WorldWideScience

Sample records for satellite-based vhf lightning

  1. Broadband VHF observations for lightning impulses from a small satellite SOHLA-1 (Maido 1)

    Science.gov (United States)

    Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.; Hidekazu, H.; Aoki, T.

    2009-12-01

    Lightning Research Group of Osaka University (LRG-OU) has been developing VHF Broadband Digital Interferometer (DITF) to image precise lightning channels and monitor lightning activity widely. The feature of broadband DITF is its ultrawide bandwidth (from 25MHz to 100MHz) and implicit redundancy for estimating VHF source location. LRG-OU considers an application of the broadband DITF to the spaceborne measurement system and joins the SOHLA (Space Oriented Higashi-Osaka Leading Associate) satellite project. The SOHLA satellite project represents a technology transfer program to expand the range of the space development community in Japan. The objective is to get SMEs (Small and Medium sized manufacturing Enterprises) involved in small space projects and new space technologies. Under the cooperative agreement, JAXA (Japan Aerospace Exploration Agency) intends to contribute to socio-economic development by returning its R&D results to society, and SOHLA tries to revitalize the local economy through the commercialization of versatile small satellites. According to the agreement, JAXA provides SOHLA its technical information on small satellites and other technical assistance for the development of the small satellites, SOHLA-1. The prime objective of the SOHLA-1 program is to realize low-cost and short term development of a microsatellite which utilizes the components and bus technologies of JAXA’s MicroLabSat. SOHLA-1 is a spin-stabilized microsatellite of MicroLabSat heritage (about 50 kg). The spin axis is fixed to inertial reference frame. The spin axis (z-axis) lies in the plane containing the solar direction and the normal to the orbital plane. LRG-OU takes responsibility for a science mission of SOHLA-1. To examine the feasibility of the DITF receiving VHF lightning impulses in space, LRG-OU proposes the BMW (Broadband Measurement of Waveform for VHF Lightning Impulses). BMW consists of a single pair of an antenna, a band-pass filter, an amplifier, and an

  2. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    Science.gov (United States)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  3. VHF lightning mapping observations of a triggered lightning flash

    Science.gov (United States)

    Edens, H. E.; Eack, K. B.; Eastvedt, E. M.; Trueblood, J. J.; Winn, W. P.; Krehbiel, P. R.; Aulich, G. D.; Hunyady, S. J.; Murray, W. C.; Rison, W.; Behnke, S. A.; Thomas, R. J.

    2012-10-01

    On 3 August 2010 an extensive lightning flash was triggered over Langmuir Laboratory in New Mexico. The upward positive leader propagated into the storm's midlevel negative charge region, extending over a horizontal area of 13 × 13 km and 7.5 km altitude. The storm had a normal-polarity tripolar charge structure with upper positive charge over midlevel negative charge. Lightning Mapping Array (LMA) observations were used to estimate positive leader velocities along various branches, which were in the range of 1-3 × 104 m s-1, slower than in other studies. The upward positive leader initiated at 3.4 km altitude, but was mapped only above 4.0 km altitude after the onset of retrograde negative breakdown, indicating a change in leader propagation and VHF emissions. The observations suggest that both positive and negative breakdown produce VHF emissions that can be located by time-of-arrival systems, and that not all VHF emissions occurring along positive leader channels are associated with retrograde negative breakdown.

  4. Comparison Study of Lightning observations from VHF interferometer and Geostationary Lightning Mapper

    Science.gov (United States)

    Kudo, A.; Stock, M.; Ushio, T.

    2017-12-01

    We compared the optical observation from Geostationary Lightning Mapper (GLM) which is mounted on the geostationary meteorological satellite GOES-16 launched last year, and the radio observations from the ground-based VHF broad band interferometer. GLM detects 777.4 nm wavelength infrared optical signals from thunderstorm cells which are illuminated by the heated path during lightning discharge, and was developed mainly for the purpose of increasing the lead time for warning of severe weather and clarifying the discharge mechanism. Its detection has 2 ms frame rate, and 8 km square of space resolution at nadir. The VHF broad band interferometer is able to capture the electromagnetic waves from 20 MHz to 75 MHz and estimate the direction of arrival of the radiation sources using the interferometry technique. This system also has capability of observing the fast discharge process which cannot be captured by other systems, so it is expected to able to make detailed comparison. The recording duration of the system is 1 second. We installed the VHF broad band interferometer which consists of three VHF antenna and one fast antenna at Huntsville, Alabama from April 22nd to May 15th and in this total observation period, 720 triggers of data were observed by the interferometer. For comparison, we adopted the data from April 27th , April 30th. Most April 27th data has GLM "event" detection which is coincident time period. In time-elevation plot comparison, we found GLM detection timing was well coincide with interferometer during K-changes or return strokes and few detection during breakdown process. On the other hand, no GLM detection near the site for all data in April 30th and we are triyng to figure out the reason. We would like to thank University of Alabama Huntsville, New Mexico Institute of Mining and Technology, and RAIRAN Pte. Ltd for the help during the campaign.

  5. Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)

    International Nuclear Information System (INIS)

    Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

    1999-01-01

    Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission

  6. Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

    1999-02-01

    Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission.

  7. Three-Dimensional Reconstruction of Cloud-to-Ground Lightning Using High-Speed Video and VHF Broadband Interferometer

    Science.gov (United States)

    Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao

    2017-12-01

    The time resolved three-dimensional (3-D) spatial reconstruction of lightning channels using high-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of lightning. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered lightning reported by Idone. Since BITF can detect lightning radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the lightning process.

  8. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  9. Fractal-Based Lightning Channel Length Estimation from Convex-Hull Flash Areas for DC3 Lightning Mapping Array Data

    Science.gov (United States)

    Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.

    2013-01-01

    We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.

  10. Observations of lightning processes using VHF radio interferometry

    Science.gov (United States)

    Rhodes, C. T.; Shao, X. M.; Krehbiel, P. R.; Thomas, R.

    1991-01-01

    A single station, multiple baseline radio interferometer was used to locate the direction of VHF radiation from lightning discharges with microsec time resolution. Radiation source directions and electric field waveforms were analyzed for various types of breakdown events. These include initial breakdown and K type events of in-cloud activity, and the leaders of initial and subsequent strokes to ground and activity during and following return strokes. Radiation during the initial breakdown of a flash and in the early stages of initial leaders to ground is found to be similar. In both instances, the activity consists of localized bursts of radiation that are intense and slow moving. Motion within a given burst is unresolved by the interferometer. Radiation from in-cloud K type events is essentially the same as that from dart leaders; in both cases it is produced at the leading edge of a fast moving streamer that propagates along a well defined, often extensive path. K type events are sometimes terminated by fast field changes that are similar to the return stroke initiated by dart leaders; such K type events are the in-cloud analog of the dart leader return stroke process.

  11. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  12. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research) grant number 25350515 and the Japan Aerospace Exploration Agency (JAXA) 7th Research Announcement (RA).

  13. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  14. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2005-01-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  15. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    Science.gov (United States)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  16. Comparing distinct ground-based lightning location networks covering the Netherlands

    Science.gov (United States)

    de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter

    2015-04-01

    Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one

  17. Nowcast of thunderstorm and typhoon activity based on lightning detection and flexible operation of micro-satellites

    Science.gov (United States)

    Takahashi, Y.

    2016-12-01

    It has become known that lightning activity represents the thunderstorm activity, namely, the intensity and area of precipitation and/or updraft. Thunderstorm is also important as a proxy of the energy input from ocean to atmosphere in typhoon, meaning that if we could monitor the thunderstorm with lightning we could predict the maximum wind velocity near the typhoon center by one or two days before. Constructing ELF and VLF radio wave observation network in Southeast Asia (AVON) and a regional dense network of automated weather station in a big city, we plan to establish the monitoring system for thunderstorm development in western pacific warm pool (WPWP) where typhoon is formed and in detail in big city area. On the other hand, some developing countries in SE-Asia are going to own micro-satellites dedicated to meteorological remote sensing. Making use of the lightning activity data measured by the ground-based networks, and information on 3-D structures of thunderclouds observed by the flexible on-demand operation of the remote-sensing micro-satellites, we would establish a new methodology to obtain very detail semi-real time information that cannot be achieved only with existing observation facilities, such as meteorological radar or large meteorological satellite. Using this new system we try to issue nowcast for the local thunderstorm and for typhoons. The first attempt will be carried out in Metro Manila in Philippines and WPWP as one of the SATREPS projects.

  18. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    Science.gov (United States)

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  19. How Lightning Works Inside Thunderstorms: A Half-Century of Lightning Studies

    Science.gov (United States)

    Krehbiel, P. R.

    2015-12-01

    Lightning is a fascinating and intriguing natural phenomenon, but the most interesting parts of lightning discharges are inside storms where they are obscured from view by the storm cloud. Although clouds are essentially opaque at optical frequencies, they are fully transparent at radio frequencies (RF). This, coupled with the fact that lightning produces prodigious RF emissions, has allowed us to image and study lightning inside storms using various RF and lower-frequency remote sensing techniques. As in all other scientific disciplines, the technology for conducting the studies has evolved to an incredible extent over the past 50 years. During this time, we have gone from having very little or no knowledge of how lightning operates inside storms, to being able to 'see' its detailed structure and development with an increasing degree of spatial and temporal resolution. In addition to studying the discharge processes themselves, lightning mapping observations provide valuable information on the electrical charge structure of storms, and on the mechanisms by which storms become strongly electrified. In this presentation we briefly review highlights of previous observations, focussing primarily on the long string of remote-sensing studies I have been involved in. We begin with the study of lightning charge centers of cloud-to-ground discharges in central New Mexico in the late 1960s and continue up to the present day with interferometric and 3-dimensional time-of-arrival VHF mapping observations of lightning in normally- and anomalously electrified storms. A particularly important aspect of the investigations has been comparative studies of lightning in different climatological regimes. We conclude with observations being obtained by a high-speed broadband VHF interferometer, which show in unprecedented detail how individual lightning discharges develop inside storms. From combined interferometer and 3-D mapping data, we are beginning to unlock nature's secrets

  20. The North Alabama Lightning Mapping Array (LMA): A Network Overview

    Science.gov (United States)

    Blakeslee, R. J.; Bailey, J.; Buechler, D.; Goodman, S. J.; McCaul, E. W., Jr.; Hall, J.

    2005-01-01

    The North Alabama Lightning Mapping Array (LMA) is s a 3-D VHF regional lightning detection system that provides on-orbit algorithm validation and instrument performance assessments for the NASA Lightning Imaging Sensor, as well as information on storm kinematics and updraft evolution that offers the potential to improve severe storm warning lead time by up t o 50% and decrease te false alarm r a t e ( for non-tornado producing storms). In support of this latter function, the LMA serves as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. The LMA, which became operational i n November 2001, consists of VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center (NSSTC), which is on t h e campus of the University of Alabama in Huntsville. The LMA system locates the sources of impulsive VHF radio signals s from lightning by accurately measuring the time that the signals aririve at the different receiving stations. Each station's records the magnitude and time of the peak lightning radiation signal in successive 80 ms intervals within a local unused television channel (channel 5, 76-82 MHz in our case ) . Typically hundreds of sources per flash can be reconstructed, which i n t u r n produces accurate 3-dimensional lightning image maps (nominally network topology and the links have an effective data throughput rate ranging from 600 kbits s -1 t o 1.5 %its s -1. This presentation provides an overview of t h e North Alabama network, the data processing (both real-time and post processing) and network statistics.

  1. An Algorithm for Obtaining the Distribution of 1-Meter Lightning Channel Segment Altitudes for Application in Lightning NOx Production Estimation

    Science.gov (United States)

    Peterson, Harold; Koshak, William J.

    2009-01-01

    An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.

  2. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Science.gov (United States)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis

    2015-01-01

    Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.

  3. Land-ocean contrast on electrical characteristics of lightning discharge derived from satellite optical measurements

    Science.gov (United States)

    Adachi, T.; Said, R.; Cummer, S. A.; Li, J.; Takahashi, Y.; Hsu, R.; Su, H.; Chen, A. B.; Mende, S. B.; Frey, H. U.

    2010-12-01

    Comparative studies on the electrical properties of oceanic and continental lightning are crucial to elucidate air discharge processes occurring under different conditions. Past studies however have primarily focused on continental lightning because of the limited coverage of ground-based instruments. Recent satellite measurements by FORMOSAT-2/ISUAL provided a new way to survey the global characteristics of lightning and transient luminous events regardless of land and ocean. In this study, we analyze ISUAL/spectrophotometer data to clarify the electrical properties of lightning on a global level. Based on the results obtained by Cummer et al. [2006] and Adachi et al. [2009], the OI-777.4nm emission intensity is used to infer lightning electrical parameters. Results show a clear land-ocean contrast on the parameters of lightning discharge: in oceanic lightning, peak luminosity is 60 % higher and the time scale of return stroke is 30 % shorter. These results suggest higher peak current in oceanic lightning, which is consistent with the fact that elves, EMP-driven phenomena, also tend to occur over the ocean [Chen et al., 2008]. Further analysis of lightning events occurring around the Caribbean Sea shows that the transition-line of lightning electrical properties is precisely located along the coastline. We suggest that the differences in these electrical properties may be due to the boundary conditions (conductivity, surface terrain, etc). In this talk, based on the calibration with NLDN and Duke magnetometer data, current moment change and charge moment change will be globally evaluated using a complete set of the ISUAL-observed lightning events.

  4. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  5. An Overview of the Total Lightning Jump Algorithm: Past, Present and Future Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.; Deierling, Wiebke; Kessinger, Cathy

    2011-01-01

    thunderstorms in low flashing environments. The latest efforts have been geared toward examining these low flashing storms in order to adjust the algorithm for such storms, thus enhancing the capability of the LJA. Future work will test the algorithm in real time using current satellite and radar based cell tracking methods, as well as, comparing total lightning jump occurrence to both satellite based and ground base observations of thunderstorms to create correlations between lightning jumps and the observed structures within thunderstorms. Finally this algorithm will need to be tested using Geostationary Lightning Mapper proxy data to transition the algorithm from VHF ground based lightning measurements to lower frequency space-based lightning measurements.

  6. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  7. Estimates of lightning NOx production from GOME satellite observations

    NARCIS (Netherlands)

    Boersma, K.F.; Eskes, H.J.; Meijer, E.W.; Kelder, H.M.

    2005-01-01

    Tropospheric NO2 column retreivals from the Global Ozone Monitoring Expeiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing

  8. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    Science.gov (United States)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  9. Lightning hazard region over the maritime continent observed from satellite and climate change threat

    Science.gov (United States)

    Ilhamsyah, Y.; Koesmaryono, Y.; Hidayat, R.; Murjaya, J.; Nurjaya, I. W.; Rizwan

    2017-02-01

    Climate change would lead to such hydrometeorological disaster as: flash-flood, landslide, hailstone, lightning, and twister become more likely to happen in the future. In terms of lightning event, one research question arise of where lightning would be mostly to strike over the Maritime Continent (MC)?. The objective of the research is to investigate region with high-density of lightning activity over MC by mapping climatological features of lightning flashes derived from onboard NASA-TRMM Satellite, i.e. Optical Transient Detector/Lightning Imaging Sensor (OTD/LIS). Based on data retrieved since 1995-2013, it is seasonally observed that during transition season March to May, region with high vulnerability of lightning flashes cover the entire Sumatra Island, the Malacca Strait, and Peninsular Malaysia as well as Java Island. High-frequent of lightning activity over the Malacca Strait is unique since it is the only sea-region in the world where lightning flashes are denser. As previously mentioned that strong lightning activity over the strait is driven by mesoscale convective system of Sumatra Squalls due to convergences of land breeze between Sumatra and Peninsular Malaysia. Lightning activity over the strait is continuously observed throughout season despite the intensity reduced. Java Island, most populated island, receive high-density of lightning flashes during rainy season (December to February) but small part in the northwestern of Java Island, e.g., Bogor and surrounding areas, the density of lightning flashes are high throughout season. Northern and southern parts of Kalimantan and Central part of Sulawesi are also prone to lightning activity particularly during transition season March to May and September to November. In the eastern part of MC, Papua receive denser lightning flashes during September to November. It is found that lightning activity are mostly concentrated over land instead of ocean which is in accordance with diurnal convective

  10. Revisiting "Narrow Bipolar Event" intracloud lightning using the FORTE satellite

    Science.gov (United States)

    Jacobson, A. R.; Light, T. E. L.

    2012-02-01

    The lightning stroke called a "Narrow Bipolar Event", or NBE, is an intracloud discharge responsible for significant charge redistribution. The NBE occurs within 10-20 μs, and some associated process emits irregular bursts of intense radio noise, fading at shorter timescales, sporadically during the charge transfer. In previous reports, the NBE has been inferred to be quite different from other forms of lightning strokes, in two ways: First, the NBE has been inferred to be relatively dark (non-luminous) compared to other lightning strokes. Second, the NBE has been inferred to be isolated within the storm, usually not participating in flashes, but when it is in a flash, the NBE has been inferred to be the flash initiator. These two inferences have sufficiently stark implications for NBE physics that they should be subjected to further independent test, with improved statistics. We attempt such a test with both optical and radio data from the FORTE satellite, and with lightning-stroke data from the Los Alamos Sferic Array. We show rigorously that by the metric of triggering the PDD optical photometer aboard the FORTE satellite, NBE discharges are indeed less luminous than ordinary lightning. Referred to an effective isotropic emitter at the cloud top, NBE light output is inferred to be less than ~3 × 108 W. To address isolation of NBEs, we first expand the pool of geolocated intracloud radio recordings, by borrowing geolocations from either the same flash's or the same storm's other recordings. In this manner we generate a pool of ~2 × 105 unique and independent FORTE intracloud radio recordings, whose slant range from the satellite can be inferred. We then use this slant range to calculate the Effective Radiated Power (ERP) at the radio source, in the passband 26-49 MHz. Stratifying the radio recordings by ERP into eight bins, from a lowest bin (140 kW), we document a trend for the radio recordings to become more isolated in time as the ERP increases. The highest

  11. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  12. Dihydroazulene/Vinylheptafulvene (DHA/VHF)

    DEFF Research Database (Denmark)

    Vlasceanu, Alexandru

    A theoretical and experimental investigation of conformational modifications on the thermodynamic, optical, and switching properties of dihydroazulene/vinylheptafulvene (DHA/VHF) photoswitches, in the context of molecular solar thermal (MOST) systems, is described herein. The optical properties...... of monomeric DHA/VHF systems are found to be strongly dependent on structural changes which can be tuned via steric modifications. This correlation is then used to infer structural features of more complex, macrocyclic DHA/VHF systems based on their optical properties. The introduction of macrocyclic ring...... strain is furthermore found to significantly influence the switching behavior of DHA/VHF moieties compared to non-cyclized systems. The thermal ring closure of macrocyclic VHF-VHF systems is found to occur in a stepwise manner, enabling the release of the energy on both a fast and slow timescale...

  13. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  14. Two upward lightning at the Eagle Nest tower

    OpenAIRE

    Montañá Puig, Juan; Van der Velde, Oscar Arnoud; Romero Durán, David; March Nomen, Víctor; Solà de Las Fuentes, Gloria; Pineda Ruegg, Nicolau; Soula, Serge; Hermoso Alameda, Blas

    2012-01-01

    A new instrument composed by a high speed camera, two high energy detectors, a E-field antenna and a VHF antenna were installed at the Eagle Nest tower (northeast of Spain) during summer 2011. With this equipment several lightning flashes to the tower and its vicinity have been observed. This paper presents two examples: the first was an upward negative leader triggered by a close c1oud-to-ground flash and the second was an upward negative flash not associated with previous lightning activity...

  15. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    Science.gov (United States)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  16. Electrostatic protection of the solar power satellite and rectenna. Part 2: Lightning protection of the rectenna

    Science.gov (United States)

    1980-01-01

    Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.

  17. Fifty Years of Lightning Observations from Space

    Science.gov (United States)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  18. The Meteorology of Storms that Produce Narrow Bipolar Events

    Science.gov (United States)

    Lang, Timothy; McCaul, Bill; Fuchs, Brody; Cummer, Steve

    2013-01-01

    Narrow Bipolar Event's (NBE) are compact ( 10 kW in VHF), and impulsive (approx 10 micro s) electrical discharges in thunderstorms, also known as compact intracloud discharges (CIDs). Can be either positive or negative polarity and have distinctive broadband waveform signatures sometimes confused for +CGs in the past by NLDN and other networks. NBEs are related to lightning but are likely optically "dark". As revealed by VHF sensors (both satellite and ground): (1) The most powerful lightning-­-related VHF sources observed (2) Tend to occur at the beginning of intracloud discharges (3) Difficult to estimate altitude properly due to receiver saturation.

  19. Nature and Intensity of the 22-23 April 2015 Eruptions of Volcán Calbuco, Chile, from Satellite, Lightning, and Field Observations

    Science.gov (United States)

    Van Eaton, A. R.; Amigo, A.; Bertin, D.; Mastin, L. G.; Giacosa, R.; Behnke, S. A.

    2015-12-01

    On 22 April 2015, Calbuco Volcano in southern Chile erupted for the first time in 43 years. The two primary phases of eruption, separated by a few hours, produced pyroclastic density currents, lahars, and spectacular vertical eruption columns that rose into the stratosphere. Clear weather conditions allowed the populated areas of Puerto Montt and Puerto Varas full view of the lightning-rich eruption, which was rapidly shared through social media. A wealth of remote-sensing data was also publically available in near real-time. We used this information to assess the eruption behavior by combining satellite-based umbrella growth rates, and the location and frequency of volcanic lightning. Umbrella expansion rates from GOES-13 satellite retrievals correspond to eruption rates of about 4x106 kg s-1 for the first eruptive phase and 6x106 kg s-1 for the second phase, following the approach of Pouget et al. (2013, JVGR, 258, 100-112). The location and timing of lightning flashes were obtained from the World Wide Lightning Location Network (WWLLN) Global Volcanic Lightning Monitor, which is updated approximately every minute (Ewert et al., 2010, Fall AGU Abstract AE31A-04). Interestingly, the onset of detected flashes was delayed by ~30 min after the start of each eruptive phase. Lighting provided a useful proxy for the waxing or waning intensity of the eruption, and helped identify the end of significant ash emissions. Using the 1-D volcanic plume model Plumeria, we have also simulated the vertical distribution of ash and ice in the plumes to examine potential causes of the extraordinary amount of volcanic lightning (1,094 flashes detected). Our analysis provides information on eruption timing, duration, and mass flow rate, which are necessary for ash dispersal modeling within hours of eruption. Results are also consistent with the field-based measurements of total erupted volume. We suggest that the combination of satellite-detected umbrella expansion rates with lightning

  20. Augmenting Satellite Precipitation Estimation with Lightning Information

    Energy Technology Data Exchange (ETDEWEB)

    Mahrooghy, Majid [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Younan, Nicolas H. [Mississippi State University (MSU); Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, AL; Hsu, Kuo-Lin [University of California, Irvine; Behrangi, Ali [Jet Propulsion Laboratory, Pasadena, CA; Aanstoos, James [Mississippi State University (MSU)

    2013-01-01

    We have used lightning information to augment the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network - Cloud Classification System (PERSIANN-CCS). Co-located lightning data are used to segregate cloud patches, segmented from GOES-12 infrared data, into either electrified (EL) or non-electrified (NEL) patches. A set of features is extracted separately for the EL and NEL cloud patches. The features for the EL cloud patches include new features based on the lightning information. The cloud patches are classified and clustered using self-organizing maps (SOM). Then brightness temperature and rain rate (T-R) relationships are derived for the different clusters. Rain rates are estimated for the cloud patches based on their representative T-R relationship. The Equitable Threat Score (ETS) for daily precipitation estimates is improved by almost 12% for the winter season. In the summer, no significant improvements in ETS are noted.

  1. NOx from lightning: 1. Global distribution based on lightning physics

    Science.gov (United States)

    Price, Colin; Penner, Joyce; Prather, Michael

    1997-03-01

    This paper begins a study on the role of lightning in maintaining the global distribution of nitrogen oxides (NOx) in the troposphere. It presents the first global and seasonal distributions of lightning-produced NOx (LNOx) based on the observed distribution of electrical storms and the physical properties of lightning strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20-30 flashes/s with a mean energy per flash of 6.7×109 J. Intracloud (IC) flashes are more frequent, 50-70 flashes/s but have 10% of the energy of CG strokes and, consequently, produce significantly less NOx. It appears to us that the majority of previous studies have mistakenly assumed that all lightning flashes produce the same amount of NOx, thus overestimating the NOx production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10×1016 molecules NO/J based on the current literature. Using a method to simulate global lightning frequencies from satellite-observed cloud data, we have calculated the LNOx on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNOx is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNOx, is produced in the lowest 5 km by CG lightning, convective mixing in the thunderstorms is likely to deposit large amounts of NOx, in the upper troposphere where it is important in ozone production. On an annual basis, 64% of the LNOx, is produced in the northern hemisphere, implying that the northern hemisphere should have natural ozone levels as much as 2 times greater than the southern hemisphere

  2. Global lightning and severe storm monitoring from GPS orbit

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, D. M. (David M.); Jacobson, A. R.; Linford, J (Justin); Pongratz, M. B. (Morris B.); Light, T. (Tracy E.); Shao, X. (Xuan-Min)

    2004-01-01

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhanced global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the

  3. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  4. NO signatures from lightning flashes

    Science.gov (United States)

    Stith, J.; Dye, J.; Ridley, B.; Laroche, P.; Defer, E.; Baumann, K.; Hübler, G.; Zerr, R.; Venticinque, M.

    1999-07-01

    In situ measurements of cloud properties, NO, and other trace gases were made in active thunderstorms by two research aircraft. Concurrent measurements from a three-dimensional (3-D) VHF interferometer and the 2-D National Lightning Detection Network were used to determine lightning frequency and location. The CHILL Doppler radar and the NOAA-WP-3D Orion X band Doppler radar were also used to measure storm characteristics. Two case studies from the (STERAO) Stratosphere-Troposphere Experiments: Radiation, Aerosols, and Ozone project in northeastern Colorado during the summer of 1996 are presented. Narrow spikes (0.11-0.96 km across), containing up to 19 ppbv of NO, were observed in the storms. Most were located in or downwind of electrically active regions where the NO produced by lightning would be expected. However, it was difficult to correlate individual flashes with NO spikes. A simple model of the plume of NO from lightning is used to estimate NO production from the mean mixing ratio measured in these spikes. The estimates range from 2.0×1020 to 1.0×1022 molecules of NO per meter of flash length.

  5. The Lightning Mapping Imager (LMI) on the FY-4 satellite and a typical application experiment using the LMI data

    Science.gov (United States)

    Huang, F.; Hui, W.; Li, X.; Liu, R.; Zhang, Z.; Zheng, Y.; Kang, N.

    2017-12-01

    The Lightning Mapping Imager (LMI) on the FY-4A satellite, which was launched successfully in December 2016, is the first satellite-based lightning detector from space independently developed in China, and one of the world's first two stationary satellite LMIs. The optical imaging technique with a 400x600 CCD array plane and a frequency of 500 frames/s is adopted in the FY-4A LMI to perform real-time and continuous observation of total lightening in the Chinese mainland and adjacent areas. As of July 2017, the in-orbit test shows that the lightening observation date could be accurately obtained by the FY-4A LMI, and that the geo-location could be verified by the ground lightening observation network over China. Since the beginning of the 2017 flood season, every process of strong thunderstorms has been monitored by the FY-4A LMI throughout the various areas of China, and of these are used as a typical application case in this talk. On April 8 and 9, 2017, a strong convective precipitation process occurred in the middle-lower reaches of the Yangtze River, China. The observation data of the FY-4A LMI are used to monitor the occurrence, development, shift and extinction of the thunderstorm track. By means of analyzing the station's synchronous precipitation observation data, it is indicated that the moving track of the thunderstorm is not completely consistent with that of the precipitation center, and while the distribution areas of thunderstorm and precipitation are consistent to a certain extent, a significant difference also exists. This difference is mainly caused by the convective precipitation and stratus precipitation area during the precipitation process. Through comparative analysis, the preliminary satellite and foundation lightening observation data show a higher consistency. However, the time of lightening activity observed by satellite is one hour earlier than that of the ground observation, which is likely related to the total lightning observation by

  6. Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN

    Science.gov (United States)

    Winesett, Thomas; Magi, Brian; Cecil, Daniel

    2015-01-01

    Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first

  7. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather

    Directory of Open Access Journals (Sweden)

    Colin Price

    2008-01-01

    Full Text Available Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close distances, lightning activity in these damaging stormscan be monitored at all spatial scales, from local (using very high frequency [VHF]sensors, to regional (using very low frequency [VLF] sensors, and even global scales(using extremely low frequency [ELF] sensors. Using sensors that detect the radio wavesemitted by each lightning discharge, it is now possible to observe and track continuouslydistant thunderstorms using ground networks of sensors. In addition to the number oflightning discharges, these sensors can also provide information on lightningcharacteristics such as the ratio between intra-cloud and cloud-to-ground lightning, thepolarity of the lightning discharge, peak currents, charge removal, etc. It has been shownthat changes in some of these lightning characteristics during thunderstorms are oftenrelated to changes in the severity of the storms. In this paper different lightning observingsystems are described, and a few examples are provided showing how lightning may beused to monitor storm hazards around the globe, while also providing the possibility ofsupplying short term forecasts, called nowcasting.

  8. A space-based classification system for RF transients

    International Nuclear Information System (INIS)

    Moore, K.R.; Call, D.; Johnson, S.; Payne, T.; Ford, W.; Spencer, K.; Wilkerson, J.F.; Baumgart, C.

    1993-01-01

    The FORTE (Fast On-Orbit Recording of Transient Events) small satellite is scheduled for launch in mid 1995. The mission is to measure and classify VHF (30--300 MHz) electromagnetic pulses, primarily due to lightning, within a high noise environment dominated by continuous wave carriers such as TV and FM stations. The FORTE Event Classifier will use specialized hardware to implement signal processing and neural network algorithms that perform onboard classification of RF transients and carriers. Lightning events will also be characterized with optical data telemetered to the ground. A primary mission science goal is to develop a comprehensive understanding of the correlation between the optical flash and the VHF emissions from lightning. By combining FORTE measurements with ground measurements and/or active transmitters, other science issues can be addressed. Examples include the correlation of global precipitation rates with lightning flash rates and location, the effects of large scale structures within the ionosphere (such as traveling ionospheric disturbances and horizontal gradients in the total electron content) on the propagation of broad bandwidth RF signals, and various areas of lightning physics. Event classification is a key feature of the FORTE mission. Neural networks are promising candidates for this application. The authors describe the proposed FORTE Event Classifier flight system, which consists of a commercially available digital signal processing board and a custom board, and discuss work on signal processing and neural network algorithms

  9. Dicty_cDB: VHF145 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VH (Link to library) VHF145 (Link to dictyBase) - - - Contig-U15430-1 VHF145E (Link...) Clone ID VHF145 (Link to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15430-1 Ori...ology vs DNA Score E Sequences producing significant alignments: (bits) Value N AC116984 |AC116984.2 Dictyos... theta DNA for complete sequence of nucleomorph chromosome 2. 48 2e-07 2 ES451909 | PREDICTED: similar to PI...al 16.0 %: nuclear 8.0 %: vacuolar 8.0 %: endoplasmic reticulum 4.0 %: cytoskeletal >> prediction for VHF145

  10. VHF Scintillation in an Artificially Heated Ionosphere

    Science.gov (United States)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  11. Triggered lightning strikes to aircraft and natural intracloud discharges

    Science.gov (United States)

    Mazur, Vladislav

    1989-01-01

    The physical model of Mazur (1989) for triggering lightning strikes by aircraft was used to interpret the initiation of intracloud flashes observed by the French UHF-VHF interferometric system. It is shown that both the intracloud discharges and airplane-triggered lightning strikes were initiated by simultaneous bidirectional development of the negative stepped leader and the positive leader-continous current process. However, the negative stepped leader phase in triggered flashes is of shorter duration (tens of milliseconds), than that in intracloud flashes (usually hundreds of milliseconds). This is considered to be due to the fact that, on the aircraft there is a single initiation process, versus the numerous initiation processes that occur inside the cloud.

  12. An Overview of Three-year JEM-GLIMS Nadir Observations of Lightning and TLEs

    Science.gov (United States)

    Sato, M.; Ushio, T.; Morimoto, T.; Adachi, T.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Hobara, Y.

    2015-12-01

    JEM-GLIMS nadir observations of lightning and TLEs at the ISS started from November 2012 and successfully ended on August 2015. For three-year observation period, JEM-GLIMS succeeded in detecting over 8,000 lightning events and 670 TLEs. The detected optical emissions of sprites showed clear horizontal displacement with the range of 10-20 km from the peak location of the +CG emissions and from the +CG locations detected by NLDN and WWLLN. Using VITF electric field waveform data, source locations of VHF pulses excited by the parent CG discharges are estimated. It is found that the possible VHF source locations were mostly located within the area of the parent lightning emissions. These facts may imply that the center region of the neutralized charge by CG discharges in the thundercloud located near the return stroke point and that the some seed conditions were established in advance at the sprite location before the occurrence of sprites. The global occurrence distributions and rates of lightning discharges and TLEs are also estimated. The estimated mean global occurrence rate of lightning discharges is ~1.5 events/s, which is smaller number than that derived from MicroLab-1/OTD and TRMM/LIS measurements. This may be originated in the fact that JEM-GLISM detected only intense lightning optical events due to the high threshold level for the event triggering. To the contrary, the estimated mean global occurrence rate of TLEs is ~9.8 events/min, which is two times higher than the ISUAL result. It is likely that JEM-GLIMS could detect dimmer optical emissions of TLEs than ISUAL since the distance between the JEM-GLIMS instruments and TLEs is much closer. At the presentation, we will summarize the results derived from three-year JEM-GLIMS nadir observations. We will discuss possible occurrence conditions of sprites, properties of global occurrence rates of lightning and TLEs, and their LT dependences more in detail.

  13. Utilizing Yagi antennas in Lightning Mapping Array to detect low-power VHF signals

    Science.gov (United States)

    Tilles, J.; Thomas, R. J.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    The New Mexico Tech VHF Lightning Mapping Array (LMA) being operated at Langmuir Laboratory in central New Mexico is comprised of 22 time-of-arrival stations spanning an area approximately 60 km north-south and 45 km east-west. Nine stations are at high altitude (3.1-3.3 km GPS) over a 3 x 4 km area around the mountain-top Laboratory, and 13 are on the surrounding plains and the Rio Grande valley, at altitudes between 1.4 and 2.2 km. Each station utilizes a vertical half-wave dipole antenna having about 2 dBi gain at horizontal incidence and providing omnidirectional azimuthal coverage. In 2012, four additional stations utilizing higher gain (11 dBi) Yagi antennas were co-located at four of the surrounding sites within 10-15 km of the laboratory, each pointed over the laboratory area. The purpose was to test if directional antennas would improve detection of low-power sources in the laboratory vicinity, such as those associated with positive breakdown or weak precursor events. The test involved comparing the number and quality of radiation sources obtained by processing data from two sets of stations: first for a 17-station network in which all stations were omnidirectional, and then for the same network with Yagi-based measurements substituted in place of the omni measurements at the four co-located stations. For radiation events located in both datasets, the indicated source power values from Yagi stations were typically 5-10 dB greater than their omnidirectional counterpart for sources over or near the laboratory, consistent with the 9 dB difference in on-axis gain values. The difference decreased through zero and to negative values with increasing distance from the laboratory, confirming that it was due to the directionality of the Yagi antennas. It was expected that a network having Yagi antennas at all outlying stations would improve the network's detection of lower power sources in its central region. Rather, preliminary results show that there is no

  14. Preliminary study on the Validation of FY-4A Lightning Mapping Imager

    Science.gov (United States)

    Cao, D.; Lu, F.; Qie, X.; Zhang, X.; Huang, F.; Wang, D.

    2017-12-01

    The FengYun-4 (FY-4) geostationary meteorological satellite is the second generation of China's geostationary meteorological satellite. The FY-4A was launched on December 11th, 2016. It includes a new instrument Lightning Mapping Imager (LMI) for total lightning (cloud and cloud-to-ground flashes) detection. The LMI operates at a wavelength of 777.4nm with 1.9ms integrated time. And it could observe lightning activity continuously day and night with spatial resolution of 7.8 km (sub satellite point) over China region. The product algorithm of LMI consists of false signal filtering and flash clustering analysis. The false signal filtering method is used to identify and remove non-lightning artifacts in optical events. The flash clustering analysis method is used to cluster "event" into "group" and "flash" using specified time and space threshold, and the other non-lightning optical events are filtered further more in the clustering analysis. The ground-based lightning location network (LLN) in China and WWLLN (World Wide Lightning Location Network) were both used to make preliminary validation of LMI. The detection efficiency for cloud-to-ground lightning, spatial and temporal accuracy of LMI were estimated by the comparison of lightning observations from ground-based network and LMI. The day and night biases were also estiamted. Although the LLN and WWLLN mainly observe return strokes in cloud-to-ground flash, the accuracy of LMI still could be estimated for that it was not associated with the flash type mostly. The false alarm efficiency of LMI was estimated using the Geostationary Interferometric Infrared Sounder (GIIRS), another payloads on the FY-4A satellite. The GIIRS could identify the convective cloud region and give more information about the cloud properties. The GIIRS products were used to make a rough evaluation of false alarm efficiency of LMI. The results of this study reveal details of characteristics of LMI instrument. It is also found that the

  15. Lightning Mapping Observations During DC3 in Northern Colorado

    Science.gov (United States)

    Krehbiel, P. R.; Rison, W.; Thomas, R. J.

