WorldWideScience

Sample records for satellite zenith angle

  1. Showers with large zenith angles observed in emulsion chambers

    Institute of Scientific and Technical Information of China (English)

    任敬儒; 陆穗苓; 解卫; 王承瑞; 何瑁; 张乃健

    1997-01-01

    Showers with large zenith angles are observed in emulsion chambers exposed at Mt.Kanbala.The intensity of high energy muons is given and the multicore showers with large zenith angles are found.It is indicated that a new phenomenon may exist in the high energy nuclear interactions of cosmic rays.

  2. Chapman Solar Zenith Angle variations at Titan

    Science.gov (United States)

    Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd

    2016-10-01

    Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.

  3. Assessment of Automated Snow Cover Detection at High Solar Zenith Angles with PROBA-V

    OpenAIRE

    2016-01-01

    Changes in the snow cover extent are both a cause and a consequence of climate change. Optical remote sensing with heliosynchronous satellites currently provides snow cover data at high spatial resolution with daily revisiting time. However, high latitude image acquisition is limited because reflective sensors of many satellites are switched off at high solar zenith angles (SZA) due to lower signal quality. In this study, the relevance and reliability of high SZA acquisition are objectively q...

  4. Optimizing sensitivity of Unmanned Aerial System optical sensors for low zenith angles and cloudy conditions

    DEFF Research Database (Denmark)

    Wang, Sheng; Dam-Hansen, Carsten; Zarco Tejada, Pablo J.

    Satellite-based imagery in optical domains cannot provide information on the land surface during periods of cloud cover. This issue is especially relevant for high latitudes where overcast days and low solar zenith angles are common. Current remote sensing-based models of evapotranspiration......) with UAV flight campaigns over a willow eddy covariance flux site under different cloudiness levels and solar zenith angles using varying camera settings. Radiance, reflectance, and vegetation indices were validated with ASD measurements and signal to noise metrics and dynamic ranges were assessed. Our....... The multispectral camera (Tetra Mini-MCA6) has 6 channels in the visible and near Infrared. For the laboratory calibration experiment, different camera settings and typical irradiance levels from cloudy to clear sky were designed. The light-source is based on super-continuum generation to produce a continuous solar...

  5. The solar zenith angle dependence of desert albedo

    Science.gov (United States)

    Wang, Zhuo; Barlage, Michael; Zeng, Xubin; Dickinson, Robert E.; Schaaf, Crystal B.

    2005-03-01

    Most land models assume that the bare soil albedo is a function of soil color and moisture but independent of solar zenith angle (SZA). However, analyses of the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo data over thirty desert locations indicate that bare soil albedo does vary with SZA. This is further confirmed using the in situ data. In particular, bare soil albedo normalized by its value at 60° SZA can be adequately represented by a one-parameter formulation (1 + C)/(1 + 2C * cos(SZA)) or a two-parameter formulation (1 + B1 * f1(SZA) + B2 * f2(SZA)). Using the MODIS and in situ data, the empirical parameters C, B1, and B2 are taken as 0.15, 0.346 and 0.063. The SZA dependence of soil albedo is also found to significantly affect the modeling of land surface energy balance over a desert site.

  6. Influence of solar zenith angle on the enhanced vegetation index of a Guyanese rainforest

    NARCIS (Netherlands)

    Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Herold, M.

    2015-01-01

    In this study, the effect of solar zenith angle () on enhanced vegetation index (EVI) of a Guyanese tropical rainforest was studied. For this sub-crown resolution, hyperspectral data have been collected with an unmanned aerial vehicle (UAV) at five different solar zenith angles in a 1-day period. Th

  7. Assessment of Automated Snow Cover Detection at High Solar Zenith Angles with PROBA-V

    Directory of Open Access Journals (Sweden)

    Florent Hawotte

    2016-08-01

    Full Text Available Changes in the snow cover extent are both a cause and a consequence of climate change. Optical remote sensing with heliosynchronous satellites currently provides snow cover data at high spatial resolution with daily revisiting time. However, high latitude image acquisition is limited because reflective sensors of many satellites are switched off at high solar zenith angles (SZA due to lower signal quality. In this study, the relevance and reliability of high SZA acquisition are objectively quantified in the purpose of high latitude snow cover detection, thanks to the PROBA-V (Project for On-Board Autonomy-Vegetation satellite. A snow cover extent classification based on Normalized Difference Snow Index (NDSI and Normalized Difference Vegetation Index (NDVI has been performed for the northern hemisphere on latitudes between 55°N and 75°N during the 2015–2016 winter season. A stratified probabilistic sampling was used to estimate the classification accuracy. The latter has been evaluated among eight SZA intervals to determine the maximum usable angle. The global overall snow classification accuracy with PROBA-V, 82% ± 4%, was significantly larger than the MODIS (Moderate-resolution Imaging Spectroradiometer snow cover extent product (75% ± 4%. User and producer accuracy of snow are above standards and overall accuracy is stable until 88.5° SZA. These results demonstrate that optical remote sensing data can still be used with large SZA. Considering the relevance of snow cover mapping for ecology and climatology, the data acquisition at high solar zenith angles should be continued by PROBA-V.

  8. Zenith Pass Problem of Inter-satellite Linkage Antenna Based on Program Guidance Method

    Institute of Scientific and Technical Information of China (English)

    Zhai Kun; Yang Di

    2008-01-01

    While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of,firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.

  9. Performance analysis of GPS augmentation using Japanese Quasi-Zenith Satellite System

    Science.gov (United States)

    Wu, F.; Kubo, N.; Yasuda, A.

    2004-01-01

    The current GPS satellite constellation provides limited availability and reliability for a country like Japan where mountainous terrain and urban canyons do not allow a clear skyline to the horizon. At present, the Japanese Quasi-Zenith Satellite System (QZSS) is under investigation through a government-private sector cooperation. QZSS is considered a multi-mission satellite system, as it is able to provide communication, broadcasting and positioning services for mobile users in a specified region with high elevation angle. The performance of a Global Navigation Satellite System (GNSS) can be quantified by availability, accuracy, reliability and integrity. This paper focuses on availability, accuracy and reliability of GPS with and without augmentation using QZSS. The availability, accuracy and reliability of GPS only and augmented GPS using QZSS in the Asia-Pacific and Australian area is studied by software simulation. The simulation results are described by the number of visible satellites as a measure of availability, geometric dilution of precision as a measure of accuracy and minimal detectable bias, and bias-to-noise rate as a measure of reliability, with spatial and temporal variations. It is shown that QZSS does not only improve the availability and accuracy of GPS positioning, but also enhances the reliability of GPS positioning in Japan and its neighboring area.

  10. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  11. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  12. Large zenith angle observations with the high-resolution GRANITE III camera

    CERN Document Server

    Petry, D

    2001-01-01

    The GRANITE III camera of the Whipple Cherenkov Telescope at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona (2300 m a.s.l.) has the highest angular resolution of all cameras used on this telescope so far. The central region of the camera has 379 pixels with an individual angular diameter of 0.12 degrees. This makes the instrument especially suitable for observations of gamma-induced air-showers at large zenith angles since the increase in average distance to the shower maximum leads to smaller shower images in the focal plane of the telescope. We examine the performance of the telescope for observations of gamma-induced air-showers at zenith angles up to 63 degrees based on observations of Mkn 421 and using Monte Carlo Simulations. An improvement to the standard data analysis is suggested.

  13. The Dependence of the Age Parameter from EAS Size and Zenith Angle of Incidence

    CERN Document Server

    Chilingarian, A A; Kazarian, S; Hovsepyan, G G; Mamidjanyan, E A; Melkumyan, L G; Sokhoyan, S H

    2000-01-01

    The quality of the MAKET-ANI detector installation in view of the uniformityof the registration efficiency is demonstrated. Based on a data samplecollected by the MAKET-ANI array in the period of June 1997 - March 1999, thedependencies of the age parameter on the zenith angle and the EAS size(10^5-10^7) are studied. The variation of the age parameter with the showersize can be approximately related to the elongation rate.

  14. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    Science.gov (United States)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2012-08-01

    Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source

  15. Improving the solar zenith angle dependence of broadband UV radiometers calibration

    Directory of Open Access Journals (Sweden)

    M. L. Cancillo

    2007-12-01

    Full Text Available This paper focusses on the proposal of a new method for the calibration of broadband ultraviolet radiometers. The advantage of the method proposed is the accurate modelling of the dependence on the solar zenith angle. The new model is compared with other one-step calibration methods and with the two-step method, which requires the knowledge of the actual response of the broadband radiometer. For this purpose, three broadband radiometers are calibrated against a spectrophotometer of reference. The new method is validated comparing its predictions with the spectrophotometer measurements using an independent data set.

  16. Erythemal ultraviolet insolation in New Zealand at solar zenith angles of 30 and 45..

    Science.gov (United States)

    Ryan, K G; Smith, G J; Rhoades, D A; Coppell, R B

    1996-05-01

    Solar UV radiometers with spectral responsivities that are close to the erythemal/carcinogenic action spectrum of skin have been installed at several centers of population in New Zealand, including Auckland, 37 degrees S, Wellington, 41 degrees S and Christchurch, 43.5 degrees S. The data set covers the period from the time the radiometry program commenced in 1988/1989 to the end of the southern summer, March 1995. The radiometers were recalibrated annually and the data were corrected for changes in the absolute responsivity of the radiometers. Erythemally effective UV irradiances at solar zenith angles of 30 degrees and 45 degrees were then extracted from the data set. No monotonic trend in these data is apparent, although there are statistically significant differences in mean irradiances from one year to the next. An example of this is the decrease observed in all sites following the Mt. Pinatubo eruption in June 1991. The maximum erythemally effective insolations at solar zenith angles of 30 degrees and 45 degrees were consistently lower in Christchurch than in the other two New Zealand sites. This could arise from higher levels of atmospheric turbidity and/or tropospheric ozone at this location. Also, a seasonal increase in erythemally effective UV insolation from spring to autumn was observed each year in all three New Zealand sites.

  17. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    CERN Document Server

    Aleksić, J; Antoranz, P; Asensio, M; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Häfner, D; Herrero, A; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Klepser, S; Knoetig, M L; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Partini, S; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R

    2012-01-01

    The high frequency peaked BL Lac PKS 2155-304 with a redshift of z=0.116 was discovered in 1997 in the very high energy (VHE, E >100GeV) gamma-ray range by the University of Durham Mark VI gamma-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the Southern Cherenkov observatory H.E.S.S. Detection from the Northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE gamma-emission. During the outburst, the VHE gamma-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 hours at large zenith angles. Here we present ...

  18. Investigation of the zenith angle dependence of cosmic-ray muons at sea level

    Indian Academy of Sciences (India)

    Mehmet Bektasoglu; Halil Arslan

    2013-05-01

    Angular distribution of cosmic-ray muons at sea level has been investigated using the Geant4 simulation package. The model used in the simulations was tested by comparing the simulation results with the measurements made using the Berkeley Lab cosmic ray detector. Primary particles’ energy and fluxes were obtained from the experimental measurements. Simulations were run at each zenith angle starting from = 0° up to = 70° with 5° increment. The angular distribution of muons at sea level has been estimated to be in the form $I() = I(0^{°}) \\cos^{n}()$, where (0°) is the muon intensity at 0° and is a function of the muon momentum. The exponent = 1.95 ± 0.08 for muons with energies above 1 GeV is in good agreement, within error, with the values reported in the literature.

  19. Cassini UVIS observations of Titan ultraviolet airglow intensity dependence with solar zenith angle

    Science.gov (United States)

    Royer, E. M.; Ajello, J. M.; Holsclaw, G. M.; West, R. A.; Esposito, L. W.; Bradley, E. T.

    2017-01-01

    The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the airglow (dayglow and nightglow) of Titan over a range of solar zenith angles (SZA) from 14 to 150° on five separate observations obtained between 2008 and 2012. The modeling of the solar cycle normalized UVIS observations indicates that a Chapman layer function provides a satisfactory fit to the intensity of the EUV and FUV airglow molecular emissions of the N2 Lyman-Birge-Hopfield band system (LBH a1Πg→X1>∑g+), the Carroll-Yoshino band system (c4'1>∑u+→X1>∑g+), and of several atomic multiplets of nitrogen (NI, II) as a function of SZA. This result shows that the strongest contribution to the Titan dayglow occurs by processes (photoelectrons and photodissociation) involving the solar EUV flux rather than magnetospheric particle precipitation that dominates emission excitation in the nightglow.

  20. High-energy spectrum and zenith-angle distribution of atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2011-01-01

    High-energy neutrinos, arising from decays of mesons produced through the collisions of cosmic ray particles with air nuclei, form the background in the astrophysical neutrino detection problem. An ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. We present results of the calculation of the energy spectrum and zenith-angle distribution of the muon and electron atmospheric neutrinos in the energy range 10 GeV to 10 PeV. The calculation was performed with usage of known hadronic models (QGSJET-II-03, SIBYLL 2.1, Kimel & Mokhov) for two of the primary spectrum parametrizations, by Gaisser & Honda and by Zatsepin & Sokolskaya. The comparison of the calculated muon neutrino spectrum with the IceCube40 experiment data make it clear that even at energies above 100 TeV the prompt neutrino contribution is not so apparent because of tangled uncertainties of the strange (kaons) and charm...

  1. Observations of Mkn 421 in 2004 with H.E.S.S. at large zenith angles

    CERN Document Server

    Aharonian, F; Aye, K M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Braun, I; Breitling, F; Brown, A M; Bussons-Gordo, J; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ata, A; O'Connor-Drury, L; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Johnston, S; Khelifi, B; Kirk, J G; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Leroy, N; Martineau-Huynh, O; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Skjraasen, O; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J P; Terrier, R; Theoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2005-01-01

    Mkn 421 was observed during a high flux state for nine nights in April and May 2004 with the fully operational High Energy Stereoscopic System (H.E.S.S.) in Namibia. The observations were carried out at zenith angles of 60$^\\circ$--65$^\\circ$, which result in an average energy threshold of 1.5 TeV and a collection area reaching 2~km$^2$ at 10~TeV. Roughly 7000 photons from Mkn~421 were accumulated with an average gamma-ray rate of 8 photons/min. The overall significance of the detection exceeds 100 standard deviations. The light-curve of integrated fluxes above 2~TeV shows changes of the diurnal flux up to a factor of 4.3. For nights of high flux, intra-night variability is detected with a decay time of less than 1 hour. The time averaged energy spectrum is curved and is well described by a power-law with a photon index $\\egamm$ and an exponential cutoff at $\\ecut$~TeV and an average integral flux above 2~TeV of 3 Crab flux units. Significant variations of the spectral shape are detected with a spectral harde...

  2. Multiple View Zenith Angle Observations of Reflectance From Ponderosa Pine Stands

    Science.gov (United States)

    Johnson, Lee F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Reflectance factors (RF(lambda)) from dense and sparse ponderosa pine (Pinus ponderosa) stands, derived from radiance data collected in the solar principal plane by the Advanced Solid-State Array Spectro-radiometer (ASAS), were examined as a function of view zenith angle (theta(sub v)). RF(lambda) was maximized with theta(sub v) nearest the solar retrodirection, and minimized near the specular direction throughout the ASAS spectral region. The dense stand had much higher RF anisotropy (ma)dmurn RF is minimum RF) in the red region than did the sparse stand (relative differences of 5.3 vs. 2.75, respectively), as a function of theta(sub v), due to the shadow component in the canopy. Anisotropy in the near-infrared (NIR) was more similar between the two stands (2.5 in the dense stand and 2.25 in the sparse stand); the dense stand exhibited a greater hotspot effect than 20 the sparse stand in this spectral region. Two common vegetation transforms, the NIR/red ratio and the normalized difference vegetation index (NDVI), both showed a theta(sub v) dependence for the dense stand. Minimum values occurred near the retrodirection and maximum values occurred near the specular direction. Greater relative differences were noted for the NIR/red ratio (2.1) than for the NDVI (1.3). The sparse stand showed no obvious dependence on theta(sub v) for either transform, except for slightly elevated values toward the specular direction.

  3. Radar scatter from equatorial electrojet waves: An explanation for the constancy of the Type I Doppler shift with zenith angle

    Science.gov (United States)

    Kelley, M. C.; Cuevas, R. A.; Hysell, D. L.

    2008-02-01

    The first results from the 430 MHz Advanced Modular Incoherent Scatter Radar Prototype (AMISR-P) at the Jicamarca Radio Observatory were reported by Hysell et al. (2007). We present additional data showing that the phase velocity of Type I echoes is independent of zenith angle, an unexplained property of these waves. We interpret the results using rocket data by predicting the total line-of-sight velocity at the four zenith angles used. We find that the radars preferentially detect waves within 10% of C s in at least four range gates for all beams and up to eight range gates for the 51 JULIA beam. This result is consistent with recent auroral observations that Type I waves are only generated with k vectors near the electron flow velocity, where the latter is the vector sum of the zero-order drift and the perturbation drift due to large-scale waves in the equatorial case.

  4. Remote Synchronization Experiments for Quasi-Zenith Satellite System Using Multiple Navigation Signals as Feedback Control

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2011-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX is a remote control method that permits synchronization between a ground station atomic clock and Japanese quasi-zenith satellite system (QZSS crystal oscillators. To realize the RESSOX of the QZSS, the utilization of navigation signals of QZSS for feedback control is an important issue. Since QZSS transmits seven navigation signals (L1C/A, L1CP, L1CD, L2CM, L2CL, L5Q, and L5I, all combinations of these signals should be evaluated. First, the RESSOX algorithm will be introduced. Next, experimental performance will be demonstrated. If only a single signal is available, ionospheric delay should be input from external measurements. If multiple frequency signals are available, any combination, except for L2 and L5, gives good performance with synchronization error being within two nanoseconds that of RESSOX. The combination of L1CD and L5Q gives the best synchronization performance (synchronization error within 1.14 ns. Finally, in the discussion, comparisons of long-duration performance, computer simulation, and sampling number used in feedback control are considered. Although experimental results do not correspond to the simulation results, the tendencies are similar. For the overlapping Allan deviation of long duration, the stability of 1.23×10−14 at 100,160 s is obtained.

  5. Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations

    Directory of Open Access Journals (Sweden)

    Xin Sui

    2013-04-01

    Full Text Available The GNSS derived Zenith Tropospheric Delay (ZTD plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS. The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.

  6. Estimating zenith tropospheric delays from BeiDou navigation satellite system observations.

    Science.gov (United States)

    Xu, Aigong; Xu, Zongqiu; Ge, Maorong; Xu, Xinchao; Zhu, Huizhong; Sui, Xin

    2013-04-03

    The GNSS derived Zenith Tropospheric Delay (ZTD) plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS) was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS). The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.

  7. Measurement of the flux and zenith-angle distribution of upward through-going muons by Super-Kamiokande

    CERN Document Server

    Fukuda, Y; Ichihara, E; Inoue, K; Ishihara, K; Ishino, H; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Miura, M; Nakahata, M; Nakayama, S; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Price, L R; Reines, F; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Flanagan, J W; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, V J; Takemori, D; Ishii, T; Kanzaki, J; Kobayashi, T; Mine, S; Nakamura, K; Nishikawa, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Doki, W; Miyano, K; Okazawa, H; Saji, C; Takahata, M; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Fujita, K; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Nemoto, M; Nishijima, K; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; Doyle, R A; George, J S; Stachyra, A L; Wai, L L; Wilkes, R J; Young, K K

    1999-01-01

    A total of 614 upward through-going muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 537 detector live days. The measured muon flux is 1.74+/-0.07(stat.)+/-0.02(sys.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 1.97+/-0.44(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. The absolute measured flux is in agreement with the prediction within the errors. However, the zenith angle dependence of the observed upward through-going muon flux does not agree with no-oscillation predictions. The observed distortion in shape is consistent with the \

  8. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  9. [Measurement of atmosphere NO2 amounts and angle spacial distribution using zenith-light spectra and sky-light spectra].

    Science.gov (United States)

    Zhao, Xiao-Yan; Yang, Jing-Guo; Gong, Min; He, Jie; Cao, Ting-Ting; Liang, Hui-Min; Sun, Peng

    2009-07-01

    A novel approach to retrieving atmosphere NO2 slant column density is described, in which the sunlight scattered in the zenith direction and the skylight are used as the light sources. The slant column density of the same azimuth but different obliquities, which are between 0.5 x 10(16) and 11 x 10(16) molecule x cm(-2), with the angle from 85 degrees to 10 degrees, as well as that of the same obliquity but different azimuths, which are between 10(16) and 10(17) molecule cm(-2), were calculated. The study indicates that the results have good correlation with real atmosphere status. The angle spatial distribution could be embodied by the difference of NO2 slant column density in different azimuths and obliquities. The reference spectrum and sample spectrum were collected with the same instrument at the same time, so the measurement accuracy has been improved. This method favored not only real-time monitoring NO2 content of space arbitrary direction, especially near the ground NO2 pollution emergencies, but also overcast and rainy areas where it is very difficult to collect good direct solar spectrum.

  10. Large Scale Distribution of Ultra High Energy Cosmic Rays Detected at the Pierre Auger Observatory with Zenith Angles up to 80°

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in

  11. LARGE SCALE DISTRIBUTION OF ULTRA HIGH ENERGY COSMIC RAYS DETECTED AT THE PIERRE AUGER OBSERVATORY WITH ZENITH ANGLES UP TO 80 degrees

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60 degrees and 80 degrees. We perform two Rayleigh ana

  12. LARGE SCALE DISTRIBUTION OF ULTRA HIGH ENERGY COSMIC RAYS DETECTED AT THE PIERRE AUGER OBSERVATORY WITH ZENITH ANGLES UP TO 80 degrees

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60 degrees and 80 degrees. We perform two Rayleigh ana

  13. Large Scale Distribution of Ultra High Energy Cosmic Rays Detected at the Pierre Auger Observatory with Zenith Angles up to 80°

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in

  14. The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds

    Science.gov (United States)

    Grosvenor, D. P.; Wood, R.

    2014-07-01

    In this paper we use a novel observational approach to investigate MODIS satellite retrieval biases of τ and re (using three different MODIS bands: 1.6, 2.1 and 3.7 μm, denoted as re1.6, re2.1 and re3.7, respectively) that occur at high solar zenith angles (θ0) and how they affect retrievals of cloud droplet concentration (Nd). Utilizing the large number of overpasses for polar regions and the diurnal variation of θ0 we estimate biases in the above quantities for an open ocean region that is dominated by low level stratiform clouds. We find that the mean τ is fairly constant between θ0 = 50° and ~65-70°, but then increases rapidly with an increase of over 70 % between the lowest and highest θ0. The re2.1 and re3.7 decrease with θ0, with effects also starting at around θ0 = 65-70°. At low θ0, the re values from the three different MODIS bands agree to within around 0.2 μm, whereas at high θ0 the spread is closer to 1 μm. The percentage changes of re with θ0 are considerably lower than those for τ, being around 5 % and 7% for re2.1 and re3.7. For re1.6 there was very little change with θ0. Evidence is provided that these changes are unlikely to be due to any physical diurnal cycle. The increase in τ and decrease in re both contribute to an overall increase in Nd of 40-70% between low and high θ0. Whilst the overall re changes are quite small, they are not insignificant for the calculation of Nd; we find that the contributions to Nd biases from the τ and re biases were roughly comparable for re3.7, although for the other re bands the τ changes were considerably more important. Also, when considering only the clouds with the more heterogeneous tops, the importance of the re biases was considerably enhanced for both re2.1 and re3.7. When using the variability of 1 km resolution τ data (γτ) as a heterogeneity parameter we obtained the expected result of increasing differences in τ between high and low θ0 as heterogeneity increased, which was

  15. Effects of solar zenith angles on CO Cameron bands emission intensities in the dayside atmosphere of Mars: MEX/SPICAM observations

    Science.gov (United States)

    Pothuraju, Thirupathaiah; Haider, Syed A.

    2016-07-01

    We have developed a model to calculate the photoelectron energy fluxes and emission intensities of the CO Cameron bands in the upper atmosphere of Mars between solar zenith angles 0° to 90°. The production and loss mechanisms of CO (a ^{3}Π) are incorporated in the model. The atmospheric neutral parameters are adopted from the Mars Climate Database (v5.2). The required solar EUV fluxes are taken from the Solar2000 model (v2.37) and scaled to Mars. The photoelectron fluxes are calculated at different solar zenith angles using an analytical yield spectrum approach based on the Monte Carlo method. In this model we have assumed that crustal magnetic fields are horizontal in direction. Thus, photoelectrons are losing their energy at the same height where they are produced. This assumption is valid at mid and high latitudes where magnetic fields are mostly horizontal. We have also developed a coupled chemistry model to calculate the ion and electron density at different solar zenith angles, which are used in the airglow model. The model results are compared with the observations provided by the SPICAM onboard MEX. Our model reproduces the observed intensity profiles quite well. The CO (a ^{3}Π) is produced due to photoelectron excitation/dissociation, photodissociation, and dissociative recombination processes. It is destroyed by CO _{2}, CO and radiative decay. It is found that photon and photoelectron dissociation are dominant production processes of CO (a ^{3}Π), while radiative decay is a major loss mechanism of this state. The estimated photoelectron fluxes, production rates and intensities are decreasing with increasing solar zenith angles.

  16. Cloud parameters from zenith transmittances measured by sky radiometer at surface: Method development and satellite product validation

    Science.gov (United States)

    Khatri, Pradeep; Hayasaka, Tadahiro; Iwabuchi, Hironobu; Takamura, Tamio; Irie, Hitoshi; Nakajima, Takashi Y.; Letu, Husi; Kai, Qin

    2017-04-01

    data of a narrow field of view radiometer of collocated observation in one SKYNET site. Though the method is developed for the sky radiometer of SKYNET, it can be still used for the sky radiometer of AERONET and other instruments observing spectral zenith transmittances. The proposed retrieval method is then applied to retrieve cloud parameters at key sites of SKYNET within Japan, which are then used to validate cloud products obtained from space observations by MODIS sensors onboard TERRA/AQUA satellites and Himawari 8, a Japanese geostationary satellite. Our analyses suggest the underestimation (overestimation) of COD (Re) from space observations.

  17. The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds

    Directory of Open Access Journals (Sweden)

    D. P. Grosvenor

    2014-07-01

    better predictor of τ biases at high θ0 than σCTT. For a given θ0, large decreases in re were observed as the cloud top heterogeneity changed from low to high values, although it is possible that physical changes to the clouds associated with cloud heterogeneity variation may account for some of this. However, for a given cloud top heterogeneity we find that the value of θ0 affects the sign and magnitude of the relative differences between re1.6, re2.1 and re3.7, which has implications for attempts to retrieve vertical cloud information using the different MODIS bands. The relatively larger decrease in re3.7 and the lack of change of re1.6 with both θ0 and cloud top heterogeneity suggest that re3.7 is more prone to retrieval biases due to high θ0 than the other bands. We discuss some possible reasons for this. Our results have important implications for individual MODIS swaths at high θ0, which may be used for case studies for example. θ0 values > 65° can occur at latitudes as low as 28° in mid-winter and for higher latitudes the problem will be more acute. Also, Level-3 daily averaged MODIS cloud property data consist of the averages of several overpasses for the high latitudes, which will occur at a range of θ0 values. Thus, some biased data are likely to be included. It is also likely that some of the θ0 effects described here would apply to τ and re retrievals from satellite instruments that use visible light at similar wavelengths along with forward retrieval models that assume plane parallel clouds, such as the GOES imagers, SEVIRI, etc.

  18. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.

    Science.gov (United States)

    Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M

    2017-05-01

    Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θs) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θs as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (ENS), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model's absolute

  19. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects

    Science.gov (United States)

    Horwitz, J. L.; Zeng, W.

    2009-01-01

    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  20. Estimates of radiance reflected towards the zenith at the surface of the sea

    Directory of Open Access Journals (Sweden)

    E. Aas

    2010-10-01

    Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s−1. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of less than 5%. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.

  1. Estimates of radiance reflected towards the zenith at the surface of the sea

    Directory of Open Access Journals (Sweden)

    E. Aas

    2010-06-01

    Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s−1. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of 4% or less. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.

  2. Critical Evaluation of 0-30 km Profile Information in Ground-Based Zenith-Sky and Satellite-Measured Backscattered UV Radiation

    Science.gov (United States)

    Bhartia, Pawan; Petropavlovskikh, Irina; Deluishi, John; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We now have several decades of experience in deriving vertical ozone profiles from the measurements of diffuse ultraviolet radiation by both ground and satellite-based instruments using Umkehr and BUV techniques. Continuing technological advances are pushing the state-of-the-art of these measurements to high spectral resolution and broader wavelength coverage. These modern instruments include the ground-based Brewer and satellite-based Global Ozone Monitoring Experiment (GOME) instruments, as well as advanced instruments being developed by ESA(SCIAMACHY), Netherlands(OMI) and Japan(ODUS). However, one of the issues that remains unresolved is the 0-30 km ozone profile information retrievable from these measurements. Though it is commonly believed that both the Umkehr and the satellite-based BUV techniques have very limited profile information below 30 km, there are those who argue that the data from these instruments should continue to be reported in this altitude range for they compare well with ozonesondes and hence there is useful scientific information. Others claim that the limitations of the Umkehr and BUV techniques are largely due to their low spectral resolution, and that the profile information below 30 km can be greatly improved by going to high spectral resolution instruments, such as Brewer and GOME. The purpose of this paper is to provide a critical evaluation of the 0-30 km ozone profile information in the various UV remote sensing techniques. We use a database of individual ozone profiles created using ozonesondes and SAGE and 4D ozone fields generated by data assimilation techniques to simulate radiances measured by the various techniques. We then apply a common inversion approach to all the methods to systematically examine how much profile information is available simply from the knowledge of total ozone, how much additional profile information is added by the traditional Dobson Umkehr and satellite buv techniques, and how much better one can do

  3. Quantifying winter wheat residue biomass with a spectral angle index derived from China Environmental Satellite data

    Science.gov (United States)

    Zhang, Miao; Wu, Bingfang; Meng, Jihua

    2014-10-01

    Quantification of crop residue biomass on cultivated lands is essential for studies of carbon cycling of agroecosystems, soil-atmospheric carbon exchange and Earth systems modeling. Previous studies focus on estimating crop residue cover (CRC) while limited research exists on quantifying crop residue biomass. This study takes advantage of the high temporal resolution of the China Environmental Satellite (HJ-1) data and utilizes the band configuration features of HJ-1B data to establish spectral angle indices to estimate crop residue biomass. Angles formed at the NIRIRS vertex by the three vertices at R, NIRIRS, and SWIR (ANIRIRS) of HJ-1B can effectively indicate winter wheat residue biomass. A coefficient of determination (R2) of 0.811 was obtained between measured winter wheat residue biomass and ANIRIRS derived from simulated HJ-1B reflectance data. The ability of ANIRIRS for quantifying winter wheat residue biomass using HJ-1B satellite data was also validated and evaluated. Results indicate that ANIRIRS performed well in estimating winter wheat residue biomass with different residue treatments; the root mean square error (RMSE) between measured and estimated residue biomass was 0.038 kg/m2. ANIRIRS is a potential method for quantifying winter wheat residue biomass at a large scale due to wide swath width (350 km) and four-day revisit rate of the HJ-1 satellite. While ANIRIRS can adequately estimate winter wheat residue biomass at different residue moisture conditions, the feasibility of ANIRIRS for winter wheat residue biomass estimation at different fractional coverage of green vegetation and different environmental conditions (soil type, soil moisture content, and crop residue type) needs to be further explored.

  4. Change detection from very high resolution satellite time series with variable off-nadir angle

    Science.gov (United States)

    Barazzetti, Luigi; Brumana, Raffaella; Cuca, Branka; Previtali, Mattia

    2015-06-01

    Very high resolution (VHR) satellite images have the potential for revealing changes occurred overtime with a superior level of detail. However, their use for metric purposes requires accurate geo-localization with ancillary DEMs and GCPs to achieve sub-pixel terrain correction, in order to obtain images useful for mapping applications. Change detection with a time series of VHS images is not a simple task because images acquired with different off-nadir angles have a lack of pixel-to-pixel image correspondence, even after accurate geo-correction. This paper presents a procedure for automatic change detection able to deal with variable off-nadir angles. The case study concerns the identification of damaged buildings from pre- and post-event images acquired on the historic center of L'Aquila (Italy), which was struck by an earthquake in April 2009. The developed procedure is a multi-step approach where (i) classes are assigned to both images via object-based classification, (ii) an initial alignment is provided with an automated tile-based rubber sheeting interpolation on the extracted layers, and (iii) change detection is carried out removing residual mis-registration issues resulting in elongated features close to building edges. The method is fully automated except for some thresholds that can be interactively set to improve the visualization of the damaged buildings. The experimental results proved that damages can be automatically found without additional information, such as digital surface models, SAR data, or thematic vector layers.

  5. Orbit Determination with Angle-only Data from the First Korean Optical Satellite Tracking System, OWL-Net

    Science.gov (United States)

    Choi, J.; Jo, J.

    2016-09-01

    The optical satellite tracking data obtained by the first Korean optical satellite tracking system, Optical Wide-field patrol - Network (OWL-Net), had been examined for precision orbit determination. During the test observation at Israel site, we have successfully observed a satellite with Laser Retro Reflector (LRR) to calibrate the angle-only metric data. The OWL observation system is using a chopper equipment to get dense observation data in one-shot over 100 points for the low Earth orbit objects. After several corrections, orbit determination process was done with validated metric data. The TLE with the same epoch of the end of the first arc was used for the initial orbital parameter. Orbit Determination Tool Kit (ODTK) was used for an analysis of a performance of orbit estimation using the angle-only measurements. We have been developing batch style orbit estimator.

  6. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  7. Expected Position Error for an Onboard Satellite GPS Receiver

    Science.gov (United States)

    2015-03-01

    that supports GPS, Galileo, Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), and Quasi-Zenith Satellite System GNSSs. It is designed as a...compared to the main beam half cone angle listed in the GPS Interface Control Document (ICD) [19]. 29 Sidelobes Considered. Power in the sidelobes is...Centered Inertial ENU East-North-Up GDOP Geometric Dilution of Precision GEO Geostationary Orbit GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema

  8. Icy satellites of Saturn: disk-integrated observations of the brightness opposition surge at low phase angles

    Science.gov (United States)

    Kulyk, I.; Jockers, K.

    2007-08-01

    The surfaces of most atmosphereless bodies exhibit two interesting optical phenomena at small phase angles, namely a strong brightness increase and negative values of the degree of linear polarization. Of particular interest is the appearance a nonlinear growth of the surface brightness and a second narrow minimum of polarization at phase angles less than 1-3°. These features of brightness and polarization in the narrow phase angle range near opposition are called the photometric and polarimetric opposition effects. These phenomena have attracted increased attention from the perspective of theories of light scattering in random media and their application to the determination of properties of the upper optically active regolith layers on the atmosphereless bodies. However, up to now photometric and especially polarimetric observations conducted at small phase angles are rare. In order to enlarge the amount of available observational data we have conducted photopolarimetric observations of the major icy Saturnian satellites. The observations were performed at the 2m-telescope of the Bulgarian National Observatory with the Two-Channel Focal Reducer of the Bulgarian Academy of Sciences built at the Max-Planck-Institute for Solar System Science. This instrument incorporates a two-channel imaging polarimeter which can be used in coronagraph setup. The light of Saturn and its rings is almost fully absorbed by a black glass and its diffraction pattern is eliminated by a Lyot stop. The photopolarimeter records intensity and degree of polarization of the satellites in two colors simultaneously. In this study, we present the first results of the disk-integrated photometry of Enceladus, Tethys, Dione, and Rhea in the red (center wavelength 694 nm, FWHM 79 nm) and near-infrared (center wavelength 888.5 nm, FWHM 29 nm, methane absorption band) spectral bands at phase angles between 5.6° and 0.01°. The resulting magnitudes can be represented as a sum of two terms, one

  9. Direct Measurements of Laser Communication Point-Ahead Angles from the ARTEMIS Geostationary Satellite Through Clouds

    Science.gov (United States)

    Kuzkov, V.; Sodnik, Z.; Kuzkov, S.

