WorldWideScience

Sample records for satellite tracking system

  1. Automated tracking for advanced satellite laser ranging systems

    Science.gov (United States)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  2. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  3. Tracking System : Suaineadh satellite experiment

    OpenAIRE

    Brengesjö, Carl; Selin, Martine

    2011-01-01

    The purpose of this bachelor thesis is to present a tracking system for the Suaineadh satellite experiment. The experiment is a part of the REXUS (Rocket EXperiments for University Students) program and the objective is to deploy a foldable web in space. The assignment of this thesis is to develop a tracking system to find the parts from the Suaineadh experiment that will land on Earth. It is important to find the parts and recover all the data that the experiment performed during the travel ...

  4. Tracking and data relay satellite system (TDRSS) capabilities

    Science.gov (United States)

    Spearing, R. E.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.

  5. Transcom's next move: Improvements to DOE's transportation satellite tracking systems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Harris, A.D. III; Driscoll, K.L.; Ellis, L.G.

    1990-01-01

    In today's society, the use of satellites is becoming the state-of-the-art method of tracking shipments. The United States Department of Energy (US DOE) has advanced technology in this area with its transportation tracking and communications system, TRANSCOM, which has been in operation for over one year. TRANSCOM was developed by DOE to monitor selected, unclassified shipments of radioactive materials across the country. With the latest technology in satellite communications, Long Range Navigation (Loran), and computer networks, TRANSCOM tracks shipments in near-real time, disseminates information on each shipment to authorized users of the system, and offers two-way communications between vehicle operators and TRANSCOM users anywhere in the country. TRANSCOM's successful tracking record, during fiscal year 1989, includes shipments of spent fuel, cesium, uranium hexafluoride, and demonstration shipments for the Waste Isolation Pilot Plant (WIPP). Plans for fiscal year 1990 include tracking additional shipments, implementing system enhancements designed to meet the users' needs, and continuing to research the technology of tracking systems so that TRANSCOM can provide its users with the newest technology available in satellite communications. 3 refs., 1 fig

  6. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De la Torre, Pedro

    2012-10-06

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  7. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De la Torre, Pedro; Berumen, Michael L.; Salama, Khaled N.; Smith, E. Lloyd

    2012-01-01

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  8. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  9. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Science.gov (United States)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  10. Design of tracking mount and controller for mobile satellite laser ranging system

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su; Kim, Byung In; Ham, Sang Young; Lee, Sung Whee; Lim, Hyung Chul

    2012-01-01

    In this study, we have proposed and implemented a design for the tracking mount and controller of the ARGO-M (Accurate Ranging system for Geodetic Observation - Mobile) which is a mobile satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute (KASI) and Korea Institute of Machinery and Materials (KIMM). The tracking mount comprises a few core components such as bearings, driving motors and encoders. These components were selected as per the technical specifications for the tracking mount of the ARGO-M. A three-dimensional model of the tracking mount was designed. The frequency analysis of the model predicted that the first natural frequency of the designed tracking mount was high enough. The tracking controller is simulated using MATLAB/xPC Target to achieve the required pointing and tracking accuracy. In order to evaluate the system repeatability and tracking accuracy of the tracking mount, a prototype of the ARGO-M was fabricated, and repeatability tests were carried out using a laser interferometer. Tracking tests were conducted using the trajectories of low earth orbit (LEO) and high earth orbit (HEO) satellites. Based on the test results, it was confirmed that the prototype of the tracking mount and controller of the ARGO-M could achieve the required repeatability along with a tracking accuracy of less than 1 arcsec.

  11. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite

    Science.gov (United States)

    Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.

    1994-01-01

    A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.

  12. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C.; Jamnejad, Vahraz; Woo, Kenneth E.

    1995-03-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  13. GPS-based system for satellite tracking and geodesy

    Science.gov (United States)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  14. The limits of direct satellite tracking with the Global Positioning System (GPS)

    Science.gov (United States)

    Bertiger, W. I.; Yunck, T. P.

    1988-01-01

    Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.

  15. S-band multiple-access interference study for advanced tracking and data relay satellite systems

    Science.gov (United States)

    Peng, Wei-Chung; Yang, Chau-Chin

    1990-01-01

    The results of a study on the effect of mutual interference among S-band multiple access (SMA) system users of advanced tracking and data relay satellite system (ATDRSS) are presented. In the ATDRSS era, the SMA system is required to support data rates ranging from 10 kb/s to 3 Mb/s. The system will consist of four advanced tracking and data relay satellites (ATDRS) each supporting up to five telemetry links. All users have 10 MHz bandwidth with their carrier frequency equal to 2.2875 GHz. A hybrid SDMA/CDMA scheme is used to mitigate the effect of the interference among system users. SMA system interference probability is evaluated with CLASS software. User link margin degradation due to mutual interference between two users is evaluated. System interference probability is evaluated for the projected 1996 mission model, a reference mission model, and a modified reference mission model.

  16. A GPS measurement system for precise satellite tracking and geodesy

    Science.gov (United States)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  17. Blossom Point Satellite Tracking and Command Station

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Blossom Point Satellite Command and Tracking Facility (BP) provides engineering and operational support to several complex space systems for the Navy...

  18. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    Science.gov (United States)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  19. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under...

  20. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency...

  1. Satellite tracking of threatened species

    Science.gov (United States)

    Williams, M.; Lunsford, A.; Ellis, D.; Robinson, J.; Coronado, P.; Campbell, W.

    1998-01-01

    In 1990, a joint effort of two U.S. federal agencies, NASA Goddard Space Flight Center (GSFC) and the Patuxent Wildlife Research Center, began. We initially joined forces in a project that used satellite telemetry to discover the winter home of a tiny dwindling population of Siberian Cranes. Since then several projects have emerged, and a web site was created to follow some of these activities. This web site is called the Satellite Tracking of Threatened Species and its location is http://sdcd.gsfc.nasa.gov/ISTO/satellite_tracking. It describes the overall program, and links you to three subsections that describe the projects in more detail: Satellite Direct Readout, Birdtracks, and Birdworld.

  2. Tracking and Data Relay Satellite System user impact and network compatibility study. [antenna design and telecommunication links

    Science.gov (United States)

    1973-01-01

    The report contains data on antenna configurations for the low data rate users of the Tracking and Data Relay Satellite System (TDRSS). It treats the coverage and mutual visibility considerations between the user satellites and the relay satellites and relates these considerations to requirements of antenna beamwidth and fractional user orbital coverage. A final section includes user/TDRS telecommunication link budgets and forward and return link data rate tradeoffs.

  3. Tracking target objects orbiting earth using satellite-based telescopes

    Science.gov (United States)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  4. Tracking Small Satellites using Translated GPS

    OpenAIRE

    Lefevre, Don; Mulally, Daniel

    1991-01-01

    This paper discusses using translated GPS for tracking small satellites, the technical trade-offs involved, and the position and timing accuracies which are achievable using translated GPS. The Global Positioning System (GPS) uses the relative times-of-arrival of multiple spread-spectrum signals at an antenna to determine the position of the antenna. The system can also determine the time the antenna was at that position. The direct sequence spread spectrum signals are transmitted from GPS sa...