    2012-12-01

    The Deep Convective Clouds and Chemistry Experiment (DC3) was conducted in three regions covered by Lightning Mapping Arrays (LMAs): Oklahoma and west Texas, northern Alabama, and northern Colorado. In this and a companion presentation, we discuss results obtained from the newly-deployed North Colorado LMA. The CO LMA revealed a surprising variety of lightning-inferred electrical structures, ranging from classic tripolar, normal polarity storms to several variations of anomalously electrified systems. Storms were often characterized by a pronounced lack or deficit of cloud-to-ground discharges (negative or positive), both in relative and absolute terms compared to the large amount of intracloud activity revealed by the LMA. Anomalous electrification was observed in small, localized storms as well as in large, deeply convective and severe storms. Another surprising observation was the frequent occurrence of embedded convection in the downwind anvil/outflow region of large storm systems. Observations of discharges in low flash rate situations over or near the network are sufficiently detailed to enable branching algorithms to estimate total channel lengths for modeling NOx production. However, this will not be possible in large or distant storm systems where the lightning was essentially continuous and structurally complex, or spatially noisy. Rather, a simple empirical metric for characterizing the lightning activity can be developed based on the number of located VHF radiation sources, weighted for example by the peak source power, source altitude, and temporal duration.

  16. A beaded collar for dual micro GPS/VHF transmitter attachment to nutria

    Science.gov (United States)

    Haramis, G.M.; White, T.S.

    2011-01-01

    We report on the development of an approximately 85-g beaded collar for dual micro GPS/VHF transmitter attachment to semi-aquatic nutria (Myocastor coypus). Prototype collars were tested on captive nutria and refined during field trials. Central to the design was novel use of the VHF transmitter antenna as a collar. A circular collar was formed by passing the 44-cm antenna cable through a pre-made hole in the transmitter, leaving an approximately 16-cm upright antenna. GPS units were mounted separately via a hole in the base of each unit. For good satellite contact, GPS units (28 g) were maintained at the nape of the neck by counterbalance of the heavier VHF transmitters (50 g) positioned under the neck. To reduce friction, we lined the collar with alternate-sized plastic and, later, more durable nylon beads. The final collar configuration was worn for approximately 1 month deployments with only minor neck abrasion; one collar was worn successfully for 5 months. Foot entanglement remained the greatest risk of injury from the collar. By fitting collars tightly, we reduced the incidence of foot entanglement to 2 of 33 deployments (6%). Successful GPS tracks were acquired on 29 of 33 deployments (88%).

  17. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array

    Science.gov (United States)

    López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David

    2017-11-01

    3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.

  18. Terrestrial gamma-ray flash production by lightning

    Science.gov (United States)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  19. Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays

    Science.gov (United States)

    Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan

    2018-02-01

    This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human-built environment and provides an example of lightning within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary Lightning Mapper.

  20. Lightning initiation: Strong pulses of VHF radiation accompany preliminary breakdown

    Czech Academy of Sciences Publication Activity Database

    Kolmašová, Ivana; Santolík, Ondřej; Defer, E.; Rison, W.; Coquillat, S.; Pedeboy, S.; Lán, Radek; Uhlíř, Luděk; Lambert, D.; Pinty, J.P.; Prieur, S.; Pont, V.

    2018-01-01

    Roč. 8, č. 1 (2018), č. článku 3650. ISSN 2045-2322 R&D Projects: GA ČR GA17-07027S Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : controlled study * article * electromagnetic radiation * magnetic field * waveform * lightning * mapping array * discharges * ionosphere * luminosity * flashes * leaders * system Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics ) Impact factor: 4.259, year: 2016 https://www.nature.com/articles/s41598-018-21972-z

  1. Effect of geomagnetic storms on VHF scintillations observed at low latitude

    Science.gov (United States)

    Singh, S. B.; Patel, Kalpana; Singh, A. K.

    2018-06-01

    A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.

  2. Exploring the Production of NOx by Lightning and Its Impact on Tropospheric Ozone

    Science.gov (United States)

    Gillani, Noor; Koshak, William; Biazar, Arastoo; Doty, Kevin; Mahon, Robert; Newchurch, Michael; Byun, Daewon; Emmons, Louisa

    2006-01-01

    Our quantitative understanding of free tropospheric (FT) chemistry is quite poor. State-of-the-art regional air quality models (e.g., US EPA's CMAQ) perform very poorly in simulating FT chemistry, with Uniform ozone around 70 ppb throughout the FT in summer, while ozonesonde data show much higher levels of ozone and much spatial-temporal structure. Such models completely neglect lightning-NOx (LNOx) emissions (the most significant source of NOx in the FT), and also contain large uncertainties in the specifications of intercontinental transport, stratosphere-troposphere exchange (STE) and PBLFT exchange (PFTE). Global air chemistry models include LNOx, but in very crude fashion, with the frequency and distribution of lightning being based on modeled cloud parameters (hence large uncertainty), lightning energetics being assumed to be constant for all flashes (literature value, while in reality there is at least a two-orders of magnitude variability from flash-to-flash), and the production of NOx in the surrounding heated air, per Joule of heating, being assumed to be constant also (literature value, while in fact it is a non-linear function of the dissipated heat and local air density, p). This situation is commonly blamed on paucity of pertinent observational data, but for the USA, there is now a wealth of surface- and satellite-based data of lightning available to permit much improved observation-based estimation of LNOx emissions. In the FT, such NOx has a long residence time, and also the ozone production efficiency from NOx there is considerably higher than in the PBL. It is, therefore, of critical importance in FT chemistry. This paper will describe the approach and data products of an ongoing NSSTC project aimed at a much-improved quantification of not only LNOx production on the scale of continental USA based on local and regional lightning observations, but also of intercontinental transport, STE and PFTE, all in upgraded simulations of tropospheric

  3. Broadband VHF Interferometer Observations of an Energetic In-cloud Pulse (EIP)

    Science.gov (United States)

    Tilles, J.; Krehbiel, P. R.; Stanley, M. A.; Rison, W.; Lyu, F.; Cummer, S.; Liu, N.; Dwyer, J. R.; Brown, R. G.; Wilson, J. G.

    2017-12-01

    Energetic in-cloud pulses (EIPs) are a little-known in-cloud subprocess of lightning. While they may be best identified by their large peak current (>200 kA) [Lyu et al., Geophys. Res. Lett., 42, 2015], they differ from narrow bipolar events (NBEs) - another type of in-cloud, high peak-current process - in that the sferic of an EIP lasts an order of magnitude longer ( ˜100 us) than that of a typical NBE ( ˜10 us). To further differentiate them from NBEs, EIPs are generally embedded within other electrical activity, whereas NBEs are known to primarily occur in isolation or as a lightning-initiating event [Smith et al., J. Geophys. Res., 104, D4, 4189-4212, 1999; Rison et al., Nat. Commun., 7, 10721, 2016]. Moreover, EIPs may have an intrinsic connection with the production of terrestrial gamma ray flashes (TGFs) [Cummer et al., Geophys. Res. Lett., 41, 8586-8593, 2014].Here we present coincident broadband VHF interferometer (INTF) observations and electric and magnetic field waveforms of an EIP with an associated NLDN peak current of 247 kA. The EIP occurs nearly 4 ms into a normal-polarity intracloud flash as part of the upward extension of the negative-polarity lightning leader. For this reason, we suspect that EIPs are a more energetic version of initial breakdown pulses (IBPs), which accompany the development of negative stepped leaders [e.g. Marshall et al., J. Geophys. Res. Atmos., 119, 445-460, 2014]. In addition, we show similarities with NBE-producing fast breakdown [Rison et al., 2016; Tilles et al., AE12A-03, AGU Fall Meeting, 2016], in that the breakdown accompanying the EIP propagates over a similar vertical extent ( ˜0.5-1 km) and with similar propagation speed ( ˜3×107 m/s). The INTF was developed by New Mexico Tech and has been deployed at Kennedy Space Center since July 2016. It employed three 100-m baselines in 2016, has a bandwidth of 14-88 MHz and samples at 180 MS/s with 16-bit resolution. A synchronously digitized fast antenna (FA), with

  4. Smart CMOS image sensor for lightning detection and imaging.

    Science.gov (United States)

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  5. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Science.gov (United States)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C.

    2009-08-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  6. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Directory of Open Access Journals (Sweden)

    L. Fita

    2009-08-01

    Full Text Available The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA. An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity

  7. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Energy Technology Data Exchange (ETDEWEB)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C. [Univ. de les Illes Balears, Palma de Mallorca (Spain). Grup de Meteorologia

    2009-07-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  8. OLS DIGITAL DERIVED LIGHTNING FROM DMSP F10 V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The OLS Digital Derived Lightning from DMSP F10 dataset consists of global lightning signatures from the Defense Meteorological Satellite Program (DMSP) Operational...

  9. Tropical Cyclone Lightning Distribution and Its Relationship to Convection and Intensity Change

    Science.gov (United States)

    Rodgers, Edward; Wienman, James; Pierce, Harold; Olson, William

    2000-01-01

    The long distance National Lightning Detection Network (NLDN) was used to monitor the distribution of lightning strokes in various 1998 and 1999 western North Atlantic tropical cyclones. These ground-based lightning observations together with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and the Tropical Rain Mapping Mission (TRMM) Microwave Instrument (TMI) derived convective rain rates were used to monitor the propagation of electrically charged convective rain bands aid to qualitatively estimate intensification. An example of the lightning analyses was performed on hurricane George between 25-28 September, 1998 when the system left Key West and moved towards the Louisiana coast. During this period of time, George's maximum winds increased from 38 to 45 meters per second on 25 September and then remained steady state until it made landfall. Time-radius displays of the lightning strokes indicated that the greatest number of lightning strokes occurred within the outer core region (greater than 165 km) with little or no lightning strokes at radii less than 165 km. The trend in these lightning strokes decreased as George move into the Gulf of Mexico and showed no inward propagation. The lack inward propagating lightning strokes with time indicated that there was no evidence that an eye wall replacement was occurring that could alter George's intensity. Since George was steady state at this time, this result is not surprising. Time-azimuth displays of lightning strokes in an annulus whose outer and inner radii were respectively, 222 and 333 km from George's center were also constructed. A result from this analysis indicated that the maximum number of strokes occurred in the forward and rear right quadrant when George was over the Gulf of Mexico. This result is, consistent with the aircraft and satellite observations of maximum rainfall.

  10. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  11. Using Total Lightning Observations to Enhance Lightning Safety

    Science.gov (United States)

    Stano, Geoffrey T.

    2012-01-01

    . SPoRT has been collaborating with the Huntsville National Weather Service (NWS) Office since 2003 and has since included several other offices to better implement LMA observations into real-time applications. Much of that work has focused on the LMA s ability to detect intra-cloud lightning in addition to cloud-to-ground lightning strikes. Combined, these observations are called total lightning. With total lightning observations, NWS offices can enhance their situational awareness and improve severe weather warnings. Just as importantly, the observed intra-cloud flashes often precede the first cloud-to-ground strike by a few minutes. SPoRT and its partner NWS offices are working to develop visualizations and applications to better utilize these data. However, there is a drawback. The LMAs have a short range of no more than 200 km. This is being addressed with the next generation geostationary satellite, GOES-R, which will boast the Geostationary Lightning Mapper (GLM). SPoRT, in conjunction with NOAA s GOES-R Proving Ground, is working to prepare the end user community for the GLM era using the LMA observations as a demonstration tool. Working collaboratively with our NWS partners, SPoRT is working to determine how best to integrate these future observations to improve both severe storm warnings and lightning safety.

  12. Lighting Observations During the Mt. Augustine Volcanic Eruptions With the Portable Lightning Mapping Stations

    Science.gov (United States)

    Rison, W.; Krehbiel, P.; Thomas, R.; Edens, H.; Aulich, G.; O'Connor, N.; Kieft, S.; McNutt, S.; Tytgat, G.; Clark, E.

    2006-12-01

    Following the initial eruptions of Mt. Augustine on January 11-17 2006, we quickly prepared and deployed a first contingent of two portable mapping stations. This was our first use of the newly-developed portable stations, and we were able to deploy them in time to observe the second set of explosive eruptions during the night of January~27-28. The stations were located 17~km apart on the west coast of the Kenai Peninsula, 100~km distant from Augustine on the far western side of Cook Inlet. The stations comprised a minimal network capable of determining the azimuthal direction of VHF radiation sources from electrical discharges, and thus the transverse location of the electrical activity relative to the volcano. The time series data from the southern, Homer station for the initial, energetic explosion at 8:31 pm on January~27 revealed the occurrence of spectacular lightning, which from the two-station data drifted southward from Augustine with time, in the same direction as the plume from the eruption. About 300 distinct lightning discharges occurred over an 11-minute time interval, beginning 2-3~min after the main explosion. The lightning quickly became increasingly complex with time and developed large horizontal extents. One of the final discharges of the sequence lasted 600~ms and had a transverse extent of 15~km, extending to 22~km south of Augustine's summit. In addition to this more usual form of lightning, continuous bursts of radio frequency radiation occurred during the explosion itself, indicating that the tephra was highly charged upon being ejected from the volcano. A completely unplanned and initially missed but one of several fortuitous aspects of the observations was that the Homer station functioned as a 'sea-surface interferometer' whose interference pattern can be used to determine the altitude variation with time for some discharges. The station's VHF antenna was located on the edge of a bluff 210~m above Cook Inlet and received both the direct

  13. An Optical Lightning Simulator in an Electrified Cloud-Resolving Model to Prepare the Future Space Lightning Missions

    Science.gov (United States)

    Bovalo, Christophe; Defer, Eric; Pinty, Jean-Pierre

    2016-04-01

    The future decade will see the launch of several space missions designed to monitor the total lightning activity. Among these missions, the American (Geostationary Lightning Mapper - GLM) and European (Lightning Imager - LI) optical detectors will be onboard geostationary satellites (GOES-R and MTG, respectively). For the first time, the total lightning activity will be monitored over the full Earth disk and at a very high temporal resolution (2 and 1 ms, respectively). Missions like the French Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) and ISS-LIS will bring complementary information in order to better understand the lightning physics and to improve the weather prediction (nowcasting and forecasting). Such missions will generate a huge volume of new and original observations for the scientific community and weather prediction centers that have to be prepared. Moreover, before the launch of these missions, fundamental questions regarding the interpretation of the optical signal property and its relation to cloud optical thickness and lightning discharge processes need to be further investigated. An innovative approach proposed here is to use the synergy existing in the French MesoNH Cloud-Resolving Model (CRM). Indeed, MesoNH is one of the only CRM able to simulate the lifecycle of electrical charges generated within clouds through non-inductive charging process (dependent of the 1-moment microphysical scheme). The lightning flash geometry is based on a fractal law while the electrical field is diagnosed thanks to the Gauss' law. The lightning optical simulator is linked to the electrical scheme as the lightning radiance at 777.4 nm is a function of the lightning current, approximated by the charges neutralized along the lightning path. Another important part is the scattering of this signal by the hydrometeors (mainly ice particles) that is taken into account. Simulations at 1-km resolution are done over the Langmuir Laboratory (New

  14. Lightning and 85-GHz MCSs in the Global Tropics

    Science.gov (United States)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  15. The start of lightning: Evidence of bidirectional lightning initiation.

    Science.gov (United States)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  16. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xunming [University of Toledo; Fan, Qi Hua

    2011-12-31

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Å/s a-Si and >= 20 Å/s nc-Si or 4 Å/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  17. Terrestrial gamma ray flash production by lightning current pulses

    OpenAIRE

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    Terrestrial gamma ray flashes (TGFs) are brief bursts of gamma rays observed by satellites, typically in coincidence with detectable lightning. We incorporate TGF observations and the key physics behind current TGF production theories with lightning physics to produce constraints on TGF production mechanisms. The combined constraints naturally suggest a mechanism for TGF production by current pulses in lightning leader channels. The mechanism involves local field enhancements due to charge re...

  18. High-detail snapshots of rare gigantic jet lightning

    Science.gov (United States)

    Schultz, Colin

    2011-08-01

    In the ionosphere, more than 80 kilometers above Earth's surface, incoming radiation reacts with the thin air to produce highly charged ions, inducing an electric potential between the ionosphere and the surface. This charge difference is dissipated by a slow leak from the ionosphere during calm weather and reinvigorated by a charge built up near the surface during a thunderstorm. In 2001, however, researchers discovered gigantic jets (GJs), powerful lightning that arcs from tropospheric clouds up to the ionosphere, suggesting there may be an alternate path by which charge is redistributed. GJs are transient species, and little is known about how much charge they can carry, how they form, or how common they are. In a step toward answering these questions, Lu et al. report on two GJs that occurred near very high frequency (VHF) lightning detection systems, which track the development of lightning in three spatial dimensions, giving an indication of the generation mechanism. The researchers also measured the charge transfer in the two GJs through remote sensing of magnetic fields. They found that both jets originated from the development of otherwise normal intracloud lightning. The dissipation of the cloud's positively charged upper layer allowed the negative lightning channel to break through and travel up out of the top of the cloud to the ionosphere. The first jet, which occurred off the coast of Florida, leapt up to 80 kilometers, depositing 110 coulombs of negative charge in 370 milliseconds. The second jet, observed in Oklahoma, traveled up to 90 kilometers, raising only 10-20 coulombs in 300 milliseconds. Each new observation of gigantic jets such as these can provide valuable information toward understanding this novel atmospheric behavior. (Geophysical Research Letters, doi:10.1029/2011GL047662, 2011)

  19. Situational Lightning Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of Lightning Probabilities

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  20. OLS ANALOG DERIVED LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Global lightning signatures from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) have been analyzed from the filmstrip imagery....

  1. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Science.gov (United States)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey

    2015-01-01

    . 2011) to monitor lightning trends and to anticipate/forecast severe weather (hail > or =2.5 cm, winds > or =25 m/s, tornadoes). The result will be a time-continuous algorithm that uses GOES satellite, radar fields, and HRRR model fields to nowcast first-flash LI and QL, and subsequently monitors lightning trends on a perstorm basis within the LJ algorithm for possible severe weather occurrence out to > or =3 hours. The LI-QL-LJ product will also help prepare the operational forecast community for Geostationary Lightning Mapper (GLM) data expected in late 2015, as these data are monitored for ongoing convective storms. The LI-QL-LJ product will first predict where new lightning is highly probable using GOES imagery of developing cumulus clouds, followed by n analysis of NWS (dual-polarization) radar indicators (reflectivity at the -10 C altitude) of lightning occurrence, to increase confidence that LI is immanent. Once lightning is observed, time-continuous lightning mapping array and Pseudo-GLM observations will be analyzed to assess trends and the severe weather threat as identified by trends in lightning (i.e. LJs). Additionally, 5- and 15-min GOES imagery will then be evaluated on a per-storm basis for overshooting and other cloud-top features known to be associated with severe storms. For the processing framework, the GOES-R 0-1 hour convective initiation algorithm's output will be developed within the Warning Decision Support System - Integrated Information (WDSS-II) tracking tool, and merged with radar and lightning (LMA/Psuedo-GLM) datasets for active storms. The initial focus of system development will be over North Alabama for select lightning-active days in summer 2014, yet will be formed in an expandable manner. The lightning alert tool will also be developed in concert with National Weather Service (NWS) forecasters to meet their needs for real-time, accurate first-flash LI and timing, as well as anticipated lightning trends, amounts, continuation and

  2. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  3. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  4. Study of irradiation of flash lightning type in a Titan simulated atmosphere

    International Nuclear Information System (INIS)

    Rosa C, J.G. De la

    2001-01-01

    Titan is the greatest satellite of the Saturn planet and the unique moon of the Solar System which presents a dense atmosphere constituted by nitrogen, methane and traces of hydrocarbons and nitriles. Constantly it is bombarded by different energy sources which interacting with the atmosphere cause countless of chemical reactions which have giving origin to the synthesis of organic molecules from its formation since 4.5 thousand millions of years ago. The electric activity was not detected in the satellite when the space probe Voyager I had its nearest match with Titan in November 1980, however, due to the presence of methane clouds rain and of convective activity in the troposphere of the satellite, it is thought in the possible existence of electrical activity in this. In this work it is studied the production of gaseous compounds generated by irradiations type flash lightning in the Titan simulated atmosphere constituted by nitrogen and methane. The lightning are imitated by laser induced plasma (LIP) with similar physical properties to the naturals produced in the Earth. The separation and identification of the organic compounds generated by simulated lightning s were carried out by attached methods of analysis such as the Gas chromatography, Infrared spectroscopy with Fourier transform (FTIR-S) and Mass spectroscopy (MS). The compounds which were identified are: hydrocarbons and nitriles, some of them already have been identified in Titan as well as the hydrogen cyanide (HCN), acetylene, etilene and cyanoacetylene. Moreover we studied the influence that different parameters of irradiation have in the production of organic molecules generated submitting to discharges type lightning the simulated atmosphere of Titan. It was realized an estimation of the available energy in the satellite which could be vanished as discharges type lightning. By means of a model based on conditions of thermodynamic equilibria it was calculated the temperature to which are freeze

  5. The start of lightning: Evidence of bidirectional lightning initiation

    OpenAIRE

    van der Velde, Oscar; Williams, Earle R.; Montanya, Joan

    2015-01-01

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leader...

  6. Modeling of Lightning Strokes Using Two-Peaked Channel-Base Currents

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-01-01

    Full Text Available Lightning electromagnetic field is obtained by using “engineering” models of lightning return strokes and new channel-base current functions and the results are presented in this paper. Experimentally measured channel-base currents are approximated not only with functions having two-peaked waveshapes but also with the one-peaked function so as usually used in the literature. These functions are simple to be applied in any “engineering” or electromagnetic model as well. For the three “engineering” models: transmission line model (without the peak current decay, transmission line model with linear decay, and transmission line model with exponential decay with height, the comparison of electric and magnetic field components at different distances from the lightning channel-base is presented in the case of a perfectly conducting ground. Different heights of lightning channels are also considered. These results enable analysis of advantages/shortages of the used return stroke models according to the electromagnetic field features to be achieved, as obtained by measurements.

  7. Using cloud ice flux to parametrise large-scale lightning

    Directory of Open Access Journals (Sweden)

    D. L. Finney

    2014-12-01

    Full Text Available Lightning is an important natural source of nitrogen oxide especially in the middle and upper troposphere. Hence, it is essential to represent lightning in chemistry transport and coupled chemistry–climate models. Using ERA-Interim meteorological reanalysis data we compare the lightning flash density distributions produced using several existing lightning parametrisations, as well as a new parametrisation developed on the basis of upward cloud ice flux at 440 hPa. The use of ice flux forms a link to the non-inductive charging mechanism of thunderstorms. Spatial and temporal distributions of lightning flash density are compared to tropical and subtropical observations for 2007–2011 from the Lightning Imaging Sensor (LIS on the Tropical Rainfall Measuring Mission (TRMM satellite. The well-used lightning flash parametrisation based on cloud-top height has large biases but the derived annual total flash density has a better spatial correlation with the LIS observations than other existing parametrisations. A comparison of flash density simulated by the different schemes shows that the cloud-top height parametrisation has many more instances of moderate flash densities and fewer low and high extremes compared to the other parametrisations. Other studies in the literature have shown that this feature of the cloud-top height parametrisation is in contrast to lightning observations over certain regions. Our new ice flux parametrisation shows a clear improvement over all the existing parametrisations with lower root mean square errors (RMSEs and better spatial correlations with the observations for distributions of annual total, and seasonal and interannual variations. The greatest improvement with the new parametrisation is a more realistic representation of the zonal distribution with a better balance between tropical and subtropical lightning flash estimates. The new parametrisation is appropriate for testing in chemistry transport and chemistry

  8. Assessments of Total Lightning Data Utility in Weather Forecasting

    Science.gov (United States)

    Buechler, Dennis E.; Goodman, Steve; LaCasse, Katherine; Blakeslee, Richard; Darden, Chris

    2005-01-01

    National Weather Service forecasters in Huntsville, Alabama have had access to total lightning data from the North Alabama Lightning Mapping Array (LMA) since 2003. Forecasters can monitor real-time total lightning observations on their AWIPS (Advanced Weather Interactive Processing System (AWIPS) workstations. The lightning data is used to supplement other observations such as radar and satellite data. The lightning data is updated every 2 min, providing more timely evidence of storm growth or decay than is available from 5 min radar scans. Total lightning observations have been used to positively impact warning decisions in a number of instances. A number of approaches are being pursued to assess the usefulness of total lightning measurements to the operational forecasting community in the warning decision process. These approaches, which include both qualitative and quantitative assessment methods, will be discussed. submitted to the American Meteorological Society (AMS) Conference on Meteorological Applications of Lightning Data to be held in San Diego, CA January 9-13,2005. This will be a presentation and an extended abstract will be published on a CD available from the AMS.

  9. Determination of the Global-Average Charge Moment of a Lightning Flash Using Schumann Resonances and the LIS/OTD Lightning Data

    Science.gov (United States)

    Boldi, Robert; Williams, Earle; Guha, Anirban

    2018-01-01

    In this paper, we use (1) the 20 year record of Schumann resonance (SR) signals measured at West Greenwich Rhode Island, USA, (2) the 19 year Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) lightning data, and (3) the normal mode equations for a uniform cavity model to quantify the relationship between the observed Schumann resonance modal intensity and the global-average vertical charge moment change M (C km) per lightning flash. This work, by integrating SR measurements with satellite-based optical measurements of global flash rate, accomplishes this quantification for the first time. To do this, we first fit the intensity spectra of the observed SR signals to an eight-mode, three parameter per mode, (symmetric) Lorentzian line shape model. Next, using the LIS/OTD lightning data and the normal mode equations for a uniform cavity model, we computed the expected climatological-daily-average intensity spectra. We then regressed the observed modal intensity values against the expected modal intensity values to find the best fit value of the global-average vertical charge moment change of a lightning flash (M) to be 41 C km per flash with a 99% confidence interval of ±3.9 C km per flash, independent of mode. Mode independence argues that the model adequately captured the modal intensity, the most important fit parameter herein considered. We also tested this relationship for the presence of residual modal intensity at zero lightning flashes per second and found no evidence that modal intensity is significantly different than zero at zero lightning flashes per second, setting an upper limit to the amount of nonlightning contributions to the observed modal intensity.

  10. Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities

    Science.gov (United States)

    Bailey, J. C.; Blakeslee, R. J.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.; Buechler, D. E.

    2014-01-01

    A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011 in the vicinity of Sao Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012 during the Vale do Paraiba campaign. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to 150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. As the CHUVA Vale do Paraiba campaign opportunity was formulated, a broad community-based interest developed for a comprehensive Lightning Location System (LLS) intercomparison and assessment study, leading to the participation and/or deployment of eight other ground-based networks and the space-based Lightning Imaging Sensor (LIS). The SP-LMA data is being intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment including noise reduction criteria, detection efficiency estimates, and statistical and climatological (both temporal and spatially) analyses for intercomparison studies and GOES-R proxy activities.

  11. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  12. Risk Analysis Method Based on FMEA for Transmission Line in Lightning Hazards

    Directory of Open Access Journals (Sweden)

    You-Yuan WANG

    2014-05-01

    Full Text Available Failure rate of transmission line and reliability of power system are significantly affected by Lightning meteorological factor. In view of the complexity and variability of Lightning meteorological factors, this paper presents lightning trip-out rate model of transmission line in considering distribution of ground flash density and lightning day hours. Meanwhile, presents a failure rate model of transmission line in different condition, and a risk analysis method for transmission line considering multiple risk factors based on risk quantification. This method takes Lightning meteorological factor as the main evaluation standard, and establishes risk degree evaluation system for transmission line including another five evaluation standard. Put forward the risk indicators by quantify the risk factors based on experience date of transmission line in service. Based on the risk indexes comprehensive evaluation is conducted, and the evaluation result closer to practice is achieved, providing basis for transmission line risk warning and maintenance strategy. Through the risk analysis for 220 kV transmission line in a certain power supply bureau, the effectiveness of the proposed method is validated.

  13. Long-Range Lightning Products for Short Term Forecasting of Tropical Cyclogenesis

    Science.gov (United States)

    Businger, S.; Pessi, A.; Robinson, T.; Stolz, D.

    2010-12-01

    This paper will describe innovative graphical products derived in real time from long-range lightning data. The products have been designed to aid in short-term forecasting of tropical cyclone development for the Tropical Cyclone Structure Experiment 2010 (TCS10) held over the western Pacific Ocean from 17 August to 17 October 2010 and are available online at http://www.soest.hawaii.edu/cgi-bin/pacnet/tcs10.pl. The long-range lightning data are from Vaisala’s Global Lightning Data 360 (GLD360) network and include time, location, current strength, polarity, and data quality indication. The products currently provided in real time include i. Infrared satellite imagery overlaid with lighting flash locations, with color indication of current strength and polarity (shades of blue for negative to ground and red for positive to ground). ii. A 15x15 degree storm-centered tile of IR imagery overlaid with lightning data as in i). iii. A pseudo reflectivity product showing estimates of radar reflectivity based on lightning rate - rain rate conversion derived from TRMM and PacNet data. iv. A lightning history product that plots each hour of lightning flash locations in a different color for a 12-hour period. v. Graphs of lightning counts within 50 or 300 km radius, respectively, of the storm center vs storm central sea-level pressure. vi. A 2-D graphic showing storm core lightning density along the storm track. The first three products above can be looped to gain a better understanding of the evolution of the lightning and storm structure. Examples of the graphics and their utility will be demonstrated and discussed. Histogram of lightning counts within 50 km of the storm center and graph of storm central pressure as a function of time.

  14. TRMM-Based Lightning Climatology

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  15. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  16. Implications of a lightning-rich tundra biome for permafrost carbon and vegetation dynamics

    Science.gov (United States)

    Chen, Y.; Veraverbeke, S.; Randerson, J. T.

    2017-12-01

    Lightning is a major ignition source of wildfires in circumpolar boreal forests but rarely occurs in arctic tundra. While theoretical and empirical work suggests that climate change will increase lightning strikes in temperate regions, much less is known about future changes in lightning across terrestrial ecosystems at high northern latitudes. Here we analyzed the spatial and temporal patterns of lightning flash rate (FR) from the satellite observations and surface detection networks. Regression models between the observed FR from the Optical Transient Detector on the MicroLab-1 satellite (later renamed OV-1) and meteorological parameters, including surface temperature (T), convective available potential energy (CAPE), and convective precipitation (CP) from ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis, were established and assessed. We found that FR had significant linear correlations with CAPE and CP, and a strong non-linear relationship with T. The statistical model based on T and CP can reproduce most of the spatial and temporal variability in FR in the circumpolar region. By using the regression model and meteorological predictions from 24 earth system models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we estimated the spatial distribution of FR by the end of the 21st century. Due to increases in surface temperature and convection, modeled FR shows substantial increase in northern biomes, including a 338% change in arctic tundra and a 185% change in regions with permafrost soil carbon reservoirs. These changes highlight a new mechanism by which permafrost carbon is vulnerable to the sustained impacts of climate warming. Increased fire in a warmer and lightning-rich future near the treeline has the potential to accelerate the northward migration of trees, which may further enhance warming and the abundance of lightning strikes.

  17. Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat

    Science.gov (United States)

    McCaul, E. W., jr.; Goodman, S. J.

    2008-01-01

    Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.

  18. Lightning-Generated NO(x) Seen By OMI during NASA's TC-4 Experiment: First Results

    Science.gov (United States)

    Bucsela, Eric; Pickering, Kenneth E.; Huntemann, Tabitha; Cohen, Ronald; Perring, Anne; Gleason, James; Blakeslee, Richard; Navarro, Dylana Vargas; Segura, Ileana Mora; Hernandez, Alexia Pacheco; hide

    2009-01-01

    We present here case studies identifying upper-tropospheric NO2 produced in convective storms during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TCi)n July and August 2007. DC8 aircraft missions, flown from the mission base in Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these data with measurements from the Ozone Monitoring Instrument (OMI) on the Aura satellite to estimate the amount of NO2 produced by lightning (LN02) above background levels in the regions influenced by storms. In our analysis, improved off-line processing techniques are employed to minimize known artifacts in the OM1 data. Information on lightning flashes (primarily CG) observed by the surface network operated by the Instituto Costarricense de Electricidad are examined upwind of regions where OM1 indicates enhanced LNO2. Comparisons of the observed flash data with measurements by the TRMM/LIS satellite instrument are used to obtain the lightning detection efficiency for total flashes. Finally, using the NO/NO2 ratio estimated from DC-8 observations, we estimate the average NO(x) production per lightning flash for each case in this study. The magnitudes of the measured NO(x) enhancements are compared with those observed by the DC-8 and with similar OM1 measurements analyzed in mid-latitude experiments.

  19. Graphene-based tunable non-foster circuit for VHF applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jing; Nagarkoti, Deepak Singh; Rajab, Khalid Z.; Hao, Yang, E-mail: y.hao@qmul.ac.uk [School of Electronic Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS (United Kingdom)

    2016-06-15

    This paper presents a negative impedance converter (NIC) based on graphene field effect transistors (GFETs) for VHF applications. The NIC is designed following Linvill’s open circuit stable (OCS) topology. The DC modelling parameters of GFET are extracted from a device measured by Meric et al. [IEEE Electron Devices Meeting, 23.2.1 (2010)] Estimated parasitics are also taken into account. Simulation results from Keysight Advanced Design System (ADS) show good NIC performance up to 200 MHz and the value of negative capacitance is directly proportional to the capacitive load. In addition, it has been shown that by varying the supply voltage the value of negative capacitance can also be tuned. The NIC stability has been tested up to 2 GHz (10 times the maximum operation frequency) using Nyquist stability criterion to ensure there are no oscillation issues.

  20. Graphene-based tunable non-foster circuit for VHF applications

    Directory of Open Access Journals (Sweden)

    Jing Tian

    2016-06-01

    Full Text Available This paper presents a negative impedance converter (NIC based on graphene field effect transistors (GFETs for VHF applications. The NIC is designed following Linvill’s open circuit stable (OCS topology. The DC modelling parameters of GFET are extracted from a device measured by Meric et al. [IEEE Electron Devices Meeting, 23.2.1 (2010] Estimated parasitics are also taken into account. Simulation results from Keysight Advanced Design System (ADS show good NIC performance up to 200 MHz and the value of negative capacitance is directly proportional to the capacitive load. In addition, it has been shown that by varying the supply voltage the value of negative capacitance can also be tuned. The NIC stability has been tested up to 2 GHz (10 times the maximum operation frequency using Nyquist stability criterion to ensure there are no oscillation issues.

  1. Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    Science.gov (United States)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.

    2012-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  2. Discharge Characteristic of VHF-DC Superimposed Magnetron Sputtering System

    Science.gov (United States)

    Toyoda, Hirotaka; Fukuoka, Yushi; Fukui, Takashi; Takada, Noriharu; Sasai, Kensuke

    2014-10-01

    Magnetron plasmas are one of the most important tools for sputter deposition of thin films. However, energetic particles from the sputtered target such as backscattered rare gas atoms or oxygen negative ions from oxide targets sometimes induce physical and chemical damages as well as surface roughening to the deposited film surface during the sputtering processes. To suppress kinetic energy of such particles, superposition of RF or VHF power to the DC power has been investigated. In this study, influence of the VHF power superposition on the DC target voltage, which is important factor to determine kinetic energy of high energy particles, is investigated. In the study, 40 MHz VHF power was superimposed to an ITO target and decrease in the target DC voltage was measured as well as deposited film deposition properties such as deposition rate or electrical conductivity. From systematic measurement of the target voltage, it was revealed that the target voltage can be determined by a very simple parameter, i.e., a ratio of VHF power to the total input power (DC and VHF powers) in spite of the DC discharge current. Part of this work was supported by ASTEP, JST.