    2017-01-01

    Laser experiments with ARTEMIS geostationary satellite have been performed in partly cloudy weather using the developed system for the telescope. It has been found that the part of the laser beam is observed simultaneously at the points in direction of the velocity vector where the satellite would arrive at when the laser light reaches the telescope. These results agree with the theory of relativity for light aberration in transition from fixed to moving coordinate system.Observation results open the way for research and development of systems to compensate atmospheric turbulence in laser communications between ground stations and satellites through the atmosphere.

  10. Direct Measurements of Laser Communication Point-Ahead Angles from the Artemis Geostationary Satellite Through Clouds

    Directory of Open Access Journals (Sweden)

    Kuzkov, V.P.

    2017-01-01

    Full Text Available Laser experiments with ARTEMIS geostationary satellite have been performed in partly cloudy weather using the developed system for the telescope. It has been found that the part of the laser beam is observed simultaneously at the points in direction of the velocity vector where the satellite would arrive at when the laser light reaches the telescope. These results agree with the theory of relativity for light aberration in transition from fixed to moving coordinate system. Observation results open the way for research and development of systems to compensate atmospheric turbulence in laser communications between ground stations and satellites through the atmosphere.

  11. Magnetic zenith effect in ionospheric modifications

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.V.; Zybin, K.P.; Carlson, H.C.; Pedersen, T

    2002-12-09

    The theory of ionospheric modification for the beam of powerful radio emission directed along magnetic field lines is developed. Nonlinear process of beam self-focusing on striations is shown to determine strong amplification of heating and acceleration of plasma electrons. It results in a dramatic enhancement of optic emission from the magnetic zenith region in ionospheric F-layer. An excellent agreement between the theory and recent fundamental observations at HAARP facility (Alaska) [T. Pedersen et al., Geophys. Res. Lett. (2002), in press] is demonstrated.

  12. Percutaneous Zenith endografting for abdominal aortic aneurysms.

    Science.gov (United States)

    Heyer, Kamaldeep S; Resnick, Scott A; Matsumura, Jon S; Amaranto, Daniel; Eskandari, Mark K

    2009-03-01

    A completely percutaneous approach to infrarenal abdominal aortic aneurysm (AAA) endografting has the theoretic benefits of being minimally invasive and more expedient. Our goal was to demonstrate the utility of this approach using a suprarenal fixation device and a suture-mediated closure system. We conducted a single-institution, retrospective review of 14 patients who underwent percutaneous AAA repair with the Zenith device between August 2003 and March 2007. Immediate and delayed access-related outcomes were examined over a mean follow-up of 12.1+/-2.0 months. Mean AAA size was 5.6 cm. Immediate arterial closure and technical success rate was 96% (27/28 vessels). One immediate hemostatic failure required open surgical repair. Over follow-up, one vessel required operative repair for new-onset claudication. No other immediate or delayed complications (thrombosis, pseudoaneurysm, infection, or deep venous thrombosis) were detected. A percutaneous approach for the treatment of AAA has several advantages over femoral artery cutdown but also has its own unique set of risks in the immediate and late postoperative period. Ultimately, the "preclose technique" can be safely applied for the Zenith device despite its large-bore delivery system.

  13. Analysis of accuracy and precision of GNSS zenith tropospheric delay

    OpenAIRE

    Bohanec, Jure

    2016-01-01

    The aim of the thesis was to compare the calculations of zenith tropospheric delay, computed within the meteorological model, with an independently acquired calculation of three GNSS data processing methods. Data analysis was done in the absolute and relative mode of determination. Using absolute mode of zenith tropospheric delay computation we computed the differences between the computed zenith tropospheric delay with the meteorological model ALADIN, taken as a reference, and results of zen...

  14. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing. The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible. The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Super-Kamiokande atmospheric neutrino data, zenith distributions, and three-flavor oscillations

    CERN Document Server

    Fogli, G L; Marrone, A; Scioscia, G

    1999-01-01

    We present a detailed analysis of the zenith angle distributions of atmospheric neutrino events observed in the Super-Kamiokande (SK) underground experiment, assuming two-flavor and three-flavor oscillations (with one dominant mass scale) among active neutrinos. In particular, we calculate the five angular distributions associated to sub-GeV and multi-GeV \\mu-like and e-like events and to upward through-going muons, for a total of 30 accurately computed observables (zenith bins). First we study how such observables vary with the oscillation parameters, and then we perform a fit to the experimental data as measured in SK for an exposure of 33 kTy (535 days). In the two-flavor mixing case, we confirm the results of the SK Collaboration analysis, namely, that \

  16. Soil moisture deficit estimation using satellite multi-angle brightness temperature

    Science.gov (United States)

    Zhuo, Lu; Han, Dawei; Dai, Qiang

    2016-08-01

    Accurate soil moisture information is critically important for hydrological modelling. Although remote sensing soil moisture measurement has become an important data source, it cannot be used directly in hydrological modelling. A novel study based on nonlinear techniques (a local linear regression (LLR) and two feedforward artificial neural networks (ANNs)) is carried out to estimate soil moisture deficit (SMD), using the Soil Moisture and Ocean Salinity (SMOS) multi-angle brightness temperatures (Tbs) with both horizontal (H) and vertical (V) polarisations. The gamma test is used for the first time to determine the optimum number of Tbs required to construct a reliable smooth model for SMD estimation, and the relationship between model input and output is achieved through error variance estimation. The simulated SMD time series in the study area is from the Xinanjiang hydrological model. The results have shown that LLR model is better at capturing the interrelations between SMD and Tbs than ANNs, with outstanding statistical performances obtained during both training (NSE = 0.88, r = 0.94, RMSE = 0.008 m) and testing phases (NSE = 0.85, r = 0.93, RMSE = 0.009 m). Nevertheless, both ANN training algorithms (radial BFGS and conjugate gradient) have performed well in estimating the SMD data and showed excellent performances compared with those derived directly from the SMOS soil moisture products. This study has also demonstrated the informative capability of the gamma test in the input data selection for model development. These results provide interesting perspectives for data-assimilation in flood-forecasting.

  17. Gingival zenith and its role in redefining esthetics: A clinical study

    Directory of Open Access Journals (Sweden)

    Babita Pawar

    2011-01-01

    Full Text Available Background: The purpose of this study was to quantify some clinical parameters useful as esthetic guidelines when gingival contour is modified and to compare the left and right sides of six maxillary anterior teeth. Materials and Methods: Maxillary casts mounted on an articulator according to the axis orbital plane were photographed from 35 young adults. The angle formed between the gingival line and maxillary midline (GLA and the distance between the gingival zenith of the lateral incisor and the gingival line were measured (LID using a flexible protractor and digital vernier caliper, respectively. The asymmetry was evaluated using a paired t test for the left vs right measurements of GLA and LID. The descriptive statistics for GLA and LID were calculated. Results: The GLA measurements of the left side (86.7΀΁4.2΀ were significantly greater than those of the right side (84.6΀΁5.4΀, and the mean absolute symmetry for GLA was 1.7΀΁4.4΀. The mean LID measurement was 0.92΁0.11. Conclusions: The gingival zenith of the canine is apical to the gingival zenith of the incisors (GLA <90΀ and the gingival zenith of the lateral incisor is below or on (17% the gingival line when head is oriented on the axis orbital plane. A directional asymmetry was shown with the right side higher than the left side. Along with the other parameters related to dental esthetics, these clinical parameters may serve as esthetic guidelines and may enable us to obtain a more predictable outcome.

  18. Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius.

    Science.gov (United States)

    Guo, Hong; Luo, Bin; Ren, Yongxiong; Zhao, Sinan; Dang, Anhong

    2010-06-15

    We restudy the influence of beam wander on the uplink of ground-to-satellite laser communication, using the effective pointing error method, for a collimated untracked Gaussian beam under a weak atmospheric turbulence condition. It shows that the beam wander may cause significant increase in bit error rate (BER), and there exists an optimal transmitter radius for minimizing the value of BER. Further studies manifest that this optimal radius only changes with the laser wavelength and zenith angle, while independent on the satellite altitude and the fade threshold at the receiver. These results can be used in system design and optimization for the transmitter.

  19. Accuracy Improvement of Zenith Tropospheric Delay Estimation Based on GPS Precise Point Positioning Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Qinglin; ZHAO Zhenwei; LIN Leke; WU Zhensen

    2010-01-01

    In the precise point positioning (PPP), some impossible accurately simulated systematic errors still remained in the GPS observations and will inevitably degrade the precision of zenith tropospheric delay (ZTD) estimation. The stochastic models used in the GPS PPP mode are compared. In this paper, the research results show that the precision of PPP-derived ZTD can be obviously improved through selecting a suitable stochastic model for GPS measurements. Low-elevation observations can cover more troposphere information that can improve the estimation of ZTD. A new stochastic model based on satellite low elevation cosine square is presented. The results show that the stochastic model using satellite elevation-based cosine square function is better than previous stochastic models.

  20. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  1. Characterization of divalent metal metavanadates by 51V magic-angle spinning NMR spectroscopy of the central and satellite transitions.

    Science.gov (United States)

    Nielsen, U G; Jakobsen, H J; Skibsted, J

    2000-05-15

    51V quadrupole coupling and chemical shielding tensors have been determined from 51V magic-angle spinning (MAS) NMR spectra at a magnetic field of 14.1 T for nine divalent metal metavanadates: Mg(VO3)2, Ca(VO3)2, Ca(VO3)(2).4H2O, alpha-Sr(VO3)2, Zn(VO3)2, alpha- and beta-Cd(VO3)2. The manifold of spinning sidebands (ssbs) from the central and satellite transitions, observed in the 15V MAS NMR spectra, have been analyzed using least-squares fitting and numerical error analysis. This has led to a precise determination of the eight NMR parameters characterizing the magnitudes and relative orientations of the quadrupole coupling and chemical shielding tensors. The optimized data show strong similarities between the NMR parameters for the isostructural groups of divalent metal metavanadates. This demonstrates that different types of metavanadates can easily be distinguished by their anisotropic NMR parameters. The brannerite type of divalent metal metavanadates exhibits very strong 51V quadrupole couplings (i.e., CQ = 6.46-7.50 MHz), which reflect the highly distorted octahedral environments for the V5+ ion in these phases. Linear correlations between the principal tensor elements for the 51V quadrupole coupling tensors and electric field gradient tensor elements, estimated from point-monopole calculations, are reported for the divalent metal metavanadates. These correlations are used in the assignment of the NMR parameters for the different crystallographic 51V sites of Ca(VO3)(2).4H2O, Pb(VO3)2, and Ba(VO3)2. For alpha-Sr(VO3)2, with an unknown crystal structure, the 51V NMR data strongly suggest that this metavanadate is isostructural with Ba(VO3)2, for which the crystal structure has been reported. Finally, the chemical shielding parameters for orthovanadates and mono- and divalent metal metavanadates are compared.

  2. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  3. Simultaneous single epoch satellite clock modelling in Global Navigation Satellite Systems

    Science.gov (United States)

    Thongtan, Thayathip

    In order to obtain high quality positions from navigation satellites, range errors have to be identified and either modelled or estimated. This thesis focuses on satellite clock errors, which are needed to be known because satellite clocks are not perfectly synchronised with navigation system time. A new approach, invented at UCL, for the simultaneous estimation, in a single epoch, of all satellite clock offsets within a Global Navigation Satellite System (GNSS) from range data collected at a large number of globally distributed ground stations is presented. The method was originally tested using only data from a limited number of GPS satellites and ground stations. In this work a total of 50 globally distributed stations and the whole GPS constellation are used in order to investigate more fully the capabilities of the method, in terms of both accuracy and reliability. A number of different estimation models have been tested. These include those with different weighting schemes, those with and without tropospheric bias parameters and those that include assumptions regarding prior knowledge of satellite orbits. In all cases conclusions have been drawn based on formal error propagation theory. Accuracy has been assessed largely through the sizes of the predicted satellite clock standard deviations and, in the case of simultaneously estimating satellite positions, their error ellipsoids. Both internal and external reliability have been assessed as these are important contributors to integrity, something that is essential for many practical applications. It has been found that the accuracy and reliability of satellite clock offsets are functions of the number of known ground station clocks and distance from them, quality of orbits and quality of range measurement. Also the introduction of tropospheric zenith delay parameters into the model reduces both accuracy and reliability by amounts depending on satellite elevation angles. (Abstract shortened by UMI.)

  4. Method for correction of errors in observation angles for limb thermal emission measurements. [for satellite sounding of atmosphere

    Science.gov (United States)

    Abbas, M. M.; Shapiro, G. L.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1984-01-01

    Thermal emission measurements of the earth's stratospheric limb from space platforms require an accurate knowledge of the observation angles for retrieval of temperature and constituent distributions. Without the use of expensive stabilizing systems, however, most observational instruments do not meet the required pointing accuracies, thus leading to large errors in the retrieval of atmospheric data. This paper describes a self-constituent method of correcting errors in pointing angles by using information contained in the observed spectrum. Numerical results based on temperature inversions of synthetic thermal emission spectra with assumed random errors in pointing angles are presented.

  5. MODIS/Aqua Geolocation Fields 5-Min L1A Swath 1km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Geolocation collection contains geodetic latitude and longitude, surface height above geoid, solar zenith and azimuth angles, satellite zenith and azimuth angles,...

  6. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    Science.gov (United States)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed

  7. Design and experimental research of angle self-compensation setup for BSDF measurement

    Institute of Scientific and Technical Information of China (English)

    Chao Qi; Hongchen Liu; Yuanli Wei; Jingmin Dai

    2009-01-01

    When using a single reference to measure the bi-directional scattering distribution function(BSDF),the incident zenith angle of the tested sample must be identical to that of the reference.In order to get the hemisphere space scattering characteristic on the sample surface,usually a motor drives the sample tilting,then the incident zenith angle is changed and needs to be the compensated by another motor.We mathematically deduce the expression of compensation angle when the incident zenith angle is changed by the rotation of motor.After the incident angle is compensated,the scattering zenith angle and azimuth angle are deduced too.The uncertainty of the system is 0.75%.Scattering measurements are performed on copper sample with visible light under different temperatures.

  8. Gingival Zenith Positions and Levels of Maxillary Anterior Dentition in Cases of Bimaxillary Protrusion: A Morphometric Analysis.

    Science.gov (United States)

    Gowd, Snigdha; Shankar, T; Chatterjee, Suravi; Mohanty, Pritam; Sahoo, Nivedita; Baratam, Srinivas

    2017-08-01

    To investigate the two clinical parameters, such as gingival zenith positions (GZPs) and gingival zenith levels (GZLs), of maxillary anterior dentition in bimaxillary protrusion cases and collate it with severiety of crown inclination. Gingival zenith position and GZL in 40 healthy patients (29 females and 11 males) with an average age of 21.5 years were assessed. Inclusion criteria involved absence of periodontal diseases, Angle's class I molar relationship, and upper anterior proclination within 25 to 45° based on Steiner's analysis; exclusion criteria included spacing, crowding, anterior restoration and teeth with incisor attrition or rotation. The GZP was evaluated using digital calipers from voxel-based morphometry (VBM), and GZL was assessed from the tangent drawn from GZP of central incisor and canines to the linear vertical distance of GZP of lateral incisor. All the central incisors showed a GZP distal to VBM with a mean average of 1 mm. Severe proclination between 40 and 45° showed a statistically significant variation. Lateral incisors displayed a mean of 0.5 mm deviation of GZP from the vertically bisected midline. In 80% of canine population, GZP was centralized. We conclude that the degree of proclination of maxillary anterior dentition was correlated to the gingival contour in bimaxillary cases. The investigation revealed that there is a variation in the location of GZP as the severity of proclination increases. This study highlights the importance of microesthetics in fixed orthodontic treatment. The gingival contour should be unaltered while retraction during management of bimaxillary protrusion.

  9. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    Science.gov (United States)

    Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J. L.; Ducos, F.; Sinyuk, A.; Lopatin, A.

    2011-05-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation. The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index). In order to achieve reliable retrieval from PARASOL observations even over very reflective

  10. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2011-05-01

    Full Text Available The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns that is not common in satellite observations. The POLDER imager on board the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

    The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index. In order to achieve reliable retrieval from PARASOL observations

  11. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2010-11-01

    Full Text Available The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns that is not common in satellite observations. The POLDER imager on board of the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of the all available angular observations of total and polarized radiances obtained by POLDER sensor in the window spectral channels where absorption by gaseous is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed on retrieval of extended set of parameters affecting measured radiation.

    The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index. In order to achieve

  12. Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60° N

    Directory of Open Access Journals (Sweden)

    J. A. Pyle

    2007-09-01

    Full Text Available A profiling algorithm based on the optimal estimation method is applied to ground-based zenith-sky UV-visible measurements from Harestua, Southern Norway (60° N, 11° E in order to retrieve BrO vertical profiles. The sensitivity of the zenith-sky observations to the tropospheric BrO detection is increased by using for the spectral analysis a fixed reference spectrum corresponding to clear-sky noon summer conditions. The information content and retrieval errors are characterized and it is shown that the retrieved stratospheric profiles and total columns are consistent with correlative balloon and satellite observations, respectively. Tropospheric BrO columns are derived from profiles retrieved at 80° solar zenith angle during sunrise and sunset for the 2000–2006 period. They show a marked seasonality with mean column value ranging from 1.52±0.62×1013 molec/cm² in late winter/early spring to 0.92±0.38×1013 molec/cm² in summer, which corresponds to 1.0±0.4 and 0.6±0.2 pptv, respectively, if we assume that BrO is uniformly mixed in the troposphere. These column values are also consistent with previous estimates made from balloon, satellite, and other ground-based observations. Daytime (10:30 LT tropospheric BrO columns are compared to the p-TOMCAT 3-D tropospheric chemical transport model (CTM for the 2002–2003 period. p-TOMCAT shows a good agreement with the retrieved columns except in late winter/early spring where an underestimation by the model is obtained. This finding could be explained by the non-inclusion of sea-ice bromine sources in the current version of p-TOMCAT. Therefore the model cannot reproduce the possible transport of air-masses with enhanced BrO concentration due to bromine explosion events from the polar region to Harestua. The daytime stratospheric BrO columns are compared to the SLIMCAT stratospheric 3-D-CTM. The model run used in this study, which assumes 21.2 pptv for the Bry loading (15 pptv for long

  13. HF-induced airglow at magnetic zenith: theoretical considerations

    Directory of Open Access Journals (Sweden)

    E. V. Mishin

    2005-01-01

    Full Text Available Observations of airglow at 630nm (red line and 557.7nm (green line during HF modification experiments at the High Frequency Active Auroral Research Program (HAARP heating facility are analyzed. We propose a theoretical framework for understanding the generation of Langmuir and ion acoustic waves during magnetic zenith injections. We show that observations of HF-induced airglow in an underdense ionosphere as well as a decrease in the height of the emitting volume are consistent with this scenario.

  14. A faster switching regime for zenithal bistable nematic displays

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, J

    1997-12-01

    A simpler and faster switching regime for Zenithal Bistable Nematic displays is reported. A cell, based on homeotropic alignment of nematic liquid crystal over a continuous blazed monograting on one surface, can be switched using bipolar pulses an order of magnitude faster than monopolar pulses of the same voltage. We propose that this regime relies on simple dielectric coupling to drive the cell into a higher energy state with a long pulse time, and the relaxation into a lower energy state after the creation of surface defects from a shorter applied pulse. Although flexoelectric effects are observed, they do not form the basis of state selection as was proposed for the monopolar pulses

  15. HF-Induced Airglow at Magnetic Zenith: Theoretical Considerations

    Science.gov (United States)

    2007-11-02

    zenith (MZ) (Kosch et at the High Frequency Active Auroral Research Program al., 2002a; Pedersen et al., 2003). The same is true for the ( HAARP ) heating...fo’sinx must be met. For MZ injec- X _h k2 r 2 ə. Here, r, is the thermal electron gyroradius tions at the HAARP heating facility (XL- 14.60 ), Huhr...Langmuir waves (Kuo et al., 1997). These shadow height at the HAARP site increased from -230 to waves saturate via spectral transfer toward small ki, due

  16. Calibration and Testing of Digital Zenith Camera System Components

    Science.gov (United States)

    Ulug, Rasit; Halicioglu, Kerem; Tevfik Ozludemir, M.; Albayrak, Muge; Basoglu, Burak; Deniz, Rasim

    2017-04-01

    Starting from the beginning of the new millennium, thanks to the Charged-Coupled Device (CCD) technology, fully or partly automatic zenith camera systems are designed and used in order to determine astro-geodetic deflections of the vertical components in several countries, including Germany, Switzerland, Serbia, Latvia, Poland, Austria, China and Turkey. The Digital Zenith Camera System (DZCS) of Turkey performed successful observations yet it needs to be improved in terms of automating the system and increasing observation accuracy. In order to optimize the observation time and improve the system, some modifications have been implemented. Through the modification process that started at the beginning of 2016, some DZCS components have been replaced with the new ones and some new additional components have been installed. In this presentation, the ongoing calibration and testing process of the DZCS are summarized in general. In particular, one of the tested system components is the High Resolution Tiltmeter (HRTM), which enable orthogonal orientation of DZCS to the direction of plump line, is discussed. For the calibration of these components, two tiltmeters with different accuracies (1 nrad and 0.001 mrad) were observed nearly 30 days. The data recorded under different environmental conditions were divided into hourly, daily, and weekly subsets. In addition to the effects of temperature and humidity, interoperability of two tiltmeters were also investigated. Results show that with the integration of HRTM and the other implementations, the modified DZCS provides higher accuracy for the determination of vertical deflections.

  17. CIMEL Measurements of Zenith Radiances at the ARM Site

    Science.gov (United States)

    Marshak, Alexander; Wiscombe, Warren; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Starting from October 1, 2001, Cimel at the ARM Central Facility in Oklahoma has been switched to a new "cloud mode." This mode allows taking measurements of zenith radiance when the Sun in blocked by clouds. In this case, every 13 min. Cimel points straight up and takes 10 measurements with 9 sec. time interval. The new Cimel's mode has four filters at 440, 670, 870 and 1020 nm. For cloudy conditions, the spectral contrast in surface albedo dominates over Rayleigh and aerosol effects; this makes normalized zenith radiances at 440 and 670 as well as for 870 and 1020 almost indistinguishable. We compare Cimel measurements with other ARM cart site instruments: Multi-Filter Rotating Shadowband Radiometer (MFRSR), Narrow Field of View (NFOV) sensor, and MicroWave Radiometer(MWR). Based on Cimel and MFRSR 670 and 870 nm channels, we build a normalized difference cloud index (NDCI) for radiances and fluxes, respectively. Radiance NDCI from Cimel and flux NDCI from MFRSR are compared between themselves as well as with cloud Liquid Water Path (LWP) retrieved from MWR. Based on our theoretical calculations and preliminary data analysis,there is a good correlation between NDCIs and LWP for cloudy sky above green vegetation. Based on this correlation, an algorithm to retrieve cloud optical depth from NDCI is proposed.

  18. Shortwave Array Spectroradiometer–Zenith (SASZe) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Shortwave Array Spectroradiometer – Zenith (SASZe) provides measurements of zenith spectral shortwave radiance at 1Hz over a continuous spectral range from approximately 300 nm to 1700 nm. The SASZe design connects an optical collector located outdoors to a pair of spectrometers and data collections system located indoors within a climate-controlled building via an umbilical cable of fiber optic and electrical cables. The light collector incorporates a collimator yielding a 1-degree Full Width at Half Maximum (FWHM) field of view. The data-acquisition electronics and spectrometers include an in-line fiber optic shutter and two Avantes fiber-coupled grating spectroradiometers within a temperature-controlled container. The Avantes Avaspec ULS 2048 charge-coupled device (CCD) spectrometer covers the wavelength range from about 300-1100 nm with a pixel spacing of less than 0.6 nm and a spectral resolution of about 2.4 nm FWHM. The Avantes Avaspec NIR256-1.7 spectrometer covers the wavelength range from about 950 nm to 1700 nm with a pixel spacing of less than 4 nm and a spectral resolution of about 6 nm FWHM.

  19. Assessment of Neutrospheric Zenith Delay predictions from regional NWP in the context of PPP quality results.

    Science.gov (United States)

    Gouveia, T. A. F.; Galera Monico, J. F.; Alves, D. B. M.; Sapucci, L.

    2016-12-01

    The effect that the GNSS (Global Navigation Satellite System) satellites signals suffer when passing through the electrically neutral Earth's atmosphere (neutrosphere) is due to the presence of gases and water vapor with heterogeneous distribution. This effect is the neutrospheric (or tropospheric) delay. In order to minimize such delay, which is normally mapped to the zenith (ZND), models can be used: theoretical models (blinds models; Hopfield; Saastamoinen); Numerical Weather Prediction (NWP) models; or estimated during the GNSS data processing. ZND obtained from the regional NWP models present better accuracy when assessed against the estimated ZND (reference), because the influence of regional climatic characteristics is better described when using NWP. Such models include continentality, dry and wet (like Amazon region) regions, seasonality with stronger variation (summer and winter), as well as a better spatial resolution. In Brazil, CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) is operating a NWP model for South America. ZND/CPTEC predictions are produced as an operational product from regional NWP. In this work our main aim is to assess the quality of PPP (Precision Point Positioning) considering the temporal resolution of the new CPTEC/INPE NWP regional model. For doing that, the impact of different neutrosphere models in the context of PPP, considering blind models for the neutrosphere delay in the PPP are also assessed by comparison to the ZND/CPTEC model. The analysis is accomplished in different Brazilian regions considering the ZND seasonal variations.

  20. Retrieval of stratospheric O3 and NO2 vertical profiles using zenith scattered light observations

    Indian Academy of Sciences (India)

    G S Meena; C S Bhosale; D B Jadhav

    2006-06-01

    Daily zenith scattered light intensity observations were carried out in the morning twilight hours using home-made UV-visible spectrometer over the tropical station Pune (18° 31′, 73° 51′)for the years 2000-2003.These observations are obtained in the spectral range 462-498 nm for the solar zenith angles (SZAs)varying from 87° to 91.5°. An algorithm has been developed to retrieve vertical profiles of ozone (O3) and nitrogen dioxide (NO2) from ground-based measurements using the Chahine iteration method.This retrieval method has been checked using measured and recalculated slant column densities (SCDs)and they are found to be well matching. O3 and NO2 vertical profiles have been retrieved using a set of their air mass factors (AMFs)and SCDs measured over a range of 87-91.5° SZA during the morning.The vertical profiles obtained by this method are compared with Umkehr profiles and ozonesondes and they are found to be in good agreement.The bulk of the column density is found near layer 20-25 km.Daily total column densities (TCDs)of O3 and NO2 along with their stratospheric and tropospheric counterparts are derived using their vertical profiles for the period 2000-2003.The total column,stratospheric column and tropospheric column amounts of both trace gases are found to be maximum in summer and minimum in the winter season.Increasing trend is found in column density of NO2 in stratospheric,tropospheric and surface layers,but no trend is observed in O3 columns for above layers during the period 2000-2003.

  1. Modification of ITU-R Rain Fade Slope Prediction Model Based on Satellite Data Measured at High Elevation Angle

    Directory of Open Access Journals (Sweden)

    Hassan Dao

    2012-01-01

    Full Text Available Rain fade slope is one of fade dynamics behaviour used by system engineers to design fade mitigation techniques (FMT for space-earth microwave links. Recent measurements found that fade slope prediction model proposed by ITU-R is unable to predict fade slope distribution accurately in tropical regions. Rain fade measurement was conducted  in Kuala Lumpur (3.3° N, 101.7° E where located in heavy rain zone by receiving signal at 10.982 GHz (Ku-band from MEASAT3 (91.5° E on 77.4° elevation angle. The measurement has been carried out for one year period. Fade slope S parameter on ITU-R prediction model has been investigated. New parameter is proposed for the fade slope prediction modeling based on measured data at high elevation angle, Ku-band. ABSTRAK: Cerun hujan pudar adalah salah satu dinamik tingkah laku pudar yang digunakan oleh jurutera sistem untuk mereka bentuk teknik-teknik pengurangan pudar (FMT bagi link gelombang mikro ruang bumi. Ukuran baru-baru ini mendapati bahawa cerun pudar ramalan model yang dicadangkan oleh ITU-R tidak mampu untuk meramalkan pengagihan cerun pudar tepat di kawasan tropika. Pengukuran  hujan pudar telah dijalankan di Kuala Lumpur (3.3° N, 101.7° E yang terletak di kawasan hujan lebat dengan menerima isyarat pada 10,982 GHz (Ku-band dari MEASAT3 (91.5° E pada sudut ketinggian 77.4°. Pengukuran telah dijalankan untuk tempoh satu tahun. Parameter cerun pudar S pada model ramalan ITU-R telah disiasat. Parameter baru adalah dicadangkan untuk pemodelan cerun pudar ramalan berdasarkan data yang diukur pada sudut paras ketinggian, Ku-band.KEYWORDS: fade slope; ITU-R; fade mitigation techniques; sampling time interval

  2. The Multi-Angle Imager for Aerosols (MAIA) Instrument, the Satellite-Based Element of an Investigation to Benefit Public Health

    Science.gov (United States)

    Diner, D. J.

    2016-12-01

    Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five

  3. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  4. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  5. Non Linear Optimization Applied to Angle-Of Satellite Based Geo-Localization for Biased and Time-Drifting Sensors

    Science.gov (United States)

    Levy, Daniel; Roos, Jason; Robinson, Jace; Carpenter, William; Martin, Richard; Taylor, Clark; Sugrue, Joseph; Terzuoli, Andrew

    2016-06-01

    Multiple sensors are used in a variety of geolocation systems. Many use Time Difference of Arrival (TDOA) or Received Signal Strength (RSS) measurements to estimate the most likely location of a signal. When an object does not emit an RF signal, Angle of Arrival (AOA) measurements using optical or infrared frequencies become more feasible than TDOA or RSS measurements. AOA measurements can be created from any sensor platform with any sort of optical sensor, location and attitude knowledge to track passive objects. Previous work has created a non-linear optimization (NLO) method for calculating the most likely estimate from AOA measurements. Two new modifications to the NLO algorithm are created and shown to correct AOA measurement errors by estimating the inherent bias and time-drift in the Inertial Measurement Unit (IMU) of the AOA sensing platform. One method corrects the sensor bias in post processing while treating the NLO method as a module. The other method directly corrects the sensor bias within the NLO algorithm by incorporating the bias parameters as a state vector in the estimation process. These two methods are analyzed using various Monte-Carlo simulations to check the general performance of the two modifications in comparison to the original NLO algorithm.

  6. Exploitation of the UV Aerosol Index scattering angle dependence: Properties of Siberian smoke plumes

    Science.gov (United States)

    Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Wagner, Thomas

    2017-04-01

    The UV Aerosol Index (UVAI) is a simple measure of aerosols from satellite that is particularly sensitive to elevated layers of absorbing particles. It has been determined from a range of instruments including TOMS, GOME-2, and OMI, for almost four decades and will be continued in the upcoming Sentinel missions S5-precursor, S4, and S5. Despite its apparent simplicity, the interpretation of UVAI is not straightforward, as it depends on aerosol abundance, absorption, and altitude in a non-linear way. In addition, UVAI depends on the geometry of the measurement (viewing angle, solar zenith and relative azimuth angles), particularly if viewing angles exceed 45 degrees, as is the case for OMI and TROPOMI (on S5-precursor). The dependence on scattering angle complicates the interpretation and further processing (e.g., averaging) of UVAI. In certain favorable cases, however, independent information on aerosol altitude and absorption may become available. We present a detailed study of the scatter angle dependence using SCIATRAN radiative transfer calculations. The model results were compared to observations of an extensive Siberian smoke plume, of which parts reached 10-12 km altitude. Due to its large extent and the high latitude, OMI observed the complete plume in five consecutive orbits under a wide range of scattering angles. This allowed us to deduce aerosol characteristics (absorption and layer height) that were compared with collocated CALIOP lidar measurements.

  7. Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO2

    Directory of Open Access Journals (Sweden)

    B. Buchmann

    2010-05-01

    Full Text Available Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2 vertical tropospheric columns (VTCs. Current operational retrievals rely on coarse-resolution reflectance data and do not account for the generally anisotropic properties of surface reflectance. Here we present a NO2 VTC retrieval that uses MODIS bi-directional reflectance distribution function (BRDF data at high temporal (8 days and spatial (1 km×1 km resolution in combination with the LIDORT radiative transfer model to account for the dependence of surface reflectance on viewing and illumination geometry. The method was applied to two years of NO2 observations from the Ozone Monitoring Instrument (OMI over Europe. Due to its wide swath, OMI is particularly sensitive to BRDF effects. Using representative BRDF parameters for various land surfaces, we found that in July (low solar zenith angles and November (high solar zenith angles and for typical viewing geometries of OMI, differences between MODIS black-sky albedos and surface bi-directional reflectances are of the order of 0–10% and 0–40%, respectively, depending on the position of the OMI pixel within the swath. In the retrieval, black-sky albedo was treated as a Lambertian (isotropic reflectance, while for BRDF effects we used the kernel-based approach in the MODIS BRDF product. Air Mass Factors were computed using the LIDORT radiative transfer model based on these surface reflectance conditions. Differences in NO2 VTCs based on the Lambertian and BRDF approaches were found to be of the order of 0–3% in July and 0–20% in November with the extreme values found at large viewing angles. The much larger differences in November are partly due to higher solar zenith angles and partly to the choice of a priori NO2 profiles – the latter typically have more pronounced maxima in the boundary layer during the cold season. However, BRDF

  8. Thromboembolic Complications after Zenith{sup ®} Low Profile Endovascular Graft for Infrarenal Abdominal Aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Urlings, T. A. J., E-mail: t-urlings@hotmail.com [Medical Center Westeinde, Department of Radiology (Netherlands); Vries, A. C. de, E-mail: a.de.vries@mchaaglanden.nl; Mol van Otterloo, J. C. A. de, E-mail: a.de.molvanotterloo@mchaaglanden.nl; Eefting, D., E-mail: d.eefting@mchaaglanden.nl [Medical Center Westeinde, Department of Vascular Surgery (Netherlands); Linden, E. van der, E-mail: e.van.der.linden@mchaaglanden.nl [Medical Center Westeinde, Department of Radiology (Netherlands)

    2015-06-15

    PurposeThe purpose of this study was to objectify and evaluate risk factors for thromboembolic complications after treatment with a Zenith{sup ®} Low Profile Endovascular Graft (Zenith LP). Results were compared with those in the recent literature on endovascular aortic repair (EVAR) and with the thromboembolic complications in the patient group treated with a Zenith Flex Endovascular Graft in our institute in the period before the use of the Zenith LP.Materials and MethodsAll consecutive patients who were suitable for treatment with a Zenith LP endograft between October 2010 and December 2011 were included. The preprocedural computed tomography scan (CT), procedural angiographic images, and the postprocedural CT scans were evaluated for risk factors for and signs of thromboembolic complications. All patients treated between December 2007 and November 2012 with a Zenith Flex endograft were retrospectively evaluated for thromboembolic complications.ResultsIn the study period 17 patients were treated with a LP Zenith endograft. Limb occlusion occurred in 35 % of the patients. Limb occlusions occurred in 24 % of the limbs at risk (one limb occluded twice). In one patient two risk factors for limb occlusion were identified. Between December 2007 and November 2012, a total of 43 patients were treated with a Zenith Flex endograft. No limb occlusion or distal embolization occurred.ConclusionDespite that this was a small retrospective study, the Zenith LP endograft seems to be associated with more frequent thromboembolic complications compared with the known limb occlusion rates in the literature and those of the patients treated with a Zenith Flex endograft in our institute.

