical ideas have been borrowed from the phenomenon of chaotic advection in fluids, an analogue of dynamical Hamiltonian chaos in mechanics. The starting point for analysis is a velocity field obtained by this or that way. Being motivated by successful applications of that approach to simplified analytic models of geophysical fluid flows, researchers now work with satellite-derived velocity fields and outputs of sophisticated numerical models of ocean circulation. This review article gives an introduction to some of the basic concepts and methods used to study chaotic mixing and transport in the ocean and a brief overview of recent results with some practical applications of Lagrangian tools to monitor spreading of Fukushima-derived radionuclides in the ocean.

  18. Chaotic Lagrangian transport and mixing in the ocean

    Science.gov (United States)

    Prants, S. V.

    2014-12-01

    Dynamical systems theory approach has been successfully used in physical oceanography for the last two decades to study mixing and transport of water masses in the ocean. The basic theoretical ideas have been borrowed from the phenomenon of chaotic advection in fluids, an analogue of dynamical Hamiltonian chaos in mechanics. The starting point for analysis is a velocity field obtained by this or that way. Being motivated by successful applications of that approach to simplified analytic models of geophysical fluid flows, researchers now work with satellite-derived velocity fields and outputs of sophisticated numerical models of ocean circulation. This review article gives an introduction to some of the basic concepts and methods used to study chaotic mixing and transport in the ocean and a brief overview of recent results with some practical applications of Lagrangian tools to monitor spreading of Fukushima-derived radionuclides in the ocean.

  19. Oceanic CO sub 2 measurements for the WOCE hydrographic survey in the Pacific Ocean, 1990--1991: Shore based analyses during Legs 1--3

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, C.D.

    1992-01-01

    During the winter and spring of 1991 we made preparations for sampling on three legs of the US World Ocean Circulation Experiment in the Pacific Ocean. These transects, postponed from an original start date early in 1991, took place between May 31 to October 1. For the project, 1400 0.5 liter Pyrex sampling bottles were used for the collection of sea water. A second major pre-expedition task was the construction of a dual titration cell system of new design, as described in the original proposal and our previous semi-annual report.

  20. Observing the Arctic Ocean under melting ice - the UNDER-ICE project

    Science.gov (United States)

    Sagen, Hanne; Ullgren, Jenny; Geyer, Florian; Bergh, Jon; Hamre, Torill; Sandven, Stein; Beszczynska-Möller, Agnieszka; Falck, Eva; Gammelsrød, Tor; Worcester, Peter

    2014-05-01

    "standard" oceanographic measurements of current velocity and water mass properties will be deployed in the Fram Strait in September 2014. The dynamic processes in the marginal ice zone, in particular internal waves, mesoscale eddies, and front instabilities, will be explored using model experiments and high temporal resolution measurements. The results of the observational data analysis and model simulations will be integrated and compared with global climate model simulations (CMIP5). Satellite-derived data products will also be included in the synthesis. As part of the UNDER-ICE project, a web portal for Arctic data will be developed, that will offer open access to metadata and observational and model data products to support studies of Arctic climate and climate change.

  1. Sea surface height anomaly and upper ocean temperature over the Indian Ocean during contrasting monsoons

    Science.gov (United States)

    Gera, Anitha; Mitra, A. K.; Mahapatra, D. K.; Momin, I. M.; Rajagopal, E. N.; Basu, Swati

    2016-09-01

    Recent research emphasizes the importance of the oceanic feedback to monsoon rainfall over the Asian landmass. In this study, we investigate the differences in the sea surface height anomaly (SSHA) and upper ocean temperature over the tropical Indian Ocean during multiple strong and weak monsoons. Analysis of satellite derived SSHA, sea surface temperature (SST) and ocean reanalysis data reveals that patterns of SSHA, SST, ocean temperature, upper ocean heat content (UOHC) and propagations of Kelvin and Rossby waves differ during strong and weak monsoon years. During strong monsoons positive SSH, SST and UOHC anomalies develop over large parts of north Indian Ocean whereas during weak monsoons much of the north Indian Ocean is covered with negative anomalies. These patterns can be used as a standard tool for evaluating the performance of coupled and ocean models in simulating & forecasting strong and weak monsoons. The rainfall over central India is found to be significantly correlated with SSHA over the regions (Arabian Sea and West central Indian Ocean and Bay of Bengal) where SSHA is positively large during strong monsoons. The SST-SSHA correlation is also very strong over the same area. The study reveals that much convection takes place over these regions during strong monsoons. In contrast during weak monsoons, convection takes place over eastern equatorial region. These changes in SST are largely influenced by oceanic Kelvin and Rossby waves. The Rossby waves initiated in spring at the eastern boundary propagate sub-surface heat content in the ocean influencing SST in summer. The SST anomalies modulate the Hadley circulation and the moisture transport thereby contributing to rainfall over central India. Therefore oceanic Kelvin and Rossby waves influence the rainfall over central India.

  2. A compilation of global bio-optical in situ data for ocean-colour satellite applications

    Science.gov (United States)

    Valente, André; Sathyendranath, Shubha; Brotas, Vanda; Groom, Steve; Grant, Michael; Taberner, Malcolm; Antoine, David; Arnone, Robert; Balch, William M.; Barker, Kathryn; Barlow, Ray; Bélanger, Simon; Berthon, Jean-François; Beşiktepe, Şükrü; Brando, Vittorio; Canuti, Elisabetta; Chavez, Francisco; Claustre, Hervé; Crout, Richard; Frouin, Robert; García-Soto, Carlos; Gibb, Stuart W.; Gould, Richard; Hooker, Stanford; Kahru, Mati; Klein, Holger; Kratzer, Susanne; Loisel, Hubert; McKee, David; Mitchell, Brian G.; Moisan, Tiffany; Muller-Karger, Frank; O'Dowd, Leonie; Ondrusek, Michael; Poulton, Alex J.; Repecaud, Michel; Smyth, Timothy; Sosik, Heidi M.; Twardowski, Michael; Voss, Kenneth; Werdell, Jeremy; Wernand, Marcel; Zibordi, Giuseppe

    2016-06-01

    A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015).

  3. Carbon system measurements and potential climatic drivers at a site of rapidly declining ocean pH.

    Science.gov (United States)

    Wootton, J Timothy; Pfister, Catherine A

    2012-01-01

    We explored changes in ocean pH in coastal Washington state, USA, by extending a decadal-scale pH data series, by reporting independent measures of dissolved inorganic carbon (DIC), spectrophotometric pH, and total alkalinity (TA), by exploring pH patterns over larger spatial scales, and by probing for long-term trends in environmental variables reflecting potentially important drivers of pH. We found that pH continued to decline in this area at a rapid rate, that pH exhibited high natural variability within years, that our measurements of pH corresponded well to spectrophotometric pH measures and expected pH calculated from DIC/TA, and that TA estimates based on salinity predicted well actual alkalinity. Multiple datasets reflecting upwelling, including water temperature, nutrient levels, phytoplankton abundance, the NOAA upwelling index, and data on local wind patterns showed no consistent trends over the period of our study. Multiple datasets reflecting precipitation change and freshwater runoff, including precipitation records, local and regional river discharge, salinity, nitrate and sulfate in rainwater, and dissolved organic carbon (DOC) in rivers also showed no consistent trends over time. Dissolved oxygen did not decline over time, indicating that long-term changes did not result from shifts in contributions of respiration to pH levels. These tests of multiple potential drivers of the observed rapid rate of pH decline indicate a primary role for inorganic carbon and suggest that geochemical models of coastal ocean carbon fluxes need increased investigation.

  4. Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique

    Directory of Open Access Journals (Sweden)

    Stephanie Cohen

    2017-09-01

    Full Text Available As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the 45Ca-uptake and total alkalinity (TA anomaly techniques as measures of gross and net calcification (GC, NC, respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from 45Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

  5. Measuring coral calcification under ocean acidification: methodological considerations for the (45)Ca-uptake and total alkalinity anomaly technique.

    Science.gov (United States)

    Cohen, Stephanie; Krueger, Thomas; Fine, Maoz

    2017-01-01

    As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA) requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the (45)Ca-uptake and total alkalinity (TA) anomaly techniques as measures of gross and net calcification (GC, NC), respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from (45)Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

  6. Oceanographic profile temperature, salinity, conductivity, pressure measurements collected using XBT, CTD, thermosalinograph from the Polarstern in the Atlantic Ocean, Arctic Ocean, Southern Ocean from 1983 to 2006 (NCEI Accession 0042397)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Source: WDC-MARE Report 0005 (2007) "25 years of Polarstern Hydrography (1982-2007)", E. Fahrbach, G. Rohardt, and R. Sieger, Bremerhaven, 94 pp. + CD-ROM

  7. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis.

    Science.gov (United States)

    Cong, Nan; Wang, Tao; Nan, Huijuan; Ma, Yuecun; Wang, Xuhui; Myneni, Ranga B; Piao, Shilong

    2013-03-01

    The change in spring phenology is recognized to exert a major influence on carbon balance dynamics in temperate ecosystems. Over the past several decades, several studies focused on shifts in spring phenology; however, large uncertainties still exist, and one understudied source could be the method implemented in retrieving satellite-derived spring phenology. To account for this potential uncertainty, we conducted a multimethod investigation to quantify changes in vegetation green-up date from 1982 to 2010 over temperate China, and to characterize climatic controls on spring phenology. Over temperate China, the five methods estimated that the vegetation green-up onset date advanced, on average, at a rate of 1.3 ± 0.6 days per decade (ranging from 0.4 to 1.9 days per decade) over the last 29 years. Moreover, the sign of the trends in vegetation green-up date derived from the five methods were broadly consistent spatially and for different vegetation types, but with large differences in the magnitude of the trend. The large intermethod variance was notably observed in arid and semiarid vegetation types. Our results also showed that change in vegetation green-up date is more closely correlated with temperature than with precipitation. However, the temperature sensitivity of spring vegetation green-up date became higher as precipitation increased, implying that precipitation is an important regulator of the response of vegetation spring phenology to change in temperature. This intricate linkage between spring phenology and precipitation must be taken into account in current phenological models which are mostly driven by temperature. © 2012 Blackwell Publishing Ltd.

  8. Retrieval of Ocean Bottom and Downhole Seismic sensors orientation using integrated MEMS gyroscope and direct rotation measurements

    Science.gov (United States)

    D'Alessandro, A.; D'Anna, G.

    2014-12-01

    The absolute orientation of the horizontal components of ocean bottom or downhole seismic sensors are generally unknown. Almost all the methods proposed to overcome this issue are based on the post-processing of the acquired signals and so the results are strongly dependent on the nature, quantity and quality of the acquired data. We have carried out several test to evaluate the ability of retrieve sensor orientation using integrated low cost MEMS gyroscope. Our tests have shown that the tested MEMS gyroscope (the model 1044_0-3/3/3 Phidget Spatial Precision High Resolution) can be used to measure angular displacement and therefore to retrieve the absolute orientation of the horizontal components of a sensor that has been subjected to rotation in the horizontal plane. A correct processing of the acquired signals permit to retrieve, for rotation at angular rate between 0 and 180° s-1, angular displacement with error less 2°.

  9. Equilibrator-based measurements of dissolved nitrous oxide in the surface ocean using an integrated cavity output laser absorption spectrometer

    Science.gov (United States)

    Grefe, I.; Kaiser, J.

    2014-06-01

    Dissolved nitrous oxide (N2O) concentrations are usually determined by gas chromatography (GC). Here we present laboratory tests and initial field measurements using a novel setup comprising a commercially available laser-based analyser for N2O, carbon monoxide and water vapour coupled to a glass-bed equilibrator. This approach is less labour-intensive and provides higher temporal and spatial resolution than the conventional GC technique. The standard deviation of continuous equilibrator or atmospheric air measurements was 0.2 nmol mol-1 (averaged over 5 min). The short-term repeatability for reference gas measurements within 1 h of each other was 0.2 nmol mol-1 or better. Another indicator of the long-term stability of the analyser is the standard deviation of the calibrated N2O mole fraction in marine air, which was between 0.5 and 0.7 nmol mol-1. The equilibrator measurements were compared with purge-and-trap gas chromatography-mass spectrometry (GC-MS) analyses of N2O concentrations in discrete samples from the Southern Ocean and showed agreement to within the 2% measurement uncertainty of the GC-MS method. The equilibrator response time to concentration changes in water was from 142 to 203 s, depending on the headspace flow rate. The system was tested at sea during a north-to-south transect of the Atlantic Ocean. While the subtropical gyres were slightly undersaturated, the equatorial region was a source of nitrous oxide to the atmosphere, confirming previous findings (Forster et al., 2009). The ability to measure at high temporal and spatial resolution revealed submesoscale variability in dissolved N2O concentrations. Mean sea-to-air fluxes in the tropical and subtropical Atlantic ranged between -1.6 and 0.11 μmol m-2 d-1 and confirm that the subtropical Atlantic is not an important source region for N2O to the atmosphere, compared to global average fluxes of 0.6-2.4 μmol m-2 d-1. The system can be easily modified for autonomous operation on voluntary

  10. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.

    Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...

  11. Eddy covariance measurements of sea spray particles over the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Norris

    2007-09-01

    Full Text Available Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol concentration suitable for direct eddy correlation determination of the particle flux. This was accomplished in this study by combining a newly developed fast aerosol particle counter with an ultrasonic anemometer which allowed for eddy covariance measurements of size-segregated particle fluxes. The aerosol instrument is the Compact Lightweight Aerosol Spectrometer Probe (CLASP – capable of measuring 8-channel size spectra for mean radii between 0.15 and 0.35 μm at 10 Hz. The first successful measurements were made during the WASFAB (Waves, Air Sea Fluxes, Aerosol and Bubbles field campaign in October 2005 in Duck (NC, USA. The method and results are presented and comparisons are made with recent sea spray source functions from the literature.

  12. Size Resolved measurements of aerosol hygroscopicity and mixing state during Green Ocean Amazon (GoAmazon) 2014

    Science.gov (United States)

    Thalman, R. M.; Artaxo, P.; Campuzano Jost, P.; Barbosa, H. M.; Day, D. A.; de Sá, S. S.; Hu, W.; Jimenez, J. L.; Kuang, C.; Palm, B. B.; Krüger, M. L.; Manzi, A. O.; Martin, S. T.; Poeschl, U.; Sedlacek, A. J., III; Senum, G.; Souza, R. A. F. D.; Springston, S. R.; Alexander, M. L.; Watson, T. B.; Wang, J.

    2014-12-01

    Measurements of size-resolved cloud condensation nucleai (CCN) spectra were performed at the T3 site of the Green Ocean Amazon (GoAmazon) field project located near Manacapuru, Brazil during 2014. The T3 site is a receptor site for both polluted urban down-wind (Manaus, BR a city of several million 70 km up wind) and background (Amazon rainforest) air-masses and can provide a contrast between clean and polluted conditions. Particle hygroscopicity (kappa) and mixing state were calculated from the particle activation spectrum measured by size selecting aerosols and exposing them to a wide range of supersaturation in the CCN counter (Droplet Measurement Technologies Continuous-Flow Streamwise Thermal Gradient CCN Chamber). The supersaturation was varied between 0.07 and 1.1% by changing a combination of both total flow rate and temperature gradient in the CCN counter. Measured spectra were examined for air masses with different level of influence from Manaus plume. Particle hygroscopicity generally peaked near noon local time which was broadly consistent with the trend in aerosol sulfate. The average kappa values during the first intensive operation period were 0.14±0.05, 0.14±0.04 and 0.16±0.06 for 75, 112 and 171 nm particles respectively. Evaluation of particle hygroscopicity and dispersion (mixing state) will be presented with respect to size and level of pollution.

  13. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  14. Study of Modis satellite derived aerosol angstrom exponent and in-situ measured values using Sun photometer in part of the west coast of Indian Peninsula

    Digital Repository Service at National Institute of Oceanography (India)

    SunilKumar R.K.; Suresh, T.; Govindaraju; SureshKumar, B.V.

    The aerosol angstrom exponent (AAE) is often used as a qualitative indicator of aerosol particle size. It is important to understand and quantify the microphysical impact of aerosols which are derived from natural and anthropogenic activities...

  15. Comparison of Satellite-Derived with Ground-Based Measurements of the Fluctuations of the Margins of Vatnajokull, Iceland 1973-1992

    Science.gov (United States)

    Williams, Richard S., Jr.; Hall, Dorothy K.; Sigurdsson, Oddur; Chien, Janet Y. L.

    1997-01-01

    Vatnajokull, Iceland, is the Earth's most studied ice cap and represents a classical glaciological field site on the basis of S. Palsson's seminal glaciological field research in the late 18th century. Since the 19th century, Vatnajokull has been the focus of an array of glaciological studies by scientists from many nations, including many remote-sensing investigations since 1951. Landsat-derived positions of the termini of 11 outlet glaciers of Vatnajokull were compared with frontal positions of six of these 11 outlet glaciers determined by field observations during the period 1973-92. The largest changes during the 19 year period (1973-92) occurred in the large lobate, surge-type outlet glaciers along the southwestern, western, and northern margins of Vatnajokull, Tungnaarjokull receded - 1413 +/- 112 m (1380 +/- 1 m from ground observations), and Bruarjokull receded -1975 +/- 191 m (-2096 +/- 5 m from extrapolated ground observations) between 1973 and 1992. Satellite images can be used to delineate glacier margin changes on a time-lapse basis, if the glacier margin can be spectrally discriminated from terminal moraines and sandur deposits and if the advance/recession is larger than maximum image pixel size. "Local knowledge" of glaciers is critically important, however, in the accurate delineation of glacier margins on Landsat images.

  16. Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajokull, Iceland, 1973-92

    Science.gov (United States)

    Williams, R.S.; Hall, D.K.; Sigurbsson, O.; Chien, J.Y.L.

    1997-01-01

    Vatnajo??kull, Iceland, is the Earth's most studied ice cap and represents a classical glaciological field site on the basis of S. Pa??lsson's seminal glaciological field research in the late 18th century. Since the 19th century, Vatnajo??kull has been the focus of an array of glaciological studies by scientists from many nations, including many remotesensing investigations since 1951. Landsat-derived positions of the termini of 11 outlet glaciers of Vatnajo??kull were compared with frontal positions of six of these 11 outlet glaciers determined by field observations during the period 1973-92. The largest changes during the 19 year period (1973-92) occurred in the large lobate, surge-type outlet glaciers along the southwestern, western, and northern margins of Vatnajo??kull. Tungnaa??rjo??kull receded - 1413 ?? 112 m (-1380 ?? l m from ground observations), and Bru??arjo??kull receded -1975 ?? 191 m (-2096 ?? 5 m from extrapolated ground observations) between 1973 and 1992. Satellite images can be used to delineate glacier margin changes on a time-lapse basis, if the glacier margin can be spectrally discriminated from terminal moraines and sandur deposits and if the advance/recession is larger than maximum image pixel size. "Local knowledge" of glaciers is critically important, however, in the accurate delineation of glacier margins on Landsat images.