  3. Climatology of lightning in the Czech Republic

    Science.gov (United States)

    Novák, Petr; Kyznarová, Hana

    2011-06-01

    The Czech Hydrometeorological Institute (CHMI) has utilized lightning data from the Central European Lightning Detection Network (CELDN) since 1999. The CELDN primarily focuses on the detection of cloud-to-ground (CG) lightning but intra-cloud (IC) lightning detection is also available. Lightning detection is used by the CHMI forecasters as an additional source to radar and satellite data for nowcasting of severe storms. Lightning data are also quantitatively used in automatic nowcasting applications. The quality of lightning data can be evaluated using their climatological characteristics. Climatological characteristics are also useful for defining decision thresholds that are valuable for human forecasters as well as for automatic nowcasting applications. The seven-year period from 2002 to 2008, which had relatively even-quality lightning data, was used to calculate the spatial and temporal distributions of lightning. The monthly number of CG strokes varies depending on the season. The highest number of CG strokes occurs during summer, with more than 20 days of at least five detected CG strokes on the Czech Republic territory in June and July. The least number of CG stokes occurs in winter, with less than three days per month having at least five detected CG stokes. The mean diurnal distribution of CG strokes peaks between 1500 and 1600 UTC and reaches a minimum between 0500 and 0800 UTC. The average spatial distribution of CG strokes shows sharp local maxima corresponding with the locations of the TV broadcast towers. The average spatial distribution of CG flash density, calculated on a 20 × 20 km grid, shows the maximum (3.23 flashes km - 2 year - 1 ) in the western part of Czech Republic and the minimum (0.92 flashes km - 2 year - 1 ) in the south-southeast of the Czech Republic. In addition, lightning characteristics related to the identified convective cells, such as distribution of the lightning stroke rates or relation to the radar derived by Vertically

  4. Frequency domain analysis of lightning protection using four lightning protection rods

    Directory of Open Access Journals (Sweden)

    Javor Vesna

    2008-01-01

    Full Text Available In this paper the lightning discharge channel is modeled as a vertical monopole antenna excited by a pulse generator at its base. The lightning electromagnetic field of a nearby lightning discharge in the case of lightning protection using four vertical lightning protection rods was determined in the frequency domain. Unknown current distributions were determined by numerical solving of a system of integral equations of two potentials using the Point Matching Method and polynomial approximation of the current distributions. The influence of the real ground, treated as homogeneous loss half-space of known electrical parameters, expressed through a Sommerfeld integral kernel, was modeled using a new Two-image approximation which gives good results in both near and far fields.

  5. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    Science.gov (United States)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  6. A LIGHTNING CONDUCTOR MONITORING SYSTEM BASED ON A WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Jan Mikeš

    2013-12-01

    Full Text Available Automated heating, lighting and irrigation systems are nowadays standard features of industrial and commercial buildings, and are also increasingly found in ordinary housing. In addition to the benefits of user comfort, automated technology for buildings saves energy and, above all, it provides enhanced protection against leakage of water and hazardous gases, and against fire hazards. Lightning strikes are a natural phenomenon that poses a significant threat to the safety of buildings. The statistics of the Fire and Rescue Service of the Czech Republic show that buildings are in many cases inadequately protected against lightning strikes, or that systems have been damaged by previous strikes. A subsequent strike can occur within the period between regular inspections, which are normally made at intervals of 2–4 years. Over the whole of Europe, thousands of buildings are subjected to the effects of direct lightning strikes each year. This paper presents ways to carry out wireless monitoring of lightning strikes on buildings and to deal with their impact on lightning conductors. By intervening promptly (disconnecting the power supply, disconnecting the gas supply, sending an engineer to inspect the structure, submitting a report to ARC, etc. we can prevent many downstream effects of direct lightning strikes on buildings (fires, electric shocks, etc. This paper introduces a way to enhance contemporary home automation systems for monitoring lightning strikes based on wireless sensor networks technology.

  7. The Use of the Deep Convective Cloud Technique (DCCT) to Monitor On-Orbit Performance of the Geostationary Lightning Mapper (GLM): Use of Lightning Imaging Sensor (LIS) Data as Proxy

    Science.gov (United States)

    Buechler, Dennis E.; Christian, H. J.; Koshak, William J.; Goodman, Steve J.

    2013-01-01

    The Geostationary Lightning Mapper (GLM) on the next generation Geostationary Operational Environmental Satellite-R (GOES-R) will not have onboard calibration capability to monitor its performance. The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth's Tropics since 1997. The GLM design is based on LIS heritage, making it a good proxy dataset. This study examines the performance of LIS throughout its time in orbit. This was accomplished through application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) to LIS background pixel radiance data. The DCCT identifies deep convective clouds by their cold Infrared (IR) brightness temperatures and using them as invariant targets in the solar reflective portion of the solar spectrum. The GLM and LIS operate in the near-IR at a wavelength of 777.4 nm. In the present study the IR data is obtained from the Visible Infrared Sensor (VIRS) which is collocated with LIS onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The DCCT is applied to LIS observations for July and August of each year from 1998-2010. The resulting distributions of LIS background DCC pixel radiance for each July August are very similar, indicating stable performance. The mean radiance of the DCCT analysis does not show a long term trend and the maximum deviation of the July August mean radiance for each year is within 0.7% of the overall mean. These results demonstrate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of GLM, with cold clouds identified using IR data from the Advanced Baseline Imager (ABI) which will also be located on GOES-R. Since GLM is based on LIS design heritage, the LIS results indicate that GLM should also experience stable performance over its lifetime.

  8. Lightning Attachment Estimation to Wind Turbines by Utilizing Lightning Location Systems

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    three different wind power plant locations are analyzed and the impact of varying data qualities is evaluated regarding the ability to detect upward lightning. This work provides a variety of background information which is relevant to the exposure assessment of wind turbine and includes practical......The goal of a lightning exposure assessment is to identify the number, type and characteristics of lightning discharges to a certain structure. There are various Lightning Location System (LLS) technologies available, each of them are characterized by individual performance characteristics....... In this work, these technologies are reviewed and evaluated in order to obtain an estimation of which technologies are eligible to perform a lightning assessment to wind turbines. The results indicate that ground-based mid-range low frequency (LF) LLS systems are most qualified since they combine a wide...

  9. A comparison study of convective and microphysical parameterization schemes associated with lightning occurrence in southeastern Brazil using the WRF model

    Science.gov (United States)

    Zepka, G. D.; Pinto, O.

    2010-12-01

    The intent of this study is to identify the combination of convective and microphysical WRF parameterizations that better adjusts to lightning occurrence over southeastern Brazil. Twelve thunderstorm days were simulated with WRF model using three different convective parameterizations (Kain-Fritsch, Betts-Miller-Janjic and Grell-Devenyi ensemble) and two different microphysical schemes (Purdue-Lin and WSM6). In order to test the combinations of parameterizations at the same time of lightning occurrence, a comparison was made between the WRF grid point values of surface-based Convective Available Potential Energy (CAPE), Lifted Index (LI), K-Index (KI) and equivalent potential temperature (theta-e), and the lightning locations nearby those grid points. Histograms were built up to show the ratio of the occurrence of different values of these variables for WRF grid points associated with lightning to all WRF grid points. The first conclusion from this analysis was that the choice of microphysics did not change appreciably the results as much as different convective schemes. The Betts-Miller-Janjic parameterization has generally worst skill to relate higher magnitudes for all four variables to lightning occurrence. The differences between the Kain-Fritsch and Grell-Devenyi ensemble schemes were not large. This fact can be attributed to the similar main assumptions used by these schemes that consider entrainment/detrainment processes along the cloud boundaries. After that, we examined three case studies using the combinations of convective and microphysical options without the Betts-Miller-Janjic scheme. Differently from the traditional verification procedures, fields of surface-based CAPE from WRF 10 km domain were compared to the Eta model, satellite images and lightning data. In general the more reliable convective scheme was Kain-Fritsch since it provided more consistent distribution of the CAPE fields with respect to satellite images and lightning data.

  10. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    Science.gov (United States)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  11. Estimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    S. Beirle

    2006-01-01

    Full Text Available Nitrogen oxides (NOxNO+NO2 play an important role in tropospheric chemistry, in particular in catalytic ozone production. Lightning provides a natural source of nitrogen oxides, dominating the production in the tropical upper troposphere, with strong impact on tropospheric ozone and the atmosphere's oxidizing capacity. Recent estimates of lightning produced NOx (LNOx are of the order of 5 Tg [N] per year with still high uncertainties in the range of one order of magnitude. The Global Ozone Monitoring Experiment (GOME on board the ESA-satellite ERS-2 allows the retrieval of tropospheric column densities of NO2 on a global scale. Here we present the GOME NO2 measurement directly over a large convective system over the Gulf of Mexico. Simultaneously, cloud-to-ground (CG flashes are counted by the U.S. National Lightning Detection Network (NLDNTM, and extrapolated to include intra-cloud (IC+CG flashes based on a climatological IC:CG ratio derived from NASA's space-based lightning sensors. A series of 14 GOME pixels shows largely enhanced column densities over thick and high clouds, coinciding with strong lightning activity. The enhancements can not be explained by transport of anthropogenic NOx and must be due to fresh production of LNOx. A quantitative analysis, accounting in particular for the visibility of LNOx from satellite, yields a LNOx production of 90 (32-240 moles of NOx, or 1.3 (0.4-3.4 kg [N], per flash. If simply extrapolated, this corresponds to a global LNOx production of 1.7 (0.6-4.7Tg [N]/yr.

  12. ANALISIS SPASIAL DAN TEMPORAL DATA LIGHTNING DETECTOR TAHUN 2009-2015 DI STASIUN GEOFISIKA SANGLAH DENPASAR

    Directory of Open Access Journals (Sweden)

    I Putu Dedy Pratama

    2017-10-01

    Full Text Available Tahun 2016 dicanangkan sebagai Tahun Data BMKG. Pengamatan kelistrikan udara dengan Lightning Detector di Stasiun Geofisika Sanglah Denpasar sejak bulan Agustus 2008 telah memiliki data yang banyak. Untuk jangka panjang, data tersebut dapat digunakan untuk mengetahui pola sambaran petir wilayah Bali baik secara spasial maupun temporal. Jumlah data yang cukup banyak perlu dilakukan analisis lebih lanjut untuk mengetahui pola sambaran petir yang terekam oleh sensor dan membuat perbandingan dengan citra satelit. Data yang digunakan adalah hasil rekaman petir Cloud to Groud (CG. Data petir CG digunakan karena sambaran petir CG merupakan sambaran petir yang berdampak langsung pada kehidupan manusia. Pemetaan spasial baik dalam penentuan lokasi sambaran CG pada klaim asuransi dan kejadian Mesoscale Convective System (MCS pada daerah stratiform dari data citra satelit Multifunctional Transport Satellites (MTSAT dan National Oceanic and Atmospheric Administrastion (NOAA. Dari hasil pemetaan spasial menunjukan bahwa sebagian besar sambaran petir terkonsentrasi pada radius sekitar 50 km dari sensor. Untuk grafik temporal menunjukan bahwa pada musim penghujan grafik petir menunjukan pola semidiurnal dengan dua puncak pada sore hari dan dinihari. Ketika musim peralihan grafik puncak sambaran petir pada dinihari melemah sehingga tampak pola satu puncak diurnal. Sedangkan pada musim kemarau grafik sambaran petir menunjukan pola acak. Fenomena cuaca skala menengah seperti siklon tropis dan perubahan Indeks Nino 3.4 sangat berpengaruh terhadap aktivitas sambaran petir di wilayah Bali. The year 2016 was declared as the Year of Data BMKG. Since August 2008, observations the air electricity using Lightning Detector Sanglah Denpasar Geophysics Station have had a lot of data. For the long term, these data can be used to determine the pattern of lightning strikes on Bali region both spatially and temporally. The amount of data is pretty much needs to be done further

  13. LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision

    Science.gov (United States)

    Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.

    2018-03-01

    Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.

  14. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer. This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal suppression.

  15. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer.

    This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal

  16. First Joint Observations of Radio Aurora by the VHF and HF Radars of the ISTP SB RAS

    Science.gov (United States)

    Berngardt, O. I.; Lebedev, V. P.; Kutelev, K. A.; Kushnarev, D. S.; Grkovich, K. V.

    2018-01-01

    Two modern radars for diagnosis of the ionosphere by the radio-wave backscattering method, namely, the Irkutsk incoherent scatter radar at VHF (IISR, 154-162 MHz) and the Ekaterinburg coherent radar at HF (EKB, 8-20 MHz) are operated at the Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS). The paper analyzes the results of joint observations of strong scattering (radio aurora) on June 8, 2015. To determine the geographical position of the radio aurora, we developed original methods that take into account both the features of the radio-wave propagation and the features of the radar antenna systems. It is shown that there are areas where the spatial position of the HF and VHF radio aurora can coincide. This permits using the radars as a single complex for diagnosis of the characteristics of small-scale high-latitude irregularities in the ionospheric E and F layers. A comparative analysis of the characteristics and temporal dynamics of the radio-aurora region in the HF and VHF ranges is performed. Using the DMSP satellite data, it has been shown that the radio aurora dynamics during this experiment with the EKB radar can be related with the spatial dynamics of the localized area with high electric field, which moves from high to equatorial latitudes. It is found that due to the broader field of view, radio aurora at the HF radar was stably observed 6-12 min earlier than at the VHF radar. This permits using the EKB radar data for prediction of the radio-aurora detection by the IISR radar.

  17. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-01-01

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence

  18. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  19. Estimates of Lightning NOx Production Based on OMI NO2 Observations Over the Gulf of Mexico

    Science.gov (United States)

    Pickering, Kenneth E.; Bucsela, Eric; Allen, Dale; Ring, Allison; Holzworth, Robert; Krotkov, Nickolay

    2016-01-01

    We evaluate nitrogen oxide (NO(sub x) NO + NO2) production from lightning over the Gulf of Mexico region using data from the Ozone Monitoring Instrument (OMI) aboard NASAs Aura satellite along with detection efficiency-adjusted lightning data from the World Wide Lightning Location Network (WWLLN). A special algorithm was developed to retrieve the lightning NOx [(LNO(sub x)] signal from OMI. The algorithm in its general form takes the total slant column NO2 from OMI and removes the stratospheric contribution and tropospheric background and includes an air mass factor appropriate for the profile of lightning NO(sub x) to convert the slant column LNO2 to a vertical column of LNO(sub x). WWLLN flashes are totaled over a period of 3 h prior to OMI overpass, which is the time an air parcel is expected to remain in a 1 deg. x 1 deg. grid box. The analysis is conducted for grid cells containing flash counts greater than a threshold value of 3000 flashes that yields an expected LNO(sub x) signal greater than the background. Pixels with cloud radiance fraction greater than a criterion value (0.9) indicative of highly reflective clouds are used. Results for the summer seasons during 2007-2011 yield mean LNO(sub x) production of approximately 80 +/- 45 mol per flash over the region for the two analysis methods after accounting for biases and uncertainties in the estimation method. These results are consistent with literature estimates and more robust than many prior estimates due to the large number of storms considered but are sensitive to several substantial sources of uncertainty.

  20. A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology

    Science.gov (United States)

    Stolz, Douglas C.; Rutledge, Steven A.; Pierce, Jeffrey R.; van den Heever, Susan C.

    2017-07-01

    The objective of this study is to determine the relative contributions of normalized convective available potential energy (NCAPE), cloud condensation nuclei (CCN) concentrations, warm cloud depth (WCD), vertical wind shear (SHEAR), and environmental relative humidity (RH) to the variability of lightning and radar reflectivity within convective features (CFs) observed by the Tropical Rainfall Measuring Mission (TRMM) satellite. Our approach incorporates multidimensional binned representations of observations of CFs and modeled thermodynamics, kinematics, and CCN as inputs to develop approximations for total lightning density (TLD) and the average height of 30 dBZ radar reflectivity (AVGHT30). The results suggest that TLD and AVGHT30 increase with increasing NCAPE, increasing CCN, decreasing WCD, increasing SHEAR, and decreasing RH. Multiple-linear approximations for lightning and radar quantities using the aforementioned predictors account for significant portions of the variance in the binned data set (R2 ≈ 0.69-0.81). The standardized weights attributed to CCN, NCAPE, and WCD are largest, the standardized weight of RH varies relative to other predictors, while the standardized weight for SHEAR is comparatively small. We investigate these statistical relationships for collections of CFs within various geographic areas and compare the aerosol (CCN) and thermodynamic (NCAPE and WCD) contributions to variations in the CF population in a partial sensitivity analysis based on multiple-linear regression approximations computed herein. A global lightning parameterization is developed; the average difference between predicted and observed TLD decreases from +21.6 to +11.6% when using a hybrid approach to combine separate approximations over continents and oceans, thus highlighting the need for regionally targeted investigations in the future.

  1. The global lightning-induced nitrogen oxides source

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2007-07-01

    Full Text Available The knowledge of the lightning-induced nitrogen oxides (LNOx source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3 Tg a−1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NO

  2. On the Relationship between Observed NLDN Lightning ...

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past decade, considerable uncertainties still exist with the quantification of lightning NOX production and distribution in the troposphere. It is even more challenging for regional chemistry and transport models to accurately parameterize lightning NOX production and distribution in time and space. The Community Multiscale Air Quality Model (CMAQ) parameterizes the lightning NO emissions using local scaling factors adjusted by the convective precipitation rate that is predicted by the upstream meteorological model; the adjustment is based on the observed lightning strikes from the National Lightning Detection Network (NLDN). For this parameterization to be valid, the existence of an a priori reasonable relationship between the observed lightning strikes and the modeled convective precipitation rates is needed. In this study, we will present an analysis leveraged on the observed NLDN lightning strikes and CMAQ model simulations over the continental United States for a time period spanning over a decade. Based on the analysis, new parameterization scheme for lightning NOX will be proposed and the results will be evaluated. The proposed scheme will be beneficial to modeling exercises where the obs

  3. Short-term forecasting of lightning based on the surface wind field at Kennedy Space Center

    Science.gov (United States)

    Watson, Andrew I.; Lopez, Raul E.; Ortiz, Robert; Holle, Ronald L.

    1987-01-01

    Cloud-to-ground lightning is related in time and space to surface convergence for 244 days during the summer over a 790 sqkm network. The method uses surface convergence, particularly the average over the area, to identify the potential for new, local thunderstorm growth, and can be used to specify the likely time and location of lightning during the life cycle of the convection. A threshold of 0.0000075/sec change in divergence is used to define a convergence event, and a separation of 30 min between flashes defines a lightning event. Time intervals are found to be on the order of 1 hr from beginning convergence to first flash, and (CH110) 2 hr from beginning convergence to the end of lightning. Major differences between the convergence-lightning relationships based on low-level mean onshore and offshore flow are noted.

  4. Study of irradiation of flash lightning type in a Titan simulated atmosphere; Estudio de irradiaciones tipo relampago en una atmosfera simulada de Titan

    Energy Technology Data Exchange (ETDEWEB)

    Rosa C, J.G. De la

    2001-07-01

    Titan is the greatest satellite of the Saturn planet and the unique moon of the Solar System which presents a dense atmosphere constituted by nitrogen, methane and traces of hydrocarbons and nitriles. Constantly it is bombarded by different energy sources which interacting with the atmosphere cause countless of chemical reactions which have giving origin to the synthesis of organic molecules from its formation since 4.5 thousand millions of years ago. The electric activity was not detected in the satellite when the space probe Voyager I had its nearest match with Titan in November 1980, however, due to the presence of methane clouds rain and of convective activity in the troposphere of the satellite, it is thought in the possible existence of electrical activity in this. In this work it is studied the production of gaseous compounds generated by irradiations type flash lightning in the Titan simulated atmosphere constituted by nitrogen and methane. The lightning are imitated by laser induced plasma (LIP) with similar physical properties to the naturals produced in the Earth. The separation and identification of the organic compounds generated by simulated lightning s were carried out by attached methods of analysis such as the Gas chromatography, Infrared spectroscopy with Fourier transform (FTIR-S) and Mass spectroscopy (MS). The compounds which were identified are: hydrocarbons and nitriles, some of them already have been identified in Titan as well as the hydrogen cyanide (HCN), acetylene, etilene and cyanoacetylene. Moreover we studied the influence that different parameters of irradiation have in the production of organic molecules generated submitting to discharges type lightning the simulated atmosphere of Titan. It was realized an estimation of the available energy in the satellite which could be vanished as discharges type lightning. By means of a model based on conditions of thermodynamic equilibria it was calculated the temperature to which are freeze

  5. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    Science.gov (United States)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  6. LOFAR lightning imaging : mapping lightning with nanosecond precision

    NARCIS (Netherlands)

    Hare, B.M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J.R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T.N.G.; ter Veen, S.; Winchen, T.

    2018-01-01

    Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of

  7. Introducing you to satellite operated data collection platforms (DCP).

    CSIR Research Space (South Africa)

    Stavropoulos, CC

    1977-09-01

    Full Text Available and operate in the VHF, UHF or microwave bands. By using a satellite as a repeater, large distances over land and sea can be covered with a single repeater in the sky. Trans-continental links for communication purposes have been operational for many years...

  8. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    Science.gov (United States)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare

  9. Electromagnetic Methods of Lightning Detection

    Science.gov (United States)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  10. Partitioning the LIS/OTD Lightning Climatological Dataset into Separate Ground and Cloud Flash Distributions

    Science.gov (United States)

    Koshak, W. J.; Solarkiewicz, R. J.

    2009-01-01

    Presently, it is not well understood how to best model nitrogen oxides (NOx) emissions from lightning because lightning is highly variable. Peak current, channel length, channel altitude, stroke multiplicity, and the number of flashes that occur in a particular region (i.e., flash density) all influence the amount of lightning NOx produced. Moreover, these 5 variables are not the same for ground and cloud flashes; e.g., cloud flashes normally have lower peak currents, higher altitudes, and higher flash densities than ground flashes [see (Koshak, 2009) for additional details]. Because the existing satellite observations of lightning (Fig. 1) from the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) do not distinguish between ground and cloud fashes, which produce different amounts of NOx, it is very difficult to accurately account for the regional/global production of lightning NOx. Hence, the ability to partition the LIS/OTD lightning climatology into separate ground and cloud flash distributions would substantially benefit the atmospheric chemistry modeling community. NOx indirectly influences climate because it controls the concentration of ozone and hydroxyl radicals in the atmosphere. The importance of lightning-produced NOx is empasized throughout the scientific literature (see for example, Huntrieser et al. 1998). In fact, lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2 and 20 Tg (N)yr(sup -1) (Lee et al., 1997), with more recent estimates of about 6 Tg(N)yr(sup -1) (Martin et al., 2007). In order to make accurate predictions, global chemistry/climate models (as well as regional air quality modells) must more accurately account for the effects of lightning NOx. In particular, the NASA Goddard Institute for Space Studies (GISS) Model E (Schmidt et al., 2005) and the GEOS-CHEM global chemical transport model (Bey et al., 2001) would each benefit from a partitioning of the

  11. Sao Paulo Lightning Mapping Array (SP-LMA): Deployment and Plans

    Science.gov (United States)

    Bailey, J. C.; Carey, L. D.; Blakeslee, R. J.; Albrecht, R.; Morales, C. A.; Pinto, O., Jr.

    2011-01-01

    An 8-10 station Lightning Mapping Array (LMA) network is being deployed in the vicinity of Sao Paulo to create the SP-LMA for total lightning measurements in association with the international CHUVA [Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)] field campaign. Besides supporting CHUVA science/mission objectives and the Sao Luz Paraitinga intensive operation period (IOP) in December 2011-January 2012, the SP-LMA will support the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), both sensors on the NOAA Geostationary Operational Environmental Satellite-R (GOES-R), presently under development and scheduled for a 2015 launch. The proxy data will be used to develop and validate operational algorithms so that they will be ready for use on "day1" following the launch of GOES-R. A preliminary survey of potential sites in the vicinity of Sao Paulo was conducted in December 2009 and January 2010, followed up by a detailed survey in July 2010, with initial network deployment scheduled for October 2010. However, due to a delay in the Sa Luz Paraitinga IOP, the SP-LMA will now be installed in July 2011 and operated for one year. Spacing between stations is on the order of 15-30 km, with the network "diameter" being on the order of 30-40 km, which provides good 3-D lightning mapping 150 km from the network center. Optionally, 1-3 additional stations may be deployed in the vicinity of Sa Jos dos Campos.

  12. Lightning attachment process to common buildings

    Science.gov (United States)

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.

    2017-05-01

    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded high-speed video images of a lightning connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one lightning strike to that particular structure. Models and theories used to determine the zone of protection of a lightning rod have been developed, but they all suffer from the lack of field data. The submitted manuscript provides results from high-speed video observations of lightning attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the high frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by lightning protection standards. This paper also presents spectacular images and videos of lightning flashes connecting lightning rods that

  13. Uses of communication satellites in water utility operations

    Science.gov (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  14. Using the SLAC VHF and UHF radio systems

    International Nuclear Information System (INIS)

    Struven, W.

    1987-02-01

    The use of the SLAC VHF and UHF Radio Systems and the Tunnel Antenna Systems as they are presently configured is described. The original radio system was built in 1966 and has grown in scope over the years. The Tunnel Antenna Systems were developed for, and first installed in, the PEP ring, and later added to other tunnels and redesigned to cover the UHF range, as well as VHF. The UHF radio system was designed and built for SLC use, and was first used in the SLC Arcs. The three radio systems will be described and the capabilities of each system will be defined

  15. Lightning effects on electrical and nuclear equipment

    International Nuclear Information System (INIS)

    Gary, C.

    1986-01-01

    This paper gives the physical bases on which lightning protection of buildings and other erections such as nuclear power stations depend. To this end it first examines the impact phenomena of lightning, the operating systems of lightning conductors and methods of protection using metal mesh. It then describes various secondary effects of lightning, particularly those which occur inside buildings as a result of the potential rise in earthing systems and electromagnetic induction phenomena. 18 refs [fr

  16. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  17. CMOS VHF transconductance-C lowpass filter

    NARCIS (Netherlands)

    Nauta, Bram

    1990-01-01

    Experimental results of a VHF CMOS transconductance-C lowpass filter are described. The filter is built with transconductors as published earlier. The cutoff frequency can be tuned from 22 to 98 MHz and the measured filter response is very close to the ideal response

  18. Characterization of VHF radar observations associated with equatorial Spread F by narrow-band optical measurements

    Directory of Open Access Journals (Sweden)

    R. Sekar

    2004-09-01

    Full Text Available The VHF radars have been extensively used to investigate the structures and dynamics of equatorial Spread F (ESF irregularities. However, unambiguous identification of the nature of the structures in terms of plasma depletion or enhancement requires another technique, as the return echo measured by VHF radar is proportional to the square of the electron density fluctuations. In order to address this issue, co-ordinated radar backscatter and thermospheric airglow intensity measurements were carried out during March 2003 from the MST radar site at Gadanki. Temporal variations of 630.0-nm and 777.4-nm emission intensities reveal small-scale ("micro" and large-scale ("macro" variations during the period of observation. The micro variations are absent on non-ESF nights while the macro variations are present on both ESF and non-ESF nights. In addition to the well-known anti-correlation between the base height of the F-region and the nocturnal variation of thermospheric airglow intensities, the variation of the base height of the F-layer, on occasion, is found to manifest as a bottomside wave-like structure, as seen by VHF radar on an ESF night. The micro variations in the airglow intensities are associated with large-scale irregular plasma structures and found to be in correspondence with the "plume" structures obtained by VHF radar. In addition to the commonly observed depletions with upward movement, the observation unequivocally reveals the presence of plasma enhancements which move downwards. The observation of enhancement in 777.4-nm airglow intensity, which is characterized as plasma enhancement, provides an experimental verification of the earlier prediction based on numerical modeling studies.

  19. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    Science.gov (United States)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  20. Optical design of the lightning imager for MTG

    Science.gov (United States)

    Lorenzini, S.; Bardazzi, R.; Di Giampietro, M.; Feresin, F.; Taccola, M.; Cuevas, L. P.

    2017-11-01

    The Lightning Imager for Meteosat Third Generation is an optical payload with on-board data processing for the detection of lightning. The instrument will provide a global monitoring of lightning events over the full Earth disk from geostationary orbit and will operate in day and night conditions. The requirements of the large field of view together with the high detection efficiency with small and weak optical pulses superimposed to a much brighter and highly spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument. The main challenge is to distinguish a true lightning from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a `multi-dimensional' filtering, simultaneously working on the spectral, spatial and temporal domains. The spectral filtering is achieved with a very narrowband filter centred on the bright lightning O2 triplet line (777.4 nm +/- 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical lightning pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms. This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.

  1. Assessment of lightning impact frequency for process equipment

    International Nuclear Information System (INIS)

    Necci, Amos; Antonioni, Giacomo; Cozzani, Valerio; Krausmann, Elisabeth; Borghetti, Alberto; Nucci, Carlo Alberto

    2014-01-01

    Fires and explosions triggered by lightning strikes are among the most frequent Natech scenarios affecting the chemical and process industry. Although lightning hazard is well known, well accepted quantitative procedures to assess the contribution of accidents caused by lightning to industrial risk are still lacking. In the present study, a quantitative methodology for the assessment of the expected frequency of lightning capture by process equipment is presented. A specific model, based on Monte Carlo simulations, was developed to assess the capture frequency of lightning for equipment with a given geometry. The model allows the assessment of lay-out effects and the reduction of the capture probability due to the presence of other structures or equipment items. The results of the Monte Carlo simulations were also used to develop a simplified cell method allowing a straightforward assessment of the lightning impact probability in a quantitative risk assessment framework. The developed approach allows an in-depth analysis of the hazard due to lightning impact by identifying equipment items with the highest expected frequency of lightning impacts in a given lay-out. The model thus supplies useful data to approach the assessment of the quantitative contribution of lightning-triggered accidents to industrial risk. - Highlights: • A specific approach to storage tank lightning impact frequency calculation was developed. • The approach is suitable for the quantitative assessment of industrial risk due to lightning. • The models developed provide lightning capture frequency based on tank geometry. • Lay-out effects due to nearby structures are also accounted. • Capture frequencies may be as high as 10 −1 events/year for standalone unprotected tanks

  2. Commercial satellite broadcasting for Europe

    Science.gov (United States)

    Forrest, J. R.

    1988-12-01

    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  3. Assimilation of lightning data by nudging tropospheric water vapor and applications to numerical forecasts of convective events

    Science.gov (United States)

    Dixon, Kenneth

    A lightning data assimilation technique is developed for use with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation. This technique is applied to deterministic forecasts of convective events on 29 June 2012, 17 November 2013, and 19 April 2011 as well as an ensemble forecast of the 29 June 2012 event using the Weather Research and Forecasting (WRF) model. Lightning data are assimilated over the first 3 hours of the forecasts, and the subsequent impact on forecast quality is evaluated. The nudged deterministic simulations for all events produce composite reflectivity fields that are closer to observations. For the ensemble forecasts of the 29 June 2012 event, the improvement in forecast quality from lightning assimilation is more subtle than for the deterministic forecasts, suggesting that the lightning assimilation may improve ensemble convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.

  4. The Role of Lightning in Controlling Interannual Variability of Tropical Tropospheric Ozone and OH and its Implications for Climate

    Science.gov (United States)

    Murray, Lee T.; Jacob, Daniel J.; Logan, Jennifer A.; Hudman, Rynda C.; Koshak, William J.

    2012-01-01

    Nitrogen oxides (NO(x) = NO + NO2) produced by lightning make a major contribution to the production of the dominant tropospheric oxidants (OH and ozone). These oxidants control the lifetime of many trace gases including long-lived greenhouse gases, and control the source-receptor relationship of inter-hemispheric pollutant transport. Lightning is affected by meteorological variability, and therefore represents a potentially important tropospheric chemistry-climate feedback. Understanding how interannual variability (IAV) in lightning affects IAV in ozone and OH in the recent past is important if we are to predict how oxidant levels may change in a future warmer climate. However, lightning parameterizations for chemical transport models (CTMs) show low skill in reproducing even climatological distributions of flash rates from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) satellite instruments. We present an optimized regional scaling algorithm for CTMs that enables sufficient sampling of spatiotemporally sparse satellite lightning data from LIS to constrain the spatial, seasonal, and interannual variability of tropical lightning. We construct a monthly time series of lightning flash rates for 1998-2010 and 35degS-35degN, and find a correlation of IAV in total tropical lightning with El Nino. We use the IAV-constraint to drive a 9-year hindcast (1998-2006) of the GEOS-Chem 3D chemical transport model, and find the increased IAV in LNO(x) drives increased IAV in ozone and OH, improving the model fs ability to simulate both. Although lightning contributes more than any other emission source to IAV in ozone, we find ozone more sensitive to meteorology, particularly convective transport. However, we find IAV in OH to be highly sensitive to lightning NO(x), and the constraint improves the ability of the model to capture the temporal behavior of OH anomalies inferred from observations of methyl chloroform and other gases. The sensitivity of

  5. Formation Mechanism and Characteristics Research of Ball Lightning Based on Vortex Model

    International Nuclear Information System (INIS)

    Li Zicheng; Yang Guohua

    2011-01-01

    The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal MHD equations, through imposing disturbance to plasma column, the possibility of sausage and kink instability of the lightning channel is analyzed from the perspective the minimum potential energy. The conclusion is that the kink instability (m = 1) is most prone to occur. And when instability occurs, because of the difference of the magnetic field in the twisted area, the magnetic pressure makes the trend further and therefore forming the plasma vortex that may eventually turn into ball lightning if the energy of the vortex is large enough. The existence of the vortex makes ball lightning have a short period of time stability. By the proposed model, the ball lightning features that are hard to understand in the past are explained. In this paper, the reason for bead lightning is also explained from the perspective of the sausage instability. (physics of gases, plasmas, and electric discharges)

  6. European cold season lightning map for wind turbines based on radio soundings

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    conditions for self-triggered upward lightning, as being observed in Japan and Spain, are identified. This map may give an indication if a potential wind power plant or structure has the risk to be affected by frequent lightning attachments in the cold season which are predominantly upward initiated......In this paper, the meteorological data of cold season thunderstorms in Japan and Spain are reviewed to determine the threshold conditions at which cold season lightning was recorded in the past. The variables investigated are the height of the -10°C and 0°C isotherms above ground, the wind velocity......, the precipitable water in the cloud, and the wind direction. Meteorological data of 72 radio sounding stations in Europe is analyzed for a 5 year period (2009-2014) in the months from October until March. Based on this information, a European map has been created indicating areas where the meteorological...

  7. Studies on an Electromagnetic Transient Model of Offshore Wind Turbines and Lightning Transient Overvoltage Considering Lightning Channel Wave Impedance

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available In recent years, with the rapid development of offshore wind turbines (WTs, the problem of lightning strikes has become more and more prominent. In order to reduce the failure rate caused by the transient overvoltage of lightning struck offshore WTs, the influencing factors and the response rules of transient overvoltage are analyzed. In this paper, a new integrated electromagnetic transient model of offshore WTs is established by using the numerical calculation method of the electromagnetic field first. Then, based on the lightning model and considering the impedance of the lightning channel, the transient overvoltage of lightning is analyzed. Last, the electromagnetic transient model of offshore WTs is simulated and analyzed by using the alternative transients program electro-magnetic transient program (ATP-EMTP software. The influence factors of lightning transient overvoltage are studied. The main influencing factors include the sea depth, the blade length, the tower height, the lightning flow parameters, the lightning strike point, and the blade rotation position. The simulation results show that the influencing factors mentioned above have different effects on the lightning transient overvoltage. The results of the study have some guiding significance for the design of the lightning protection of the engine room.

  8. Objective Lightning Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    Science.gov (United States)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.

  9. Global Lightning Response to Forbush Decreases in Short-term

    Science.gov (United States)

    Li, H.; Wu, Q.; Wang, C.

    2017-12-01

    During the past three decades, particular scientific attention has been drawn to the potential link between solar activities and global climate change. How the sun modulates the climate has always been controversial. There are three relatively widely accepted mechanisms illustrating this process: the total solar irradiance (TSI), the solar ultraviolet radiation (SUR), and the space weather mechanisms. As for space weather mechanism, the sun influences the microphysical process in cloud by modulating the cosmic ray flux and thus changes the cloud cover, which finally affects the earth's radiation balance. Unfortunately, the lack of related observations and some opposite research results make this mechanism rather debatable. In order to provide possible evidence for space weather mechanism, we study the influence of Forbush decreases (FDs) of galactic cosmic ray on global lightning activities, which to some extent represents the basic process of cosmic ray-atmospheric coupling. We use the daily lightning counts from 1998 to 2014 observed by LIS sensor aboard the TRMM satellite. Considering the "diurnal distribution" (occurring more in the afternoon than in the morning) and the "seasonal distribution" (occurring more in summer than in winter) of lightning activities as well as the 49-day precession of TRMM satellite, the daily lightning counts show an intricate periodic fluctuation. We propose a 3-step approach - latitude zone limitation, orbit branch selection and local time normalization - to eliminate it. As for FDs, we select them by checking the hourly neutron counts variation of each month of 17 years obtained from the Oulu Cosmic Ray Station. During the selection, we choose the FDs which are "strong" (decrease more than 6%) and "standard" (strongly decrease in a few hours to one day and gradually recover in about one week) to diminish the meteorological influence and other possible disturbance. For both case study and temporal superposition of several cases

  10. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  11. Letter to the Editor: Complete maps of the aspect sensitivity of VHF atmospheric radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    1999-08-01

    Full Text Available Using the MU radar at Shigaraki, Japan (34.85°N, 136.10°E, we measure the power distribution pattern of VHF radar echoes from the mid-troposphere. The large number of radar beam-pointing directions (320 allows the mapping of echo power from 0° to 40° from zenith, and also the dependence on azimuth, which has not been achieved before at VHF wavelengths. The results show how vertical shear of the horizontal wind is associated with a definite skewing of the VHF echo power distribution, for beam angles as far as 30° or more from zenith, so that aspect sensitivity cannot be assumed negligible at any beam-pointing angle that most existing VHF radars are able to use. Consequently, the use of VHF echo power to calculate intensity of atmospheric turbulence, which assumes only isotropic backscatter at large beam zenith angles, will sometimes not be valid.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; instruments and techniques

  12. GLM Proxy Data Generation: Methods for Stroke/Pulse Level Inter-Comparison of Ground-Based Lightning Reference Networks

    Science.gov (United States)

    Cummins, Kenneth L.; Carey, Lawrence D.; Schultz, Christopher J.; Bateman, Monte G.; Cecil, Daniel J.; Rudlosky, Scott D.; Petersen, Walter Arthur; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala s Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.