  5. 77 FR 6949 - Tracking and Data Relay Satellite System (TDRSS) Rates for Non-U.S. Government Customers

    Science.gov (United States)

    2012-02-10

    ... Tracking and Data Relay Satellite System (TDRSS) Rates for Non- U.S. Government Customers AGENCY: National... customer flexibility, allowing more efficient use of the system. This notion was never implemented in the... commercial customers, as well as Arctic and Antarctic science programs. In this direct final rule, NASA is...

  6. Robust FDI for A Ship-mounted Satellite Tracking Antenna: A Nonlinear Approach

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2008-01-01

    Overseas telecommunication is preserved by means of satellite communication. Tracking system postures the on-board antenna toward a chosen satellite while the external disturbances affect the antenna. Certain faults (beam sensor malfunction or signal blocking) cause interruption in the communicat...

  7. Probing the earth's gravity field by means of satellite-to-satellite tracking

    Science.gov (United States)

    Vonbun, F. O.

    1977-01-01

    Two satellite-to-satellite tracking (sst) tests are described in detail: (1) the ATS-6/Geos-3 and (2) the ATS-6/Apollo-Soyuz experiment. The main purpose of these two experiments was to track via ATS-6 the Geos-3, as well as the Apollo-Soyuz and to use these tracking data to determine both of the orbits at the same time, each of the orbits alone, and to test the two sst links to study local gravity anomalies. A second purpose was to test communications, command and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground.

  8. A Study on the Tracking and Position Predictions of Artificial Satellite (II

    Directory of Open Access Journals (Sweden)

    Pil-Ho Park

    1991-06-01

    Full Text Available We developed a software system called IODS (ISSA Orbit Determination System, which can predict the orbit of arbitrary artificial satellite using the numerical method. For evaluating the orbit prediction accuracy of IODS, the orbital data predicted for the meteorological satellite NOAA-11 and the stationary satellite INTELSAT-V are intercompared with those tracked at the Central Bureau of Meteorology and the Kum-San Satellites Communication Station. And the Perturbation affecting the orbit of these artificial satellites are quantitatively analyzed. The orbital variation and the eclipse phenomina due to the earth shadow are analyzed for a hypothetical geostationary satellite called KORSAT-1 which is assumed to be located in longitude 110°E.

  9. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    Science.gov (United States)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  10. GPS-based tracking system for TOPEX orbit determination

    Science.gov (United States)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  11. Simulation of an advanced small aperture track system

    Science.gov (United States)

    Williams, Tommy J.; Crockett, Gregg A.; Brunson, Richard L.; Beatty, Brad; Zahirniak, Daniel R.; Deuto, Bernard G.

    2001-08-01

    Simulation development for EO Systems has progressed to new levels with the advent of COTS software tools such as Matlab/Simulink. These tools allow rapid reuse of simulation library routines. We have applied these tools to newly emerging Acquisition Tracking and Pointing (ATP) systems using many routines developed through a legacy to High Energy Laser programs such as AirBorne Laser, Space Based Laser, Tactical High Energy Laser, and The Air Force Research Laboratory projects associated with the Starfire Optical Range. The simulation architecture allows ease in testing various track algorithms under simulated scenes with the ability to rapidly vary system hardware parameters such as track sensor and track loop control systems. The atmospheric turbulence environment and associated optical distortion is simulated to high fidelity levels through the application of an atmospheric phase screen model to produce scintillation of the laser illuminator uplink. The particular ATP system simulated is a small transportable system for tracking satellites in a daytime environment and projects a low power laser and receives laser return from retro-reflector equipped satellites. The primary application of the ATP system (and therefore the simulation) is the determination of the illuminator beam profile, jitter, and scintillation of the low power laser at the satellite. The ATP system will serve as a test bed for satellite tracking in a high background during daytime. Of particular interest in this simulation is the ability to emulate the hardware modelogic within the simulation to test and refine system states and mode change decisions. Additionally, the simulation allows data from the hardware system tests to be imported into Matlab and to thereby drive the simulation or to be easily compared to simulation results.

  12. Probing the earth's gravity field using Satellite-to-Satellite Tracking (SST)

    Science.gov (United States)

    Vonbun, F. O.

    1976-01-01

    Satellite-to-Satellite (SST) tests, namely: (a) the ATS-6/GEOS-3 and (b) the ATS-6/Apollo-Soyuz experiment and some of the results obtained are described. The main purpose of these two experiments was first to track via ATS-6 the GEOS-3 as well as the Apollo-Soyuz and to use these tracking data to determine (a) both orbits, that is, ATS-6, GEOS-3 and/or the Apollo-Soyuz orbits at the same time; (b) each of these orbits alone; and (c) test the ATS-6/GEOS-3 and/or Apollo-Soyuz SST link to study local gravity anomalies; and, second, to test communications, command, and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground. The Apollo-Soyuz Geodynamics Experiment is discussed in some detail.

  13. Highlights of satellite-based forest change recognition and tracking using the ForWarn System

    Science.gov (United States)

    Steven P. Norman; William W. Hargrove; Joseph P. Spruce; William M. Christie; Sean W. Schroeder

    2013-01-01

    For a higher resolution version of this file, please use the following link: www.geobabble.orgSatellite-based remote sensing can assist forest managers with their need to recognize disturbances and track recovery. Despite the long...

  14. Pamela tracking system status report

    CERN Document Server

    Taccetti, F; Bonechi, L; Bongi, M; Boscherini, M; Castellini, G; D'Alessandro, R; Gabbanini, A; Grandi, M; Papini, P; Piccardi, S; Ricciarini, S; Spillantini, P; Straulino, S; Tesi, M; Vannuccini, E

    2002-01-01

    The Pamela apparatus will be launched at the end of 2002 on board of the Resurs DK Russian satellite. The tracking system, composed of six planes of silicon sensors inserted inside a permanent magnetic field was intensively tested during these last years. Results of tests have shown a good signal-to-noise ratio and an excellent spatial resolution, which should allow to measure the antiproton flux in an energy range from 80 MeV up to 190 GeV. The production of the final detector modules is about to start and mechanical and thermal tests on the tracking tower are being performed according to the specifications of the Russian launcher and satellite.

  15. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased controll......Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  16. GSFC network operations with Tracking and Data Relay Satellites

    Science.gov (United States)

    Spearing, R.; Perreten, D. E.

    The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.

  17. An Attitude Heading and Reference System For Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2017-01-01

    One of the most challenging problems for marine satellite tracking antennas (MSTAs) is to estimate the antenna attitude, which is affected by the ship motion, especially the ship vibration and rotational motions caused by ocean waves. To overcome this problem, an attitude heading and reference...... conditions, an attitude estimator based on virtual horizontal reference is introduced for situations of accelerometer malfunction, where the ship is suffering from wave shocks in high sea states. The performance of the designed AHRS for MSTA is assessed through hardware experiments using a Stewart platform...