  17. Measurement of Ocean Wind Vector by an Airborne, Imaging Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels; Laursen, Brian

    1998-01-01

    Airborne measurements of the sea surface have been carried out with an imaging polarimetric 16-GHz radiometer system, aimed at determining the wind direction. The radiometer system features a high-speed digital correlator, and it measures all four parameters of the brightness temperature Stokes...... vector simultaneously. Preliminary experiments have confirmed the directional signatures of the sea brightness temperature as reported by other researchers and have led to development of improved instrumentation with the intention of determining the wind vector pixel by pixel in the radiometer imagery....

  18. Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000

    Directory of Open Access Journals (Sweden)

    M. Vichi

    2009-11-01

    Full Text Available Global Ocean Biogeochemistry General Circulation Models are useful tools to study biogeochemical processes at global and large scales under current climate and future scenario conditions. The credibility of future estimates is however dependent on the model skill in capturing the observed multi-annual variability of firstly the mean bulk biogeochemical properties, and secondly the rates at which organic matter is processed within the food web. For this double purpose, the results of a multi-annual simulation of the global ocean biogeochemical model PELAGOS have been objectively compared with multi-variate observations from the last 20 years of the 20th century, both considering bulk variables and carbon production/consumption rates. Simulated net primary production (NPP is comparable with satellite-derived estimates at the global scale and when compared with an independent data-set of in situ observations in the equatorial Pacific. The usage of objective skill indicators allowed us to demonstrate the importance of comparing like with like when considering carbon transformation processes. NPP scores improve substantially when in situ data are compared with modeled NPP which takes into account the excretion of freshly-produced dissolved organic carbon (DOC. It is thus recommended that DOC measurements be performed during in situ NPP measurements to quantify the actual production of organic carbon in the surface ocean. The chlorophyll bias in the Southern Ocean that affects this model as well as several others is linked to the inadequate representation of the mixed layer seasonal cycle in the region. A sensitivity experiment confirms that the artificial increase of mixed layer depths towards the observed values substantially reduces the bias. Our assessment results qualify the model for studies of carbon transformation in the surface ocean and metabolic balances. Within the limits of the model assumption and known biases, PELAGOS indicates a net

  19. Wavelength of ocean waves and surf beat at duck from array measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Menon, H.B.; Sarma, Y.V.B.; Jog, P.D.; Almeida, A.M.

    (1) K sub(rms) and (2) K sub(x), K sub(y). The wavelength computed from the array measurements, using both the 3-gauge as well as the SVD (K sub(x), K sub(y)) method, is nearly identical to the wavelength predicted by the well known dispersion...

  20. Eddy covariance measurements of sea spray particles over the Atlantic Ocean

    NARCIS (Netherlands)

    Norris, S.J.; Brooks, I.M.; Leeuw, G. de; Smith, M.H.; Moerman, M.M.; Lingard, J.J.N.

    2007-01-01

    Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol spectra suitable for direct eddy correlation determination of th

  1. Eddy covariance measurements of sea spray particles over the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. J. Norris

    2008-02-01

    Full Text Available Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol spectra suitable for direct eddy correlation determination of the sea spray particle flux. This was accomplished in this study by combining a newly developed fast aerosol particle counter with an ultrasonic anemometer which allowed for eddy covariance measurements of size-segregated particle fluxes. The aerosol instrument is the Compact Lightweight Aerosol Spectrometer Probe (CLASP – capable of measuring 8-channel size spectra for mean radii between 0.15 and 3.5 µm at 10 Hz. The first successful measurements were made during the Waves, Air Sea Fluxes, Aerosol and Bubbles (WASFAB field campaign in October 2005 in Duck (NC, USA. The method and initial results are presented and comparisons are made with recent sea spray source functions from the literature.

  2. A Model For The Use Of Satellite Remote Sensing For The Measurement Of Primary Production In The Ocean

    Science.gov (United States)

    Collins, Donald J.; Kiefer, Dale A.; SooHoo, Janice B.; Stallings, Casson; Yang, Wei-Liang

    1986-08-01

    The estimation of oceanic primary production on a global scale is the focus of efforts in remote sensing using the Coastal Zone Color Scanner (CZCS). The goal of this research is to provide a measure of the primary production using only satellite data for the estimate. This estimate requires the measurement of surface pigments (chlorophyll a + phaeophytin a) using the CZCS, an estimate of the sea-surface temperature using the AVHRR and determination of the incident solar irradiance using GOES imagery. In this paper, we describe a model of primary production based upon the responses of phytoplankton to differing light and nutrient fields. This model includes the effects on production of variations in surface pigment concentration, the mixed layer depth and the dependence on the incident solar irradiance. The model has been tested using in situ data provided by the Southern California Bight Studies (Eppley, et al., 1979), California Cooperative Fisheries Investigations (CalCOFI), Organization of Persistent Upwelling Structures (J.B. Soolloo in OPUS Data Report) and other data sets. A synoptic measure of the distribution of surface pigments is derived from the West Coast Chlorophyll and Temperature Time Series (West Coast Time Series Advisory Group, 1985). The features and behavior of the model will be presented together with the results of the model verification.

  3. Continuous Underway Seawater Measurements of Biogenic Volatile Organic Compounds in the Western Atlantic Ocean

    Science.gov (United States)

    Zoerb, M.; Kim, M.; Bertram, T. H.

    2014-12-01

    The products of isoprene and terpene oxidation have been shown to contribute significantly to secondary aerosol production rates over continental regions, where the emission rates have been well characterized. Significantly less is known about the emission of isoprene and monoterpenes from marine sources. We discuss the development of a chemical ionization mass spectrometer (CIMS) employing benzene reagent ion chemistry for the selective detection of biogenic volatile organic compounds. The CIMS was coupled to a seawater equilibrator for the measurement of dissolved gases in surface seawater. This system was deployed aboard the R/V Knorr during the Western Atlantic Climate Study II in Spring 2014. Here, we report surface seawater (5 m depth) concentrations of dimethyl sulfide, isoprene, and alpha-pinene. The concentration measurements are discussed in terms of surface seawater temperature, nutrient availability, and primary productivity.

  4. Measurements of Ocean Spectral Irradiance for Correlation with Satellite Remote Sensing

    Science.gov (United States)

    1980-05-01

    PRT "E02="YR2; , +R9R15+R25;1+R9 36; SPCF R6+R26F PRT LOG f1E6R6)l- 7’I 22:1 37-o PRT "RA I) SI G ~-R:3R10R21+R3;R4RI IF R’?0OPRT 0; 8: 0R22+R4...Listings . ......... C-I APPENDIX D. Log Sheets ................ ............... D-1 (1) Daily Log (2) Data Printout Supplement APPENDIX E. XBT Trace...taken. --q a Estimated from XBT log ; between stations 17 and 18. X Measurement made or action taken. 0 No measurement or action. Table 2-1. Satellite

  5. Case studies of aerosol and ocean color retrieval using a Markov chain radiative transfer model and AirMSPI measurements

    Science.gov (United States)

    Xu, F.; Diner, D. J.; Seidel, F. C.; Dubovik, O.; Zhai, P.

    2014-12-01

    A vector Markov chain radiative transfer method was developed for forward modeling of radiance and polarization fields in a coupled atmosphere-ocean system. The method was benchmarked against an independent Successive Orders of Scattering code and linearized through the use of Jacobians. Incorporated with the multi-patch optimization algorithm and look-up-table method, simultaneous aerosol and ocean color retrievals were performed using imagery acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) when it was operated in step-and-stare mode with 9 viewing angles ranging between ±67°. Data from channels near 355, 380, 445, 470*, 555, 660*, and 865* nm were used in the retrievals, where the asterisk denotes the polarimetric bands. Retrievals were run for AirMSPI overflights over Southern California and Monterey Bay, CA. For the relatively high aerosol optical depth (AOD) case (~0.28 at 550 nm), the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration were compared to those reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California on 6 February 2013. For the relatively low AOD case (~0.08 at 550 nm), the retrieved aerosol concentration and size distribution were compared to those reported by the Monterey Bay AERONET site on 28 April 2014. Further, we evaluate the benefits of multi-angle and polarimetric observations by performing the retrievals using (a) all view angles and channels; (b) all view angles but radiances only (no polarization); (c) the nadir view angle only with both radiance and polarization; and (d) the nadir view angle without polarization. Optimized retrievals using different initial guesses were performed to provide a measure of retrieval uncertainty. Removal of multi-angular or polarimetric information resulted in increases in both parameter uncertainty and systematic bias. Potential accuracy improvements afforded by applying constraints on the surface

  6. Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds

    Indian Academy of Sciences (India)

    B N Goswami; E N Rajagopal

    2003-03-01

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) during 1999, 2000 and 2001. The NCMRWF surface winds su ered from easterly bias of 1.0-1.5 ms-1 in the equatorial Indian Ocean (IO) and northerly bias of 2.0-3.0 ms-1 in the south equatorial IO during 1999 and 2000 compared to QSCT winds. The amplitude of daily variability was also underestimated compared to that in QSCT. In particular, the amplitude of daily variability of NCMRWF winds in the eastern equatorial IO was only about 60% of that of QSCT during 1999 and 2000. The NCMRWF surface winds during 2001 have significantly improved with the bias of the mean analyzed winds considerably reduced everywhere bringing it to within 0.5 ms-1 of QSCT winds in the equatorial IO. The amplitude and phase of daily and intraseasonal variability are very close to that in QSCT almost everywhere during 2001. It is shown that the weakness in the surface wind analysis during 1999 and 2000 and its improvement in 2001 are related to the weakness in simulation of precipitation by the forecast model in the equatorial IO and its improvement in 2001.

  7. Autonomous multi-sensor micro-system for measurement of ocean water salinity

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Mortensen, Dennis; Birkelund, Karen

    2008-01-01

    This paper describes the design, fabrication and application of a micro-fabricated salinity sensor system. The theoretical electrochemical behaviour is described using electrical equivalent diagrams and simple scaling properties are investigated analytically and numerically using finite element...... method (FEM). The chip design and fabrication is described and measurement results of two different electrode designs are presented. The 4 mm x 4 mm multi-sensor allows for salinity determination with an accuracy of +/- 0.5 psu through determination of the electrical conductivity, temperature...

  8. Rain rate measurements over global oceans from IRS-P4 MSMR

    Indian Academy of Sciences (India)

    A K Varma; R M Gairola; Samir Pokhrel; B S Gohil; A K Mathur; Vijay K Agarwal

    2002-09-01

    In this paper rain estimation capability of MSMR is explored. MSMR brightness temperature data of six channels corresponding to three frequencies of 10, 18 and 21 GHz are colocated with the TRMM Microwave Imager (TMI) derived rain rates to find a new empirical algorithm for rain rate by multiple regression. Multiple correlation analysis involving various combinations of channels in linear and non-linear forms and rain rate from TMI is carried out, and thus the best possible algorithm for rain rate measurement was identified which involved V and H polarized brightness temperature measurements at 10 and 18 GHz channels. This algorithm explained about 82 per cent correlation () with rain rate, and 1.61 mm h-1 of error of estimation. Further, this algorithm is used for generating global average rain rate map for two contrasting months of August (2000) and January (2001) of northern and southern hemispheric summers, respectively. MSMR derived monthly averaged rain rates are compared with similar estimates from TRMM Precipitation Radar (PR), and it was found that MSMR derived rain rates match well, quantitatively and qualitatively, with that from PR.

  9. Latitudinal aerosol size distribution variation in the Eastern Atlantic Ocean measured aboard the FS-Polarstern

    Directory of Open Access Journals (Sweden)

    M. W. Gallagher

    2007-05-01

    Full Text Available Aerosol size distribution measurements from 0.03 µm to 25 µm diameter were taken at ambient humidity aboard the German research vessel, FS-Polarstern, during a transect from Bremerhaven in northern Germany, to Cape Town in South Africa across latitudes 53°32' N to 33°55' S, denoted cruise number ANT XXI/1. The data were segregated according to air mass history, wind speed and latitude. Under clean marine conditions, the averaged size distributions were generally in good agreement with those reported previously for diameters less than 0.5 µm and can be approximated by two log-normal modes, with significant variation in the mean modal diameters. Two short periods of tri-modal behaviour were observed. Above 0.5 µm, there is indication of a limit to the mechanical generation of marine aerosol over the range of wind speeds observed (~1.7–14.7 m s−1. A new technique to determine the errors associated with aerosol size distribution measurements using Poisson statistics has been applied to the dataset, providing a tool to determine the necessary sample or averaging times for correct interpretation of such data. Finally, the data were also used to investigate the loss rate of condensing gases with potentially important consequences for heterogeneous marine photochemical cycles.

  10. Latitudinal aerosol size distribution variation in the Eastern Atlantic Ocean measured aboard the FS-Polarstern

    Directory of Open Access Journals (Sweden)

    P. I. Williams

    2006-12-01

    Full Text Available Aerosol size distribution measurements from 0.03 μm to 25 μm diameter were taken at ambient humidity aboard the German research vessel, FS-Polarstern, during a transect from Bremerhaven in northern Germany, to Cape Town in South Africa across latitudes 53°32' N to 33°55' S, denoted cruise number ANT XXI/1. The data were segregated according to air mass history, wind speed and latitude. Under clean marine conditions, the averaged size distributions were generally in good agreement with those reported previously for diameters less than 0.5 μm and can be approximated by two log-normal modes, with significant variation in the mean modal diameters. Two short periods of tri-modal behaviour were observed. Above 0.5 μm, there is indication of a limit to the mechanical generation of marine aerosol over the range of wind speeds observed. A new technique to determine the errors associated with aerosol size distribution measurements using Poisson statistics has been applied to the dataset, providing a tool to determine the necessary sample or averaging times for correct interpretation of such data. Finally, the data were also used to investigate the loss rate of condensing gases with potentially important consequences for heterogeneous marine photochemical cycles.

  11. Customised search and comparison of in situ, satellite and model data for ocean modellers

    Science.gov (United States)

    Hamre, Torill; Vines, Aleksander; Lygre, Kjetil

    2014-05-01

    For the ocean modelling community, the amount of available data from historical and upcoming in situ sensor networks and satellite missions, provides an rich opportunity to validate and improve their simulation models. However, the problem of making the different data interoperable and intercomparable remains, due to, among others, differences in terminology and format used by different data providers and the different granularity provided by e.g. in situ data and ocean models. The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. In the project, one specific objective has been to improve the technology for accessing historical plankton and associated environmental data sets, along with earth observation data and simulation outputs. To this end, we have developed a web portal enabling ocean modellers to easily search for in situ or satellite data overlapping in space and time, and compare the retrieved data with their model results. The in situ data are retrieved from a geo-spatial repository containing both historical and new physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic. The satellite-derived quantities of similar parameters from the same areas are retrieved from another geo-spatial repository established in the project. Both repositories are accessed through standard interfaces, using the Open Geospatial Consortium (OGC) Web Map Service (WMS) and Web Feature Service (WFS), and OPeNDAP protocols, respectively. While the developed data repositories use standard terminology to describe the parameters, especially the measured in situ biological parameters are too fine grained to be immediately useful for modelling purposes. Therefore, the plankton parameters were grouped according to category, size and if available by element. This grouping

  12. Subsidence hazard and risk assessments for Mexico City: An interdisciplinary analysis of satellite-derived subsidence map (PSInSAR) and census data.

    Science.gov (United States)

    Solano Rojas, D. E.; Cabral-Cano, E.; Wdowinski, S.; Hernaández Espriú, A.; Falorni, G.; Bohane, A.

    2014-12-01

    The Mexico City Metropolitan Area is the largest urban center in the American continent, with 20.4 millions of inhabitants, representing 17.8% of the total population of the country. Over the past several decades Mexico City has been experienced rapid subsidence, up to ~370 mm/yr, caused by groundwater extraction. The subsidence rate is inhomogeneous, as it controlled by the local geology. Unconsolidated sediments tend to compact and induce rapid subsidence, whereas subsurface volcanic rocks are less prone to subsidence. Intensive faulting in the city has been observed in areas of differential deformation; in these areas buildings and infrastructure are highly damaged. Quantification of subsidence-induce damage is needed for establishing the magnitude of the phenomenon. Our study uses three data sources: a satellite-derived subsidence map, census information of population distribution for 2010, and information on buildings and infrastructure. The subsidence map was calculated from 29 SAR scene acquired by the Envisat satellite during the years 2003-2010 using the Persistent Scatterers Interferometry (PSI) method with the SqueeSAR algorithm. The information of the census of population comes from the National Institute of Statistics and Geography (INEGI), which also provides the information about infrastructure. We intersected the information from the three maps using a geographic information system (GIS), which cover an area of 1, 640 km2. As subsidence-induced damage occurs mainly in areas of differential subsidence, we based the GIS analysis on the subsidence gradients, rather than subsidence rates. In order to evaluate subsidence-induced faulting risk, we generated a risk matrix that worked as the main parameter to create a risk map. We then reclassified the urban area into 5 zones according to the related risk, with R0 for the lowest risk and R4 for the highest. Our counting showed that 350 km2 of the city is located in an urban area of high to very high risk

  13. Prognostic land surface albedo from a dynamic global vegetation model clumped canopy radiative transfer scheme and satellite-derived geographic forest heights

    Science.gov (United States)

    Kiang, N. Y.; Yang, W.; Ni-Meister, W.; Aleinov, I. D.; Jonas, J.