  13. Quantification and identification of lightning damage in tropical forests.

    Science.gov (United States)

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  14. Comparison of overhead line lightning performance based on two different tower geometries

    DEFF Research Database (Denmark)

    Ebdrup, Thomas; Olason, Daniel; Bak, Claus Leth

    2014-01-01

    of the substation and transmission line is of great importance as it is a part of the 400 kV backbone between Sweden, Norway, Germany and the offshore wind farms in Horns Rev, Denmark. The new Eagle pylon has been designed with the focus of minimizing the visual impacted of overhead lines. A detailed lightning...... performance analysis of the existing Donau and the new Eagle pylon is therefore important in order to assess the risk of failure. The lightning strike analysis is based on the number of strikes expected to terminate on the line and an investigation of how many of these there may be expected to cause...... better protected from direct stroke than the phase conductors on the Donau pylon. Furthermore with respect to a backflash, the Eagle has a better performance than the Donau pylon. It is therefore concluded that the Eagle has a better lightning performance than the Donau....

  15. A projected decrease in lightning under climate change

    Science.gov (United States)

    Finney, Declan L.; Doherty, Ruth M.; Wild, Oliver; Stevenson, David S.; MacKenzie, Ian A.; Blyth, Alan M.

    2018-03-01

    Lightning strongly influences atmospheric chemistry1-3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global lightning with climate change over the coming century1,5-7, but these typically use parameterizations of lightning that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of lightning to climate change is uncertain. Here, we compare lightning projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in lightning based on CTH, we find a 15% decrease in total lightning flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most lightning occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that lightning schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in lightning and atmospheric composition.

  16. Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence

    Science.gov (United States)

    Boccippio, Dennis

    2003-01-01

    A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.

  17. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.

    2017-12-01

    Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such

  18. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model

    Science.gov (United States)

    Jourdain, L.; Kulawik, S. S.; Worden, H. M.; Pickering, K. E.; Worden, J.; Thompson, A. M.

    2010-01-01

    Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.

  19. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    Science.gov (United States)

    Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.

  20. Design of a low-cost microcontroller-based lightning monitoring device

    NARCIS (Netherlands)

    Kamau, G.M.; Kang'ethe, S.; Kamau, S.I.; Van de Giesen, N.C.

    2015-01-01

    Lightning data is not only important for environment and weather monitoring but also for safety purposes. A device that monitors and keeps track of occurrences of lightning strikes has been developed. A communication interface is established between the sensors, data logging circuit and the

  1. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    Science.gov (United States)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating

  2. Lightning Physics and Effects

    Science.gov (United States)

    Orville, Richard E.

    2004-03-01

    Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.

  3. Environmental/Noise Effects on VHF/UHF UWB SAR

    National Research Council Canada - National Science Library

    Ralston, James

    1998-01-01

    This paper presents a straightforward approach to estimating the impact of natural environmental noise on an overall system noise temperature for very high frequency/ultrahigh frequency synthetic aperture radar (VHF/UHF SAR...

  4. Nowcasting of Lightning-Related Accidents in Africa

    Science.gov (United States)

    Ihrlich, Laura; Price, Colin

    2016-04-01

    Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct lightning strikes. This region of the globe also has little lightning protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two lightning-caused accidents that got wide press coverage: A lightning strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide Lightning Location Network (WWLLN) we show that the lightning data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from lightning strikes. We have developed a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on lightning alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by lightning strikes.

  5. The lightning flash

    CERN Document Server

    Cooray, Vernon

    2014-01-01

    With contributions from today's leading lightning engineers and researchers, this updated 2nd edition of Vernon Cooray's classic text, The Lightning Flash provides the reader with an essential introduction to lightning and its impact on electrical and electronic equipment. Providing the reader with a thorough background into almost every aspect of lightning and its impact on electrical and electronic equipment, this new edition is updated throughout and features eight new chapters that bring the science up to date.

  6. A Performance Evaluation of Lightning-NO Algorithms in CMAQ

    Science.gov (United States)

    In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...

  7. Lightning Burns and Electrical Trauma in a Couple Simultaneously Struck by Lightning

    Directory of Open Access Journals (Sweden)

    Stephanie A. Eyerly-Webb

    2017-07-01

    Full Text Available More people are struck and killed by lightning each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by lightning while walking arm-in-arm. Both patients presented with characteristic lightning burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of lightning burns, serious internal electrical injuries are common. Therefore, lightning strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.

  8. Infrasound from lightning measured in Ivory Coast

    Science.gov (United States)

    Farges, T.; Millet, C.; Matoza, R. S.

    2012-04-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, …). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 9 years. The lightning rate of this region is 10-20 flashes/km2/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 4 years of data (2005-2009). For short lightning distances (less than 20 km), up to 60 % of lightning detected by WWLLN has been one-to-one correlated

  9. Lightning-caused fires in Central Spain

    DEFF Research Database (Denmark)

    Nieto Solana, Hector; Aguado, Inmaculada; García, Mariano

    2012-01-01

    Lightning-caused fire occurrence has been modelled for two different Spanish regions, Madrid andAragon, based on meteorological, terrain, and vegetation variables. The model was built on two very contrasting regions, one presenting low number of lightning-caused fires whereas the other presented...... in the model, where an increasing number of thunderstorms leads to a higher probability of occurrence. Validation was assessed through the Receiver Operator Characteristic, showing a good agreement between the modelled probabilities and the reported lightning-caused fires, with an Area Under the Curve around 0...

  10. Towards Improving Satellite Tropospheric NO2 Retrieval Products: Impacts of the spatial resolution and lighting NOx production from the a priori chemical transport model

    Science.gov (United States)

    Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.

    2009-12-01

    Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next

  11. Using Cloud-to-Ground Lightning Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew

    2005-01-01

    Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on

  12. Lightning Safety Tips and Resources

    Science.gov (United States)

    ... Services Careers Contact Us Glossary Safety National Program Lightning Safety Tips and Resources Weather.gov > Safety > Lightning Safety Tips and Resources Lightning Resources Lightning strikes ...

  13. Discrimination of nuclear-explosion and lightning electromagnetic pulse

    International Nuclear Information System (INIS)

    Qi Shufeng; Li Ximei; Han Shaoqing; Niu Chao; Feng Jun; Liu Daizhi

    2012-01-01

    The discrimination of nuclear-explosion and lightning electromagnetic pulses was studied using empirical mode decomposition and the fractal analytical method. The box dimensions of nuclear-explosion and lightning electromagnetic pulses' original signals were calculated, and the box dimensions of the intrinsic mode functions (IMFs) of nuclear-explosion and lightning electromagnetic pulses' original signals after empirical mode decomposition were also obtained. The discrimination of nuclear explosion and lightning was studied using the nearest neighbor classification. The experimental results show that, the discrimination rate of the box dimension based on the first and second IMF after the original signal empirical mode decomposition is higher than that based on the third and forth IMF; the discrimination rate of the box dimension based on the original signal is higher than that based on any IMF; and the discrimination rate based on two-dimensional and three-dimensional characters is higher and more stable than that based on one-dimensional character, besides, the discrimination rate based on three-dimensional character is over 90%. (authors)

  14. Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite

    Science.gov (United States)

    Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth

    2016-04-01

    The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth

  15. The physics of lightning

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Joseph R., E-mail: jdwyer@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Uman, Martin A. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-30

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field.

  16. Lightning Often Strikes Twice

    Science.gov (United States)

    2005-01-01

    Contrary to popular misconception, lightning often strikes the same place twice. Certain conditions are just ripe for a bolt of electricity to come zapping down; and a lightning strike is powerful enough to do a lot of damage wherever it hits. NASA created the Accurate Location of Lightning Strikes technology to determine the ground strike point of lightning and prevent electrical damage in the immediate vicinity of the Space Shuttle launch pads at Kennedy Space Center. The area surrounding the launch pads is enmeshed in a network of electrical wires and components, and electronic equipment is highly susceptible to lightning strike damage. The accurate knowledge of the striking point is important so that crews can determine which equipment or system needs to be retested following a strike. Accurate to within a few yards, this technology can locate a lightning strike in the perimeter of the launch pad. As an added bonus, the engineers, then knowing where the lightning struck, can adjust the variables that may be attracting the lightning, to create a zone that will be less susceptible to future strikes.

  17. Lightning Protection Performance Assessment of Transmission Line Based on ATP model Automatic Generation

    Directory of Open Access Journals (Sweden)

    Luo Hanwu

    2016-01-01

    Full Text Available This paper presents a novel method to solve the initial lightning breakdown current by combing ATP and MATLAB simulation software effectively, with the aims to evaluate the lightning protection performance of transmission line. Firstly, the executable ATP simulation model is generated automatically according to the required information such as power source parameters, tower parameters, overhead line parameters, grounding resistance and lightning current parameters, etc. through an interface program coded by MATLAB. Then, the data are extracted from the generated LIS files which can be obtained by executing the ATP simulation model, the occurrence of transmission lie breakdown can be determined by the relative data in LIS file. The lightning current amplitude should be reduced when the breakdown occurs, and vice the verse. Thus the initial lightning breakdown current of a transmission line with given parameters can be determined accurately by continuously changing the lightning current amplitude, which is realized by a loop computing algorithm that is coded by MATLAB software. The method proposed in this paper can generate the ATP simulation program automatically, and facilitates the lightning protection performance assessment of transmission line.

  18. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    Science.gov (United States)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    values with increases in the electric field magnitude above 3 kV/m. An extreme value analysis showed that VAHIRR values less than or equal to 10 dBZ-km showed that the probability of having an electric field magnitude larger than 3 kV/m was less than one in ten thousand. VAHIRR also was found to be sensitive at indicating anvil clouds that posed a threat of initiating a lightning flash. This project seeks to use VAHIRR to analyze its utility as a lightning cessation tool, particularly dealing with the threat posed by detached anvils. The results from this project will serve as a baseline effectiveness of radar ]based lightning cessation algorithms. This baseline will be used in the second, and concurrent work by the co ]author fs who are developing a lightning cessation algorithm based on dual ]polarimetric radar data. Ultimately, an accurate method for identifying lightning cessation can save money on lost manpower time as well as greatly improve lightning safety.

  19. Disturbances in VHF/UHF telemetry links as a possible effect of the 2003 Hokkaido Tokachi-oki earthquake

    Directory of Open Access Journals (Sweden)

    H. Nagamoto

    2008-08-01

    Full Text Available The data on radio telemetry links (for water information at VHF/UHF in Hokkaido are used to investigate the rate of disturbances on radio links (or connection failure and its association with a huge earthquake, Tokachi-oki earthquake on 26 September 2003. Especially, the telemetry links at the Tokachi region closest to the earthquake epicenter, showed a significant increase in disturbances on radio links two weeks to a few days before the earthquake on the basis of analysis during a long interval from 1 June 2002 to 3 November 2007 (over 5 years. We suggest that these severe disturbances in VHF/UHF telemetry links are attributed to the generation of seismogenic VHF/UHF radio noises (emissions. Based on this idea, we have estimated that the intensity of these seismogenic emissions is on the order of 10–19 dB μV/m. Finally, the present result was compared with other physical parameters already obtained for this earthquake.

  20. Lightning strikes

    International Nuclear Information System (INIS)

    Dance, B.

    1982-01-01

    If a nuclear weapon were struck by a powerful lightning flash, what would happen Scientists have assembled a simulator to produce exceptionally powerful discharges to try to find the answer to this question by practical test. The Sandia facility enables the extremely powerful lightning discharges which occur only once in every hundred lightning strokes to be duplicated. A bolt is composed of a series of strokes between two clouds or between one cloud and the earth. The simulator consists of four circuits, an inductor, a resistor and a special crowbar-switch developed at Sandia. The crowbar is for accuracy in the simulation of a lightning stroke. The test data is conveyed to computers for analysis by means of fibre-optic links. The first series of tests involve the warhead for the Air-Launched Cruise Missile

  1. Expanding the Operational Use of Total Lightning Ahead of GOES-R

    Science.gov (United States)

    Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.

    2015-01-01

    NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach

  2. Situational Lightning Climatologies

    Science.gov (United States)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  3. Lightning Performance on Overhead Distribution Lines : After Improvement Field Observation

    Directory of Open Access Journals (Sweden)

    Reynaldo Zoro

    2009-11-01

    Full Text Available Two feeders of 20 kV overhead distribution lines which are located in a high lightning density area are chosen to be observed as a field study due to their good lightning performance after improvement of lightning protection system. These two feeders used the new overhead ground wire and new line arrester equipped with lightning counter on the main lines. The significant reduced of lines outages are reported. Study was carried out to observe these improvements by comparing to the other two feeders line which are not improved and not equipped yet with the ground wire and line arrester. These two feeders located in the nearby area. Two cameras were installed to record the trajectory of the lightning strikes on the improved lines. Lightning peak currents are measured using magnetic tape measurement system installed on the grounding lead of lightning arrester. Lightning overvoltage calculations are carried out by using several scenarios based on observation results and historical lightning data derived from lightning detection network. Lightning overvoltages caused by indirect or direct strikes are analyzed to get the lightning performance of the lines. The best scenario was chosen and performance of the lines were improved significantly by installing overhead ground wire and improvement of lightning arrester installation.

  4. Sao Paulo Lightning Mapping Array (SP-LMA): Deployment, Operation and Initial Data Analysis

    Science.gov (United States)

    Blakeslee, R.; Bailey, J. C.; Carey, L. D.; Rudlosky, S.; Goodman, S. J.; Albrecht, R.; Morales, C. A.; Anseimo, E. M.; Pinto, O.

    2012-01-01

    An 8-10 station Lightning Mapping Array (LMA) network is being deployed in the vicinity of Sao Paulo to create the SP-LMA for total lightning measurements in association with the international CHUVA [Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the GPM (Global Precipitation Measurement)] field campaign. Besides supporting CHUVA science/mission objectives and the Sao Luiz do Paraitinga intensive operation period (IOP) in November-December 2011, the SP-LMA will support the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), both sensors on the NOAA Geostationary Operational Environmental Satellite-R (GOES-R), presently under development and scheduled for a 2015 launch. The proxy data will be used to develop and validate operational algorithms so that they will be ready for use on "day1" following the launch of GOES-R. A preliminary survey of potential sites in the vicinity of Sao Paulo was conducted in December 2009 and January 2010, followed up by a detailed survey in July 2010, with initial network deployment scheduled for October 2010. However, due to a delay in the Sao Luiz do Paraitinga IOP, the SP-LMA will now be installed in July 2011 and operated for one year. Spacing between stations is on the order of 15-30 km, with the network "diameter" being on the order of 30-40 km, which provides good 3-D lightning mapping 150 km from the network center. Optionally, 1-3 additional stations may be deployed in the vicinity of Sao Jos dos Campos.

  5. On the formation of ball lightning

    International Nuclear Information System (INIS)

    Silberg, P.A.

    1981-01-01

    A plasma continuum model for the formation of ball lightning is developed based on a substantial number of reports that the ball is often in the discharge column of a previous lightning stroke. The usual method of setting up the plasma equation for a one-component electron plasma is used. An approximate equation for the plasma is derived from the describing equation which is then solved exactly in terms of the Jacobi elliptic functions. The formation of the ball is based on a nonlinearity of the plasma equation which uner certain circumstances permits the field to collapse into a small region. This collapse is interpreted to be ball lightning. The approximate equation derived for the plasma has the same form as a previous equation used to describe the formation of the fireball plasma. (author)

  6. A first look at lightning energy determined from GLM

    Science.gov (United States)

    Bitzer, P. M.; Burchfield, J. C.; Brunner, K. N.

    2017-12-01

    The Geostationary Lightning Mapper (GLM) was launched in November 2016 onboard GOES-16 has been undergoing post launch and product post launch testing. While these have typically focused on lightning metrics such as detection efficiency, false alarm rate, and location accuracy, there are other attributes of the lightning discharge that are provided by GLM data. Namely, the optical energy radiated by lightning may provide information useful for lightning physics and the relationship of lightning energy to severe weather development. This work presents initial estimates of the lightning optical energy detected by GLM during this initial testing, with a focus on observations during field campaign during spring 2017 in Huntsville. This region is advantageous for the comparison due to the proliferation of ground-based lightning instrumentation, including a lightning mapping array, interferometer, HAMMA (an array of electric field change meters), high speed video cameras, and several long range VLF networks. In addition, the field campaign included airborne observations of the optical emission and electric field changes. The initial estimates will be compared with previous observations using TRMM-LIS. In addition, a comparison between the operational and scientific GLM data sets will also be discussed.

  7. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  8. Dual-Polarization Radar Observations of Upward Lightning-Producing Storms

    Science.gov (United States)

    Lueck, R.; Helsdon, J. H.; Warner, T.

    2013-12-01

    The Upward Lightning Triggering Study (UPLIGHTS) seeks to determine how upward lightning, which originates from the tips of tall objects, is triggered by nearby flash activity. As a component of this study we analyze standard and dual-polarization weather radar data. The Correlation Coefficient (CC) in particular can be used to identify and quantify the melting layer associated with storms that produce upward lightning. It has been proposed that positive charge generation due to aggregate shedding at the melting layer results in a positive charge region just above the cloud base. This positive charge region may serve as a positive potential well favorable for negative leader propagation, which initiate upward positive leaders from tall objects. We characterize the horizontal coverage, thickness and height of the melting layer in addition to cloud base heights when upward lightning occurs to determine trends and possible threshold criteria relating to upward lightning production. Furthermore, we characterize storm type and morphology using relevant schemes as well as precipitation type using the Hydrometer Classification Algorithm (HCA) for upward lightning-producing storms. Ice-phase hydrometeors have been shown to be a significant factor in thunderstorm electrification. Only a small fraction of storms produce upward lightning, so null cases will be examined and compared as well.

  9. Lightning NOx Production in CMAQ: Part II - Parameterization Based on Relationship between Observed NLDN Lightning Strikes and Modeled Convective Precipitation Rates

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  10. Lightning risk warnings based on atmospheric electric field measurements in Brazil

    Directory of Open Access Journals (Sweden)

    Marco Antonio da Silva Ferro*

    2011-09-01

    Full Text Available This paper presents a methodology that employs the electrostatic field variations caused by thundercloud formation or displacement to generate lightning warnings over a region of interest in Southeastern Brazil. These warnings can be used to prevent accidents during hazardous operations, such as the manufacturing, loading, and test of motor-rockets. In these cases, certain equipment may be moved into covered facilities and personnel are required to take shelter. It is also possible to avoid the threat of natural and triggered lightning to launches. The atmospheric electric field database, including the summer seasons of 2007/2008 and 2008/2009 (from November to February, and, for the same period and region, the cloud-to-ground lightning data provided by the Brazilian lightning detection network – BrasilDAT – were used in order to perform a comparative analysis between the lightning warnings and the cloud-to- ground lightning strikes that effectively occurred inside the area of concern. The analysis was done for three areas surrounding the sensor installation defined as circles with 5, 10 and 15 km of radius to determine the most effective detection range. For each area it was done using several critical electric field thresholds: +/- 0.5; +/- 0.8; +/- 0.9; +/- 1.0; +/- 1.2; and +/- 1.5 kV/m. As a result of the reduction of atmospheric electric field data provided by the sensor installed in area of concern and lightning provided by BrasilDAT, it was possible, for each of the areas of alert proposals, to obtain the following parameters: the number of effective alarms; the number of false alarms; and the number of failure to warning. From the analysis of these parameters, it was possible to conclude that, apparently, the most interesting critical electric field threshold to be used is the level of 0.9 kV/m in association with a distance range of 10 km around the point where the sensor is installed.

  11. Lightning in aeronautics

    International Nuclear Information System (INIS)

    Lago, F

    2014-01-01

    It is generally accepted that a civilian aircraft is struck, on average, once or twice per year. This number tends to indicate that a lightning strike risk is far from being marginal and so requires that aircraft manufacturers have to demonstrate that their aircraft is protected against lightning. The first generation of aircrafts, which were manufactured mainly in aluminium alloy and had electromechanical and pneumatic controls, had a natural immunity to the effects of lightning. Nowadays, aircraft structures are made primarily with composite materials and flight controls are mostly electronic. This aspect of the ''more composite and more electric'' aircraft demands to aircraft manufacturers to pay a particular attention to the lightning protection and to its certification by testing and/or analysis. It is therefore essential to take this risk into account when designing the aircraft. Nevertheless, it is currently impossible to reproduce the entire lightning phenomenon in testing laboratories and the best way to analyse the lightning protection is to reproduce its effects. In this context, a number of standards and guides are produced by standards committees to help laboratories and aircraft manufacturers to perform realistic tests. Although the environment of a laboratory is quite different from those of a storm cloud, the rules of aircraft design, the know-how of aircraft manufacturers, the existence of international work leading to a better understanding of the lightning phenomenon and standards more precise, permit, today, to consider the risk as properly controlled

  12. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    Science.gov (United States)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  13. High-Resolution WRF Forecasts of Lightning Threat

    Science.gov (United States)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  14. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    treaties with greater transparency. Among the various communication technologies used for real-time transmission of sea-level data are the wired telephone connection, VHF/UHF transceivers, satellite transmit terminals and cellular connectivity. Wired... telephone connections are severely susceptible to loss of connectivity during natural disasters such as storm surges, primarily because of telephone line breakage. Communication via VHF/UHF transceivers is limited by line-of-sight distance between...

  15. Adjuvant VHF therapy in locally recurrent and primary unresectable rectal cancer

    International Nuclear Information System (INIS)

    Trotter, J.M.; Lamb, M.H.; Bayliss, E.J.; Edis, A.J.; Blackwell, J.B.; Shepherd, J.M.; Cassidy, B.

    1996-01-01

    In a prospective randomized study, 434 MHz microwave therapy combined with external beam radiotherapy (VHF+RT) was compared with standard external beam radiotherapy (RT) in controlling locally recurrent or unresectable primary adenocarcinoma of the rectum. Independent assessors documented quality of life scores, performance status, toxicities local response to treatment, and systemic disease progression before treatment and after treatment and every 8 week thereafter. Of 75 patients randomized, 73 were eligible for inclusion in the study. Forty-three of these patients had local pelvic tumour recurrence only and 21 also had distant metastases. In addition, nine patients had primary inoperable carcinomas, two of whom also had metastases. Thirty-seven patients were randomized to RT and 36 to VHF+RT. Th median dose of radiation in the VHF+RT arm was 4275 cGy with a median fraction size of 150 cGy and median duration of therapy of 48.5 days versus 4500 cGy in the RT-only arm with a median fraction size of 180 cGy and median duration of therapy of 38 days. These doses are unlikely to be significantly different in biological effect. No significant difference between the two groups was observed in extent and duration of local control, measures of toxicity or quality of life scores. Additionally, survival and cumulative incidence of pelvic site of first progression did not differ significantly between the groups. It is concluded that VHF microwave therapy in conjunction with radiotherapy produces no therapeutic advantage over conventional radiation therapy alone in the treatment of locally recurrent rectal carcinoma. 35 refs., 8 tabs., 3 figs

  16. Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array

    Science.gov (United States)

    Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo

    2010-01-01

    The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.

  17. Management of radioactive disused lightning rods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de Oliveira; Silva, Fabio, E-mail: pos@cdtn.br, E-mail: silvaf@cdtn.br [Centro de Desenvolvimento da Energia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of {sup 241}Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the {sup 241}Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  18. Management of radioactive disused lightning rods

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira; Silva, Fabio

    2013-01-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of 241 Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the 241 Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  19. Lightning safety of animals.

    Science.gov (United States)

    Gomes, Chandima

    2012-11-01

    This paper addresses a concurrent multidisciplinary problem: animal safety against lightning hazards. In regions where lightning is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to lightning generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the lightning threats discussed.

  20. [Lightning strikes and lightning injuries in prehospital emergency medicine. Relevance, results, and practical implications].

    Science.gov (United States)

    Hinkelbein, J; Spelten, O; Wetsch, W A

    2013-01-01

    Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with lightning injuries. In Germany, approximately 50 people per year are injured by a lightning strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A lightning strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and lightning injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a lightning strike. Emergency medical treatment is similar to common electrical injuries. Patients with lightning injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible lightning.

  1. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    Science.gov (United States)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  2. Neutron generation in lightning bolts

    International Nuclear Information System (INIS)

    Shah, G.N.; Razdan, H.; Bhat, C.L.; Ali, Q.M.

    1985-01-01

    To ascertain neutron generation in lightning bolts, the authors have searched for neutrons from individual lightning strokes, for a time-interval comparable with the duration of the lightning stroke. 10 7 -10 10 neutrons per stroke were found, thus providing the first experimental evidence that neutrons are generated in lightning discharges. (U.K.)

  3. Situational Lightning Climatologies for Central Florida: Phase IV

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-,20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  4. Lightning-Sensor Data Help In Understanding Thunderstorms

    Science.gov (United States)

    Goodman, Steven J.

    1992-01-01

    NASA technical memorandum discusses research on use of data from network of ground-based magnetic direction-finding ground-strike lightning sensors to diagnose and predict occurrence and evolution of thunderstorms. Purposes of study to explore applicability and limitations of extrapolation techniques used to generate forecasts from data; to examine physically-based, nonlinear mathematical models for applicability to lightning-forecast problem; and to determine valid extrapolation ranges of such models for various weather scenarios.

  5. Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers

    Science.gov (United States)

    Muñoz, Á. G.; Díaz-Lobatón, J.; Chourio, X.; Stock, M. J.

    2016-05-01

    The Lake Maracaibo Basin in North Western Venezuela has the highest annual lightning rate of any place in the world (~ 200 fl km- 2 yr- 1), whose electrical discharges occasionally impact human and animal lives (e.g., cattle) and frequently affect economic activities like oil and natural gas exploitation. Lightning activity is so common in this region that it has a proper name: Catatumbo Lightning (plural). Although short-term lightning forecasts are now common in different parts of the world, to the best of the authors' knowledge, seasonal prediction of lightning activity is still non-existent. This research discusses the relative role of both large-scale and local climate drivers as modulators of lightning activity in the region, and presents a formal predictability study at seasonal scale. Analysis of the Catatumbo Lightning Regional Mode, defined in terms of the second Empirical Orthogonal Function of monthly Lightning Imaging Sensor (LIS-TRMM) and Optical Transient Detector (OTD) satellite data for North Western South America, permits the identification of potential predictors at seasonal scale via a Canonical Correlation Analysis. Lightning activity in North Western Venezuela responds to well defined sea-surface temperature patterns (e.g., El Niño-Southern Oscillation, Atlantic Meridional Mode) and changes in the low-level meridional wind field that are associated with the Inter-Tropical Convergence Zone migrations, the Caribbean Low Level Jet and tropical cyclone activity, but it is also linked to local drivers like convection triggered by the topographic configuration and the effect of the Maracaibo Basin Nocturnal Low Level Jet. The analysis indicates that at seasonal scale the relative contribution of the large-scale drivers is more important than the local (basin-wide) ones, due to the synoptic control imposed by the former. Furthermore, meridional CAPE transport at 925 mb is identified as the best potential predictor for lightning activity in the Lake

  6. Use of High-Resolution WRF Simulations to Forecast Lightning Threat

    Science.gov (United States)

    McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.

    2008-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.

  7. Lightning related fatalities in livestock: veterinary expertise and the added value of lightning location data.

    Science.gov (United States)

    Vanneste, E; Weyens, P; Poelman, D R; Chiers, K; Deprez, P; Pardon, B

    2015-01-01

    Although lightning strike is an important cause of sudden death in livestock on pasture and among the main reasons why insurance companies consult an expert veterinarian, scientific information on this subject is limited. The aim of the present study was to provide objective information on the circumstantial evidence and pathological findings in lightning related fatalities (LRF), based on a retrospective analysis of 410 declarations, examined by a single expert veterinarian in Flanders, Belgium, from 1998 to 2012. Predictive logistic models for compatibility with LRF were constructed based on anamnestic, environmental and pathological factors. In addition, the added value of lightning location data (LLD) was evaluated. Pathognomonic singe lesions were present in 84/194 (43%) confirmed reports. Factors which remained significantly associated with LRF in the multivariable model were age, presence of a tree or open water in the near surroundings, tympany and presence of feed in the oral cavity at the time of investigation. This basic model had a sensitivity (Se) of 53.8% and a specificity (Sp) of 88.2%. Relying only on LLD to confirm LRF in livestock resulted in a high Se (91.3%), but a low Sp (41.2%), leading to a high probability that a negative case would be wrongly accepted as an LRF. The best results were obtained when combining the model based on the veterinary expert investigation (circumstantial evidence and pathological findings), together with the detection of cloud-to-ground (CG) lightning at the time and location of death (Se 89.1%; Sp 66.7%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A signature correlation study of ground target VHF/UHF ISAR imagery

    Science.gov (United States)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  9. Lightning prediction using radiosonde data

    Energy Technology Data Exchange (ETDEWEB)

    Weng, L.Y.; Bin Omar, J.; Siah, Y.K.; Bin Zainal Abidin, I.; Ahmad, S.K. [Univ. Tenaga, Darul Ehsan (Malaysia). College of Engineering

    2008-07-01

    Lightning is a natural phenomenon in tropical regions. Malaysia experiences very high cloud-to-ground lightning density, posing both health and economic concerns to individuals and industries. In the commercial sector, power lines, telecommunication towers and buildings are most frequently hit by lightning. In the event that a power line is hit and the protection system fails, industries which rely on that power line would cease operations temporarily, resulting in significant monetary loss. Current technology is unable to prevent lightning occurrences. However, the ability to predict lightning would significantly reduce damages from direct and indirect lightning strikes. For that reason, this study focused on developing a method to predict lightning with radiosonde data using only a simple back propagation neural network model written in C code. The study was performed at the Kuala Lumpur International Airport (KLIA). In this model, the parameters related to wind were disregarded. Preliminary results indicate that this method shows some positive results in predicting lighting. However, a larger dataset is needed in order to obtain more accurate predictions. It was concluded that future work should include wind parameters to fully capture all properties for lightning formation, subsequently its prediction. 8 refs., 5 figs.

  10. Catching lightning for alternative energy

    Energy Technology Data Exchange (ETDEWEB)

    Helman, D.S. [California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840 (United States)

    2011-05-15

    The article reviews the current literature related to lightning and makes a case for using lightning as an alternative source of energy. Objections to using lightning as an alternative source of energy are listed. Current literature is reviewed and articles are suggested as useful for building a tower, or using rockets or lasers to target a strike, or for quantifying a lightning strike. (author)

  11. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2015-07-01

    Full Text Available As convective clouds in Northeast Asia are accompanied by various hazards related with heavy rainfall and thunderstorms, it is very important to detect convective initiation (CI in the region in order to mitigate damage by such hazards. In this study, a novel approach for CI detection using images from Meteorological Imager (MI, a payload of the Communication, Ocean, and Meteorological Satellite (COMS, was developed by improving the criteria of the interest fields of Rapidly Developing Cumulus Areas (RDCA derivation algorithm, an official CI detection algorithm for Multi-functional Transport SATellite-2 (MTSAT-2, based on three machine learning approaches—decision trees (DT, random forest (RF, and support vector machines (SVM. CI was defined as clouds within a 16 × 16 km window with the first detection of lightning occurrence at the center. A total of nine interest fields derived from visible, water vapor, and two thermal infrared images of MI obtained 15–75 min before the lightning occurrence were used as input variables for CI detection. RF produced slightly higher performance (probability of detection (POD of 75.5% and false alarm rate (FAR of 46.2% than DT (POD of 70.7% and FAR of 46.6% for detection of CI caused by migrating frontal cyclones and unstable atmosphere. SVM resulted in relatively poor performance with very high FAR ~83.3%. The averaged lead times of CI detection based on the DT and RF models were 36.8 and 37.7 min, respectively. This implies that CI over Northeast Asia can be forecasted ~30–45 min in advance using COMS MI data.

  12. Lightning hazard reduction at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Kithil, R. [National Lightning Safety Institute, Louisville, CO (United States)

    1997-12-31

    The USA wind farm industry (WFI) largely is centered in low-lightning areas of the State of California. While some evidence of lightning incidents is reported here, the problem is not regarded as serious by most participants. The USA WFI now is moving eastward, into higher areas of lightning activity. The European WFI has had many years experience with lightning problems. One 1995 German study estimated that 80% of wind turbine insurance claims paid for damage compensation were caused by lightning strikes. The European and USA WFI have not adopted site criteria, design fundamentals, or certification techniques aimed at lightning safety. Sufficient evidence about lightning at wind farms is available to confirm that serious potential problems exist.

  13. Optimizing Precipitation Thresholds for Best Correlation Between Dry Lightning and Wildfires

    Science.gov (United States)

    Vant-Hull, Brian; Thompson, Tollisha; Koshak, William

    2018-03-01

    This work examines how to adjust the definition of "dry lightning" in order to optimize the correlation between dry lightning flash count and the climatology of large (>400 km2) lightning-ignited wildfires over the contiguous United States (CONUS). The National Lightning Detection Network™ and National Centers for Environmental Prediction Stage IV radar-based, gauge-adjusted precipitation data are used to form climatic data sets. For a 13 year analysis period over CONUS, a correlation of 0.88 is found between annual totals of wildfires and dry lightning. This optimal correlation is found by defining dry lightning as follows: on a 0.1° hourly grid, a precipitation threshold of no more than 0.3 mm may accumulate during any hour over a period of 3-4 days preceding the flash. Regional optimized definitions vary. When annual totals are analyzed as done here, no clear advantage is found by weighting positive polarity cloud-to-ground (+CG) lightning differently than -CG lightning. The high variability of dry lightning relative to the precipitation and lightning from which it is derived suggests it would be an independent and useful climate indicator.

  14. ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel J.

    2018-01-01

    It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.

  15. Simulating lightning tests to radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2010-01-01

    The risk of destruction due to lightning makes simulating the effects of lightning strikes a necessity. We modeled a radar enclosure and simulated the effect of a lightning strike. The results have been validated using full threat lightning current tests.

  16. Preliminary Assessment of Detection Efficiency for the Geostationary Lightning Mapper Using Intercomparisons with Ground-Based Systems

    Science.gov (United States)

    Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William

    2018-01-01

    As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.

  17. The mechanism of lightning attraction and the problem of lightning initiation by lasers

    International Nuclear Information System (INIS)

    Bazelyan, E M; Raizer, Yurii P

    2000-01-01

    Physical processes determining the ability of lightning to change its trajectory by choosing high constructions to strike are discussed. The leader mechanism of lightning propagation is explained. The criterion for a viable ascending (upward) leader to originate from a construction is established. The mechanism of the weak long-distance interaction between the ascending counter leader originating from a grounded construction and the descending (downward) leader from a cloud is analyzed. Current problems concerning lightning protection and lightning triggering by a laser spark are discussed, the latter being of special interest owing to a recent successful experiment along this line. (physics of our days)

  18. Multiple Lightning Discharges in Wind Turbines Associated with Nearby Cloud-to-Ground Lightning

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Cummins, Kenneth L.; Madsen, Søren Find

    2015-01-01

    This paper presents the analysis of five events where simultaneous lightning currents were registered in different wind turbines of a wind farm with lightning monitoring equipment installed. Measurements from current monitoring devices installed at the wind turbines and observations from auto......-triggering video cameras were correlated with data from the U.S. National Lighting Detection Network. In all five events, the correlation showed that a cloud-to-ground (CG) lightning stroke with high peak current struck the ground within 10 km of the affected turbines at the time of the currents in the wind...... by the nearby CG strokes, involving mechanisms that vary depending on the polarity of the associated CG stroke. The analysis also suggests that the event of upward lightning from wind turbines triggered by nearby lightning activity occurs very often and therefore it should be considered carefully...

  19. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    International Nuclear Information System (INIS)

    Van Erk, W; Luijks, G M J F; Hitchcock, W

    2011-01-01

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W -1 drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  20. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    Energy Technology Data Exchange (ETDEWEB)

    Van Erk, W [Philips Lighting, Sondervick 47, 5505 NB Veldhoven (Netherlands); Luijks, G M J F [Advanced Development Lighting, Philips Lighting, PO Box 80020, 5600 JM Eindhoven (Netherlands); Hitchcock, W, E-mail: Gerard.luijks@philips.com [Philips Lighting Company, 7265 Route 54, Bath, NY 14810 (United States)

    2011-06-08

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W{sup -1} drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  1. From VHF to UHF CMOS-MEMS Monolithically Integrated Resonators

    DEFF Research Database (Denmark)

    Teva, Jordi; Berini, Abadal Gabriel; Uranga, A.

    2008-01-01

    This paper presents the design, fabrication and characterization of microresonators exhibiting resonance frequencies in the VHF and UHF bands, fabricated using the available layers of the standard and commercial CMOS technology, AMS-0.35mum. The resonators are released in a post-CMOS process cons...

  2. Characteristics of Lightning within Electrified Snowfall Events using Total Lightning Measurements

    Science.gov (United States)

    Schultz, C. J.; Bruning, E. C.; Lang, T. J.; Kuhlman, K. M.