  18. Nonlinear Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment

    Science.gov (United States)

    2017-12-18

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0177 TR-2017-0177 NONLINEAR UNCERTAINTY PROPAGATION OF SATELLITE STATE ERROR FOR TRACKING AND CONJUNCTION RISK...Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment 5a. CONTRACT NUMBER FA9453-16-1-0084 5b. GRANT NUMBER...prediction and satellite conjunction analysis. Statistical approach utilizes novel methods to build better uncertainty state characterization in the context

  19. Laser technology for high precision satellite tracking

    Science.gov (United States)

    Plotkin, H. H.

    1974-01-01

    Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.

  20. Tracking big and small agriculture with new satellite sensors

    Science.gov (United States)

    Lobell, D. B.; Azzari, G.; Jin, Z.

    2017-12-01

    New sensors from both the public and private sector are opening up exciting possibilities for monitoring agriculture and its use of water. This talk will present selected examples from recent work using data from Planet's Planetscope and Skysat sensors as well as Sentinel-1 and Sentinel-2 missions that are part of Europe's Copernicus program. Among other things, these satellites are now helping to track crop types and productivity for fields in rainfed cropping systems of East Africa and irrigated systems in South Asia. This information should contribute to understanding land and water use decisions throughout the world.

  1. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  2. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  3. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    OpenAIRE

    Byoung-Sun Lee; Jung-Hyun Jo; Sang-Young Park; Kyu-Hong Choi; Chun-Hwey Kim

    1988-01-01

    The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O) and computed observation(C) was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed fro...

  4. Satellite tracking of radioactive shipments - High technology solution to tough institutional problems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Grimm, P.D.

    1987-01-01

    Three troublesome institutional issues face every large-quantity radioactive materials shipment. They are routing, pre-notification, and emergency response. The Transportation Communications System (TRANSCOM), under development by DOE, is based on a rapidly developing technology to determine geographical location using geo-positioning satellite systems. This technology will be used to track unclassified radioactive materials shipments in real-time. It puts those charged with monitoring transportation status on top of very shipment. Besides its practical benefits in the areas of logistics planning and execution, it demonstrates emergency preparedness has indeed been considered and close monitoring is possible. This paper describes TRANSCOM in its technical detail and DOE plans and policy for its implementation. The state of satellite positioning technology and its business future is also discussed

  5. Tracking radioactive shipments using radio-navigation and satellite telecommunication systems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Habib, E.J.; Hurley, J.D.; Carlson, R.D.

    1988-01-01

    The United States Department of Enegy (USDOE) Waste Transportation Management Division (WMTD) has commissioned the development of a transportation tracking management and communication system to monitor movement of radioactive material shipments throughout the United States. The system, TRANSCOM, is being developed to enhance DOE's management oversight and operational control over the transport of sensitive materials (e.g., spent fuel, highlevel waste, transuranic waste etc.) and to address state and local government concerns regarding public safety. These goals are accomplished through providing a near real time tracking and communication system complete with information database management to support emergency response capabilities

  6. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro; Smith, Egan Lloyd; Sancheti, Ajay; Salama, Khaled N.; Berumen, Michael L.

    2013-01-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic

  7. Satellite tracking of manta rays highlights challenges to their conservation.

    Directory of Open Access Journals (Sweden)

    Rachel T Graham

    Full Text Available We describe the real-time movements of the last of the marine mega-vertebrate taxa to be satellite tracked - the giant manta ray (or devil fish, Manta birostris, the world's largest ray at over 6 m disc width. Almost nothing is known about manta ray movements and their environmental preferences, making them one of the least understood of the marine mega-vertebrates. Red listed by the International Union for the Conservation of Nature as 'Vulnerable' to extinction, manta rays are known to be subject to direct and incidental capture and some populations are declining. Satellite-tracked manta rays associated with seasonal upwelling events and thermal fronts off the Yucatan peninsula, Mexico, and made short-range shuttling movements, foraging along and between them. The majority of locations were received from waters shallower than 50 m deep, representing thermally dynamic and productive waters. Manta rays remained in the Mexican Exclusive Economic Zone for the duration of tracking but only 12% of tracking locations were received from within Marine Protected Areas (MPAs. Our results on the spatio-temporal distribution of these enigmatic rays highlight opportunities and challenges to management efforts.

  8. Satellite tracking of manta rays highlights challenges to their conservation.

    Science.gov (United States)

    Graham, Rachel T; Witt, Matthew J; Castellanos, Dan W; Remolina, Francisco; Maxwell, Sara; Godley, Brendan J; Hawkes, Lucy A

    2012-01-01

    We describe the real-time movements of the last of the marine mega-vertebrate taxa to be satellite tracked - the giant manta ray (or devil fish, Manta birostris), the world's largest ray at over 6 m disc width. Almost nothing is known about manta ray movements and their environmental preferences, making them one of the least understood of the marine mega-vertebrates. Red listed by the International Union for the Conservation of Nature as 'Vulnerable' to extinction, manta rays are known to be subject to direct and incidental capture and some populations are declining. Satellite-tracked manta rays associated with seasonal upwelling events and thermal fronts off the Yucatan peninsula, Mexico, and made short-range shuttling movements, foraging along and between them. The majority of locations were received from waters shallower than 50 m deep, representing thermally dynamic and productive waters. Manta rays remained in the Mexican Exclusive Economic Zone for the duration of tracking but only 12% of tracking locations were received from within Marine Protected Areas (MPAs). Our results on the spatio-temporal distribution of these enigmatic rays highlight opportunities and challenges to management efforts.

  9. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    Science.gov (United States)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  10. iSAT: The Integrated Satellite and Acoustic Telemetry system for tracking marine megafauna

    KAUST Repository

    De La Torre, Pedro R.

    2014-05-01

    In this dissertation an innovative technology to study whale sharks, Rhincodon typus is presented. The Integrated Satellite and Acoustic Telemetry project (iSAT) combines underwater acoustic telemetry, autonomous navigation and radio frequency communications into a standalone system. The whale shark, a resident of the Saudi Arabian Red Sea, is the target of the study. The technology presented is designed to help close current gaps in the knowledge of whale shark biology; these are gaps that prohibit the design of optimal conservation strategies. Unfortunately, the various existing tracking technologies each have limitations and are unable to solve all the unanswered questions. Whale shark populations are increasingly threatened by anthropogenic activities such as targeted and indirect fishing pressure, creating an urgent need for better management practices. This dissertation addresses the current state-of-the-art of relevant technologies, including autonomous surface vehicles (ASVs), sensors for research in the ocean and remote monitoring of wild fauna (biotelemetry). iSAT contains components of all of these technologies, but the primary achievement of this dissertation is the development of iSAT’s Acoustic Tracking System (ATS). Underwater, the most efficient way of transmitting energy through long distances is sound. An electronic tag is attached to an animal and works as its acoustic identifier. iSAT’s hydrophone array detects the presence and direction of the acoustic signal generated by the tag. The expected performance, range, and capacity to tell the direction to the tag are explained and compared to the actual measured values. The first operational iSAT ATS is demonstrated. This work represents significant advancement towards a fully autonomous iSAT system. Developments on the power electronics, navigation, renewable energy harvesting, and other modules are included in this research. With the recent integration of digital acquisition systems, i

  11. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  12. First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche

    Science.gov (United States)

    Mansfield, Katherine L.; Wyneken, Jeanette; Porter, Warren P.; Luo, Jiangang

    2014-01-01

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms. PMID:24598420

  13. Dynamic sensor tasking and IMM EKF estimation for tracking impulsively maneuvering satellites

    Science.gov (United States)

    Lace, Arthur A.