    2014-12-01

    Vegetation cover was introduced into general circulations models (GCMs) in the 1980's to account for the effect of land surface albedo and water vapor conductance on the Earth's climate. Schemes assigning canopy albedoes by broad biome type have been superceded in 1990's by canopy radiative transfer schemes for homogeneous canopies obeying Beer's Law extinction as a function of leaf area index (LAI). Leaf albedo and often canopy height are prescribed by plant functional type (PFT). It is recognized that this approach does not effectively describe geographic variation in the radiative transfer of vegetated cover, particularly for mixed and sparse canopies. GCM-coupled dynamic global vegetation models (DGVMs) have retained these simple canopy representations, with little further evaluation of their albedos. With the emergence lidar-derived canopy vertical structure data, DGVM modelers are now revisiting albedo simulation. We present preliminary prognostic global land surface albedo produced by the Ent Terrestrial Biosphere Model (TBM), a DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. The Ent TBM is a next generation DGVM designed to incorporate variation in canopy heights, and mixed and sparse canopies. For such dynamically varying canopy structure, it uses the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer model, which is derived from gap probability theory for canopies of tree cohorts with ellipsoidal crowns, and accounts for soil, snow, and bare stems. We have developed a first-order global vegetation structure data set (GVSD), which gives a year of satellite-derived geographic variation in canopy height, maximum canopy leaf area, and seasonal LAI. Combined with Ent allometric relations, this data set provides population density and foliage clumping within crowns. We compare the Ent prognostic albedoes to those of the previous GISS GCM scheme, and to satellite estimates. The impact of albedo differences on surface

  14. Equilibrator-based measurements of dissolved methane in the surface ocean using an integrated cavity output laser absorption spectrometer

    Institute of Scientific and Technical Information of China (English)

    LI Yuhong; ZHAN Liyang; ZHANG Jiexia; CHEN Liqi

    2015-01-01

    A new off-axis integrated cavity output spectroscopy (ICOS) is coupled to Weiss equilibrator for continuous high-resolution dissolved methane measurement in the surface ocean. The time constant for the equilibrator in freshwater at room temperature is determined via dis-equilibration and re-equilibration experiments. The constant for methane is about 40 min. The system is calibrated using a standard gas of 3.980×10–6, and the precision of the ICOS for methane is 0.07%. This system is equipped onboard to measure the spatial distribution in methane concentrations of South Yellow Sea (SYS) along the cruise track from Shanghai to Qingdao. Result shows that the methane concentration varies from 2.79 to 36.36 nmol/L, reveals a significant pattern of methane source in SYS, and a distinct decreasing trend from south to north. The peak value occurs at the coast area outside mouth of the Changjiang River, likely to be affected by the Changjiang diluted water mass dissolving a large amount of rich in methane. Moreover, all the surface waters are oversaturated, air-to-sea fluxes range from 98.59 to 5 485.35 μmol/(m2·d) (average value (1 169.74±1 398.46) μmol/(m2·d)), indicating a source region for methane to the atmosphere.

  15. Assimilation of TOPEX Sea Level Measurements with a Reduced-Gravity, Shallow Water Model of the Tropical Pacific Ocean

    Science.gov (United States)

    Fukumori, Ichiro

    1995-01-01

    Sea surface height variability measured by TOPEX is analyzed in the tropical Pacific Ocean by way of assimilation into a wind-driven, reduced-gravity, shallow water model using an approximate Kalman filter and smoother. The analysis results in an optimal fit of the dynamic model to the observations, providing it dynamically consistent interpolation of sea level and estimation of the circulation. Nearly 80% of the expected signal variance is accounted for by the model within 20 deg of the equator, and estimation uncertainty is substantially reduced by the voluminous observation. Notable features resolved by the analysis include seasonal changes associated with the North Equatorial Countercurrent and equatorial Kelvin and Rossby waves. Significant discrepancies are also found between the estimate and TOPEX measurements, especially near the eastern boundary. Improvements in the estimate made by the assimilation are validated by comparisons with independent tide gauge and current meter observations. The employed filter and smoother are based on approximately computed estimation error covariance matrices, utilizing a spatial transformation and an symptotic approximation. The analysis demonstrates the practical utility of a quasi-optimal filter and smoother.

  16. Sea ice thickness measurement and its underside morphol-ogy analysis using radar penetration in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    SUN; Bo; (孙; 波); WEN; Jiahong; (温家洪); HE; Maobing; (何茂兵); KANG; Jiancheng; (康建成); LUO; Yuzhong; (罗宇忠); LI; Yuansheng; (李院生)

    2003-01-01

    Based on radar penetrating measurements and analysis of sea ice in the Arctic Ocean, the potential of radar wave to measure sea ice thickness and map the morphology of the underside of sea ice is investigated. The results indicate that the radar wave can penetrate Arctic summer sea ice of over 6 m in thickness; and the propagation velocity of the radar wave in sea ice is in the range of 0.142 m·ns-1 to 0.154 m·ns-1. The radar images display the roughness and micro-relief variation of sea ice bottom surface. These features are closely related to sea ice types, which show that radar survey may be used to identify and classify ice types. Since radar images can simultaneously display the linear profile features of both the upper surface and the underside of sea ice, we use these images to quantify their actual linear length discrepancy. A new length factor is suggested in relation to the actual linear length discrepancy in linear profiles of sea ice, which may be useful in the further study of the area difference between the upper surface and bottom surface of sea ice.

  17. Measurements of sea ice thickness and its subice morphology analysis using ice-penetration radar in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    孙波; 邓新生; 康建成; 罗宇忠; 温家洪; 李院生

    2003-01-01

    Based on radar penetrating measurements and analysis of sea ice in the Arctic Ocean, The potential of radar wave to measure sea ice thickness and map the morphology of the underside of sea ice is investigated.The results indicate that the radar wave can penetrate Arctic summer sea ice of over 6 meters thick; and the propagation velocity of the radar wave in sea ice is in the range of 0.142 m*ns-1 to 0.154 m*ns-1.The radar images display the roughness and micro-relief variation of sea ice bottom surface.These features are closely related to sea ice types, which show that radar survey may be used to identify and classify ice types.Since radar images can simultaneously display the linear profile features of both the upper surface and the underside of sea ice, we use these images to quantify their actual linear length discrepancy.A new length factor is suggested in relation to the actual linear length discrepancy in linear profiles of sea ice, which may be useful in further study of the area difference between the upper surface and bottom surface of sea ice.

  18. Transport in the Solomon Sea Measured by an Ocean Glider in Aug-Nov 2007

    Science.gov (United States)

    Kessler, W. S.; Davis, R. E.; Gourdeau, L.; Sherman, J.

    2007-12-01

    A coast-to-coast glider mission in the Solomon Sea measured the temperature, salinity and absolute velocity in August-November 2007. The Spray glider, built at the Scripps Institution of Oceanography, was launched about 3km from the reef edge at the southeast tip of Papua New Guinea. The glider first crossed the 200-km wide eastern mouth of Milne Bay between the two arms of the Papua Peninsula and again came close to land, then proceeded east across the remainder of the Sea to the Solomons coast for recovery. This is the first measurement of the complete low-latitude western boundary current (LLWBC) in the Solomon Sea, which has been a missing element of the Pacific shallow overturning cell. Vertically-averaged speeds in the LLWBC were 30-50 cm/s over the upper 500m. Surprisingly, about 8Sv of the LLWBC (perhaps half the total) flowed into Milne Bay rather than through the open Solomon Sea, and must exit through narrow, shallow channels on the northwest corner of the Bay. Beyond Milne Bay, recirculating, apparently permanent eddies were observed both east and west of the main stream. The geostrophic shear showed that the western boundary current had a subsurface maximum near 2-300m depth, as has been observed in the equatorial Pacific along the north coast of New Guinea. The mission will be repeated 3 more times in the next year to sample the annual cycle, with a view towards ongoing monitoring of the transport from the South Pacific to the equator.

  19. PhyLM: A Mission Design Concept for an Optical/Lidar Instrument to Measure Ocean Productivity and Aerosols from Space

    Science.gov (United States)

    Gervin, Janette C.; Behrenfeld, Michael; McClain, Charles R.; Spinhirne, James; Purves, Lloyd; Wood, H. John; Roberto, Michael R.

    2004-01-01

    The Physiology Lidar-Multispectral Mission (PhyLM) is intended to explore the complex ecosystems of our global oceans. New "inversion" methods and improved understanding of marine optics have opened the door to quantifying a range of critical ocean properties. This new information could revolutionize our understanding of global ocean processes, such as phytoplankton growth, harmful algal blooms, carbon fluxes between major pools and the productivity equation. The new science requires new measurements not addressed by currently planned space missions. PhyLM will combine active and advanced passive remote sensing technologies to quantify standing stocks and fluxes of climate-critical components of the Ocean carbon cycle to meet these science providing multispectral bands from the far UV through the near infrared (340 - 1250 nm) at a ground resolution of 250 m. Improved detectors, filters, mirrors, digitization and focal plane design will offer an overall higher-quality data product. The unprecedented accuracy and precision of the absolute water-leaving radiances will support inversion- based quantification of an expanded set of ocean carbon cycle components. The dual- wavelength (532 & 1064 nm) Nd:Yag Lidar will enhance the accuracy and precision of the passive data by providing aerosol profiles for atmospheric correction and coincident active measurements of backscattering. The Lidar will also examine dark-side fluorescence as an additional approach to quantifying phytoplankton biomass in highly productive regions.

  20. The New MODIS-Terra, and the Proposed COBRA Mission: First Global Aerosol Distribution and Properties Over Land and Ocean, and Plans to Measure Global Black Carbon Absorption Over the Ocean Glint

    Science.gov (United States)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine; Martins, Vanderlei; Schoeberl, Mark; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct, the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse (mainly natural) aerosol particles. New methods to derive the aerosol absorption of sunlight are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. However MODIS or any present satellite sensor cannot measure absorption by Black Carbon over the oceans, a critical component in studying climate change and human health. For this purpose we propose the COBRA mission that observes the ocean at glint and off glint simultaneously measuring the spectral polarized light and deriving precisely the aerosol absorption.

  1. Retrieve Ocean Bottom and Downhole Seismic sensors orientation using integrated low cost gyroscope and direct rotation measurements

    Science.gov (United States)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2014-05-01

    To reduce the background noise level, seismic sensors are often installed in downhole. During the installation, it is not possible to determine exactly what the sensors has rotated in the horizontal plane before reaching the bottom. To monitoring the seismic activity occurred in offshore areas, Ocean Bottom Seismometers (OBS) are often deployed in the area to be studied. During the OBS descent phase along the seawater column the sensor can undergo to significant rotations in the horizontal plane. Therefore, both for seismic sensors installed in downhole or on ocean bottom, the absolute orientation of the horizontal components are unknown. Clearly, this serious problem can be limits data analysis and interpretation. The absolute orientation of horizontal components are critical for many modern seismic analysis techniques such as receiver functions, body- and surface-wave polarization analysis, studies of anisotropy, and surface wave dispersion curves estimations. The techniques proposed to retrieve the correct sensor horizontal components orientations use different approaches (polarization analysis, cross-correlation measurements, synthetic seismograms fitting), different data set (shots, earthquakes, seismic noise) and different portion of the seismic wave-field (P or S wave arrival times, Rayleigh waves, full waveforms), but are all based on the post-processing of the acquired data. All these methods are not error-free and not always applicable. Method based on active source are not applicable in passive OBS monitoring campaigns. The method based on synthetic waveforms are strong dependent on accuracy of the source parameters estimation and are generally computationally intensive. The method based on polarization analysis are clearly strong dependent on the quality of the data in term of number of seismic events recorded, azimuthal coverage and signal to noise ratio. The methods base on events or noise cross-correlation can be applicable only if an array of sensor

  2. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets

    Science.gov (United States)

    Buchwitz, Michael

    2013-04-01

    The GHG-CCI project is one of several projects of the European Space Agency's (ESA) Climate Change Initiative (CCI). The goal of the CCI is to generate and deliver data sets of various satellite-derived Essential Climate Variables (ECVs) in line with GCOS (Global Climate Observing System) requirements. The "ECV Greenhouse Gases" (ECV GHG) is the global distribution of important climate relevant gases - atmospheric CO2 and CH4 - with a quality sufficient to obtain information on regional CO2 and CH4 sources and sinks. Two satellite instruments deliver the main input data for GHG-CCI: SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT. The first order priority goal of GHG-CCI is the further development of retrieval algorithms for near-surface-sensitive column-averaged dry air mole fractions of CO2 and CH4, denoted XCO2 and XCH4, to meet the demanding user requirements. GHG-CCI focusses on four core data products: XCO2 from SCIAMACHY and TANSO and XCH4 from the same two sensors. For each of the four core data products at least two candidate retrieval algorithms have been independently further developed and the corresponding data products have been quality assessed and inter-compared. This activity is referred to as "Round Robin" (RR) activity within the CCI. The main goal of the RR was to identify for each of the four core products which algorithm to be used to generate the Climate Research Data Package (CRDP), which will essentially be the first version of the ECV GHG. This manuscript gives an overview about the GHG-CCI RR and related activities. This comprises the establishment of the user requirements, the improvement of the candidate retrieval algorithms and comparisons with ground-based observations and models. The manuscript summarizes the final RR algorithm selection decision and its justification. Comparison with ground-based Total Carbon Column Observing Network (TCCON) data indicates that the "breakthrough" single measurement precision requirement has been met for

  3. Ice-shelf – ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements

    Directory of Open Access Journals (Sweden)

    K. W. Nicholls

    2007-09-01

    Full Text Available Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O to the upper 100–150 m of the water column in the southeast Weddell Sea.

  4. Ice-shelf – ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements

    Directory of Open Access Journals (Sweden)

    K. W. Nicholls

    2008-03-01

    Full Text Available Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O to the upper 100–150 m of the water column in the southeast Weddell Sea.

  5. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe

    Science.gov (United States)

    Saba, V. S.; Friedrichs, M. A. M.; Antoine, D.; Armstrong, R. A.; Asanuma, I.; Behrenfeld, M. J.; Ciotti, A. M.; Dowell, M.; Hoepffner, N.; Hyde, K. J. W.; Ishizaka, J.; Kameda, T.; Marra, J.; Mélin, F.; Morel, A.; O'Reilly, J.; Scardi, M.; Smith, W. O., Jr.; Smyth, T. J.; Tang, S.; Uitz, J.; Waters, K.; Westberry, T. K.

    2011-02-01

    Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ 14C measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. On average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to

  6. In situ measurements of thermal diffusivity in sediments of the methane-rich zone of Cascadia Margin, NE Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Kira Homola

    2015-02-01

    Full Text Available Abstract Thermal diffusivity (TD is a measure of the temperature response of a material to external thermal forcing. In this study, TD values for marine sediments were determined in situ at two locations on the Cascadia Margin using an instrumented sediment probe deployed by a remotely operated vehicle. TD measurements in this area of the NE Pacific Ocean are important for characterizing the upslope edge of the methane hydrate stability zone, which is the climate-sensitive boundary of a global-scale carbon reservoir. The probe was deployed on the Cascadia Margin at water depths of 552 and 1049 m for a total of 6 days at each site. The instrumented probe consisted of four thermistors aligned vertically, one sensor exposed to the bottom water and one each at 5, 10, and 15 cm within the sediment. Results from each deployment were analyzed using a thermal conduction model applying a range of TD values to obtain the best fit with the experimental data. TD values corresponding to the lowest standard deviations from the numerical model runs were selected as the best approximations. Overall TDs of Cascadia Margin sediments of 4.33 and 1.15 × 10–7 m2 s–1 were calculated for the two deployments. These values, the first of their kind to be determined from in situ measurements on a methane hydrate-rich continental margin, are expected to be useful in the development of models of bottom-water temperature increases and their implications on a global scale.

  7. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    Science.gov (United States)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  8. Satellite-Derived Aerosol Climate Data Records in the ESA Aerosol_Cci Project: From ERS-2, Envisat to Sentinel-3

    Science.gov (United States)

    de Leeuw, Gerrit; Holzer-Popp, Thomas; North, Peter R. J.; Heckel, Andreas; Pinnock, Simon

    2015-12-01

    With the focus of Sentinel-3 on ocean applications and services, important parts of the payload are the Sea and Land Surface Temperature Radiometer (SLSTR) and the Ocean Land Colour Instrument (OLCI). Apart from Ocean applications, these instruments are also very important for atmospheric observations and in particular for aerosol retrieval. This is the reason why the predecessor instruments AATSR and MERIS have extensively been used in the ESA Climate Change Initiative project Aerosol_cci. In this contribution a brief overview of the current status of the Aerosol_cci project is presented. Full-mission time series of ATSR-2 and AATSR have been processed to provide 17 years of global aerosol information. Selected examples of recent achievements are presented. The experience with ATSR-2, AATSR and MERIS will be used to continue the current time series with SLSTR and OLCI.

  9. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  10. Oceanographic profile Zooplankton biomass measurements collected using net in the Arctic Ocean from 1991 to 1995 (NODC Accession 0000970)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mumm, Nicolai, H. Auel, H. Hanssen, W. Hagen, C. Richter, and H.J. Hirche. 1998. Breaking the ice: large-scale distribution of mesozooplankton after a decade of...

  11. Ocean current measurement techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    stream_size 3 stream_content_type text/plain stream_name Trg_Calculat_Water_Depth_Chart_Datum_1991_6.pdf.txt stream_source_info Trg_Calculat_Water_Depth_Chart_Datum_1991_6.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  12. The Western South Atlantic Ocean in a High-CO2 World: Current Measurement Capabilities and Perspectives.

    Science.gov (United States)

    Kerr, Rodrigo; da Cunha, Letícia C; Kikuchi, Ruy K P; Horta, Paulo A; Ito, Rosane G; Müller, Marius N; Orselli, Iole B M; Lencina-Avila, Jannine M; de Orte, Manoela R; Sordo, Laura; Pinheiro, Bárbara R; Bonou, Frédéric K; Schubert, Nadine; Bergstrom, Ellie; Copertino, Margareth S

    2016-03-01

    An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network (www.broa.furg.br) authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.

  13. The Western South Atlantic Ocean in a High-CO2 World: Current Measurement Capabilities and Perspectives

    Science.gov (United States)

    Kerr, Rodrigo; da Cunha, Letícia C.; Kikuchi, Ruy K. P.; Horta, Paulo A.; Ito, Rosane G.; Müller, Marius N.; Orselli, Iole B. M.; Lencina-Avila, Jannine M.; de Orte, Manoela R.; Sordo, Laura; Pinheiro, Bárbara R.; Bonou, Frédéric K.; Schubert, Nadine; Bergstrom, Ellie; Copertino, Margareth S.

    2016-03-01

    An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network (www.broa.furg.br) authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.

  14. Comparative CO2 flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Fumiyoshi Kondo

    2012-04-01

    Full Text Available Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC and closed-path eddy covariance (CPEC techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.