    2015-12-01

    Lightning within heavy snowfall indicates the presence of heavy snowfall rates. Most studies within the literature examine this phenomenon using ground based networks that are primarily designed for identifying cloud to ground flashes. Thus, very little study of the three dimensional structure of the lightning flashes within heavy snowfall has been accomplished. Herein, total lightning mapping arrays, interferometers and ground based networks like the National Lightning Detection Network (NLDN) are utilized to document the characteristics of these flashes, including flash size, polarity, flash initiation location and inferred charge structure. A total of six events are examined, resulting in a total of approximately 80 flashes. Both individual case studies and overall population statistics will be used to characterize flashes within this winter environment. Many of these flashes are found to initiate from tall objects like television and radio communication towers, and come to ground in multiple locations along their path, resulting in one LMA derived flash containing multiple NLDN identified flashes. Cloud-to-ground flashes of both polarities are noted within the 80 flash sample. In one case, 3 separate flashes which resulted in ground flashes of both polarities were observed coming out of the same overall charge structure. This structure exhibited a highly sloped nature in the LMA data from east to west, and both +IC and -IC components of flashes were observed by the NLDN in the same region where the flashes initiated. A decrease in flash size is noted with time in at least three of these events due to weaker updraft (compared to their summertime thunderstorm counter parts) and smaller available of supercooled liquid water as inferred through trends in radar observations. These limiting factors are hypothesized to result in slower charging rates, and smaller flash sizes with time. Several flashes also exhibit sloped structures that match reflectivity

  3. ENSO Related Inter-Annual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel

    2018-01-01

    The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS). Lightning data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases

  4. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    Science.gov (United States)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch

  5. A stepped leader model for lightning including charge distribution in branched channels

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  6. A stepped leader model for lightning including charge distribution in branched channels

    International Nuclear Information System (INIS)

    Shi, Wei; Zhang, Li; Li, Qingmin

    2014-01-01

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  7. Effects of lightning on trees: A predictive model based on in situ electrical resistivity.

    Science.gov (United States)

    Gora, Evan M; Bitzer, Phillip M; Burchfield, Jeffrey C; Schnitzer, Stefan A; Yanoviak, Stephen P

    2017-10-01

    The effects of lightning on trees range from catastrophic death to the absence of observable damage. Such differences may be predictable among tree species, and more generally among plant life history strategies and growth forms. We used field-collected electrical resistivity data in temperate and tropical forests to model how the distribution of power from a lightning discharge varies with tree size and identity, and with the presence of lianas. Estimated heating density (heat generated per volume of tree tissue) and maximum power (maximum rate of heating) from a standardized lightning discharge differed 300% among tree species. Tree size and morphology also were important; the heating density of a hypothetical 10 m tall Alseis blackiana was 49 times greater than for a 30 m tall conspecific, and 127 times greater than for a 30 m tall Dipteryx panamensis . Lianas may protect trees from lightning by conducting electric current; estimated heating and maximum power were reduced by 60% (±7.1%) for trees with one liana and by 87% (±4.0%) for trees with three lianas. This study provides the first quantitative mechanism describing how differences among trees can influence lightning-tree interactions, and how lianas can serve as natural lightning rods for trees.

  8. Control of Radioactive Lightning-Conductor

    International Nuclear Information System (INIS)

    Esposito, E.

    2004-01-01

    The radioactive lightning-conductor production in Brazil was started in 1970 and after a period of 19 years of commercialization of these devices, the National Nuclear Energy Commission (CNEN), based in studies done in Brazil and abroad, proved that the radioactive lightning-conductor performance wasn't superior to the conventional one, so the use of radioactive source is not justified. Thence, the authorization for its production was suspended and the installation of this type of lightning-conductor was forbidden. The radioactive material that results from the dismount of these devices must be immediately sent to CNEN, for treatment and temporary storage. After this prohibition and its publication in several specialized magazines, CNEN was searched for several institutions, factories, churches, etc, interested in obtaining information about the handling and shipment procedures of radioactive lightning-conductors that are inoperative and that must be sent to CNEN's Institutes, in a correct and secure form. From this moment CNEN technicians realize that the owners of radioactive lightning-conductors didn't have any knowledge and training in radiation protection, neither in equipment to monitoring the radiation. The radioactive material from these sources is, in almost all cases, the radioisotope 241Am which has a maximum activity of an order of 5 mCi (1,85 x 10-2 TBq); as the radiation emitted by 241Am is of alpha type, whose range in the air, is just few centimeters and the gamma rays are of low energy, an irradiation offer small risk. However, there is a contamination risk on someone hands, by the contact with the source. Aiming to attend, in an objective way, the users' interests in obtaining some pertinent technical information about the shipping of radioactive lightning-conductor that is inoperative or is being replaced and also to optimize its receipt in CNEN's Institutes, because there still has a great number of these lightning-conductors installed and still

  9. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott

    2007-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the

  10. Attempts to Create Ball Lightning with Triggered Lightning

    Science.gov (United States)

    2009-10-01

    mechanisms by which ball lightning is generated. The most commonly reported observation is of an orange-to- grapefruit -size sphere (the range for the vast...Figure 5 shows a sequence of ten cropped frames extracted from the Phantom video at 48 ms intervals during the ICC process spanning the total 432 ms...strike the ground between 0.75-1.25 s after being emitted from the lightning-struck silicon wafers. A picture showing ten extracted frames at 280 ms

  11. Testing VHF/GPS collar design and safety in the study of free-roaming horses.

    Directory of Open Access Journals (Sweden)

    Gail H Collins

    Full Text Available Effective and safe monitoring techniques are needed by U.S. land managers to understand free-roaming horse behavior and habitat use and to aid in making informed management decisions. Global positioning system (GPS and very high frequency (VHF radio collars can be used to provide high spatial and temporal resolution information for detecting free-roaming horse movement. GPS and VHF collars are a common tool used in wildlife management, but have rarely been used for free-roaming horse research and monitoring in the United States. The purpose of this study was to evaluate the design, safety, and detachment device on GPS/VHF collars used to collect free-roaming horse location and movement data. Between 2009 and 2010, 28 domestic and feral horses were marked with commercial and custom designed VHF/GPS collars. Individual horses were evaluated for damage caused by the collar placement, and following initial observations, collar design was modified to reduce the potential for injury. After collar modifications, which included the addition of collar length adjustments to both sides of the collar allowing for better alignment of collar and neck shapes, adding foam padding to the custom collars to replicate the commercial collar foam padding, and repositioning the detachment device to reduce wear along the jowl, we observed little to no evidence of collar wear on horses. Neither custom-built nor commercial collars caused injury to study horses, however, most of the custom-built collars failed to collect data. During the evaluation of collar detachment devices, we had an 89% success rate of collar devices detaching correctly. This study showed that free-roaming horses can be safely marked with GPS and/or VHF collars with minimal risk of injury, and that these collars can be a useful tool for monitoring horses without creating a risk to horse health and wellness.

  12. The Evolution and Structure of Extreme Optical Lightning Flashes.

    Science.gov (United States)

    Peterson, Michael; Rudlosky, Scott; Deierling, Wiebke

    2017-12-27

    This study documents the composition, morphology, and motion of extreme optical lightning flashes observed by the Lightning Imaging Sensor (LIS). The furthest separation of LIS events (groups) in any flash is 135 km (89 km), the flash with the largest footprint had an illuminated area of 10,604 km 2 , and the most dendritic flash has 234 visible branches. The longest-duration convective LIS flash lasted 28 s and is overgrouped and not physical. The longest-duration convective-to-stratiform propagating flash lasted 7.4 s, while the longest-duration entirely stratiform flash lasted 4.3 s. The longest series of nearly consecutive groups in time lasted 242 ms. The most radiant recorded LIS group (i.e., "superbolt") is 735 times more radiant than the average group. Factors that impact these optical measures of flash morphology and evolution are discussed. While it is apparent that LIS can record the horizontal development of the lightning channel in some cases, radiative transfer within the cloud limits the flash extent and level of detail measured from orbit. These analyses nonetheless suggest that lightning imagers such as LIS and Geostationary Lightning Mapper can complement ground-based lightning locating systems for studying physical lightning phenomena across large geospatial domains.

  13. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Results from the northern New Mexico satellite-beacon radio interferometer

    International Nuclear Information System (INIS)

    Carlos, R.; Jacobson, A.; Massey, R.; Wu, G.

    1994-01-01

    An interferometer described in the Boston, 1992, meeting of the Beacon Satellite Symposium has been in full operation for over a year now. It consists of four autonomous stations; three are in a triangle 70 km on a side and one is in the center. The stations receive the VHF beacons from two geosynchronous satellites, GOES-2 and ATS-3. The phases of the beacons are tracked at each station by referring them to an extremely stable rubidium oscillator. The studies of the two satellites are virtually separate experiments. The received phase of the beacon is retarded by the increased Total-Electron-Content of the dense regions of waves in the ionosphere. By comparing the phase history at four spatially separated stations, the authors can determine the two-dimensional propagation vector of the waves. This array is optimal for wavelengths of 70--300 km (periods of 300--3,000 seconds). Since the measurement is of the phase of the signal rather than the difference between the O-mode and X-mode phases, and since the beacons are in the VHF rather than in the L-band of GPS beacons, the array is very sensitive. It has a noise level of 10 13 electrons/m 2 , or 10 -4 of the normal daytime TEC. This has been verified by operating two stations in the same location, so that they saw the same ionosphere. The first interesting results from a year's study is that the authors do not see the same TID's when looking at the two satellites. One conclusion they draw is that they do not see evidence of ionospheric winds

  15. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric

  16. Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems.

    Science.gov (United States)

    Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong

    2017-10-23

    The impact of high-voltage-high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between -13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers.

  17. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    Science.gov (United States)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  18. Faraday Cage Protects Against Lightning

    Science.gov (United States)

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.

    1992-01-01

    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  19. Structure, optical properties and thermal stability of HfErO films deposited by simultaneous RF and VHF magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang, H.Y.; He, H.J.; Zhang, Z.; Jin, C.G.; Yang, Y.; Wang, Y.Y.; Ye, C.; Zhuge, L.J.; Wu, X.M.

    2015-01-01

    HfErO films are deposited on Si substrates by simultaneous radio frequency (RF) and very high frequency (VHF) magnetron sputtering technique. The content of the doped ingredient of Er and the body composition of HfO x are, respectively, controlled through the VHF and RF powers. Low content of Er doping in the HfErO films can be achieved, because the VHF source of 27.12 MHz has higher ion energy and lower ion flux than the RF source resulting in low sputtering rate in the magnetron sputtering system. The structure, optical properties and thermal stability of the HfErO films are investigated in this work. Results show that the doped content of Er is independently controlled by the VHF power. The oxygen vacancies are created by the Er incorporation. The hafnium in the HfErO films forms mixed valence of Hf 2+ and Hf 4+ . The HfErO films are composed with the structures of HfO 2 , HfO and ErO x , which can be optimized through the VHF power. At high VHF power, the Hf-Er-O bonds are formed, which demonstrates that the Er atoms are doped into the lattice of HfO 2 in the HfErO films. The HfErO films have bad thermal stability as the crystallization temperature decreases from 900 to 800 C. After thermal annealing, cubic phase of HfO 2 are stabilized, which is ascribed to the oxygen vacancies creation by the Er incorporation. The optical properties such as the refractive index and the optical band gap of the HfErO films are optimized by the VHF power. (orig.)

  20. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    OpenAIRE

    Chepfer , H.; Minnis , P.; Dubuisson , P.; Chiriaco , Marjolaine; Sun-Mack , S.; Rivière , E.D.

    2007-01-01

    International audience; Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx...

  1. Ultraviolet and infrared emission from lightning discharges observed at Aragats

    International Nuclear Information System (INIS)

    Chilingarian, A.; Karapetyan, T.; Pokhsraryan, D.; Bogomolov, V.; Garipov, G.; Panasyuk, M.; Svertilov, S.; Saleev, K.

    2016-01-01

    The ultraviolet and infrared optical sensors previously used at RELEC space missions were installed at the high altitude research station Aragats at 3200 m above the sea level. The spectral composition and temporal structure of the recorded optical signals and measurements of the electrostatic field and atmospheric discharges obtained by “fast” and “slow” field sensors have been compared. Measurements of lightning and related to them phenomena observed at the mountain altitude and on board of orbiting satellites are compared. (author)

  2. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    Science.gov (United States)

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  3. The real performance of radioactive lightning arrester

    International Nuclear Information System (INIS)

    Leite, D.M.

    1985-01-01

    The study of the performance of radioactive lightning arrester comparing to the performance of conventional one are presented. Measurements of currents between lightning arrester and an energyzed plate with wind simulation were done for radioactive and conventional lightning arresters, separately. The attraction range of radioactive and conventional lightning arresters using atmospheric pulses produced by a generator of 3MV were verified, separately and simultaneously. The influence of ionization produced by radioactive lightning arrester on critical disruptive tension of a spark plate, testing two lightning arresters for differents nominal attraction distances with applications of atmospheric pulses (positive and negative polarity) and tensions of 60 Hz was verified. The radiation emitted by a radioactive lightning had used in a building was retired and handled without special carefullness by a personnel without worthy of credence to evaluate the hazard in handling radioactive lightning arrester was measured. Critical disruptive tensions of radioactive and conventional lightning arrester using a suspensed electrode and external pulse generator of 6MV was measured. The effect of attraction of a radioactive and conventional lightning arresters disposed symmetrically regarding the same suspensed electrode was verified simultaneously. Seven cases on faults of radioactive lightning arrester in external areas are present. (M.C.K.) [pt

  4. Storm on lightning conductors

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    Radioactive lightning conductors using radium or americium 241 sources are compared to Faraday cage and lightning rod. Americium source preparation is shortly described. Efficiency of the different systems is still controversed [fr

  5. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single

  6. Structure, optical properties and thermal stability of HfErO films deposited by simultaneous RF and VHF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Nanjing University of Posts and Telecommunications, School of Tongda, Nanjing (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); He, H.J.; Zhang, Z.; Jin, C.G.; Yang, Y.; Wang, Y.Y.; Ye, C. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Zhuge, L.J. [Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Soochow University, Analysis and Testing Center, Suzhou (China); Wu, X.M. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai (China)

    2015-01-23

    HfErO films are deposited on Si substrates by simultaneous radio frequency (RF) and very high frequency (VHF) magnetron sputtering technique. The content of the doped ingredient of Er and the body composition of HfO{sub x} are, respectively, controlled through the VHF and RF powers. Low content of Er doping in the HfErO films can be achieved, because the VHF source of 27.12 MHz has higher ion energy and lower ion flux than the RF source resulting in low sputtering rate in the magnetron sputtering system. The structure, optical properties and thermal stability of the HfErO films are investigated in this work. Results show that the doped content of Er is independently controlled by the VHF power. The oxygen vacancies are created by the Er incorporation. The hafnium in the HfErO films forms mixed valence of Hf{sup 2+} and Hf{sup 4+}. The HfErO films are composed with the structures of HfO{sub 2}, HfO and ErO{sub x}, which can be optimized through the VHF power. At high VHF power, the Hf-Er-O bonds are formed, which demonstrates that the Er atoms are doped into the lattice of HfO{sub 2} in the HfErO films. The HfErO films have bad thermal stability as the crystallization temperature decreases from 900 to 800 C. After thermal annealing, cubic phase of HfO{sub 2} are stabilized, which is ascribed to the oxygen vacancies creation by the Er incorporation. The optical properties such as the refractive index and the optical band gap of the HfErO films are optimized by the VHF power. (orig.)

  7. Lightning leader models of terrestrial gamma-ray flashes

    Science.gov (United States)

    Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.

  8. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence

    International Nuclear Information System (INIS)

    Uman, M.A.; Rakov, V.A.; Elisme, J.O.; Jordan, D.M.; Biagi, C.J.; Hill, J.D.

    2008-01-01

    The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parameters presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces

  9. Applications of Geostationary Satellite Data to Aviation

    Science.gov (United States)

    Ellrod, Gary P.; Pryor, Kenneth

    2018-03-01

    Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

  10. Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA

    Science.gov (United States)

    Das, T.; Roy, B.; Paul, A.

    2014-10-01

    Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February-April 2011, and validation of measured S4 and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive.

  11. Detection and characterization of lightning-based sources using continuous wavelet transform: application to audio-magnetotellurics

    Science.gov (United States)

    Larnier, H.; Sailhac, P.; Chambodut, A.

    2018-01-01

    Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio

  12. Technical and economical optimisation of overhead power distribution line lightning protection

    Energy Technology Data Exchange (ETDEWEB)

    Katic, N.A. [Elektrovojvodina Power Distribution Co., Nori Sad (Yugoslavia); Savic, M.S. [University of Belgrade (Yugoslavia). Faculty of Electrical Engineering

    1998-05-01

    The existing methodology for overhead line lightning protection design does not take into account customer and utility costs of line outages. In the paper a new concept of line lightning protection design based on economic optimisation is presented. Different tower types are analysed and for various undelivered energy participation factors optimal line design suggested. In line lightning flashover rate estimation both direct and induced surges are analysed. (author)

  13. Lightning NOx and Impacts on Air Quality

    Science.gov (United States)

    Murray, Lee T.

    2016-01-01

    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  14. Lightning Applications in Weather and Climate Research

    Science.gov (United States)

    Price, Colin G.

    2013-11-01

    Thunderstorms, and lightning in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. Lightning causes great damage and death every year but also tells us about the inner working of storms. Since lightning can be monitored from great distances from the storms themselves, lightning may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. Lightning itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in lightning and thunderstorm activity? Many studies show that higher surface temperatures produce more lightning, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, lightning itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between lightning, temperature, upper tropospheric water vapor, and cloud cover.

  15. Lightning Damage to Wind Turbine Blades From Wind Farms in the U.S

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find; Nissim, Maya

    2016-01-01

    , laminate structure, and lightning protection systems. The statistics consist of the distribution of lightning damage along the blade and classify the damage by severity. In addition, the frequency of lightning damage to more than one blade of a wind turbine after a thunderstorm is assessed. The results......This paper presents statistical data about lightning damage on wind turbine blades reported at different wind farms in the U.S. The analysis is based on 304 cases of damage due to direct lightning attachment on the blade surface. This study includes a large variety of blades with different lengths...

  16. 49 CFR 176.120 - Lightning protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning conductor...

  17. 14 CFR 25.581 - Lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning protection. 25.581 Section 25.581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a...

  18. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  19. The Italian Lightning Detection System of CESI and its applications

    International Nuclear Information System (INIS)

    Iorio, R.

    1998-01-01

    Aim of the paper is to give a description of the CESI lightning detection system SIRF. The system allows the real time localization (latitude, longitude) of the striking point of a cloud-to-ground lightning flash. Electrical parameters of the impulsive currents related to the flash strokes are calculated as well. Based on sensors covering the whole Italian territory, SIRF configuration and of the basic calculation criteria for passing from the sensor raw data to the final flash data is given together with the evaluation of the system expected performance parameters (accuracy, detection efficiently, signal/noise ratio). Main uses of lightning data in several fields are then reported, with special reference to electrical applications. Mention is done about the different modalities adopted for data distribution, according to that either real time or passed time applications have to be carried out. In this latter case (e.g. statistics), a huge amount of data archived within the Lightning Data Base of SIRF is available [it

  20. Lightning on Venus

    Science.gov (United States)

    Scarf, F. L.

    1985-01-01

    On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  1. Relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity

    Czech Academy of Sciences Publication Activity Database

    Němec, František; Santolík, Ondřej; Parrot, M.; Rodger, C. J.

    2010-01-01

    Roč. 115, - (2010), A08315/1-A08315/10 ISSN 0148-0227 R&D Projects: GA ČR GA205/09/1253; GA ČR GAP205/10/2279; GA MŠk ME09107 Institutional research plan: CEZ:AV0Z30420517 Keywords : lightning activity * VLF electromagnetic waves * DEMETER satellite Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  2. LOFAR for lightning-interferometery and mapping

    NARCIS (Netherlands)

    Scholten, Olaf; Buitink, Stijn; trinh, Gia; Bonardi, Antonio; Corstanje, Arthur; Ebert, Ute; Falcke, Heino; Hoerandel, Joerg; Mitra, Pragati; Mulrey, Katherine; Nelles, Anna; Rachen, Joerg; Rossetto, Laura; Rutjes, Casper; Schellart, Pim; Thoudam, Satayendra; ter Veen, Sander; Winchen, Tobias; Hare, Brian

    2017-01-01

    We show that a new observation mode at the Low Frequency Array (LOFAR) for Lightning-Interferometery and Mapping (LIM) allows for lightning observations with a resolution that is at least an order of magnitude better than presently operating Lightning Napping Arrays LMAs. Furthermore the

  3. Lightning Impacts on Airports - Challenges of Balancing Safety & Efficiency

    Science.gov (United States)

    Steiner, Matthias; Deierling, Wiebke; Nelson, Eric; Stone, Ken

    2013-04-01

    Thunderstorms and lightning pose a safety risk to personnel working outdoors, such as people maintaining airport grounds (e.g., mowing grass or repairing runway lighting) or servicing aircraft on ramps (handling baggage, food service, refueling, tugging and guiding aircraft from/to gates, etc.). Since lightning strikes can cause serious injuries or death, it is important to provide timely alerts to airport personnel so that they can get to safety when lightning is imminent. This presentation discusses the challenges and uncertainties involved in using lightning information and stakeholder procedures to ensure safety of outdoor personnel while keeping ramp operations as efficient as possible considering thunderstorm impacts. The findings presented are based on extensive observations of airline operators under thunderstorm impacts. These observations reveal a complex picture with substantial uncertainties related to the (1) source of lightning information (e.g., sensor type, network, data processing) used to base ramp closure decisions on, (2) uncertainties involved in the safety procedures employed by various stakeholders across the aviation industry (yielding notably different rules being applied by multiple airlines even at a single airport), and (3) human factors issues related to the use of decision support tools and the implementation of safety procedures. This research is supported by the United States Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.

  4. Total Lightning as an Indicator of Mesocyclone Behavior

    Science.gov (United States)

    Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.

    2014-01-01

    Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.

  5. Protection of LV system against lightning

    OpenAIRE

    Yordanova Nedyalkova, Greta

    2010-01-01

    Lightning is a natural hazard and one of the greatest local mysteries. Scientists have not fully understood the mechanism of lightning. It is one of the most beautiful displays in nature and one of the nature's most dangerous phenomenon known to man. Overvoltage due to lightning is a very important problem of LV systems. Some lightning flashes damage buildings and a few kill or injure people and animals, either directly or indirectly, by causing fire and explosions. The need for protect...

  6. Simultaneous emissions of X-rays and microwaves from long laboratory sparks and downward lightning leaders

    Science.gov (United States)

    Montanya, J.; Oscar, V. D. V.; Tapia, F. F.

    2017-12-01

    Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave

  7. Infrasound from lightning measured in Ivory Coast from 2004 to 2014

    Science.gov (United States)

    Farges, Thomas; Le Pichon, Alexis; Ceranna, Lars; Diawara, Adama

    2016-04-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. 80 % of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes …). Some of the IMS stations are located where lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. Assink et al. (2008) and Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within 300 km. One-to-one correlation is possible when the thunderstorm is within about 75 km from the station. When the lightning flash occurs within 20 km, it is also possible to rebuild the 3D geometry of the discharges when the network size is less than 100 m (Arechiga et al., 2011; Gallin, 2014). An IMS infrasound station has been installed in Ivory Coast since 2002. The lightning rate of this region is 10-20 flashes/km²/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 10 years of data (2005-2014). Correlation between infrasound having a mean frequency higher than 1 Hz and lightning flashes detected by the World Wide Lightning Location Network (WWLLN) is systematically looked for. One-to-one correlation is obtained for flashes occurring within about 100 km. An exponential decrease of the

  8. Photonuclear reactions triggered by lightning discharge.

    Science.gov (United States)

    Enoto, Teruaki; Wada, Yuuki; Furuta, Yoshihiro; Nakazawa, Kazuhiro; Yuasa, Takayuki; Okuda, Kazufumi; Makishima, Kazuo; Sato, Mitsuteru; Sato, Yousuke; Nakano, Toshio; Umemoto, Daigo; Tsuchiya, Harufumi

    2017-11-22

    Lightning and thunderclouds are natural particle accelerators. Avalanches of relativistic runaway electrons, which develop in electric fields within thunderclouds, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories, by airborne detectors and as terrestrial γ-ray flashes from space. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions that produce neutrons and eventually positrons via β + decay of the unstable radioactive isotopes, most notably 13 N, which is generated via 14 N + γ →  13 N + n, where γ denotes a photon and n a neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons and positrons that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after lightning. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5-1.7 kilometres away from the lightning. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40-60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron-positron annihilation, providing conclusive evidence of positrons being produced after the lightning.

  9. Tropic lightning: myth or menace?

    Science.gov (United States)

    McCarthy, John

    2014-11-01

    Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.

  10. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  11. Lightning injury: a review.

    Science.gov (United States)

    Ritenour, Amber E; Morton, Melinda J; McManus, John G; Barillo, David J; Cancio, Leopoldo C

    2008-08-01

    Lightning is an uncommon but potentially devastating cause of injury in patients presenting to burn centers. These injuries feature unusual symptoms, high mortality, and significant long-term morbidity. This paper will review the epidemiology, physics, clinical presentation, management principles, and prevention of lightning injuries.

  12. US development and commercialization of a North American mobile satellite service

    Science.gov (United States)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    1990-01-01

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  13. US development and commercialization of a North American mobile satellite service

    Science.gov (United States)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  14. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  15. Lightning Protection for Composite Aircraft Structures

    Science.gov (United States)

    Olson, G. O.

    1985-01-01

    Lightning protection system consisting of two layers of aluminum foil separated by layer of dielectric material protects graphite/epoxy composite structures on aircraft. Protective layer is secondarily applied lightning protection system, prime advantage of which is nullification of thermal and right angle effect of lightning arc attachment to graphite/epoxy laminate.

  16. 14 CFR 35.38 - Lightning strike.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning strike. 35.38 Section 35.38... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by... lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...

  17. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    Science.gov (United States)

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.

    1998-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  18. 14 CFR 420.71 - Lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Lightning protection. 420.71 Section 420.71... protection. (a) Lightning protection. A licensee shall ensure that the public is not exposed to hazards due to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an...

  19. Variation of a Lightning NOx Indicator for National Climate Assessment

    Science.gov (United States)

    Koshak, W. J.; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS) data is used to estimate lightning nitrogen oxides (LNOx) production over the southern portion of the conterminous US. The total energy of each flash is estimated by analyzing the LIS optical event data associated with each flash (i.e., event radiance, event footprint area, and derivable event range). The LIS detects an extremely small fraction of the total flash energy; this fraction is assumed to be constant apart from the variability associated with the flash optical energy detected across the narrow (0.909 nm) LIS band. The estimate of total energy from each flash is converted to moles of LNOx production by assuming a chemical yield of 10(17) molecules Joule(-1). The LIS-inferred variable LNOx production from each flash is summed to obtain total LNOx production, and then appropriately enhanced to account for LIS detection efficiency and LIS view time. Annual geographical plots and time series of LNOx production are provided for a 16 year period (1998-2013).

  20. TH-AB-209-09: Quantitative Imaging of Electrical Conductivity by VHF-Induced Thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Patch, S; Hull, D [Avero Diagnostics, Irving, TX (United States); See, W [Medical College of Wisconsin, Milwaukee, WI (United States); Hanson, G [UW-Milwaukee, Milwaukee, WI (United States)

    2016-06-15

    Purpose: To demonstrate that very high frequency (VHF) induced thermoacoustics has the potential to provide quantitative images of electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Quantitatively imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. VHF irradiation provides superior depth penetration over near infrared used in photoacoustics. Additionally, VHF signal production is proportional to electrical conductivity, and prostate cancer is known to suppress electrical conductivity of prostatic fluid. Methods: A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system augmented by a lower frequency focused single element transducer was developed. Simultaneous acquisition of VHF-induced thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were measured at isocenter. Results: The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 kHz, resulting in a DC offset and low-frequency shading over fields of view exceeding 15 mm. Fresh human prostates were imaged ex vivo and volumetric reconstructions reveal structures rarely seen in diagnostic images. Conclusion

  1. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  2. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  3. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    International Nuclear Information System (INIS)

    Bennett, A J; Odams, P; Edwards, D; Arason, P.

    2010-01-01

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  4. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, A J; Odams, P; Edwards, D [Met Office, FitzRoy Road, Exeter EX1 3PB (United Kingdom); Arason, P., E-mail: alec.bennett@metoffice.gov.uk [Icelandic Meteorological Office, Bustaoavegi 9, IS-150 ReykjavIk (Iceland)

    2010-10-15

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  5. Lightning incidents in Mongolia

    Directory of Open Access Journals (Sweden)

    Myagmar Doljinsuren

    2015-11-01

    Full Text Available This is one of the first studies that has been conducted in Mongolia on the distribution of lightning incidents. The study covers a 10-year period from 2004 to 2013. The country records a human death rate of 15.4 deaths per 10 million people per year, which is much higher than that of many countries with similar isokeraunic level. The reason may be the low-grown vegetation observed in most rural areas of Mongolia, a surface topography, typical to steppe climate. We suggest modifications to Gomes–Kadir equation for such countries, as it predicts a much lower annual death rate for Mongolia. The lightning incidents spread over the period from May to August with the peak of the number of incidents occurring in July. The worst lightning affected region in the country is the central part. Compared with impacts of other convective disasters such as squalls, thunderstorms and hail, lightning stands as the second highest in the number of incidents, human deaths and animal deaths. Economic losses due to lightning is only about 1% of the total losses due to the four extreme weather phenomena. However, unless precautionary measures are not promoted among the public, this figure of losses may significantly increase with time as the country is undergoing rapid industrialization at present.

  6. Cloud-to-ground lightning activity in Colombia and the influence of topography

    Science.gov (United States)

    Aranguren, D.; López, J.; Inampués, J.; Torres, H.; Betz, H.

    2017-02-01

    Lightning activity on the Colombian mountains, where the altitude varies from 0 to more than 5000 MSL, is studied based on VLF/LF lightning detection data and using a 2012-2013 dataset. The influence of altitude is observed by evaluating cloud-to-ground lightning incidence at different altitude intervals. The relationship between ground flash density and altitude gradient vectors is studied. Results show a clear dependence of the flash density on elevation.

  7. Lightning injuries in sports and recreation.

    Science.gov (United States)

    Thomson, Eric M; Howard, Thomas M

    2013-01-01

    The powers of lightning have been worshiped and feared by all known human cultures. While the chance of being struck by lightning is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 lightning-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing lightning-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on lightning safety. Challenges remain in educating the general population involved in recreational outdoor activities that do not fall under the guidelines of organized sports.

  8. A lightning prevention system for nuclear operations

    International Nuclear Information System (INIS)

    Lanzoni, J.A.; Carpenter, R.B.; Tinsley, R.H.

    1994-01-01

    Lightning presents a significant threat to the uninterrupted operation of nuclear power generation facilities. There exists two categories of lightning protection systems-collectors and preventors. Collectors are air terminals, overhead shield wires and other devices designed to collect incoming lightning strikes. Preventors, on the other hand, lower the electrical potential between a thundercloud and ground to a level lower than that required to collect a strike. The Dissipation Array reg-sign Systems prevents lightning strikes from terminating in the protected area, consequently eliminating both the direct hazard and indirect effects of lightning. Over 1,600 Dissipation Array reg-sign Systems are currently in service, with more than 10,500 system-years of operating experience and a historical success rate of over ninety-nine percent. Lightning Eliminators ampersand Consultants has fulfilled 24 contracts for Dissipation Array reg-sign Systems at nuclear power generation facilities

  9. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor is...

  10. Demonstrating the Value of Near Real-time Satellite-based Earth Observations in a Research and Education Framework

    Science.gov (United States)

    Chiu, L.; Hao, X.; Kinter, J. L.; Stearn, G.; Aliani, M.

    2017-12-01

    The launch of GOES-16 series provides an opportunity to advance near real-time applications in natural hazard detection, monitoring and warning. This study demonstrates the capability and values of receiving real-time satellite-based Earth observations over a fast terrestrial networks and processing high-resolution remote sensing data in a university environment. The demonstration system includes 4 components: 1) Near real-time data receiving and processing; 2) data analysis and visualization; 3) event detection and monitoring; and 4) information dissemination. Various tools are developed and integrated to receive and process GRB data in near real-time, produce images and value-added data products, and detect and monitor extreme weather events such as hurricane, fire, flooding, fog, lightning, etc. A web-based application system is developed to disseminate near-real satellite images and data products. The images are generated with GIS-compatible format (GeoTIFF) to enable convenient use and integration in various GIS platforms. This study enhances the capacities for undergraduate and graduate education in Earth system and climate sciences, and related applications to understand the basic principles and technology in real-time applications with remote sensing measurements. It also provides an integrated platform for near real-time monitoring of extreme weather events, which are helpful for various user communities.

  11. 10. VDE/ABB lightning protection conference. Lectures

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings of the 10. VDE/ABB lightning protection conference include lectures on the following issues: Status on the standardization and resulting consequences; lightning protection of specific facilities; electrical grounding and potential equalization; lightning research; personal security and protection.

  12. Laboratory demonstration of ball lightning

    International Nuclear Information System (INIS)

    Egorov, Anton I; Stepanov, Sergei I; Shabanov, Gennadii D

    2004-01-01

    A common laboratory facility for creating glowing flying plasmoids akin to a natural ball lightning, allowing a number of experiments to be performed to investigate the main properties of ball lightning, is described. (methodological notes)

  13. First high speed imaging of lightning from summer thunderstorms over India: Preliminary results based on amateur recording using a digital camera

    Science.gov (United States)

    Narayanan, V. L.

    2017-12-01

    For the first time, high speed imaging of lightning from few isolated tropical thunderstorms are observed from India. The recordings are made from Tirupati (13.6oN, 79.4oE, 180 m above mean sea level) during summer months with a digital camera capable of recording high speed videos up to 480 fps. At 480 fps, each individual video file is recorded for 30 s resulting in 14400 deinterlaced images per video file. An automatic processing algorithm is developed for quick identification and analysis of the lightning events which will be discussed in detail. Preliminary results indicating different types of phenomena associated with lightning like stepped leader, dart leader, luminous channels corresponding to continuing current and M components are discussed. While most of the examples show cloud to ground discharges, few interesting cases of intra-cloud, inter-cloud and cloud-air discharges will also be displayed. This indicates that though high speed cameras with few 1000 fps are preferred for a detailed study on lightning, moderate range CMOS sensor based digital cameras can provide important information as well. The lightning imaging activity presented herein is initiated as an amateur effort and currently plans are underway to propose a suite of supporting instruments to conduct coordinated campaigns. The images discussed here are acquired from normal residential area and indicate how frequent lightning strikes are in such tropical locations during thunderstorms, though no towering structures are nearby. It is expected that popularizing of such recordings made with affordable digital cameras will trigger more interest in lightning research and provide a possible data source from amateur observers paving the way for citizen science.

  14. Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data

    Science.gov (United States)

    Herrera, J.; Younes, C.; Porras, L.

    2018-05-01

    This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.

  15. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  16. Climate and Lightning: An updated TRMM-LIS Analysis

    Science.gov (United States)

    Petersen, Walter A.; Buechler, D. E.

    2009-01-01

    The TRMM Lightning Imaging Sensor (LIS) has sampled global tropical and sub-tropical lightning flash densities for approximately 11 years. These data were originally processed and results presented by the authors in the 3rd AMS MALD Conference held in 2007 using both pre and post TRMM-boost lightning data. These data were normalized for the orbit boost by scaling the pre-boost data by a fixed constant based on the different swath areas for the pre and post-boost years (post-boost after 2001). Inevitably, one must question this simple approach to accounting for the orbit boost when sampling such a noisy quantity. Hence we are in the process of reprocessing the entire 11-year TRMM LIS dataset to reduce the orbit swath of the post-boost era to that of the pre-boost in order to eliminate sampling bias in the dataset. Study of the diurnal/seasonal/annual sampling suggests that those biases are already minimal and should not contribute to error in examination of annual trends. We will present new analysis of the 11-year annual trends in total lightning flash density for all latitudinal belts and select regions/regimes of the tropics as related to conventional climate signals and precipitation contents in the same period. The results should enable us to address, in some fashion, the sensitivity of the lightning flash density to subtle changes in climate.

  17. Emergency Preparedness and Response - Lightning

    Science.gov (United States)

    ... for Pet Owners Frequently Asked Questions Additional Information Lightning Language: English Español (Spanish) Recommend on Facebook Tweet ... you know what to do when you see lightning or when you hear thunder as a warning. ...

  18. An uncertain future for lightning

    Science.gov (United States)

    Murray, Lee T.

    2018-02-01

    The most commonly used method for representing lightning in global atmospheric models generally predicts lightning increases in a warmer world. A new scheme finds the opposite result, directly challenging the predictive skill of an old stalwart.

  19. LNOx Estimates Directly from LIS Data

    Science.gov (United States)

    Koshak, W. J.; Vant-hull, B.; McCaul, E.