  9. Predictions of Tropospheric Zenithal Delay for South America : Seasonal Variability and Quality Evaluation

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Toledo Machado

    2006-12-01

    Full Text Available The Zenithal Tropospheric Delay (Z TD is an important error source in the observable involved in the positioning methods using artificial satellite. Frequently, the Z TD influence in the positioning is minimized by applying empirical models. However, such models are not able to supply the precision required to some real time applications, such as navigation and steak out. In 2010 it will be implanted the new navigation and administration system of the air traffic, denominated CNS-ATM (Communication Navigation Surveillance - Air Traffic Management. In this new system the application of positioning techniques by satellites in the air traffic will be quite explored because they provide good precision in real time. The predictions of Z TD values from Numeric Weather Prediction (NWP, denominated dynamic modeling, is an alternative to model the atmospheric gases effects in the radio-frequency signals in real time. The Center for Weather Forecasting and Climate Studies (CPTEC has generated operationally prediction of Z TD values to South American Continent since March, 2004. The aims of the present paper are to investigate the Z TD seasonal variability and evaluate the quality of predicted Z TD values. One year of GPS data from Brazilian Continuous GPS Network (RBMC was used in this evaluation. The RMS values resulting from this evaluation were in the range of 4 to 11 cm. Considering the Z TDtemporal variability, the advantages provide by this modeling, the results obtained in this evaluation and the future improvements, this work shows that the dynamic modeling has great potential to become the most appropriate alternative to model Z TD in real time.

  10. Quantitative assessment of meteorological and tropospheric Zenith Hydrostatic Delay models

    Science.gov (United States)

    Zhang, Di; Guo, Jiming; Chen, Ming; Shi, Junbo; Zhou, Lv

    2016-09-01

    Tropospheric delay has always been an important issue in GNSS/DORIS/VLBI/InSAR processing. Most commonly used empirical models for the determination of tropospheric Zenith Hydrostatic Delay (ZHD), including three meteorological models and two empirical ZHD models, are carefully analyzed in this paper. Meteorological models refer to UNB3m, GPT2 and GPT2w, while ZHD models include Hopfield and Saastamoinen. By reference to in-situ meteorological measurements and ray-traced ZHD values of 91 globally distributed radiosonde sites, over a four-years period from 2010 to 2013, it is found that there is strong correlation between errors of model-derived values and latitudes. Specifically, the Saastamoinen model shows a systematic error of about -3 mm. Therefore a modified Saastamoinen model is developed based on the "best average" refractivity constant, and is validated by radiosonde data. Among different models, the GPT2w and the modified Saastamoinen model perform the best. ZHD values derived from their combination have a mean bias of -0.1 mm and a mean RMS of 13.9 mm. Limitations of the present models are discussed and suggestions for further improvements are given.

  11. Modeling vegetation reflectance from satellite and in-situ monitoring data

    Science.gov (United States)

    Zoran, Maria; Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Dida, Adrian

    2010-05-01

    Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and, especially, its very strong reflectance in the near-IR. Different types of vegetation show often distinctive variability from one another owing to such parameters as leaf shape and size, overall plant shape, water content, and associated background (e.g., soil types and spacing of the plants (density of vegetative cover within the scene). Different three-dimensional numerical models explicitly represent the vegetation canopy and use numerical methods to calculate reflectance. These models are computationally intensive and are therefore not generally suited to the correction of satellite imagery containing millions of pixels. Physically based models do provide understanding and are potentially more robust in extrapolation. They consider the vegetation canopy to comprise thin layers of leaves, suspended in air like sediment particles in water forming a turbid medium. Monitoring of vegetation cover changes by remote sensing data is one of the most important applications of satellite imagery. Vegetation reflectance has variations with sun zenith angle, view zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used a three parameters model and developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy with randomly oriented leaves. Multiple scattering theory was used to extend the model to function for both near-infrared and visible light. This vegetation reflectance model may be used to correct satellite imagery for bidirectional and topographic effects. For two ASTER images over Cernica forested area, placed to the East of Bucharest town , Romania, acquired within minutes from one another ,a nadir and off-nadir for band 3

  12. An a priori solar radiation pressure model for the QZSS Michibiki satellite

    Science.gov (United States)

    Zhao, Qile; Chen, Guo; Guo, Jing; Liu, Jingnan; Liu, Xianglin

    2017-07-01

    It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the β angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM's D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki's precise orbits over 21 months were determined. SLR validation indicated that the systematic β -angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.

  13. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  14. Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data

    Science.gov (United States)

    Wilgan, Karina; Hurter, Fabian; Geiger, Alain; Rohm, Witold; Bosy, Jarosław

    2016-08-01

    Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.

  15. Global model of zenith tropospheric delay proposed based on EOF analysis

    Science.gov (United States)

    Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng

    2017-07-01

    Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.

  16. Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data

    Science.gov (United States)

    Wilgan, Karina; Hurter, Fabian; Geiger, Alain; Rohm, Witold; Bosy, Jarosław

    2017-02-01

    Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.

  17. Automatic astronomical coordinate determination using digital zenith cameras

    Directory of Open Access Journals (Sweden)

    S Farzaneh

    2009-12-01

    Full Text Available Celestial positioning has been used for navigation purposes for many years. Stars as the extra-terrestrial benchmarks provide unique opportunity in absolute point positioning. However, astronomical field data acquisition and data processing of the collected data is very time-consuming. The advent of the Global Positioning System (GPS nearly made the celestial positioning system obsolete. The new satellite-based positioning system has been very popular since it is very efficient and convenient for many daily life applications. Nevertheless, the celestial positioning method is never replaced by satellite-based positioning in absolute point positioning sense. The invention of electro-optical devices at the beginning of the 21st century was really a rebirth in geodetic astronomy. Today, the digital cameras with relatively high geometric and radiometric accuracy has opened a new insight in satellite attitude determination and the study of the Earth's surface geometry and physics of its interior, i.e., computation of astronomical coordinates and the vertical deflection components. This method or the so-called astrogeodetic vision-based method help us to determine astronomical coordinates with an accuracy better than 0.1 arc second. The theoretical background, an innovative transformation approach and the preliminary numerical results are addressed in this paper.

  18. Nightfire method to track volcanic eruptions from multispectral satellite images

    Science.gov (United States)

    Trifonov, Grigory; Zhizhin, Mikhail; Melnikov, Dmitry

    2016-04-01

    This work presents the first results of an application of the Nightfire hotspot algorithm towards volcano activity detection. Nightfire algorithm have been developed to play along with a Suomi-NPP polar satellite launched in 2011, which has a new generation multispectral VIIRS thermal sensor on board, to detect gas flares related to the upstream and downstream production of oil and natural gas. Simultaneously using of nighttime data in SWIR, MWIR, and LWIR sensor bands the algorithm is able to estimate the hotspot temperature, size and radiant heat. Four years of non-filtered observations have been accumulated in a spatio-temporal detection database, which currently totals 125 GB in size. The first part of this work presents results of retrospective cross-match of the detection database with the publicly available observed eruptions databases. The second part discusses how an approximate 3D shape of a lava lake could be modeled based on the apparent source size and satellite zenith angle. The third part presents the results of fusion Landsat-8 and Himawari-8 satellites data with the VIIRS Nightfire for several active volcanoes.

  19. Top-of-Atmosphere Albedo Estimation from Angular Distribution Models using Scene Identification from Satellite Cloud Property Retrievals

    Science.gov (United States)

    Loeb, N. G.; Parol, F.; Buriez, J.-C.; Vanbauce, C.

    2000-01-01

    The next generation of Earth radiation budget satellite instruments will routinely merge estimates of global top-of-atmosphere radiative fluxes with cloud properties. This information will offer many new opportunities for validating radiative transfer models and cloud parameterizations in climate models. In this study, five months of POLarization and Directionality of the Earth's Reflectances (POLDER) 670 nm radiance measurements are considered in order to examine how satellite cloud property retrievals can be used to define empirical Angular Distribution Models (ADMs) for estimating top-of-atmosphere (TOA) albedo. ADMs are defined for 19 scene types defined by satellite retrievals of cloud fraction and cloud optical depth. Two approaches are used to define the ADM scene types: The first assumes there are no biases in the retrieved cloud properties and defines ADMs for fixed discrete intervals of cloud fraction and cloud optical depth (fixed-tau approach). The second approach involves the same cloud fraction intervals, but uses percentile intervals of cloud optical depth instead (percentile-tau approach). Albedos generated using these methods are compared with albedos inferred directly from the mean observed reflectance field. Albedos based on ADMs that assume cloud properties are unbiased (fixed-tau approach) show a strong systematic dependence on viewing geometry. This dependence becomes more pronounced with increasing solar zenith angle, reaching approximately equals 12% (relative) between near-nadir and oblique viewing zenith angles for solar zenith angles between 60 deg and 70 deg. The cause for this bias is shown to be due to biases in the cloud optical depth retrievals. In contrast, albedos based on ADMs built using percentile intervals of cloud optical depth (percentile-tau approach) show very little viewing zenith angle dependence and are in good agreement with albedos obtained by direct integration of the mean observed reflectance field (less than 1

  20. 轴角传感器对 GEO 卫星跟踪的影响分析%Analysis of Shaft Angle Sensor to the Influence for the GEO Satellite Tracking

    Institute of Scientific and Technical Information of China (English)

    吕鑫; 刘京

    2016-01-01

    在卫星导航系统的地面控制系统中使用桁架天线对 GEO 卫星进行跟踪。抛物面天线是地面运控系统的重要组成部分,主要任务是实现对卫星的自动跟踪,保证天线电轴始终准确的对准卫星。为了保证天线的指向精度普遍采用程序跟踪方式对 GEO 卫星进行跟踪。天线通过对比轴角传感器反馈的指向角度和系统解算出的程引角度形成闭环控制,使天线波束精确的指向卫星,保证地面设备与卫星之间的数据传递。本文针对轴角传感器由于其内部弹性结构和工作环境的原因易产生硬件形变,从而引起天线对卫星的跟踪异常,进而对卫星导航系统提供定位导航服务产生影响的问题。根据卫星运动的规律判断卫星异常和其运动位置的关系,分析出卫星载荷异常甚至失锁的故障原理,提出了调整天线偏置角度的应急处置方法。文中分别阐述了天线程序跟踪的原理和工作流程、轴角传感器的工作结构、产生形变后的影响分析和故障处理措施及效果。结论表明故障原理分析正确,应急处置措施可以保证天线所跟踪的卫星不失锁,导航信息传输的星地链路不中断。%Tracking of GEO satellites use truss antenna in the ground control system in satellite navigation sys-tem.Paraboloid antenna is an important part of ground operation control system,the main task is to realize the automatic tracking of the satellite,guarantee the electric axis antenna always accurate alignment of satellite.In order to ensure the anten-na pointing accuracy generally adopts the program tracking mode tracking of GEO satellites.Antenna by comparing the shaft angle sensor feedback pointing angle and system solutions are worked out process lead angle to form a closed loop control,let antenna beam accurate pointing the satellite,Guarantee between the ground equipment and satellite data transmission.The shaft angle

  1. Influence of 3D Radiative Effects on Satellite Retrievals of Cloud Properties

    Science.gov (United States)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    When cloud properties are retrieved from satellite observations, the calculations apply 1D theory to the 3D world: they only consider vertical structures and ignore horizontal cloud variability. This presentation discusses how big the resulting errors can be in the operational retrievals of cloud optical thickness. A new technique was developed to estimate the magnitude of potential errors by analyzing the spatial patterns of visible and infrared images. The proposed technique was used to set error bars for optical depths retrieved from new MODIS measurements. Initial results indicate that the 1 km resolution retrievals are subject to abundant uncertainties. Averaging over 50 by 50 km areas reduces the errors, but does not remove them completely; even in the relatively simple case of high sun (30 degree zenith angle), about a fifth of the examined areas had biases larger than ten percent. As expected, errors increase substantially for more oblique illumination.

  2. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    Science.gov (United States)

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  3. Air-sea Fluxes Derived From Satellite Data: Achievements and Perspectives

    Science.gov (United States)

    Schulz, J.; Andersson, A.; Bakan, S.; Fennig, K.; Klepp, C. P.; Klocke, D.

    2007-05-01

    Time series of satellite data, suitable for retrieval of water cycle components over the ocean, approach lengths that make them attractive to be used for the analysis of inter-annual variability and trends. Additionally, they can serve as an evaluation tool for model based atmospheric reanalyses and climate models. Based on the example of the satellite-derived Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data set (HOAPS-3) the presentation will contain some comparisons to ERA40 and control runs of the ECHAM5 climate model to elucidate the current status of similarities and differences between models and observations. The HOAPS-3 data set utilized the NOAA pathfinder sea surface temperature data set and several retrieval schemes for basic variables as near-surface humidity and wind speed applicable to the series of SSM/I instruments. The data set covers a time span from 1987-2005. Satellite based data sets are constructed from a series of instruments flying on successive platforms, e.g. SSM/I on the DMSP series and AVHRR on the NOAA series. To use those data for establishing time series suitable for trend detection a very careful correction of individual instrument and satellite platform errors has to be performed. Examples for those errors are orbit decay of the satellite that changes zenith angles over time and diurnal drift of the satellite platform aliasing in the diurnal cycle. Despite the high quality of some of those corrections a inter- sensor homogenization to a reference platform is unavoidable. The presentation will give a short review on used techniques and their advantages and disadvantages. Finally, the presentation will discuss the idea to use infrared sounding data from the IASI instrument on the MetOp satellite to improve current near-surface humidity and temperature retrievals and ways to include error information to the data sets.

  4. Operationally Merged Satellite Visible/IR and Passive Microwave Sea Ice Information for Improved Sea Ice Forecasts and Ship Routing

    Science.gov (United States)

    2015-09-30

    winter period that the visible/NIR imagery can be used. Because the visible MODIS channels dim above a certain solar zenith angle , the MODIS 02...our algorithm to work. Based on a few specific case studies, we decided to not use visible MODIS channels when the solar zenith angle is above 89.0...and very public change is the reduction in the summertime sea ice cover. The Intergovernmental Panel on Climate Change (IPCC) models predict a

  5. Hybrid Endograft Solution for Complex Iliac Anatomy : Zenith Body and Excluder Limbs

    NARCIS (Netherlands)

    Bos, Wendy T.; Tielliu, Ignace F.; Sondakh, Arthur O.; Vourliotakis, Georgios; Bracale, Umberto M.; Verhoeven, Eric L.

    2010-01-01

    The purpose of this study was to evaluate single-center results with selective use of Gore Excluder limbs (W.L. Gore & Associates, Flagstaff, AZ) in a Cook Zenith body (Cook Inc, Bloomington, IN) for elective endovascular abdominal aortic aneurysm (AAA) repair. A prospectively held database for

  6. Zenith total delay study of a mesoscale convective system : GPS observations and fine-scale modelling

    NARCIS (Netherlands)

    Cucurull, I.; Vilà-Guerau de Arellano, J.; Rius, A.

    2002-01-01

    Zenith Total Delay (ZTD) observations and model calculations are used to analyze a mesoscale convective system which yielded a large amount of precipitation over a short period of time in the north-western Mediterranean. ZTD observations are derived from the GPS signal delay whereas the ZTD model re

  7. Techniques for computing regional radiant emittances of the earth-atmosphere system from observations by wide-angle satellite radiometers, phase 3

    Science.gov (United States)

    Pina, J. F.; House, F. B.

    1975-01-01

    Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.

  8. Robust satellite techniques for volcanicand seismic hazards monitoring

    Directory of Open Access Journals (Sweden)

    I. Scaffidi

    2004-06-01

    Full Text Available Several satellite techniques have been proposed to monitor events related to seismic and volcanic activity. A selfadaptive approach (RAT, Robust AVHRR Techniques has recently been proposed which seems able to recognise space-time anomalies, differently related to such events, also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions. On the basis of NOAA-AVHRR data, the RAT aprroach has already been applied to Mount Etna volcanic ash cloud monitoring in daytime, and to seismic area monitoring in Southern Italy. This paper presents the theoretical basis for the extension of RAT approach also to nighttime volcanic ash cloud detection, together with its possible implementation to lava flow monitoring. One example of successful forecasting (few days before of a new lava vent opening during the Mount Etna eruption of July 2001 will be discussed in some detail. Progress on the use of the same approach on seismically active area monitoring will be discussed by comparison with previous results achieved on the Irpinia-Basilicata earthquake (MS = 6.9, which occurred on November 23rd 1980 in Southern Italy.

  9. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  10. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  11. The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation

    Science.gov (United States)

    Berman, A. L.

    1976-01-01

    In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.

  12. Validation of SCIAMACHY NO2 Vertical Column Densities with Mt.Cimone and Stara Zagora Ground-Based Zenith Sky DOAS Observations

    Science.gov (United States)

    Kostadinov, I.; Petritoli, A.; Werner, R.; Valev, D.; Atanasov, At.; Bortoli, D.; Markova, T.; Ravegnani, F.; Palazzi, E.; Giovanelli, G.

    2004-08-01

    Ground-based zenith sky Differential Optical Absorption Spectroscopy (DOAS) measurements performed by means of GASCOD instruments at Mt. Cimone (44N 11E), Italy and Stara Zagora (42N, 25E), Bulgaria are used for validation of SCIAMACHY NO2 vertical column density (vcd) of ESA SCI_NL product retrieved with 5.01 processor version. The results presented in this work regard satellite data for the JulyDecember 2002 period. On this base it is concluded that during summer-autumn period the overall NO2 vcd above both stations is fairly well reproduced by the SCIAMACHY data, while towards the winter period they deviate from the seasonal behaviour of NO2 vcd derived at both stations

  13. Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

    Science.gov (United States)

    ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2010-10-01

    The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.

  14. Reactivity and reaction rate studies on the fourth loading of ZENITH

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, I.R.; Freemantle, R.G.; Reed, D.L.; Wilson, D.J. [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)] (and others)

    1963-08-15

    The determination of the excess reactivity, control rod worths, prompt neutron lifetime, flux fine structure, and reaction rates of various nuclides for the fourth loading of the heated zero energy reactor ZENITH is described. The core contains 7.76 kg of U235, giving a carbon/U235 atom ratio of 7578, and forms the most dilute of the range studied. Comparisons of the experimental results with calculations using multigroup diffusion codes are presented. (author)

  15. Solar UVR instrument inter-comparison focussing on measurement interval recording setting and solar zenith angle as important factors

    CSIR Research Space (South Africa)

    Wright, GY

    2015-09-01

    Full Text Available Solar ultraviolet radiation (UVR) data for matching time periods between November 2014 and February 2015 were recorded by two instruments, namely a UVR biometer and a Davis UVR sensor, and their data were compared. Several checks and challenges were...

  16. ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight

    Directory of Open Access Journals (Sweden)

    O. Sumińska-Ebersoldt

    2011-07-01

    Full Text Available The photolysis frequency of dichlorine peroxide (ClOOCl JClOOCl is a critical parameter in catalytic cycles destroying ozone in the polar stratosphere. In the atmospherically relevant wavelength region, published laboratory measurements of ClOOCl absorption cross sections and spectra are not in good agreement, resulting in significant discrepancies in JClOOCl. Previous investigations of the consistency with atmospheric observations of ClO and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of JClOOCl over the rate constant of the ClO recombination reaction krec. Here, we constrain the atmospherically effective JClOOCl independent of krec using ClO data sampled in the same air masses before and directly after sunrise. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the rise in ClO concentration is significantly faster than expected from JClOOCl based on the absorption spectrum proposed by Pope et al. (2007, but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009. In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm, is effectively ruled out by our observations. Additionally, the night-time ClO observations show that the ClO/ClOOCl thermal equilibrium constant can not be significantly higher than the one proposed by Plenge et al. (2005.

  17. ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight

    Directory of Open Access Journals (Sweden)

    O. Sumińska-Ebersoldt

    2012-02-01

    Full Text Available The photolysis rate constant of dichlorine peroxide (ClOOCl, ClO dimer JClOOCl is a critical parameter in catalytic cycles destroying ozone (O3 in the polar stratosphere. In the atmospherically relevant wavelength region (λ > 310 nm, significant discrepancies between laboratory measurements of ClOOCl absorption cross sections and spectra cause a large uncertainty in JClOOCl. Previous investigations of the consistency of published JClOOCl with atmospheric observations of chlorine monoxide (ClO and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of JClOOCl over the ClOOCl formation rate constant krec. Here, we constrain the atmospherically effective JClOOCl independent of krec, using ClO measured in the same air masses before and directly after sunrise during an aircraft flight that was part of the RECONCILE field campaign in the winter 2010 from Kiruna, Sweden. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the increase in ClO concentrations is significantly faster than expected from JClOOCl based on the absorption spectrum proposed by Pope et al. (2007, but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009. In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm is not supported by our observations. The observed night-time ClO would not be consistent with a ClO/ClOOCl thermal equilibrium constant significantly higher than the one proposed by Plenge et al. (2005.

  18. Surface and Tethered-Balloon Observations of Actinic Flux: Effects of Arctic stratus, Surface Albedo and Solar Zenith Angle

    NARCIS (Netherlands)

    Roode, S.R. de; Duynkerke, P.G.; Boot, Wim; Hage, Jeroen C.H. van der

    2000-01-01

    As part of the FIRE III (First ISCCP Regional Experiment) Arctic Cloud Experiment actinic flux measurements were made above the Arctic Sea ice during May 1998. FIRE III was designed to address questions concerning clouds, radiation and chemistry in the Arctic sea ice region. The actinic flux,

  19. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  20. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  1. Ground guided CX-OLEV rendez-vous with uncooperative geostationary satellite

    Science.gov (United States)

    Tarabini, Lorenzo; Gil, Jesús; Gandia, Fernando; Molina, Miguel Ángel; Del Cura, Juan Manuel; Ortega, Guillermo

    2007-06-01

    CX-OLEV is a commercial mission aimed to extend the operational life of geostationary telecommunications satellites by supplying them propulsion, navigation and guidance services. Under SENER's contract and ESA's supervision, GMV designed the CX-OLEV ground guided rendez-vous (RV) approach. The starting point of the RV phase between CX-OLEV and the client is at 35 km distance with an uncertainty of 2 km. Dedicated ground tracking is performed to reduce the position uncertainty to 200 m and therefore to command the closing to 1 km distance. Fly around and final approach maneuvers complete the CX-OLEV RV approach along the client's zenith direction up to a relative distance of 7 m. Two redundant optical cameras working in the 5 m-2 km range are selected as RV sensors. The RV camera images are sent to ground and processed to determine the relative position of the spacecraft. The flight dynamics system calculates, validates and transmits in near real time the RV maneuvers commands. The relative spiral motion of CX-OLEV around the telecommunication satellite is synchronized with the Sun-client-CXOLEV angle to guarantee a good illumination of the client but without shadowing the client satellite's solar panels. The complete RV is simulated in a dedicated environment to assess its feasibility.

  2. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  3. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano

    Science.gov (United States)

    Dehn, Jonathan; Dean, Kenneson; Engle, Kevin; Izbekov, Pavel

    2002-07-01

    Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.

  4. Photosynthetically active radiation retrieval based on HJ-1A/B satellite data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Photosynthetically active radiation(PAR) is essential for plant photosynthesis and carbon cycle,and is also important for meteorological and environmental monitoring.To advance China’s disaster and environmental monitoring capabilities,the HJ-1A/B satellites have been placed in Earth orbit.One of their environmental monitoring objectives is the study of PAR.We simulated direct solar,scattered and environment radiation between 400 and 700 nm under different atmospheric parameters(solar zenith angle,atmospheric water vapor,atmospheric ozone,aerosol optical thickness,surface elevation and surface albedo),and then established a look-up table between these input parameters and PAR.Based on the look-up table,we used HJ-1A/B aerosol and surface albedo outputs to derive the corresponding PAR.Validation of inversed instantaneous and observed PAR values using HJ-1 Heihe experimental data had a root mean square error of 25.2 W m-2,with a relative error of 5.9%.The root mean square error for accumulated daily PAR and observed values was 0.49 MJ m-2,with a relative error of 3.5%.Our approach improved significantly the computational efficiency,compared with using directly radiation transfer equations.We also studied the sensitivity of various input parameters to photosynthetically active radiation,and found that solar zenith angle and atmospheric aerosols were sensitive PAR parameters.Surface albedo had some effect on PAR,but water vapor and ozone had minimal impact on PAR.

  5. An analysis of GPT2/GPT2w+Saastamoinen models for estimating zenith tropospheric delay over Asian area

    Science.gov (United States)

    Liu, Jiye; Chen, Xihong; Sun, Jizhe; Liu, Qiang

    2017-02-01

    The tropospheric delay is a systematic error source in the Global Navigation Satellite System (GNSS) positioning. However, without accuracy meteorological information, the quality of the Zenith Tropospheric Delay (ZTD) derived from empirical tropospheric models like Saastamoinen model will degrade, leading to inaccurate estimates of positions. To solve the above problem, on the basis of Global Pressure and Temperature 2/2w (GPT2/GPT2w) model, this paper conducted GPT2/GPT2w+Saastamoinen models for estimating ZTD over Asian area. As GPT2w model has two resolutions of 1 and 5 degrees, the effects of two models (GPT2_5w+S refers to GPT2w+Saastamoinen model with the resolution of 5 degree; GPT2_1w+S refers to GPT2w+Saastamoinen model with the resolution of 1 degree) were analyzed respectively. The model's validation was carried out using the International GNSS Service (IGS) ZTD values derived from the observed data in the year 2012 at 27 IGS stations. The results show that the GPT2_1w+S model can provide tropospheric delay corrections with bias of 0.66 cm and Root Mean Square (RMS) of 4.93 cm, which is superior to GPT2+S model. The annual bias and RMS for the GPT2_5w+S model are slightly worse than that for the GPT2_1w+S model. For most stations, the bias and RMS show seasonal characteristics. The relation between the annual bias and RMS with latitude for the models is not obvious, and a latitude dependency between the models could not be detected.

  6. Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation

    Science.gov (United States)

    Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.

    2003-01-01

    One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.

  7. Research on the system performance evaluation of minimum-shift keying in uplink ground-to-satellite with gamma-gamma distribution

    Science.gov (United States)

    Wang, Yi; Zhang, Ao; Ma, Jing

    2017-07-01

    Minimum-shift keying (MSK) has the advantages of constant envelope, continuous phase, and high spectral efficiency, and it is applied in radio communication and optical fiber communication. MSK modulation of coherent detection is proposed in the ground-to-satellite laser communication system; in addition, considering the inherent noise of uplink, such as intensity scintillation and beam wander, the communication performance of the MSK modulation system with coherent detection is studied in the uplink ground-to-satellite laser. Based on the gamma-gamma channel model, the closed form of bit error rate (BER) of MSK modulation with coherent detection is derived. In weak, medium, and strong turbulence, the BER performance of the MSK modulation system is simulated and analyzed. To meet the requirements of the ground-to-satellite coherent MSK system to optimize the parameters and configuration of the transmitter and receiver, the influence of the beam divergence angle, the zenith angle, the transmitter beam radius, and the receiver diameter are studied.

  8. Technology for zenithal bistable display%顶点双稳显示技术

    Institute of Scientific and Technical Information of China (English)

    李耐和

    2004-01-01

    顶点双稳显示(Zenithal Bistable Display,简称ZBD)技术的最大特点是零功耗显示,它是唯一能够同有源阵列LCD竞争的无源寻址技术。ZBD技术能提供与有源阵列LcD同样的性能及图像质量,但功耗更低,且成本节约一半。

  9. Heliostat tilt and azimuth angle charts and the heliostat orientation protractor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.M.; Al-Rabghi, O.M. (Thermal Energy Dept., King Abdulaziz Univ., Jeddah 21413 (SA))

    1992-02-01

    This paper reports that using cartesian heliostat field coordinates analytical expressions were derived for the heliostat tilt angle s, and heliostat azimuth angle {gamma} (clockwise from south). These expressions are dependent on the field cartesian coordinates of the center of the heliostat and the solar zenith and azimuth angles (clockwise from south), {theta}{sub z} and {Psi}, respectively. Here, cylindrical coordinates are conveniently used to derive the expressions for the heliostat angles s and {gamma}. The expression of {gamma}is used to construct the so-called heliostat orientation protractor. The protractor is a useful tool to determine the instantaneous heliostat azimuth angle as will be illustrated.

  10. Assessment of the near real-time GNSS zenith total delay estimated from different solutions using different orbit and clock products

    Science.gov (United States)

    Ning, T.; Lidberg, M.; Johansson, J. M.; Ridal, M.; Jivall, L.; Kempe, C.

    2016-12-01

    Due to the fact that there is a big lack of humidity observations in the meteorological observing system, usage of ground-based GNSS data to provide the near real-time (NRT) zenith total delay (ZTD) is important for operational meteorology. The accuracy of the NRT GNSS ZTD is highly dependent on the quality of the real-time satellite orbits and clock products used for the data processing. Therefore, the effect of real-time satellite orbits and clock errors on the NRT GNSS ZTD estimates is necessary to investigate. Since March, 2016, Lantmäteriet (Swedish Mapping, Cadastre and Land Registration Authority) became one of the analysis centres contributing NRT GNSS ZTDs to the E-GVAP program. Currently we are processing the GNSS data obtained from around 680 stations in Sweden, Finland, Denmark, and Norway. The NRT GNSS ZTDs are estimated using two different solutions: network and precise point positioning (PPP). The network solution is running by Bernese (V5.2) using the CODE ultra-rapid orbits product. The PPP solutions are running by the GIPSY-OASIS (V6.2) using two different satellite orbits and clock products. One is using the IGS provided real-time products. The other is using the JPL ultra-rapid products which however has a longer latency (over one hour). The NTR ZTDs from all three solutions will be assessed with respect to the ones estimated using the IGS final satellite orbits and clock product in terms of accuracy and precision.

  11. Impact of the initial tropospheric zenith path delay on precise point positioning convergence during active conditions

    Science.gov (United States)

    Kalita, J. Z.; Rzepecka, Z.

    2017-04-01

    Tropospheric delay is one of the key factors that influence the convergence time of the precise point positioning (PPP) method. Current models do not allow for the fixing of the zenith path delay tropospheric parameter, leaving the difference between nominal and final value to the estimation process. Here, we present an analysis of several PPP result-sets using the tropospheric parameter’s nominal value adopted from models: VMF1, GPT2w, MOPS, and ZERO-WET. The last variant assumes a zero value for the initial wet part of the zenith delay. The PPP results are subtracted from a solution based on the final tropospheric product from the International GNSS Service (IGS). Several days exhibiting the most active tropospheric conditions were selected for each of the 7 stations located in the mid-latitude Central European region. During the active days, application of the VMF1 model increases the resulting height component’s quality by about 33–36% when compared to the GPT2w and MOPS. The respective improvement in VMF1 latitude and longitude components is 27% and 15%. The average relative deterioration in the result standard deviations between active and calm tropospheric conditions reaches about 20–30% of the former. We discuss the impact of the initial tropospheric parameter’s variance and bias on positioning. In addition, we compare the results with those of other studies over the impact of active tropospheric conditions on the PPP method.

  12. Comparison between CNA and energetic electron precipitation: simultaneous observation by Poker Flat Imaging Riometer and NOAA satellite

    Directory of Open Access Journals (Sweden)

    Y.-M. Tanaka

    2005-07-01

    Full Text Available The cosmic noise absorption (CNA is compared with the precipitating electron flux for 19 events observed in the morning sector, using the high-resolution data obtained during the conjugate observations with the imaging riometer at Poker Flat Research Range (PFRR; 65.11° N, 147.42° W, Alaska, and the low-altitude satellite, NOAA 12. We estimate the CNA, using the precipitating electron flux measured by NOAA 12, based on a theoretical model assuming an isotropic pitch angle distribution, and quantitatively compare them with the observed CNA. Focusing on the eight events with a range of variation larger than 0.4dB, three events show high correlation between the observed and estimated CNA (correlation coefficient (r0>0.7 and five events show low correlation (r0<0.5. The estimated CNA is often smaller than the observed CNA (72% of all data for 19 events, which appears to be the main reason for the low-correlation events. We examine the assumption of isotropic pitch angle distribution by using the trapped electron flux measured at 80° zenith angle. It is shown that the CNA estimated from the trapped electron flux, assuming an isotropic pitch angle distribution, is highly correlated with the observed CNA and is often overestimated (87% of all data. The underestimate (overestimate of CNA derived from the precipitating (trapped electron flux can be interpreted in terms of the anisotropic pitch angle distribution similar to the loss cone distribution. These results indicate that the CNA observed with the riometer may be quantitatively explained with a model based on energetic electron precipitation, provided that the pitch angle distribution and the loss cone angle of the electrons are taken into account.

    Keywords. Energetic particles, precipitating – Energetic particles, trapped – Ionosphere-magnetosphere interactions

  13. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    Science.gov (United States)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  14. On the Evaluation of Gnss Complementary by Using Quasizenith Satellite of Japan

    Science.gov (United States)

    Sekiguchi, N.; Shikada, M.; Kanai, T.

    2016-06-01

    The positional information has an important role in our lifestyle. People need to get positional information by GNSS. The satellite positioning must receive a signal from four or more satellites, however, most of Japanese country is covered with mountain and urban area has a lot of tall buildings. Then Japanese government launched QZS (Quasi Zenith Satellite) which is the first satellite of QZSS (Quasi Zenith Satellite System) in 2010. QZSS including QZS can improve positioning accuracy and reliability. QZS has 6 signals by using four kinds of frequency. These signals are the same frequency of GPS and GLONASS and so on. This paper was reported about the comparison of the positioning between GPS and QZSS.

  15. Time-variable Earth's albedo model characteristics and applications to satellite sampling errors

    Science.gov (United States)

    Bartman, F. L.

    1981-01-01

    Characteristics of the time variable Earth albedo model are described. With the cloud cover multiplying factor adjusted to produce a global annual average albedo of 30.3, the global annual average cloud cover is 45.5 percent. Global annual average sunlit cloud cover is 48.5 percent; nighttime cloud cover is 42.7 percent. Month-to-month global average albedo is almost sinusoidal with maxima in June and December and minima in April and October. Month-to-month variation of sunlit cloud cover is similar, but not in all details. The diurnal variation of global albedo is greatest from November to March; the corresponding variation of sunlit cloud cover is greatest from May to October. Annual average zonal albedos and monthly average zonal albedos are in good agreement with satellite-measured values, with notable differences in the polar regions in some months and at 15 S. The albedo of some 10 deg by 10 deg. areas of the Earth versus zenith angle are described. Satellite albedo measurement sampling effects are described in local time and in Greenwich mean time.

  16. Satellite Aerodynamics and Density Determination from Satellite Dynamic Response

    Science.gov (United States)

    Karr, G. R.

    1972-01-01

    The aerodynamic drag and lift properties of a satellite are first expressed as a function of two parameters associated with gas-surface interaction at the satellite surface. The dynamic response of the satellite as it passes through the atmosphere is then expressed as a function of the two gas-surface interaction parameters, the atmospheric density, the satellite velocity, and the satellite orientation to the high speed flow. By proper correlation of the observed dynamic response with the changing angle of attack of the satellite, it is found that the two unknown gas-surface interaction parameters can be determined. Once the gas-surface interaction parameters are known, the aerodynamic properties of the satellite at all angles of attack are also determined.

  17. Radiometric Analysis of Daytime Satellite Detection

    Science.gov (United States)

    2006-03-01

    detector m No 300 km – 1500 km 400 km Cos(θs) cosine of satellite orientation angle unitless No 0-1 0.5 Δf noise-equivalent bandwidth Hz No...Dependence Asat area of satellite m2 9 m2 linear Rsat-det distance from satellite to detector m 400 km 2 1 x Cos(θs) cosine of satellite orientation angle

  18. Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology

    Science.gov (United States)

    Gregg, Watson

    2011-01-01

    by solar zenith angle requirements and obscuration from clouds and aerosols. Combined with in situ dataenhanced satellite data, the model is forced into consistency using data assimilation. This approach eliminates sampling discrepancies from satellites. Combining the reduced differences of satellite data sets using in situ data, and the removal of sampling biases using data assimilation, we generate consistent data records of ocean color. These data records can support investigations of long-term effects of climate change on ocean biology over multiple satellites, and can improve the consistency of future satellite data sets.

  19. Inferring spatial clouds statistics from limited field-of-view, zenith observations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.H.; Thorne, L.R. [Sandia National Labs., Livermore, CA (United States)

    1996-04-01

    Many of the Cloud and Radiation Testbed (CART) measurements produce a time series of zenith observations, but spatial averages are often the desired data product. One possible approach to deriving spatial averages from temporal averages is to invoke Taylor`s hypothesis where and when it is valid. Taylor`s hypothesis states that when the turbulence is small compared with the mean flow, the covariance in time is related to the covariance in space by the speed of the mean flow. For clouds fields, Taylor`s hypothesis would apply when the {open_quotes}local{close_quotes} turbulence is small compared with advective flow (mean wind). The objective of this study is to determine under what conditions Taylor`s hypothesis holds or does not hold true for broken cloud fields.