    In order to efficiently maintain space situational awareness, care must be taken to optimally allocate expensive observation resources. In most situations the available sensors capable of tracking spacecraft have their time split between many different monitoring responsibilities. Tracking maneuvering spacecraft can be especially difficult as the schedule of maneuvers may not be known and will often throw off previous orbital models. Effectively solving this tasking problem is an ongoing focus of research in the area of space situational awareness. Most methods of automated tasking do not make use of interacting multiple model extended Kalman filter techniques to better track satellites during maneuvers. This paper proposes a modification to a Fisher information gain and estimated state covariance based sensor tasking method to take maneuver probability and multiple model dynamics into account. By incorporating the probabilistic maneuvering model, sensor tasking can be improved during satellite maneuvers using constrained resources. The proposed methods are verified through the use of numerical simulations with multiple maneuvering satellites and both orbital and ground-based sensors.

  14. Advanced domestic digital satellite communications systems experiments

    Science.gov (United States)

    Iso, A.; Izumisawa, T.; Ishida, N.

    1984-02-01

    The characteristics of advanced digital transmission systems were measured, using newly developed small earth stations and a K-band and C-band communication satellite. Satellite link performance for data, facsimile, video and packet switching information transmission at bit rates ranging from 6.4 kbit/s to 6.3 Mbit/s have been confirmed, using a small K-band earth station and a demand-assignment time division multiple access system. A low-capacity omni-use C-band terminal experiment has verified a telephone channel transmission performance by spread-spectrum multiple access. Single point to multipoint transmission characteristics of the 64 kbit/s data signals from the computer center were tested, using a receive-only 4 GHz earth terminal. Basic satellite link performance was confirmed under clear-sky conditions. Precise satellite orbit and attitude keeping experiments were carried out to obtain precise satellite antenna pointing accuracy for development of K-band earth stations that do not require satellite tracking equipment. Precise station keeping accuracy of 0.02 degrees was obtained.

  15. Tracking wildlife by satellite: Current systems and performance

    Science.gov (United States)

    Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.

    1990-01-01

    Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.

  16. Precise Point Positioning with the BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS around the World. The Position and Navigation Data Analyst (PANDA software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP. The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  17. Precise point positioning with the BeiDou navigation satellite system.

    Science.gov (United States)

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  18. A Small Ku-Band Polarization Tracking Active Phased Array for Mobile Satellite Communications

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2013-01-01

    Full Text Available A compact polarization tracking active phased array for Ku-band mobile satellite signal reception is presented. In contrast with conventional mechanically tracking antennas, the approach presented here meets the requirements of beam tracking and polarization tracking simultaneously without any servo components. The two-layer stacked square patch fed by two probes is used as antenna element. The impedance bandwidth of 16% for the element covers the operating frequency range from 12.25 GHz to 12.75 GHz. In the presence of mutual coupling, the dimensional parameters for each element of the small 7 × 7 array are optimized during beam scanning and polarization tracking. The compact polarization tracking modules based on the low-temperature cofired ceramic (LTCC system-in-package (SiP technology are proposed. A small active phased array prototype with the size of 120 mm (length × 120 mm (width × 55 mm (height is developed. The measured polarization tracking patterns of the prototype are given. The polarization tracking beam can be steered in the elevation up to 50°. The gain of no less than 16.0 dBi and the aperture efficiency of more than 50% are obtained. The measured and simulated polarization tracking patterns agreed well.

  19. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1988-06-01

    Full Text Available The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O and computed observation(C was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed from mean orbital elements of TBUS and real data obtained from tracking 1.707GHz HRPT signal of NOAA-9 using 5 meter auto-track antenna in Radio Research Laboratory. According to tracking data either Gauss method or Herrick-Gibbs method was applied to preliminary orbit determination. In the differential correction stage we used both of the Escobal(1975's analytical method and numerical ones are nearly consistent. And the differentially corrected orbit converged to the same value in spite of the differences between preliminary orbits of each time span.

  20. Bird migration and avian influenza: a comparison of hydrogen stable isotopes and satellite tracking methods

    Science.gov (United States)

    Bridge, Eli S.; Kelly, Jeffrey F.; Xiao, Xiangming; Takekawa, John Y.; Hill, Nichola J.; Yamage, Mat; Haque, Enam Ul; Islam, Mohammad Anwarul; Mundkur, Taej; Yavuz, Kiraz Erciyas; Leader, Paul; Leung, Connie Y.H.; Smith, Bena; Spragens, Kyle A.; Vandegrift, Kurt J.; Hosseini, Parviez R.; Saif, Samia; Mohsanin, Samiul; Mikolon, Andrea; Islam, Ausrafal; George, Acty; Sivananinthaperumal, Balachandran; Daszak, Peter; Newman, Scott H.

    2014-01-01

    Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a continental scale is prohibitively expensive. This study explores the utility of stable isotope ratios in feathers in examining both the distances traveled by migratory birds and variation in migration behavior. We compared the satellite-derived movement data of 22 ducks from 8 species captured at wintering areas in Bangladesh, Turkey, and Hong Kong with deuterium ratios (δD) in the feathers of these and other individuals captured at the same locations. We derived likely molting locations from the satellite tracking data and generated expected isotope ratios based on an interpolated map of δD in rainwater. Although δD was correlated with the distance between wintering and molting locations, surprisingly, measured δD values were not correlated with either expected values or latitudes of molting sites. However, population-level parameters derived from the satellite-tracking data, such as mean distance between wintering and molting locations and variation in migration distance, were reflected by means and variation of the stable isotope values. Our findings call into question the relevance of the rainfall isotope map for Asia for linking feather isotopes to molting locations, and underscore the need for extensive ground truthing in the form of feather-based isoscapes. Nevertheless, stable isotopes from feathers could inform disease models by characterizing the degree to which regional breeding populations interact at common wintering locations. Feather isotopes also could aid in surveying wintering locations to determine where high-resolution tracking techniques (e.g. satellite tracking) could most effectively be employed. Moreover, intrinsic markers such as stable isotopes offer the only means of inferring movement information from

  1. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Directory of Open Access Journals (Sweden)

    Mitra Shariatinajafabadi

    Full Text Available Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI, has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7. Data were collected over three years (2008-2010. Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%, while the Greenland geese followed an earlier stage (GWI 20-40%. Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration, thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  2. Troublesome transportation concerns can be mitigated - RADMAT tracking system

    International Nuclear Information System (INIS)

    Harmon, L.H.