    2014-12-01

    Nitrogen oxides (NOx = NO + NO2) are known to indirectly influence climate since they affect the concentration of both atmospheric ozone (O3) and hydroxyl radicals (OH). In addition, lightning NOx (LNOx) is the most important source of NOx in the upper troposphere (particularly in the tropics). It is difficult to estimate LNOx because it is not easy to make measurements near the lightning channel, and the various NOx-producing mechanisms within a lightning flash are not fully understood. A variety of methods have been used to estimate LNOx production [e.g., in-situ observations, combined ground-based VHF lightning mapping and VLF/LF lightning locating observations, indirect retrievals using satellite Ozone Monitoring Instrument (OMI) observations, theoretical considerations, laboratory spark measurements, and rocket triggered lightning measurements]. The present study introduces a new approach for estimating LNOx that employs Lightning Imaging Sensor (LIS) data. LIS optical measurements are used to directly estimate the total energy of a flash; the total flash energy is then converted to LNOx production (in moles) by multiplying by a thermo-chemical yield. Hence, LNOx estimates on a flash-by-flash basis are obtained. A Lightning NOx Indicator (LNI) is computed by summing up the LIS-derived LNOx contributions from a region over a particular analysis period. Larger flash optical areas are consistent with longer channel length and/or more energetic channels, and hence more NOx production. Brighter flashes are consistent with more energetic channels, and hence more NOx production. The location of the flash within the thundercloud and the optical scattering characteristics of the thundercloud are complicating factors. LIS data for the years 2003-2013 were analyzed, and geographical plots of the time-evolution of the LNI over the southern tier states (i.e. upto 38o N) of CONUS were determined. Overall, the LNI trends downward over the 11 yr analysis period. The LNI has

  20. Visual Analysis for Nowcasting of Multidimensional Lightning Data

    Directory of Open Access Journals (Sweden)

    Stefan Peters

    2013-08-01

    Full Text Available Globally, most weather-related damages are caused by thunderstorms. Besides floods, strong wind, and hail, one of the major thunderstorm ground effects is lightning. Therefore, lightning investigations, including detection, cluster identification, tracking, and nowcasting are essential. To enable reliable decisions, current and predicted lightning cluster- and track features as well as analysis results have to be represented in the most appropriate way. Our paper introduces a framework which includes identification, tracking, nowcasting, and in particular visualization and statistical analysis of dynamic lightning data in three-dimensional space. The paper is specifically focused on enabling users to conduct the visual analysis of lightning data for the purpose of identification and interpretation of spatial-temporal patterns embedded in lightning data, and their dynamics. A graphic user interface (GUI is developed, wherein lightning tracks and predicted lightning clusters, including their prediction certainty, can be investigated within a 3D view or within a Space-Time-Cube. In contrast to previous work, our approach provides insight into the dynamics of past and predicted 3D lightning clusters and cluster features over time. We conclude that an interactive visual exploration in combination with a statistical analysis can provide new knowledge within lightning investigations and, thus, support decision-making in weather forecast or lightning damage prevention.

  1. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  2. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  3. Satellite tracking of harbour seals on Horns Reef - Use of the Horns Reef wind farm area and the North Sea

    International Nuclear Information System (INIS)

    Tougaard, J.; Tougaard, S.; Jensen, Thyge; Ebbesen, I.; Teilmann, J.

    2003-03-01

    Ten harbour seals (Phoca vitulina) caught on the Danish Wadden Sea island Roemoe were equipped with satellite linked time depth recorders. The animals were caught on three separate occasions (Jan. 4th, Feb. 18th and May 6th, 2002). The transmitters worked between 49 and 100 days, relaying positional and dive information back via the ARGOS satellite service until beginning of July. Background for the studies is the construction of the Worlds largest off shore wind farm on Horns Reef. Based on previous studies using VHF-transmitters, it was expected that the seals would spend considerable time on Horns Reef. The VHF-telemetry studies showed that the preferred direction for seals leaving the Danish Wadden Sea is NW from Graedyb tidal area outside Esbjerg, the direction directly towards the wind farm area. The previously used VHF-transmitters had a limited detection range and it was decided to equip a number of seals from the same area as before with satellite transmitters. This allows for positioning of the seals in the entire North Sea as well as providing dive summary information, as a transmitter with a depth transducer was chosen for the study. Positional information revealed that animals move about more extensively than previously believed. Substantial variation between animals was observed and each seal seemed to have adopted its own foraging strategy. Some animals travelled to the centre of the North Sea on foraging trips and spent considerable time close to the bottom at 30-70 meters depth. Other seals remained in the German Bight and yet others spent considerable time on and around Horns Reef. The area of Horns reef wind farm constitutes a negligible fraction of the total area visited by the tagged seals. The reef as a whole however, appears to be important to the seals both for foraging and as transit area to other feeding grounds further off shore. The resolution in positional information is not sufficiently high to allow for a detailed study of the effects

  4. Satellite tracking of harbour seals on Horns Reef - Use of the Horns Reef wind farm area and the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Tougaard, J.; Tougaard, S.; Jensen, Thyge [Fisheries and Maritime Museum Esbjerg (Denmark); Ebbesen, I. [Univ. of Sourthern Denmark, Inst. of Biology, Odense (Denmark); Teilmann, J. [NationL Environmental Res. Inst., Roskidle (Denmark)

    2003-03-15

    Ten harbour seals (Phoca vitulina) caught on the Danish Wadden Sea island Roemoe were equipped with satellite linked time depth recorders. The animals were caught on three separate occasions (Jan. 4th, Feb. 18th and May 6th, 2002). The transmitters worked between 49 and 100 days, relaying positional and dive information back via the ARGOS satellite service until beginning of July. Background for the studies is the construction of the Worlds largest off shore wind farm on Horns Reef. Based on previous studies using VHF-transmitters, it was expected that the seals would spend considerable time on Horns Reef. The VHF-telemetry studies showed that the preferred direction for seals leaving the Danish Wadden Sea is NW from Graedyb tidal area outside Esbjerg, the direction directly towards the wind farm area. The previously used VHF-transmitters had a limited detection range and it was decided to equip a number of seals from the same area as before with satellite transmitters. This allows for positioning of the seals in the entire North Sea as well as providing dive summary information, as a transmitter with a depth transducer was chosen for the study. Positional information revealed that animals move about more extensively than previously believed. Substantial variation between animals was observed and each seal seemed to have adopted its own foraging strategy. Some animals travelled to the centre of the North Sea on foraging trips and spent considerable time close to the bottom at 30-70 meters depth. Other seals remained in the German Bight and yet others spent considerable time on and around Horns Reef. The area of Horns reef wind farm constitutes a negligible fraction of the total area visited by the tagged seals. The reef as a whole however, appears to be important to the seals both for foraging and as transit area to other feeding grounds further off shore. The resolution in positional information is not sufficiently high to allow for a detailed study of the effects

  5. 14 CFR 25.1316 - System lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false System lightning protection. 25.1316... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1316 System lightning... systems to perform these functions are not adversely affected when the airplane is exposed to lightning...

  6. On the Initiation of Lightning in Thunderclouds

    International Nuclear Information System (INIS)

    Chilingarian, A.; Chilingaryan, S.; Karapetyan, T.; Kozliner, L.; Khanikyants, Y.; Hovsepyan, G.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    The relationship of lightning and elementary particle fluxes in the thunderclouds is not fully understood to date. Using the particle beams (the so-called Thunderstorm Ground Enhancements - TGE) as a probe we investigate the characteristics of the interrelated atmospheric processes. The well-known effect of the TGE dynamics is the abrupt termination of the particle flux by the lightning flash. With new precise electronics, we can see that particle flux decline occurred simultaneously with the rearranging of the charge centers in the cloud. The analysis of the TGE energy spectra before and after the lightning demonstrates that intense high-energy part of the TGE energy spectra disappeared just after lightning. The decline of particle flux coincides on millisecond time scale with first atmospheric discharges and we can conclude that Relativistic Runaway Electron Avalanches (RREA) in the thundercloud assist initiation of the negative cloud to ground lightning. Thus, RREA can provide enough ionization to play a significant role in the unleashing of the lightning flash. (author)

  7. Scientific Lightning Detection Network for Kazakhstan

    Science.gov (United States)

    Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.

    2015-12-01

    In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.

  8. Relating lightning data to fire occurrence data

    Science.gov (United States)

    Frank H. Koch

    2009-01-01

    Lightning disturbance can affect forest health at various scales. Lightning strikes may kill or weaken individual trees. Lightning-damaged trees may in turn function as epicenters of pest outbreaks in forest stands, as is the case with the southern pine beetle and other bark beetles (Rykiel and others 1988).

  9. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  10. Chasing Lightning: Sferics, Tweeks and Whistlers

    Science.gov (United States)

    Webb, P. A.; Franzen, K.; Garcia, L.; Schou, P.; Rous, P.

    2008-12-01

    We all know what lightning looks like during a thunderstorm, but the visible flash we see is only part of the story. This is because lightning also generates light with other frequencies that we cannot perceive with our eyes, but which are just as real as visible light. Unlike the visible light from lightning, these other frequencies can carry the lightning's energy hundreds or thousands of miles across the surface of the Earth in the form of special signals called "tweeks" and "sferics". Some of these emissions can even travel tens of thousands of miles out into space before returning to the Earth as "whistlers". The INSPIRE Project, Inc is a non-profit scientific and educational corporation whose beginning mission was to bring the excitement of observing these very low frequency (VLF) natural radio waves emissions from lightning to high school students. Since 1989, INSPIRE has provided specially designed radio receiver kits to over 2,600 participants around the world to make observations of signals in the VLF frequency range. Many of these participants are using the VLF data they collect in very creative projects that include fiction, music and art exhibitions. During the Fall 2008 semester, the first INSPIRE based university-level course was taught at University of Maryland Baltimore County (UMBC) as part of its First-Year Seminar (FYS) series. The FYS classes are limited to 20 first-year students per class and are designed to create an active-learning environment that encourages student participation and discussion that might not otherwise occur in larger first-year classes. This presentation will cover the experiences gained from using the INSPIRE kits as the basis of a university course. This will include the lecture material that covers the basic physics of lightning, thunderstorms and the Earth's atmosphere, as well as the electronics required to understand the basic workings of the VLF kit. It will also cover the students assembly of the kit in an

  11. Experimental research on ball lightning

    International Nuclear Information System (INIS)

    Ofuruton, H.; Ohtsuki, Y.H.

    1990-01-01

    Experiments on producing ball lightning were made with discharge in flammable gas and/or aerosol. A long lifetime (2 s) ball lightning was observed in 2.7 % ethane and 100 cm 3 cotton fibers, and in 1.5 % methane and 1.9 % ethane

  12. Central hyperadrenergic state after lightning strike.

    Science.gov (United States)

    Parsaik, Ajay K; Ahlskog, J Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H; Seime, Richard J; Craft, Jennifer M; Staab, Jeffrey P; Kantor, Birgit; Low, Phillip A

    2013-08-01

    To describe and review autonomic complications of lightning strike. Case report and laboratory data including autonomic function tests in a subject who was struck by lightning. A 24-year-old man was struck by lightning. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation was highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the lightning strike on the central nervous system or a secondary response is open to speculation.

  13. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  14. Lightning

    Science.gov (United States)

    Pampe, William R.

    1970-01-01

    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  15. Laboratory demonstration of lightning strike pattern on different roof tops installed with Franklin Rods

    Science.gov (United States)

    Ullah, Irshad; Baharom, MNR; Ahmed, H.; Luqman, HM.; Zainal, Zainab

    2017-11-01

    Protection against lightning is always a challenging job for the researcher. The consequences due to lightning on different building shapes needs a comprehensive knowledge in order to provide the information to the common man. This paper is mainly concern with lightning pattern when it strikes on the building with different shape. The work is based on the practical experimental work in high voltage laboratory. Different shapes of the scaled structures have been selected in order to investigate the equal distribution of lightning voltage. The equal distribution of lightning voltage will provide the maximum probability of lightning strike on air terminal of the selected shapes. Building shapes have a very important role in lightning protection. The shapes of the roof tops have different geometry and the Franklin rod installation is also varies with changing the shape of the roof top. According to the ambient weather condition of Malaysia high voltage impulse is applied on the lightning rod installed on different geometrical shape. The equal distribution of high voltage impulse is obtained as the geometry of the scaled structure is identical and the air gap for all the tested object is kept the same. This equal distribution of the lightning voltage also proves that the probability of lightning strike is on the corner and the edges of the building structure.

  16. Nearshore regional behavior of lightning interaction with wind turbines

    Directory of Open Access Journals (Sweden)

    Gilbert A. Malinga

    2016-01-01

    Full Text Available The severity of lightning strikes on offshore wind turbines built along coastal and nearshore regions can pose safety concerns that are often overlooked. In this research study the behavior of electrical discharges for wind turbines that might be located in the nearshore regions along the East Coast of China and Sea of Japan were characterized using a physics-based model that accounted for a total of eleven different geometrical and lightning parameters. Utilizing the electrical potential field predicted using this model it was then possible to estimate the frequency of lightning strikes and the distribution of electrical loads utilizing established semi-empirical relationships and available data. The total number of annual lightning strikes on an offshore wind turbine was found to vary with hub elevation, extent of cloud cover, season and geographical location. The annual lightning strike rate on a wind turbine along the nearshore region on the Sea of Japan during the winter season was shown to be moderately larger compared to the lightning strike frequency on a turbine structure on the East Coast of China. Short duration electrical discharges, represented using marginal probability functions, were found to vary with season and geographical location, exhibiting trends consistent with the distribution of the electrical peak current. It was demonstrated that electrical discharges of moderately long duration typically occur in the winter months on the East Coast of China and the summer season along the Sea of Japan. In contrast, severe electrical discharges are typical of summer thunderstorms on the East Coast of China and winter frontal storm systems along the West Coast of Japan. The electrical charge and specific energy dissipated during lightning discharges on an offshore wind turbine was found to vary stochastically, with severe electrical discharges corresponding to large electrical currents of long duration.

  17. Use of negotiated rulemaking in developing technical rules for low-Earth orbit mobile satellite systems

    Science.gov (United States)

    Taylor, Leslie A.

    Technical innovations have converged with the exploding market demand for mobile telecommunications to create the impetus for low-earth orbit (LEO) communications satellite systems. The so-called 'Little LEO's' propose use of VHF and UHF spectrum to provide position - location and data messaging services. The so-called 'Big LEO's' propose to utilize the RDSS bands to provide voice and data services. In the United States, several applications were filed with the U.S. Federal Communications Commission (FCC) to construct and operate these mobile satellite systems. To enable the prompt introduction of such new technology services, the FCC is using innovative approaches to process the applications. Traditionally, when the FCC is faced with 'mutually exclusive' applications, e.g. a grant of one would preclude a grant of the others, it uses selection mechanisms such as comparative hearings or lotteries. In the case of the LEO systems, the FCC has sought to avoid these time-consuming approaches by using negotiated rulemakings. The FCC's objective is to enable the multiple applicants and other interested parties to agree on technical and service rules which will enable the grant of all qualified applications. With regard to the VHF/UHF systems, the Advisory Committee submitted a consensus report to the FCC. The process for the systems operating in the bands above 1 GHz involved more parties and more issues but still provided the FCC useful technical information to guide the adoption of rules for the new mobile satellite service.

  18. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  19. Description of an aircraft lightning and simulated nuclear electromagnetic pulse (NEMP) threat based on experimental data

    Science.gov (United States)

    Rustan, Pedro L., Jr.

    1987-01-01

    Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.

  20. A simple lightning assimilation technique for improving ...

    Science.gov (United States)

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The

  1. Assessing Lightning and Wildfire Hazard by Land Properties and Cloud to Ground Lightning Data with Association Rule Mining in Alberta, Canada.

    Science.gov (United States)

    Cha, DongHwan; Wang, Xin; Kim, Jeong Woo

    2017-10-23

    Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with high frequency Cloud to Ground (CG) lightning strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual lightning occurred during warm months (June to August) and the daily lightning frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG lightning patterns, which were verified by similarity measurement to check the patterns' consistency. The similarity coefficient values indicated that there were high correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that lightning and wildfires occur in two distinct areas: frequent wildfire regions with a high frequency of lightning, and frequent wild-fire regions with a low frequency of lightning. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG lightning hazard map and specific land use types.

  2. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  3. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  4. Repotenciación de un sistema de radiocomunicaciones VHF

    Directory of Open Access Journals (Sweden)

    Juan Ortega

    2016-11-01

    Full Text Available Las comunicaciones móviles avanzan a pasos acelerados, como fuente de ayuda para la interrelación entre personas, empresas y proyectos que se enmarcan dentro de los criterios zonales de planificación, el cambio en la matriz productiva del país y el Plan Nacional del Buen Vivir. En tal virtud, el estudio de una repotenciación mediante la aplicación de conocimientos y herramientas enmarcadas dentro de las comunicaciones VHF, es fundamental dentro del mejoramiento en términos de calidad de servicio dentro del área de concesión donde se fundamenta el estudio. El presente artículo realiza un análisis situacional de la red de radiocomunicaciones VHF actual de la Empresa Eléctrica Regional Centro Sur C. A., el área de concesión, localización y coberturas de los repetidores existentes, con el diagnóstico actual de la misma. Además, se desarrolla la propuesta de repotenciación detallando la infraestructura necesaria para su ejecución, la ampliación del área de cobertura, la configuración del software para la gestión e interconexión de los equipos de diferentes zonas.

  5. Prevalent lightning sferics at 600 megahertz near Jupiter's poles

    Science.gov (United States)

    Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John

    2018-06-01

    Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

  6. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  7. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid

    Directory of Open Access Journals (Sweden)

    J.-T. Lin

    2012-03-01

    Full Text Available Vertical column densities (VCDs of tropospheric nitrogen dioxide (NO2 retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The inversion is done gridbox by gridbox to derive the respective emissions, taking advantage of differences in seasonality between anthropogenic and natural sources. Lightning and soil emissions are combined together for any given gridbox due to their similar seasonality; and their different spatial distributions are used implicitly for source separation to some extent. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±39%, 0.21 TgN (±61%, and 0.38 TgN (±65% for the a posteriori anthropogenic, lightning and soil emissions, respectively, about 18–23% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Derived lightning emissions are about 3% of

  8. Rationales for the Lightning Launch Commit Criteria

    Science.gov (United States)

    Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.

    2016-01-01

    Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.

  9. Statistical Evolution of the Lightning Flash

    Science.gov (United States)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.

    2012-12-01

    Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest

  10. The Impact of Active Conductors on Czech and Hungarian Lightning Protection Legislation

    Directory of Open Access Journals (Sweden)

    Jan Mikeš

    2013-01-01

    Full Text Available This paper summarizes the developmental conditions for the emergence of protection against lightning. It reviews the legislation especially in the Czech Republic over the last 15 years, and its application for active lightning conductors. The paper presents examples of the damage caused bylightning strikes on buildings protected by ESE lightning rods constructed using the French nationalstandard NFC 17-102 [1] and STN 34 1391 [2]. Installation of lightning conductors based on thesestandards is not, however, in accordance with the valid legislation in the Czech Republic and Hungary.In response to a growing number of ESE installations in the Czech Republic, it is vital to inform boththe broader professional publc and the lay public of cases involving failures of this type of lightningconductor.

  11. Lightning activity on Jupiter

    Science.gov (United States)

    Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.

    1982-01-01

    Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.

  12. NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges

    CERN Document Server

    Füllekrug, Martin; Rycroft, Michael J

    2006-01-01

    Particularly intense lightning discharges can produce transient luminous events above thunderclouds, termed sprites, elves and jets. These short lived optical emissions in the mesosphere can reach from the tops of thunderclouds up to the ionosphere; they provide direct evidence of coupling from the lower atmosphere to the upper atmosphere. Sprites are arguably the most dramatic recent discovery in solar-terrestrial physics. Shortly after the first ground based video recordings of sprites, observations on board the Space Shuttle detected sprites and elves occurring all around the world. These reports led to detailed sprite observations in North America, South America, Australia, Japan, and Europe. Subsequently, sprites were detected from other space platforms such as the International Space Station and the ROCSAT satellite. During the past 15 years, more than 200 contributions on sprites have been published in the scientific literature to document this rapidly evolving new research area.

  13. Lightning Return Stroke Current Analysis Using Electromagnetic Models and the 3D-FDTD Method

    Directory of Open Access Journals (Sweden)

    Kaddour Arzag

    2017-03-01

    Full Text Available The three dimensions finite difference time domain method (3D-FDTD is employed to calculate lightning return stoke current distributions in a vertical lightning channel. The latter is excited at its bottom by a lumped current source above a flat perfectly conducting ground. In this study four lightning return stroke electromagnetic models are used. The calculating approach, which is based on Taflove formulation of the 3D-FDTD method combined to the UPML boundary conditions, is implemented on Matlab environment. For validation needs, the obtained lightning return stroke space and time distributions are compared with others taken from specialized literature.

  14. Analysis of warm season thunderstorms using an object-oriented tracking method based on radar and total lightning data

    Directory of Open Access Journals (Sweden)

    T. Rigo

    2010-09-01

    Full Text Available Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data. In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm.

    The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation, are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%, while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%. Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms

  15. Analysis of warm season thunderstorms using an object-oriented tracking method based on radar and total lightning data

    Science.gov (United States)

    Rigo, T.; Pineda, N.; Bech, J.

    2010-09-01

    Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest

  16. Radioactive lightning rods waste treatment

    International Nuclear Information System (INIS)

    Vicente, Roberto; Dellamano, Jose C.; Hiromoto, Goro

    2008-01-01

    Full text: In this paper, we present alternative processes that could be adopted for the management of radioactive waste that arises from the replacement of lightning rods with attached Americium-241 sources. Lightning protectors, with Americium-241 sources attached to the air terminals, were manufactured in Brazil until 1989, when the regulatory authority overthrew the license for fabrication, commerce, and installation of radioactive lightning rods. It is estimated that, during the license period, about 75,000 such devices were set up in public, commercial and industrial buildings, including houses and schools. However, the policy of CNEN in regard to the replacement of the installed radioactive rods, has been to leave the decision to municipal governments under local building regulations, requiring only that the replaced rods be sent immediately to one of its research institutes to be treated as radioactive waste. As a consequence, the program of replacement proceeds in a low pace and until now only about twenty thousand rods have reached the waste treatment facilities The process of management that was adopted is based primarily on the assumption that the Am-241 sources will be disposed of as radioactive sealed sources, probably in a deep borehole repository. The process can be described broadly by the following steps: a) Receive and put the lightning rods in initial storage; b) Disassemble the rods and pull out the sources; c) Decontaminate and release the metal parts to metal recycling; d) Store the sources in intermediate storage; e) Package the sources in final disposal packages; and f) Send the sources for final disposal. Up to now, the disassembled devices gave rise to about 90,000 sources which are kept in storage while the design of the final disposal package is in progress. (author)

  17. Time and latitudinal distribution of the ionospheric irregularities in Brazil, through the VHF-scintillation and ionogram data analysis

    International Nuclear Information System (INIS)

    Nelson, O.R.

    1984-01-01

    Equatorial ionospheric irregularity distribution morphology, and dynamics, and the dynamics of the ambient ionosphere were investigated. Spread F data from ionograms over Fortaleza (4 0 S; 38 0 O) and Cachoeira Paulista (22,7 0 S; 45 0 O), and simultaneous VHF scintillations of geoestationary satellite beacon received over Natal (5,6 0 S; 33,7 0 O) were used to determine the irregularity local time versus seasonal distribution, over the equatorial and low latitude location, during the solar activity maximum as well as minimum epochs. Concept of flux tube alignment properties of the transequatorial plasma bubbles were used to determine statistical features of the plasma bubble rise velocities. Calculations of plasma bubble rise velocities were then carried out for different solar activity epochs and compared with prereversal enhancement amplitude in the F-layer vertical rise velocities, for the same epochs. Using theoretical considerations on the development of plasma bubble based on flux tube integrated properties, the observed dependence of the plasma bubble rise velocities and the F-region dynamo electric field has been analysed to estimate the average ionizations depletions in the plasma bubble. Possible causes for the lack of correlation often observed between bubble rise velocities and F-Layer velocities also are discussed. (Author) [pt

  18. The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications

    Science.gov (United States)

    Koshak, William; Khan, Maudood; Peterson, Harold

    2011-01-01

    Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.

  19. Lightning Strike in Pregnancy With Fetal Injury.

    Science.gov (United States)

    Galster, Kellen; Hodnick, Ryan; Berkeley, Ross P

    2016-06-01

    Injuries from lightning strikes are an infrequent occurrence, and are only rarely noted to involve pregnant victims. Only 13 cases of lightning strike in pregnancy have been previously described in the medical literature, along with 7 additional cases discovered within news media reports. This case report presents a novel case of lightning-associated injury in a patient in the third trimester of pregnancy, resulting in fetal ischemic brain injury and long-term morbidity, and reviews the mechanics of lightning strikes along with common injury patterns of which emergency providers should be aware. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  20. Extensive air showers, lightnings and thunderstorm ground enhancements

    International Nuclear Information System (INIS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-01-01

    For the lightning research, we monitor the particle fluxes from thunderclouds, the so called Thunderstorm Ground Enhancements (TGEs) initiated by the runaway electrons, and Extensive Air Showers (EASs) originated from high energy protons or fully stripped nuclei that enter the Earth’s atmosphere. Besides, we monitor the near-surface electric field and the atmospheric discharges with the help of a network of electric field mills. The Aragats “electron accelerator” produced plenty of TGE and lightning events in spring 2015. Using 1-sec time series, we investigated the relation of lightnings and particle fluxes. Lightning flashes often terminated the particle flux; during some of TGEs the lightning would terminate the particle flux 3 times after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of TGE or on the decay phase of it; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just on a maximum of its development. We discuss the possibility that a huge EAS facilitates lightning leader to find its path to the ground. (author)

  1. Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model

    Directory of Open Access Journals (Sweden)

    D. J. Allen

    2012-02-01

    Full Text Available A lightning-nitrogen oxide (NO algorithm is implemented in the Community Multiscale Air Quality Model (CMAQ and used to evaluate the impact of lightning-NO emissions (LNOx on tropospheric photochemistry over the United States during the summer of 2006.

    For a 500 mole per flash lightning-NO source, the mean summertime tropospheric NO2 column agrees with satellite-retrieved columns to within −5 to +13%. Temporal fluctuations in the column are moderately well simulated; however, the addition of LNOx does not lead to a better simulation of day-to-day variability. The contribution of lightning-NO to the model column ranges from ∼10% in the northern US to >45% in the south-central and southeastern US. Lightning-NO adds up to 20 ppbv to upper tropospheric model ozone and 1.5–4.5 ppbv to 8-h maximum surface layer ozone, although, on average, the contribution of LNOx to model surface ozone is 1–2 ppbv less on poor air quality days. LNOx increases wet deposition of oxidized nitrogen by 43% and total deposition of nitrogen by 10%. This additional deposition reduces the mean magnitude of the CMAQ low-bias in nitrate wet deposition with respect to National Atmospheric Deposition monitors to near zero.

    Differences in urban/rural biases between model and satellite-retrieved NO2 columns were examined to identify possible problems in model chemistry and/or transport. CMAQ columns were too large over urban areas. Biases at other locations were minor after accounting for the impacts of lightning-NO emissions and the averaging kernel on model columns.

    In order to obtain an upper bound on the contribution of uncertainties in NOy chemistry to upper tropospheric NOx low biases, sensitivity calculations with updated chemistry were run for the time period of the Intercontinental Chemical Transport Experiment (INTEX-A field campaign (summer 2004

  2. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  3. Development of a High-Brightness VHF Electron Source at LBNL

    International Nuclear Information System (INIS)

    Lidia, Steven M.; Sannibale, Fernando; Staples, John W.; Virostek, Steve P.; Wells, Russell P.

    2007-01-01

    Currently proposed ERL and high average power FEL projects require electron beam sources that can generate ∼1nC bunch charges at high repetition rates. Many proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose a novel solution that greatly diminishes high voltage breakdown issues while also decreasing peak RF power requirements in a warm copper device, and that has the benefit of mapping the rf oscillation period much more closely to the required beam repetition rate. We present the initial RF and mechanical design for a 750kV electron source and beam injection system utilizing a gun resonant in the VHF band. Beam dynamics simulations demonstrate excellent beam quality preservation and transport

  4. Lightning safety awareness of visitors in three California national parks.

    Science.gov (United States)

    Weichenthal, Lori; Allen, Jacoby; Davis, Kyle P; Campagne, Danielle; Snowden, Brandy; Hughes, Susan

    2011-09-01

    To assess the level of lightning safety awareness among visitors at 3 national parks in the Sierra Nevada Mountains of California. A 12-question, short answer convenience sample survey was administered to participants 18 years of age and over concerning popular trails and points of interest with known lightning activity. There were 6 identifying questions and 5 knowledge-based questions pertaining to lightning that were scored on a binary value of 0 or 1 for a total of 10 points for the survey instrument. Volunteers in Fresno, California, were used as a control group. Participants were categorized as Sequoia and Kings Canyon National Park (SEKI), frontcountry (FC), or backcountry (BC); Yosemite National Park (YNP) FC or BC; and Fresno. Analysis of variance (ANOVA) was used to test for differences between groups. 467 surveys were included for analysis: 77 in Fresno, 192 in SEKI, and 198 in YNP. National park participants demonstrated greater familiarity with lightning safety than individuals from the metropolitan community (YNP 5.84 and SEKI 5.65 vs Fresno 5.14, P = .0032). There were also differences noted between the BC and FC subgroups (YNP FC 6.07 vs YNP BC 5.62, P = .02; YNP FC 6.07 vs SEKI FC 5.58, P = .02). Overall results showed that participants had certain basic lightning knowledge but lacked familiarity with other key lightning safety recommendations. While there are statistically significant differences in lightning safety awareness between national parks and metropolitan participants, the clinical impact of these findings are debatable. This study provides a starting point for providing educational outreach to visitors in these national parks. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. "Thunderstruck": penetrating thoracic injury from lightning strike.

    Science.gov (United States)

    van Waes, Oscar J F; van de Woestijne, Pieter C; Halm, Jens A

    2014-04-01

    Lightning strike victims are rarely presented at an emergency department. Burns are often the primary focus. This case report describes the improvised explosive device like-injury to the thorax due to lightning strike and its treatment, which has not been described prior in (kerauno)medicine. Penetrating injury due to blast from lightning strike is extremely rare. These "shrapnel" injuries should however be ruled out in all patients struck by lightning. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  6. Katrina and Rita were lit up with lightning

    Science.gov (United States)

    Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.

    Hurricanes generally produce very little lightning activity compared to other noncyclonic storms, and lightning is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) Lightning can sometimes be detected in the outer, spiral rainbands, but the lightning occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their lightning production rate.

  7. Performance Study of Earth Networks Total Lightning Network using Rocket-Triggered Lightning Data in 2014

    Science.gov (United States)

    Heckman, S.

    2015-12-01

    Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.

  8. Irregularities of ionospheric VTEC during lightning activity over Antarctic Peninsula

    International Nuclear Information System (INIS)

    Suparta, W; Wan Mohd Nor, W N A

    2017-01-01

    This paper investigates the irregularities of vertical total electron content (VTEC) during lightning activity and geomagnetic quiet days over Antarctic Peninsula in year 2014. During the lightning event, the ionosphere may be disturbed which may cause disruption in the radio signal. Thus, it is important to understand the influence of lightning on VTEC in the study of upper-lower interaction. The lightning data is obtained from World Wide Lightning Location Network (WWLLN) and the VTEC data has analyzed from Global Positioning System (GPS) for O’Higgins (OHI3), Palmer (PALV), and Rothera (ROTH). The results demonstrate the VTEC variation of ∼0.2 TECU during low lightning activity which could be caused by energy dissipation through lightning discharges from troposphere into the thermosphere. (paper)

  9. Harmful effects of lightning surge discharge on communications terminal equipments

    International Nuclear Information System (INIS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-01-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  10. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    Science.gov (United States)

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; hide

    2012-01-01

    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the

  11. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    Science.gov (United States)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.

    2007-03-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.

  12. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  13. Lightning Injuries

    Science.gov (United States)

    ... metal vehicle (for example, a car, van, or truck) with the windows closed. Sheltering in a small ... A person struck by lightning does not retain electricity, so there is no danger in providing first ...

  14. Electrically conductive carbon fibre-reinforced composite for aircraft lightning strike protection

    Science.gov (United States)

    Katunin, Andrzej; Krukiewicz, Katarzyna; Turczyn, Roman; Sul, Przemysław; Bilewicz, Marcin

    2017-05-01

    Aircraft elements, especially elements of exterior fuselage, are subjected to damage caused by lightning strikes. Due to the fact that these elements are manufactured from polymeric composites in modern aircraft, and thus, they cannot conduct electrical charges, the lightning strikes cause burnouts in composite structures. Therefore, the effective lightning strike protection for such structures is highly desired. The solution presented in this paper is based on application of organic conductive fillers in the form of intrinsically conducting polymers and carbon fabric in order to ensure electrical conductivity of whole composite and simultaneously retain superior mechanical properties. The presented studies cover synthesis and manufacturing of the electrically conductive composite as well as its characterization with respect to mechanical and electrical properties. The performed studies indicate that the proposed material can be potentially considered as a constructional material for aircraft industry, which characterizes by good operational properties and low cost of manufacturing with respect to current lightning strike protection materials solutions.

  15. [Lightning-caused fire, its affecting factors and prediction: a review].

    Science.gov (United States)

    Zhang, Ji-Li; Bi, Wu; Wang, Xiao-Hong; Wang, Zi-Bo; Li, Di-Fei

    2013-09-01

    Lightning-caused fire is the most important natural fire source. Its induced forest fire brings enormous losses to human beings and ecological environment. Many countries have paid great attention to the prediction of lightning-caused fire. From the viewpoint of the main factors affecting the formation of lightning-caused fire, this paper emphatically analyzed the effects and action mechanisms of cloud-to-ground lightning, fuel, meteorology, and terrain on the formation and development process of lightning-caused fire, and, on the basis of this, summarized and reviewed the logistic model, K-function, and other mathematical methods widely used in prediction research of lightning-caused fire. The prediction methods and processes of lightning-caused fire in America and Canada were also introduced. The insufficiencies and their possible solutions for the present researches as well as the directions of further studies were proposed, aimed to provide necessary theoretical basis and literature reference for the prediction of lightning-caused fire in China.

  16. Lightning climatology in the Congo Basin: detailed analysis

    Science.gov (United States)

    Soula, Serge; Kigotsi, Jean; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analyzed in detail for the first time. It is based on World Wide Lightning Location Network (WWLLN) data for the period from 2005 to 2013. A comparison of these data with the Lightning Imaging Sensor (LIS) data for the same period shows the WWLLN detection efficiency (DE) in the region increases from about 1.70 % in the beginning of the period to 5.90 % in 2013, relative to LIS data, but not uniformly over the whole 2750 km × 2750 km area. Both the annual flash density and the number of stormy days show sharp maximum values localized in eastern of Democratic Republic of Congo (DRC) and west of Kivu Lake, regardless of the reference year and the period of the year. These maxima reach 12.86 fl km-2 and 189 days, respectively, in 2013, and correspond with a very active region located at the rear of the Virunga mountain range characterised with summits that can reach 3000 m. The presence of this range plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003) and other authors. Thus, a mean maximum value of about 157 fl km-2 y-1 is found for the annual lightning density. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56 % of the flashes located below the equator in the 10°S - 10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year, in agreement with previous works in other regions of the world.

  17. An improved method for predicting the lightning performance of high and extra-high-voltage substation shielding

    Science.gov (United States)

    Vinh, T.

    1980-08-01

    There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.

  18. 14 CFR 23.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  19. Progress towards a lightning ignition model for the Northern Rockies

    Science.gov (United States)

    Paul Sopko; Don Latham

    2010-01-01

    We are in the process of constructing a lightning ignition model specific to the Northern Rockies using fire occurrence, lightning strike, ecoregion, and historical weather, NFDRS (National Fire Danger Rating System), lightning efficiency and lightning "possibility" data. Daily grids for each of these categories were reconstructed for the 2003 fire season (...

  20. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lightning Instrument Package (LIP) dataset was collected by the Lightning Instrument Package (LIP), which consists of 6 rotating vane type electric field...

  1. Study on the luminous characteristics of a natural ball lightning

    Science.gov (United States)

    Wang, Hao; Yuan, Ping; Cen, Jianyong; Liu, Guorong

    2018-02-01

    According to the optical images of the whole process of a natural ball lightning recorded by two slit-less spectrographs in the Qinghai plateau of China, the simulated observation experiment on the luminous intensity of the spherical light source was carried out. The luminous intensity and the optical power of the natural ball lightning in the wavelength range of 400-690 nm were estimated based on the experimental data and the Lambert-Beer Law. The results show that the maximum luminous intensity was about 1.24 × 105 cd in the initial stage of the natural ball lightning, and the maximum luminous intensity and the maximum optical power in most time of its life were about 5.9 × 104 cd and 4.2 × 103 W, respectively.

  2. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  3. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  4. Identification of lightning vulnerability points on complex grounded structures

    OpenAIRE

    Becerra Garcia, Marley; Cooray, Vernon; Hartono, Z.A

    2007-01-01

    The identification of the most vulnerable points on a given structure to be struck by lightning is an important issue on the design of areliable lightning protection system. Traditionally, these lightning strike points are identified using the rolling sphere method, through anempirical correlation with the prospective peak return stroke current. However, field observations in Kuala Lumpur and Singapore haveshown that the points where lightning flashes strike buildings also depend on the heigh...