  20. Can liquid water profiles be retrieved from passive microwave zenith observations?

    Science.gov (United States)

    Crewell, Susanne; Ebell, Kerstin; Löhnert, Ulrich; Turner, D. D.

    2009-03-01

    The ability to determine the cloud boundaries and vertical distribution of cloud liquid water for single-layer liquid clouds using zenith-pointing microwave radiometers is investigated. Simulations are used to demonstrate that there is little skill in determining either cloud base or cloud thickness, especially when the cloud thickness is less than 500 m. It is also shown that the different distributions of liquid water content within a cloud with known cloud boundaries results in a maximum change in the brightness temperature of less than 1 K at the surface from 20 to 150 GHz, which is on the order of the instrument noise level. Furthermore, it is demonstrated using the averaging kernel that the number of degrees of freedom for signal (i.e., independent pieces of information) is approximately 1, which implies there is no information on vertical distribution of liquid water in the microwave observations.

  1. Zenith skylight intensity and color during the total solar eclipse of 20 July 1963.

    Science.gov (United States)

    Sharp, W E; Lloyd, J W; Silverman, S M

    1966-05-01

    The zenith skylight intensity was measured, with a resolution of 10 A, over the wavelength range from 5200 A to 6400 A during a total solar eclipse at Hermon, Maine. The intensity was found to change by about two orders of magnitude in the 2-min period before totality and reached a minimum during totality of 19.5 kR/A at 5200 A. The spectral distribution remained that of the day sky until the sun was more than 99.8% obscured. During totality, the shorter wavelengths were enhanced, indicating a shift to the blue in sky color. Comparisons with an independent measurement from an aircraft show that the intensity scale height of the secondary scattered component, predominating at totality, is significantly less than that of the day sky. The measurements are compared with the day and twilight sky.

  2. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  3. Cloud and aerosol optics by polarized micro pulse Lidar and ground based measurements of zenith radiance

    Science.gov (United States)

    Delgadillo, Rodrigo

    Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.

  4. New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop

    Science.gov (United States)

    Li, Wei; Yuan, Yunbin; Ou, Jikun; Chai, Yanju; Li, Zishen; Liou, Yuei-An; Wang, Ningbo

    2015-01-01

    The initial IGGtrop model proposed for Chinese BDS (BeiDou System) is not very suitable for BDS/GNSS research and application due to its large data volume while it shows a global mean accuracy of 4 cm. New versions of the global zenith tropospheric delay (ZTD) model IGGtrop are developed through further investigation on the spatial and temporal characteristics of global ZTD. From global GNSS ZTD observations and weather reanalysis data, new ZTD characteristics are found and discussed in this study including: small and inconsistent seasonal variation in ZTD between and stable seasonal variation outside; weak zonal variation in ZTD at higher latitudes (north of and south of ) and at heights above 6 km, etc. Based on these analyses, new versions of IGGtrop, named , are established through employing corresponding strategies: using a simple algorithm for equatorial ZTD; generating an adaptive spatial grid with lower resolutions in regions where ZTD varies little; and creating a method for optimized storage of model parameters. Thus, the models require much less parameters than the IGGtrop model, nearly 3.1-21.2 % of that for the IGGtrop model. The three new versions are validated by five years of GNSS-derived ZTDs at 125 IGS sites, and it shows that: demonstrates the highest ZTD correction performance, similar to IGGtrop; requires the least model parameters; is moderate in both zenith delay prediction performance and number of model parameters. For the model, the biases at those IGS sites are between and 4.3 cm with a mean value of cm and RMS errors are between 2.1 and 8.5 cm with a mean value of 4.0 cm. Different BDS and other GNSS users can choose a suitable model according to their application and research requirements.

  5. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-05-01

    Full Text Available GPS has become a very effective tool to remotely sense precipitable water vapor (PWV information, which is important for weather forecasting and nowcasting. The number of geodetic GNSS stations set up in China has substantially increased over the last few decades. However, GPS PWV derivation requires surface pressure to calculate the precise zenith hydrostatic delay and weighted mean temperature to map the zenith wet delay to precipitable water vapor. GPS stations without collocated meteorological sensors can retrieve water vapor using standard atmosphere parameters, which lead to a decrease in accuracy. In this paper, a method of interpolating NWP reanalysis data to site locations for generating corresponding meteorological elements is explored over China. The NCEP FNL dataset provided by the NCEP (National Centers for Environmental Prediction and over 600 observed stations from different sources was selected to assess the quality of the results. A one-year experiment was performed in our study. The types of stations selected include meteorological sites, GPS stations, radio sounding stations, and a sun photometer station. Compared with real surface measurements, the accuracy of the interpolated surface pressure and air temperature both meet the requirements of GPS PWV derivation in most areas; however, the interpolated surface air temperature exhibits lower precision than the interpolated surface pressure. At more than 96% of selected stations, PWV differences caused by the differences between the interpolation results and real measurements were less than 1.0 mm. Our study also indicates that relief amplitude exerts great influence on the accuracy of the interpolation approach. Unsatisfactory interpolation results always occurred in areas of strong relief. GPS PWV data generated from interpolated meteorological parameters are consistent with other PWV products (radio soundings, the NWP reanalysis dataset, and sun photometer PWV data. The

  6. Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2004-01-01

    Full Text Available A retrieval algorithm based on the Optimal Estimation Method (OEM has been developed in order to provide vertical distributions of NO2 in the stratosphere from ground-based (GB zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change stations of Harestua (60° N, 10° E and Andøya (69° N, 16° E in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO2 vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement - generally better than 25% - has been found with the SAOZ (Système d'Analyse par Observations Zénithales and DOAS (Differential Optical Absorption Spectroscopy balloons. A similar agreement has been reached with correlative satellite data from the HALogen Occultation Experiment (HALOE and Polar Ozone and Aerosol Measurement (POAM III instruments above 25km of altitude. Below 25km, a systematic underestimation - by up to 40% in some cases - of both HALOE and POAM III profiles by our GB profile retrievals has been observed, pointing out more likely a limitation of both satellite instruments at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes.

  7. Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2004-05-01

    Full Text Available A retrieval algorithm based on the Optimal Estimation Method (OEM has been developed in order to provide vertical distributions of NO2 in the stratosphere from ground-based (GB zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change stations of Harestua (60° N, 10° E and Andøya (69.3° N, 16.1° E in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO2 vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement – generally better than 25% – has been found with the SAOZ (Système d'Analyse par Observations Zénithales and DOAS (Differential Optical Absorption Spectroscopy balloon data. A similar agreement has been reached with correlative satellite data from HALogen Occultation Experiment (HALOE and Polar Ozone and Aerosol Measurement (POAM III instruments above 25 km of altitude. Below 25 km, a systematic overestimation of our retrieved profiles – by up to 50% in some cases – has been observed by both HALOE and POAM III, pointing out the limitation of the satellite solar occultation technique at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes.

  8. Cloud parameters using Ground Based Remote Sensing Systems and Satellites over urban coastal area

    Science.gov (United States)

    Han, Z. T.; Gross, B.; Moshary, F.; Wu, Y.; Ahmed, S. A.

    2013-12-01

    Determining cloud radiative and microphysical properties are very important as a means to assess their effect on earths energy balance. While MODIS and GOES have been used for estimating cloud properties, assessing cloud properties directly has been difficult due the lack of consistent ground based sensor measurements except in such established places such as the ARM site in Oklahoma. However, it is known that significant aerosol seeding from urban and/or maritime sources can modify cloud properties such as effective radius and cloud optical depth and therefore evaluation of satellite retrievals in such a unique area offers novel opportunities to assess the potential of satellite retrievals to distinguish these mechanisms In our study, we used a multi-filter rotating shadow band radiometer (MFRSR) and micro wave radiometer (MWR) to retrieve the cloud optical depth and cloud droplets effective radius . In particular, we make a statistical study during summer 2013 where water phase clouds dominate and assess the accuracy of both MODIS and GOES satellite cloud products including LWP, COD and Reff. Most importantly, we assess performance against satellite observing geometries. Much like previous studies at the ARM site, we observe significant biases in the effective radius when the solar zenith angle is too large. In addition, we show that biases are also sensitive to the LWP limiting such measurement s in assessing potential aerosol-cloud signatures Finally, we discuss preliminary aerosol-cloud interactions from our ground system where local lidar is used to assess aerosols below clouds and explore the Aerosol Cloud Index.

  9. CHARACTERISING VEGETATED SURFACES USING MODIS MULTIANGULAR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    G. McCamley

    2012-07-01

    Full Text Available Bidirectional Reflectance Distribution Functions (BRDF seek to represent variations in surface reflectance resulting from changes in a satellite's view and solar illumination angles. BRDF representations have been widely used to assist in the characterisation of vegetation. However BRDF effects are often noisy, difficult to interpret and are the spatial integral of all the individual surface features present in a pixel. This paper describes the results of an approach to understanding how BRDF effects can be used to characterise vegetation. The implementation of the Ross Thick Li Sparse BRDF model using MODIS is a stable, mature data product with a 10 year history and is a ready data source. Using this dataset, a geometric optical model is proposed that seeks to interpret the BRDF effects in terms of Normalised Difference Vegetation Index (NDVI and a height-to-width ratio of the vegetation components. The height-to-width ratio derived from this model seeks to represent the dependence of NDVI to changes in view zenith angle as a single numeric value. The model proposed within this paper has been applied to MODIS pixels in central Australia for areas in excess of 18,000 km2. The study area is predominantly arid and sparsely vegetated which provides a level of temporal and spatial homogeneity. The selected study area also minimises the effects associated with mutual obscuration of vegetation which is not considered by the model. The results are represented as a map and compared to NDVI derived from MODIS and NDVI derived from Landsat mosaics developed for Australia's National Carbon Accounting System (NCAS. The model reveals additional information not obvious in reflectance data. For example, the height-to-width ratio is able to reveal vegetation features in arid areas that do not have an accompanying significant increase in NDVI derived from MODIS, i.e. the height-to-width ratio reveals vegetation which is otherwise only apparent in NDVI derived

  10. Analysis of Satellite-Derived Arctic Tropospheric BrO Columns in Conjunction with Aircraft Measurements During ARCTAS and ARCPAC

    Science.gov (United States)

    Choi, S.; Wang, Y.; Salawitch, R. J.; Canty, T.; Joiner, J.; Zeng, T.; Kurosu, T. P.; Chance, K.; Richter, A.; Huey, L. G.; hide

    2012-01-01

    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations ofBrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo> 0.7), for solar zenith angle BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.

  11. Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Directory of Open Access Journals (Sweden)

    S. Choi

    2012-02-01

    Full Text Available We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL. Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7, for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.

  12. A CAD-CAM prosthodontic option and gingival zenith position for a rotated maxillary right central incisor: An evaluation

    Directory of Open Access Journals (Sweden)

    Mukesh Singhal

    2012-01-01

    Conclusion: Digital imaging provides an immediate treatment option for the patients. Software also provides an interim aid, for the clinician as well as technician, in the form of two-dimensional photographs. CAD-CAM is entirely a helping instrument against the conservative prosthetic options and gingival zenith position for a rotated central incisor. It helps in patient education and in motivation.

  13. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  14. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    of nearly specular reflections from most solar panels. Our primary purpose in presenting these two plots is to demonstrate the usefulness of...than a transformation for stars because the spectral energy distribution of satellites can change with phase angle and is subject to specular

  15. Application of the Langley plot method to the calibration of the solar backscattered ultraviolet instrument on the Nimbus 7 satellite

    Science.gov (United States)

    Bhartia, P. K.; Taylor, S.; Mcpeters, R. D.; Wellemeyer, C.

    1995-01-01

    The concept of the well-known Langley plot technique, used for the calibration of ground-based instruments, has been generalized for application to satellite instruments. In polar regions, near summer solstice, the solar backscattered ultraviolet (SBUV) instrument on the Nimbus 7 satellite samples the same ozone field at widely different solar zenith angles. These measurements are compared to assess the long-term drift in the instrument calibration. Although the technique provides only a relative wavelength-to-wavelength calibration, it can be combined with existing techniques to determine the drift of the instrument at any wavelength. Using this technique, we have generated a 12-year data set of ozone vertical profiles from SBUV with an estimated accuracy of +/- 5% at 1 mbar and +/- 2% at 10 mbar (95% confidence) over 12 years. Since the method is insensitive to true changes in the atmospheric ozone profile, it can also be used to compare the calibrations of similar SBUV instruments launched without temporal overlap.

  16. Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR

    Directory of Open Access Journals (Sweden)

    A. Chandra

    2014-02-01

    Full Text Available The use of millimeter wavelength radars for probing precipitation has recently gained interest. However, estimation of precipitation variables is not straightforward due to strong attenuation, radar receiver saturation, antenna wet radome effects and natural microphysical variability. Here, an automated algorithm is developed for routinely retrieving rain rates from profiling Ka-band (35-GHz ARM zenith radars (KAZR. A 1-D simple, steady state microphysical model is used to estimate the impact of microphysical processes and attenuation on the profiles of the radar observables at 35-GHz and thus provide criteria for identifying when attenuation or microphysical processes dominate KAZR observations. KAZR observations are also screened for saturation and wet radome effects. The proposed algorithm is implemented in two steps: high rain rates are retrieved by using the amount of attenuation in rain layers, while lower rain rates by the Ze–R (reflectivity-rain rate relation is implemented. Observations collected by the KAZR, disdrometer and scanning weather radars during the DYNAMO/AMIE field campaign at Gan Island of the tropical Indian Ocean are used to validate the proposed approach. The results indicate that the proposed algorithm can be used to derive robust statistics of rain rates in the tropics from KAZR observations.

  17. Automated rain rate estimates using the Ka-band ARM zenith radar (KAZR)

    Science.gov (United States)

    Chandra, A.; Zhang, C.; Kollias, P.; Matrosov, S.; Szyrmer, W.

    2015-09-01

    The use of millimeter wavelength radars for probing precipitation has recently gained interest. However, estimation of precipitation variables is not straightforward due to strong signal attenuation, radar receiver saturation, antenna wet radome effects and natural microphysical variability. Here, an automated algorithm is developed for routinely retrieving rain rates from the profiling Ka-band (35-GHz) ARM (Atmospheric Radiation Measurement) zenith radars (KAZR). A 1-dimensional, simple, steady state microphysical model is used to estimate impacts of microphysical processes and attenuation on the profiles of radar observables at 35-GHz and thus provide criteria for identifying situations when attenuation or microphysical processes dominate KAZR observations. KAZR observations are also screened for signal saturation and wet radome effects. The algorithm is implemented in two steps: high rain rates are retrieved by using the amount of attenuation in rain layers, while low rain rates are retrieved from the reflectivity-rain rate (Ze-R) relation. Observations collected by the KAZR, rain gauge, disdrometer and scanning precipitating radars during the DYNAMO/AMIE field campaign at the Gan Island of the tropical Indian Ocean are used to validate the proposed approach. The differences in the rain accumulation from the proposed algorithm are quantified. The results indicate that the proposed algorithm has a potential for deriving continuous rain rate statistics in the tropics.

  18. Anomalies of zenith tropospheric delay following the Mw 7.8 Haida Gwaii earthquake

    Science.gov (United States)

    Yao, Y. B.; Lei, X. X.; Liu, Q.; He, C. Y.; Zhang, B.; Zhang, L.

    2014-05-01

    The 2012 Haida Gwaii earthquake was a massive Mw 7.8 earthquake that struck the Queen Carlotte Islands Region on 28 October 2012 (UTC). This study analyzed the variations in zenith tropospheric delay (ZTD) following the Mw 7.8 Haida Gwaii earthquake using near real-time ZTD data collected from eleven stations in the seismic region and the forecast ZTD of ECMWF. A new differential method was used to detect anomalies of ZTD time series. Result showed that obvious ZTD anomalies occurred on the day of the earthquake (day-of-year, doy 302). There were anomalous ZTD variations at eight stations in the post-earthquake period on doy 302, possibly due to the processes of earthquake-generated acoustic waves. Propagation of acoustic waves caused variations of tropospheric parameters (e.g., atmospheric pressure, temperate, and atmosphere density), thus influencing ZTD. Absence of anomalous ZTD variations at the remaining three stations was attributed to the special topographic conditions, i.e., the long epicentral distance and the presence of huge mountains as a natural protective screen. Our work provides new insights to the relationship between of earthquake event and ZTD variation. The proposed differential method is superior to conventional method for detecting specific ZTD anomalies caused by earthquake events.

  19. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  20. Simultaneous Multi-angle Observations of Strong Langmuir Turbulence at HAARP

    Science.gov (United States)

    Watanabe, Naomi; Golkowski, Mark; Sheerin, James P.; Watkins, Brenton J.

    2015-10-01

    We report results from a recent series of experiments employing the HF transmitter of the High Frequency Active Auroral Research Program (HAARP) to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. The Modular UHF Ionospheric Radar (MUIR) located at the HAARP facility is used as the primary diagnostic. Short pulse, low duty cycle experiments are used to avoid generation of artificial field-aligned irregularities and isolate ponderomotive plasma turbulence effects. The HF pump frequency is close to the 3rd gyro-harmonic frequency and the HF pointing angle and MUIR look angle are between the HF Spitze angle and Magnetic Zenith angle. Plasma line spectra measured simultaneously in different spots of the interaction region display differences dependent on the aspect angle of the HF pump beam in the boresight direction and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Lines, cascade, collapse, coexistence, spectra are observed in agreement with existing theory and simulation results of Strong Langmuir Turbulence in ionospheric interaction experiments. It is found that SLT at HAARP is most readily observed at a HF pointing angle of 11° and UHF observation angle of 15°, which is consistent with the magnetic zenith effect as documented in previous works and optimal orientation of the refracted HF electric field vector.

  1. Salivary cortisol, stress and mood in healthy older adults: the Zenith study.

    Science.gov (United States)

    Simpson, Ellen E A; McConville, Chris; Rae, Gordon; O'Connor, Jacqueline M; Stewart-Knox, Barbara J; Coudray, Charles; Strain, J J

    2008-04-01

    The aims of this study were to investigate the relationship between salivary cortisol, stress and mood and to look at the circadian rhythms of positive (PA) and negative (NA) mood in older adults. The participants were 41 healthy adults aged 55-69 years, recruited in Northern Ireland as part of the European Commission-funded Zenith project. Salivary cortisol samples were obtained twice a day (2.30 p.m. and 10.30 p.m.) for 7 consecutive days in conjunction with momentary measures of positive (PA) and negative mood (NA), using PANAS and a trait measure of perceived stress (Perceived Stress Scale). Salivary cortisol levels were measured using an enzyme-linked immunoassay kit. Higher perceived stress levels were associated with lower afternoon PA (r=-0.46, p=0.003) and higher afternoon (r=0.43, p=0.007) and evening (r=0.45, p=0.004) NA. Lower afternoon PA was correlated with higher evening cortisol concentrations (r=-0.47, p=0.002). Greater afternoon PA variability was associated with higher evening cortisol concentrations (r=0.38, p=0.015). A high intra-class correlation between cortisol and positive mood was found (r=0.67, p=0.009). Previously established rhythms for positive and negative mood were confirmed. Interestingly, there was no association between salivary cortisol levels and perceived stress in these healthy older adults. Further, more extensive research is required to better understand the apparent interplay between these variables and ageing.

  2. Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting

    Directory of Open Access Journals (Sweden)

    K. Boniface

    2009-07-01

    Full Text Available Impact of GPS (Global Positioning System data assimilation is assessed here using a high-resolution numerical weather prediction system at 2.5 km horizontal resolution. The Zenithal Tropospheric Delay (ZTD GPS data from mesoscale networks are assimilated with the 3DVAR AROME data assimilation scheme. Data from more than 280 stations over the model domain have been assimilated during 15-day long assimilation cycles prior each of the two studied events. The results of these assimilation cycles show that the assimilation of GPS ZTD with the AROME system performs well in producing analyses closer to the ZTD observations in average.

    Then the impacts of assimilating GPS data on the precipitation forecast have been evaluated. For the first case, only the AROME runs starting a few hours prior the triggering of the convective system are able to simulate the convective precipitation. The assimilation of GPS ZTD observations improves the simulation of the spatial extent of the precipitation, but slightly underestimates the heaviest precipitation in that case compared with the experiment without GPS. The accuracy of the precipitation forecast for the second case is much better. The analyses from the control assimilation cycle provide already a good description of the atmosphere state that cannot be further improved by the assimilation of GPS observations. Only for the latest day (22 November 2007, significant differences have been found between the two parallel cycles. In that case, the assimilation of GPS ZTD allows to improve the first 6 to 12 h of the precipitation forecast.

  3. Determining precipitable water in the atmosphere of Iran based on GPS zenith tropospheric delays

    Directory of Open Access Journals (Sweden)

    Elaheh Sadeghi

    2014-08-01

    Full Text Available Precipitable water (PW is considered as one of the most important weather parameters in meteorology. Moreover, moisture affects the propagation of the Global Positioning System’s (GPS signals. Using four different models, the current paper tries to identify the best relationship between the atmospheric error known as zenith wet delay (ZWD and PW. For that matter, based on 54,330 radiosonde profiles from 11 stations, two different models i.e. linear and quadratic have been derived for Iran. For analyzing the accuracy of these models, ZWDs of three permanent GPS stations located in the cities of Tehran, Ahvaz and Tabriz have been used. Applying the aforementioned models as well as those already developed for Europe and the U.S., PWs are derived at the position of these stations in Iran. Further, in this research, root mean square error (RMSE and bias are the measures for selecting the optimal model. Here, the bias and the RMSE (between GPS and radiosonde derived PWs for the proposed linear model for Iran is 1.44 mm and 4.42 mm, and for quadratic model 2.18 mm and 4.74 mm respectively while, the bias and the RMSE for Bevis’ linear model is 2.63 mm and 4.98 mm and for Emardson and Derk’s quadratic models are 2.80 mm and 5.08 mm respectively. As such, it is observed that the bias of the proposed linear model for Iran is 1.19 mm and 1.36 mm less than the Bevis’ and Emardson and Derk’s models. In addition, the RMSE of the proposed linear model is 0.56 and 0.66 mm less than the RMSE of the later ones. This emphasizes that the estimation of the model coefficients must be based on regional meteorological measurements.

  4. Chinese Digital Zenith Telescope (DZT) used for Astro-geodetic Deflection of the Vertical Determination

    Science.gov (United States)

    Tian, L.; Wang, B.; Wang, Z.; Yin, Z.; Hu, H.; Wang, H.; Han, Y.

    2015-12-01

    Classical optical astrometry can be used to measure and study variations of plumb line. For the earth gravity filed related researches, it is irreplaceable by technologies like GNSS、VLBI、SLR, etc. However, classical astrometric instruments have some major drawback, such as low efficiency, low automation, more operating observers, and individual error in some visual instruments. In 2011, The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) successfully developed the new digital zenith telescope prototype (DZT-1), which has the ability of highly automatic observation and data processing, even allowing unattended observation by remote control. By utilizing CCD camera as imaging terminal and high-accuracy tiltmeter to replace mercurial plate, observation efficiency of DZT is improved greatly. According to the results of data obtained from test observations, single-observation accuracy of DZT-1 is 0.15-0.3″ and one night observation accuracy up to 0.07-0.08″, which is better than the observation accuracy of classical astrometric instruments. The observations of DZT can be used to obtain the plumb line variations and the vertical deflections, which can be used for carrying out seismic, geodetic and other related geo-scientific researches. Especially the collocated observations with gravimeters and the conjoint analysis of the observation data will be helpful to recognize the anomalous motion and variation of underground mass over time, and maybe provide significant information for estimating the scale of underground anomalous mass. The information is valuable for determining the three key factors of earthquake possibly. Moreover, the project team is carrying out the development of new DZT with better performance and studying the key techniques for new instrument to make DZT play a more significant role in the astronomy and geoscience fields.

  5. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  6. 47 CFR 25.205 - Minimum angle of antenna elevation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Minimum angle of antenna elevation. 25.205... SATELLITE COMMUNICATIONS Technical Standards § 25.205 Minimum angle of antenna elevation. (a) Earth station antennas shall not normally be authorized for transmission at angles less than 5° measured from the...

  7. Land surface thermal characterization of Asian-pacific region with Japanese geostationary satellite

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2010-12-01

    Land Surface Temperature (LST) is a significant indicator of energy balance at the Earth's surface. It is required for a wide variety of climate, hydrological, ecological, and biogeochemical studies. Although LST is highly variable both temporally and spatially, it is impossible for polar-orbiting satellite to detect hourly changes in LST, because the satellite is able to only collect data of the same area at most twice a day. On the other hand, geostationary satellite is able to collect hourly data and has a possibility to monitor hourly changes in LST, therefore hourly measurements of geostationary satellite enables us to characterize detailed thermal conditions of the Earth's surface and improve our understanding of the surface energy balance. Multi-functional Transport Satellite (MTSAT) is a Japanese geostationary satellite launched in 2005 and covers Asia-Pacific region. MTSAT provides hourly data with 5 bands including two thermal infrared (TIR) bands in the 10.5-12.5 micron region. In this research, we have developed a methodology to retrieve hourly LST from thermal infrared data of MTSAT. We applied Generalized Split-window (GSW) equation to estimate LST from TIR data. First, the brightness temperatures measured at sensor on MTSAT was simulated by radiative transfer code (MODTRAN), and the numerical coefficients of GSW equation were optimized based on the simulation results with non-linear minimization algorithm. The standard deviation of derived GSW equation was less than or equal to 1.09K in the case of viewing zenith angle lower than 40 degree and 1.73K in 60 degree. Then, spatial distributions of LST have been mapped optimized GSW equation with brightness temperatures of MTSAT IR1 and IR2 and emissivity map from MODIS product. Finally, these maps were validated with MODIS LST product (MOD11A1) over four Asian-pacific regions such as Bangkok, Tokyo, UlanBator and Jakarta , It is found that RMSE of these regions were 4.57K, 2.22K, 2.71K and 3.92K

  8. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    Science.gov (United States)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  9. Monitoring stratospheric chlorine activation from time series of OClO DSCDs above Kiruna using ground-based zenith sky DOAS observations

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Pukite, Janis; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2017-04-01

    After to the Montreal protocol and amendments, the production of CFCs was strongly reduced. Since then scientists have steadily made efforts to monitor the amount of chlorine compounds which are responsible for the destruction of ozone in the stratosphere. Although very recent research of stratospheric ozone indicates an ozone recovery, ozone depletion is still observed in the polar spring and is expected to last for about another 70 years according to the WMO. Therefore, continuous observation and analysis of the stratospheric ozone as well as other stratospheric trace gases are highly demanded. Several previous studies have investigated OClO which is an indicator for stratospheric chlorine activation using satellite, ground-based, and balloon remote sensing measurements. In this work, we investigate long-term time series of OClO DSCDs (Differential Slant Column densities) above Kiruna, Sweden (67.84°N, 20.41°E) which is located inside the Arctic Circle by using the ground-based zenith sky DOAS measurements. Since our measurements are performed at the fixed site, for the interpretation also the relative position of the polar vortex has to be considered. Our long-term data obtained during about 15 years allows us to classify the dependence of the OClO amount on the various meteorological conditions. Our data show a large variability with high OClO SCDs in cold, and low OClO SCDs in warm winters. Our measurements also allow to investigate the effect of the chlorine activation and its duration on the strength of the ozone destruction.

  10. What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train

    Directory of Open Access Journals (Sweden)

    A. P. Vasilkov

    2010-01-01

    Full Text Available In this paper, we examine how clouds over snow and ice affect ozone absorption and how these effects may be accounted for in satellite retrieval algorithms. Over snow and ice, the Aura Ozone Monitoring Instrument (OMI Raman cloud pressure algorithm derives an effective scene pressure. When this scene pressure differs appreciably from the surface pressure, the difference is assumed to be caused by a cloud that is shielding atmospheric absorption and scattering below cloud-top from satellite view. A pressure difference of 100 hPa is used as a crude threshold for the detection of clouds that significantly shield tropospheric ozone absorption. Combining the OMI effective scene pressure and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS cloud top pressure, we can distinguish between shielding and non-shielding clouds.

    To evaluate this approach, we performed radiative transfer simulations under various observing conditions. Using cloud vertical extinction profiles from the CloudSat Cloud Profiling Radar (CPR, we find that clouds over a bright surface can produce significant shielding (i.e., a reduction in the sensitivity of the top-of-the-atmosphere radiance to ozone absorption below the clouds. The amount of shielding provided by clouds depends upon the geometry (solar and satellite zenith angles and the surface albedo as well as cloud optical thickness. We also use CloudSat observations to qualitatively evaluate our approach. The CloudSat, Aqua, and Aura satellites fly in an afternoon polar orbit constellation with ground overpass times within 15 min of each other.

    The current Total Ozone Mapping Spectrometer (TOMS total column ozone algorithm (that has also been applied to the OMI assumes no clouds over snow and ice. This assumption leads to errors in the retrieved ozone column. We show that the use of OMI effective scene pressures over snow and ice reduces these errors and leads to a more homogeneous spatial

  11. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  12. A new global zenith tropospheric delay model GZTD%一种新的全球对流层天顶延迟模型GZTD

    Institute of Scientific and Technical Information of China (English)

    姚宜斌; 何畅勇; 张豹; 许超钤

    2013-01-01

    Troposphere delay is one of the main error sources in global navigation satellite systems (GNSS).Its obvious randomness is mainly attributed to meteorological parameters (total pressure,temperature and water vapor pressure,etc.).In this paper,the temporal and spatial variations of global Zenith Troposphere Delay (ZTD) is analyzed using the time series of global 4D-grid ZTD from 2002 to 2009,provided by Global Geodetic Observing System (GGOS)Atmosphere.According to the analysis,a new global ZTD correction model without requiring meteorological parameters,called GZTD,is developed based on spherical harmonics.Experimental results show that the precision of inner coincidence of GZTD model (bias:0.2 cm,RMS:3.7 cm) considering the longitudinal and latitudinal variations of ZTD performs better than other latitude-only models,such as UNB3m (bias:3.4 cm,RMS:6.0 cm),UNB4 (bias:4.7 cm,RMS:7.4 cm),UNB3 (bias:4.0 cm,RMS:7.0 cm) and EGNOS (bias:4.5 cm,RMS:6.9 cm).Compared to ZTD time series from 385 global International GNSS Service (IGS) sites,GZTD model (bias:-0.02 cm,RMS:4.24 cm) is still clearly superior to other similar models.The GZTD model owns such advantages as well-performance,simplicity in computation and less parameters-requirement.%对流层延迟是GNSS导航定位主要误差源之一,主要受气象参数(如总气压、温度和水汽压等)的影响,具有变化随机性强的特点.本文利用GGOS Atmosphere提供的2002 2009年全球天顶对流层延迟格网时间序列研究了全球对流层天顶延迟的时空变化特征.并以此为基础对全球天顶对流层延迟(Zenith Troposphere Delay,ZTD)进行建模,提出了一种基于球谐函数的全球非气象参数对流层天顶延迟改正模型——GZTD模型.实验对比结果表明考虑ZTD经纬向变化的GZTD模型内符合精度全球统计结果(bias:0.2 cm,RMS:3.7 cm)优于只考虑ZTD纬向变化的UNB3m(bias:3.4 cm,RMS:6.0 cm)、UNB4 (bias:4.7 cm,RMS:7.4 cm)、UNB3 (bias:4.0 cm,RMS:7

  13. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  14. A new angle on the Euler angles

    Science.gov (United States)

    Markley, F. Landis; Shuster, Malcolm D.

    1995-01-01

    We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.

  15. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  16. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  17. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  18. Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics

    Science.gov (United States)

    Ji, Lei; Brown, Jesslyn F.

    2017-10-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center routinely produces and distributes a remote sensing phenology (RSP) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) 1-km data compiled from a series of National Oceanic and Atmospheric Administration (NOAA) satellites (NOAA-11, -14, -16, -17, -18, and -19). Each NOAA satellite experienced orbital drift during its duty period, which influenced the AVHRR reflectance measurements. To understand the effect of the orbital drift on the AVHRR-derived RSP dataset, we analyzed the impact of solar zenith angle (SZA) on the RSP metrics in the conterminous United States (CONUS). The AVHRR weekly composites were used to calculate the growing-season median SZA at the pixel level for each year from 1989 to 2014. The results showed that the SZA increased towards the end of each NOAA satellite mission with the highest increasing rate occurring during NOAA-11 (1989-1994) and NOAA-14 (1995-2000) missions. The growing-season median SZA values (44°-60°) in 1992, 1993, 1994, 1999, and 2000 were substantially higher than those in other years (28°-40°). The high SZA in those years caused negative trends in the SZA time series, that were statistically significant (at α = 0.05 level) in 76.9% of the CONUS area. A pixel-based temporal correlation analysis showed that the phenological metrics and SZA were significantly correlated (at α = 0.05 level) in 4.1-20.4% of the CONUS area. After excluding the 5 years with high SZA (>40°) from the analysis, the temporal SZA trend was largely reduced, significantly affecting less than 2% of the study area. Additionally, significant correlation between the phenological metrics and SZA was observed in less than 7% of the study area. Our study concluded that the NOAA satellite orbital drift increased SZA, and in turn, influenced the phenological metrics. Elimination of the years with high median SZA reduced the influence of orbital drift

  19. Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics

    Science.gov (United States)

    Ji, Lei; Brown, Jesslyn

    2017-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center routinely produces and distributes a remote sensing phenology (RSP) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) 1-km data compiled from a series of National Oceanic and Atmospheric Administration (NOAA) satellites (NOAA-11, −14, −16, −17, −18, and −19). Each NOAA satellite experienced orbital drift during its duty period, which influenced the AVHRR reflectance measurements. To understand the effect of the orbital drift on the AVHRR-derived RSP dataset, we analyzed the impact of solar zenith angle (SZA) on the RSP metrics in the conterminous United States (CONUS). The AVHRR weekly composites were used to calculate the growing-season median SZA at the pixel level for each year from 1989 to 2014. The results showed that the SZA increased towards the end of each NOAA satellite mission with the highest increasing rate occurring during NOAA-11 (1989–1994) and NOAA-14 (1995–2000) missions. The growing-season median SZA values (44°–60°) in 1992, 1993, 1994, 1999, and 2000 were substantially higher than those in other years (28°–40°). The high SZA in those years caused negative trends in the SZA time series, that were statistically significant (at α = 0.05 level) in 76.9% of the CONUS area. A pixel-based temporal correlation analysis showed that the phenological metrics and SZA were significantly correlated (at α = 0.05 level) in 4.1–20.4% of the CONUS area. After excluding the 5 years with high SZA (>40°) from the analysis, the temporal SZA trend was largely reduced, significantly affecting less than 2% of the study area. Additionally, significant correlation between the phenological metrics and SZA was observed in less than 7% of the study area. Our study concluded that the NOAA satellite orbital drift increased SZA, and in turn, influenced the phenological metrics. Elimination of the years with high median SZA reduced the

  20. A satellite anemometer

    Science.gov (United States)

    Hanson, W. B.; Heelis, R. A.

    1995-01-01

    This report describes the design, development, and testing of components of a satellite anemometer, an instrument for measuring neutral winds in the upper atmosphere from a satellite platform. The device, which uses four nearly identical pressure sensors, measures the angle of arrival of the bulk neutral flow in the satellite frame of reference. It could also be used in a feedback loop to control spacecraft attitude with respect to the ram velocity direction. We have now developed miniaturized ionization pressure gauges that will work well from the slip flow region near 115 km up to the base of the exosphere, which covers the entire altitude range currently being considered for Tether. Laboratory tests have demonstrated a very linear response to changes in ram angle out to +/- 20 deg. (transverse wind component of 2.7 km s(exp -1)) from the ram, and a monotonic response to out beyond 45 deg. Pitch (vertical wind) and yaw (horizontal wind) can be sampled simultaneously and meaningfully up to 10 Hz. Angular sensitivity of 30 arc seconds (approximately 1 ms(exp -1) is readily attainable, but absolute accuracy for winds will be approximately 1 deg (130 m/s) unless independent attitude knowledge is available. The critical elements of the design have all been tested in the laboratory.