    1987-01-01

    There are three troublesome institutional concerns which face every large-quantity radioactive materials shipment - routing, pre-notification, and emergency response. People want to know: where's the shipment going and how's it getting there? States want to know what's being shipped and when? What kind of response to accidents is needed for this shipment and who'll respond? DOE is developing a transportation tracking system, based on a rapidly developing technology to determine geographical location using geo-positioning satellite systems. This technology will be used to track unclassified radioactive materials shipments in real-time. It puts those charged with monitoring transportation status on top of every shipment. Besides its practical benefits in the areas of logistics planning and execution, it demonstrates emergency preparedness has indeed been considered and close monitoring is possible. This paper will describe the system's technical detail, DOE plans and policy for its implementation, and the state of satellite positioning technology

  3. Comparison of different "along the track" high resolution satellite stereo-pair for DSM extraction

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.

    2013-10-01

    The possibility to create DEM from stereo pairs is based on the Pythagoras theorem and on the principles of photogrammetry that are applied to aerial photographs stereo pairs for the last seventy years. The application of these principles to digital satellite stereo data was inherent in the first satellite missions. During the last decades the satellite stereo-pairs were acquired across the track in different days (SPOT, ERS etc.). More recently the same-date along the track stereo-data acquisition seems to prevail (Terra ASTER, SPOT5 HRS, Cartosat, ALOS Prism) as it reduces the radiometric image variations (refractive effects, sun illumination, temporal changes) and thus increases the correlation success rate in any image matching.Two of the newest satellite sensors with stereo collection capability is Cartosat and ALOS Prism. Both of them acquire stereopairs along the track with a 2,5m spatial resolution covering areas of 30X30km. In this study we compare two different satellite stereo-pair collected along the track for DSM creation. The first one is created from a Cartosat stereopair and the second one from an ALOS PRISM triplet. The area of study is situated in Chalkidiki Peninsula, Greece. Both DEMs were created using the same ground control points collected with a Differential GPS. After a first control for random or systematic errors a statistical analysis was done. Points of certified elevation have been used to estimate the accuracy of these two DSMs. The elevation difference between the different DEMs was calculated. 2D RMSE, correlation and the percentile value were also computed and the results are presented.

  4. An acoustic system for autonomous navigation and tracking of marine fauna

    KAUST Repository

    De la Torre, Pedro; Salama, Khaled N.; Berumen, Michael L.

    2014-01-01

    A marine acoustic system for underwater target tracking is described. This system is part of the Integrated Satellite and Acoustic Telemetry (iSAT) project to study marine fauna. It is a microcontroller-based underwater projector and receiver. A

  5. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Science.gov (United States)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  6. A Microstrip Patch-Fed Short Backfire Antenna for the Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) Array

    Science.gov (United States)

    Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.

    2006-01-01

    Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.

  7. Code Tracking Algorithms for Mitigating Multipath Effects in Fading Channels for Satellite-Based Positioning

    Directory of Open Access Journals (Sweden)

    Markku Renfors

    2007-12-01

    Full Text Available The ever-increasing public interest in location and positioning services has originated a demand for higher performance global navigation satellite systems (GNSSs. In order to achieve this incremental performance, the estimation of line-of-sight (LOS delay with high accuracy is a prerequisite for all GNSSs. The delay lock loops (DLLs and their enhanced variants (i.e., feedback code tracking loops are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the binary offset carrier (BOC modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this paper analyzes feedback as well as feedforward code tracking algorithms and proposes the peak tracking (PT methods, which are combinations of both feedback and feedforward structures and utilize the inherent advantages of both structures. We propose and analyze here two variants of PT algorithm: PT with second-order differentiation (Diff2, and PT with Teager Kaiser (TK operator, which will be denoted herein as PT(Diff2 and PT(TK, respectively. In addition to the proposal of the PT methods, the authors propose also an improved early-late-slope (IELS multipath elimination technique which is shown to provide very good mean-time-to-lose-lock (MTLL performance. An implementation of a noncoherent multipath estimating delay locked loop (MEDLL structure is also presented. We also incorporate here an extensive review of the existing feedback and feedforward delay estimation algorithms for direct sequence code division multiple access (DS-CDMA signals in satellite fading channels, by taking into account the impact of binary phase shift keying (BPSK as well as the newly proposed BOC modulation

  8. Software Design of Mobile Antenna for Auto Satellite Tracking Using Modem Correction and Elevation Azimuth Method

    Directory of Open Access Journals (Sweden)

    Djamhari Sirat

    2010-10-01

    Full Text Available Pointing accuracy is an important thing in satellite communication. Because the satellite’s distance to the surface of the earth's satellite is so huge, thus 1 degree of pointing error will make the antenna can not send data to satellites. To overcome this, the auto-tracking satellite controller is made. This system uses a microcontroller as the controller, with the GPS as the indicator location of the antenna, digital compass as the beginning of antenna pointing direction, rotary encoder as sensor azimuth and elevation, and modem to see Eb/No signal. The microcontroller use serial communication to read the input. Thus the programming should be focused on in the UART and serial communication software UART. This controller use 2 phase in the process of tracking satellites. Early stages is the method Elevation-Azimuth, where at this stage with input from GPS, Digital Compass, and the position of satellites (both coordinates, and height that are stored in microcontroller. Controller will calculate the elevation and azimuth angle, then move the antenna according to the antenna azimuth and elevation angle. Next stages is correction modem, where in this stage controller only use modem as the input, and antenna movement is set up to obtain the largest value of Eb/No signal. From the results of the controller operation, there is a change in the value of the original input level from -81.7 dB to -30.2 dB with end of Eb/No value, reaching 5.7 dB.

  9. Tracking and Data Relay Satellite System /TDRSS/ telecommunication services

    Science.gov (United States)

    Deerkoski, L. F.

    1975-01-01

    The TDRSS and tracking services define the telecommunication performance of the TDRSS between the RF interface with user spacecraft and the data interface with NASCOM at the ground terminal. Attention is given to system constraints, forward link services, multiple-access signal design parameters, S-band single access signal design parameters, multiple-access return link services, and single-access return link services.

  10. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    Science.gov (United States)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth

  11. PEMODELAN DISTRIBUSI KESESUAIAN HABITAT SINGGAH SIKEP MADU ASIA (Pernis ptilorhynchus DI PULAU RUPAT BERDASARKAN DATA SATELLITE- TRACKING

    Directory of Open Access Journals (Sweden)

    Hendry Pramono

    2016-01-01

    Full Text Available Birds of prey are one of environmental changes indicators because of their position as top predator. Many of them are migratory species that migrate from northern hemisphere to southern hemisphere, and use Rupat Island (in Riau Province as stopover habitat. One of them is Oriental Honey Buzzard (Pernis ptilorhynchus whose satellite tracking information (from 2006-2009 are available. This study aimed at identifying distribution characteristics of stopover habitats of Oriental Honey-buzzard in Rupat Island based on satellite tracking data using geographic information system (GIS. Several environmental variables (i.e. slope, elevation, land cover were processed into distance to the nearest map and analyzed using logistic regression analysis. The result showed that distribution of stopover habitats covered 1 276.67 km2 (87% of totally Rupat Island (1 461.95 km2. This distribution was mostly influenced by food availability and thermal wind. Identification of these habitat characteristics provides a baseline data for managing their stopover habitats and ecologically-based development of Rupat Island. Keywords: Logistic Regretion, Pernis ptilorhynchus, Rupat Island, Sattelite-tracking, Stopover habitat characteristic

  12. WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)

    International Nuclear Information System (INIS)

    SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

    2000-01-01

    The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements

  13. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  14. Using Satellite Imagery to Identify Tornado Damage Tracks and Recovery from the April 27, 2011 Severe Weather Outbreak

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Bell, Jordan R.