  15. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor

    Science.gov (United States)

    Meissner, Thomas; Wentz, Frank J.; Ricciardulli, Lucrezia

    2014-09-01

    In order to achieve the required accuracy in sea surface salinity (SSS) measurements from L-band radiometers such as the Aquarius/SAC-D or SMOS (Soil Moisture and Ocean Salinity) mission, it is crucial to accurately correct the radiation that is emitted from the ocean surface for roughness effects. We derive a geophysical model function (GMF) for the emission and backscatter of L-band microwave radiation from rough ocean surfaces. The analysis is based on radiometer brightness temperature and scatterometer backscatter observations both taken on board Aquarius. The data are temporally and spatially collocated with wind speeds from WindSat and F17 SSMIS (Special Sensor Microwave Imager Sounder) and wind directions from NCEP (National Center for Environmental Prediction) GDAS (Global Data Assimilation System). This GMF is the basis for retrieval of ocean surface wind speed combining L-band H-pol radiometer and HH-pol scatterometer observations. The accuracy of theses combined passive/active L-band wind speeds matches those of many other satellite microwave sensors. The L-band GMF together with the combined passive/active L-band wind speeds is utilized in the Aquarius SSS retrieval algorithm for the surface roughness correction. We demonstrate that using these L-band wind speeds instead of NCEP wind speeds leads to a significant improvement in the SSS accuracy. Further improvements in the roughness correction algorithm can be obtained by adding VV-pol scatterometer measurements and wave height (WH) data into the GMF.

  16. Improved Oceanographic Measurements from SAR Altimetry: Results and Scientific Roadmap from ESA CryoSat Plus for Oceans Project

    Science.gov (United States)

    Cotton, P. D.; Andersen, O.; Stenseng, L.; Boy, F.; Cancet, M.; Cipollini, P.; Gommenginger, C.; Dinardo, S.; Egido, A.; Fernandes, M. J.; Garcia, P. N.; Moreau, T.; Naeije, M.; Scharroo, R.; Lucas, B.; Benveniste, J.

    2016-08-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "Cryosat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of Cryosat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: To build a sound scientific basis for new oceanographic applications of Cryosat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter, and to ensure that the scientific return of the Cryosat-2 mission is maximised.This task was addressed within four specific themes: Open Ocean Altimetry; High Resolution Coastal Zone Altimetry; High Resolution Polar Ocean Altimetry; High Resolution Sea-Floor Bathymetry, with further work in developing improved geophysical corrections. The Cryosat Plus 4 Oceans (CP4O) consortium brought together a uniquely strong team of key European experts to develop and validate new algorithms and products to enable users to fully exploit the novel capabilities of the Cryosat-2 mission for observations over ocean. The consortium was led by SatOC (UK), and included CLS (France), Delft University of Technology (The Netherlands), DTU Space (Denmark), isardSat (Spain), National Oceanography Centre (UK), Noveltis (France), Starlab (Spain) and the University of Porto (Portugal).This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications.

  17. A statistical look at turbulence from high-resolution temperature measurements above a deep-ocean sloping seafloor.

    Science.gov (United States)

    Cimatoribus, Andrea; van Haren, Hans

    2016-04-01

    A detailed analysis of the statistics of temperature in an oceanographic observational dataset is presented. The data is collected using a moored array of 144 thermistors, 100m tall, deployed above the slopes of a seamount in the North Eastern Atlantic Ocean from April to August 2013. The thermistors are built in-house at the Royal Netherlands Institute for Sea Research, and provide a precision better than 10-3 K and very low noise levels. The thermistors measure temperature every second, synchronised throughout the moored array. The thermistor array ends 5m above the bottom, and no bottom mixed layer is visible in the data, indicating that restratification is constantly occurring and that a mixed layer is either absent or very thin. Intense turbulence is observed, and a strong dependence of turbulence parameters on the phase of the semidiurnal tidal wave (the dominant frequency in the power spectrum) is also evident. We present an overview of the results obtained form this dataset, exploiting the unprecedent detail of the observations. We compute the statistical moments (generalised structure functions) of order up to 10 of the distributions of temperature increments. Strong intermittency is observed, in particular, during the downslope phase of the tide, and farther from the seafloor. In the lower half of the mooring during the upslope phase, the temperature statistics are consistent with those of a passive scalar. In the upper half of the mooring, the temperature statistics deviate from those of a passive scalar, and evidence of turbulent convective activity is found. The downslope phase is generally thought to be more shear-dominated, but our results suggest on the other hand that convective activity is present. High-order moments also show that the turbulence scaling behaviour breaks at a well-defined scale (of the order of the buoyancy length scale), which is however dependent on the flow state (tidal phase, height above the bottom). At larger scales, wave

  18. Southeast Atlantic Ocean aerosol direct radiative effects over clouds: Comparison of observations and simulations

    Science.gov (United States)

    de Graaf, M.; Haywood, J.; Bellouin, N.; Tilstra, L. G.; Stammes, P.

    2017-02-01

    Absorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation absorption by aerosols heat the atmosphere locally, and, through rapid adjustments of the atmospheric column and cloud dynamics, the net effect can be amplified considerably. We developed a technique to study the absorption of radiation of smoke over low lying clouds using satellite spectrometry. The TOA DRE of smoke over clouds is large and positive over the southeast Atlantic Ocean off the west coast of Africa, which can be explained by the large decrease of reflected radiation by a polluted cloud, especially in the UV. However, general circulation models (GCMs) fail to reproduce these strong positive DRE, and in general GCMs disagree on the magnitude and even sign of the aerosol DRE in the southeast Atlantic region. Our satellite-derived DRE measurements show clear seasonal and inter-annual variations, consistent with other satellite measurements, which are not reproduced by GCMs. A comparison with model results showed discrepancies with the Ångström exponent of the smoke aerosols, which is larger than assumed in simulations, and a sensitivity to emission scenarios. However, this was not enough to explain the discrepancies, and we suspect that the modeling of cloud distributions and microphysics will have the necessary larger impact on DRE that will explain the differences between observations and modeling.

  19. Numerical simulation and validation of ocean waves measured by an Along-Track Interferometric Synthetic Aperture Radar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Biao; HE Yijun; Paris W.VACHON

    2008-01-01

    A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR )image spectra is described.ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform.The numerical simulations show that the slant range to velocity ratio(R/V),significant wave height to ocean wavelength ratio(Hs/λ),the baseline (2B) and incident angle(θ)affect ATI-SAR imaging.The ATI-SAR imaging theory is validated by means of Two X-band,HH-polarized ATI-SAR phase images of ocean waves and eight C-band,HH-polarized ATI-SAR phase image spectra of ocean waves.It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave soectra collected simultaneously with available ATI-SAR observations.ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and ale not sensitive to the degree of nonlinearity.However,the ATI-SAR phase image spectral turns towards the range direction.even if the real ocean wave direction is 30°.It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity,especially for high values of R/V and Hs/λ.

  20. A Predictive Model for Satellite-Derived Phytoplankton Absorption Over the Louisiana Shelf Hypoxic Zone: Effects of Nutrients and Physical Forcing

    Science.gov (United States)

    2008-06-06

    by the spatial coastal areas, has been implemented in the most recent (5th) and temporal scales of variability that they can capture. global... temporal resolution, applied during our image processing) that further improves Imagery from the Coastal Zone Color Scanner (CZCS) satellite...retrievals of phytoplankton biomass in Case 2 waters ocean color satellite (1978-1985) provided the first clima - [Ransibrahmanakul and Stumpf, 2006]. Taken

  1. Comparison of Satellite-Derived TOA Shortwave Clear-Sky Fluxes to Estimates from GCM Simulations Constrained by Satellite Observations of Land Surface Characteristics

    Science.gov (United States)

    Anantharaj, Valentine G.; Nair, Udaysankar S.; Lawrence, Peter; Chase, Thomas N.; Christopher, Sundar; Jones, Thomas

    2010-01-01

    Clear-sky, upwelling shortwave flux at the top of the atmosphere (S(sub TOA raised arrow)), simulated using the atmospheric and land model components of the Community Climate System Model 3 (CCSM3), is compared to corresponding observational estimates from the Clouds and Earth's Radiant Energy System (CERES) sensor. Improvements resulting from the use of land surface albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) to constrain the simulations are also examined. Compared to CERES observations, CCSM3 overestimates global, annual averaged S(sub TOA raised arrow) over both land and oceans. However, regionally, CCSM3 overestimates S(sub TOA raised arrow) over some land and ocean areas while underestimating it over other sites. CCSM3 underestimates S(sub TOA raised arrow) over the Saharan and Arabian Deserts and substantial differences exist between CERES observations and CCSM3 over agricultural areas. Over selected sites, after using groundbased observations to remove systematic biases that exist in CCSM computation of S(sub TOA raised arrow), it is found that use of MODIS albedo improves the simulation of S(sub TOA raised arrow). Inability of coarse resolution CCSM3 simulation to resolve spatial heterogeneity of snowfall over high altitude sites such as the Tibetan Plateau causes overestimation of S(sub TOA raised arrow) in these areas. Discrepancies also exist in the simulation of S(sub TOA raised arrow) over ocean areas as CCSM3 does not account for the effect of wind speed on ocean surface albedo. This study shows that the radiative energy budget at the TOA is improved through the use of MODIS albedo in Global Climate Models.

  2. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from JAMES CLARK ROSS in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 2008-12-26 to 2009-01-30 (NODC Accession 0110254)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110254 includes discrete sample and profile data collected from JAMES CLARK ROSS in the Indian Ocean, South Atlantic Ocean and Southern Oceans (>...

  3. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 1996-03-17 to 1996-05-20 (NODC Accession 0116640)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116640 includes discrete sample and profile data collected from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans (> 60...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2012-11-28 to 2013-01-04 (NCEI Accession 0143950)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143950 includes discrete sample and profile data collected from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans (> 60 degrees...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ODEN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-12-14 to 2006-12-26 (NODC Accession 0108159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108159 includes Surface underway data collected from ODEN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60 degrees...

  6. The Application of Jason-1 Measurements to Estimate the Global Near Surface Ocean Circulation for Climate Research

    Science.gov (United States)

    Niiler, Peran P.

    2004-01-01

    The scientific objective of this research program was to utilize drifter, Jason-1 altimeter data and a variety of wind data for the determination of time mean and time variable wind driven surface currents of the global ocean. To accomplish this task has required the interpolation of 6-hourly winds on drifter tracks and the computation of the wind coherent motions of the drifters. These calculations showed that the Ekman current model proposed by Ralph and Niiler for the tropical Pacific was valid for all the oceans south of 40N latitude. Improvements to RN99 model were computed and poster presentations of the results were given in several ocean science venues, including the November 2004 GODAY meeting in St. Petersburg, FL.

  7. First study on (236)U in the Northeast Pacific Ocean using a new target preparation procedure for AMS measurements.

    Science.gov (United States)

    Eigl, R; Steier, P; Winkler, S R; Sakata, K; Sakaguchi, A

    2016-10-01

    We succeeded in obtaining the depth profile of (236)U for a sampling station in the Northeast Pacific Ocean using only one litre of seawater sample from each depth. For this purpose, a new procedure was developed that allowed for the preparation of accelerator mass spectrometry targets for trace uranium using only 100 μg of iron carrier material. The (236)U concentrations in water samples from the Northeast Pacific Ocean showed large variations from (9.26 ± 0.42) × 10(6) atoms/kg at 60 m depth to (0.08 ± 0.02) × 10(6) atoms/kg at a depth of 3000 m. The high (236)U concentrations in surface water reflect the input of (236)U by global and local fallout from nuclear weapons tests. The low (236)U concentrations in seawater from 1500 m and below are an indicator for the low vertical diffusion of surface water to deeper layers in the North Pacific Ocean. The total inventory of (236)U on the water column was (8.35 ± 0.23) × 10(12) atoms/m(2), which is lower compared to those of other ocean regions solely affected by global fallout on comparable latitudes. This study represents the first dataset for (236)U in the Pacific Ocean and shows the possibility of downsizing sample volumes which may help in future applications of (236)U as tracer for large ocean areas.

  8. Using Lagrangian-based process studies to test satellite algorithms of vertical carbon flux in the eastern North Pacific Ocean

    Science.gov (United States)

    Stukel, M. R.; Kahru, M.; Benitez-Nelson, C. R.; Décima, M.; Goericke, R.; Landry, M. R.; Ohman, M. D.

    2015-11-01

    The biological carbon pump is responsible for the transport of ˜5-20 Pg C yr-1 from the surface into the deep ocean but its variability is poorly understood due to an incomplete mechanistic understanding of the complex underlying planktonic processes. In fact, algorithms designed to estimate carbon export from satellite products incorporate fundamentally different assumptions about the relationships between plankton biomass, productivity, and export efficiency. To test the alternate formulations of export efficiency in remote-sensing algorithms formulated by Dunne et al. (2005), Laws et al. (2011), Henson et al. (2011), and Siegel et al. (2014), we have compiled in situ measurements (temperature, chlorophyll, primary production, phytoplankton biomass and size structure, grazing rates, net chlorophyll change, and carbon export) made during Lagrangian process studies on seven cruises in the California Current Ecosystem and Costa Rica Dome. A food-web based approach formulated by Siegel et al. (2014) performs as well or better than other empirical formulations, while simultaneously providing reasonable estimates of protozoan and mesozooplankton grazing rates. By tuning the Siegel et al. (2014) algorithm to match in situ grazing rates more accurately, we also obtain better in situ carbon export measurements. Adequate representations of food-web relationships and grazing dynamics are therefore crucial to improving the accuracy of export predictions made from satellite-derived products. Nevertheless, considerable unexplained variance in export remains and must be explored before we can reliably use remote sensing products to assess the impact of climate change on biologically mediated carbon sequestration.

  9. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    Science.gov (United States)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  10. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate.

    Science.gov (United States)

    Smettem, Keith R J; Waring, Richard H; Callow, John N; Wilson, Melissa; Mu, Qiaozhen

    2013-08-01

    There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study, we analyzed satellite-derived estimates of monthly LAI across forested coastal catchments of southwest Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, interannual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long-term decline in areal average underground water storage and diminished summer flows, with an emerging trend toward more ephemeral flow regimes.

  11. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: Dust sources, elemental composition and mineralogy

    NARCIS (Netherlands)

    Patey, M.D.; Achterberg, E.P.; Rijkenberg, M.J.; Pearce, R.

    2015-01-01

    The North Atlantic receives the largest dust loading of any of the world's oceans due to its proximity to North African deserts and prevailing wind patterns. The supply of biologically important trace elements and nutrients via aerosols has an important influence on biogeochemical processes and ecos

  12. South African integrated carbon observation network (SA-ICON): CO2 measurements on land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2016-10-01

    Full Text Available It has become essential to accurately estimate the emission and uptake of atmospheric carbon dioxide (CO(sub2)) around the globe. Atmospheric CO(sub2) plays a central role in the Earth’s atmospheric, ocean and terrestrial systems and it has been...

  13. Oceanographic profile temperature, salinity, oxygen and other measurement collected from various platforms in the South Pacific and South Atlantic Oceans from 1961-1964 (NODC Accession 0001903)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts from the ARGUS in the South Atlantic Ocean and South Pacific Ocean. Data were collected from...

  14. North Pole Environmental Observatory CTD surveys: Springtime temperature and salinity measurements in the Arctic Ocean by aircraft, 2000 - 2008 (NODC Accession 0057592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The investigators propose to take annual springtime, large-scale airborne surveys of the Arctic Ocean. These surveys will be in two regions: the central Arctic Ocean...

  15. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 16 June 1985 to 22 July 2003 (NODC Accession 0001206)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  16. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 9 October 1990 to 27 August 2004 (NODC Accession 0001974)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  17. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 8 October 1993 to 16 March 2008 (NODC Accession 0049878)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  18. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for SADCP holdings from 20 August 1999 to 13 May 2009 (NCEI Accession 0067774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  19. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 13 September 1999 to 28 April 2007 (NCEI Accession 0036863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  20. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  1. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 16 June 1985 to 23 March 2001 (NCEI Accession 0000755)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  2. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 6 November 1993 to 11 October 2005 (NODC Accession 0002679)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  3. Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements

    Science.gov (United States)

    Maus, S.; Yin, F.; Lühr, H.; Manoj, C.; Rother, M.; Rauberg, J.; Michaelis, I.; Stolle, C.; Müller, R. D.

    2008-07-01

    The CHAMP satellite continues to provide highly accurate magnetic field measurements from decreasing orbital altitudes (<350 km) at solar minimum conditions. Using the latest 4 years (2004-2007) of readings from the CHAMP fluxgate magnetometer, including an improved scalar data product, we have estimated the lithospheric magnetic field to spherical harmonic degree 120, corresponding to 333 km wavelength resolution. The data were found to be sensitive to crustal field variations up to degree 150 (down to 266 km wavelength), but a clean separation of the lithospheric signal from ionospheric and magnetospheric noise sources was achieved only to degree 120. This new MF6 model is the first satellite-based magnetic model to resolve the direction of oceanic magnetic lineations, revealing the age structure of oceanic crust.

  4. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  5. Classification of Satellite Derived Chlorophyll a Space-Time Series by Means of Quantile Regression: An Application to the Adriatic Sea

    Science.gov (United States)

    Girardi, P.; Pastres, R.; Gaetan, C.; Mangin, A.; Taji, M. A.

    2015-12-01

    In this paper, we present the results of a classification of Adriatic waters, based on spatial time series of remotely sensed Chlorophyll type-a. The study was carried out using a clustering procedure combining quantile smoothing and an agglomerative clustering algorithms. The smoothing function includes a seasonal term, thus allowing one to classify areas according to “similar” seasonal evolution, as well as according to “similar” trends. This methodology, which is here applied for the first time to Ocean Colour data, is more robust with respect to other classical methods, as it does not require any assumption on the probability distribution of the data. This approach was applied to the classification of an eleven year long time series, from January 2002 to December 2012, of monthly values of Chlorophyll type-a concentrations covering the whole Adriatic Sea. The data set was made available by ACRI (http://hermes.acri.fr) in the framework of the Glob-Colour Project (http://www.globcolour.info). Data were obtained by calibrating Ocean Colour data provided by different satellite missions, such as MERIS, SeaWiFS and MODIS. The results clearly show the presence of North-South and West-East gradient in the level of Chlorophyll, which is consistent with literature findings. This analysis could provide a sound basis for the identification of “water bodies” and of Chlorophyll type-a thresholds which define their Good Ecological Status, in terms of trophic level, as required by the implementation of the Marine Strategy Framework Directive. The forthcoming availability of Sentinel-3 OLCI data, in continuity of the previous missions, and with perspective of more than a 15-year monitoring system, offers a real opportunity of expansion of our study as a strong support to the implementation of both the EU Marine Strategy Framework Directive and the UNEP-MAP Ecosystem Approach in the Mediterranean.