  1. Zenith-Distance Dependence of Chromatic Shear Effect: A Limiting Factor for an Extreme Adaptive Optics System

    CERN Document Server

    Nakajima, T

    2006-01-01

    Consider a perfect AO system with a very fine wavefront sampling interval and a very small actuator interval. If this AO system senses wavefront at a wavelength, lambda_{WFS}, and does science imaging at another wavelength, lambda_{SCI}, the light paths through the turbulent atmosphere at these two wavelengths are slightly different for a finite zenith distance, z. The error in wavefront reconstruction of the science channel associated with this non-common path effect, or so-called chromatic shear, is uncorrectable and sets an upper bound of the system performance. We evaluate the wavefront variance, sigma^2(lambda_{WFS},lambda_{SCI},z) for a typical seeing condition at Mauna Kea and find that this effect is not negligible at a large z. If we require that the Strehl ratio be greater than 99 or 95%, z must be less than about 50 or 60 deg respectively, for the combination of visible wavefront sensing and infrared science imaging.

  2. Effect of densifying the GNSS GBAS network on monitoring the troposphere zenith total delay and precipitable water vapour content during severe weather events

    Science.gov (United States)

    Kapłon, Jan; Stankunavicius, Gintautas

    2016-04-01

    The dense ground based augmentation networks can provide the important information for monitoring the state of neutral atmosphere. The GNSS&METEO research group at Wroclaw University of Environmental and Life Sciences (WUELS) is operating the self-developed near real-time service estimating the troposphere parameters from GNSS data for the area of Poland. The service is operational since December 2012 and it's results calculated from ASG-EUPOS GBAS network (120 stations) data are supporting the EGVAP (http://egvap.dmi.dk) project. At first the zenith troposphere delays (ZTD) were calculated in hourly intervals, but since September 2015 the service was upgraded to include SmartNet GBAS network (Leica Geosystems Polska - 150 stations). The upgrade included as well: increasing the result interval to 30 minutes, upgrade from Bernese GPS Software v. 5.0 to Bernese GNSS Software v. 5.2 and estimation of the ZTD and it's horizontal gradients. Processing includes nowadays 270 stations. The densification of network from 70 km of mean distance between stations to 40 km created the opportunity to investigate on it's impact on resolution of estimated ZTD and integrated water vapour content (IWV) fields during the weather events of high intensity. Increase in density of ZTD measurements allows to define better the meso-scale features within different synoptic systems (e.g. frontal waves, meso-scale convective systems, squall lines etc). These meso-scale structures, as a rule are short living but fast developing and hardly predictable by numerical models. Even so, such limited size systems can produce very hazardous phenomena - like widespread squalls and thunderstorms, tornadoes, heavy rains, snowfalls, hail etc. because of prevalence of Cb clouds with high concentration of IWV. Study deals with two meteorological events: 2015-09-01 with the devastating squalls and rainfall bringing 2M Euro loss of property in northern Poland and 2015-10-12 with the very active front bringing

  3. Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP

    Science.gov (United States)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2014-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts

  4. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  5. Estimation of net surface shortwave radiation over the tropical Indian Ocean using geostationary satellite observations: Algorithm and validation

    Science.gov (United States)

    Shahi, Naveen R.; Thapliyal, Pradeep K.; Sharma, Rashmi; Pal, Pradip K.; Sarkar, Abhijit

    2011-09-01

    This paper presents the development of a methodology to estimate the net surface shortwave radiation (SWR) over tropical oceans using half-hourly geostationary satellite estimates of outgoing longwave radiation (OLR). The collocated data set of SWR measured at 13 buoy locations over the Indian Ocean and a Meteosat-derived OLR for the period of 2002-2009 have been used to derive an empirical relationship. The information from the solar zenith angle that determines the amount of solar radiation received at a particular location is used to normalize the SWR to nadir observation in order to make the empirical relationship location independent. As the relationship between SWR and OLR is valid mostly over the warm-pool regions, the present study restricts SWR estimation in the tropical Indian Ocean domain (30°E-110°E, 30°S-30°N). The SWR estimates are validated with an independent collocated data set and subsequently compared with the SWR estimates from the Global Energy and Water Cycle Experiment-Surface Radiation Budget V3.0 (GEWEX-SRB), International Satellite Cloud Climatology Project-Flux Data (ISCCP-FD), and National Centers for Environmental Prediction (NCEP) reanalysis for the year 2007. The present algorithm provides significantly better accuracy of SWR estimates, with a root-mean-square error of 27.3 W m-2 as compared with the values of 32.7, 37.5, and 59.6 W m-2 obtained from GEWEX-SRB, ISCCP-FD, and NCEP, respectively. The present algorithm also provides consistently better SWR compared with other available products under different sky conditions and seasons over Indian Ocean warm-pool regions.

  6. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  7. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  8. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  9. Refractive aiming corrections for satellite observation of stars

    Energy Technology Data Exchange (ETDEWEB)

    Vittitoe, C.N.; Schmidt, R.L.

    1997-03-01

    Standard references describe how apparent zenith angles differ from true zenith angles for observers on the Earth. In fact, correction formulae are available for aiming Earth-based sensors at stars; some corrections give variations as a function of observer altitude. Such corrections have not been available for observers in space. This report develops formulae appropriate for proper aiming from space-based sensors toward the relatively few stars that are near the Earth`s limb at any given time. These formulae correct for refractive effects and may be critical for steerable space-borne sensors with fields of view less than one degree, tasked to observe starlight passing near the Earth`s surface. Ray tracing in the U.S. Standard Atmosphere, 1976 including H{sub 2}O effects, is used to determine relations between the refracted tangent height, the apparent tangent height resulting from observation at the sensor, and the angle through which the detected rays have deviated. Analytic fits of the ray deviation as a function of apparent tangent height allows quick determination of corrections needed for a space-borne sensor. Using those results that apply in the plane of incidence and using the necessary coordinate rotations, alterations in the star`s apparent right ascension and declination are evaluated to improve the aim. Examples illustrate that alterations can be larger than one degree, with effects lasting up to a few minutes.

  10. View angle dependence of cloud optical thicknesses retrieved by MODIS

    Science.gov (United States)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  11. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  12. A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring

    Science.gov (United States)

    Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón

    2017-02-01

    A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.

  13. Technology for a quasi-GSO satellite communications system

    OpenAIRE

    Katagi, T.; Yonezawa, R.; Chiba, I.; Urasaki, S.

    1999-01-01

    In this paper, a satellite communications system using a Quasi Geostationary Satellite Orbit (Quasi-GSO) is proposed. A 24-hour period Quasi-GSO system could give high quality communication to high latitude regions with its satellites observed from earth stations having high elevation angles. In this paper, a system concept and a deployable flat antenna with light weight antenna elements are described proposing it to be a good candidate for mobile communications satellite use.

  14. A Satellite-Derived Climatological Analysis of Urban Heat Island over Shanghai during 2000–2013

    Directory of Open Access Journals (Sweden)

    Weijiao Huang

    2017-06-01

    Full Text Available The urban heat island is generally conducted based on ground observations of air temperature and remotely sensing of land surface temperature (LST. Satellite remotely sensed LST has the advantages of global coverage and consistent periodicity, which overcomes the weakness of ground observations related to sparse distributions and costs. For human related studies and urban climatology, canopy layer urban heat island (CUHI based on air temperatures is extremely important. This study has employed remote sensing methodology to produce monthly CUHI climatology maps during the period 2000–2013, revealing the spatiotemporal characteristics of daytime and nighttime CUHI during this period of rapid urbanization in Shanghai. Using stepwise linear regression, daytime and nighttime air temperatures at the four overpass times of Terra/Aqua were estimated based on time series of Terra/Aqua-MODIS LST and other auxiliary variables including enhanced vegetation index, normalized difference water index, solar zenith angle and distance to coast. The validation results indicate that the models produced an accuracy of 1.6–2.6 °C RMSE for the four overpass times of Terra/Aqua. The models based on Terra LST showed higher accuracy than those based on Aqua LST, and nighttime air temperature estimation had higher accuracy than daytime. The seasonal analysis shows daytime CUHI is strongest in summer and weakest in winter, while nighttime CUHI is weakest in summer and strongest in autumn. The annual mean daytime CUHI during 2000–2013 is 1.0 and 2.2 °C for Terra and Aqua overpass, respectively. The annual mean nighttime CUHI is about 1.0 °C for both Terra and Aqua overpass. The resultant CUHI climatology maps provide a spatiotemporal quantification of CUHI with emphasis on temperature gradients. This study has provided information of relevance to urban planners and environmental managers for assessing and monitoring urban thermal environments which are constantly

  15. Combining METEOSAT-10 satellite image data with GPS tropospheric path delays to estimate regional Integrated Water Vapor (IWV) distribution

    OpenAIRE

    2016-01-01

    Using GPS satellites signals, we can study different processes and coupling mechanisms that can help us understand the physical conditions in the upper atmosphere, which might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by ground stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy Precipitable Water Vapor (PWV) using collocated pressure and temperature me...

  16. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  17. GPS Zenith Total Delays and Precipitable Water in comparison with special meteorological observations in Verona (Italyduring MAP-SOP

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2002-06-01

    Full Text Available Continuous meteorological examination of the Pre-Alpine zones in Northern Italy (Po Valleyis important for determination of atmospheric water cycles connected with floods and rainfalls.During a special meteorological observing period (MAP-SOP,radiosounding and other measurements were made in the site of Verona (Italy. This paper deals with Zenith Total Delay (ZTDand Precipitable Water (PWcomparisons obtained by GPS, radiosounding and other meteorological measurements.PW and ZTD from ground-based GPS data in comparisonwith classical techniques (e.g.,WVR,radiosoundingfrom recent literature present an accurate tool for use in meteorology applications (e.g.,assimilation in Numerical Weather Prediction (NWPmodels on short-range precipitation forecasts.Comparison of such ZTD for MAP-SOP showed a standard deviation of 16.1 mm and PW comparison showed a standard deviation of 2.7 mm,confirming the accuracy of GPS measurements for meteorology applications.In addition,PW data and its time variation are also matched with time series of meteorological situations.Those results indicate that changes in PW values could be connected to changes in air masses,i.e.to passages of both cold and warm fronts.There is also a correlation between precipitation, forthcoming increase and the following decrease of PW.A good agreement between oscillation of PW and precipitation and strong cyclonic activities is found.

  18. Alignments between galaxies, satellite systems and haloes

    CERN Document Server

    Shao, Shi; Frenk, Carlos S; Gao, Liang; Crain, Robert A; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-01-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the disks of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of $33^{\\circ}$ in both cases. While the centrals are better aligned with the inner $10$ kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central - satellite alignment is weak (median misalignment angle of $52^{\\circ}$) and we find that around $20\\%$ of systems have a misalignment angle larger than $78^{\\circ}$, which is the value for the Milky Way. The central - satellite alignment is a conseq...

  19. The lopsided distribution of satellite galaxies

    CERN Document Server

    Libeskind, Noam I; Tempel, Elmo; Ibata, Rodrigo

    2016-01-01

    The distribution of smaller satellite galaxies around large central galaxies has attracted attention because peculiar spatial and kinematic configurations have been detected in some systems. A particularly striking example of such behavior is seen in the satellite system of the Andromeda galaxy, where around 80\\% are on the nearside of that galaxy, facing the Milky Way. Motivated by this departure from anisotropy, we examined the spatial distribution of satellites around pairs of galaxies in the SDSS. By stacking tens of thousands of satellites around galaxy pairs we found that satellites tend to bulge towards the other central galaxy, preferably occupying the space between the pair, rather than being spherically or axis-symmetrically distributed around each host. The bulging is a function of the opening angle examined and is fairly strong -- there are up to $\\sim$10\\% more satellites in the space between the pair, than expected from uniform. Consequently, it is a statistically very strong signal, being incon...

  20. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  1. 对流层延迟修正的实证模型%Empirical model of correction for zenith tropospheric delay

    Institute of Scientific and Technical Information of China (English)

    V F Kravchenko; V I Lutsenko; I V Lutsenko; D O Popov; A G Laush3; V N Gudkov3

    2014-01-01

    针对对流层延迟问题,考虑测量时对流层的折射率,采用标准模型计算对流层修正概率。经大量实验研究得到对流层延迟修正模型,它可以减少坐标测量误差约30%,海拔测量误差约40%。%The paper considers the possibility of correction of zenith tropospheric delays ,and calculates it with the standard model ,which takes into account the values of the refractive index of the troposphere at the time of measurement .Based on the experimental research ,this empirical model of correction for zenith tropospheric delays can reduce the measurement er -ror of coordinates to about 30% and altitude to about 40% .

  2. Demonstration on the indexes design of gravity satellite orbit parameters in the low-low satellite-to-satellite tracking mode

    Directory of Open Access Journals (Sweden)

    Liu Xiaogang

    2013-02-01

    Full Text Available Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical experiments and results analysis, the design indexes of gravity satellite orbit height, inter-satellite range and the orbit inclination are analyzed and calculated, and the issues towards twin gravity satellites such as coherence requirement of the orbit semi-major axes, control requirement of the pitch angle and time interval requirement to keep twin satellites formation in mobility are discussed. Results show that the satellite orbit height is 400 km to 500 km, the inter-satellite range is about 220 km, the satellite orbit inclination is between polar orbit and sun-synchronous orbit, the semi-major axes difference of twin satellites orbit is within ±70. 146 m, the pitch angle of twin satellites is about 0.9 degree, and the time interval to keep twin satellites formation in mobility is 7 days to 15 days.

  3. Study on feasibility of laser reflective tomography with satellite-accompany

    Science.gov (United States)

    Gu, Yu; Hu, Yi-hua; Hao, Shi-qi; Gu, You-lin; Zhao, Nan-xiang; Wang, Yang-yang

    2015-10-01

    Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.

  4. Enhancing real-time precise point positioning with zenith troposphere delay products and the determination of corresponding tropospheric stochastic models

    Science.gov (United States)

    Yao, Yibin; Peng, Wenjie; Xu, Chaoqian; Cheng, Shuyang

    2017-02-01

    By introducing two types of zenith troposphere delay (ZTD) products in precise point positioning (PPP), we developed the ZTD-corrected PPP and the ZTD-constrained PPP, both of them reduced the PPP convergence time. Both enhanced PPP methods are examined by global empirical ZTD models and regional ZTD corrections. For global ZTD models, we verified that ZTD-corrected PPP will deviate the positioning results, while ZTD-constrained PPP could produce unbiased estimations. Therefore, the latter is utilized to study the performance of global ZTD models (ITG, GPT2w, GZTD and UNB3m). After numerous experiments, we found that the performance of ZTD models was positively related to the real ZTD accuracy, and we proposed a universal tropospheric stochastic model 2SQR(9rms) which denotes double the square of nine times ZTD rms, to constrain ZTD in PPP. The proposed model subsequently was validated by real-time static and kinematic ZTD-constrained PPP on the premise that the ZTD rms on every station was known. Compared with traditional PPP, in static PPP, the number of improved stations is increased by 15.5 per cent (ITG), 14.4 per cent (GPT2w), 11.1 per cent (GZTD) and 8.3 per cent (UNB3m). For kinematic PPP, PPP constrained by ITG model still had the best performance, the number of improved stations is increased by 14.4 per cent, after 30 min of initialization time, 13.4 cm east, 13.4 cm north and 11.7 cm up positioning accuracy was obtained, compared with 15.3 cm east, 15.3 cm north and 14.3 cm up accuracy by traditional PPP. In addition, experiments using regional ZTD corrections to enhance real-time PPP showed that both ZTD-corrected PPP and ZTD-constrained PPP can notably reduce the convergence time on the vertical component (within 15 cm).

  5. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  6. Temporal trends of anthropogenic SO2 emitted by non-ferrous metal smelters in Peru and Russia estimated from Satellite observations

    Science.gov (United States)

    Khokhar, M. F.; Platt, U.; Wagner, T.

    2008-09-01

    We report on satellite observations of atmospheric Sulfur Dioxide (SO2) emitted from metal smelting industries in Peru, South America and Siberia, Russia. Most of the non-ferrous metal ores are sulfidic and during the smelting process the sulfur is emitted as SO2. In addition to Norilsk, Russia, Peruvian copper smelters are among the most polluting point sources in the world. We retrieve SO2 column amounts from spectra of the Global Ozone Monitoring Experiment (GOME) on the Earth Research Satellite 2 (ERS-2) for the years 1996 to 2002 using an algorithm based on differential Optical Absorption Spectroscopy (DOAS). Areas of enhanced SO2 column amounts are clearly identified on a 7-years mean map of GOME observations over the regions with La Oroya and Ilo copper smelters of Peru and Norilsk smelters of Russia. Since the instrument sensitivity is highly dependent on surface albedo, SO2 vertical profile, solar zenith angle (SZA), wavelength, clouds, and aerosol, radiative transfer modelling is used to convert the analysed slant column densities into vertical column densities. In this study, the full spherical Monte-Carlo radiative transport model TRACY-II is used for SO2 AMF calculation. GOME data is analysed in further detail by calculating time series over these regions. For the different locations, the results demonstrate both, increasing and decreasing trends in the SO2 column amounts over the time period of 1996 2002. The decreasing trend for the Ilo copper smelter is in good agreement with implemented measures for emission reductions. However, even for the cases with decreasing trends, these point sources are still a dominant source of anthropogenic SO2 emissions in their region. For the smelters in Peru, the potential influence due to SO2 emission by the nearby volcanoes is investigated and found to be negligible.

  7. Temporal trends of anthropogenic SO2 emitted by non-ferrous metal smelters in Peru and Russia estimated from Satellite observations

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2008-09-01

    Full Text Available We report on satellite observations of atmospheric Sulfur Dioxide (SO2 emitted from metal smelting industries in Peru, South America and Siberia, Russia. Most of the non-ferrous metal ores are sulfidic and during the smelting process the sulfur is emitted as SO2. In addition to Norilsk, Russia, Peruvian copper smelters are among the most polluting point sources in the world. We retrieve SO2 column amounts from spectra of the Global Ozone Monitoring Experiment (GOME on the Earth Research Satellite 2 (ERS-2 for the years 1996 to 2002 using an algorithm based on differential Optical Absorption Spectroscopy (DOAS. Areas of enhanced SO2 column amounts are clearly identified on a 7-years mean map of GOME observations over the regions with La Oroya and Ilo copper smelters of Peru and Norilsk smelters of Russia. Since the instrument sensitivity is highly dependent on surface albedo, SO2 vertical profile, solar zenith angle (SZA, wavelength, clouds, and aerosol, radiative transfer modelling is used to convert the analysed slant column densities into vertical column densities. In this study, the full spherical Monte-Carlo radiative transport model TRACY-II is used for SO2 AMF calculation. GOME data is analysed in further detail by calculating time series over these regions. For the different locations, the results demonstrate both, increasing and decreasing trends in the SO2 column amounts over the time period of 1996–2002. The decreasing trend for the Ilo copper smelter is in good agreement with implemented measures for emission reductions. However, even for the cases with decreasing trends, these point sources are still a dominant source of anthropogenic SO2 emissions in their region. For the smelters in Peru, the potential influence due to SO2 emission by the nearby volcanoes is investigated and found to be negligible.

  8. On the polarization angle of skylight reflected by natural surfaces: Properties and application for remote sensing of planetary atmospheres

    Directory of Open Access Journals (Sweden)

    J. Chowdhary

    2011-09-01

    Full Text Available In this study, we focus on the polarization angle of light scattered by terrestrial atmosphere-surface systems. The polarization angle describes the orientation of the plane in which the linearly polarized portion of light propagates. We show for skylight how this angle varies with the solar zenith angle and that, for skylight reflected by natural surfaces, these variations remain the same for wide ranges of atmospheric conditions and surface properties. This provides a tool for extracting scattering properties of the atmosphere from remote sensing observations of the Earth without any knowledge of the underlying surface. We demonstrate this principle for simulated data, and apply it to observations obtained by an airborne polarimeter over open oceans.

  9. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  10. Quantitative Relationship Between Multi-Angle Polarized Reflectance and BRDF of Rock

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The traditional remote sensing mainly detects the ground vertically to obtain the 2D information, but it is hard to get adequate parameters for the quantitative remote sensing to invert land features. The multi-angle observation can get more detailed and reliable 3D structural parameters of targets, so it makes the quantitative remote sensing applicable. During the process of reflecting, scattering and transmitting the electromagnetic wave, minerals and rocks could reveal the polarized features related to the nature of themselves. Therefore, it has become a new approach of quantitative remote sensing to detect multi-angle polarized information of minerals and rocks. In respect that the polarized reflectance always goes with the bidirectional one, we can obtain the 3D spatial distribution of targets by a polarized means together with detecting its bi-directional reflectance. From the perspective of multi-angle polarized remote sensing mechanism, the quantitative relationship between multi-angle polarized reflectance and the BRDF is studied in this paper. And it is testified that the bi-directional reflectance, polarized reflectance of 45° and the mean value of polarized reflectance are equal to that of the corresponding azimuth angle, zenith angle, detection angle and detection channels in 2π space by experiment.

  11. Angle-Ply Weaving

    Science.gov (United States)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.

  12. Satellite Tracking Astrometric Network (STAN)

    Science.gov (United States)

    Vecchiato, Alberto; Gai, Mario

    2015-08-01

    The possibility of precise orbit tracking and determination of different types of satellites has been explored for at least some 25 years (Arimoto et al., 1990). Proposals in this sense made use mainly of astrometric observations, but multiple tracking techniques combining transfer and laser ranging was also suggested (Guo et al., 2009; Montojo et al., 2011), with different requirements and performances ranging from $\\sim100$~m to tenths of meters.In this work we explore the possible improvements and a novel implementation of a technique relying on large angle, high precision astrometry from ground for the determination of satellite orbits. The concept is based on combined observation of geostationary satellites and other near-Earth space objects from two or more telescopes, applying the triangulation principle over widely separated regions of the sky. An accuracy of a few $10^{-2}$~m can be attained with 1-meter-class telescopes and a field of vied of some arcminutes.We discuss the feasibility of the technique, some of the implementation aspects, and the limitations imposed by atmospheric turbulence. The potential benefits for satellite orbit control and navigation systems are presented, depending on the number and position of the contributing telescopes.We also discuss the possibility that, by reversing the roles of stars and satellites, the same kind of observations can be used for verification and maintenance of astrometric catalogs.

  13. Lopsided Collections of Satellite Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    You might think that small satellite galaxies would be distributed evenly around their larger galactic hosts but local evidence suggests otherwise. Are satellite distributions lopsided throughout the universe?Satellites in the Local GroupThe distribution of the satellite galaxies orbiting Andromeda, our neighboring galaxy, is puzzling: 21 out of 27 ( 80%) of its satellites are on the side of Andromeda closest to us. In a similar fashion, 4 of the 11 brightest Milky Way satellites are stacked on the side closest to Andromeda.It seems to be the case, then, that satellites around our pair of galaxies preferentially occupy the space between the two galaxies. But is this behavior specific to the Local Group? Or is it commonplace throughout the universe? In a recent study, a team of scientists led by Noam Libeskind (Leibniz Institute for Astrophysics Potsdam, Germany) set out to answer this question.Properties of the galaxies included in the authors sample. Left: redshifts for galaxy pairs. Right: Number of satellite galaxies around hosts. [Adapted from Libeskind et al. 2016]Asymmetry at LargeLibeskind and collaborators tested whether this behavior is common by searching through Sloan Digital Sky Survey observations for galaxy pairs that are similar to the Milky Way/Andromeda pair. The resulting sample consists of 12,210 pairs of galaxies, which have 46,043 potential satellites among them. The team then performed statistical tests on these observations to quantify the anisotropic distribution of the satellites around the host galaxies.Libeskind and collaborators find that roughly 8% more galaxies are seen within a 15 angle facing the other galaxy of a pair than would be expected in a uniform distribution. The odds that this asymmetric behavior is randomly produced, they show, are lower than 1 in 10 million indicating that the lopsidedness of satellites around galaxies in pairs is a real effect and occurs beyond just the Local Group.Caution for ModelingProbability that

  14. Dynamic Range and Sensitivity Requirements of Satellite Ocean Color Sensors: Learning from the Past

    Science.gov (United States)

    Hu, Chuanmin; Feng, Lian; Lee, Zhongping; Davis, Curtiss O.; Mannino, Antonio; McClain, Charles R.; Franz, Bryan A.

    2012-01-01

    Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(sub typical)) and maximum (L(sub max)) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45 deg were used as constraints to calculate SNRs of 10 multiband sensors at the same L(sub typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands

  15. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy

    Science.gov (United States)

    Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai

    2016-12-01

    Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy

  16. Intercomparison of stratospheric nitrogen dioxide columns retrieved from ground-based DOAS and FTIR and satellite DOAS instruments over the subtropical Izana station

    Science.gov (United States)

    Robles-Gonzalez, Cristina; Navarro-Comas, Mónica; Puentedura, Olga; Schneider, Matthias; Hase, Frank; Garcia, Omaira; Blumenstock, Thomas; Gil-Ojeda, Manuel

    2016-09-01

    A 13-year analysis (2000-2012) of the NO2 vertical column densities derived from ground-based (GB) instruments and satellites has been carried out over the Izaña NDACC (Network for the Detection of the Atmospheric Composition Change) subtropical site. Ground-based DOAS (differential optical absorption spectroscopy) and FTIR (Fourier transform infrared spectroscopy) instruments are intercompared to test mutual consistency and then used for validation of stratospheric NO2 from OMI (Ozone Monitoring Instrument) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY). The intercomparison has been carried out taking into account the various differences existing in instruments, namely temporal coincidence, collocation, sensitivity, field of view, etc. The paper highlights the importance of considering an "effective solar zenith angle" instead of the actual one when comparing direct-sun instruments with zenith sky ones for a proper photochemical correction. Results show that NO2 vertical column densities mean relative difference between FTIR and DOAS instruments is 2.8 ± 10.7 % for a.m. data. Both instruments properly reproduce the NO2 seasonal and the interannual variation. Mean relative difference of the stratospheric NO2 derived from OMI and DOAS is -0.2 ± 8.7 % and from OMI and FTIR is -1.6 ± 6.7 %. SCIAMACHY mean relative difference is of 3.7 ± 11.7 and -5.7 ± 11.0 % for DOAS and FTIR, respectively. Note that the days used for the intercomparison are not the same for all the pairs of instruments since it depends on the availability of data. The discrepancies are found to be seasonally dependent with largest differences in winter and excellent agreement in the spring months (AMJ). A preliminary analysis of NO2 trends has been carried out with the available data series. Results show increases in stratospheric NO2 columns in all instruments but larger values in those that are GB than that expected by nitrous oxide oxidation. The

  17. Atmospheric gamma ray angle and energy distributions from 2 to 25 MeV

    Science.gov (United States)

    Ryan, J. M.; Moon, S. H.; Wilson, R. B.; Zych, A. D.; White, R. S.; Dayton, B.

    1977-01-01

    Results are given for gamma ray fluxes in six energy intervals from 2-25 MeV and five zenith angle intervals from 0-50 deg (downward moving) and five from 130-180 deg (upward moving). Observations were obtained with the University of California, Riverside double Compton scatter gamma ray telescope flown on a balloon to a 3.0 g/sq cm residual atmosphere at a geomagnetic cuttoff of 4.5 GV. It was found that the angular distribution of downward moving gamma rays is relatively flat, increasing slowly from 10-40 deg. The angular distribution of the upward moving gamma rays at 4.2 g/sq cm increases with angle from the vertical. Energy distributions of upward and downward moving gamma rays are in good agreement with the results of previous studies.

  18. Limited Angle Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Kyung; Cho, Min Kook; Kim, Seong Sik [Pusan National University, Busan (Korea, Republic of)

    2007-07-01

    In computed tomography (CT), many situations are restricted to obtain enough number of projections or views to avoid artifacts such as streaking and geometrical distortion in the reconstructed images. Speed of motion of an object to be imaged can limit the number of views. Cardiovascular imaging is a representative example. Size of an object can also limit the complete traverse motion or geometrical complexity can obscure to be imaged at certain range of angles. These situations are frequently met in industrial nondestructive testing and evaluation. Dental CT also suffers from similar situation because cervical spine causes less x-ray penetration from some directions such that the available information is not sufficient for standard reconstruction algorithms. The limited angle tomography is now greatly paid attention as a new genre in medical and industrial imaging, popularly known as digital tomosynthesis. In this study, we introduce a modified filtered backprojection method in limited angle tomography and demonstrate its application for the dental imaging.

  19. Dynamical angled brane

    Science.gov (United States)

    Maeda, Kei-ichi; Uzawa, Kunihito

    2016-12-01

    We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.

  20. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2011-06-01

    problem in the satellite retrieval algorithms in dealing with the temperature dependence of the ozone cross-sections in the UV and the solar zenith angle (SZA dependence, (ii zonal modulations and seasonal variations of tropospheric ozone columns not accounted for in the TV8 profile climatology, and (iii uncertainty on the stratospheric ozone profiles at high latitude in the winter in the TV8 climatology. For those measurements mostly sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, or to SZA like SCIAMACHY-TOSOMI, the application of temperature and SZA corrections results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.

  1. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  2. Bistatic synthetic aperture radar using two satellites

    Science.gov (United States)

    Tomiyasu, K.

    1978-01-01

    The paper demonstrates the feasibility of a bistatic synthetic aperture radar (BISAR) utilizing two satellites. The proposed BISAR assumes that the direction of the two narrow antenna beams are programmed to coincide over the desired area to be imaged. Functionally, the transmitter and receiver portions can be interchanged between the two satellites. The two satellites may be in one orbit plane or two different orbits such as geosynchronous and low-earth orbits. The pulse repetition frequency and imaging geometry are constrained by contours of isodops and isodels. With two images of the same area viewed from different angles, it is possible in principle to derive three-dimensional stereo images. Applications of BISAR include topography, water resource management, and soil moisture determination.. Advantages of BISAR over a monostatic SAR are mentioned, including lower transmitter power and greater ranges in incidence angle and coverage.

  3. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  4. 基于雨雪天气背景的微波辐射计斜路径与天顶观测的反演结果对比分析%Comparative analysis of the zenith and off-zenith retrieved results from microwave radiometer in rain and snow weather conditions

    Institute of Scientific and Technical Information of China (English)

    陈英英; 杨凡; 徐桂荣; 李德俊; 袁正腾; 熊洁

    2015-01-01

    In order to test the improvement of results in the off-zenith directions under rain and snow weather, the retrieved temperature, hu-midity, vapor density and liquid water density profiles from MP-3000A microwave radiometer (MWR) of the zenith and off-zenith observa-tions from 17 to 18 February 2014 are studied by comparing them with the Thies Clima laser precipitation monitor,L-band sounding data and precipitable water retrieved from GPS-MET from Wuhan station. Results are as follows. (1) If observed at off-zenith, the brightness tempera-ture signal saturation phenomenon at K and V bands can be eliminated effectively. Brightness temperature varies with rainfall intensity. (2) The correlation coefficient between the MWR product retrieved in off-zenith observation and sounding is better. (3) Although precipitable wa-ter vapor (PWV) retrieved in off-zenith observation is larger than the GPS/PWV, their trends are consistent. In contrast, there is a clear jump for the result in zenith observation after precipitation occurs. (4) There is a good corresponding relationship between the accumulation of cloud liquid water retrieved in off-zenith observation and the enhancement precipitation intensity.%为检验斜路径观测反演方法对雨雪天气背景下微波辐射计反演结果的改进,以2014年2月17-18日发生在武汉的一次雨雪过程为例,利用武汉观象台MP-3000A型微波辐射计天顶方向和斜路径观测反演的温度、相对湿度、水汽密度、液态水含量等廓线产品,分别与武汉观象台L波段探空资料,以及GPS-MET和Thies Clima激光雨滴谱仪的观测资料进行了对比检验.结果表明:(1)微波辐射计以斜路径方向观测,可以较好地消除K、V波段亮温信号饱和现象,亮温随降水强度的变化出现起伏波动的特征;(2)微波辐射计斜路径方向的反演产品与探空观测的相关性较好;(3)与GPS-MET观测的大气整层可降水量(PWV)比较,斜路径观测反演的PWV虽然

  5. Neptune's small satellites

    Science.gov (United States)

    Thomas, P.

    1992-04-01

    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  6. View of a pallet configured to support 51-A satellite-retrieval mission

    Science.gov (United States)

    1984-01-01

    A high angle view of a Spacelab type pallet configured to support NASA's 51-A satellite-retrieval mission. At left are two capture devices called 'stingers' used to enter the communications satellites at the nozzle of the spent engine. Center are circular areas for clamping down and securing the satellites for the remainder of the trip.

  7. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  8. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  9. Contact angle hysteresis explained.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2006-07-04

    A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.

  10. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....

  11. On-line Flagging of Anomalies and Adaptive Sequential Hypothesis Testing for Fine-feature Characterization of Geosynchronous Satellites

    Science.gov (United States)

    2015-10-18

    Specifically:  At small phase angles , the solar panel specular behavior dominates and the bias is larger.  At medium phase angles (< 75o), the body...geometry and orientation of the satellite solar panel and its body. At a minimum, it consists of four angles [5]. We consider that the change may...orbit angle , the satellite brightness is commonly governed by diffuse reflection. This is because the specular behavior of the solar panels is at

  12. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    Science.gov (United States)

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  13. In-flight observations of electromagnetic interferences emitted by satellite

    Institute of Scientific and Technical Information of China (English)

    CAO JinBin; YANG JunYing; YUAN ShiGan; SHEN XuHui; LIU YuanMo; YAN ChunXiao; LI WenZhen; CHEN Tao

    2009-01-01

    Using the data from STAFF/TC-1, this paper for the first time analyzes the electromagnetic interferences of Chinese scientific satellite. The electromagnetic interference of satellite exists mainly below 30 Hz,but can extend to 190 Hz with an obviously decreasing power spectral density. The electromagnetic interferences at frequencies below 190 Hz have good correlation with the solar aspect angle. The electromagnetic interferences at frequencies between 190 and 830 Hz have also correlation with solar aspect angle. However, the electromagnetic interferences at frequencies above 830 Hz have no correlation with the solar aspect angle. The correlation coefficient between solar aspect angel and electromagnetic interferences is around 0.90. The larger the solar aspect angle, the stronger the satellite electromagnetic interference. When the solar aspect angle increases from 90.6° to 93.6°, the electromagnetic interferences at frequencies <10 Hz increase by 8 times and those at frequencies 190-830 Hz increase by 60%. This close association of electromagnetic interferences with the solar aspect angle indicates that the solar aspect angle is the main factor to determine the electromagnetic interferences.The electromagnetic interferences of satellite in sunlight are larger than those in eclipse. The electromagnetic interference produced by solar panel occupies about 87% in the low frequency bend (<100 Hz)and 94% in the high frequency band (>100 Hz) of the total electromagnetic interference produced by satellite. These in flight observations of electromagnetic radiation of satellites will be very helpful to the designs of future satellites of space sciences or earthquake sciences.

  14. In-flight observations of electromagnetic interferences emitted by satellite

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the data from STAFF/TC-1, this paper for the first time analyzes the electromagnetic interferences of Chinese scientific satellite. The electromagnetic interference of satellite exists mainly below 30 Hz, but can extend to 190 Hz with an obviously decreasing power spectral density. The electromagnetic interferences at frequencies below 190 Hz have good correlation with the solar aspect angle. The electromagnetic interferences at frequencies between 190 and 830 Hz have also correlation with solar as-pect angle. However, the electromagnetic interferences at frequencies above 830 Hz have no correlation with the solar aspect angle. The correlation coefficient between solar aspect angel and electromagnetic interferences is around 0.90. The larger the solar aspect angle, the stronger the satellite electromagnetic interference. When the solar aspect angle increases from 90.6° to 93.6°, the electromagnetic interferences at frequencies <10 Hz increase by 8 times and those at frequencies 190―830 Hz increase by 60%. This close association of electromagnetic interferences with the solar aspect angle indicates that the solar aspect angle is the main factor to determine the electromagnetic interferences. The electromagnetic interferences of satellite in sunlight are larger than those in eclipse. The electro-magnetic interference produced by solar panel occupies about 87% in the low frequency band (<100 Hz) and 94% in the high frequency band (>100 Hz) of the total electromagnetic interference produced by satellite. These in flight observations of electromagnetic radiation of satellites will be very helpful to the designs of future satellites of space sciences or earthquake sciences.