    2014-01-01

    Emergency response to natural disasters requires coordination between multiple local, state, and federal agencies. Single, relatively weak tornado events may require comparatively simple response efforts; but larger "outbreak" events with multiple strong, long-track tornadoes can benefit from additional tools to help expedite these efforts. Meteorologists from NOAA's National Weather Service conduct field surveys to map tornado tracks, assess damage, and determine the tornado intensity following each event. Moderate and high resolution satellite imagery can support these surveys by providing a high-level view of the affected areas. Satellite imagery could then be used to target areas for immediate survey or to corroborate the results of the survey after it is completed. In this study, the feasibility of using satellite imagery to identify tornado damage tracks was determined by comparing the characteristics of tracks observed from low-earth orbit to tracks assessed during the official NWS storm survey process. Of the 68 NWS confirmed centerlines, 24 tracks (35.3%) could be distinguished from other surface features using satellite imagery. Within each EF category, 0% of EF-0, 3% of EF-1, 50% of EF-2, 77.7% of EF-3, 87.5% of EF-4 and 100% of EF-5 tornadoes were detected. It was shown that satellite data can be used to identify tornado damage tracks in MODIS and ASTER NDVI imagery, where damage to vegetation creates a sharp drop in values though the minimum EF-category which can be detected is dependent upon the type of sensor used and underlying vegetation. Near-real time data from moderate resolution sensors compare favorably to field surveys after the event and suggest that the data can provide some value in the assessment process.

  15. A preliminary study of level 1A data processing of a low–low satellite to satellite tracking mission

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-09-01

    Full Text Available With the Gravity Recovery and Climate Experiment (GRACE mission as the prime example, an overview is given on the management and processing of Level 1A data of a low–low satellite to satellite tracking mission. To illustrate the underlying principle and algorithm, a detailed study is made on the K-band ranging (KBR assembly, which includes the measurement principles, modeling of noises, the generation of Level 1A data from that of Level 0 as well as Level 1A to Level 1B data processing.

  16. The Accuracy Assessment of Determining the Axis of Railway Track Basing on the Satellite Surveying

    Science.gov (United States)

    Koc, Władysław; Specht, Cezary; Chrostowski, Piotr; Palikowska, Katarzyna

    2012-09-01

    In 2009, at the Gdansk University of Technology there have been carried out, for the first time, continuous satellite surveying of railway track by the use of the relative phase method based on geodesic active network ASG-EUPOS and NAVGEO service. Still continuing research works focused on the GNSS multi-receivers platform evaluation for projecting and stock-taking. In order to assess the accuracy of the railway track axis position, the values of deviations of transverse position XTE (Cross Track Error) were evaluated. In order to eliminate the influence of random measurement errors and to obtain the coordinates representing the actual shape of the track, the XTE variable was analyzed by signal analysis methods (Chebyshev low-pass filtering and fast Fourier transform). At the end the paper presents the module of the computer software SATTRACK which currently has been developing at the Gdansk University of Technology. The program serves visualization, assessment and design process of railway track, adapted to the technique of continuous satellite surveying. The module called TRACK STRAIGHT is designed to assess the straight sections. A description of its operation as well as examples of its functions has been presented.

  17. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  18. An overview of reference user services during the ATDRSS (Advanced Tracking and Data Relay Satellite System) era

    Science.gov (United States)

    Weinberg, Aaron

    1989-01-01

    The Tracking and Data Relay Satellite System (TDRSS) is an integral part of the overall NASA Space Network (SN) that will continue to evolve into the 1990's. Projections for the first decade of the 21st century indicate the need for an SN evolution that must accommodate growth int he LEO user population and must further support the introduction of new/improved user services. A central ingredient of this evolution is an Advanced TDRSS (ATDRSS) follow-on to the current TDRSS that must initiate operations by the late 1990's in a manner that permits an orderly transition from the TDRSS to the ATDRSS era. An SN/ATDRSS architectural and operational concept that will satisfy the above goals is being developed. To this date, an SN/ATDRSS baseline concept was established that provides users with an end-to-end data transport (ENDAT) service. An expanded description of the baseline ENDAT concept, from the user perspective, is provided with special emphasis on the TDRSS/ATDRSS evolution. A high-level description of the end-to-end system that identifies the role of ATDRSS is presented; also included is a description of the baseline ATDRSS architecture and its relationship with the TDRSS 1996 baseline. Other key features of the ENDAT service are then expanded upon, including the multiple grades of service, and the RF telecommunications/tracking services to be available. The ATDRSS service options are described.

  19. Satellite tracking of a young Steppe Eagle from the United Arab ...

    African Journals Online (AJOL)

    Following recovery and successful rehabilitation, a young Steppe Eagle Aquila nipalensis was tagged with a 45 g GPS satellite transmitter to track its migration and identify potential wintering and summering areas of the species passing through the United Arab Emirates (UAE). The study is part of a larger study on ...

  20. Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks

    Science.gov (United States)

    Li, Xingxing; Yuan, Yongqiang; Zhu, Yiting; Huang, Jiande; Wu, Jiaqi; Xiong, Yun; Zhang, Xiaohong; Li, Xin

    2018-04-01

    In this contribution, we focus on the precise orbit determination (POD) for BDS3 experimental satellites with the international GNSS Monitoring and Assessment System (iGMAS) and Multi-GNSS Experiment (MGEX) tracking networks. The datasets of DOY (day of year) 001-230 in 2017 are analyzed with different processing strategies. By comparing receiver clock biases and receiver B1I-B3I DCBs, it is confirmed that there is no obvious systematic bias between experimental BDS3 and BDS2 in the common B1I and B3I signals, which indicates that experimental BDS3 and BDS2 can be treated as one system when performing combined POD. With iGMAS-only BDS3 stations, the 24-h overlap RMS of BDS3 + BDS2 + GPS combined POD is 24.3, 16.1 and 8.4 cm in along-track, cross-track and radial components, which is better than BDS3-only POD by 80-90% and better than BDS3+BDS2 combined POD by about 10%. With more stations (totally 20 stations from both iGMAS and MGEX) and the proper ambiguity resolution strategy (GEO ambiguities are float and BDS3 ambiguities are fixed), the performance of BDS3 POD can be further improved to 14.6, 7.9 and 3.7 cm, respectively, in along-track, cross-track and radial components, which is comparable to the performance of BDS2 POD. The 230-day SLR validations of C32, C33 and C34 show that the mean differences of - 3.48 , 7.81 and 8.19 cm can be achieved, while the STD is 13.35, 13.46 and 13.11 cm, respectively. Furthermore, the 230-day overlap comparisons reveal that C31 most likely still uses an orbit-normal mode and exhibits similar orbit modeling problems in orbit-normal periods as found in most of the BDS2 satellites.