  6. Evaluating Physical Processes during the Freeze-Up Season using a Coupled Sea Ice-Ocean-Atmosphere Forecast Model

    Science.gov (United States)

    Solomon, Amy; Intrieri, Janet; Persson, Ola; Cox, Christopher; Hughes, Mimi; Grachev, Andrey; Capotondi, Antonietta; de Boer, Gijs

    2017-04-01

    Improved sea ice forecasting must be based on improved model representation of coupled system processes that impact the sea ice thermodynamic and dynamic state. Pertinent coupled system processes remain uncertain and include surface energy fluxes, clouds, precipitation, boundary layer structure, momentum transfer and sea-ice dynamics, interactions between large-scale circulation and local processes, and others. In this presentation, we use a fully-coupled ocean-sea ice-atmosphere forecast system as a testbed for investigating biases in 0-10 day forecasts, with a focus on processes that determine fluxes at the ocean-ice-air interface. Model results and validation examples from an experimental, weather-scale, coupled ice-ocean-atmosphere model for 2015 and 2016 fall, sea ice freeze-up season will be presented. The model, a limited-area, fully-coupled atmosphere-ice-ocean model (named, RASM-ESRL), was developed from the larger-scale Regional Arctic System Model (RASM) architecture. RASM-ESRL includes the Weather Research and Forecasting (WRF) atmospheric model, Parallel Ocean Program (POP2) model, Community Ice Model (CICE5) and the NCAR Community Land Model. The domain is limited to the Arctic and all components are run with 10 km horizontal resolution. Components are coupled using a regionalized version of the CESM flux coupler (CPL7), which includes modifications important for resolving the sea ice pack's inertial response to transient (i.e. weather) events. The model is initialized with a GFS atmosphere, satellite-derived sea ice analyses using AMSR-2, and forced by 3-hourly GFS forecasts at the lateral boundaries. Experimental forecasts were run daily from late-July through mid-November in 2015 and 2016. These daily forecasts have been compared with observations of surface fluxes and vertical atmospheric profiles at the International Arctic Systems for Observing the Atmosphere (IASOA) stations, and with atmospheric and oceanic observations obtained within the sea

  7. Das Radionuklid Tritium im Ozean: essverfahren und Verteilung von Tritium im Sudatlantik und im Weddellmeer = The radionuclide Tritium in the ocean : measurements and distribution of tritium in the South Atlantic and the Weddell Sea

    National Research Council Canada - National Science Library

    Sultenfuss, J

    1998-01-01

    In this thesis the parameter of a system for routine measurements of oceanic tritium samples by 3He-ingrowth-method are described and the potential of the so obtained data for oceanographic purposes...

  8. Synoptic measurements of subsurface phytoplankton layers collected from Fish Lidar, Oceanic, Experimenta (FLOE) Light Detection and Ranging (LIDAR) from aircraft in Chukchi Sea and Beaufort Sea from 2014-07-17 to 2014-07-29 (NCEI Accession 0128217)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2014, FLOE was installed in a NOAA Twin Otter to make the first synoptic measurements of subsurface phytoplankton layers associated with the retreating ice...

  9. Variability of the Antarctic Circumpolar Current derived from GRACE retrievals, model simulations and in-situ measurements

    Science.gov (United States)

    Boening, C.; Timmermann, R.; Macrander, A.; Schroeter, J.; Boebel, O.

    2008-12-01

    The Gravity Recovery and Climate Experiment (GRACE) provides estimates of the Earth's static and time-variant gravity field. Solutions from various processing centres (GFZ, CSR, GRGS, JPL etc.) enable us to determine mass redistributions on the globe. Given that land signals are generally large compared to anomalies over the ocean, an assessment of the latter requires a particularly careful filtering of the data. We utilized the Finite Element Sea-Ice Ocean Model (FESOM) to develop a filtering algorithm which relies on the spatial coherency of ocean bottom pressure (OBP) anomalies. Taking large-scale circulation patterns into account, the new filter yields an improved representation of OBP (i.e. ocean mass) variability in the filtered GRACE data. In order to investigate the representation of Antarctic Circumpolar Current (ACC) variability in the pattern-filtered GRACE retrievals, an analysis of OBP anomalies in FESOM results and in-situ measurements has been performed. Data from a PIES (Pressure sensor equipped Inverted Echo Sounder) array (36°S-55°S, 2°W-13°E) south of Africa provides bottom pressure recorder data from 2002-2008 for the ACC region. Based on anomalies of OBP gradients between individual instruments, these in-situ measurements give an estimate of the overall transport variability as well as of the movement of ACC fronts and transport redistribution between different sectors of the ACC. The validation of simulated and satellite-derived OBP anomaly gradients against these data yields a measure for the representation of this variability in FESOM and GRACE. Furthermore, model simulations are used to assess the relation between transport variations in individual filaments of the Southern Ocean and total transport variability in this and other sectors of the ACC.

  10. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010

    Science.gov (United States)

    Hsu, N. C.; Gautam, R.; Sayer, A. M.; Bettenhausen, C.; Li, C.; Jeong, M. J.; Tsay, S.-C.; Holben, B. N.

    2012-09-01

    Both sensor calibration and satellite retrieval algorithm play an important role in the ability to determine accurately long-term trends from satellite data. Owing to the unprecedented accuracy and long-term stability of its radiometric calibration, SeaWiFS measurements exhibit minimal uncertainty with respect to sensor calibration. In this study, we take advantage of this well-calibrated set of measurements by applying a newly-developed aerosol optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of AOD, and to identify emerging patterns and trends in global and regional aerosol loading during its 13-yr mission. Our correlation analysis between climatic indices (such as ENSO) and AOD suggests strong relationships for Saharan dust export as well as biomass-burning activity in the tropics, associated with large-scale feedbacks. The results also indicate that the averaged AOD trend over global ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but opposite in sign to that observed by AVHRR during overlapping years. On regional scales, distinct tendencies are found for different regions associated with natural and anthropogenic aerosol emission and transport. For example, large upward trends are found over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission and transport processes over the whole region as well as over downwind oceanic regions. In contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well as in the associated dust outflow over the north Atlantic. Additionally, we found decreasing trends over the eastern US and Europe, and increasing trends over countries such as China and India that are experiencing rapid economic development. In general, these results are consistent with those derived from ground-based AERONET measurements.

  11. Internal tide oceanic tomography

    Science.gov (United States)

    Zhao, Zhongxiang

    2016-09-01

    A concept of internal tide oceanic tomography (ITOT) is proposed to monitor ocean warming on a global scale. ITOT is similar to acoustic tomography, but that work waves are internal tides. ITOT detects ocean temperature changes by precisely measuring travel time changes of long-range propagating internal tides. The underlying principle is that upper ocean warming strengthens ocean stratification and thus increases the propagation speed of internal tides. This concept is inspired by recent advances in observing internal tides by satellite altimetry. In particular, a plane wave fit method can separately resolve multiple internal tidal waves and thus accurately determines the phase of each wave. Two examples are presented to demonstrate the feasibility and usefulness of ITOT. In the eastern tropical Pacific, the yearly time series of travel time changes of the M2 internal tide is closely correlated with the El Niño-Southern Oscillation index. In the North Atlantic, significant interannual variations and bidecadal trends are observed and consistent with the changes in ocean heat content measured by Argo floats. ITOT offers a long-term, cost-effective, environmentally friendly technique for monitoring global ocean warming. Future work is needed to quantify the accuracy of this technique.

  12. Backward-in-time methods to simulate large-scale transport and mixing in the ocean

    Science.gov (United States)

    Prants, S. V.

    2015-06-01

    In oceanography and meteorology, it is important to know not only where water or air masses are headed for, but also where they came from as well. For example, it is important to find unknown sources of oil spills in the ocean and of dangerous substance plumes in the atmosphere. It is impossible with the help of conventional ocean and atmospheric numerical circulation models to extrapolate backward from the observed plumes to find the source because those models cannot be reversed in time. We review here recently elaborated backward-in-time numerical methods to identify and study mesoscale eddies in the ocean and to compute where those waters came from to a given area. The area under study is populated with a large number of artificial tracers that are advected backward in time in a given velocity field that is supposed to be known analytically or numerically, or from satellite and radar measurements. After integrating advection equations, one gets positions of each tracer on a fixed day in the past and can identify from known destinations a particle positions at earlier times. The results provided show that the method is efficient, for example, in estimating probabilities to find increased concentrations of radionuclides and other pollutants in oceanic mesoscale eddies. The backward-in-time methods are illustrated in this paper with a few examples. Backward-in-time Lagrangian maps are applied to identify eddies in satellite-derived and numerically generated velocity fields and to document the pathways by which they exchange water with their surroundings. Backward-in-time trapping maps are used to identify mesoscale eddies in the altimetric velocity field with a risk to be contaminated by Fukushima-derived radionuclides. The results of simulations are compared with in situ mesurement of caesium concentration in sea water samples collected in a recent research vessel cruise in the area to the east of Japan. Backward-in-time latitudinal maps and the corresponding

  13. Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags

    Science.gov (United States)

    Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.

    2013-02-01

    In situ observation of the marine environment has traditionally relied on ship-based platforms. The obvious consequence is that physical and biogeochemical properties have been dramatically undersampled, especially in the remote Southern Ocean (SO). The difficulty in obtaining in situ data represents the major limitations to our understanding, and interpretation of the coupling between physical forcing and the biogeochemical response. Southern elephant seals (Mirounga leonina) equipped with a new generation of oceanographic sensors can measure ocean structure in regions and seasons rarely observed with traditional oceanographic platforms. Over the last few years, seals have allowed for a considerable increase in temperature and salinity profiles from the SO, but we were still lacking information on the spatiotemporal variation of phytoplankton concentration. This information is critical to assess how the biological productivity of the SO, with direct consequences on the amount of CO2 "fixed'' by the biological pump, will respond to global warming. In this research programme, we use an innovative sampling fluorescence approach to quantify phytoplankton concentration at sea. For the first time, a low energy consumption fluorometer was added to Argos CTD-SRDL tags, and these novel instruments were deployed on 27 southern elephant seals between 25 December 2007 and the 4 February 2011. As many as 3388 fluorescence profiles associated with temperature and salinity measurements were thereby collected from a vast sector of the Southern Indian Ocean. This paper addresses the calibration issue of the fluorometer before being deployed on elephant seals and presents the first results obtained for the Indian sector of the Southern Ocean. This in situ system is implemented in synergy with satellite ocean colour radiometry. Satellite-derived data is limited to the surface layer and is restricted over the SO by extensive cloud cover. However, with the addition of these new tags

  14. The influence of environmental drivers on the enrichment of organic carbon in the sea surface microlayer and in submicron aerosol particles – measurements from the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Manuela van Pinxteren

    2017-06-01

    Full Text Available The export of organic matter from ocean to atmosphere represents a substantial carbon flux in the Earth system, yet the impact of environmental drivers on this transfer is not fully understood. This work presents dissolved and particulate organic carbon (DOC, POC concentrations, their enrichment factors in the sea surface microlayer (SML, and equivalent measurements in marine aerosol particles across the Atlantic Ocean. DOC concentrations averaged 161 ± 139 μmol L–1 (n = 78 in bulk seawater and 225 ± 175 μmol L–1 (n = 79 in the SML; POC concentrations averaged 13 ± 11 μmol L–1 (n = 80 and 17 ± 10 μmol L–1 (n = 80, respectively. High DOC and POC enrichment factors were observed when samples had low concentrations, and lower enrichments when concentrations were high. The impacts of wind speed and chlorophyll-a levels on concentrations and enrichment of DOC and POC in seawater were insignificant. In ambient submicron marine aerosol particles the concentration of water-soluble organic carbon was approximately 0.2 μg m–3. Water-insoluble organic carbon concentrations varied between 0.01 and 0.9 μg m–3, with highest concentrations observed when chlorophyll-a concentrations were high. Concerted measurements of bulk seawater, the SML and aerosol particles enabled calculation of enrichment factors of organic carbon in submicron marine ambient aerosols, which ranged from 103 to 104 during periods of low chlorophyll-a concentrations and up to 105 when chlorophyll-a levels were high. The results suggest that elevated local biological activity enhances the enrichment of marine-sourced organic carbon on aerosol particles. However, implementation of the results in source functions based on wind speed and chlorophyll-a concentrations underestimated the organic fraction at low biological activity by about 30%. There may be additional atmospheric and oceanic parameters to consider for accurately predicting organic fractions on aerosol

  15. Long-Term Fuid Flow Measurements From Widely Varied Oceanic Settings Elucidate Near-Surface Hydrologic Environments

    Science.gov (United States)

    Tryon, M. D.; Brown, K. M.

    2003-12-01

    The quantification of aqueous flux rates from various ocean floor environments has been a goal of numerous scientific programs for more than a decade with increasing focus on gas hydrate regions. Six years ago we developed the Chemical and Aqueous Transport (CAT) meter to collect long-term temporal records of low to moderate aqueous flow rates in sedimented ocean floor environments and, more specifically, to quantify to mass flux associated with the formation of gas hydrates. Since that time thirty of these instruments have been built and over a hundred deployments accomplished in a variety of hydrate and non-hydrate settings. We present here an overview of the results of these deployments and compare and contrast the flow records from these varied hydrological environments. Specific environments include: Gas Hydrates (Hydrate Ridge and the Eel River area on the Cascadia convergent margin, and Bush Hill in northern Gulf of Mexico), Hydrothermal (Japan's Sagami Bay and the incoming plate offshore Costa Rica's Nicoya Peninsula, TicoFlux area), and the tectonically active convergent margin off Nicoya and Osa. One of the most important outcomes of this research is the realization that fluid flow across the seabed/ocean interface is often dominated by shallow subsurface and oceanographic processes which vary significantly over time. These processes can be as simple as the diurnal pressure gradients caused by the rise and fall of tides to highly complex processes associated with the formation and transport of subsurface free gas. These processes have been both a boon and a bane to our research. Tidal oscillations have tended to mask the net flow in many very low flux settings. The high degree of spatial and temporal variation in some environments have revealed the extreme difficulty of quantifying the more widespread mass flux associated with the underlying tectonic processes. Yet, the nature of these variations have allowed us to better constrain the fundamental

  16. Measuring MPAs in Continental North America: How Well Protected Are the Ocean Estates of Canada, Mexico, and the USA?

    Directory of Open Access Journals (Sweden)

    Sabine Jessen

    2017-09-01

    Full Text Available Marine protected areas (MPAs are a well-established conservation strategy, employed around the world to protect important marine species and ecosystems and support the recovery of declining populations. The continental waters of North America contain remarkable biodiversity, but many species face increasing pressure from overexploitation, climate change, and other anthropogenic impacts. Canada, Mexico, and the USA have pledged to protect at least 10% of their marine and coastal waters by 2020 as signatories to the Convention on Biological Diversity, and have made efforts to establish MPAs. These MPAs vary widely in terms of levels of protection and designation processes; information that is not reflected in official statistics. To this end, we critically examined progress toward the CBD target for marine protection in continental North American waters to determine how well ocean ecosystems are protected by MPAs. We reviewed government data to determine whether MPAs met four criteria: legal designation, permanence, presence of an administrative structure, and a completed management plan. Sites that met all four criteria were categorized as “implemented.” Any sites that failed to meet one or more criterion were considered “incompletely implemented” and excluded from the analysis. We also calculated the amount of “fully-protected” MPAs in which all extractive uses are prohibited. We found that <1% of North America's continental ocean is protected, and only 0.04% is fully-protected. Canada has the least area protected with just 0.11% in implemented MPAs, and 0.01% in fully-protected MPAs. Mexico and the USA have 1.62 and 1.29% in implemented MPAs, and 0.11 and 0.03% in fully-protected MPAs, respectively. Results show that many North American MPAs are incompletely implemented and therefore currently fail to provide adequate protection. The inclusion of such sites in official government statistics can inflate the perception of how much

  17. Anisotropy in the lowermost mantle beneath the Indian Ocean Geoid Low from ScS splitting measurements

    Science.gov (United States)

    Padma Rao, B.; Ravi Kumar, M.; Singh, Arun

    2017-02-01

    The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.

  18. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  19. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María;

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...

  20. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L

    2011-01-01

    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  1. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program

    Science.gov (United States)

    Lamborg, C. H.; Buesseler, K. O.; Lam, P. J.

    2008-07-01

    As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we collected and analyzed sinking particles using sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). In this paper, we present the results of minor and trace element determinations made on these samples. Minor and trace elements in the sinking material showed 2 trends in flux with depth: increasing and constant. The sinking particulate phase of some elements (Al, Fe, Mn) was dominated by material of lithogenic origin and exhibited flux that was constant with depth and consistent with eolian dust inputs (ALOHA), or increasing in flux with depth as a result of lateral inputs from a shelf (K2). This shelf-derived material also appears to have been confined to very small particles, whose inherent sinking rates are slow, and residence time within the mesopelagic "twilight zone" would be consequently long. Furthermore, the flux of this material did not change with substantial changes in the rain of biogenic material from the surface (K2), suggesting mechanistic decoupling from the flux of organic carbon and macronutrients. Micronutrient (Fe, Co, Zn and Cu) fluxes examined in a 1-D mass balance suggest widely differing sources and sinks in the water column as well as impacts from biological uptake and regeneration. For example, total Fe fluxes into and out of the euphotic zone appeared to be dominated by lithogenic material and far exceed biological requirements. The export flux of Fe, however, appeared to be balanced by the eolian input of soluble Fe. For Zn and Cu, the situation is reversed, with atmospheric inputs insufficient to support fluxes, and the cycling therefore dominated by the draw down of an internal pool. For Co, the situation lies in between, with important, but ultimately insufficient atmospheric inputs.

  2. Development of an observation robot `Flying Fish` for comprehensive measurements of ocean environment; Kaiyo kankyo sogo kansoku robot `flying fish` no kaihatsu kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Koterayama, W.; Yamaguchi, S.; Nakamura, M. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Akamatsu, T. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-12-31

    With an objective for spatial continuous measurement of physical, chemical and biological amounts in ocean, development has been made on a wing controlled towed vehicle, `Flying Fish` which is capable of controlling depth, pitch and roll. Numerical simulations and two-year sea experiments have been carried out for the development. Flying Fish consists of a sub-system comprising a towing vehicle, towing cables, and on-board controllers. In a steady state, Flying Fish can be controlled at accuracy for depth of {plus_minus} 0.05m, pitch of {plus_minus} one degree, and roll of {plus_minus} 0.5 degree. This accuracy is sufficient for operating a chemical analyzer, the dissolved carbonic acid analyzer. Even in a non-steady state such as in changing the depth, the pitch can be controlled at {plus_minus} 3 degrees and the roll at {plus_minus} 0.5 degree. This extent of attitude change is within a range rendering no problems in maintaining accuracy of the measurement devices. The result of sea experiments for movements of Flying Fish agreed with that of the numerical simulation at practically usable accuracy. Flying Fish is verified as an effective system in investigating spatial variations in ocean data. 10 refs., 15 figs., 1 tab.