  15. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression ... such a granular material is sharp, making a steep .... study. Therefore, grains had to be condi- tioned to the respective moisture contents by adding ...

  16. Direct measurements of laser light aberration from the ARTEMIS geostationary satellite through thin clouds

    CERN Document Server

    Kuzkov, Volodymyr; Sodnik, Zoran

    2015-01-01

    A precise ground based telescope system was developed for laser communication experiments with the geostationary satellite ARTEMIS of ESA. Precise tracking of the satellite was realized by using time resolved coordinates of the satellite. During the experiments, the time propagation of laser signal from the satellite and the point-ahead angle for the laser beam were calculated. Some laser experiments though thin clouds were performed. A splitting of some images of the laser beam from the satellite along declination and right ascension coordinates of telescope could be observed through thin clouds. The splitting along the declination coordinate may be interpreted as refraction in the atmosphere. The splitting along the right ascension coordinate is equivalent to the calculated point-ahead angle for the satellite. We find out that a small part of laser beam was observed ahead of the velocity vector in the point where the satellite would be after the laser light from the satellite reaches the telescope. These re...

  17. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  18. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  19. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y K [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  20. A simulation study of some observable parameters of Cherenkov photons in EASs of different primaries incident at various angles

    CERN Document Server

    Das, G S; Goswami, U D

    2016-01-01

    We have studied the lateral density, arrival time and angular distributions of Cherenkov photons in Extensive Air Showers (EASs) initiated by $\\gamma$-ray, proton and iron primaries incident with different energies and at different zenith angles. This study is the extension of our earlier work \\cite{Hazarika} to cover almost the whole energy range of ground based $\\gamma$-ray astronomy and to cover a wide range of zenith angles ($\\le 40^\\circ$), as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the $\\gamma$-ray initiated showers from the hadronic showers in the ground based $\\gamma$-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is used. Importantly, such study gives an insight on the nature of $\\gamma$-ray and hadronic showers in general. In this work, we used the CORSIKA 6.990 simulation package for the generation of EASs. Similar to the case of Ref.\\cite{Hazarika}, this study also revealed that, t...

  1. Combining Meteosat-10 satellite image data with GPS tropospheric path delays to estimate regional integrated water vapor (IWV) distribution

    Science.gov (United States)

    Leontiev, Anton; Reuveni, Yuval

    2017-02-01

    Using GPS satellites signals, we can study different processes and coupling mechanisms that can help us understand the physical conditions in the lower atmosphere, which might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by ground stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into accurate integrated water vapor (IWV) observations using collocated pressure and temperature measurements on the ground. Here, we present for the first time the use of Israel's dense regional GPS network for extracting tropospheric zenith path delays combined with near-real-time Meteosat-10 water vapor (WV) and surface temperature pixel intensity values (7.3 and 10.8 µm channels, respectively) in order to assess whether it is possible to obtain absolute IWV (kg m-2) distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS zenith total delays (ZTD) and Meteosat-10 surface temperature data compared with available radiosonde IWV absolute values. The presented strategy can provide high temporal and special IWV resolution, which is needed as part of the accurate and comprehensive observation data integrated in modern data assimilation systems and is required for increasing the accuracy of regional numerical weather prediction systems forecast.

  2. Ada Compiler Validation Summary Report: Certificate Number: 890119A1. 10032 Alsys AlsyCOMP 019, Version 4.1 Zenith Z-248 Model 50 and Intel isBC 286/12 Single Board Computer

    Science.gov (United States)

    1989-01-19

    Zenith Z-248 Model 50 under MS/DOS, Version 3.2 (host) to Intel isBC 286/12 single board computer (target), ACVC 1.10 g0 01 03 004 DD tŘ 1473 1DITION...Intel isBC 286/12 single board computer Completion of On-Site Testing: 19 January 1989 AcCesion For DTIC Tii prepared BY: . AFNOR .,ltir...Number: 890119A1.10032 Host: Zenith Z-248 Model 50 under MS/DOS, Version 3.2 Target: Intel isBC 286/12 single board computer Testing Completed 19 January

  3. Angle-deviation optical profilometer

    Institute of Scientific and Technical Information of China (English)

    Chen-Tai Tan; Yuan-Sheng Chan; Zhen-Chin Lin; Ming-Hung Chiu

    2011-01-01

    @@ We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the reflectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The reflectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the reflectivity profile and obtain the 3D surface profile directly.%We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the refiectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The refiectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the refiectivity profile and obtain the 3D surface profile directly.

  4. High-precision satellite relative-trajectory simulating servosystem for inter-satellite laser communications

    Science.gov (United States)

    Zhang, Lei; Liu, Liren; Luan, Zhu; Liu, Hongzhan; Xu, Rongwei

    2004-10-01

    Because PAT (pointing-acquisition-tracking) parameters and integrated technical specifications of laser communication terminals for inter-satellite link must be pre-verified and assessed thoroughly on a ground-based test-bed before launched into the space, it is necessary to develop a system as a primary part of the test bed to simulate the relative trajectory between the satellites. In this paper, an original high-precision satellite relative-trajectory simulating servosystem is introduced in detail as well as its structures and characteristics. The system is used to simulate the motion of relative-trajectory between satellites in different orbits. The principle of the system is to import the data of two satellites" orbits into a computer-based control system in advance. After processed and analyzed, the data is transformed into the angular displacement of the servomotor which drives the gimbal directly. The angular displacement of the two axes of the gimbal can simulate precisely the relative-trajectory, namely elevation angle and azimuth angle of the two satellites in communication. A laser communication terminal mounted on the gimbal then performs the PAT mechanisms to evaluate the system"s capacity.

  5. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2014-07-01

    Full Text Available Low Earth Orbit (LEO satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a region of the Earth where the satellite is seen at a minimum predefined elevation angle. The satellite’s coverage area on the Earth depends on orbital parameters. The communication under low elevation angles can be hindered by natural barriers. For safe communication and for savings within a link budget, the coverage under too low elevation is not always provided. LEO satellites organized in constellations act as a convenient network solution for real time global coverage. Global coverage model is in fact the complementary networking process of individual satellite’s coverage. Satellite coverage strongly depends on elevation angle. To conclude about the coverage variation for low orbiting satellites at low elevation up to 10º, the simulation for attitudes from 600km to 1200km is presented through this paper.

  6. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  7. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  8. Simultaneous Multi-angle Radar Observations of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    Science.gov (United States)

    Sheerin, J. P.; Rayyan, N.; Watanabe, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2013-10-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  9. Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    Science.gov (United States)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.

    2013-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  10. Heterodyne Interferometer Angle Metrology

    Science.gov (United States)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  11. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  12. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  13. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  14. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  15. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  16. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  17. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  18. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  19. Geodetic Secor Satellite

    Science.gov (United States)

    1974-06-01

    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  20. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  1. A satellite orbital testbed for SATCOM using mobile robots

    Science.gov (United States)

    Shen, Dan; Lu, Wenjie; Wang, Zhonghai; Jia, Bin; Wang, Gang; Wang, Tao; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2016-05-01

    This paper develops and evaluates a satellite orbital testbed (SOT) for satellite communications (SATCOM). SOT can emulate the 3D satellite orbit using the omni-wheeled robots and a robotic arm. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The former actions are emulated by omni-wheeled robots while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. The emulated satellite positions will go to the measure model, whose results will be used to perform multiple space object tracking. Then the tracking results will go to the maneuver detection and collision alert. The satellite maneuver commands will be translated to robots commands and robotic arm commands. In SATCOM, the effects of jamming depend on the range and angles of the positions of satellite transponder relative to the jamming satellite. We extend the SOT to include USRP transceivers. In the extended SOT, the relative ranges and angles are implemented using omni-wheeled robots and robotic arms.

  2. Lighting measurement station: measurements of natural lighting for characterization of sky and zenith illuminance; Estacao de medicao de iluminacao: medicao de niveis de iluminacao natural para caracterizacao de iluminancias de ceu e luminancia de zenite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberta Vieira Goncalves de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Arquitetura. Dept. de Tecnologia da Arquitetura e do Urbanismo]. E-mail: roberta@arq.ufmg.br; Pereira, Fernando Oscar Ruttkay [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Arquitetura. Lab. de Conforto Ambiental]. E-mail: feco@arq.ufsc.br

    2002-07-01

    This paper describes the assembly of a standard station for measuring the day lighting for evaluation of the natural light availability. The mounting and data obtention form will also be described from a standard IDMP day lighting station for measuring the data from measuring zenith, horizontal, and vertical illuminance of the sky and vertical irradiance for the cardinal points.

  3. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  4. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  5. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  6. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  7. Narrowband and wideband characterisation of satellite mobile/PCN channel

    Science.gov (United States)

    Butt, G.; Parks, M. A. N.; Evans, B. G.

    1995-01-01

    This paper presents models characterizing satellite mobile channel. Statistical narrowband models based on the CSER high elevation angle channel measurement campaign are reported. Such models are understood to be useful for communication system simulations. It has been shown from the modelling results that for the mobile satellite links at high elevation angles line-of-sight (LOS) signal is available most of the time, even under the heavy shadowing conditions. Wideband measurement campaign which CSER is about to undertake, and subsequently the modelling approach to be adopted is also discussed. It is noted that a wideband channel model is expected to provide a useful tool in investigating CDMA applications.

  8. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    Science.gov (United States)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    examples will be cited, including CloudSat's relocation (to accommodate a new viewing angle for the CALIPSO satellite), Glory's replan to move closer to PARASOL, and OCO's long term plans to minimize on-orbit operations costs while maintaining safety. In all cases, safety is ensured, science returns are enhanced, and operational flexibility is retained to the maximum extent possible.

  9. Spectral Measurements of Geosynchronous Satellites During Glint Season

    Science.gov (United States)

    2015-10-18

    primarily due to specular reflection off of the solar panels , the occurrence of a glint relative to solar phase angle or even the number of glints can...and south solar panels on DTV-12 being offset in different east-west angles causing two glints, whereas the two solar panels of Wildblue-1 are both in... solar panels that maintain a stable attitude relative to the earth and sun. During the equinox periods of the year, the geometry of the satellite

  10. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  11. Testing a satellite automatic nutation control system. [on synchronous meteorological satellite

    Science.gov (United States)

    Hrasiar, J. A.

    1974-01-01

    Testing of a particular nutation control system for the synchronous meteorological satellite (SMS) is described. The test method and principles are applicable to nutation angle control for other satellites with similar requirements. During its ascent to synchronous orbit, a spacecraft like the SMS spins about its minimum-moment-of-inertia axis. An uncontrolled spacecraft in this state is unstable because torques due to fuel motion increase the nutation angle. However, the SMS is equipped with an automatic nutation control (ANC) system which will keep the nutation angle close to zero. Because correct operation of this system is critical to mission success, it was tested on an air-bearing table. The ANC system was mounted on the three-axis air-bearing table which was scaled to the SMS and equipped with appropriate sensors and thrusters. The table was spun up in an altitude chamber and nutation induced so that table motion simulated spacecraft motion. The ANC system was used to reduce the nutation angle. This dynamic test of the ANC system met all its objectives and provided confidence that the ANC system will control the SMS nutation angle.

  12. Seamless Handovers in Cobra Teardrop Satellite Arrays

    Science.gov (United States)

    Draim, John E.; Cefola, Paul J.; Ernandes, Kenneth J.

    2007-06-01

    Satellite systems provide the most efficient and possibly the only means of achieving two-way global communications with mobile systems (ships, aircraft, and vehicular traffic). To date, such systems have used only circular orbits, either GEO or LEO. Medium altitude elliptical constellations, on the other hand, can provide an efficient and affordable alternative to these architectures. Users also benefit from their very high average and minimum elevation angles, resulting in minimum signal attenuation. Cobra Teardrop is unique in that it employs time synchronized 8-h left- and right-leaning elliptical orbits giving mid-latitude observers the illusion of viewing a single satellite continuously orbiting almost directly overhead! In reality, observers see six different satellites per day, for 4 h each (while in their active duty cycles). By design, Teardrop satellites are physically in very close proximity at the handover points. This favorable geometry can be utilized to achieve a seamless handover from one satellite to the other (not requiring any electronic buffering). Handover is accomplished at the precise instant that the total path lengths from the transmitting station through both satellites to the receiving station are exactly equal. In these improved Cobra Teardrop arrays, an order of magnitude increase in global communications capacity (equivalent GEO slots) can be realized over earlier Basic Cobra systems. For decades into the future, these new orbital systems could satisfy a widely expanding range of commercial, government, and military high data rate communication requirements. These would include, but not be limited to, satellite cellular, air traffic control, meteorological, and combat net radio systems. With these arrays, a much larger number of system operators could be supported, without mutual electronic interference, than would ever be possible with circular orbits.

  13. Hysteresis during contact angles measurement.

    Science.gov (United States)

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.

  14. Mobile satellite communications handbook

    CERN Document Server

    Cochetti, Roger

    2014-01-01

    With a Preface by noted satellite scientist Dr. Ahmad Ghais, the Second Edition reflects the expanded user base for this technology by updating information on historic, current, and planned commercial and military satellite systems and by expanding sections that explain the technology for non-technical professionals.   The book begins with an introduction to satellite communications and goes on to provide an overview of the technologies involved in mobile satellite communications, providing basic introductions to RF Issues, power Issues, link issues and system issues. It describes

  15. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  16. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  17. Remote Synchronization Experiments for Quasi-Senith Satellite System Using Current Geostationary Satellites

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2010-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX realizes accurate synchronization between an atomic clock at a ground station and the QZSS onboard crystal oscillator, reduces overall cost and satellite power consumption, as well as onboard weight and volume, and is expected to have a longer lifetime than a system with onboard atomic clocks. Since a QZSS does not yet exist, we have been conducting synchronization experiments using geostationary earth orbit satellites (JCSAT-1B or Intelsat-4 to confirm that RESSOX is an excellent system for timing synchronization. JCSAT-1B, the elevation angle of which is 46.5 degrees at our institute, is little affected by tropospheric delay, whereas Intelsat-4, the elevation angle of which is 7.9 degrees, is significantly affected. The experimental setup and the results of uplink experiments and feedback experiments using mainly Intelsat-4 are presented. The results show that synchronization within 10 ns is realized.

  18. The Use of Chaff in Space as a Jamming Device between Ground Stations and Satellites

    Science.gov (United States)

    1988-12-01

    of Fi•Yu es Figure Page 1. Rasic Orbital Parameters . . . . . . . .... 2. Satellite Orientation for Cases I, II, III, and IV...Moti r on Spin Direction PCe of sot on c.SSO..!Path of notion Case.X AngLe of Tk~t Case-III Cast IV Figure 2. SatelLite Orientation for Cases I, II

  19. Two Comments on Bond Angles

    Science.gov (United States)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  20. Oriented angles in affine space

    Directory of Open Access Journals (Sweden)

    Włodzimierz Waliszewski

    2004-05-01

    Full Text Available The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.

  1. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  2. Spectrometric Characterization of Active Geosynchronous Satellites

    Science.gov (United States)

    Bedard, D.; Monin, D.; Scott, R.; Wade, G.

    2012-09-01

    Spectrometric characterization of artificial space objects for the purposes of Space Situational Awareness (SSA) has demonstrated great potential since this technique was first reported at this conference over a decade ago. Yet, much scientific work remains to be done before this tool can be used reliably in an operational context. For example, a detailed study of the impacts of a dynamic illumination-object-sensor geometry during individual spectrometric observations has yet to be described. A thorough understanding of this last problem is considered critical if reflectance spectroscopy will be used to characterize active low Earth orbiting spacecraft, in which the Sun-object-sensor geometry varies considerably over the course of a few seconds, or to study space debris that have uncontrolled and varying attitude. It is with the above questions in mind that two observation campaigns were conducted. The first consisted in using small-aperture telescopes to obtain multi-color photometric light curves of active geosynchronous satellites over a wide range of phase angles. The second observation campaign was conducted at the Dominion Astrophysical Observatory (DAO) using the 1.8-metre Plaskett telescope and its Cassegrain spectrograph. The objective of this experiment was to gather time-resolved spectrometric measurements of active geosynchronous satellites as a function of phase angle. This class of satellites was selected because their attitude is controlled and can be estimated to a high level of confidence. This paper presents the two observation campaigns and provides a summary of the key results of this experiment.

  3. Satellites of spiral galaxies

    Science.gov (United States)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1993-01-01

    We present a survey of satellites around a homogeneous set of late-type spirals with luminosity similar to that of the Milky Way. On average, we find fewer than 1.5 satellites per primary, but we argue that we can treat the survey as an ensemble and so derive the properties of the halo of a 'typical' isolated spiral. The projected density profile of the ensemble falls off approximately as 1/r. Within 50 kpc the azimuthal distribution of satellites shows some evidence for the 'Holmberg effect', an excess near the minor axis of the primary; however, at larger projected distances, the distribution appears isotropic. There is a weak but significant correlation between the size of a satellite and its distance from its primary, as expected if satellites are tidally truncated. Neither Hubble type nor spectral characteristics correlate with apparent separation. The ensemble of satellites appears to be rotating at about 30 km/s in the same direction as the galactic disk. Satellites on prograde orbits tend to be brighter than those on retrograde orbits. The typical velocity difference between a satellite and its primary shows no clear dependence either on apparent separation, or on the rotation speed of the primary. Thus our survey demonstrates that isolated spiral galaxies have massive halos that extend to many optical radii.

  4. Communication satellite technology trends

    Science.gov (United States)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  5. Air Quality Study Using Satellites - Current Capability and Future Plans

    Science.gov (United States)

    Bhartia, Pawan K.; Joiner, Joanna; Gleason, James; Liu, Xiong; Torres, Omar; Krotkov, Nickolay; Ziemke, Jerry; Chandra, Sushil

    2008-01-01

    Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of

  6. From order to chaos in Earth satellite orbits

    CERN Document Server

    Gkolias, Ioannis; Gachet, Fabien; Rosengren, Aaron J

    2016-01-01

    We consider Earth satellite orbits in the range of semi-major axes where the perturbing effects of Earth's oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees of freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angles-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances which are of first importance to the space debris...

  7. Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2009-01-01

    Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency fH was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.

  8. The Semiotic and Conceptual Genesis of Angle

    Science.gov (United States)

    Tanguay, Denis; Venant, Fabienne

    2016-01-01

    In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…

  9. Engineering parameter determination from the radio astronomy explorer /RAE I/ satellite attitude data

    Science.gov (United States)

    Lawlor, E. A.; Davis, R. M.; Blanchard, D. L.

    1974-01-01

    An RAE-I satellite description is given, taking into account a dynamics experiment and the attitude sensing system. A computer program for analyzing flexible spacecraft attitude motions is considered, giving attention to the geometry of rod deformation. The characteristics of observed attitude data are discussed along with an analysis of the main boom root angle, the bending rigidity, and the damper plane angle.

  10. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  11. Angle-of-Arrival Assisted GNSS Collaborative Positioning.

    Science.gov (United States)

    Huang, Bin; Yao, Zheng; Cui, Xiaowei; Lu, Mingquan

    2016-06-20

    For outdoor and global navigation satellite system (GNSS) challenged scenarios, collaborative positioning algorithms are proposed to fuse information from GNSS satellites and terrestrial wireless systems. This paper derives the Cramer-Rao lower bound (CRLB) and algorithms for the angle-of-arrival (AOA)-assisted GNSS collaborative positioning. Based on the CRLB model and collaborative positioning algorithms, theoretical analysis are performed to specify the effects of various factors on the accuracy of collaborative positioning, including the number of users, their distribution and AOA measurements accuracy. Besides, the influences of the relative location of the collaborative users are also discussed in order to choose appropriate neighboring users, which is in favor of reducing computational complexity. Simulations and actual experiment are carried out with several GNSS receivers in different scenarios, and the results are consistent with theoretical analysis.

  12. A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems.

    Science.gov (United States)

    Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun

    2012-01-16

    Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

  13. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  14. On MSDT inversion with multi-angle remote sensing data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the wavelet transform, image of multi-angle remote sensing is decomposed into multi-resolution. With data of each resolution, we try target-based multi-stages inversion, taking the inversion result of coarse resolution as the prior information of the next inversion. The result gets finer and finer until the resolution of satellite observation. In this way, the target-based multi-stages inversion can be used in remote sensing inversion of large-scaled coverage. With MISR data, we inverse structure parameters of vegetation in semiarid grassland of the Inner Mongolia Autonomous Region. The result proves that this way is efficient.

  15. Multi-fractal-interslipface angle curves of a morphologically simulated sand dune

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2000-01-01

    Full Text Available A sand dune is simulated by means of a non-linear mathematical morphological transformation of which the fractal dimensions with corresponding interslipface angles are computed. This exercise has relevance to test the Validity of the model by considering various time series sand dune data that can be retrieved from the robust satellite remote sensing sensors.

  16. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  17. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributions...... for the small to large strain regimes for aluminum, 304L stainless steel, nickel, and copper (taken from the literature )appear to be identical. Hence the distributions may be "universal." These results have significant implications for the development of dislocation based deformation models. [S0031...

  18. Systematic variations in divergence angle

    CERN Document Server

    Okabe, Takuya

    2012-01-01

    Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance.

  19. Simulations of contact angle induced pearling for sliding drops

    Science.gov (United States)

    McCue, Scott; Mayo, Lisa; Moroney, Timothy

    2015-11-01

    Droplets sliding down an incline can develop a corner or a cusp at their rear, or undergo a pearling transition whereby the tail breaks up into a number of smaller satellite droplets. These phenomena have been of interest since the experimental work of. It appears that the experimental investigation of this problem is limited due to the inherent difficulty of minimising contact angle hysteresis, whereby physical or chemical heterogeneities of the substrate cause pinning and distortion of the droplet. By applying a lubrication model with a disjoining pressure term, we investigate these flows numerically in order to further shed light on how certain conditions (such as contact angle) affect the corner-cusp-pearling transition. We acknowledge support from the ARC Linkage Project LP100200476.

  20. Thermal deformation analysis of the composite material satellite antenna

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna's thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.

  1. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  2. Trends In Satellite Communication

    Science.gov (United States)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.

    1988-01-01

    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  3. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  4. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  5. Biological satellite Kosmos-936

    Science.gov (United States)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  6. Small Satellite Transporter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  7. DFH-3 Satellite Platform

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    The DFH-3 satellite platform is designed and developed by China Academy of Space Technology (CAST). It is a medium capability communications satellite platform. The platform adopts threeaxis attitude stabilization control system, having solar array output power of 1.7kW by the end of its design lifetime of 8 years. Its mass is 2100kg with payload capacity of 220kg.

  8. The Archimedes satellite system

    Science.gov (United States)

    Taylor, Stuart C.; Shurvinton, William D.

    1992-03-01

    Archimedes is a satellite system conceived by the European Space Agency (ESA) to effectively serve the European market for Mobile Radio Services (MRS). This paper describes the requirements and technical design of the Archimedes satellite system. The underlying assumptions and trade-offs behind the design are detailed and the design is compared and contrasted against alternative design solutions, both technically and economically. A path forward for the development of the system is indicated.

  9. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz

    1997-01-01

    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  10. Energetic Electron Pitch Angle Diffusion due to Whistler Wave during Terrestrial Storms

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; HE Hui-Yong

    2006-01-01

    A concise and elegant expression of cyclotron harmonic resonant quasi-pure pitch-angle diffusion is constructed for the parallel whistler mode waves, and the quasi-linear diffusion coefficient is prescribed in terms of the whistler mode wave spectral intensity. Numerical computations are performed for the specific case of energetic electrons interacting with a band of frequency of whistler mode turbulence at L ≈ 3. It is found that the quasi-pure pitch-angle diffusion driven by the whistler mode scatters energetic electrons from the larger pitch-angles into the loss cone, and causes pitch-angle distribution to evolve from the pancake-shaped before the terrestrial storms to the flat-top during the main phase. This probably accounts for the quasi-isotropic pitch-angle distribution observed by the combined release and radiation effects satellite spacecraft at L ≈ 3.

  11. Satellite formation. II

    Science.gov (United States)

    Harris, A. W.

    1978-01-01

    A satellite formation model is extended to include evolution of planetary ring material and elliptic orbital motion. In this model the formation of the moon begins at a later time in the growth of the earth, and a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus, the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.

  12. Contactless angle detection using permalloy

    NARCIS (Netherlands)

    Eijkel, Kees J.; Rijk, Rolf

    1988-01-01

    An overview is given of measurements on angle detectors. The detectors consist of a pair of planar-Hall elements opposite to a rotatable magnet. The measurements are performed on a number of planar-Hall elements of different shape and size, and show good agreement with a previously described theoret

  13. 改进的对流层天顶延迟估计方法%Improved Method of Estimate the Zenith Troposphere Delay

    Institute of Scientific and Technical Information of China (English)

    吴文溢; 陈西宏; 孙际哲; 刘赞

    2016-01-01

    Aiming at the poor performance of tradition models in the zenith tropospheric non-hydrostatic delay evaluation,a variable method based on improved Hopfield model was proposed.The meteorological parameters formula in the model of medium latitude atmosphere was used to infer the formula of the hydrostatic and non-hy-drostatic delay again in this method.In order to get the factors of temperature and water vapor pressure,the method interpolated value in the table of global tropospheric delay atmosphere parameter.By using the meteoro-logical data of eight International GPS service stations in Asia,the tropospheric delay was compared between im-proved model and tradition models,such as Hopfield model,Saastamoinen model and Black model.Computing results showed that the accuracy of improved model was better than tradition models.%针对传统对流层延迟模型在估计天顶湿延迟方面存在精度不高和稳定性差的问题,提出了基于改进Hopfield模型的对流层天顶延迟估计方法。该方法利用中纬度大气模式中的气象参数公式,重新推导了Hopfield模型中静力项和湿项延迟表达式,并利用全球对流层延迟气象参数格网值进行内插获取温度变化率和水汽压系数。选取亚洲地区不同经纬度的八个国际 GPS 服务(IGS,International GPS Service)站的气象数据,分别采用传统模型和改进模型进行对流层天顶延迟估计,计算结果表明改进模型的精度优于传统模型,尤其是湿项延迟方面,估算精度提高了一个数量级。

  14. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  15. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  16. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  17. Effects of slant angle and illumination angle on MTF estimations

    CSIR Research Space (South Africa)

    Vhengani, LM

    2012-07-01

    Full Text Available .085 0.09 0.095 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements _20120302_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression -18 -16 -14 -12 -10 -8 -6 -4 -2 0.05 0.055 0.06 0....065 0.07 0.075 0.08 0.085 0.09 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements_20120303_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression Figure 6. Regression of positive slant...

  18. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  19. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  20. An Angle Criterion for Riesz Bases

    DEFF Research Database (Denmark)

    Lindner, Alexander M; Bittner, B.

    1999-01-01

    We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived.......We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....

  1. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  2. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  3. Optimisation of Fan Blade Angle

    Directory of Open Access Journals (Sweden)

    Swaroop M P

    2017-01-01

    Full Text Available This report represents the optimization of fan blade angle in accordance with the various room temperatures that can be in the tropical area like India. We took this work mainly because cooling is an important factor now a days in every area where construction and rooms are there and ceiling fans are the most common device that is commonly used. So it is of utmost importance to tweak the performance of this ceiling fan so that it can function in its most optimal condition. We have modeled the fan in a modeling software (SOLIDWORKS and imported that into an analyzing software (ANSYS and a result is generated on the various blade angles (0, 4, 8 and 12.5 degrees in accordance to room conditions. A trend line curve with the obtained data is expected as the result which can be crucial for designing of future fans

  4. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available -ANGLE BOUNDARIES F.R.N. Nabarro Condensed Matter Physics Research Unit, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, and Division of Materials Science and Technology, CSIR, P.O. Box 395, Pretoria, South... with eq. 11. Acknowledgment F.R.N. Nabarro is grateful to the University of Virginia for hospitality during the course of this work. D. Kuhlmann-Wilsdorf thanks the National Science Foundation, (Surface Engineering...

  5. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  6. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    Science.gov (United States)

    Shreve, Cheney

    2010-12-01

    or sky conditions and variations may be large, e.g., for sparsely vegetated areas where net radiation is largely balanced by sensible heat flux (Hall et al 1992, Sun and Mahrt 1995, Jin et al 1997). Tskin can be higher than Taero at midday and lower at night (Sun and Mahrt 1995) and some models use Taero to approximate surface radiative temperature (Hubband and Monteith 1986). One of the strengths of the MODIS instrument is the simultaneous collection of surface and atmospheric conditions. By incorporating a range of MODIS variables in their comparison to Tskin, the authors examine the relationship of Tskin to atmospheric and surface conditions. Results from their global evaluation of Tskin highlight its variability on an inter-annual basis, its variation with solar zenith angle, and diurnal variations, which are not achievable with Tair measurements. Comparison with land cover type illustrates the seasonality of Tskin for different land covers. Comparison with the enhanced vegetation index (EVI) suggests more vegetation reduces skin temperature. Using the MODIS albedo, they demonstrate a clear relationship between yearly averaged Tskin and land surface albedo. Lastly, their examination of water vapor and cloud cover in comparison to Tskin suggests similar seasonality between these two variables. The MODIS Tskin product is not without uncertainty; retrieving Tskin requires a calculation of radiative transfer to account for atmospheric emission and molecular absorption, which is time and resource intensive (Jin and Dickinson 2010). Additionally, surface emissivity, instrument noise, and view angle geometry contribute to error in Tskin estimations (Jin and Dickinson 2010). The transparency of the scientific theory underlying this work, and the clear demonstration of the distinction between temperature measures on varying scales, demonstrates the usefulness of Tskin despite the uncertainties. Perhaps equally as important is the tone; in a time when the controversy

  7. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  8. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  9. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  10. AVS on satellite

    Science.gov (United States)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  11. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...

  12. Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone

    Directory of Open Access Journals (Sweden)

    H. M. Worden

    2013-07-01

    Full Text Available A current obstacle to the observation system simulation experiments (OSSEs used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs. We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO and ozone (O3 based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere on the Earth Observing System (EOS-Terra satellite and TES (Tropospheric Emission Spectrometer and OMI (Ozone Monitoring Instrument on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs, solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs

  13. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C Data

    Directory of Open Access Journals (Sweden)

    Jun Xia

    2008-02-01

    Full Text Available On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m , using the Generalized Split-Window (GSWalgorithm proposed by Wan and Dozier (1996. The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC, and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities(LSEs are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006; and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.’ method (2003. The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give

  14. Impact of GPS tracking data of LEO satellites on global GPS solutions

    Science.gov (United States)

    Rothacher, M.; Svehla, D.

    Already at present quite a few Low Earth Orbiting (LEO) satellites (SAC-C, CHAMP, JASON-1, GRACE-1 and GRACE-2) are equipped with one or more GPS receivers for precise orbit determination or other applications (atmospheric sounding, gravity field recovery, . . . ). This trend will continue in the near future (e.g., with the GOCE and COSMIC missions) and we will soon have an entire "constellation" of LEO satellites tracked by GPS at our disposal. In this contribution we want to study the impact of LEO GPS measurements (from a single LEO satellite or from a LEO constellation) on global GPS solutions, where GPS satellite orbits and clocks, Earth rotation parameters (ERPs), station coordinates and troposphere zenith delays are determined simultaneously using the data of the global network of the International GPS Service (IGS). In order to assess the impact of the LEO GPS data on global IGS results, we have to perform a combined analysis of the space-borne and the ground-based GPS data. Such a combination may benefit on one hand from the differences between a ground station and a LEO, e.g., (1) the different tracking geometry (coverage of isolated geographical areas by LEOs, rapidly changing geometry, . . . ), (2) that LEOs connect all ground stations within 1-2 hours, (3) that baselines between LEO and ground stations may be longer than station-station baselines, (4) that no tropospheric delays have to be estimated for LEOs, and (5) that LEOs orbit the Earth within the ionosphere and may therefore contribute to global ionosphere models. On the other hand we have to deal with difficult aspects of precise orbit determination for the LEOs: only if we succeed to obtain very accurate dynamic or reduced-dynamic orbits for the LEOs, we will have a chance at all to improve the global GPS results. We present first results concerning the influence of LEO data on GPS orbits, ERPs, site coordinates, and troposphere zenith delays using both, variance-covariance analyses based on

  15. Optimal link budget to maximize data receiving from remote sensing satellite at different ground stations

    Science.gov (United States)

    Godse, Vinay V.; Rukmini, B.

    2016-10-01

    Earth observation satellite plays a significant role for global situation awareness. The earth observation satellite uses imaging payloads in RF and IR bands, which carry huge amount of data, needs to be transferred during visibility of satellite over the ground station. Location of ground station plays a very important role in communication with LEO satellites, as orbital speed of LEO satellite is much higher than earth rotation speed. It will be accessible for particular equatorial ground station for a very short duration. In this paper we want to maximize data receiving by optimizing link budget and receiving data at higher elevation links. Data receiving at multiple ground stations is preferred to counter less pass duration due to higher elevation links. Our approach is to calculate link budget for remote sensing satellite with a fixed power input and varying different minimum elevation angles to obtain maximum data. The minimum pass duration should be above 3 minutes for effective communication. We are proposing to start process of command handling as soon as satellite is visible to particular ground station with low elevation angle up to 5 degree and start receiving data at higher elevation angles to receive data with higher speed. Cartosat-2B LEO earth observation satellite is taken for the case study. Cartosat-2B will complete around 14 passes over equator in a day, out of which only 4-5 passes will be useful for near equator ground stations. Our aim is to receive data at higher elevation angles at higher speed and increase amount of data download, criteria being minimum pass duration of 3 minutes, which has been set for selecting minimum elevation angle.

  16. On non-coplanar Hohmann Transfer using angles as parameters

    CERN Document Server

    Rincon, Angel; Lacruz, Elvis; Abellan, Gabriel; Diaz, Sttiwuer

    2015-01-01

    We study a more complex case of Hohmann orbital transfer of a satellite by considering non-coplanar and elliptical orbits, instead of planar and circular orbits. We use as parameter the angle between the initial and transference planes that minimizes the energy, and therefore the fuel of a satellite, through the application of two non-tangential impulses for all possible cases. We found an analytical expression that minimizes the energy for each configuration. Some reasonable physical constraints are used: we apply impulses at perigee or apogee of the orbit, we consider the duration of the impulse to be short compared to the duration of the trip, we take the nodal line of three orbits to be coincident and the three semimajor axes to lie in the same plane. We study the only four possible cases but assuming non-coplanar elliptic orbits. In addition, we validate our method through a numerical solution obtained by using some of the actual orbital elements of Sputnik I and Vanguard I satellites. For these orbits, ...

  17. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  18. Declassified intelligence satellite photographs

    Science.gov (United States)

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  19. Oceanography from satellites

    Science.gov (United States)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  20. Satellite oceanography - The instruments

    Science.gov (United States)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  1. 3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission

    Science.gov (United States)

    Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.

    2013-09-01

    PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in TANGO points its GPS antenna towards zenith with sufficient accuracy to track as many GPS satellites as MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.

  2. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    for an efficient hybrid terrestrial-satellite communication system. Two integrated HAP-satellite scenarios are presented, in which the HAP is used to overcome some of the shortcomings of satellite- based communications. Moreover, it is shown that the integration of HAPs with satellite systems can be used......Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element...