  1. SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites

    Science.gov (United States)

    Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.

    1993-01-01

    An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.

  2. Mobility management in satellite networks

    Science.gov (United States)

    Johanson, Gary A.

    1995-01-01

    This paper addresses the methods used or proposed for use in multi-beam and/or multi-satellite networks designed to provide Mobile Satellite Services (MSS). Specific topics include beam crossover in the North American Mobile Satellite (MSAT) system as well as registration and live call hand-off for a multi-regional geosynchronous (GEO) satellite based system and a global coverage Low Earth Orbiting (LEO) system. In the MSAT system, the individual satellite beams cover very large geographic areas so the need for live call hand-off was not anticipated. This paper discusses the methods used to keep track of the beam location of the users so that incoming call announcements or other messages may be directed to them. Proposed new GEO systems with large numbers of beams will provide much smaller geographic coverage in individual beams and thus the need arises to keep track of the user's location as well as to provide live call hand-off as the user traverses from beam to beam. This situation also occurs in proposed LEO systems where the problems are worsened by the need for satellite to satellite hand-off as well as beam to beam hand-off within a single satellite. The paper discusses methods to accomplish these handoffs and proposes system architectures to address the various hand-off scenarios.

  3. The precision of today's satellite laser ranging systems

    Science.gov (United States)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-06-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  4. Automated cloud tracking system for the Akatsuki Venus Climate Orbiter data

    Science.gov (United States)

    Ogohara, Kazunori; Kouyama, Toru; Yamamoto, Hiroki; Sato, Naoki; Takagi, Masahiro; Imamura, Takeshi

    2012-02-01

    Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude-latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude-latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude-latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude-latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude-latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.

  5. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data

    Science.gov (United States)

    Sun, Liang; Li, Qiu-Yang

    2017-04-01

    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for

  6. Authenticated tracking and monitoring system (ATMS) tracking shipments from an Australian uranium mine

    International Nuclear Information System (INIS)

    Schoeneman, J.L.

    1998-01-01

    The Authenticated Tracking and Monitoring System (ATMS) answers the need for global monitoring of the status and location of sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items and environmental conditions. A receiver and processing unit collect a variety of sensor event data. The collected data are transmitted to the INMARSAT satellite communication system, which then sends the data to appropriate ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements. Following discussions between the Australian Safeguards Office (ASO), the US Department of Energy (DOE), and Sandia National Laboratories (SNL) in early 1995, the parties mutually agreed to conduct and evaluate a field trial prototype ATMS to track and monitor shipments of uranium ore concentrate (UOC) from an operating uranium mine in Australia to a final destination in Rotterdam, the Netherlands, with numerous stops along the way. During the months of February and March 1998, the trial was conducted on a worldwide basis, with tracking and monitoring stations located at sites in both Australia and the US. This paper describes ATMS and the trial

  7. Kinematic Orbit Determination Method Optimization and Test Analysis for BDS Satellites with Short-arc Tracking Data

    Directory of Open Access Journals (Sweden)

    GUO Rui

    2017-04-01

    Full Text Available Rapid orbit recovery is a puzzle for the BDS satellites after orbit maneuvers. Two kinematic orbit determination methods are studied, with two orbit determination models being established. The receiver system error and serious multipath error exist in the BDS system. The co-location method is proposed to estimate and calibrate the receiver system errors. A CNMC (code noise and multipath correction method is introduced to weaken the multipath error. Therefore the data quality is controlled efficiently for the receivers in the short tracking arc. The GEO/IGSO/MEO real data is emploied to carry out tests and validation. Using 10 min short tracking arc, the kinematic precise orbit determination accuracy is about 3.27 m for the GEOs, and 8.19 m for the IGSOs, and 5.9 m for the MEOs. Rapid orbit determination is achieved, which satisfying the orbit requirements from the BDS RDSS services. The kinematic precise orbit determination method also supports the RDSS service walking up to the global world.

  8. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  9. Optical Tracking Data Validation and Orbit Estimation for Sparse Observations of Satellites by the OWL-Net.

    Science.gov (United States)

    Choi, Jin; Jo, Jung Hyun; Yim, Hong-Suh; Choi, Eun-Jung; Cho, Sungki; Park, Jang-Hyun

    2018-06-07

    An Optical Wide-field patroL-Network (OWL-Net) has been developed for maintaining Korean low Earth orbit (LEO) satellites' orbital ephemeris. The OWL-Net consists of five optical tracking stations. Brightness signals of reflected sunlight of the targets were detected by a charged coupled device (CCD). A chopper system was adopted for fast astrometric data sampling, maximum 50 Hz, within a short observation time. The astrometric accuracy of the optical observation data was validated with precise orbital ephemeris such as Consolidated Prediction File (CPF) data and precise orbit determination result with onboard Global Positioning System (GPS) data from the target satellite. In the optical observation simulation of the OWL-Net for 2017, an average observation span for a single arc of 11 LEO observation targets was about 5 min, while an average optical observation separation time was 5 h. We estimated the position and velocity with an atmospheric drag coefficient of LEO observation targets using a sequential-batch orbit estimation technique after multi-arc batch orbit estimation. Post-fit residuals for the multi-arc batch orbit estimation and sequential-batch orbit estimation were analyzed for the optical measurements and reference orbit (CPF and GPS data). The post-fit residuals with reference show few tens-of-meters errors for in-track direction for multi-arc batch and sequential-batch orbit estimation results.

  10. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  11. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    , an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  12. Role of TDRSS in tracking and data acquisition

    Science.gov (United States)

    Spearing, R. E.

    1980-01-01

    The integration and operation of the Tracking Data Relay Satellite System (TDRSS) into the NASA Communications Network (NASCOM) equipment and services is described. The system concept employs spacecraft in geosynchronous orbit, operating as communications front-ends, and a single ground terminal, which provides primary tracking and data acquisition services for earth-orbiting user satellites and for the Space Shuttle. The TDRSS system is further characterized by real-time throughput of user data and a high degree of automation.

  13. Tracking- and Scintillation-Aware Channel Model for GEO Satellite to Land Mobile Terminals at Ku-Band

    Directory of Open Access Journals (Sweden)

    Ali M. Al-Saegh

    2015-01-01

    Full Text Available Recent advances in satellite to land mobile terminal services and technologies, which utilize high frequencies with directional antennas, have made the design of an appropriate model for land mobile satellite (LMS channels a necessity. This paper presents LMS channel model at Ku-band with features that enhance accuracy, comprehensiveness, and reliability. The effect of satellite tracking loss at different mobile terminal speeds is considered for directional mobile antenna systems, a reliable tropospheric scintillation model for an LMS scenario at tropical and temperate regions is presented, and finally a new quality indicator module for different modulation and coding schemes is included. The proposed extended LMS channel (ELMSC model is designed based on actual experimental measurements and can be applied to narrow- and wide-band signals at different regions and at different speeds and multichannel states. The proposed model exhibits lower root mean square error (RMSE and significant performance observation compared with the conventional model in terms of the signal fluctuations, fade depth, signal-to-noise ratio (SNR, and quality indicators accompanied for several transmission schemes.