  3. Quantification of methane fluxes from hydrocarbon seeps to the ocean and atmosphere: Development of an in situ and online gas flux measuring system

    Science.gov (United States)

    Di, Pengfei; Chen, Qinghua; Chen, Duofu

    2017-06-01

    Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring (GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0-15 L min-1, and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m3 during the measurement period, and the gas flow rate ranged from 22 to 72 L h-1, depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.

  4. Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1968-2007 (Version 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2008-09-30

    More than 4.1 million measurements of surface water partial pressure of CO2 obtained over the global oceans during 1968-2007 are listed in the Lamont-Doherty Earth Observatory (LDEO) database, which includes open ocean and coastal water measurements. The data assembled include only those measured by equilibrator-CO2 analyzer systems and have been quality-controlled based on the stability of the system performance, the reliability of calibrations for CO2 analysis, and the internal consistency of data. To allow re-examination of the data in the future, a number of measured parameters relevant to pCO2 measurements are listed. The overall uncertainty for the pCO2 values listed is estimated to be ± 2.5 µatm on the average. For simplicity and for ease of reference, this version is referred to as 2007, meaning that data collected through 31 December 2007 has been included. It is our intention to update this database annually. There are 37 new cruise/ship files in this update. In addition, some editing has been performed on existing files so this should be considered a V2007 file. Also we have added a column reporting the partial pressure of CO2 in seawater in units of Pascals. The data presented in this database include the analyses of partial pressure of CO2 (pCO2), sea surface temperature (SST), sea surface salinity (SSS), pressure of the equilibration, and barometric pressure in the outside air from the ship’s observation system. The global pCO2 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  5. Ocean color products retrieval and validation around China coast with MODIS

    Institute of Scientific and Technical Information of China (English)

    SUN Ling; GUO Maohua; WANG Xiaomei

    2010-01-01

    Waters along China coast are very turbid with high concentrations of suspended sediment nearly all the time, especially at the Hangzhou Bay, the Changjiang (Yangtze) River Estuary and the shoal along Jiangsu Province. In these turbid and optically complex waters, the standard MODIS ocean color products tend to have invalid values. Because the water-leaving radiances in the near-infrared (NIR) are significant resulting from the strong scattering of suspended particles, the standardMODIS atmospheric correction algorithm often gets no results or produces significant errors. And because of the complex water optical properties, the OC3 model used in the standard MODIS data processing tends to get extremely high chlorophyll-a (Chl-a) concentrations. In this paper, we present an atmospheric correction approach using MODIS short wave infrared (SWIR) bands based on the fact that water-leaving radiances are negligible in the SWlR region because of the extreme strong absorption of water even in turbid waters. A regional Chl-a concentration estimation model is also constructed for MODIS from in situ data. These algorithms are applied to MODIS Aqua data processing in the China coastal regions. In situ data collected in the Yellow Sea and the East China Sea in spring and autumn, 2003 are used to validate the performance. Reasonably good results have been obtained. It is noted that water-leaving reflectance in the NIR bands are significant in waters along the China coast with high sediment loadings. The satellite derived and in-situ reflectance spectra can match in the turbid waters along China coast, and there is relatively good linear relationship between satellite derived and in-situ reflectance. The RMSE value of Rrs(λ)is 0.0031 sr-1 for all the nine ocean color bands (412 to 869 nm). The satellite-derived Chl-a value is in the reasonable range and the root mean square percentage difference is 46.1%.

  6. On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

    NARCIS (Netherlands)

    Pandey, S.

    2015-01-01

    We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the resulti

  7. On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

    NARCIS (Netherlands)

    Pandey, S.

    2015-01-01

    We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the resulti

  8. Application of the Coastal and Marine Ecological Classification Standard Using Satellite-Derived and Modeled Data Products for Pelagic Habitats in the Northern Gulf of Mexico

    Science.gov (United States)

    2013-12-10

    measurements may have been taken following a large rain or flood event. A review of precipitation records for this period may further support this...Assistance Agreement MX -97408100). Florida Marine Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL

  9. Oceanographic profile Biomass, temperature salinity and other measurements collected using bottle from Alpha Helix in the Pacific Ocean from 1976 (NODC Accession 0002070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle casts from the ALPHA HELIX in the Pacific Ocean. Data were collected from 06...

  10. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the Iselin Columbus in the Indian Ocean (Somalia Coast) (NODC Accession 0002225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts from the COLUMBUS ISELIN in the Indian Ocean. Data were collected from 26 February 1979 to...

  11. Ocean measurements in the Amundsen Sea, Nathaniel B. Palmer Cruise 09-01, 05 January - 28 February 2009 (NODC Accession 0071179)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are reporting ocean pressure, temperature, salinity and dissolved oxygen data from 160 CTD/O stations occupied in the Amundsen Sea. These austral summer...

  12. Oceanographic profile temperature, salinity, oxygen, nutrients, and plankton measurements collected using bottle from the Parizeau in the North Pacific Ocean (NODC Accession 0002242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 09/09/04 by Sydney Levitus from the Institute of Ocean Sciences (Sidney, B.C.), digitized...

  13. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle and MBT from the A.I. VOEIKOV in the Pacific Ocean (NODC Accession 0002214)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle and MBT casts from the A.I. VOEIKOV in the Pacific Ocean. Data were collected...

  14. Oceanographic profile temperature, oxygen, nitrate+nitrite and other measurements collected using bottle from various platforms in the North Atlantic ocean from 1988 to 2001 (NODC Accession 0000990)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile data collected as part of the Bermuda-Atlantic Time Series Study (BATS) from Bermuda Institute of Ocean Sciences (BIOS; formerly BBSR)

  15. Oceanographic profile beam attenuation coefficient measurements collected from multiple platforms in the Global Ocean from 1984 to 2003 (NODC Accession 0012521)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Worldwide Ocean Optic Database, available online at wood.jhuapl.edu, has grown to be the most comprehensive publicly-available oceanographic bio-optical database...

  16. Retrieving the availability of light in the ocean utilising spectral signatures of Vibrational Raman Scattering in hyper-spectral satellite measurements

    Science.gov (United States)

    Dinter, T.; Rozanov, V. V.; Burrows, J. P.; Bracher, A.

    2015-01-01

    The availability of light in the ocean is an important parameter for the determination of phytoplankton photosynthesis processes and primary production from satellite data. It is also a useful parameter for other applications, e.g. the determination of heat fluxes. In this study, a method was developed utilising the vibrational Raman scattering (VRS) effect of water molecules to determine the amount of photons available in the ocean water, which is expressed by the depth integrated scalar irradiance text-decoration:overline">E0. Radiative transfer simulations with the fully coupled ocean-atmosphere Radiative Transfer Model (RTM) SCIATRAN show clearly the relationship of text-decoration:overline">E0 to the strength of the VRS signal measured at the top of the atmosphere (TOA). Taking advantage of VRS structures in hyper-spectral satellite measurements a retrieval technique to derive text-decoration:overline"> E0 in the wavelength region from 390 to 444.5 nm was developed. This approach uses the Weighting Function Differential Optical Absorption Spectroscopy (WF-DOAS) technique, applied to TOA radiances, measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Based on the approach of Vountas et al. (2007), where the DOAS method was used to fit modelled spectra of VRS, the method was improved by using the weighting function of VRS (VRS-WF) in the DOAS fit. This was combined with a look-up table (LUT) technique, where the text-decoration:overline"> E0 value was obtained for each VRS satellite fit directly. The VRS-WF and the LUT were derived from calculations with the RTM SCIATRAN (Rozanov et al., 2014). RTM simulations for different chlorophyll a concentrations and illumination conditions clearly show, that low fit factors of VRS retrieval results correspond to low amounts of light in the water column and vice versa. Exemplary, one month of SCIAMACHY data were processed and a global map of the depth integrated scalar

  17. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  18. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Science.gov (United States)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-05-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  19. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  20. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale

    Directory of Open Access Journals (Sweden)

    Christiane Schmullius

    2013-05-01

    Full Text Available Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS, Advanced Very High Resolution Radiometer (AVHRR and (Advanced Along Track Scanning Radiometer ((AATSR are providing long-term time series information. Assessing the quality of remote sensing-based temperature measurements provides feedback to the climate modeling community and other users by identifying agreements and discrepancies when compared to temperature records from meteorological stations. This paper presents a comparison of state-of-the-art remote sensing-based land surface temperature data with air temperature measurements from meteorological stations on a pan-arctic scale (north of 60° latitude. Within this study, we compared land surface temperature products from (AATSR, MODIS and AVHRR with an in situ air temperature (Tair database provided by the National Climate Data Center (NCDC. Despite analyzing the whole acquisition time period of each land surface temperature product, we focused on the inter-annual variability comparing land surface temperature (LST and air temperature for the overlapping time period of the remote sensing data (2000–2005. In addition, land cover information was included in the evaluation approach by using GLC2000. MODIS has been identified as having the highest agreement in comparison to air temperature records. The time series of (AATSR is highly variable, whereas inconsistencies in land surface temperature data from AVHRR have been found.

  1. Characterization of Cloud Water and Drop Residual Particle Properties in Northeastern Pacific Ocean Stratocumulus Clouds: Airborne Measurements during the E-PEACE 2012 Field Campaign

    Science.gov (United States)

    Sorooshian, A.; Wang, Z.; Coggon, M.; Craven, J. S.; Metcalf, A. R.; Lin, J. J.; Nenes, A.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.

    2012-12-01

    During the July-August 2012 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter carried out thirty flights off the California coast with a payload focused on detailed characterization of aerosol and cloud properties. A counter-flow virtual impactor (CVI) inlet was used in cloud to study the physical and chemical properties of drop residual particles in the climatically-important stratocumulus cloud deck over the northeastern Pacific Ocean. A total of 82 cloud water samples were also collected and examined with ion chromatography (17 anion species) and inductively coupled plasma mass spectrometry (> 50 elements). The pH of the cloud water samples ranged widely between 2.92 and 7.58. This work focuses on inter-relationships between the chemical signatures of cloud water and drop residual particles, in addition to the influence of numerous regional sources on these measurements. Of interest will be to look critically at the influence of biogenic oceanic sources, shipping traffic, and entrainment of free tropospheric aerosol.

  2. Satellite remote sensing of ultraviolet irradiance on the ocean surface

    Institute of Scientific and Technical Information of China (English)

    LI Teng; PAN Delu; BAI Yan; LI Gang; HE Xianqiang; CHEN Chen-Tung Arthur; GAO Kunshan; LIU Dong; LEI Hui

    2015-01-01

    Ultraviolet (UV) radiation has a significant influence on marine biological processes and primary productivity;however, the existing ocean color satellite sensors seldom contain UV bands. A look-up table of wavelength-integrated UV irradiance (280–400 nm) on the sea surface is established using the coupled ocean atmosphere radiative transfer (COART) model. On the basis of the look-up table, the distributions of the UV irradiance at middle and low latitudes are inversed by using the satellite-derived atmospheric products from the Aqua satellite, including aerosol optical thickness at 550 nm, ozone content, liquid water path, and the total precipitable water. The validation results show that the mean relative difference of the 10 d rolling averaged UV irradiance between the satellite retrieval and field observations is 8.20% at the time of satellite passing and 13.95% for the daily dose of UV. The monthly-averaged UV irradiance and daily dose of UV retrieved by satellite data show a good correlation with thein situ data, with mean relative differences of 6.87% and 8.43%, respectively. The sensitivity analysis of satellite inputs is conducted. The liquid water path representing the condition of cloud has the highest effect on the retrieval of the UV irradiance, while ozone and aerosol have relatively lesser effect. The influence of the total precipitable water is not significant. On the basis of the satellite-derived UV irradiance on the sea surface, a preliminary simple estimation of ultraviolet radiation’s effects on the global marine primary productivity is presented, and the results reveal that ultraviolet radiation has a non-negligible effect on the estimation of the marine primary productivity.

  3. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either...... the island-level of specific archipelagos or single archipelagos. Recently, it was proposed that oceanic archipelagos qualify as biotic provinces, with diversity primarily reflecting a balance between speciation and extinction, with colonization having a minor role. Here we focus on major attributes...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  4. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  5. Real-Time Estimation of Satellite-Derived PM2.5 Based on a Semi-Physical Geographically Weighted Regression Model

    Science.gov (United States)

    Zhang, Tianhao; Liu, Gang; Zhu, Zhongmin; Gong, Wei; Ji, Yuxi; Huang, Yusi

    2016-01-01

    The real-time estimation of ambient particulate matter with diameter no greater than 2.5 μm (PM2.5) is currently quite limited in China. A semi-physical geographically weighted regression (GWR) model was adopted to estimate PM2.5 mass concentrations at national scale using the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth product fused by the Dark Target (DT) and Deep Blue (DB) algorithms, combined with meteorological parameters. The fitting results could explain over 80% of the variability in the corresponding PM2.5 mass concentrations, and the estimation tends to overestimate when measurement is low and tends to underestimate when measurement is high. Based on World Health Organization standards, results indicate that most regions in China suffered severe PM2.5 pollution during winter. Seasonal average mass concentrations of PM2.5 predicted by the model indicate that residential regions, namely Jing-Jin-Ji Region and Central China, were faced with challenge from fine particles. Moreover, estimation deviation caused primarily by the spatially uneven distribution of monitoring sites and the changes of elevation in a relatively small region has been discussed. In summary, real-time PM2.5 was estimated effectively by the satellite-based semi-physical GWR model, and the results could provide reasonable references for assessing health impacts and offer guidance on air quality management in China. PMID:27706054

  6. Ocean Observing Public-Private Collaboration to Improve Tropical Storm and Hurricane Predictions in the Gulf of Mexico

    Science.gov (United States)

    Perry, R.; Leung, P.; McCall, W.; Martin, K. M.; Howden, S. D.; Vandermeulen, R. A.; Kim, H. S. S.; Kirkpatrick, B. A.; Watson, S.; Smith, W.

    2016-02-01

    In 2008, Shell partnered with NOAA to explore opportunities for improving storm predictions in the Gulf of Mexico. Since, the collaboration has grown to include partners from Shell, NOAA National Data Buoy Center and National Center for Environmental Information, National Center for Environmental Prediction, University of Southern Mississippi, and the Gulf of Mexico Coastal Ocean Observing System. The partnership leverages complementary strengths of each collaborator to build a comprehensive and sustainable monitoring and data program to expand observing capacity and protect offshore assets and Gulf communities from storms and hurricanes. The program combines in situ and autonomous platforms with remote sensing and numerical modeling. Here we focus on profiling gliders and the benefits of a public-private partnership model for expanding regional ocean observing capacity. Shallow and deep gliders measure ocean temperature to derive ocean heat content (OHC), along with salinity, dissolved oxygen, fluorescence, and CDOM, in the central and eastern Gulf shelf and offshore. Since 2012, gliders have collected 4500+ vertical profiles and surveyed 5000+ nautical miles. Adaptive sampling and mission coordination with NCEP modelers provides specific datasets to assimilate into EMC's coupled HYCOM-HWRF model and 'connect-the-dots' between well-established Eulerian metocean measurements by obtaining (and validating) data between fixed stations (e.g. platform and buoy ADCPs) . Adaptive sampling combined with remote sensing provides satellite-derived OHC validation and the ability to sample productive coastal waters advected offshore by the Loop Current. Tracking coastal waters with remote sensing provides another verification of estimate Loop Current and eddy boundaries, as well as quantifying productivity and analyzing water quality on the Gulf coast, shelf break and offshore. Incorporating gliders demonstrates their value as tools to better protect offshore oil and gas assets

  7. Time-Series Measurements of Atmospheric and Oceanic CO2 and O2 in the Western Gulf of Maine

    Science.gov (United States)

    2008-09-01

    generation autonomous pCO2 system that uses a Licor -820 detector together with a calibration gas to make accurate pCO2 measurements in seawater and the...using a 12 minute measurement cycle that includes Licor calibration using air drawn through a soda lime chamber for zero and the span tank sample

  8. From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Miller, Robert N.

    2016-06-01

    Data Assimilation (DA) has been proposed for multiple water resources studies that require rapid employment of incoming observations to update and improve accuracy of operational prediction models. The usefulness of DA approaches in assimilating water temperature observations from different types of monitoring technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land water bodies (e.g., lakes and reservoirs) has, however, received limited attention. In contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit of collecting measurements with better X-Y spatial coverage. However, assimilating water temperature measurements from satellites can introduce biases in the updated numerical model of water bodies because the physical region represented by these measurements do not directly correspond with the numerical model's representation of the water column. This study proposes a novel approach to address this representation challenge by coupling a skin temperature adjustment technique based on available air and in-situ water temperature observations, with an ensemble Kalman filter based data assimilation technique. Additionally, the proposed approach used in this study for four-dimensional analysis of a reservoir provides reasonably accurate surface layer and water column temperature forecasts, in spite of the use of a fairly small ensemble. Application of the methodology on a test site - Eagle Creek Reservoir - in Central Indiana demonstrated that assimilation of remotely sensed skin temperature data using the proposed approach improved the overall root mean square difference between modeled surface layer temperatures and the adjusted remotely sensed skin temperature observations from 5.6°C to 0.51°C (i.e., 91% improvement). In addition, the overall error in the water column temperature predictions when compared with in-situ observations also decreased from 1.95°C (before assimilation

  9. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the LCM Red in the Alaskan Coastal waters, from the Gerda in the Atlantic Ocean, and from DeSteiguer in the Pacific Ocean (NODC Accession 0002231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 06/10/04 by Olga Baranova, digitized from "William J. Teague, Zachariah R. Hallock, Jan M....

  10. Satellite derived 30-year trends in terrestrial frozen and non-frozen seasons and associated impacts to vegetation and atmospheric CO2

    Science.gov (United States)

    Kim, Y.; Kimball, J. S.; McDonald, K. C.; Glassy, J. M.

    2010-12-01

    Approximately 66 million km2 (52.5 %) of the global vegetated land area experiences seasonally frozen temperatures as a major constraint to ecosystem processes. The freeze-thaw (F/T) status of the landscape as derived from satellite microwave remote sensing is closely linked to surface energy budget and hydrological activity, vegetation phenology, terrestrial carbon budgets and land-atmosphere trace gas exchange. We utilized a seasonal threshold algorithm based temporal change classification of 37GHz frequency, vertically polarized brightness temperatures (Tb) from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) pathfinder and Special Sensor Microwave Imager (SSM/I) to classify daily F/T status for all global land areas where seasonal frozen temperatures are a major constraint to ecosystem processes. A temporally consistent, long-term (30 year) daily F/T record was created by pixel-wise correction of the SMMR Tb record based on empirical analyses of overlapping SMMR and SSM/I measurements acquired during 1987. The resulting combined F/T record was validated against in situ temperature measurements from the global weather station network and applied to quantify regional patterns and trends in timing and length of frozen and non-frozen seasons. The F/T results were compared against other surrogate measures of biosphere activity including satellite AVHRR (GIMMS) based vegetation greenness (NDVI) and atmospheric CO2 concentrations over northern (>50N) land areas. The resulting F/T record showed mean annual classification accuracies of 91 (+/-1.0) and 84 (+/- 0.9) percent for PM and AM overpass retrievals relative to in situ weather station records. The F/T record showed significant (P=0.008) long-term trends in non-frozen period (0.207 days/yr) that were largely driven by earlier onset of spring thaw (-0.121 days/yr) and a small, delayed trend the arrival of the frozen period (0.107 days/yr). These results coincide with 0.025 C/yr warming trends in

  11. CO sub 2 measurements along WOCE P-16 and 19 sections in the South Pacific Ocean: A joint LDGO/WHOI program

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Taro.