  3. Optimal reconfiguration of satellite constellations with the auction algorithm

    Science.gov (United States)

    de Weck, Olivier L.; Scialom, Uriel; Siddiqi, Afreen

    2008-01-01

    Traditionally, satellite constellation design has focused on optimizing global, zonal or regional coverage with a minimum number of satellites. In some instances, however, it is desirable to deploy a constellation in stages to gradually expand capacity. This requires launching additional satellites and reconfiguring the existing on-orbit satellites. Also, a constellation might be retasked and reconfigured after it is initially fielded for operational reasons. This paper presents a methodology for optimizing orbital reconfigurations of satellite constellations. The work focuses on technical aspects for transforming an initial constellation A into a new constellation, B, typically with a larger number of satellites. A general framework was developed to study the orbital reconfiguration problem. The framework was applied to low Earth orbit constellations of communication satellites. This paper specifically addresses the problem of determining the optimal assignment for transferring on-orbit satellites in constellation A to constellation B such that the total ΔV for the reconfiguration is minimized. It is shown that the auction algorithm, used for solving general network flow problems, can efficiently and reliably determine the optimum assignment of satellites of A to slots of B. Based on this methodology, reconfiguration maps can be created, which show the energy required for transforming one constellation into another as a function of type (Street-of-Coverage, Walker, Draim), altitude, ground elevation angle and fold of coverage. Suggested extensions of this work include quantification of the tradeoff between reconfiguration time and ΔV, multiple successive reconfigurations, balancing propellant consumption within the constellation during reconfiguration as well as using reconfigurability as an objective during initial constellation design.

  4. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  5. Man-made Satellites

    Institute of Scientific and Technical Information of China (English)

    郝昌明

    2005-01-01

    If you watch the sky about an hour after the sun goes down, you may see some “moving stars”. But they're not real stars. They're manmade satellites (卫星). And the biggest of all is the International Space Station (ISS国际空间站).

  6. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)

    A. MAMMANO

    1964-06-01

    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  7. Experimental Satellite Quantum Communications.

    Science.gov (United States)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  8. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  9. Creating Better Satellite Conferences.

    Science.gov (United States)

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  10. Ocean surveillance satellites

    Science.gov (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  11. OMV With Satellite

    Science.gov (United States)

    1986-01-01

    This 1986 artist's concept shows the Orbital Maneuvering Vehicle (OMV) towing a satellite. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  12. Advances in satellite oceanography

    Science.gov (United States)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  13. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  14. Theta angle in holographic QCD

    CERN Document Server

    Jarvinen, Matti

    2016-01-01

    V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.

  15. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  16. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  17. Impact Angle Control of Interplanetary Shock Geoeffectiveness: A Statistical Study

    CERN Document Server

    Oliveira, D M

    2015-01-01

    We present a survey of interplanetary (IP) shocks using WIND and ACE satellite data from January 1995 to December 2013 to study how IP shock geoeffectiveness is controlled by IP shock impact angles. A shock list covering one and a half solar cycle is compiled. The yearly number of IP shocks is found to correlate well with the monthly sunspot number. We use data from SuperMAG, a large chain with more than 300 geomagnetic stations, to study geoeffectiveness triggered by IP shocks. The SuperMAG SML index, an enhanced version of the familiar AL index, is used in our statistical analysis. The jumps of the SML index triggered by IP shock impacts on the Earth's magnetosphere is investigated in terms of IP shock orientation and speed. We find that, in general, strong (high speed) and almost frontal (small impact angle) shocks are more geoeffective than inclined shocks with low speed. The strongest correlation (correlation coefficient R = 0.70) occurs for fixed IP shock speed and varying the IP shock impact angle. We ...

  18. DFH Satellite Co.,Ltd.

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    DFH Satellite Co.,Ltd. is a hi-tech enterprise founded and sponsored by China Aerospace Science and Technology Corporation(CASC) and one of CASC subsidiaries,China Academy of Space Technology (CAST). The company is mainly engaged in the research and development of small satellites and micro-satellites, Osystem designs and product development for satellite application projects as well as the international exchanges and cooperation.

  19. Device for Measuring Landslide Critical Angle

    Institute of Scientific and Technical Information of China (English)

    Li Xueling; Xia Weisheng; Huang Daoyou; Yu Yun

    2016-01-01

    The mountain landslide has high destructive effects, discussion of its landslide critical angle has always been one of the major concerns, and we designed a system that can automatically measure the landslide critical angle. This equipment consists of the

  20. Monitoring of wetlands Ecosystems using satellite images

    Science.gov (United States)

    Dabrowska-Zielinska, K.; Gruszczynska, M.; Yesou, H.; Hoscilo, A.

    Wetlands are very sensitive ecosystems, functioning as habitat for many organisms. Protection and regeneration of wetlands has been the crucial importance in ecological research and in nature conservation. Knowledge on biophysical properties of wetlands vegetation retrieved from satellite images will enable us to improve monitoring of these unique areas, very often impenetrable. The study covers Biebrza wetland situated in the Northeast part of Poland and is considered as Ramsar Convention test site. The research aims at establishing of changes in biophysical parameters as the scrub encroachment, lowering of the water table, and changes of the farming activity caused ecological changes at these areas. Data from the optical and microwave satellite images collected for the area of Biebrza marshland ecosystem have been analysed and compared with the detailed soil-vegetation ground measurements conducted in conjunction with the overflights. Satellite data include Landsat ETM, ERS-2 ATSR and SAR, SPOT VEGETATION, ENVISAT MERIS and ASAR, and NOAA AVHRR. From the optical data various vegetation indices have been calculated, which characterize the vegetation surface roughness, its moisture conditions and stage of development. Landsat ETM image has been used for classification of wetlands vegetation. For each class of vegetation various moisture indices have been developed. Ground data collected include wet and dry biomass, LAI, vegetation height, and TDR soil moisture. The water cloud model has been applied for retrieval of soil vegetation parameters taking into account microwave satellite images acquired at VV, HV and HH polarisations at different viewing angles. The vegetation parameters have been used for to distinguish changes, which occurred at the area. For each of the vegetation class the soil moisture was calculated from microwave data using developed algorithms. Results of this study will help mapping and monitoring wetlands with the high spatial and temporal

  1. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  2. Mobile satellite service for Canada

    Science.gov (United States)

    Sward, David

    1988-05-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  3. 30 CFR 56.19037 - Fleet angles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 56.19037 Section 56.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 56.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  4. 30 CFR 57.19037 - Fleet angles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  5. 基于6S模型的GF-1卫星影像大气校正及效果%GF-1 satellite image atmospheric correction based on 6S model and its effect

    Institute of Scientific and Technical Information of China (English)

    刘佳; 王利民; 杨玲波; 滕飞; 邵杰; 杨福刚; 富长虹

    2015-01-01

    GF-1 satellite is the first satellite of the high resolution satellite series in China. Since its successful launch on April 26 2013, GF-1 satellite has been widely applied in agricultural remote sensing monitoring practice in China, and it has become a major data source of agricultural remote sensing dynamic monitoring. Based on the principle of radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum), this paper designed and realized the algorithm and program suitable for GF-1 satellite data atmospheric correction. By using the 6S model, the algorithm obtains the parameters for the conversion from reflectivity (or irradiance) of Top Of Atmosphere (TOA) to surface reflectance, and then calculates the surface reflectance of each pixel of each image according to the conversion parameter. The algorithm takes GF-1 satellite first level data, metadata, and open parameter of sensor as the input data, without auxiliary data from other sources. The specific process includes 3 steps, i.e. radiometric calibration, running parameters settings and atmospheric correction. Radiometric calibration is to convert the DN (digital number) value of the original GF-1 satellite first level image into radiation brightness, and then calculate apparent reflectance by combining the reflectivity (or irradiance) of TOA. Either reflectivity (or irradiance) of TOA or apparent reflectance can be taken as the input of atmospheric correction program. Precondition for realizing the algorithm is to calculate the average solar irradiance parameters of each wave band of satellite sensor atmospheric top according to spectral response function of GF-1 satellite sensor and WRC (world radiation center) sun spectrum function. Operation parameters include 2 types: 1) input of satellite images, including satellite zenith angle, satellite azimuth angle, solar zenith angle, solar azimuth, sensor height, ground elevation, radiation calibration coefficient and spectral

  6. From Order to Chaos in Earth Satellite Orbits

    Science.gov (United States)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  7. Loss cone fluxes and pitch angle diffusion at the equatorial plane during auroral radio absorption events

    Energy Technology Data Exchange (ETDEWEB)

    Collis, P.N.; Hargreaves, J.K.

    1983-04-01

    Flux and pitch angle distributions of energetic electrons at geostationary altitude in the vicinity of the atmospheric loss cone associated with an auroral radio absorption event are investigated. Measurements were made in the energy range 15-300 keV by the medium energy charged particle spectrometer on board the GEOS-2 satellite at the times of absorption events detected near the predicted foot of the geomagnetic field line passing through the satellite. Comparisons with theoretical pitch angle distributions and recombination rates indicate pitch angle diffusion coefficients to be 0.001/sec for a 2-dB event and 0.0001/sec for a 1-dB event. Further comparisons of the average electron measurements in the pitch angle range 0-5 deg with observations of the radio absorption by the portion of this flux which is actually precipitated are used to deduce the degree of departure of the electron pitch angle distribution from isotropy, and to place limits upon the ranges of effective recombination rate profiles. An empirical relation is derived which allows radio absorption to be predicted from measured electron fluxes.

  8. Analysis on BDS Satellite Internal Multipath and Its Impact on Wide-lane FCB Estimation

    Directory of Open Access Journals (Sweden)

    RUAN Rengui

    2017-08-01

    Full Text Available To the issue of the satellite internal multipath (SIMP of BeiDou satellites, it proposed and emphasized that the SIMP model should be established as a function of the nadir angle with respect to the observed satellite rather than the elevation of the measurement, so that it can be used for receivers at various altitude. BDS data from global distributed stations operated by the International Monitoring and Assessment System (iGMAS and the Multi-GNSS Experiment (MGEX of the International GNSS Service (IGS are collected and a new SIMP model as a piece-wise linear function of the nadir angle is released for the IGSO-and MEO-satellite groups and for B1, B2 and B3 frequency band individually. The SIMP of GEO,IGSO and MEO satellites is further analyzed with B1/B2 dual-frequency data onboard the FengYun-3 C(FY3C satellite at an altitude of~830 km, and it showed that, for nadir angles smaller than 7°, the SIMP values for GEO is quite close to the IGSO's, especially for B2, which may suggest that the SIMP model for IGSO satellites possibly also works for GEO satellites. It also demonstrated that, when the nadir angle is smaller than 12°for the MEO and 7°for the IGSO, the estimated SIMP model with data from FY3C is considerable consistent with that estimated with data collected at ground stations. Experiments are carried out to investigate the impacts of the SIMP on wide-lane fractional cycle bias (FCB estimation for BDS satellites. The result indicates that, with the correction of the estimated SIMP, the repeatability of the FCB series is significantly improved by more than 60% for all satellites. Specifically, for the MEO and IGSO satellites, the repeatability is smaller than 0.05 cycle; the repeatability of 0.023 and 0.068 cycles achieved for GEO satellites C01 and C02 respectively with the estimated SIMP model for IGSO satellites.

  9. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  10. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  11. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...

  12. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  13. Satellites in Canadian broadcasting

    Science.gov (United States)

    Siocos, C. A.

    The involvement of Canadian broadcasting and related enterprises in satellite telecommunications is surveyed. This includes point-to-point transmissions and direct ones to the general public. The mode of such utilizations is indicated in both these cases. For the forthcoming DBS systems the many types of service offerings and utilization concepts under discussion elasewhere are presented as well as the business prospects and regulatory climate offering them.

  14. Neptune: Minor Satellites

    Science.gov (United States)

    Murdin, P.

    2003-04-01

    All but one of Neptune's minor satellites orbit within or just outside its ringsystem; the exception is the distant object Nereid. Some of them are betterdescribed as `mid-sized' rather than `minor', but are included under thisheading as little is known of them. The inner four, with approximatediameters, are Naiad (60 km), Thalassa (80 km), Despina (150 km) and Galatea(160 km). The first three lie...

  15. Satellite Surveillance: Domestic Issues

    Science.gov (United States)

    2010-02-01

    earthquake and tsunami in the Indian Ocean and Hurricane Katrina in 2005, when the NGA provided graphics for “relief efforts that depicted the locations of...that show the damage resulting from an earthquake , fire, flood, hurricane, oil spill, or volcanic eruption.8 Bush Administration Policies...Satellite information has continued to have important civil applications in such disparate areas as the movement of glaciers in Yakutat Bay in Alaska

  16. Communications satellites - The experimental years

    Science.gov (United States)

    Edelson, B. I.

    1983-10-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  17. Tethered satellite design

    Science.gov (United States)

    Manarini, G.

    1986-01-01

    The capability of the satellite to perform a variety of space operations to be accomplished from the shuttle is reviewed considering use of the satellite with man-in-loop and closed loop modes and deployment (toward or away from Earth, up to 100 km), stationkeeping, retrieval and control of the satellite. Scientific payloads are to be used to perform experiments and scientific investigation for applications such as magnetometry, electrodynamics, atmospheric science, chemical release, communications, plasmaphysics, dynamic environment, and power and thrust generation. The TSS-S will be reused for at least 3 missions after reconfiguration and refurbishment by changing the peculiar mission items such as thermal control, fixed boom for experiments, aerodynamic tail for yaw attitude control, external skin, experiments, and any other feature. The TSS-S is to be composed of three modules in order to allow independent integration of a single module and to facilitate the refurbishment and reconfiguration between flights. The three modules are service, auxiliary propulsion, and payload modules.

  18. Heart Monitoring By Satellite

    Science.gov (United States)

    1978-01-01

    The ambulance antenna shown is a specially designed system that allows satellite-relayed two-way communications between a moving emergency vehicle and a hospital emergency room. It is a key component of a demonstration program aimed at showing how emergency medical service can be provided to people in remote rural areas. Satellite communication permits immediate, hospital- guided treatment of heart attacks or other emergencies by ambulance personnel, saving vital time when the scene of the emergency is remote from the hospital. If widely adopted, the system could save tens of thousands of lives annually in the U.S. alone, medical experts say. The problem in conventional communication with rural areas is the fact that radio signals travel in line of sight. They may be blocked by tall buildings, hills and mountains, or even by the curvature of the Earth, so signal range is sharply limited. Microwave relay towers could solve the problem, but a complete network of repeater towers would be extremely expensive. The satellite provides an obstruction-free relay station in space.

  19. Tactical Satellite 3

    Science.gov (United States)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  20. Binary Satellite Galaxies

    CERN Document Server

    Evslin, Jarah

    2013-01-01

    Suggestions have appeared in the literature that the following five pairs of Milky Way and Andromeda satellite galaxies are gravitationally bound: Draco and Ursa Minor, Leo IV and V, Andromeda I and III, NGC 147 and 185, and the Magellanic clouds. Under the assumption that a given pair is gravitationally bound, the Virial theorem provides an estimate of its total mass and so its instantaneous tidal radius. For all of these pairs except for the Magellanic clouds the resulting total mass is 2 to 4 orders of magnitude higher than that within the half light radius. Furthermore in the case of each pair except for Leo IV and Leo V, the estimated tidal radius is inferior to the separation between the two satellites. Therefore all or almost all of these systems are not gravitationally bound. We note several possible explanations for the proximities and similar radial velocities of the satellites in each pair, for example they may have condensed from the same infalling structure or they may be bound by a nongravitatio...

  1. The Q-angle and sport

    DEFF Research Database (Denmark)

    Hahn, Thomas; Foldspang, Anders

    1997-01-01

    Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....

  2. Individualized optimal release angles in discus throwing.

    Science.gov (United States)

    Leigh, Steve; Liu, Hui; Hubbard, Mont; Yu, Bing

    2010-02-10

    The purpose of this study was to determine individualized optimal release angles for elite discus throwers. Three-dimensional coordinate data were obtained for at least 10 competitive trials for each subject. Regression relationships between release speed and release angle, and between aerodynamic distance and release angle were determined for each subject. These relationships were linear with subject-specific characteristics. The subject-specific relationships between release speed and release angle may be due to subjects' technical and physical characteristics. The subject-specific relationships between aerodynamic distance and release angle may be due to interactions between the release angle, the angle of attack, and the aerodynamic distance. Optimal release angles were estimated for each subject using the regression relationships and equations of projectile motion. The estimated optimal release angle was different for different subjects, and ranged from 35 degrees to 44 degrees . The results of this study demonstrate that the optimal release angle for discus throwing is thrower-specific. The release angles used by elite discus throwers in competition are not necessarily optimal for all discus throwers, or even themselves. The results of this study provide significant information for understanding the biomechanics of discus throwing techniques.

  3. Establishment of the Relationship between the Photochemical Reflectance Index and Canopy Light Use Efficiency Using Multi-angle Hyperspectral Observations

    Science.gov (United States)

    Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin

    2017-04-01

    The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531-R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using

  4. Wafer scale oblique angle plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  5. Transcription and the Pitch Angle of DNA

    CERN Document Server

    Olsen, Kasper W

    2013-01-01

    The question of the value of the pitch angle of DNA is visited from the perspective of a geometrical analysis of transcription. It is suggested that for transcription to be possible, the pitch angle of B-DNA must be smaller than the angle of zero-twist. At the zero-twist angle the double helix is maximally rotated and its strain-twist coupling vanishes. A numerical estimate of the pitch angle for B-DNA based on differential geometry is compared with numbers obtained from existing empirical data. The crystallographic studies shows that the pitch angle is approximately 38 deg., less than the corresponding zero-twist angle of 41.8 deg., which is consistent with the suggested principle for transcription.

  6. Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner

    Science.gov (United States)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-11-01

    Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104

  7. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    LiYanxing; HuXinkang; ShuaiPing; ZhangZhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it,is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°,the accuracy of the correction exceeds 0.06mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected. When Z>50°, the correction must be made. When Z is 85°, 88° and 89° , the corrections are 198mm, 8.911m and 28.497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80°, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  8. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Li Yanxing; Hu Xinkang; Shuai Ping; Zhang Zhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it.is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°, the accuracy of the correction exceeds 0.06 mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected.When Z>50°, the correction must be made. When Z is 85° , 88° and 89° , the corrections are 198mm, 8. 911 m and 28. 497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80 °, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  9. Spatial and temporal characteristics of optimum process noise values of tropospheric parameters for kinematic analysis of Global Navigation Satellite System (GNSS) sites in Japan

    Science.gov (United States)

    Hirata, Yu'ichiro; Ohta, Yusaku

    2016-12-01

    Kinematic analysis of Global Navigation Satellite System (GNSS) data is useful for the extraction of crustal deformation phenomena occurring over short timescales ranging from seconds to 1 day, such as coseismic and postseismic deformation following large earthquakes. However, a fundamental challenge in kinematic GNSS analysis is to separate unknown parameters, such as site coordinate and tropospheric parameters, due to the strong correlation between them. In this study, we assessed the spatial and temporal characteristics of process noise for unknown tropospheric parameters such as zenith wet tropospheric delay and tropospheric gradient by means of kinematic precise point positioning analysis using Kalman filtering across the Japanese nationwide continuous GNSS network. We estimated kinematic site coordinate time series under different process noise combinations of zenith wet tropospheric delay and tropospheric gradient. The spatial distribution of the optimum process noise value for the zenith wet tropospheric parameter with vertical site coordinate time series clearly showed regional characteristics. In comparison with the wet tropospheric parameter, the spatial characteristics of the tropospheric gradient parameter are less well defined within the scale of the GNSS network. The temporal characteristics of the optimum process noise parameters for each site coordinate component at specific sites indicated a clear annual pattern in the tropospheric gradient parameter for the horizontal components. Finally, we assessed the effects on the kinematic GNSS site coordinate time series of optimizing tropospheric parameter process noise. Compared with recommended process noise values from previous studies, the use of estimated "common" optimum process noise values improved the standard deviation of coordinate time series for the majority of stations. These results clearly indicate that the use of appropriate process noise values is important for kinematic GNSS analysis

  10. 面向高光谱大气臭氧传感器的多观测几何条件下紫外辐射模拟及对TOMS V8算法臭氧初值估算模型改进与评价%Radiance Simulation of BUV Hyperspectral Sensor on Multi Angle Observation,and Improvement to Initial Total Ozone Estimating Model of TOMS V8 Total Ozone Algorithm

    Institute of Scientific and Technical Information of China (English)

    吕春光; 王维和; 杨文博; 田庆久; 卢山; 陈赟

    2015-01-01

    New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future , because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention .Sensors carried on geo‐stationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of to‐tal ozone retrieval on these observation geometries .TOMS V8 algorithm is developing and widely used in low orbit ozone detec‐ting sensors ,but it still lack of accuracy on big observation geometry ,therefore ,how to improve the accuracy of total ozone re‐trieval is still an urgent problem that demands immediate solution .Using moderate resolution atmospheric transmission ,MODT‐RAN ,synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated ,which refers to clear sky ,multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles ,moreover ,the correlation and trends between at‐mospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data .According to these result data ,a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries .The analysis results about total ozone and simulated UV backscatter radiance shows :Radiance in 317.5 nm (R317.5 ) decreased as the total ozone rise .Under the small solar zenith Angle (SZA) and the same total ozone ,R317.5 decreased with the increase of view zenith Angle (VZA) but increased on the large SZA .Comparison of two fit models shows :without the condition that both SZA and VZA are large (>80°) ,expo‐nential fitting model and logarithm fitting model all show high fitting precision (R2 >0.90) ,and precision of the two decreased as the SZA and VZA rise .In most cases ,the precision of logarithm fitting

  11. Dealing with uncertainties in angles-only initial orbit determination

    Science.gov (United States)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2016-08-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map uncertainties from the observation space to the state space. When a minimum set of observations is available, DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available, high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  12. Optimal directional view angles for remote-sensing missions

    Science.gov (United States)

    Kimes, D. S.; Holben, B. N.; Tucker, C. J.; Newcomb, W. W.

    1984-01-01

    The present investigation is concerned with the directional, off-nadir viewing of terrestrial scenes using remote-sensing systems from aircraft and satellite platforms, taking into account advantages of such an approach over strictly nadir viewing systems. Directional reflectance data collected for bare soil and several different vegetation canopies in NOAA-7 AVHRR bands 1 and 2 were analyzed. Optimum view angles were recommended for two strategies. The first strategy views the utility of off-nadir measurements as extending spatial and temporal coverage of the target area. The second strategy views the utility of off-nadir measurements as providing additional information about the physical characteristics of the target. Conclusions regarding the two strategies are discussed.

  13. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    Science.gov (United States)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  14. On MSDT inversion with multi-angle remote sensing data

    Institute of Scientific and Technical Information of China (English)

    FENG XiaoMing; ZHAO YingShi

    2007-01-01

    With the wavelet transform,image of multi-angle remote sensing is decomposed into multi-resolution.With data of each resolution,we try target-based multi-stages inversion,taking the inversion result of coarse resolution as the prior information of the next inversion.The result gets finer and finer until the resolution of satellite observation.In this way,the target-based multi-stages inversion can be used in remote sensing inversion of large-scaled coverage.With MISR data,we inverse structure parameters of vegetation in semiarid grassland of the Inner Mongolia Autonomous Region.The result proves that this way is efficient.

  15. Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations

    OpenAIRE

    Huntemann, M.; G. Heygster; Kaleschke, L.; T. Krumpen; M. Mäkynen; M. Drusch

    2014-01-01

    Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anticorrelation to the difference bet...

  16. Meningiomas of the cerebellopontine angle.

    Science.gov (United States)

    Matthies, C; Carvalho, G; Tatagiba, M; Lima, M; Samii, M

    1996-01-01

    Meningiomas of the cerebellopontine angle (CPA) represent a clinically and surgically interesting entity. The opportunity of complete surgical excision and the incidence of impairment of nerval structures largely depend on the tumour biology that either leads to displacement of surrounding structures by an expansive type of growth or to an enveloping of nerval and vascular structures by an en plaque type of growth. As the origin and the direction of growth are very variable, the exact tumour extension in relation to the nerval structures and the tumour origin can be identified sometimes only at the time of surgery. Out of a series of 230 meningiomas of the posterior skull base operated between 1978 and 1993, data of 134 meningiomas involving the cerebellopontine angle are presented. There were 20% male and 80% female patients, age at the time of surgery ranging from 18 to 76 years, on the average 51 years. The clinical presentation was characterized by a predominant disturbance of the cranial nerves V (19%), VII (11%), VIII (67%) and the caudal cranial nerves (6%) and signs of ataxia (28%). 80% of the meningiomas were larger than 30 mm in diameter, 53% led to evident brainstem compression or dislocation and 85% extended anteriorly to the internal auditory canal. Using the lateral suboccipital approach in the majority of cases and a combined presigmoidal or combined suboccipital and subtemporal approaches in either sequence in 5%, complete tumour removal (Simpson I and II) was accomplished in 95% and subtotal tumour removal in 5%. Histologically the meningiotheliomatous type was most common (49%) followed by the mixed type (19%), fibroblastic (16%), psammomatous (7%), hemangioblastic (7%) and anaplastic (2%) types. Major post-operative complications were CSF leakage (8%) requiring surgical revision in 2% and hemorrhage (3%) requiring revision in 2%. While the majority of neurological disturbances showed signs of recovery, facial nerve paresis or paralysis was

  17. Satellite Upper Air Network (SUAN)

    Science.gov (United States)

    Reale, Tony L.; Thorne, Peter

    2004-10-01

    During the past 20 years of NOAA operational polar satellites, it has become evident that a growing problem concerning their utilization in Climate and also Numerical Weather Prediction (NWP) applications are the systematic errors and uncertainties inherent in the satellite measurements. Similar arguments can be made for global radiosonde observations. These uncertainties are often larger than the sensitive signals and processes, that satellite and radiosonde measurements are designed to reveal, particularly in the realm of climate. Possible strategies to quantify and compensate for these problems include the analysis of satellite overlap data and/or available collocations of satellite and ground truth (radiosonde) observations. However, overlap observations are typically not available except in extreme polar regions and current sampling strategies for compiling collocated radiosonde and satellite observations are insufficient, further compounding the inherent uncertainties in the ground-truth radiosonde data. A Satellite Upper Air Network is proposed to provide reference radiosonde launches coincident with operational polar satellite(s) overpass. The SUAN consist of 36 global radiosonde stations sub-sampled from the Global Upper Air Network (GUAN), and is designed to provide a robust, global sample of collocated radiosonde and satellite observations conducive to the monitoring and validation of satellite and radiosonde observations. The routine operation of such a network in conjunction with operational polar satellites would provide a long-term of performance for critical observations of particular importance for climate. The following report presents a candidate network of 36 upper-air sites that could comprise a SUAN. Their selection along with the mutual benefit across the satellite, radiosonde, climate, numerical weather prediction (NWP) and radiative transfer (RT) model areas are discussed.

  18. Dynamic contact angle measurements on superhydrophobic surfaces

    Science.gov (United States)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  19. Identification of geostationary satellites using polarization data from unresolved images

    Science.gov (United States)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  20. Statistical Angle-of-Arrival and Doppler Method for GPS Radio Interferometry of TIDS

    Science.gov (United States)

    Afraimovich, E. L.; Palamartchouk, K. S.; Perevalova, N. P.

    A Statistical Angle-of-arrival and Doppler Method for GPS radio interferometry (SADM-GPS) is proposed for determining the characteristics of the Travelling Ionospheric Disturbances (TIDs) by measuring variations of GPS phase derivatives with respect to time and spatial coordinates. These data are used to calculate corresponding values of the velocity vector, in view of a correction for satellite motion based on current information available regarding the angular coordinates of the satellites. Through a computer simulation it was shown that multi satellite GPS radio interferometry in conjunction with the SADM-GPS algorithm allows for detecting and measuring the velocity vector of TIDs in virtually the entire azimuthal range of possible TID propagation directions

  1. An interactive system for compositing digital radar and satellite data

    Science.gov (United States)

    Heymsfield, G. M.; Ghosh, K. K.; Chen, L. C.

    1983-01-01

    This paper describes an approach for compositing digital radar data and GOES satellite data for meteorological analysis. The processing is performed on a user-oriented image processing system, and is designed to be used in the research mode. It has a capability to construct PPIs and three-dimensional CAPPIs using conventional as well as Doppler data, and to composite other types of data. In the remapping of radar data to satellite coordinates, two steps are necessary. First, PPI or CAPPI images are remapped onto a latitude-longitude projection. Then, the radar data are projected into satellite coordinates. The exact spherical trigonometric equations, and the approximations derived for simplifying the computations are given. The use of these approximations appears justified for most meteorological applications. The largest errors in the remapping procedure result from the satellite viewing angle parallax, which varies according to the cloud top height. The horizontal positional error due to this is of the order of the error in the assumed cloud height in mid-latitudes. Examples of PPI and CAPPI data composited with satellite data are given for Hurricane Frederic on 13 September 1979 and for a squall line on 2 May 1979 in Oklahoma.

  2. Estimating the yaw-attitude of BDS IGSO and MEO satellites

    Science.gov (United States)

    Dai, Xiaolei; Ge, Maorong; Lou, Yidong; Shi, Chuang; Wickert, Jens; Schuh, Harald

    2015-10-01

    Precise knowledge and consistent modeling of the yaw-attitude of GNSS satellites are essential for high-precision data processing and applications. As the exact attitude control mechanism for the satellites of the BeiDou Satellite Navigation System (BDS) is not yet released, the reverse kinematic precise point positioning (PPP) method was applied in our study. However, we confirm that the recent precise orbit determination (POD) processing for GPS satellites could not provide suitable products for estimating BDS attitude using the reverse PPP because of the special attitude control switching between the nominal and the orbit-normal mode. In our study, we propose a modified processing schema for studying the attitude behavior of the BDS satellites. In this approach, the observations of the satellites during and after attitude switch are excluded in the POD processing, so that the estimates, which are needed in the reverse PPP, are not contaminated by the inaccurate initial attitude mode. The modified process is validated by experimental data sets and the attitude yaw-angles of the BDS IGSO and MEO satellites are estimated with an accuracy of better than . Furthermore, the results confirm that the switch is executed when the Sun elevation is about and the actual orientation is very close to its target one. Based on the estimated yaw-angles, a preliminary attitude switch model was established and reintroduced into the POD, yielding to a substantial improvement in the orbit overlap RMS.

  3. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  4. Radio broadcasting via satellite

    Science.gov (United States)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  5. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  6. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  7. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  8. The Galilean Satellites

    Science.gov (United States)

    1998-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission

  9. Future communications satellite applications

    Science.gov (United States)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  10. HETE Satellite Power Subsystem

    OpenAIRE

    1993-01-01

    The HETE (High-Energy Transient Experiment) satellite a joint project between MIT's Center for Space Research and AeroAstro. is a high-energy gamma-ray burst/X-Ray/UV observatory platform. HETE will be launched into a 550 km circular orbit with an inclination of 37.7°, and has a design lifetime of 18 months. This paper presents a description of the spacecraft's power subsystem, which collects, regulates, and distributes power to the experiment payload modules and to the various spacecraft sub...

  11. Caustic graphene plasmons with Kelvin angle

    CERN Document Server

    Shi, Xihang; Gao, Fei; Xu, Hongyi; Yang, Zhaoju; Zhang, Baile

    2015-01-01

    A century-long argument made by Lord Kelvin that all swimming objects have an effective Mach number of 3, corresponding to the Kelvin angle of 19.5 degree for ship waves, has been recently challenged with the conclusion that the Kelvin angle should gradually transit to the Mach angle as the ship velocity increases. Here we show that a similar phenomenon can happen for graphene plasmons. By analyzing the caustic wave pattern of graphene plasmons stimulated by a swift charged particle moving uniformly above graphene, we show that at low velocities of the charged particle, the caustics of graphene plasmons form the Kelvin angle. At large velocities of the particle, the caustics disappear and the effective semi-angle of the wave pattern approaches the Mach angle. Our study introduces caustic wave theory to the field of graphene plasmonics, and reveals a novel physical picture of graphene plasmon excitation during electron energy-loss spectroscopy measurement.

  12. A thermodynamic model of contact angle hysteresis

    Science.gov (United States)

    Makkonen, Lasse

    2017-08-01

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  13. Contact angle measurements under thermodynamic equilibrium conditions.

    Science.gov (United States)

    Lages, Carol; Méndez, Eduardo

    2007-08-01

    The precise control of the ambient humidity during contact angle measurements is needed to obtain stable and valid data. For a such purpose, a simple low-cost device was designed, and several modified surfaces relevant to biosensor design were studied. Static contact angle values for these surfaces are lower than advancing contact angles published for ambient conditions, indicating that thermodynamic equilibrium conditions are needed to avoid drop evaporation during the measurements.

  14. The TAOS/STEP Satellite

    OpenAIRE

    Edwards, David; Hosken, Robert

    1995-01-01

    The Technology for Autonomous Operational Survivability / Space Test Experiments Platform (TAOS/STEP) satellite was launched on a Taurus booster from Vandenberg Air Force Base into a nearly circular, 105 degree inclined orbit on March 13, 1994. The purpose of this satellite is twofold: 1) to test a new concept in multiple procurements of fast-track modular satellites and 2) to test a suite of Air Force Phillips Laboratory payloads in space. The TAOS payloads include the Microcosm Autonomous N...

  15. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  16. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  17. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  18. Satellite Communications: The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Dr. Ranjit Singh

    2014-05-01

    Full Text Available India has launched as many as 73 Indian satellites as of today since its first attempt in 1975. Besides serving traditional markets of telephony and broadcasting, satellites are on the frontiers of advanced applications as telemedicine, distance learning, environment monitoring, remote sensing, and so on. Satellite systems are optimized for services such as Internet access, virtual private networks and personal access. Costs have been coming down in recent years to the point where satellite broadband is becoming competitive. This article is an attempt to view this important topic from Indian perspective. India’s Project GAGAN, GPS Aided Geo Augmented Navigation is discussed.

  19. Business Use of Satellite Communications.

    Science.gov (United States)

    Edelson, Burton I.; Cooper, Robert S.

    1982-01-01

    Reviews business communications development and discusses business applications of satellite communications, system technology, and prospects for future developments in digital transmission systems. (JN)

  20. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth’s land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive.The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  1. The power relay satellite

    Science.gov (United States)

    Glaser, Peter E.

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  2. Inter-satellite links for satellite autonomous integrity monitoring

    Science.gov (United States)

    Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco

    2011-01-01

    A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.

  3. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  4. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... NVNG licensee shall use an earth station elevation angle of five degrees towards the DoD satellite and... of zero degrees towards the NVNG licensee's satellite, overlapping the DoD protection area. A NVNG... and its directors, officers, employees, affiliates, agents and subcontractors may incur or suffer in...

  5. Contact angle hysteresis on fluoropolymer surfaces.

    Science.gov (United States)

    Tavana, H; Jehnichen, D; Grundke, K; Hair, M L; Neumann, A W

    2007-10-31

    Contact angle hysteresis of liquids with different molecular and geometrical properties on high quality films of four fluoropolymers was studied. A number of different causes are identified for hysteresis. With n-alkanes as probe liquids, contact angle hysteresis is found to be strongly related to the configuration of polymer chains. The largest hysteresis is obtained with amorphous polymers whereas the smallest hysteresis occurs for polymers with ordered molecular chains. This is explained in terms of sorption of liquid by the solid and penetration of liquid into the polymer film. Correlation of contact angle hysteresis with the size of n-alkane molecules supports this conclusion. On the films of two amorphous fluoropolymers with different molecular configurations, contact angle hysteresis of one and the same liquid with "bulky" molecules is shown to be quite different. On the surfaces of Teflon AF 1600, with stiff molecular chains, the receding angles of the probe liquids are independent of contact time between solid and liquid and similar hysteresis is obtained for all the liquids. Retention of liquid molecules on the solid surface is proposed as the most likely cause of hysteresis in these systems. On the other hand, with EGC-1700 films that consist of flexible chains, the receding angles are strongly time-dependent and the hysteresis is large. Contact angle hysteresis increases even further when liquids with strong dipolar intermolecular forces are used. In this case, major reorganization of EGC-1700 chains due to contact with the test liquids is suggested as the cause. The effect of rate of motion of the three-phase line on the advancing and receding contact angles, and therefore contact angle hysteresis, is investigated. For low viscous liquids, contact angles are independent of the drop front velocity up to approximately 10 mm/min. This agrees with the results of an earlier study that showed that the rate-dependence of the contact angles is an issue only

  6. Storm-Time Evolution of Energetic Electron Pitch Angle Distributions by Wave-Particle Interaction

    Institute of Scientific and Technical Information of China (English)

    XIAO Fuliang; HE Huiyong; ZHOU Qinghua; WU Guanhong; SHI Xianghua

    2008-01-01

    The quasi-pure pitch-angle scattering of energetic electrons driven by field-alignedpropagating whistler mode waves during the 9~15 October 1990 magnetic storm at L ≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler.mode waves can efficiently drive energetic electrons from the larger pitch-angles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.