  5. Does the Internet Reduce Corruption?

    DEFF Research Database (Denmark)

    Andersen, Thomas Barnebeck; Bentzen, Jeanet Sinding; Dalgaard, Carl-Johan Lars

    2011-01-01

    of Internet diffusion. A natural phenomenon causing power disruptions is lightning activity, which makes lightning a viable instrument for Internet diffusion. Using ground-based lightning detection censors as well as global satellite data, we construct lightning density data for the contiguous U.S. states...

  6. Statistical analysis of lightning electric field measured under Malaysian condition

    Science.gov (United States)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  7. 30 CFR 56.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  8. Spatial and temporal analysis of a 17-year lightning climatology over Bangladesh with LIS data

    Science.gov (United States)

    Dewan, Ashraf; Ongee, Emmanuel T.; Rahman, Md. Masudur; Mahmood, Rezaul; Yamane, Yusuke

    2017-10-01

    Using NASA's TRMM Lightning Imaging Sensor (LIS) data from 1998 to 2014, this paper presents a 17-year lightning climatology of Bangladesh, at 0.5° × 0.5° spatial resolution. Diurnal, seasonal, monthly and annual variations in the occurrence of lightning flashes were explored. The diurnal regime of lightning is dominated by afternoon/evening events. Overall, peak lightning activity occurs in the early morning (0200 LST) and evening (1900 LST). The distribution of lightning flash counts by season over Bangladesh landmass is as follows: pre-monsoon (69.2%), monsoon (24.1%), post-monsoon (4.6%) and winter (2.1%). Flash rate density (FRD) hotspots were primarily located in the north and north-eastern parts of Bangladesh, with a maximum of 72 fl km-2 year-1. Spatially, the distribution of FRD increases from the Bay of Bengal in the south to relatively higher elevations (of the Himalayan foothills) in the north. A spatial shift in FRD hotspots occurs with change in season. For example, in monsoon season, hotspots of lightning activity move in a south-westerly direction from their pre-monsoon location (i.e. north-eastern Bangladesh) towards West Bengal in India. South and south-eastern parts of Bangladesh experience high lightning activity during post-monsoon season due to regional orographic lifting and low-pressure systems (i.e. cyclone) in the Bay of Bengal. To the best of our knowledge, this is the first study focused on LIS-based lightning climatology over Bangladesh. This baseline study, therefore, is an essential first step towards effective management of lightning-related hazards in Bangladesh.

  9. Sensors for lightning measurements on aircraft

    NARCIS (Netherlands)

    Stelmashuk, V.; Deursen, van A.P.J.

    2008-01-01

    Lightning strikes a commercial airliner on the average once a year. The European project ldquoIn-flight Lightning Strike Damage Assessment System (ILDAS)rdquo [1] aims to develop and validate a prototype of a system capable to 1) reconstruct the current intensity and wave form, 2) determine of the

  10. A lightning climatology of the South-West Indian Ocean

    Directory of Open Access Journals (Sweden)

    C. Bovalo

    2012-08-01

    Full Text Available The World Wide Lightning Location Network (WWLLN data have been used to perform a lightning climatology in the South-West Indian Ocean (SWIO region from 2005 to 2011. Maxima of lightning activity were found in the Maritime Continent and southwest of Sri Lanka (>50 fl km−2 yr−1 but also over Madagascar and above the Great Lakes of East Africa (>10–20 fl km−2 yr−1. Lightning flashes within tropical storms and tropical cyclones represent 50 % to 100 % of the total lightning activity in some oceanic areas of the SWIO (between 10° S and 20° S.

    The SWIO is characterized by a wet season (November to April and a dry season (May to October. As one could expect, lightning activity is more intense during the wet season as the Inter Tropical Convergence Zone (ITCZ is present over all the basin. Flash density is higher over land in November–December–January with values reaching 3–4 fl km−2 yr−1 over Madagascar. During the dry season, lightning activity is quite rare between 10° S and 25° S. The Mascarene anticyclone has more influence on the SWIO resulting in shallower convection. Lightning activity is concentrated over ocean, east of South Africa and Madagascar.

    A statistical analysis has shown that El Niño–Southern Oscillation mainly modulates the lightning activity up to 56.8% in the SWIO. The Indian Ocean Dipole has a significant contribution since ~49% of the variability is explained by this forcing in some regions. The Madden–Julian Oscillation did not show significative impact on the lightning activity in our study.

  11. A fiber-optic current sensor for lightning measurement applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  12. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  13. Study of the transport parameters of cloud lightning plasmas

    International Nuclear Information System (INIS)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-01-01

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar sudden change behavior in tortuous positions and the branch of the cloud lightning channel.

  14. 14 CFR 27.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of this section...

  15. 30 CFR 57.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  16. GREEK MYTHOLOGY AS SEEN IN RICK RIORDAN’S THE LIGHTNING THIEF

    OpenAIRE

    Hikmat, Muhamad Nurul

    2012-01-01

    The novel by Rick Riordan entitled The Lightning Thief is written based on Greek Mythology. This mythology is The Greek’s manifestation of culture that ages thousands years. To reveal the representation of Greek Mythology in The Lightning Thief as a cultural manifestation, study and analysis is conducted through dynamic structuralism approach focusing on plot, characters and settings (factual structure) of the novel. The plot is originated from three Greek heroes’ stories. The characters invo...

  17. Effects of Lightning Injection on Power-MOSFETs

    Science.gov (United States)

    Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai

    2009-01-01

    Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.

  18. Forming and detection of digital watermarks in the System for Automatic Identification of VHF Transmissions

    Directory of Open Access Journals (Sweden)

    О. В. Шишкін

    2013-07-01

    Full Text Available Forming and detection algorithms for digital watermarks are designed for automatic identification of VHF radiotelephone transmissions in the maritime and aeronautical mobile services. An audible insensitivity and interference resistance of embedded digital data are provided by means of OFDM technology jointly with normalized distortions distribution and data packet detection by the hash-function. Experiments were carried out on the base of ship’s radio station RT-2048 Sailor and USB ADC-DAC module of type Е14-140M L-CARD in the off-line processing regime in Matlab medium

  19. Two-dimensional simulations of multi-hollow VHF SiH4/H2 plasma

    Directory of Open Access Journals (Sweden)

    Li-Wen Su

    2018-02-01

    Full Text Available A triode multi-hollow VHF SiH4/H2 plasma (60 MHz was examined at a pressure of 20 Pa by two-dimensional simulations using the fluid model. In this study, we considered the effect of the rate constant of reaction, SiH3 + SiH3→SiH2 + SiH4, on the plasma characteristics. A typical VHF plasma of a high-electron density with a low-electron temperature was obtained between two discharge electrodes. Spatial profiles of SiH3+, SiH2+, SiH3- and SiH3 densities were similar to that of the electron density while the electron temperature had a maximum value near the two discharge electrodes. It was found that the SiH3 radical density did not decrease rapidly near the substrate and the electron temperature was lower than 1 eV, suggesting that the triode multi-hollow plasma source can provide high quality amorphous silicon with a high deposition rate.

  20. Measurements of Ozone, Lightning, and Electric Fields within Thunderstorms over Langmuir Laboratory, New Mexico

    Science.gov (United States)

    Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.

    2008-12-01

    A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically active storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. Lightning discharges were identified within each storm using a ground based lightning mapping array. The data show that the instruments ascended through regions of high electric fields within the sampled storms, and in some cases the balloon was in very close proximity to lightning. Relationships between electric field, lightning, and ozone observed during these flights will be discussed.

  1. Developing Lightning Prediction Tools for the CCAFS Dual-Polarimetric Radar

    Science.gov (United States)

    Petersen, W. A.; Carey, L. D.; Deierling, W.; Johnson, E.; Bateman, M.

    2009-01-01

    NASA Marshall Space Flight Center and the University of Alabama Huntsville are collaborating with the 45th Weather Squadron (45WS) to develop improved lightning prediction capabilities for the new C-band dual-polarimetric weather radar being acquired for use by 45WS and launch weather forecasters at Cape Canaveral Air Force Station (CCAFS). In particular, these algorithms will focus on lightning onset, cessation and combined lightning-radar applications for convective winds assessment. Research using radar reflectivity (Z) data for prediction of lightning onset has been extensively discussed in the literature and subsequently applied by launch weather forecasters as it pertains to lightning nowcasting. Currently the forecasters apply a relatively straight forward but effective temperature-Z threshold algorithm for assessing the likelihood of lightning onset in a given storm. In addition, a layered VIL above the freezing level product is used as automated guidance for the onset of lightning. Only limited research and field work has been conducted on lightning cessation using Z and vertically-integrated Z for determining cessation. Though not used operationally vertically-integrated Z (basis for VIL) has recently shown promise as a tool for use in nowcasting lightning cessation. The work discussed herein leverages and expands upon these and similar reflectivity-threshold approaches via the application/addition of over two decades of polarimetric radar research focused on distinct multi-parameter radar signatures of ice/mixed-phase initiation and ice-crystal orientation in highly electrified convective clouds. Specifically, our approach is based on numerous previous studies that have observed repeatable patterns in the behavior of the vertical hydrometeor column as it relates to the temporal evolution of differential reflectivity and depolarization (manifested in either LDR or p(sub hv)), development of in-situ mixed and ice phase microphysics, electric fields, and

  2. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  3. 14 CFR 29.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of...

  4. When lightning strikes: bolting down the facts & fiction.

    Science.gov (United States)

    Usatch, Ben

    2009-04-01

    MYTH: There's no danger from lightning until the rain starts. FACT: Lightning often precedes the storm by up to 10 miles. A reasonable guideline is the "30-30 rule," by which you count the seconds between the flash and the thunder. If the time span is less than 30 seconds, seek shelter. Additionally, wait a full 30 minutes from last lightning flash to resume outdoor activities.

  5. Lightning discrimination by a ground-based nuclear burst detection system

    International Nuclear Information System (INIS)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis

  6. Lightning discrimination by a ground-based nuclear burst detection system

    Energy Technology Data Exchange (ETDEWEB)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis.

  7. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  8. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  9. Improvements of an FDTD-based surge simulation code and its application to the lightning overvoltage calculation of a transmission tower

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Taku; Tatematsu, Akiyoshi; Yokoyama, Shigeru [Electric Power Engineering Research Lab., CRIEPI (Central Research Institute of Electric Power Industry), 2-6-1 Nagasaka, Yokosuka-shi, Kanagawa-pref. 240-0196 (Japan)

    2007-09-15

    This paper presents new features recently added to a general-purpose surge simulation code based on the Finite Difference Time Domain (FDTD) method. The added features include various-shape conductor models, lumped-parameter circuit-element models, a lightning-channel model, and an integrated analysis environment (IAE). For precisely modelling the shapes of various conductors, the following conductor models have been added: inclined thin wire; disc; square plate; cylinder; cone; and quadrangular pyramid. The lumped-parameter circuit-element models allow the user to represent the lumped impedance of an apparatus placed inside the analysis space. The lightning-channel model realizes a return-stroke development at a speed slower than the light speed. The IAE includes a Graphical User Interface (GUI), which allows the user to enter geometrical data in a visual way. It also provides a waveform plotting program for viewing voltage, current, electric-field, and magnetic-field waveforms and a movie program for displaying the animation of a transient electric/magnetic field intensity distribution. For an illustrative example, the lightning overvoltage calculation of a transmission tower is presented. (author)

  10. Characteristics of VLF/LF Sferics from Elve-producing Lightning Discharges

    Science.gov (United States)

    Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.

    2013-12-01

    Lightning return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a lightning return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the lightning peak current, elve production may depend on the return stroke speed, lightning altitude, and ionospheric conditions. In this work we investigate the detailed structure of lightning that gives rise to elves by analyzing the characteristics of VLF/LF lightning sferics in conjunction with optical elve observations. Lightning sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two high-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing lightning as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing lightning.

  11. Mechanisms and effects of lightning current coupling to structures

    International Nuclear Information System (INIS)

    Foboda, Marek

    1999-01-01

    To evaluate the effects of a lightning discharge on a structure, it is necessary to know the modes of interaction of lightning electromagnetic field pulses to structures. The effects to these interactions are considered by means to the concept to equivalent collection areas. The equations to calculate the distance and equivalent collection areas due to lightning discharges are given in this article. Additionally, the possible modes of a direct lightning strike to the incoming line and the equations to calculate the resultant over voltages are also given. This article ends with the calculation of voltage drops due to direct and nearby lightning strike and induced voltages due to magnetic coupling. Several examples of calculations of the different mentioned cases are given

  12. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T; Brask, M H [DEFU (Denmark); Jensen, F V; Raben, N [SEAS (Denmark); Saxov, J [Nordjyllandsvaerket (Denmark); Nielsen, L [Vestkraft (Denmark); Soerensen, P E [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  13. The Sandia transportable triggered lightning instrumentation facility

    Science.gov (United States)

    Schnetzer, George H.; Fisher, Richard J.

    1991-01-01

    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.

  14. Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System

    Directory of Open Access Journals (Sweden)

    João P. S. Catalão

    2012-07-01

    Full Text Available This paper is concerned with the protection of wind energy systems against the direct effects of lightning. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded as a serious problem. Nevertheless, very few studies exist yet in Portugal regarding lightning protection of wind energy systems using numerical codes. A new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, for the analysis of transient phenomena due to a direct lightning strike to the blade. Comprehensive simulation results are provided by using models of the Restructured Version of the Electro-Magnetic Transients Program (EMTP, and conclusions are duly drawn.

  15. Bipolar cloud-to-ground lightning flash observations

    Science.gov (United States)

    Saba, Marcelo M. F.; Schumann, Carina; Warner, Tom A.; Helsdon, John H.; Schulz, Wolfgang; Orville, Richard E.

    2013-10-01

    lightning is usually defined as a lightning flash where the current waveform exhibits a polarity reversal. There are very few reported cases of cloud-to-ground (CG) bipolar flashes using only one channel in the literature. Reports on this type of bipolar flashes are not common due to the fact that in order to confirm that currents of both polarities follow the same channel to the ground, one necessarily needs video records. This study presents five clear observations of single-channel bipolar CG flashes. High-speed video and electric field measurement observations are used and analyzed. Based on the video images obtained and based on previous observations of positive CG flashes with high-speed cameras, we suggest that positive leader branches which do not participate in the initial return stroke of a positive cloud-to-ground flash later generate recoil leaders whose negative ends, upon reaching the branch point, traverse the return stroke channel path to the ground resulting in a subsequent return stroke of opposite polarity.

  16. Upper limit set for level of lightning activity on Titan

    Science.gov (United States)

    Desch, M. D.; Kaiser, M. L.

    1990-01-01

    Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.

  17. Lightning-resistant, low-inductance detonator cables

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Lee, R.S.; Moua, K.

    1994-04-01

    A lightning strike on a flat detonator cable in close proximity to a high explosive (HE) main charge poses a possible detonation hazard if the electrical explosion of the cable launches the dielectric cover coat of the cable at a high enough velocity to shock-initiate the HE. The detonator cable for the W87 system has been demonstrated to be incapable of initiating LX-17 main-charge explosive even for a 99 percentile negative lightning strike (1). The W87 cable is a relatively high inductance cable, unsuitable for use with low-inductance firesets. We have performed tests on a low-inductance cable designed for the W89 program, which show it to be marginal in its ability to withstand a lightning strike without the possibility of initiating a heated LX-17 main charge HE. A new cable design, proposed by R.E. Lee of LLNL has been tested and shown to be capable of withstanding a 99 percentile negative lightning strike without initiating LX-17 heated to 250{degree}C.

  18. An early record of ball lightning: Oliva (Spain), 1619

    Science.gov (United States)

    Domínguez-Castro, Fernando

    2018-05-01

    In a primary documentary source we found an early record of ball lightning (BL), which was observed in the monastery of Pi (Oliva, southeastern Spain) on 18 October 1619. The ball lightning was observed by at least three people and was described as a rolling burning vessel and a ball of fire. The ball lightning appeared following a lightning flash, showed a mainly horizontal motion, crossed a wall, smudged an image of the Lady of Rebollet (then known as Lady of Pi) and burnt her ruff, and overturned a cross.

  19. Ball lightning as a route to fusion energy

    International Nuclear Information System (INIS)

    Roth, J.R.

    1989-01-01

    The reality of ball lightning is attested to by observations reported in surveys of large populations, which are the subject of several books. These observations indicate that its characteristics may be relevant to fusion energy applications. Ball lightning can have a diameter up to several meters, a lifetime of over 100 seconds, an energy content in excess of 10 megajoules, and an energy density and a kinetic pressure greater than that of a reacting DT plasma. This paper reviews some of the properties of ball lightning which commend it to the attention of the fusion community, and it discusses some potential advantages and applications of ball lightning fusion reactors. 11 refs., 6 figs., 1 tab

  20. Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area

    Science.gov (United States)

    Sugimoto, Hitoshi; Shimasaki, Katsuhiko

    The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.

  1. Interception efficiency of CVM-based lightning protection systems for buildings and the fractional Poisson model

    OpenAIRE

    Haller, Harold S.; Woyczynski, Wojbor A.

    2016-01-01

    The purpose of this paper is to resolve a question regarding efficiency of a lightning protection system (LPS) for buildings based on the collection volume method (CVM) . The paper has two components. The first, following suggestions of other authors [Abidin and Ibrahim 2004], takes advantage of count data from installed devices, and independent installation-site inspections to develop our statistical analysis. The second component investigates the validity of the underlying theory by introdu...

  2. Lightning characteristics observed by a VLF/LF lightning detection network (LINET in Brazil, Australia, Africa and Germany

    Directory of Open Access Journals (Sweden)

    H. Höller

    2009-10-01

    Full Text Available This paper describes lightning characteristics as obtained in four sets of lightning measurements during recent field campaigns in different parts of the world from mid-latitudes to the tropics by the novel VLF/LF (very low frequency/low frequency lightning detection network (LINET. The paper gives a general overview on the approach, and a synopsis of the statistical results for the observation periods as a whole and for one special day in each region. The focus is on the characteristics of lightning which can specifically be observed by this system like intra-cloud and cloud-to-ground stroke statistics, vertical distributions of intra-cloud strokes or peak current distributions. Some conclusions regarding lightning produced NOx are also presented as this was one of the aims of the tropical field campaigns TROCCINOX (Tropical Convection, Cirrus and Nitrogen Oxides Experiment and TroCCiBras (Tropical Convection and Cirrus Experiment Brazil in Brazil during January/February 2005, SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere and TWP-ICE (Tropical Warm Pool-International Cloud Experiment during November/December 2005 and January/February 2006, respectively, in the Darwin area in N-Australia, and of AMMA (African Monsoon Multidisciplinary Analyses in W-Africa during June–November 2006.

    Regional and temporal characteristics of lightning are found to be dependent on orographic effects (e.g. S-Germany, Brazil, Benin, land-sea breeze circulations (N-Australia and especially the evolution of the monsoons (Benin, N-Australia. Large intra-seasonal variability in lightning occurrence was found for the Australian monsoon between the strong convection during build-up and break phases and the weak active monsoon phase with only minor lightning activity. Total daily lightning stroke rates can be of comparable intensity in all regions with the heaviest events found in Germany and N

  3. Simulation of Lightning Overvoltage Distribution on Stator Windings of Wind Turbine Generators

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Xue-zhong; WANG Ying; LI Dan-dan

    2011-01-01

    This paper analyzes lightning surge on the stator windings of wind turbine generators. The path of lightning in the wind turbines was analyzed. An equivalent circuit model for megawatt direct-driven wind turbine system was developed, in which high-frequency distributed parameters of the blade conducts, tower, power cables and stator windings of generator were calculated based on finite element method, and the models of converter, grounding, loads, surge protection devices and power grid were established. The voltage distribution along stator windings, when struck by lightning with 10/350 ~ts wave form and different amplitude current between 50 kA and 200 kA, was simulated u- sing electro-magnetic transient analysis method. The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings, and the voltage distribution along the windings is non- uniform initially. The voltage drops of each coil fall from first to last coil, and the highest voltage drop appears on the first coil. The insulation damage may occur on the windings under lightning overvoltage. The surge arresters can re- strain the lightning surge in effect and protect the insulation. The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator, but is only 2.7 kV with arresters.

  4. Low VHF Channel Measurements and Simulations in Indoor and Outdoor Scenarios

    Science.gov (United States)

    2015-05-01

    Transactions on. 2002;50(5):591-599. 22. Nerguizian C, Despins C, Affes S, Djadel M. Radio-channel characterization of an underground mine at 2.4 ghz...INTENTIONALLY LEFT BLANK. viii 1. Introduction Reliable wireless communication is of paramount importance for many important civilian and military...report, we study near-ground, wireless channel modeling in the lower VHF band for indoor and indoor/outdoor scenarios, drawing from extensive propagation

  5. Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono

    Science.gov (United States)

    Oike, Yuta; Kasahara, Yoshiya; Goto, Yoshitaka

    2014-09-01

    We statistically analyzed lightning whistlers detected from the analog waveform data below 15 kHz observed by the VLF instruments onboard Akebono. We examined the large amount of data obtained at Uchinoura Space Center in Japan for 22 years from 1989 to 2010. The lightning whistlers were mainly observed inside the L shell region below 2. Seasonal dependence of the occurrence frequency of lightning whistlers has two peaks around July to August and December to January. As lightning is most active in summer, in general, these two peaks correspond to summer in the Northern and Southern Hemispheres, respectively. Diurnal variation of the occurrence frequency showed that lightning whistlers begin to increase in the early evening and remain at a high-occurrence level through the night with a peak around 21 in magnetic local time (MLT). This peak shifts toward nightside compared with lightning activity, which begins to rise around noon and peaks in the late afternoon. This trend is supposed to be caused by attenuation of VLF wave in the ionosphere in the daytime. Comparison study with the ground-based observation revealed consistent results, except that the peak of the ground-based observation appeared after midnight while our measurements obtained by Akebono was around 21 in MLT. This difference is explained qualitatively in terms that lightning whistlers measured at the ground station passed through the ionosphere twice above both source region and the ground station. These facts provide an important clue to evaluate quantitatively the absorption effect of lightning whistler in the ionosphere.

  6. CAMEX-3 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 Lightning Instrument Package (LIP) dataset contains electrical field measurements of lightning within storms studied during the Convection And Moisture...

  7. Evaluation of Lightning Jumps as a Predictor of Severe Weather in the Northeastern United States

    Science.gov (United States)

    Eck, Pamela

    Severe weather events in the northeastern United States can be challenging to forecast, given how the evolution of deep convection can be influenced by complex terrain and the lack of quality observations in complex terrain. To supplement existing observations, this study explores using lightning to forecast severe convection in areas of complex terrain in the northeastern United States. A sudden increase in lightning flash rate by two standard deviations (2sigma), also known as a lightning jump, may be indicative of a strengthening updraft and an increased probability of severe weather. This study assesses the value of using lightning jumps to forecast severe weather during July 2015 in the northeastern United States. Total lightning data from the National Lightning Detection Network (NLDN) is used to calculate lightning jumps using a 2sigma lightning jump algorithm with a minimum threshold of 5 flashes min-1. Lightning jumps are used to predict the occurrence of severe weather, as given by whether a Storm Prediction Center (SPC) severe weather report occurred 45 min after a lightning jump in the same cell. Results indicate a high probability of detection (POD; 85%) and a high false alarm rate (FAR; 89%), suggesting that lightning jumps occur in sub-severe storms. The interaction between convection and complex terrain results in a locally enhanced updraft and an increased probability of severe weather. Thus, it is hypothesized that conditioning on an upslope variable may reduce the FAR. A random forest is introduced to objectively combine upslope flow, calculated using data from the High Resolution Rapid Refresh (HRRR), flash rate (FR), and flash rate changes with time (DFRDT). The random forest, a machine-learning algorithm, uses pattern recognition to predict a severe or non-severe classification based on the predictors. In addition to upslope flow, FR, and DFRDT, Next-Generation Radar (NEXRAD) Level III radar data was also included as a predictor to compare its

  8. Artificial Neural Network applied to lightning flashes

    Science.gov (United States)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  9. Lightning protection: challenges, solutions and questionable steps in the 21st century

    International Nuclear Information System (INIS)

    BERTA, Istvan

    2011-01-01

    Besides the special primary lightning protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary lightning protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of Lightning Protection plays an important role in the research and education of lightning and development of lightning protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive Lightning Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional lightning protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional lightning protection systems reported in the literature are the radioactive lightning rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).

  10. Lightning protection: challenges, solutions and questionable steps in the 21st century

    Science.gov (United States)

    Berta, István

    2011-06-01

    Besides the special primary lightning protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary lightning protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of Lightning Protection plays an important role in the research and education of lightning and development of lightning protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive Lightning Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional lightning protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional lightning protection systems reported in the literature are the radioactive lightning rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).

  11. Lightning Injury is a disaster in Bangladesh? - Exploring its magnitude and public health needs.

    Science.gov (United States)

    Biswas, Animesh; Dalal, Koustuv; Hossain, Jahangir; Ul Baset, Kamran; Rahman, Fazlur; Rahman Mashreky, Saidur

    2016-01-01

    Background: Lightning injury is a global public health issue. Low and middle-income countries in the tropical and subtropical regions of the world are most affected by lightning. Bangladesh is one of the countries at particular risk, with a high number of devastating lightning injuries in the past years, causing high mortality and morbidity. The exact magnitude of the problem is still unknown and therefore this study investigates the epidemiology of lightning injuries in Bangladesh, using a national representative sample. Methods: A mixed method was used. The study is based on results from a nationwide cross-sectional survey performed in 2003 in twelve randomly selected districts. In the survey, a total of 819,429 respondents from 171,336 households were interviewed using face-to-face interviews. In addition, qualitative information was obtained by reviewing national and international newspaper reports of lightning injuries sustained in Bangladesh between 13 and 15 May 2016. Results: The annual mortality rate was 3.661 (95% CI 0.9313-9.964) per 1,000,000 people. The overall incidence of lightning injury was 19.89/100,000 people. Among the victims, 60.12% (n=98) were males and 39.87% (n=65) were females. Males were particularly vulnerable, with a 1.46 times increased risk compared with females (RR 1.46, 95% CI 1.06-1.99). Rural populations were more vulnerable, with a 8.73 times higher risk, than urban populations (RR 8.73, 95% CI 5.13-14.86). About 43% of injuries occurred between 12 noon and 6 pm. The newspapers reported 81 deaths during 2 days of electric storms in 2016. Lightning has been declared a natural disaster in Bangladesh. Conclusions: The current study indicates that lightning injuries are a public health problem in Bangladesh. The study recommends further investigations to develop interventions to reduce lightning injuries, mortality and related burden in Bangladesh.

  12. Deaths and injuries as a result of lightning strikes to aircraft.

    Science.gov (United States)

    Cherington, M; Mathys, K

    1995-07-01

    Aircraft are at risk of being struck by lightning or triggering lightning as they fly through clouds. Commercial and private airplanes have been struck, with resultant deaths and injuries to passengers and crew. We were interested in learning how large a problem existed to the American public from lightning strikes to airplanes. We analyzed data from the National Transportation Safety Board (NTSB) on lightning-related accidents in the United States from 1963-89. NTSB recorded 40 lightning-related aircraft accidents. There were 10 commercial airplane accidents reported, 4 of which were associated with 260 fatalities and 28 serious injuries. There were 30 private aircraft accidents that accounted for 30 fatalities and 46 serious injuries. While lightning remains a potential risk to aircraft passengers and crew, modern airplanes are better equipped to lessen the dangers of accidents due to lightning.

  13. Lightning measurements from the Pioneer Venus Orbiter

    Science.gov (United States)

    Scarf, F. L.; Russell, C. T.

    1983-01-01

    The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  14. Lightning activity during the 1999 Superior derecho

    Science.gov (United States)

    Price, Colin G.; Murphy, Brian P.

    2002-12-01

    On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.

  15. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  16. Aerosol indirect effects on lightning in the generation of induced NOx and tropospheric ozone over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti

    Lightning flashes, associated with vigorous convective activity, is one of the most prominent weather phenomena in the tropical atmosphere. High aerosol loading is indirectly associated with the increase in lightning flash rates via the formation of tropospheric ozone during the pre-monsoon and monsoon over the tropics. Tropospheric ozone, an important greenhouse pollutant gas have impact on Earth’s radiation budget and play a key role in changing the atmospheric circulation patterns. Lightning-induced NOx is a primary pollutant found in photochemical smog and an important precursor for the formation of tropospheric ozone. A critical analysis is done to study the indirect effects of high aerosol loading on the formation of tropospheric ozone via lightning flashes and induced NOx formation over an urban metropolitan location Kolkata (22°32'N, 88°20'E), India during the period 2001-2012. The seasonal variation of lightning flash rates (LFR), taken from TRMM-LIS 2.5o x 2.5o gridded dataset, show that the LFR was observed to be intensified in the pre-monsoon (March-May) and high in monsoon (June-September) months over the region. Aerosol Optical Depth (AOD) at 555nm, taken from MISR 0.5o x 0.5o gridded level-3 dataset, plays an indirect effect on the increase in LFR during the pre-monsoon and monsoon months and has positive correlations between them during these periods. This is also justified from the seasonal variation of the increase in LFR due to the increase in AOD over the region during 2001-2012. The calibrated GOME and OMI/AURA satellite data analysis shows that the tropospheric ozone, formed as a result of lightning-induced NOx and due to the increased AOD at 555 nm, also increases during the pre-monsoon and monsoon months. The seasonal variation of lightning-induced tropospheric NOx, taken from SCIAMACHY observations also justified the fact that the pre-monsoon and monsoon LFR solely responsible for the generation of induced NOx over the region. The

  17. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.

    2018-02-01

    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  18. Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database

    Science.gov (United States)

    Leroy, Anita; Petersen, Walter A.

    2010-01-01

    Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.

  19. Lightning protecting materials used on radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Damstra, Geert C.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2009-01-01

    Because of the extensive use in modern systems of very sensitive electronic components, lightning strikes does not represent only a threat, but something that cannot be neglected anymore and safety hazards caused by direct and indirect lightning to the aircraft or naval industry. Everyday new

  20. The Geostationary Lightning Mapper: Its Performance and Calibration

    Science.gov (United States)

    Christian, H. J., Jr.

    2015-12-01

    The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have

  1. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  2. Long recovery VLF perturbations associated with lightning discharges

    Science.gov (United States)

    Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil

    2012-08-01

    Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative lightning discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to lightning discharges occurring over the sea, despite the fact that lightning activity in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to lightning activity over water. Analysis of the causative lightning of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.

  3. Lightning Prediction using Electric Field Measurements Associated with Convective Events at a Tropical Location

    Science.gov (United States)

    Jana, S.; Chakraborty, R.; Maitra, A.

    2017-12-01

    Nowcasting of lightning activities during intense convective events using a single electric field monitor (EFM) has been carried out at a tropical location, Kolkata (22.65oN, 88.45oE). Before and at the onset of heavy lightning, certain changes of electric field (EF) can be related to high liquid water content (LWC) and low cloud base height (CBH). The present study discusses the utility of EF observation to show a few aspects of convective events. Large convective cloud showed by high LWC and low CBH can be detected from EF variation which could be a precursor of upcoming convective events. Suitable values of EF gradient can be used as an indicator of impending lightning events. An EF variation of 0.195 kV/m/min can predict lightning within 17.5 km radius with a probability of detection (POD) of 91% and false alarm rate (FAR) of 8% with a lead time of 45 min. The total number of predicted lightning strikes is nearly 9 times less than that measured by the lightning detector. This prediction technique can, therefore, give an estimate of cloud to ground (CG) and intra cloud (IC) lighting occurrences within the surrounding area. This prediction technique involving POD, FAR and lead time information shows a better prediction capability compared to the techniques reported earlier. Thus an EFM can be effectively used for prediction of lightning events at a tropical location.

  4. VAISALA US NLDN LIGHTNING FLASH DATA V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The U.S. National Lightning Detection Network is a commercial lightning detection network operated by Vaisala. A network of over 100 antennae are connected to a...

  5. Initial Results from CASSIOPE/ePOP Satellite Overpasses above HAARP in 2014

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; James, H. G.; Yau, A. W.; Knudsen, D. J.

    2015-12-01

    The High Frequency Active Auroral Research Program (HAARP) facility was operated in conjunction with overpasses of the enhanced Polar Outflow Probe (ePOP) instruments on the Canadian CASSIOPE satellite. During these overpasses HAARP was operated in several different heating modes and regimes as diagnosed by the characteristics of Stimulated Electromagnetic Emissions (SEE) using ground-based receivers while simultaneously ePOP monitored in-situ HF and VLF signals, looked for ion and electron heating, and provided VHF and UHF signals for propagation effects studies. The e-POP suite of instruments and particularly the ePOP Radio Receiver Instrument (RRI) offer a unique combination diagnostics appropriate for studying the non-linear plasma effects generated high-power HF waves in the ionosphere. In this presentation, the initial results from ePOP observations from two separate 2014 measurement campaigns at HAARP (April 16 to April 29 and May 25 to June 9) will be discussed. Several innovative experiments were performed during the campaign. Experiments explored a wide range of ionospheric effects. These include: 1) Penetration of HF pump waves into the ionosphere via large and small scale irregularities, 2) effects of gyro-harmonic heating and artificial ionization layers, 3) effects of HAARP beam shape with O- and X-mode transmissions, 4) coupling of Lower Hybrid modes into Whistler waves, 5) D/E-region VLF generation in the ionosphere using VLF modulation of the HF pump 6) scattering of VHF and UHF signals and 7) scattering and non-linear modulation of a 9.5 MHz probe wave propagating through the region of the ionosphere modified by HAARP. This work supported by the Naval Research Laboratory Base Program.

  6. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  7. Lightning Overvoltage on Low-Voltage Distribution System

    Science.gov (United States)

    Michishita, Koji

    The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.

  8. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  9. A solid state lightning propagation speed sensor

    Science.gov (United States)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.

  10. Radioactive lightning rods: radiologic evaluation and regulatory policy related to its use in Cuba

    International Nuclear Information System (INIS)

    Lopez Forteza, Yamil; Quevedo Garcia, Jose R.; Diaz Guerra, Pedro I.; Cruz Dumenico, Gonzalez; Fuente Puch, Andres de la

    2001-01-01

    The radioactive lightning rod employment for the protection of facilities against atmospheric discharges reached its maximum splendor in the eighties. It was in fact at the end of this decade when the technical considerations related to the justification of this practice finally conclude that the production of such teams was abolished. For the regulatory authorities, however, it continues having validity the question related to the control of lightning rod still in use as well as the question related to the establishment of a coherent with the international practice national policy. The paper shows the results of the last 10 years of control of the radioactive lightning rod use in Cuba and the radiological evaluation carried out on the base of this experience. Lastly, it exposes the regulatory policy referred to the employment of the radioactive lightning rod in the country. (author)

  11. VHF/UHF imagery and RCS measurements of ground targets in forested terrain

    Science.gov (United States)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2002-08-01

    The monostatic VV and HH-polarized radar signatures of several targets and trees have been measured at foliage penetration frequencies (VHF/UHF) by using 1/35th scale models and an indoor radar range operating at X-band. An array of high-fidelity scale model ground vehicles and test objects as well as scaled ground terrain and trees have been fabricated for the study. Radar measurement accuracy has been confirmed by comparing the signature of a test object with a method of moments radar cross section prediction code. In addition to acquiring signatures of targets located on a smooth, dielectric ground plane, data have also been acquired with targets located in simulated wooded terrain that included scaled tree trunks and tree branches. In order to assure the correct backscattering behavior, all dielectric properties of live tree wood and moist soil were scaled properly to match the complex dielectric constant of the full-scale materials. The impact of the surrounding tree clutter on the VHF/UHF radar signatures of ground vehicles was accessed. Data were processed into high-resolution, polar-formatted ISAR imagery and signature comparisons are made between targets in open-field and forested scenarios.

  12. Lightning Pin Injection Testing on MOSFETS

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  13. Simulation study on the lightning overvoltage invasion control transformer intelligent substation

    Science.gov (United States)

    Xi, Chuyan; Hao, Jie; Zhang, Ying

    2018-04-01

    By simulating lightning on substation line of one intelligent substation, research the influence of different lightning points on lightning invasion wave overvoltage, and the necessity of arrester for the main transformer. The results show, in a certain lightning protection measures, the installation of arrester nearby the main transformer can effectively reduce the overvoltage value of bus and the main transformer [1].

  14. SALIENCY BASED SEGMENTATION OF SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2015-03-01

    Full Text Available Saliency gives the way as humans see any image and saliency based segmentation can be eventually helpful in Psychovisual image interpretation. Keeping this in view few saliency models are used along with segmentation algorithm and only the salient segments from image have been extracted. The work is carried out for terrestrial images as well as for satellite images. The methodology used in this work extracts those segments from segmented image which are having higher or equal saliency value than a threshold value. Salient and non salient regions of image become foreground and background respectively and thus image gets separated. For carrying out this work a dataset of terrestrial images and Worldview 2 satellite images (sample data are used. Results show that those saliency models which works better for terrestrial images are not good enough for satellite image in terms of foreground and background separation. Foreground and background separation in terrestrial images is based on salient objects visible on the images whereas in satellite images this separation is based on salient area rather than salient objects.