    1990-07-30

    This report covers the progress made since June 1, 1990, the beginning of this grant. The objective of the six-month period covered by this grant is to prepare for the field operations in the South Pacific Ocean. The coulometer and gas chromatograph systems, which will be used for the measurements of the total CO{sub 2} concentration and pCO{sub 2} aboard research ships, are being calibrated presently. Various spare parts needed for the expedition are being ordered, and the Pure-Air generators and hydrogen generators are being serviced. Our preparation is on schedule. We have participated in two meetings where the problems associated with instrumentation and calibration were actively discussed among the participants of the DOE CO{sub 2} program.

  12. Discrepant estimates of primary and export production from satellite algorithms, a biogeochemical model, and geochemical tracer measurements in the North Pacific Ocean

    Science.gov (United States)

    Palevsky, Hilary I.; Quay, Paul D.; Nicholson, David P.

    2016-08-01

    Estimates of primary and export production (PP and EP) based on satellite remote sensing algorithms and global biogeochemical models are widely used to provide year-round global coverage not available from direct observations. However, observational data to validate these approaches are limited. We find that no single satellite algorithm or model can reproduce seasonal and annual geochemically determined PP, export efficiency (EP/PP), and EP rates throughout the North Pacific basin, based on comparisons throughout the full annual cycle at time series stations in the subarctic and subtropical gyres and basin-wide regions sampled by container ship transects. The high-latitude regions show large PP discrepancies in winter and spring and strong effects of deep winter mixed layers on annual EP that cannot be accounted for in current satellite-based approaches. These results underscore the need to evaluate satellite- and model-based estimates using multiple productivity parameters measured over broad ocean regions throughout the annual cycle.

  13. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  14. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    Institute of Scientific and Technical Information of China (English)

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  15. Seasonal variation of near surface black carbon and satellite derived vertical distribution of aerosols over a semi-arid station in India

    Science.gov (United States)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Shaik, Nazeer Hussain; Maraka, Vasudeva Reddy; Rajuru, Ramakrishna Reddy; Surendran Nair, Suresh Babu

    2017-02-01

    Extensive measurements of aerosol black carbon mass concentration (BC) and vertical profiles of atmospheric aerosols have been carried out using Aethalometer and CALIPSO level - 2 satellite data from December 2012 to November 2014 over a semi-arid station, Anantapur. We found a bimodal distribution in the mass concentrations of BC aerosols on a diurnal scale. A sharp peak was observed during morning rush hours (7:00 to 8:00 LT) almost an hour after the local sunrise. After which, a broad nocturnal peak was found during 21:00 to 22:00 LT. The seasonal mean BC concentrations (Mixed layer height (ML)) were found to be 3.45 ± 1.44 μg/m3 (676 ± 117 m), 2.55 ± 0.85 μg/m3 (1215 ± 190 m), 1.22 ± 0.31 μg/m3 (1134 ± 194 m) and 1.75 ± 0.70 μg/m3 (612 ± 135 m), during the winter, summer, monsoon and post-monsoon respectively. The vertical profiles of aerosol extinction coefficient and back scattering ratio profiles were derived from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed a strong seasonal variation with aerosols mostly confined below 2 km during the post-monsoon and winter seasons whereas in the other two seasons, the aerosol layer expands beyond 6 km. Depolarization ratios (> 0.2) are higher during summer and monsoon at higher altitude regions demonstrate the presence of dust particles, which contribute to the large aerosol extinction at higher levels. These results are further supported by the backward trajectory cluster analysis.

  16. Using the satellite-derived normalized difference vegetation index (NDVI) to explain ranging patterns in a lek-breeding antelope: the importance of scale.

    Science.gov (United States)

    Bro-Jørgensen, Jakob; Brown, Molly E; Pettorelli, Nathalie

    2008-11-01

    Lek-breeding species are characterized by a negative association between territorial resource availability and male mating success; however, the impact of resources on the overall distribution patterns of the two sexes in lek systems is not clear. The normalized difference vegetation index (NDVI) has recently emerged as a powerful proxy measure for primary productivity, allowing the links between the distributions of animals and resources to be explored. Using NDVI at four spatial resolutions, we here investigate how the distribution of the two sexes in a lek-breeding population of topi antelopes relates to resource abundance before and during the rut. We found that in the dry season preceding the rut, topi density correlated positively with NDVI at the large, but not the fine, scale. This suggests that before the rut, when resources were relatively scant, topi preferred pastures where green grass was widely abundant. The pattern was less pronounced in males, suggesting that the need for territorial attendance prevents males from tracking resources as freely as females do. During the rut, which occurs in the wet season, both male and female densities correlated negatively with NDVI at the fine scale. At this time, resources were generally plentiful and the results suggest that, rather than by resource maximization, distribution during the rut was determined by benefits of aggregating on relatively resource-poor leks for mating, and possibly antipredator, purposes. At the large scale, no correlation between density and NDVI was found during the rut in either sex, which can be explained by leks covering areas too small to be reflected at this resolution. The study illustrates that when investigating spatial organization, it is important: (1) to choose the appropriate analytic scale, and (2) to consider behavioural as well as strictly ecological factors.

  17. Assessing the Sensitivity of Satellite-Derived Estimates of Ice Sheet Mass Balance to Regional Climate Model Simulations of Snow Accumulation and Firn Compaction

    Science.gov (United States)

    Briggs, K.; Shepherd, A.; Horwath, M.; Horvath, A.; Nagler, T.; Wuite, J.; Muir, A.; Gilbert, L.; Mouginot, J.

    2015-12-01

    Surface mass balance (SMB) estimates from Regional Climate Models (RCMs) are fundamental for assessing and understanding ice sheet mass trends. Mass budget and altimetry assessments rely on RCMs both directly for estimates of the SMB contribution to the total mass trend, and indirectly for ancillary data in the form of firn compaction corrections. As such, mass balance assessments can be highly sensitive to RCM outputs and therefore their accuracy. Here we assess the extent to which geodetic measurements of mass balance are sensitive to RCM model outputs at different resolutions. We achieve this by comparing SMB dependent estimates of mass balance from the mass budget method and altimetry, with those from satellite gravimetry that are independent of SMB estimates. Using the outputs of the RACMO/ANT 2.3 model at 5.5 km and 27 km horizontal spatial resolution, we generate estimates of mass balance using the mass budget method and altimetry for the Western Palmer Land region of the Antarctic Peninsula between 2003 and 2014. We find a 19% increase in the long-term (1980 to 2014) mean annual SMB for the region when enhancing the model resolution to 5.5 km. This translates into an approximate 50% reduction in the total mass loss from 2003 to 2014 calculated with the mass budget method and a 15% increase in the altimetry estimate. The use of the enhanced resolution product leads to consistency between the estimates of mass loss from the altimetry and the mass budget method that is not observed with the coarser resolution product, in which estimates of cumulative mass fall beyond the relative errors. Critically, when using the 5.5 km product, we find excellent agreement, both in pattern and magnitude, with the independent estimate derived from gravimetry. Our results point toward the crucial need for high resolution SMB products from RCMs for mass balance assessments, particularly in regions of high mass turnover and complex terrain as found over the Antarctic Peninsula.

  18. Reducing the Impact of Sampling Bias in NASA MODIS and VIIRS Level 3 Satellite Derived IR SST Observations over the Arctic

    Science.gov (United States)

    Minnett, P. J.; Liu, Y.; Kilpatrick, K. A.

    2016-12-01

    Sea-surface temperature (SST) measurements by satellites in the northern hemisphere high latitudes confront several difficulties. Year-round prevalent clouds, effects near ice edges, and the relative small difference between SST and low-level cloud temperatures lead to a significant loss of infrared observations regardless of the more frequent polar satellite overpasses. Recent research (Liu and Minnett, 2016) identified sampling issues in the Level 3 NASA MODIS SST products when 4km observations are aggregated into global grids at different time and space scales, particularly in the Arctic, where a binary decision cloud mask designed for global data is often overly conservative at high latitudes and results in many gaps and missing data. This under sampling of some Arctic regions results in a warm bias in Level 3 products, likely a result of warmer surface temperature, more distant from the ice edge, being identified more frequently as cloud free. Here we present an improved method for cloud detection in the Arctic using a majority vote from an ensemble of four classifiers trained based on an Alternative Decision Tree (ADT) algorithm (Freund and Mason 1999, Pfahringer et. al. 2001). This new cloud classifier increases sampling of clear pixel by 50% in several regions and generally produces cooler monthly average SST fields in the ice-free Arctic, while still retaining the same error characteristics at 1km resolution relative to in situ observations. SST time series of 12 years of MODIS (Aqua and Terra) and more recently VIIRS sensors are compared and the improvements in errors and uncertainties resulting from better cloud screening for Level 3 gridded products are assessed and summarized.

  19. Global Ocean Currents Database (GOCD) (NCEI Accession 0093183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ocean Currents Database (GOCD) is a collection of quality controlled ocean current measurements such as observed current direction and speed obtained from...

  20. National Spatiotemporal Exposure Surface for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000-2010.

    Science.gov (United States)

    Bechle, Matthew J; Millet, Dylan B; Marshall, Julian D

    2015-10-20

    Land-use regression (LUR) is widely used for estimating within-urban variability in air pollution. While LUR has recently been extended to national and continental scales, these models are typically for long-term averages. Here we present NO2 surfaces for the continental United States with excellent spatial resolution (∼100 m) and monthly average concentrations for one decade. We investigate multiple potential data sources (e.g., satellite column and surface estimates, high- and standard-resolution satellite data, and a mechanistic model [WRF-Chem]), approaches to model building (e.g., one model for the whole country versus having separate models for urban and rural areas, monthly LURs versus temporal scaling of a spatial LUR), and spatial interpolation methods for temporal scaling factors (e.g., kriging versus inverse distance weighted). Our core approach uses NO2 measurements from U.S. EPA monitors (2000-2010) to build a spatial LUR and to calculate spatially varying temporal scaling factors. The model captures 82% of the spatial and 76% of the temporal variability (population-weighted average) of monthly mean NO2 concentrations from U.S. EPA monitors with low average bias (21%) and error (2.4 ppb). Model performance in absolute terms is similar near versus far from monitors, and in urban, suburban, and rural locations (mean absolute error 2-3 ppb); since low-density locations generally experience lower concentrations, model performance in relative terms is better near monitors than far from monitors (mean bias 3% versus 40%) and is better for urban and suburban locations (1-6%) than for rural locations (78%, reflecting the relatively clean conditions in many rural areas). During 2000-2010, population-weighted mean NO2 exposure decreased 42% (1.0 ppb [∼5.2%] per year), from 23.2 ppb (year 2000) to 13.5 ppb (year 2010). We apply our approach to all U.S. Census blocks in the contiguous United States to provide 132 months of publicly available, high

  1. In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets

    OpenAIRE

    Singh, H. B.; Salas, B.; Herlth, D; Kolyer, R.; Czech, E.; Viezee, W.; Q. Li; Jacob, Daniel James; Blake, D.; Sachse, Glen; Harward, C; H. Fuelberg; Kiley, C; Zhao, Y.; Kondo, Yasuyuki

    2003-01-01

    We report the first in situ measurements of hydrogen cyanide (HCN) and methyl cyanide (CH3CN, acetonitrile) from the Pacific troposphere (0–12 km) obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission (February–April 2001). Mean HCN and CH3CN mixing ratios of 243 ± 118 (median 218) ppt and 149 ± 56 (median 138) ppt, respectively, were measured. These in situ observations correspond to a mean tropospheric HCN column of 4.2 × 1015 molecules cm−2 a...

  2. Partnership proposed for ocean observation

    Science.gov (United States)

    Rossby, T.

    2012-04-01

    A report released on 1 March 2012 proposes a formal partnership between the ocean-observing communities and the global shipping industry for the systematic long-term study of the ocean water column from surface to depth. According to the report, the rationale for the proposal is that commercial ships on the high seas offer a cost-effective opportunity to contribute to directly addressing a significant observational deficiency. "The ocean is vastly under observed, particularly below the ocean surface, where satellites cannot measure the ocean's properties," according to the report, "OceanScope: A proposed partnership between the maritime industries and the ocean observing community to monitor the global ocean water column," prepared by the Scientific Committee on Oceanic Research/International Association for the Physical Sciences of the Oceans (SCOR/IAPSO) Working Group 133. "Observations below the surface depend on getting platforms (ships, moored buoys, floats, gliders, etc.) to locations far beyond the coasts, which can be expensive," the report states.

  3. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  4. Ocean circulation using altimetry

    Science.gov (United States)

    Minster, Jean-Francois; Brossier, C.; Gennero, M. C.; Mazzega, P.; Remy, F.; Letraon, P. Y.; Blanc, F.

    1991-01-01

    Our group has been very actively involved in promoting satellite altimetry as a unique tool for observing ocean circulation and its variability. TOPEX/POSEIDON is particularly interesting as it is optimized for this purpose. It will probably be the first instrument really capable of observing the seasonal and interannual variability of subtropical and polar gyres and the first to eventually document the corresponding variability of their heat flux transport. The studies of these phenomena require data of the best quality, unbiased extraction of the signal, mixing of these satellite data with in situ measurements, and assimilation of the whole set into a dynamic description of ocean circulation. Our group intends to develop responses to all these requirements. We will concentrate mostly on the circulation of the South Atlantic and Indian Oceans: This will be done in close connection with other groups involved in the study of circulation of the tropical Atlantic Ocean, in the altimetry measurements (in particular, those of the tidal issue), and in the techniques of data assimilation in ocean circulation models.

  5. Arctic Ocean

    Science.gov (United States)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  6. Tomographic inversion of measured cross-correlation functions of ocean noise in shallow water using ray theory

    Science.gov (United States)

    Goncharov, V. V.; Shurup, A. S.; Godin, O. A.; Zabotin, N. A.; Vedenev, A. I.; Sergeev, S. N.; Brown, M. G.; Shatravin, A. V.

    2016-07-01

    Based on experimental data obtained in 2012 in the Florida Strait, we study the feasibility of employing ray tomography to retrieve sound speed and flow velocity profiles from measured noise cross-correlation functions. We describe the results of numerical experiments that characterize the inversion errors resulting from peculiarities of the ray structure in shallow water, difficulties in unambiguous identification of ray arrivals, and a decrease in accuracy of ray theory at low frequencies. We show that under conditions of low-mode sound propagation, the use of the classical ray tomography scheme can yield only a rough estimate of the sound speed profile, but it allows approximate reconstruction of the current velocity profile. Application of passive ray tomography to the experimental data yields the current velocity profile in the Straits of Florida, which agrees with independent measurements within the inversion error limit.

  7. Continuous measurements of nitrous oxide, carbon monoxide, methane and carbon dioxide in the surface ocean with novel laser-absorption analysers

    Science.gov (United States)

    Kaiser, Jan; Grefe, Imke; Wager, Natalie; Bakker, Dorothee C. E.; Lee, Gareth A.

    2013-04-01

    In recent years, improvements in spectroscopic technology have revolutionised atmospheric trace gas research. In particular, cavity-based optical absorption analysers allow determination of gas concentrations with high frequency, repeatability, reproducibility and long-term stability. These qualities make them particularly suitable for autonomous measurements on voluntary observing ships (VOS). Here, we present results from three of the first deployments of such analysers on research ships, as a first step towards VOS installations. Los Gatos off-axis ICOS (Integrated Cavity Output Spectroscopy) analysers were used to measure nitrous oxide (N2O), carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) mixing ratios in ocean surface water during research cruises in 2010, 2011 and 2012. The analysers were coupled to an equilibrator fed by the scientific seawater supply in the ship's laboratories. The equilibrator measurements were alternated with regular measurements of marine air and calibrated standard gases. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol-1. The same value was achieved for duplicate measurements of a standard gas analysed within 1 hour of each other. The response time to concentration changes in water was 142-203 s, depending on the headspace flow rate. During the first deployment on the AMT20 cruise (Atlantic Meridional Transect, Southampton to Punta Arenas, 12 October to 25 November 2010), we unexpectedly found the subtropical gyres to be slightly undersaturated in N2O, implying that this region acted as a sink for this greenhouse gas. In contrast, the equatorial region was supersaturated and a source of nitrous oxide to the atmosphere. Mean sea-to-air fluxes were overall small and ranged between -1.6 and 0.11 μmol m-2 d-1 (negative fluxes imply an net uptake by the ocean). Despite the good short-term repeatability, significant calibration drift occurred between the six

  8. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  9. A new look at ocean carbon remineralization for estimating deepwater sequestration

    DEFF Research Database (Denmark)

    Guidi, L.; Legendre, L.; Reygondeau, Gabriel;

    2015-01-01

    provinces, where these estimates range between -50 and +100% of the commonly used globally uniform remineralization value. We apply the regionalized values to satellite-derived estimates of upper ocean POC export to calculate regionalized and ocean-wide deep carbon fluxes and sequestration. The resulting...... the water column. Most of the sinking POC is remineralized during its downward transit, and modest changes in remineralization have substantial feedback on atmospheric CO2 concentrations, but little is known about global variability in remineralization. Here we assess this variability based on modern...... value of global organic carbon sequestration at 2000m is 0.33PgCyr-1, and 0.72PgCyr-1 at the depth of the top of the permanent pycnocline, which is up to 3 times higher than the value resulting from the commonly used approach based on uniform remineralization and constant sequestration depth...

  10. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean

    CERN Document Server

    Beron-Vera, F J; Haller, G; Farazmand, M; Trinanes, J; Wang, Y

    2014-01-01

    Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satell...

  11. Temperature, salinity, conductivity, and other measurements collected in the Northern Ocean as part of the Arctic Experiment in 1994 (NODC Accession 0002728)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Investigation of thermohaline circulation in Nordic Seas, hydrography and pathways of Atlantic water summer Arctic experiments

  12. Photochemical Production of Dissolved Inorganic Carbon from Oceanic Colored Dissolved Organic Matter: a Gentle Approach to Measuring a new "Wild Card" Carbon Cycle Term

    Science.gov (United States)

    Zafiriou, O. C.; Wang, W.; Johnson, C. G.