  7. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  8. Automatic cobb angle determination from radiographic images

    NARCIS (Netherlands)

    Sardjono, Tri Arief; Wilkinson, Michael H.F.; Veldhuizen, Albert G.; Ooijen, van Peter M.A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Met

  9. Automatic Cobb Angle Determination From Radiographic Images

    NARCIS (Netherlands)

    Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.

  10. Does gallbladder angle affect gallstone formation?

    Science.gov (United States)

    Sanal, Bekir; Korkmaz, Mehmet; Zeren, Sezgin; Can, Fatma; Elmali, Ferhan; Bayhan, Zulfu

    2016-01-01

    Morphology of gallbladder varies considerably from person to person. We believe that one of the morphological variations of gallbladder is the "gallbladder angle". Gallbladder varies also in "angle", which, to the best of our knowledge, has never been investigated before. The purpose of this study was to investigate the impact of gallbladder angle on gallstone formation. in this study, 1075 abdominal computed tomography (CT) images were retrospectively examined. Patients with completely normal gallbladders were selected. Among these patients, those with both abdominal ultrasound and blood tests were identified in the hospital records and included in the study. Based on the findings of the ultrasound scans, patients were divided into two groups as patients with gallstones and patients without gallstones. Following the measurement of gallbladder angles on the CT images, the groups were statistically evaluated. The gallbladder angle was smaller in patients with gallstones (49 ± 21 degrees and 53 ± 19 degrees) and the gallbladder with larger angle was 1.015 (1/0.985) times lower the risk of gallstone formation. However, these were not statistically significant (p>0,05). A more vertically positioned gallbladder does not affect gallstone formation. However, a smaller gallbladder angle may facilitate gallstone formation in patients with the risk factors. Gallstones perhaps more easily and earlier develop in gallbladders with a smaller angle.

  11. Automatic cobb angle determination from radiographic images

    NARCIS (Netherlands)

    Sardjono, Tri Arief; Wilkinson, Michael H.F.; Veldhuizen, Albert G.; van Ooijen, Peter M.A.; Purnama, Ketut E.; Verkerke, Gijsbertus Jacob

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.

  12. Acute angle closure glaucoma following ileostomy surgery

    Directory of Open Access Journals (Sweden)

    Mariana Meirelles Lopes

    2015-02-01

    Full Text Available Angle-closure glaucoma can be induced by drugs that may cause pupillary dilatation. We report a case of a patient that developed bilateral angle closure glaucoma after an ileostomy surgery because of systemic atropine injection. This case report highlights the importance of a fast ophthalmologic evaluation in diseases with ocular involvement in order to make accurate diagnoses and appropriate treatments.

  13. Non-Linear Optimization Applied to Angle-of-Arrival Satellite-Based Geolocation

    Science.gov (United States)

    2014-06-19

    simulated performance is quantified and discussed. iv To my wife, children , and parents. v Acknowledgments I thank my wife and best friend first and...Transactions on, 59(6):2887–2897, 2011. ISSN 1053-587X. 125 Vita Stephen Hartzell was homeschooled until he was 15 when he began coursework at Sinclair

  14. Equatorial Scintillation of Satellite Signals at uhf and L-band for Two Different Elevation Angles

    Science.gov (United States)

    1980-05-01

    Equatorial Scintillation, Planetary and Space Science, vol 20, no 12, p 1999- 2014 , 1972. 4 Briggs, BH and Parkin, IA, On the Variation of Radio Star and...Paulson and RUF Hopkins, 2 May 1977. 3. Koster, JR, Equatorial Scintillation, Planetary and Space Science, vol 20, no 12, p 1999- 2014 , 1972. 4. Briggs...6 -_ _ __ _ __ __B-20 - -- - -- ,r ... EN14IT9PC~r CA L417 ,L4!1𔄃N O’_AN 135- 39r9 ’. ICERi HI 1979z I-I 9 LO t I L2 t3 -1 5l IEi I GHT 9 1Ll. It 1 1

  15. Latitudinal variations of aerosol optical parameters over South Africa based on MISR satellite data

    CSIR Research Space (South Africa)

    Tesfaye M

    2010-09-01

    Full Text Available The latitudunal variation of the relative weight size distribution and optical properties of aerosols over South Africa is presented here. The study uses 10-years of Multi-angle Imaging SpectroRadiometer (MISR) satellite data, collected over South...

  16. Analysis of Characteristics of QZSS Satellite Orbit and Clock Products during Yaw Attitude Model Switching

    Directory of Open Access Journals (Sweden)

    ZHOU Peiyuan

    2016-03-01

    Full Text Available Yaw attitude model switching of navigation satellites have great impact on its orbit and clock products derived from precise orbit determination. Firstly, the yaw attitude and solar radiation model of QZSS is given briefly. Then, using QZSS precise orbit and clock products provided by IGS MGEX analysis center, precision of orbit and clock is analyzed by satellite laser ranging residuals and polynomial fit residuals respectively. Finally, spectral analysis and modified Allan variance is carried out on clock products to reveal its periodic variations. Research on QZSS satellite orbit and clock products of 2014 shows that there are two eclipse seasons of 20 days and the beta angle is fluctuating with a period of half-year. And there is significant correlation between the precision of orbit and clock products and beta angle. Moreover, the satellite clock offset has periodic variations similar to orbit periods and its amplitude is changing with the beta angle which indicates problems of current orbit determination strategies. In view of similarities between QZSS and BeiDou IGSO and MEO satellites in yaw attitude model, the conclusion is beneficial to improve BeiDou precise orbit determination.

  17. Apparent contact angle and contact angle hysteresis on liquid infused surfaces

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as `weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  18. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  19. Solid angles III. The role of conformers in solid angle calculations

    CSIR Research Space (South Africa)

    White, D

    1995-06-14

    Full Text Available The values of the solid angles Omega for a range of commonly encountered ligands in organometallic chemistry (phosphines, phosphites, amines, arsines and cyclopentadienyl rings) have been determined. The solid angles were derived from a single...

  20. Planets and satellites: tectonic twins

    Science.gov (United States)

    Kochemasov, G. G.

    2015-10-01

    There are only three solid planet-satellite pairs in the Solar system: Earth -Moon, Mars -Phobos, Pluto - Charon. For the first two pairs tectonic analogies were shown and explained by moving them in one circumsolar orbit. As it is known from the wave planetology [3, 4, 6], "orbits make structures". For the third pair the same was stated as a prediction based on this fundamental rule. Global tectonic forms of wave origin appear in cosmic bodies because they move in keplerian orbits with periodically changing accelerations. Warping bodies waves have a stationary character and obeying wave harmonics lengths. Starting from the fundamental 2πR-long wave 1 making the ubiquitous tectonic dichotomy (two-face appearance) warping wave lengths descend along harmonics. Very prominent along with the wave 1 are waves 2 responsible for tectonic sectoring superimposed on the wave 1 segments. Practically all bodies have traces of shorter waves making numerous polygons (rings) often confused with impact craters. Earth and the Moon moving in one circumsolar orbit both are distorted by wave 1, wave 2 and wave 4 features aligned along extent tectonic lines [4, 5]. At Earth they are: Pacific Ocean (2πR-structure) and Indian Ocean (πR-structure) from both ends with Malay Archipelago (πR/4-structure) in the middle. At Moon they are: Procellarum Ocean (2πR) and SPA Basin (πR) from ends and Mare Orientale (πR/4) in the middle. A regular disposition is surprising. Both Oceans and Basin occur on opposite hemispheres, lying in the middle both ring structures occur in the boundary between two hemispheres and are of the same relative size. These triads stretch along lines parallel to the equator (Earth) and with the angle about 30 degrees to it (Moon) indicating at a different orientation of the rotation axes in the ancient time [2]. On the whole, one could speak about a "lunar mould" of Earth [5] (Fig. 1-3). Another tectonic twin is the pair Mars -Phobos. Both bodies sharing one

  1. Reliable measurement of the receding contact angle.

    Science.gov (United States)

    Korhonen, Juuso T; Huhtamäki, Tommi; Ikkala, Olli; Ras, Robin H A

    2013-03-26

    Surface wettability is usually evaluated by the contact angle between the perimeter of a water drop and the surface. However, this single measurement is not enough for proper characterization, and the so-called advancing and receding contact angles also need to be measured. Measuring the receding contact angle can be challenging, especially for extremely hydrophobic surfaces. We demonstrate a reliable procedure by using the common needle-in-the-sessile-drop method. Generally, the contact line movement needs to be followed, and true receding movement has to be distinguished from "pseudo-movement" occurring before the receding angle is reached. Depending on the contact angle hysteresis, the initial size of the drop may need to be surprisingly large to achieve a reliable result. Although our motivation for this work was the characterization of superhydrophobic surfaces, we also show that this method works universally ranging from hydrophilic to superhydrophobic surfaces.

  2. Development of Tibiofemoral Angle in Korean Children

    Science.gov (United States)

    Yoo, Jae Ho; Cho, Tae-Joon; Chung, Chin Youb; Yoo, Won Joon

    2008-01-01

    This study was performed to identify the chronological changes of the knee angle or the tibiofemoral angles in normal healthy Korean children. Full-length anteroposterior view standing radiographs of 818 limbs of 452 Korean children were analyzed. The overall patterns of the chronological changes in the knee angle were similar to those described previously in western or Asian children, but the knee angle development was delayed, i.e., genu varum before 1 yr, neutral at 1.5 yr, increasing genu valgum with maximum a value of 7.8° at 4 yr, followed by a gradual decrease to approximately 5-6° of genu valgum of the adult level at 7 to 8 yr of age. These normative data on chronological changes of knee angles should be taken into consideration when evaluating lower limb alignment in children. PMID:18756063

  3. Nanodrop contact angles from molecular dynamics simulations

    Science.gov (United States)

    Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim

    2016-11-01

    The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.

  4. Multicast Routing in Satellite Network

    Institute of Scientific and Technical Information of China (English)

    郭惠玲; 宋姝; 李磊; 刘志涛; 郭鹏程

    2004-01-01

    There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-layer satellite MPLs networks. It has advantages of saving space and reducing extra charge.

  5. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  6. The SPOT satellite

    Science.gov (United States)

    Fouquet, J.-P.

    1981-03-01

    The background, objectives and data products of the French SPOT remote sensing satellite system are presented. The system, which was developed starting in 1978 with the subsequent participation of Sweden and Belgium, is based on a standard multimission platform with associated ground control station and a mission-specific payload, which includes two High-Resolution Visible range instruments allowing the acquisition of stereoscopic views from different orbits. Mission objectives include the definition of future remote sensing systems, the compilation of a cartographic and resources data base, the study of species discrimination and production forecasting based on frequent access and off-nadir viewing, the compilation of a stereoscopic data base, and platform and instrument qualification, for possible applications in cartography, geology and agriculture. Standard data products will be available at three levels of preprocessing: radiometric correction only, precision processing for vertical viewing, and cartographic quality processing.

  7. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  8. Astronomy from satellite clusters

    Science.gov (United States)

    Stachnik, R.; Labeyrie, A.

    1984-03-01

    Attention is called to the accumulating evidence that giant space telescopes, comprising a number of separate mirrors on independent satellites, are a realistic prospect for providing research tools of extraordinary power. The ESA-sponsored group and its counterpart in the US have reached remarkably similar conclusions regarding the basic configuration of extremely large synthetic-aperture devices. Both share the basic view that a cluster of spacecraft is preferable to a single monolithic structure. The emphasis of the US group has been on a mission that sweeps across as many sources as possible in the minimum time; it is referred to as SAMSI (Spacecraft Array for Michelson Spatial Interferometry). The European group has placed more emphasis on obtaining two-dimensional images. Their system is referred to as TRIO because, at least initially, it involves three independent systems. Detailed descriptions are given of the two systems.

  9. Apparent contact angle and contact angle hysteresis on liquid infused surfaces

    OpenAIRE

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2017-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  10. Advanced satellite communication system

    Science.gov (United States)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  11. Contact angle hysteresis of microbead suspensions.

    Science.gov (United States)

    Waghmare, Prashant R; Mitra, Sushanta K

    2010-11-16

    Microbead suspensions are often used in microfluidic devices for transporting biomolecules. An experimental investigation on the wettability of microbead suspension is presented in this study. The variation in the surface tension and the equilibrium contact angle with the change in the volume fraction of the microbead is presented here. The surface tension of the microbead suspension is measured with the pendant drop technique, whereas the dynamic contact angle measurements, i.e., advancing and receding contact angles, are measured with the sessile drop technique. An equilibrium contact angle of a suspension with particular volume fraction is determined by computing an average over the measured advancing and receding contact angles. It is observed that the surface tension and the equilibrium contact angle determined from advancing and receding contact angles vary with the magnitude of the microbeads volume fraction in the suspension. A decrease in the surface tension with an increase in the volume fraction of the microbead suspension is observed. The advancement and the recession in contact line for dynamic contact angle measurements are achieved with the motorized dosing mechanism. For microbead suspensions, the advancement of the contact line is faster as compared to the recession of the contact line for the same flow rate. The presence of microbeads assists in the advancement and the recession of the contact line of the suspension. A decrease in the equilibrium contact angles with an increase in the microbead suspension volume fraction is observed. Inclusion of microbeads in the suspension increases the wetting capability for the considered combination of the microbead suspension and substrate. Finally, empirical correlations for the surface tension and the contact angle of the suspension as a function of microbead volume fraction are proposed. Such correlations can readily be used to develop mechanistic models for the capillary transport of microbead

  12. Direct Broadcast Satellite: Radio Program

    Science.gov (United States)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  13. Sky alert! when satellites fail

    CERN Document Server

    Johnson, Les

    2013-01-01

    How much do we depend on space satellites? Defense, travel, agriculture, weather forecasting, mobile phones and broadband, commerce...the list seems endless. But what would our live be like if the unimaginable happened and, by accident or design, those space assets disappeared? Sky Alert! explores what our world would be like, looking in turn at areas where the loss could have catastrophic effects. The book - demonstrates our dependence on space technology and satellites; - outlines the effect on our economy, defense, and daily lives if satellites and orbiting spacecraft were destroyed; - illustrates the danger of dead satellites, spent rocket stages, and space debris colliding with a functioning satellites; - demonstrates the threat of dramatically increased radiation levels associated with geomagnetic storms; - introduces space as a potential area of conflict between nations.

  14. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C....... This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from...... satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results...

  15. The Communications Satellite as Educational Tool.

    Science.gov (United States)

    Long, Peter

    1982-01-01

    Drawing on the experiences of several countries, the author describes satellite technology, discusses the feasibility of satellite use in traditional educational institutions, and analyzes the role of satellites in social development. (SK)

  16. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  17. Interactions of satellite-speed helium atoms with satellite-surfaces. 1. Spatial distributions of reflected helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1975-06-01

    Interactions of satellite-speed helium atoms with practical satellite surfaces were investigated experimentally, and spatial distributions of satellite-speed helium beams scattered from four different engineering surfaces were measured. The 7000-m/s helium beams were produced using an arc-heated supersonic molecular beam source. The test surfaces included cleaned 6061-T6 aluminum plate, anodized aluminum foil, white paint, and quartz surfaces. Both in-plane (in the plane containing the incident beam and the surface normal) and out-of-plane spatial distributions of reflected helium atoms were measured for six different incidence angles (0, 15, 30, 45, 60, and 75 deg from the surface normal). It was found that a large fraction of the incident helium atoms were scattered back in the vicinity of the incoming beam, particularly in the case of glancing incidence angles. This unexpected scattering feature results perhaps from the gross roughness of these test surfaces. This prominent backscattering could yield drag coefficients which are higher than for surfaces with either forward-lobed or diffusive (cosine) scattering patterns. (auth)

  18. Stereoscopic observations from meteorological satellites

    Science.gov (United States)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the

  19. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  20. Globographic visualisation of three dimensional joint angles.

    Science.gov (United States)

    Baker, Richard

    2011-07-07

    Three different methods for describing three dimensional joint angles are commonly used in biomechanics. The joint coordinate system and Cardan/Euler angles are conceptually quite different but are known to represent the same underlying mathematics. More recently the globographic method has been suggested as an alternative and this has proved particularly attractive for the shoulder joint. All three methods can be implemented in a number of ways leading to a choice of angle definitions. Very recently Rab has demonstrated that the globographic method is equivalent to one implementation of the joint coordinate system. This paper presents a rigorous analysis of the three different methods and proves their mathematical equivalence. The well known sequence dependence of Cardan/Euler is presented as equivalent to configuration dependence of the joint coordinate system and orientation dependence of globographic angles. The precise definition of different angle sets can be easily visualised using the globographic method using analogues of longitude, latitude and surface bearings with which most users will already be familiar. The method implicitly requires one axis of the moving segment to be identified as its principal axis and this can be extremely useful in helping define the most appropriate angle set to describe the orientation of any particular joint. Using this technique different angle sets are considered to be most appropriate for different joints and examples of this for the hip, knee, ankle, pelvis and axial skeleton are outlined.

  1. Contact angle hysteresis, adhesion, and marine biofouling.

    Science.gov (United States)

    Schmidt, Donald L; Brady, Robert F; Lam, Karen; Schmidt, Dale C; Chaudhury, Manoj K

    2004-03-30

    Adhesive and marine biofouling release properties of coatings containing surface-oriented perfluoroalkyl groups were investigated. These coatings were prepared by cross-linking a copolymer of 1H,1H,2H,2H-heptadecafluorodecyl acrylate and acrylic acid with a copolymer of poly(2-isopropenyl-2-oxazoline) and methyl methacrylate at different molar ratios. The relationships between contact angle, contact angle hysteresis, adhesion, and marine biofouling were studied. Adhesion was determined by peel tests using pressure-sensitive adhesives. The chemical nature of the surfaces was studied by using X-ray photoelectron spectroscopy. Resistance to marine biofouling of an optimized coating was studied by immersion in seawater and compared to previous, less optimized coatings. The adhesive release properties of the coatings did not correlate well with the surface energies of the coatings estimated from the static and advancing contact angles nor with the amount of fluorine present on the surface. The adhesive properties of the surfaces, however, show a correlation with water receding contact angles and contact angle hysteresis (or wetting hysteresis) resulting from surface penetration and surface reconstruction. Coatings having the best release properties had both the highest cross-link density and the lowest contact angle hysteresis. An optimized coating exhibited unprecedented resistance to marine biofouling. Water contact angle hysteresis appears to correlate with marine biofouling resistance.

  2. Leaf angle, tree species, and the functioning of broadleaf deciduous forest ecosystems

    Science.gov (United States)

    McNeil, B. E.; Brzostek, E. R.; Fahey, R. T.; King, C. J.; Flamenco, E. A.; Rescorl, S.; Erazo, D.; Heimerl, T.

    2016-12-01

    data to new observations of spatial and temporal variations in near infrared reflectance measured from UAV, airborne, and satellite sensors, we highlight how species-specific patterns of leaf angle phenology could provide a new mechanism to better constrain model predictions of energy, water, and carbon fluxes from temperate forests.

  3. Ground track maintenance for BeiDou IGSO satellites subject to tesseral resonances and the luni-solar perturbations

    Science.gov (United States)

    Fan, Li; Jiang, Chao; Hu, Min

    2017-02-01

    Eight inclined geosynchronous satellite orbit (IGSO) satellites in the Chinese BeiDou Navigation Satellite System (BDS) have been put in orbit until now. IGSO is a special class of geosynchronous circular orbit, with the inclination not equal to zero. It can provide high elevation angle coverage to high-latitude areas. The geography longitude of the ground track cross node is the main factor to affect the ground coverage areas of the IGSO satellites. In order to ensure the navigation performance of the IGSO satellites, the maintenance control of the ground track cross node is required. Considering the tesseral resonances and the luni-solar perturbations, a control approach is proposed to maintain the ground track for the long-term evolution. The drifts of the ground track cross node of the IGSO satellites are analyzed, which is formulated as a function of the bias of the orbit elements and time. Based on the derived function, a method by offsetting the semi-major axis is put forward to maintain the longitude of the ground track cross node, and the offset calculation equation is presented as well. Moreover, the orbit inclination is adjusted to maintain the location angle intervals between each two IGSO satellites. Finally, the precision of the offset calculation equation is analyzed to achieve the operational deployment. Simulation results show that the semi-major axis offset method is effective, and its calculation equation is accurate. The proposed approach has been applied to the maintenance control of BeiDou IGSO satellites.

  4. Wide-angle vision for road views

    Science.gov (United States)

    Huang, F.; Fehrs, K.-K.; Hartmann, G.; Klette, R.

    2013-03-01

    The field-of-view of a wide-angle image is greater than (say) 90 degrees, and so contains more information than available in a standard image. A wide field-of-view is more advantageous than standard input for understanding the geometry of 3D scenes, and for estimating the poses of panoramic sensors within such scenes. Thus, wide-angle imaging sensors and methodologies are commonly used in various road-safety, street surveillance, street virtual touring, or street 3D modelling applications. The paper reviews related wide-angle vision technologies by focusing on mathematical issues rather than on hardware.

  5. Bite Angle Effects in Hydroformylation Catalysis

    Institute of Scientific and Technical Information of China (English)

    van LEEUWEN

    2001-01-01

    Recent advances in rhodium catalyzed hydroformylation using xanthene-based ligands will be reviewed.The calculated natural bite angles of the ligands discussed are in the range 100-123℃ While the general trend is clear-higher 1:b ratios at wider angles, small changes in the bite angle do not exhibit a regular effect on the selectivity of the reaction.The same is true for the rate of CO dissociation;the larger the rate of the CO dissociation, the larger the rate of hydroformylation, but for small changes the effects do not comply with this rule.

  6. Touchless attitude correction for satellite with constant magnetic moment

    Science.gov (United States)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  7. Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration

    Directory of Open Access Journals (Sweden)

    Rajjoub LZ

    2014-07-01

    Full Text Available Lamise Z Rajjoub, Nisha Chadha, David A Belyea Department of Ophthalmology, The George Washington University, Washington, DC, USA Abstract: This is a case report describing recurrent intermittent acute angle closure episodes in the setting of topiramate use in a female suffering from migraines. Despite laser peripheral iridotomy placement for the pupillary block component, and the discontinuation of topiramate, the acute angle closure did not resolve in the left eye with chronic angle closure and the patient required urgent trabeculectomy. The right eye responded to laser peripheral iridotomy immediately and further improved after the cessation of topiramate. While secondary angle closure glaucoma due to topiramate use has been widely reported, its effects in patients with underlying primary angle closure glaucoma have not been discussed. Our report highlights the importance of recognizing the often multifactorial etiology of angle closure glaucoma to help guide clinical management. Keywords: angle closure glaucoma, plateau iris, topiramate, secondary glaucoma, drug-induced glaucoma

  8. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  9. Two way satellite communication for telemetrology and remote control

    Science.gov (United States)

    Hanebrekke, H.

    Low-data-rate satellite communication to fixed and floating buoys at sea, remote observation stations, and fishing vessels is studied. Particular attention is paid to Norwegian conditions, that is, high latitude and high mountains. Coverage and reliability measurements utilizing Inmarsat C and Prodat stations have been done along the coast of western and northern Norway, and on major roads in southern Norway. Good coverage is found in the coastal areas, with only 5 percent loss of messages when both the AOR and IOR satellites are used from the same location, whereas the land mobile experiments gave 40 percent to 70 percent loss, depending on the elevation angle. The possibility of using Inmarsat C or Prodat stations in the major fishing areas between Norway, Greenland, and Svalbard and in the Barents Sea are also being investigated. A method of data collection from ocean areas based on the fishing fleet is proposed.

  10. Optimal scan strategies for future CMB satellite experiments

    CERN Document Server

    Wallis, Christopher G R; Battye, Richard A; Delabrouille, Jacques

    2016-01-01

    The B-mode polarisation power spectrum in the Cosmic Microwave Background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarisation must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarisation experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example we go on to identify a scan strategy suitable for the CMB satellite pro...

  11. Giant impacts in the Saturnian System: a possible origin of diversity in the inner mid-sized satellites

    CERN Document Server

    Sekine, Yasuhito

    2011-01-01

    It is widely accepted that Titan and the mid-sized regular satellites around Saturn were formed in the circum-Saturn disk. Thus, if these mid-sized satellites were simply accreted by collisions of similar ice-rock satellitesimals in the disk, the observed wide diversity in density (i.e., the rock fraction) of the Saturnian mid-sized satellites is enigmatic. A recent circumplanetary disk model suggests satellite growth in an actively supplied circumplanetary disk, in which Titan-sized satellites migrate inward by interaction with the gas and are eventually lost to the gas planet. Here we report numerical simulations of giant impacts between Titan-sized migrating satellites and smaller satellites in the inner region of the Saturnian disk. Our results suggest that in a giant impact with impact velocity > 1.4 times the escape velocity and impact angle of ~45 degree, a smaller satellite is destroyed, forming multiple mid-sized satellites with a very wide diversity in satellite density (the rock fraction = 0-92 wt%...

  12. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David

    1994-01-01

    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  13. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  14. The french educational satellite arsene

    Science.gov (United States)

    Danvel, M.; Escudier, B.

    ARSENE (Ariane, Radio-amateur, Satellite pour l'ENseignement de l'Espace) is a telecommunications satellite for Amateur Space Service. Its main feature is that more than 100 students from French engineering schools and universities have been working since 1979 for definition phase and satellite development. The highest IAF awards has been obtained by "ARSENE students" in Tokyo (1980) and Rome (1981). The French space agency, CNES and French aerospace industries are supporting the program. The European Space Agency offered to place ARSENE in orbit on the first Ariane mark IV launch late 1985.

  15. ISDN - The case for satellites

    Science.gov (United States)

    Pelton, Joseph N.; McDougal, Patrick J.

    1987-05-01

    The Integrated Services Digital Network (ISDN) holds much promise for both suppliers and users of telecommunications in the near future. This article examines the role of satellites in this new ISDN environment and emphasizes several advantages of satellites in the ongoing evolution to an all-digital world. In specific, the role of Intelsat, the global satellite system, is discussed with emphasis on Intelsat's digital services which today can offer all the characteristics and standards of ISDN in a flexible, cost-efficient manner.

  16. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    -damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  17. Planetary satellites - an update

    Science.gov (United States)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  18. Hubble Space Telescope satellite

    Science.gov (United States)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  19. EMERGENCE ANGLE OF FLOW OVER AN AERATOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.

  20. Nanofluid surface wettability through asymptotic contact angle.

    Science.gov (United States)

    Vafaei, Saeid; Wen, Dongsheng; Borca-Tasciuc, Theodorian

    2011-03-15

    This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.

  1. Haematological Parameters in Open Angle Glaucoma Patients ...

    African Journals Online (AJOL)

    GA Akinlabi, VI Iyawe. Abstract. There is potential for blood related factors to affect aqueous production or optic nerve functions. ... Here we compare hematological parameters for a group of 68 chronic open-angle glaucoma (OAG) patients and ...

  2. Contact angle hysteresis on superhydrophobic stripes.

    Science.gov (United States)

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  3. A microscopic view on contact angle selection

    OpenAIRE

    Snoeijer, Jacco H.; Andreotti, Bruno

    2008-01-01

    We discuss the equilibrium condition for a liquid that partially wets a solid on the level of intermolecular forces. Using a mean field continuum description, we generalize the capillary pressure from variation of the free energy and show at what length scale the equilibrium contact angle is selected. After recovering Young's law for homogeneous substrates, it is shown how hysteresis of the contact angle can be incorporated in a self-consistent fashion. In all cases the liquid-vapor interface...

  4. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Directory of Open Access Journals (Sweden)

    T. Verhoelst

    2015-08-01

    Full Text Available Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement uncertainties but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs, named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC comparisons between on the one hand GOME-type direct fitting (GODFITv3 satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and on the other hand direct-sun and zenith-sky reference measurements such as from Dobsons, Brewers, and zenith scattered light (ZSL-DOAS instruments respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC. The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing

  5. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Science.gov (United States)

    Verhoelst, T.; Granville, J.; Hendrick, F.; Köhler, U.; Lerot, C.; Pommereau, J.-P.; Redondas, A.; Van Roozendael, M.; Lambert, J.-C.

    2015-12-01

    Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs), named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC) comparisons between GOME-type direct fitting (GODFITv3) satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith-sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-)DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only play a role in the

  6. The impact of curved satellite tracks on SAR focusing

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2000-01-01

    This paper addresses the geometric effect of processing single look complex synthetic aperture radar (SAR) data to a reference squint angle different from that given by the center of the real antenna beam. For data acquired on a straight flight line, the required transformation of radar coordinates...... from one Doppler reference to another is independent of the target elevation but for data acquired from a satellite orbit over a rotating Earth that is not true. Also the effect of ignoring Earth rotation is addressed....

  7. Pressure dependence of the contact angle.

    Science.gov (United States)

    Wu, Jiyu; Farouk, T; Ward, C A

    2007-06-07

    When a liquid and its vapor contact a smooth, homogeneous surface, Gibbsian thermodynamics indicates that the contact angle depends on the pressure at the three-phase line of an isothermal system. When a recently proposed adsorption isotherm for a solid-vapor interface is combined with the equilibrium conditions and the system is assumed to be in a cylinder where the liquid-vapor interface can be approximated as spherical, the contact-angle-pressure relation can be made explicit. It indicates that a range of contact angles can be observed on a smooth homogeneous surface by changing the pressure at the three-phase line, but it also indicates that the adsorption at the solid-liquid interface is negative, and leads to the prediction that the contact angle increases with pressure. The predicted dependence of the contact angle on pressure is investigated experimentally in a system that has an independent mechanism for determining when thermodynamic equilibrium is reached. The predictions are in agreement with the measurements. The results provide a possible explanation for contact angle hysteresis.

  8. Winding angles of long lattice walks

    Science.gov (United States)

    Hammer, Yosi; Kantor, Yacov

    2016-07-01

    We study the winding angles of random and self-avoiding walks (SAWs) on square and cubic lattices with number of steps N ranging up to 107. We show that the mean square winding angle of random walks converges to the theoretical form when N → ∞. For self-avoiding walks on the square lattice, we show that the ratio /2 converges slowly to the Gaussian value 3. For self-avoiding walks on the cubic lattice, we find that the ratio /2 exhibits non-monotonic dependence on N and reaches a maximum of 3.73(1) for N ≈ 104. We show that to a good approximation, the square winding angle of a self-avoiding walk on the cubic lattice can be obtained from the summation of the square change in the winding angles of lnN independent segments of the walk, where the ith segment contains 2i steps. We find that the square winding angle of the ith segment increases approximately as i0.5, which leads to an increase of the total square winding angle proportional to (lnN)1.5.

  9. Design of a Four-Element, Hollow-Cube Corner Retroreflector for Satellites by use of a Genetic Algorithm.

    Science.gov (United States)

    Minato, A; Sugimoto, N

    1998-01-20

    A four-element retroreflector was designed for satellite laser ranging and Earth-satellite-Earth laser long-path absorption measurement of the atmosphere. The retroreflector consists of four symmetrically located corner retroreflectors. Each retroreflector element has curved mirrors and tuned dihedral angles to correct velocity aberrations. A genetic algorithm was employed to optimize dihedral angles of each element and the directions of the four elements. The optimized four-element retroreflector has high reflectance with a reasonably broad angular coverage. It is also shown that the genetic algorithm is effective for optimizing optics with many parameters.

  10. Adaptive sliding mode control of tethered satellite deployment with input limitation

    Science.gov (United States)

    Ma, Zhiqiang; Sun, Guanghui

    2016-10-01

    This paper proposes a novel adaptive sliding mode tension control method for the deployment of tethered satellite, where the input tension limitation is taken into account. The underactuated governing equations of the tethered satellites system are firstly derived based on Lagrangian mechanics theory. Considering the fact that the tether can only resist axial stretching, the tension input is modelled as input limitation. New adaptive sliding mode laws are addressed to guarantee the stability of the tethered satellite deployment with input disturbance, meanwhile to eliminate the effect of the limitation features of the tension input. Compared with the classic control strategy, the newly proposed adaptive sliding mode control law can deploy the satellite with smaller overshoot of the in-plane angle and implement the tension control reasonably and effectively in engineering practice. The numerical results validate the effectiveness of the proposed methods.

  11. Innovative Large Scale Wireless Sensor Network Architecture Using Satellites and High-Altitude Platforms

    Directory of Open Access Journals (Sweden)

    Yasser Albagory

    2014-03-01

    Full Text Available Wireless sensor network has many applications and very active research area. The coverage span of this network is very important parameter where wide coverage area is a challenge. This paper proposes an architecture for large-scale wireless sensor network (LSWSN based on satellites and the High-Altitude Platforms (HAP where the sensor nodes are located on the ground and a wide coverage sink station may be in the form of a satellite or a network of HAPs. A scenario is described for multilayer LSWSN and a study for the system requirements has been established showing the number of Satellites, HAPs and coverage per each sink according to the elevation angle requirements. The Satellite-HAP-Sensor multilayer LSWSN architecture has the feasibility for effective energy and earth coverage and is optimum for covering largely sparse regions.

  12. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  13. Commercial satellite broadcasting for Europe

    Science.gov (United States)

    Forrest, J. R.

    1988-12-01

    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  14. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  15. Virtual Satellite Integration Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated environment for rapid design studies of small satellite missions will be developed. This environment will be designed to streamline processes at the...

  16. Virtual Satellite Integration Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advatech Pacific proposes to develop a Virtual Satellite Integration Environment (VSIE) for the NASA Ames Mission Design Center. The VSIE introduces into NASA...

  17. Satellite Teleconferencing in the Caribbean.

    Science.gov (United States)

    Sankar, Hollis C.

    1985-01-01

    Discusses the need for, and the development, use, and future trends of, the University of the West Indies Distance Teaching Experiment, which utilizes telephone and communications satellite technology teleconferencing to extend educational opportunities to the peoples of the Caribbean. (MBR)

  18. Geography with the environmental satellites

    Directory of Open Access Journals (Sweden)

    J.P. Gastellu Etchegorry

    2013-07-01

    Full Text Available Coarse spatial resolution, high temporal frequency data from the earth polar orbiting (NOAA. HACMM, Nimbus, etc. satellites and from the geostationary (GOES. Meteosat, and GMS satellites are presented to demonstrate their utility for monitoring terrestrial and atmospheric processes. The main characteristics of these ,satellites and of the instruments on board are reviewed. In order to be useful for environmental assessments. the remotely sensed data must be processed (atmospheric and geometric corrections, etc.. The NOAA Center provides a wide range of already processed data. such as meteorological. oceanic, hydrologic and vegetation products; o rough description of these preprocessed data is given in this article. Finally, some examples of applicotions in Southeast Asia and especially in Indonesia, are described, i.e.: agroecosystem, drought and oceanic monitoring. The paper concludes that coarse resolution, high temporal frequency ,satellite data are very valuable for environmental studies. the emphasis being laid on the improve. ment of the crop and drought assessment programmes.

  19. Results from an experiment that collected visible-light polarization data using unresolved imagery for classification of geosynchronous satellites

    Science.gov (United States)

    Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis; Strong, David

    2015-05-01

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, their polarization signature may change enough to allow discrimination of identical satellites launched at different times. Preliminary data suggests this optical signature may lead to positive identification or classification of each satellite by an automated process on a shorter timeline. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. Following a rigorous calibration, polarization data was collected during two nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. When Stokes parameters were plotted against time and solar phase angle, the data indicates that a polarization signature from unresolved images may have promise in classifying specific satellites.

  20. women Contrlbute to Satellite Technology

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    IN the early morning of August 14, 1992, at the Xichang satellite launching center, China Central Television Station was about to do a live, worldwide broadcast on the launching of an Australian communications satellite made by the United States. With the order of the commander, "Ignition," people could watch the white rocket rise, pierce the blue sky and race toward the space with a long flaming tail trailing behind it.