  15. New Physical Mechanism for Lightning

    Science.gov (United States)

    Artekha, Sergey N.; Belyan, Andrey V.

    2018-02-01

    The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.

  16. Lightning discharges produced by wind turbines

    Science.gov (United States)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.

    2014-02-01

    New observations with a 3-D Lightning Mapping Array and high-speed video are presented and discussed. The first set of observations shows that under certain thunderstorm conditions, wind turbine blades can produce electric discharges at regular intervals of 3 s in relation to its rotation, over periods of time that range from a few minutes up to hours. This periodic effect has not been observed in static towers indicating that the effect of rotation is playing a critical role. The repeated discharges can occur tens of kilometers away from electrically active thunderstorm areas and may or may not precede a fully developed upward lightning discharge from the turbine. Similar to rockets used for triggering lightning, the fast movement of the blade tip plays an important role on the initiation of the discharge. The movement of the rotor blades allows the tip to "runaway" from the generated corona charge. The second observation is an uncommon upward/downward flash triggered by a wind turbine. In that flash, a negative upward leader was initiated from a wind turbine without preceding lightning activity. The flash produced a negative cloud-to-ground stroke several kilometers from the initiation point. The third observation corresponds to a high-speed video record showing simultaneous upward positive leaders from a group of wind turbines triggered by a preceding intracloud flash. The fact that multiple leaders develop simultaneously indicates a poor shielding effect among them. All these observations provide some special features on the initiation of lightning by nonstatic and complex tall structures.

  17. A model for lightning in littoral areas

    NARCIS (Netherlands)

    Blaj, M.A.; Leferink, Frank Bernardus Johannes

    2009-01-01

    The littoral or coastal areas are different compared to the maritime or continental areas considering lightning. Only the last years some research about these areas has been carried out. The need for a model, regarding the lightning activity in these areas is much needed. And now, with the changes

  18. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  19. Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution

    Science.gov (United States)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong

    2009-01-01

    We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.

  20. Problem of radioactive lightning rods in the Republic of Croatia

    International Nuclear Information System (INIS)

    Novakovic, M.

    1994-01-01

    It became evident that as in most countries in Europe and other world, the radioactive lightning preventers will be prohibited in Croatia. It has to be done gradually and in phases. About 50% of whole number of radioactive lightning rods is mounted on hotels, and other are on industrial objects. Request for immediate replacement of them can almost fully load the available storage with radioactive waste, and the ex users should spent a significant sums of money to built an alternative lightning protection. One of the options is to use dismounted sources and use them for some other convenient purpose even for renewing the other radioactive lightning rod. In our opinion the best is to prohibit installation of the new lightning rods and existing ones dismount after elapsing the time for replacement of the radioactive attachment. After some years all radioactive lightning rods would be dismounted with smaller financial burden to ex users and community resulting also with less net amounts of radioactive waste

  1. Evaluation of lightning performance of transmission lines protected by metal oxide surge arresters using artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, C.A.; Perantzakis, G. [Technological Educational Institute (TEI) of Lamia, Department of Electrical Engineering, Lamia (Greece); Spanakis, G.E. [School of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece); Karampelas, P. [Hellenic American University, Manchester, NH (United States)

    2012-12-15

    Lightning and switching overvoltages are the main causes for faults in electrical networks. In the last decades, several different conventional methodologies have been used for the adjustment of the lightning performance of high voltage transmission lines, which are protected against lightning using overhead ground wires and surge arresters. The current paper proposes a new developed Artificial Neural Network (ANN), based on the Q-learning algorithm, in order to estimate the lightning failure rate of lines of the Hellenic system. The results obtained by the ANN model exhibit a satisfactory correlation in comparison with the real recorded data or the simulations results taken from a conventional method. (orig.)

  2. Definition of multipath/RFI experiments for orbital testing with a small applications technology satellite

    Science.gov (United States)

    Birch, J. N.; French, R. H.

    1972-01-01

    An investigation was made to define experiments for collection of RFI and multipath data for application to a synchronous relay satellite/low orbiting satellite configuration. A survey of analytical models of the multipath signal was conducted. Data has been gathered concerning the existing RFI and other noise sources in various bands at VHF and UHF. Additionally, designs are presented for equipment to combat the effects of RFI and multipath: an adaptive delta mod voice system, a forward error control coder/decoder, a PN transmission system, and a wideband FM system. The performance of these systems was then evaluated. Techniques are discussed for measuring multipath and RFI. Finally, recommended data collection experiments are presented. An extensive tabulation is included of theoretical predictions of the amount of signal reflected from a rough, spherical earth.

  3. Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution

    Science.gov (United States)

    Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.

    2018-01-01

    In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.

  4. A simulation method for lightning surge response of switching power

    International Nuclear Information System (INIS)

    Wei, Ming; Chen, Xiang

    2013-01-01

    In order to meet the need of protection design for lighting surge, a prediction method of lightning electromagnetic pulse (LEMP) response which is based on system identification is presented. Experiments of switching power's surge injection were conducted, and the input and output data were sampled, de-noised and de-trended. In addition, the model of energy coupling transfer function was obtained by system identification method. Simulation results show that the system identification method can predict the surge response of linear circuit well. The method proposed in the paper provided a convenient and effective technology for simulation of lightning effect.

  5. Upward lightning attachment analysis on wind turbines and correlated current parameters

    DEFF Research Database (Denmark)

    Vogel, Stephan; Ishii, M.; Saito, M.

    2017-01-01

    This work provides insight in the attachment characteristics of upward initiated lightning discharges to wind turbines and their possible consequences for the lightning protection of wind turbine blades. All discharges were recorded at the Japanese coast of the Sea of Japan which is known...... for intense upward lightning activity. 172 video recordings of lightning discharges on rotating wind turbines are analysed and attachment angle, detachment angle, and the resulting angular displacement were determined. A classification between self-initiated and other-triggered upward lightning events...... is performed by means of video analysis. The results reveal that the majority of discharges are initiated on vertical blades; however, also attachments to horizontal blades are reported. Horizontal attachment (or a slightly inclined blade state) is often related with a triggered lightning event prior...

  6. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors... lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet of the point...

  7. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and... exposed to lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet...

  8. Wind Turbine Lightning Protection Project: 1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B.

    2002-05-01

    A lightning protection research and support program was instituted by NREL to help minimize lightning damage to wind turbines in the United States. This paper provides the results of a field test program, an evaluation of protection on selected turbines, and a literature search as well as the dissemination of the accumulated information.

  9. The Effect of a Corona Discharge on a Lightning Attachment

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-01

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed

  10. Cuban regulatory politics with relationship to the Radioactive lightning rod employment

    International Nuclear Information System (INIS)

    Lopez Forteza; Yamil; Jerez Vegueria, Pablo F.; Quevedo Garcia, Jose R.; Diaz Guerra, Pedro; Dumenigo Gonzalez, Cruz

    2003-01-01

    The radioactive lightning rod employment for the protection of facilities against atmospheric discharges reached its maximum splendor in the years 80. It was in fact at the end of this decade when the technical considerations arose, with relationship to the justification of this practice that finally took to that the production of such teams was abolished. For the regulatory authorities, however, it continues having validity the question related with the control of those lightning rod that you/they stay in use, as well as the relative one to the establishment of a coherent national politics with the international practice. Presently work the results of the last 10 years of control of the radioactive lightning rod use are presented in Cuba and the radiological evaluation carried out on the base of this experience. Lastly, it exposes the Cuban regulatory politics established with relationship to the employment of this teams in the country

  11. The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    Science.gov (United States)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; hide

    2014-01-01

    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  12. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    Rino, C.L.; Livingston, R.C.; Cousins, M.D.; Fair, B.C.

    1978-01-01

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  13. Status on the Zeus lightning network in Brazil and its application to the electrical sector of COELCE - the Energy Company from Ceara state

    Energy Technology Data Exchange (ETDEWEB)

    Morales Rodriguez, Carlos Augusto [Universidade de Sao Paulo (USP), SP (Brazil)], E-mail: morales@model.iag.usp.br; Sales, Francisco; Pinheiro, Francisco Geraldo [Universidade Estadual do Ceara (UECE), CE (Brazil)], E-mail: fsales@uece.br; Camara, Keyla Sampaio [Companhia de Energetica do Estado do Ceara (COELCE), Fortaleza, CE (Brazil)], Emails: keyla@coelce.com.br, fgmpinheiro@uece.br; Anagnostou, Emmanouil E. [University of Connecticut, Storrs, CT (United States)], E-mail: manos@engr.uconn.edu

    2007-07-01

    This paper presents the deployment and new perspectives of the ZEUS VLF long range lightning monitoring network that has been established in Brazil after the support of the Research and Development Program of the 'Companhia Energetica do Ceara-(COELCE)'. The ZEUS network measures radio noise emitted by lightning that propagates through the ionosphere-earth surface waveguide up to thousands of kilometers. Two new VLF antennas have been installed in Fortaleza (Ceara) and Cachoeira Paulista (Sao Paulo) Brazil in the first semester of 2006 and were integrated with the 4 sensor installed in Africa and one in the Caribbean. Based on this new configuration, ZEUS is continuing measuring lightning discharges over South and North America, the Atlantic Ocean and Africa. Preliminary validation analysis using the data from the Brazilian Lightning Detection Network (RINDAT), National Lightning Detection Network (NLDN) of USA, and Lightning Imaging Sensor (LIS) on board the Tropical Rainfall Measuring Mission were employed to retrieve the location accuracy during the period of August through November of 2006. The location accuracy is based on coincident timing matches been the sferics measurements observed by ZEUS against the measurements of RINDAT, NLDN and LIS. Based on this new ZEUS configuration, the preliminary validation shows that ZEUS has location accuracy between 10-50 km over Brazil, 5-25 km in Africa, 70-100 km over the southern USA, and 5-25 km in the Atlantic Ocean. The measurements from August through November of 2006 show that the main lightning activity is located in the Western Amazon, Western and Central Africa, Central America, Colombia, Florida and Caribbean regions, which agrees with the lightning maps derived with LIS for the same time period. Finally, since ZEUS is been employed by COELCE, some lightning and thunderstorm products are been developed to help the improvement of their system over the states of Ceara, for example: lightning

  14. Measurement of electromagnetic waves in ELF and VLF bands to monitor lightning activity in the Maritime Continent

    Science.gov (United States)

    Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun

    2013-04-01

    Data of lightning discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm activity which causes extreme weather. Spatial distribution of lightning discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge lightning whose scale is more than hundreds times bigger than that of averaged event. This result indicates that lightning observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, lightning observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from lightning discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of lightning discharge can be estimated. Location of lightning is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each lightning discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.

  15. VHF and L-band scintillation characteristics over an Indian low latitude station, Waltair (17.7° N, 83.3° E

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2005-10-01

    Full Text Available Characteristics of simultaneous VHF (244 MHz and L-band (1.5 GHz scintillations recorded at a low-latitude station, Waltair (17.7° N, 83.3° E, during the low sunspot activity year of March 2004 to March 2005, suggest that the occurrence of scintillations is mainly due to two types, namely the Plasma Bubble Induced (PBI, which maximizes during the post sunset hours of winter and equinoctial months, and the Bottom Side Sinusoidal (BSS type, which maximizes during the post-midnight hours of the summer solstice months. A detailed study on the spectral characteristics of the scintillations at both the frequencies show that the post-sunset scintillations are strong with fast fading (≈40 fad/min and are multiple in nature in scattering, giving rise to steep spectral slopes, whereas the post-midnight scintillations, which occur mostly on the VHF signal with low fading rate (≈4 fad/min, are of the BSS type, often showing typical Fresnel oscillations with reduced roll off spectral slopes, indicating that the type of irregularity resembles a thin screen structure giving rise to weak scattering. Using the onset times of several similar scintillation patches across the two satellite (FLEETSAT 73° E, INMARSAT 65° E ray paths (sub-ionospheric points are separated by 82 km, the East ward movement of the irregularity patches is found to vary from 150 to 250 m/s during the post sunset hours and decrease slowly during the post midnight hours. Further, the east-west extent of the PBI type of irregularities is found to vary from 100 to 500 km, while that of the BSS type extend up to a few thousand kilometers. Keywords. Ionosphere (Ionospheric irregularities; Auroral ionosphere; Electric fields and currents

  16. On the Relationship between Observed NLDN Lightning Strikes and Modeled Convective Precipitation Rates Parameterization of Lightning NOx Production in CMAQ

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  17. Modeling of X-ray images and energy spectra produced by stepping lightning leaders

    OpenAIRE

    Xu , Wei; Marshall , Robert A.; Celestin , Sébastien; Pasko , Victor P.

    2017-01-01

    International audience; Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as woul...

  18. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    Science.gov (United States)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  19. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  20. Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India

    Science.gov (United States)

    Lal, D. M.; Ghude, Sachin D.; Mahakur, M.; Waghmare, R. T.; Tiwari, S.; Srivastava, Manoj K.; Meena, G. S.; Chate, D. M.

    2017-08-01

    The relationship between aerosol and lightning over the Indo-Gangetic Plain (IGP), India has been evaluated by utilising aerosol optical depth (AOD), cloud droplet effective radius and cloud fraction from Moderate Resolution Imaging Spectroradiometer. Lightning flashes have been observed by the lightning Imaging sensor on the board of Tropical Rainfall and Measuring Mission and humidity from modern-era retrospective-analysis for research and applications for the period of 2001-2012. In this study, the role of aerosol in lightning generation over the north-west sector of IGP has been revealed. It is found that lightning activity increases (decreases) with increasing aerosols during normal (deficient) monsoon rainfall years. However, lightning increases with increasing aerosol during deficient rainfall years when the average value of AOD is less than 0.88. We have found that during deficient rainfall years the moisture content of the atmosphere and cloud fraction is smaller than that during the years with normal or excess monsoon rainfall over the north-west IGP. Over the north-east Bay of Bengal and its adjoining region the variations of moisture and cloud fraction between the deficient and normal rainfall years are minimal. We have found that the occurrence of the lightning over this region is primarily due to its topography and localised circulation. The warm-dry air approaching from north-west converges with moist air emanating from the Bay of Bengal causing instability that creates an environment for deep convective cloud and lightning. The relationship between lightning and aerosol is stronger over the north-west sector of IGP than the north-east, whereas it is moderate over the central IGP. We conclude that aerosol is playing a major role in lightning activity over the north-west sector of IGP, but, local meteorological conditions such as convergences of dry and moist air is the principal cause of lightning over the north-east sector of IGP. In addition

  1. Cochlear implantation for severe sensorineural hearing loss caused by lightning.

    Science.gov (United States)

    Myung, Nam-Suk; Lee, Il-Woo; Goh, Eui-Kyung; Kong, Soo-Keun

    2012-01-01

    Lightning strike can produce an array of clinical symptoms and injuries. It may damage multiple organs and cause auditory injuries ranging from transient hearing loss and vertigo to complete disruption of the auditory system. Tympanic-membrane rupture is relatively common in patients with lightning injury. The exact pathogenetic mechanisms of auditory lesions in lightning survivors have not been fully elucidated. We report the case of a 45-year-old woman with bilateral profound sensorineural hearing loss caused by a lightning strike, who was successfully rehabilitated after a cochlear implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Electromagnetic computation methods for lightning surge protection studies

    CERN Document Server

    Baba, Yoshihiro

    2016-01-01

    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  3. Ground test of satellite constellation based quantum communication

    OpenAIRE

    Liao, Sheng-Kai; Yong, Hai-Lin; Liu, Chang; Shentu, Guo-Liang; Li, Dong-Dong; Lin, Jin; Dai, Hui; Zhao, Shuang-Qiang; Li, Bo; Guan, Jian-Yu; Chen, Wei; Gong, Yun-Hong; Li, Yang; Lin, Ze-Hong; Pan, Ge-Sheng

    2016-01-01

    Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global...

  4. A self-similar magnetohydrodynamic model for ball lightnings

    International Nuclear Information System (INIS)

    Tsui, K. H.

    2006-01-01

    Ball lightning is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label η. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index γ. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similar spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball lightning offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in high altitude atmospheric observations of sprites and blue jets. It also appears to account for midair high-speed ball lightning overtaking airplanes, and ground level high-speed energetic ball lightning. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball lightning seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball lightning to an end sometimes with a cracking sound

  5. Resolution No. 58/03 Concerning the use of radioactive lightning rods

    International Nuclear Information System (INIS)

    2003-01-01

    This resolution provides that the importation and purchase of radioactive lightning rods throughout the national territory is prohibited also not the assembly of new radioactive lightning rod is allowed although these have in storage. All currently employs radioactive lightning rods should replace conventional, within ten (10) years from the entry into force of this Resolution. The radioactive lightning rods in use, for any reason lose tightness sources must be removed immediately. In all cases should proceed to the safe management of radioactive lightning rod as disused source with the Center for Health and Safety of Radiation or other entity authorized to do so, in order to avoid undue risk to lives, property and the environment environment.

  6. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    Science.gov (United States)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  7. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other.

    Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  8. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  9. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    Science.gov (United States)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Matthee, R.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOX). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOX production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOX production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOX production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOX are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  10. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOx Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    Science.gov (United States)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  11. A numerical study on bow shocks around the lightning return stroke channel

    International Nuclear Information System (INIS)

    Chen, Qiang; Chen, Bin; Yi, Yun; Chen, P. F.; Mao, Yunfei; Xiong, Run

    2015-01-01

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of the curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas

  12. Towards understanding the nature of any relationship between Solar Activity and Cosmic Rays with thunderstorm activity and lightning discharge

    Science.gov (United States)

    O'Regan, J.; Muller, J.-P.; Matthews, S.

    2012-04-01

    The runaway breakdown hypothesis of lightning discharge has predicted relationships between cosmic rays' interactions with the atmosphere and thunderstorm production and lightning activity. Precipitating energetic particles lead to the injection of MeV-energy electrons into electrified thunderclouds [1,2], resulting in runaway breakdown occurring, and assisting in the process of charge separation [2]. Previous lightning studies show that correlations to solar activity are weak but significant, with better correlations to solar activity and cosmic rays when carried out over smaller geographical areas [3,4,5,6] and over longer timescales [6]. In this work, correlations are explored between variations of SEPs and lightning activity levels at various spatio-temporal scales. Temporal scales span from short-term (days) scales surrounding large Earth-directed coronal mass ejection (CME) events to long-term (years) scales. Similarly, spatial scales span from 1-degree x 1-degree latitudinal-longitudinal grid scales to an entirely global study, for varying timescales. Additionally, investigation of correlation sign and statistical significance by 1-degree latitudinal bands is also employed, allowing a comparative study of lightning activity relative to regions of greatest - and contrasting regions of relative absence of - energetic particle precipitation. These regions are determined from electron and proton flux maps, derived from measurements from the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) system. Lightning data is obtained from the World Wide Lightning Location Network (WWLLN) for the period 2005 to 2011. The correlations of lightning strike rates are carried out with respect to Relative Sunspot Number (R), 10.7cm Solar radio flux (F10.7), Galactic Cosmic Ray (GCR) neutron monitor flux, the Ap geomagnetic activity index, and Disturbance Storm Time (DST) index. Correlations show dramatic variations in

  13. Some of the ball lightning observations could be phosphenes induced by energetic radiation from thunderstorms and lightning

    Science.gov (United States)

    Cooray, G. K.; Cooray, G. V.; Dwyer, J. R.

    2011-12-01

    Ball Lightning was seen and described since antiquity and recorded in many places. However, so far no one has managed to generate them in the laboratory. It is possible that many different phenomena are grouped together and categorized simply as ball lightning. One such phenomenon could be the phosphenes induced in humans by energetic radiation and particles from lightning and thunderstorms. A phosphene is a visual sensation that is characterized by perceiving luminous phenomena without light entering the eye. Phosphenes are generated when electrical signals are created in the retina or the optical nerve by other means in the absence of light stimuli. The fact that energetic radiation produced by radium can give rise to phosphenes was first noted by Giesel in 1899 [1]. A resurge of studies related to the creation of phosphenes by energetic radiation took place after the reports of phosphenes observed in space by Apollo astronauts and first reported by Buzz Aldrin after the Apollo 11 flight to the moon in 1969 [2]. The shapes of the phosphenes observed by astronauts were either rods, comet shaped, or comprised of a single dot, several dots or blobs. The colors were mostly white, but some had been colored yellow, orange, blue, green or red. The majority of the astronauts had perceived some kind of motion in association with the phosphenes. Most of the time, they were moving horizontally (from the periphery of the vision to the center) and sometimes diagonally, but never vertically. Subsequent studies conducted in space and ground confirmed the creation of phosphenes by energetic radiation. From these studies the threshold energy dissipation in the eye tissue necessary for phosphenes induction was estimated to be 10 MeV/cm. In the present study a quantitative analysis of the energetic radiation generated in the form of X-rays, Gamma rays and relativistic electrons by thunderstorms and lightning was made to investigate whether this radiation is strong enough to induce

  14. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    Science.gov (United States)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  15. Magnetic field generated by lightning protection system

    Science.gov (United States)

    Geri, A.; Veca, G. M.

    1988-04-01

    A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.

  16. Sensors for in-flight lightning detection on aircraft

    NARCIS (Netherlands)

    Stelmashuk, V.; Deursen, van A.P.J.; Webster, M.

    2008-01-01

    Commercial passenger aircraft are on average struck by lightning once a year. The In-flight Lightning Strike Damage Assessment System (ILDAS) project is to develop and validate a prototype of a system capable of in-flight measurement of the current waveform and reconstruction of the path of

  17. IR-BASED SATELLITE PRODUCTS FOR THE MONITORING OF ATMOSPHERIC WATER VAPOR OVER THE BLACK SEA

    Directory of Open Access Journals (Sweden)

    VELEA LILIANA

    2016-03-01

    Full Text Available The amount of precipitable water (TPW in the atmospheric column is one of the important information used weather forecasting. Some of the studies involving the use of TPW relate to issues like lightning warning system in airports, tornadic events, data assimilation in numerical weather prediction models for short-range forecast, TPW associated with intense rain episodes. Most of the available studies on TPW focus on properties and products at global scale, with the drawback that regional characteristics – due to local processes acting as modulating factors - may be lost. For the Black Sea area, studies on the climatological features of atmospheric moisture are available from sparse or not readily available observational databases or from global reanalysis. These studies show that, although a basin of relatively small dimensions, the Black Sea presents features that may significantly impact on the atmospheric circulation and its general characteristics. Satellite observations provide new opportunities for extending the knowledge on this area and for monitoring atmospheric properties at various scales. In particular, observations in infrared (IR spectrum are suitable for studies on small-scale basins, due to the finer spatial sampling and reliable information in the coastal areas. As a first step toward the characterization of atmospheric moisture over the Black Sea from satellite-based information, we investigate three datasets of IR-based products which contain information on the total amount of moisture and on its vertical distribution, available in the area of interest. The aim is to provide a comparison of these data with regard to main climatological features of moisture in this area and to highlight particular strengths and limits of each of them, which may be helpful in the choice of the most suitable dataset for a certain application.

  18. Some radiation safety aspects of operating medical generators of VHF electromagnetic energy

    International Nuclear Information System (INIS)

    Bosevski, V.; Radev, S.; Donev, Ch.

    1977-01-01

    The state of radiation safety in physiotherapy practice using very-high-frequency diathermy was studied with regard to personnel and patient protection. A specially devised shielding set to protect patients and personnel is offered for adoption, and the necessity is insistently stressed of prohibiting any patient head or gonad exposure. It is pointed out that the protective set developed may also be used at facilities employing other types of VHF electromagnetic energy sources. (author)

  19. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    International Nuclear Information System (INIS)

    Koone, Neil; Condren, Brian

    2003-01-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and 'build' a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented

  20. An investigation of the generation and properties of laboratory-produced ball lightning

    Science.gov (United States)

    Oreshko, A. G.

    2015-06-01

    The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

  1. A case study on lightning protection, building resonances considered

    OpenAIRE

    Deursen, van, A.P.J.; Geers - Bargboer, G.

    2011-01-01

    In a recent paper (G. Bargboer and A. P. J. van Deursen, IEEE Trans. Electromagn. Compat., vol. 52, no. 3, pp. 684-90, Aug. 2010) we dealt with current injection measurements to test the lightning protection system of a newly built pharmaceutical plant. In a tentative extrapolation, the measurements were extrapolated to actual lightning. Here, we extend the model and calculate the response of the installation on lightning currents and include resonances in the cable trays and test cables cont...

  2. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  3. The lightning striking probability for offshore wind turbine blade with salt fog contamination

    Science.gov (United States)

    Li, Qingmin; Ma, Yufei; Guo, Zixin; Ren, Hanwen; Wang, Guozheng; Arif, Waqas; Fang, Zhiyang; Siew, Wah Hoon

    2017-08-01

    The blades of an offshore wind turbine are prone to be adhered with salt fog after long-time exposure in the marine-atmosphere environment, and salt fog reduces the efficiency of the lightning protection system. In order to study the influence of salt fog on lightning striking probability (LSP), the lightning discharge process model for the wind turbine blade is adopted in this paper considering the accumulation mechanism of surface charges around the salt fog area. The distribution of potential and electric field with the development of the downward leader is calculated by COMSOL Multiphysics LiveLink for MATLAB. A quantitative characterization method is established to calculate the LSP base on the average electric field before the return stroke and the LSP distribution of the blade is shown in the form of a graphic view. The simulation results indicate that the receptor and conductor area close to the receptor area are more likely to get struck by lightning, and the LSP increases under the influence of salt fog. The validity of the model is verified by experiments. Furthermore, the receptor can protect the blade from lightning strikes effectively when the lateral distance between the rod electrode and receptor is short. The influence of salt fog on LSP is more obvious if salt fog is close to the receptor or if the scope of salt fog area increases.

  4. 14 CFR 25.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 25.954...

  5. 14 CFR 27.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 27.954...

  6. 14 CFR 29.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 29.954...

  7. Delayed Post Mortem Predation in Lightning Strike Carcasses ...

    African Journals Online (AJOL)

    Campbell Murn

    An adult giraffe was struck dead by lightning on a game farm outside. Phalaborwa, South Africa in March 2014. Interestingly, delayed post-mortem predation occurred on the carcass, which according to the farm owners was an atypical phenomenon for the region. Delayed post-mortem scavenging on lightning strike ...

  8. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  9. Situational Lightning Climatologies for Central Florida: Phase V

    Science.gov (United States)

    Bauman, William H., III

    2011-01-01

    The AMU added three years of data to the POR from the previous work resulting in a 22-year POR for the warm season months from 1989-2010. In addition to the flow regime stratification, moisture and stability stratifications were added to separate more active from less active lighting days within the same flow regime. The parameters used for moisture and stability stratifications were PWAT and TI which were derived from sounding data at four Florida radiosonde sites. Lightning data consisted of NLDN CG lightning flashes within 30 NM of each airfield. The AMU increased the number of airfields from nine to thirty-six which included the SLF, CCAFS, PAFB and thirty-three airfields across Florida. The NWS MLB requested the AMU calculate lightning climatologies for additional airfields that they support as a backup to NWS TBW which was then expanded to include airfields supported by NWS JAX and NWS MFL. The updated climatologies of lightning probabilities are based on revised synoptic-scale flow regimes over the Florida peninsula (Lambert 2007) for 5-, 10-, 20- and 30-NM radius range rings around the thirty-six airfields in 1-, 3- and 6-hour increments. The lightning, flow regime, moisture and stability data were processed in S-PLUS software using scripts written by the AMU to automate much of the data processing. The S-PLUS data files were exported to Excel to allow the files to be combined in Excel Workbooks for easier data handling and to create the tables and charts for the Gill. The AMU revised the Gill developed in the previous phase (Bauman 2009) with the new data and provided users with an updated HTML tool to display and manipulate the data and corresponding charts. The tool can be used with most web browsers and is computer operating system independent. The AMU delivered two Gills - one with just the PWAT stratification and one with both the PWAT and TI stratifications due to insufficient data in some of the PWATITI stratification combinations. This will allow

  10. Meteor head echo altitude distributions and the height cutoff effect studied with the EISCAT HPLA UHF and VHF radars

    Directory of Open Access Journals (Sweden)

    A. Westman

    2004-04-01

    Full Text Available Meteor head echo altitude distributions have been derived from data collected with the EISCAT VHF (224MHz and UHF (930MHz high-power, large-aperture (HPLA radars. At the high-altitude end, the distributions cut off abruptly in a manner reminiscent of the trail echo height ceiling effect observed with classical meteor radars. The target dimensions are shown to be much smaller than both the VHF and the UHF probing wavelengths, but the cutoff heights for the two systems are still clearly different, the VHF cutoff being located several km above the UHF one. A single-collision meteor-atmosphere interaction model is used to demonstrate that meteors in the (1.3–7.2µg mass range will ionise such that critical electron density at 224MHz is first reached at or around the VHF cutoff altitude and critical density at 930MHz will be reached at the UHF cutoff altitude. The observed seasonal variation in the cutoff altitudes is shown to be a function of the seasonal variation of atmospheric density with altitude. Assuming that the electron density required for detection is in the order of the critical density, the abrupt altitude cutoffs can be explained as a consequence of the micrometeoroid joint size-speed distribution dropping off so fast at the large-mass, high-velocity end that above a certain altitude the number of detectable events becomes vanishingly small. Conversely, meteors at the low-mass end of the distribution will be gradually retarded such that the ionisation they generate never reaches critical density. These particles will remain unobservable.Key words. Radio science (instruments and techniques – Interplatery physics (interplanetary dust – General or miscellaneous (new fields

  11. Automated Studies of Continuing Current in Lightning Flashes

    Science.gov (United States)

    Martinez-Claros, Jose

    Continuing current (CC) is a continuous luminosity in the lightning channel that lasts longer than 10 ms following a lightning return stroke to ground. Lightning flashes following CC are associated with direct damage to power lines and are thought to be responsible for causing lightning-induced forest fires. The development of an algorithm that automates continuing current detection by combining NLDN (National Lightning Detection Network) and LEFA (Langmuir Electric Field Array) datasets for CG flashes will be discussed. The algorithm was applied to thousands of cloud-to-ground (CG) flashes within 40 km of Langmuir Lab, New Mexico measured during the 2013 monsoon season. It counts the number of flashes in a single minute of data and the number of return strokes of an individual lightning flash; records the time and location of each return stroke; performs peak analysis on E-field data, and uses the slope of interstroke interval (ISI) E-field data fits to recognize whether continuing current (CC) exists within the interval. Following CC detection, duration and magnitude are measured. The longest observed C in 5588 flashes was 631 ms. The performance of the algorithm (vs. human judgement) was checked on 100 flashes. At best, the reported algorithm is "correct" 80% of the time, where correct means that multiple stations agree with each other and with a human on both the presence and duration of CC. Of the 100 flashes that were validated against human judgement, 62% were hybrid. Automated analysis detects the first but misses the second return stroke in many cases where the second return stroke is followed by long CC. This problem is also present in human interpretation of field change records.

  12. Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan

    Science.gov (United States)

    Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu

    2017-12-01

    The coastal areas of the Sea of Japan are a well-known hotspot of winter lightning activity. This study distinguishes between three common types of winter lightning in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A lightning occurs with high frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's lightning frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in lightning frequency distribution in Japan's Tohoku and Hokuriku districts.

  13. Acute transient hemiparesis induced by lightning strike.

    Science.gov (United States)

    Rahmani, Seyed Hesam; Faridaalaee, Gholamreza; Jahangard, Samira

    2015-07-01

    According to data from the National Oceanic and Atmospheric Administration,in the years from 1959 to 1994, lightning was responsible for more than 3000 deaths and nearly 10,000 casualties. The most important characteristic features of lightning injuries are multisystem involvement and widely variable severity. Lightning strikes are primarily a neurologic injury that affects all 3 components of the nervous system: central, autonomic,and peripheral. Neurologic complications of lightning strikes vary from transient benign symptoms to permanent disability. Many patients experience a temporary paralysis called keraunoparalysis. Here we reported a 22-year-old mountaineer man with complaining of left sided hemiparesis after being hit by a lightning strike in the mountain 3 hours ago. There was no loss of consciousness at hitting time. On arrival the patient was alert, awake and hemodynamically stable. In neurologic examination cranial nerves were intact, left sided upper and lower extremity muscle force was I/V with a combination of complete sensory loss, and right-sided muscle force and sensory examination were normal. There is not any evidence of significant vascular impairment in the affected extremities. Brain MRI and CT scan and cervical MRI were normal. During 2 days of admission, with intravenous hydration, heparin 5000 unit SC q12hr and physical therapy of the affected limbs, motor and sensory function improved and was normal except mild paresthesia. He was discharged 1 day later for outpatient follow up while vitamin B1 100mg orally was prescribed.Paresthesia improved after 3 days without further sequels.

  14. Anti-lightning design of nuclear power plant

    International Nuclear Information System (INIS)

    1992-01-01

    This rule takes for granted the observance of conventional regulations, i.e. the building codes of the federal states, accident prevention regulations, DIN standards and VDE-regulations. It defines additional requirements to be met by external and internal lightning protection. These requirements have to be defined in a way that effects on electrical equipment due to lightning stroke do not entail inadmissible impairment. (orig.) [de

  15. Anti-lightning design of nuclear power plant

    International Nuclear Information System (INIS)

    1989-01-01

    This rule takes for granted the observance of conventional regulations, i.e. the building codes of the federal states, accident prevention regulations, DIN standards and VDE-regulations. It defines additional requirements to be met by external and internal lightning protection. These requirements have to be defined in a way that effects on electrical equipment due to lightning stroke do not entail inadmissible impairment. (orig./HP) [de

  16. Remarkable rates of lightning strike mortality in Malawi.

    Science.gov (United States)

    Mulder, Monique Borgerhoff; Msalu, Lameck; Caro, Tim; Salerno, Jonathan

    2012-01-01

    Livingstone's second mission site on the shore of Lake Malawi suffers very high rates of consequential lightning strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other developing countries; the rate of deaths from lightning was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that lightning constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area.

  17. Electromagnetic model of a lightning dart leader in the earth atmosphere

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Losseva, T.V.

    2005-01-01

    The fundamentally new approach to the lightning dart leader structure investigation is suggested, which is connected with the charge separation and the appearance of the Hall potential in the current-channel magnetic field of the lightning dart leader. Generation of the strong radial electric field provides both the relativistic electron drift along the lightning channel and the breakdown in the Earth atmosphere at the front of the propagating filament. The magnetic selfinsulation in the current channel ensures the propagation of the current filament with the relativistic electrons up to the Earth surface. After this stage the reflected magnetic selfinsulation wave realizes the return stroke stage of the lightning that is accompanied by the strong gas heating in the lightning channel. The current data in the lightning dart leader channel (4-11 kA) and the range of the X-ray emission from the lightning channel (30-250 keV), which are obtained in in-situ observations, are in reasonably good agreement with the estimates made in the frame of this model. Profiles of magnetic field Bq, electron concentration ne, electron velocity v ez and radial electric field E r in current channel for the current value 11 kA are presented. (author)

  18. Locating cloud-to-ground lightning return strokes by a neural network algorithm

    International Nuclear Information System (INIS)

    2001-01-01

    A neuro-based approach is proposed for locating cloud-to-ground lightning strokes. Due to insufficient experimental data, we have use the results of an electromagnetic simulator for training the developed artificial neural network. The simulator utilizes the well-known transmission line and is capable of predicting the electromagnetic field due to a return stroke channel for various parameters associated with the shape of the channel base-current. The training process has been successfully done using the Levenberg-Marquard technique. The simulation results demonstrate that the return stroke channel locations can be predicted with an absolute error not greater than 1 km for return stroke channels located within 80 km of a lightning detection station

  19. HIGH-ENERGY PARTICLES FLUX ORIGIN IN THE CLOUDS, DARK LIGHTNING

    Directory of Open Access Journals (Sweden)

    Kuznetsov, V.V.

    2016-11-01

    Full Text Available Problem of high-energy particles flux origin in clouds is discussed. Conditions in which dark lightning preceding the ordinary one and creating additional ionization, fluxes of fast electrons with MeV energy prior to the earthquake detected among lightning initiating ball-lightning, glow, sprites are considered. All above phenomena appear to be of general nature founded on quantum entanglement of hydrogen bonds protons in water clasters inside clouds.

  20. The Distribution of Lightning Channel Lengths in Northern Alabama Thunderstorms

    Science.gov (United States)

    Peterson, H. S.; Koshak, W. J.

    2010-01-01

    Lightning is well known to be a major source of tropospheric NOx, and in most cases is the dominant natural source (Huntreiser et al 1998, Jourdain and Hauglustaine 2001). Production of NOx by a segment of a lightning channel is a function of channel segment energy density and channel segment altitude. A first estimate of NOx production by a lightning flash can be found by multiplying production per segment [typically 104 J/m; Hill (1979)] by the total length of the flash s channel. The purpose of this study is to determine average channel length for lightning flashes near NALMA in 2008, and to compare average channel length of ground flashes to the average channel length of cloud flashes.