    2004-12-01

    BACKGROUND: Massive oceanic photochemical remineralization (termed "photo-CO2") has been reported[1-3]: CDOM + hv -----> CO2 (DIC) CDOM = Colored Dissolved Organic Matter. DIC = Dissolved Inorganic Carbon. The oceanic carbon cycle cannot be understood without quantifying photo-CO2 fluxes and their sensitivity to environmental variables. The optical model of Johannessen implies a global marine photo-CO2 of ˜1015 mol C or 12 Gt C a-1[4]; Kieber and Mopper find photo-CO2 formation rates in the NW Sargasso Sea of ˜20 nmol kg-1 hr-1, extrapolating to ˜1.3 Gt C a-1[5-7; D. Kieber pers. comm, 2003]. CURRENT METHOD: To achieve essential sensitivity, <1 micromole CO2 per day, prior workers remove 99.9+%\\ of the DIC (Pool Depletion method - PD). PD users acidify, strip CO2 out by bubbling, readjust pH, irradiate, and analyze. PD's chemically rough sample-handling might give rise to impossible-to-evaluate artifacts. NEW APPROACH: We designed and are implementing a gentle Pool Isotope Exchange (PIE) method, that retains the seawater carbonate system and avoids bubbling. At pH ˜8, we exchange[8] the natural DI12C pool (98.9% 12C) with ˜400 ppm 13CO2 (<1.5% 13\\2C) to minimize the DI12C pool that dilutes new-formed photo-12CO2 (from DOM carbon, ˜98.9%12C). Rates of DI12C formation in incubations are then measured by isotope ratio mass spectrometry (IRMS). The PIE procedure's steps are: Sample and sterile filter seawater; Exchange DIC to near-completion; Seal incubation aliquots in quartz tubes; Irradiate aliquots with dark controls; Convert aliquots DIC to CO2; Trap and purify; Measure 13/12C ratios. Calculate fluxes from isotope ratios, their rates of change, and [DIC]. PIE STATUS: all but the first and last Steps are novel and have required extensive development. Present progress, sensitivity, and prospects for improvement will be summarized. PIE currently gives detectable, moderately reproducible signals in non-estuarine coastal (East-Coast US) seawater. Many coastal

  13. Oceans from Space

    DEFF Research Database (Denmark)

    Aage, Christian; Allan, T.D.; Lindgren, G.

    , as well as by those responsible for the planning or operation of any offshore activity. This book describes, primarily for university students studying the design of offshore structures, the statistics of ocean waves and the significant advances in the measurement of waves which have resulted over...

  14. Enhanced Ocean Scatterometry

    NARCIS (Netherlands)

    Fois, F.

    2015-01-01

    An ocean scatterometer is an active microwave instrument which is designed to determine the normalized radar cross section (NRCS) of the sea surface. Scatterometers transmit pulses towards the sea surface and measure the reflected energy. The primary objective of spaceborne scatterometers is to meas

  15. Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2011-03-01

    Full Text Available During the Texas Air Quality Study II (TexAQS 2006 campaign, a PEroxy Radical Chemical Amplifier (PERCA was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+Σ RO2. Day-time mixing ratios of HO2+Σ RO2 between 25 and 110 ppt were observed throughout the study area – the Houston/Galveston region and the Gulf coast of the US – and analyzed in relation to measurements of nitrogen oxides, volatile organic compounds (VOC and photolysis rates to assess radical sources and sinks in the region.

    The measurements of HO2+Σ RO2 were used to calculate the in-situ net photochemical formation of ozone. Measured median values ranged from 0.6 ppb/h in clean oceanic air masses up to several tens of ppb/h in the most polluted industrial areas. The results are consistent with previous studies and generally agree with observations made during the previous TexAQS 2000 field campaign. The net photochemical ozone formation rates determined at Barbours Cut, a site immediately south of the Houston Ship Channel, were analyzed in relation to local wind direction and VOC reactivity to understand the relationship between ozone formation and local VOC emissions.

    The measurements of HO2+Σ RO2 made during the R/V Brown TexAQS 2006 cruise indicate that ozone formation is NOx-limited in the Houston/Galveston region and influenced by highly reactive hydrocarbons, especially alkenes from urban and industrial sources and their photo-oxidation products, such as formaldehyde.

  16. Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2010-10-01

    Full Text Available During the Texas Air Quality Study II (TexAQS 2006 campaign, a PEroxy Radical Chemical Amplifier (PERCA was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+ΣRO2. Day-time mixing ratios of HO2+ΣRO2 between 25 and 110 ppt were observed throughout the study area – the Houston/Galveston region and the Gulf coast of the U.S. – and analyzed in relation to measurements of nitrogen oxides, volatile organic compounds (VOC and photolysis rates to assess radical sources and sinks in the region.

    The measurements of HO2+ΣRO2 were used to calculate the in-situ net photochemical formation of ozone. Measured median values ranged from 0.6 ppb/h in clean oceanic air masses up to several tens of ppb/h in the most polluted industrial areas. The results are consistent with previous studies and generally agree with observations made during the previous TexAQS 2000 field campaign. The net photochemical ozone formation rates determined at Barbours Cut, a site immediately south of the Houston Ship Channel, were analyzed in relation to local wind direction and VOC reactivity to understand the relationship between ozone formation and local VOC emissions.

    The measurements of HO2+ΣRO2 made during the R/V Brown TexAQS 2006 cruise indicate that ozone formation is NOx-limited in the Houston/Galveston region and influenced by highly reactive hydrocarbons, especially alkenes from urban and industrial sources and their photooxidation products, such as formaldehyde.

  17. Chemical, Biological, and Physical Measurements from the Subtropical Western North Atlantic Ocean. Summer 1982, USNS LYNCH, Cruise 710-82.

    Science.gov (United States)

    1985-01-01

    purified luciferin -luciferace system (DuPont Inc., Wilmington, Delaware). The resulting light emission was measured in a sensitive photometer (SAI Inc...35 57.4 N 074 55.4 W Transm 23 1 Transmiss 0 25 June 82 0945 36 56.6 N 075 59.1 W Transm 10 tivity and temperature fine structure seen in the...chlorophyll "a" (chl "a") PHAEOPHYTIN mg/L total phaeopigment (i.e., chlorophyll degradation products) PHOSPHATE ug- atoms /L = AM dissolved

  18. Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution

    Science.gov (United States)

    Determann, S.; Reuter, R.; Wagner, P.; Willkomm, R.

    1994-04-01

    Fluorescence spectra of organic matter in seawater were measured during the cruise ANT-VIII/7 of R.V. Polarsterm through the South and North Atlantic from Capetown (RSA) to Bremerhaven (Germany). The data are calibrated by normalization to the water Raman scatter band which allows their quantification without the need of fluorescence standards. Spectral structures are found which can be related to tryptophan and tyrosine-like substances, and to gelbstoff. Their distribution in the eastern Atlantic is discussed and compared with other hydrographic parameters.

  19. Results of Environmental Measurements on the North-West Shelf and Eastern Indian Ocean (April-May 1979).

    Science.gov (United States)

    1979-11-01

    Measurements 2.1 Cruise Summary The ship departed HMAS Stirling at 1400 on 26/4/79. Figure 1 shows the cruise track and positions of stations occupied. only...450 XBT probes and recording system . 2.3 Results Station 1: This was a trial run en route between Cockburn Sound and the North-West Shelf area, and...temperature trace over land appears to be of order 3OC cooler than that over the sea at all height[, while over the sea the low level inversion between 950mb

  20. Oceanic CO{sub 2} measurements for the WOCE hydrographic survey in the Pacific Ocean, 1990--1991: Shore based analyses during Legs 1--3. Technical progress report, 1 December 1990--28 January 1992

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, C.D.

    1992-05-01

    During the winter and spring of 1991 we made preparations for sampling on three legs of the US World Ocean Circulation Experiment in the Pacific Ocean. These transects, postponed from an original start date early in 1991, took place between May 31 to October 1. For the project, 1400 0.5 liter Pyrex sampling bottles were used for the collection of sea water. A second major pre-expedition task was the construction of a dual titration cell system of new design, as described in the original proposal and our previous semi-annual report.

  1. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    Science.gov (United States)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; Gamon, John; Hook, Simon; Meister, Gerhard; Middleton, Betsy; Ollinger, Scott; Roberts, Dar; Siegel, Dave; Townsend, Phil; Saatchi, Sassan; Unstin, Susan; Turner, Woody; Wickland, Diane; Bontempi, Paula; Emanuel, Bill

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  2. A model for the use of satellite remote sensing for the measurement of primary production in the ocean

    Science.gov (United States)

    Collins, Donald J.; Yang, Wei-Liang; Kiefer, Dale A.; Soohoo, Janice Beeler; Stallings, Casson

    1986-01-01

    A model of primary production based upon the responses of phytoplankton to differing light and nutrient fields is described. This model includes the effects on production of variations in surface pigment concentration, the mixed layer depth, and the dependence on the incident solar irradiance. The model has been tested using in situ data provided by the Southern California Bight Studies of Eppley, et al. (1979), the California Cooperative Fisheries Investigations, the Organization of Persistent Upwelling Structures, and other data sets. A synoptic measure of the distribution of surface pigments is derived from the West Coast Chlorophyll and Temperature Time Series. The features and behavior of the model are presented together with the results of the model verification.

  3. Ocean surface currents from satellite data

    Science.gov (United States)

    Dohan, Kathleen

    2017-04-01

    The atmosphere drives entire ocean motions, and yet the exchange of momentum between the atmosphere and ocean occurs in the thin layer where they meet, involving the smallest scales of turbulence. The Ocean Surface Current Analyses Real-time (OSCAR) project attempts to better understand this exchange using satellite observations with simplified physics to calculate global ocean currents. The goal is to continually improve the physics in OSCAR and more accurately model the currents. The theoretical study will help coupled ocean-atmosphere modeling efforts whereas the societal benefits of measuring ocean currents are broad, e.g., fish larval dispersion, heat transport, commercial shipping, and search and rescue.

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-23 (NCEI Accession 0148774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148774 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-23 to 2002-12-23 (NCEI Accession 0148766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148766 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-02 to 2011-12-18 (NCEI Accession 0148767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148767 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-01-01 to 2011-12-19 (NCEI Accession 0148765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148765 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-01-01 to 2014-12-20 (NCEI Accession 0145200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0145200 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-22 (NCEI Accession 0144528)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144528 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-12-29 to 2003-11-30 (NCEI Accession 0144351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144351 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-30 to 2008-10-28 (NCEI Accession 0144348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144348 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-02 to 2006-12-26 (NCEI Accession 0148764)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148764 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-20 (NCEI Accession 0148773)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148773 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2012-12-31 to 2013-11-15 (NCEI Accession 0144529)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144529 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-12-30 to 2015-05-11 (NCEI Accession 0148769)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148769 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-01 to 2006-12-27 (NCEI Accession 0144535)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144535 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-07 to 2002-12-23 (NCEI Accession 0144356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144356 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-02 to 2011-12-19 (NCEI Accession 0144354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144354 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-31 to 2008-10-27 (NCEI Accession 0148763)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148763 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2003-01-01 to 2003-12-29 (NCEI Accession 0148770)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148770 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-24 (NCEI Accession 0144349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144349 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-12-30 to 2015-07-01 (NCEI Accession 0144343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144343 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2013-12-31 to 2014-12-20 (NCEI Accession 0144532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144532 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  4. Coupling between SW monsoon-related surface and deep ocean processes as discerned from continuous particle flux measurements and correlated satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Rixen, T.; Haake, B.; Ittekkot, V.; Guptha, M.V.S.; Nair, R.R.; Schlussel, P.

    as well as open ocean upwelling at the beginning of the SW monsoon. Both open ocean upwelling and coastal upwelling off Oman cause a cooling of surface waters at our western and central Arabian Sea stations. When SSTs fall below their long-term average...

  5. Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements

    Science.gov (United States)

    Reginald R. Muskett; Vladimir E. Romanovsky

    2011-01-01

    The Arctic is in transition from climate-driven thawing of permafrost. We investigate satellite-derived water equivalent mass changes, snow water equivalent with in situ measurements of runoff and ground-survey derived geoid models from 1999 through 2009. The Alaskan Arctic coastal plain groundwater storage (including wetland bog, thaw pond and lake) is increasing by 1...

  6. Optical depths of semi-transparent cirrus clouds over oceans from CALIPSO infrared radiometer and lidar measurements, and an evaluation of the lidar multiple scattering factor

    Directory of Open Access Journals (Sweden)

    A. Garnier

    2015-02-01

    Full Text Available This paper provides a detailed evaluation of cloud absorption optical depths retrieved at 12.05 μm and comparisons to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP flying on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite. The blackbody radiance taken in the IIR Version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. IIR infrared absorption optical depths are then compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent 2-way transmittance through the cloud. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40% as the temperature at the layer centroid altitude decreases from 240 to 200 K. This behavior is explained by variations of the multiple scattering factor ηT to be applied to correct the measured transmittance, which is taken equal to 0.6 in the CALIOP Version 3 algorithm, and which is found here to vary with temperature (and hence cloud particle size from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP depolarization ratios and particle habits derived from IIR measurements.

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-30 to 2005-11-20 (NCEI Accession 0148772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148772 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-21 (NCEI Accession 0148771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148771 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-22 (NCEI Accession 0144533)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144533 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-31 to 2005-12-26 (NCEI Accession 0144531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144531 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  11. The Assessment of Atmospheric Correction Processors for MERIS Based on In-Situ Measurements-Updates in OC-CCI Round Robin

    Science.gov (United States)

    Muller, Dagmar; Krasemann, Hajo; Zuhilke, Marco; Doerffer, Roland; Brockmann, Carsten; Steinmetz, Francois; Valente, Andre; Brotas, Vanda; Grant, kMicheal G.; Sathyendranath, Shubha; Melin, Frederic; Franz, Bryan A.; Mazeran, Constant; Regner, Peter

    2016-08-01

    The Ocean Colour Climate Change Initiative (OC- CCI) provides a long-term time series of ocean colour data and investigates the detectable climate impact. A reliable and stable atmospheric correction (AC) procedure is the basis for ocean colour products of the necessary high quality.The selection of atmospheric correction processors is repeated regularly based on a round robin exercise, at the latest when a revised production and release of the OC-CCI merged product is scheduled. Most of the AC processors are under constant development and changes are implemented to improve the quality of satellite-derived retrievals of remote sensing reflectances. The changes between versions of the inter-comparison are not restricted to the implementation of AC processors. There are activities to improve the quality flagging for some processors, and the system vicarious calibration for AC algorithms in their sensor specific behaviour are widely studied. Each inter-comparison starts with an updated in-situ database, as more spectra are included in order to broaden the temporal and spatial range of satellite match-ups. While the OC-CCI's focus has laid on case-1 waters in the past, it has expanded to the retrieval of case-2 products now. In light of this goal, new bidirectional correction procedures (normalisation) for the remote sensing spectra have been introduced. As in-situ measurements are not always available at the satellite sensor specific central wave- lengths, a band-shift algorithm has to be applied to the dataset.In order to guarantee an objective selection from a set of four atmospheric correction processors, the common validation strategy of comparisons between in-situ and satellite-derived water leaving reflectance spectra, is aided by a ranking system. In principal, the statistical parameters are transformed into relative scores, which evaluate the relationship of quality dependent on the algorithms under study. The sensitivity of these scores to the selected

  12. Primary production and carbon export rates across the subpolar N. Atlantic Ocean basin based on triple oxygen isotope and dissolved O2 and Ar gas measurements

    Science.gov (United States)

    Quay, P.; Stutsman, J.; Steinhoff, T.

    2012-06-01

    Gross photosynthetic O2 production (GOP) rates in the subpolar North Atlantic Ocean were estimated using the measured isotopic composition of dissolved oxygen in the surface layer on samples collected on nine transits of a container ship between Great Britain and Canada during March 2007 to June 2008. The mean basin-wide GOP rate of 226 ± 48 mmol O2 m-2 d-1 during summer was double the winter rate of 107 ± 41 mmol O2 m-2 d-1. Converting these GOP rates to equivalent 14C-based PP (14C-PPeqv) yielded rates of 1005 ± 216 and 476 ± 183 mg C m-2 d-1 in summer and winter, respectively, that generally agreed well with previous 14C-based PP estimates in the region. The 14C-PPeqv estimates were 1-1.6× concurrent satellite-based PP estimates along the cruise track. A net community production rate (NCP) of 87 ± 12 mmol O2 m-2 d-1 (62 ± 9 mmol C m-2 d-1) and NCP/GOP of 0.35 ± 0.06 in the mixed layer was estimated from O2/Ar and 17Δ measurements (61°N 26°W) during spring bloom conditions in May 2008. Contrastingly, a much lower long-term annual mean NCP or organic carbon export rate of 2.8 ± 2.7 mol C m-2 yr-1 (8 ± 7 mmol C m-2 d-1) and NCP/GOP of 0.07 ± 0.06 at the winter mixed layer depth was estimated from 15 years of surface O2 data in the subpolar N. Atlantic collected during the CARINA program.

  13. Oceanographic profile chlorophyll a and zooplankton biomass measurements collected using bottle in the Southern Oceans from 1995 to 1996 (NODC Accession 0000980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Variability in abundance of virus-like particles (VLP), VLP decay rates and prokaryotic mortality due to viral infection were determined in three Antarctic areas:...

  14. Sea level measured by tide gauges from global oceans -- the Joint Archive for Sea Level holdings as of October 2015 (NCEI Accession 0019568)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Joint Archive for Sea Level (JASL), a collaboration between the University of Hawaii Sea Level Center and the National Centers for Environmental Information...

  15. Oceanographic temperature, salinity, oxygen and other measurements collected using bottle various platforms in the North Atlantic ocean from 1958 to 1960 (NODC Accession 0014335)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Baltimore Harbor Study performed under contract between the John Hopkins University and the Department of Research and Education of the State of Maryland during July...

  16. Temperature, salinity, oxygen, beam attenuation coefficient, and pressure measurements collected using CTD in the global ocean from 1990 to 1998 (NODC Accession 0002369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and Transmissometer data from JGOFS Programs: Equatorial Pacific (EqPac), Antarctic Polar Front Zone (APFZ), North Atlantic Bloom Experiment (NABE), Arabian Sea...

  17. Oceanographic profile temperature, salinity, and meteorology measurements collected using MRB from moored buoy in the Tropical Indian Ocean from 2003-2008 (NODC Accession 0046088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) array July 1993 - September 2008. RAMA is a new observational network...