  14. Networks systems and operations. [wideband communication techniques for data links with satellites

    Science.gov (United States)

    1975-01-01

    The application of wideband communication techniques for data links with satellites is discussed. A diagram of the demand assigned voice communications system is provided. The development of prototype integrated spacecraft paramps at S- and C-bands is described and the performance of space-qualified paramps is tabulated. The characteristics of a dual parabolic cylinder monopulse zoom antenna for use with the tracking and data relay satellite system (TDRSS) are analyzed. The development of a universally applicable transponder at S-band is reported. A block diagram of the major subassemblies of the S-band transponder is included. The technology aspects of network timing and synchronization of communication systems are to show the use of the Omega navigation system. The telemetry data compression system used during the Skylab program is evaluated.

  15. Formation Flying/Satellite Swarm Concept Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    NASA needs a method of not only propelling and rotating small satellites, but also to track their position and orientation. We propose a concept that will, for the first time, demonstrate both tracking and propulsion simultaneously in the same system.

  16. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  17. Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket

    Science.gov (United States)

    Braun, Benjamin; Grillenberger, Andreas; Markgraf, Markus

    2018-05-01

    Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.

  18. An ice-motion tracking system at the Alaska SAR facility

    Science.gov (United States)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  19. Satellite services system overview

    Science.gov (United States)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  20. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  1. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    Science.gov (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  2. The along track scanning radiometer - an analysis of coincident ship and satellite measurements

    Science.gov (United States)

    Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.

    1993-05-01

    Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.

  3. Multi-GNSS orbit determination using satellite laser ranging

    Science.gov (United States)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  4. Integration of Satellite Tracking Data and Satellite Images for Detailed Characteristics of Wildlife Habitats

    Science.gov (United States)

    Dobrynin, D. V.; Rozhnov, V. V.; Saveliev, A. A.; Sukhova, O. V.; Yachmennikova, A. A.

    2017-12-01

    Methods of analysis of the results got from satellite tracking of large terrestrial mammals differ in the level of their integration with additional geographic data. The reliable fine-scale cartographic basis for assessing specific wildlife habitats can be developed through the interpretation of multispectral remote sensing data and extrapolation of the results to the entire estimated species range. Topographic maps were ordinated according to classified features using self-organizing maps (Kohonen's SOM). The satellite image of the Ussuriiskyi Nature Reserve area was interpreted for the analysis of movement conditions for seven wild Amur tigers ( Panthera tigris altaica) equipped with GPS collars. 225 SOM classes for cartographic visualization are sufficient for the detailed mapping of all natural complexes that were identified as a result of interpretation. During snow-free periods, tigers preferred deciduous and shrub associations at lower elevations, as well as mixed forests in the valleys of streams that are adjacent to sparse forests and shrub watershed in the mountain ranges; during heavy snow periods, the animals preferred the entire range of plant communities in different relief types, except for open sites in meadows and abandoned fields at foothills. The border zones of different biotopes were typically used by the tigers during all seasons. Amur tigers preferred coniferous forests for long-term movements.

  5. An acoustic system for autonomous navigation and tracking of marine fauna

    KAUST Repository

    De la Torre, Pedro

    2014-08-01

    A marine acoustic system for underwater target tracking is described. This system is part of the Integrated Satellite and Acoustic Telemetry (iSAT) project to study marine fauna. It is a microcontroller-based underwater projector and receiver. A narrow-band, passive sonar detection architecture is described from signal generation, through transduction, reception, signal processing and up to tone extraction. Its circuit and operation principles are described. Finally, a comparison between the current energy detection method versus an alternative matched filter approach is included.

  6. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    Science.gov (United States)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  7. Design and Implementation of Browser based GPS/GPRS Vehicle Positioning and Tracking System

    Directory of Open Access Journals (Sweden)

    Zhang Keqiang

    2015-01-01

    Full Text Available This paper mainly describes a vehicle positioning and tracking system which is based on browser, GPS and GPRS. And this system takes advantage of Baidu Map as basic material to show vehicle status, which enables drivers and supervisor to monitor the vehicle’s current and past positions. The vehicle’s location data is got from satellites, and these data is sent to the central server through GPRS, the central server will store formatted data into the database after the data is parsed; Later, these data stored in the database will be used by web application and displayed on the map as markers. This paper also involves the implementation on mobile side, and this system used Baidu map JavaScript interface, Ajax, JSP and JSON to implement the vehicle positioning and tracking system.

  8. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  9. Satellite tracking and stable isotope analysis link wintering and feeding grounds of North Atlantic baleen whales

    NARCIS (Netherlands)

    e Silva, Monica Almeida; Prieto, Rui; Gauffier, Pauline; Palsboll, Per; Bérubé, Martine; Colaco, Ana

    2017-01-01

    Knowledge of the distribution of baleen whales throughout their annual cycle is critical for understanding their ecology, life history and behavior, and for their effective conservation. We combined analysis of stable isotopes (δ15N and δ13C) and satellite tracking data of blue (Balaenoptera

  10. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    This paper is partly a tutorial, telling systematically how one goes about calculating the total annual costs of a satellite communications system, and partly the expression of some original ideas on the choice of parameters so as to minimize these costs. The calculation of costs can be divided into two broad categories. The first is technical and is concerned with estimating what particular equipment will cost and what will be the annual expense to maintain and operate it. One starts in the estimation of any new system by listing the principal items of equipment, such as satellites, earth stations of various sizes and functions, telemetry and tracking equipment and terrestrial interfaces, and then estimating how much each item will cost. Methods are presented for generating such estimates, based on a knowledge of the gross parameters, such as antenna size, coverage area, transmitter power and information rate. These parameters determine the system performance and it is usually possible, knowing them, to estimate the costs of the equipment rather well. Some formulae based on regression analyses are presented. Methods are then given for estimating closely related expenses, such as maintenance and operation, and then an approximate method is developed for estimating terrestrial interconnection costs. It is pointed out that in specific cases when tariff and geographical information are available, it is usually better to work with specific data, but nonetheless it is often desirable, especially in global system estimating, to approximate these interconnect costs without recourse to individual tariffs. The procedure results in a set of costs for the purchase of equipment and its maintenance, and a schedule of payments. Some payments will be incurred during the manufacture of the satellite and before any systems operation, but many will not be incurred until the system is no longer in use, e.g. incentives. In any case, with the methods presented in the first section, one

  11. Information management system: A summary discussion. [for use in the space shuttle sortie, modular space station and TDR satellite

    Science.gov (United States)

    Sayers, R. S.

    1972-01-01

    An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.

  12. Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Fujisaki, Ikuko

    2010-01-01

    We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.

  13. Mathematical pointing model establishment of the visual tracking theodolite for satellites in two kinds of observation methods.

    Science.gov (United States)

    Zhang, Yuncheng

    The mathematical pointing model is establishment of the visual tracking theodolite for satellites in two kinds of observation methods at Yunnan Observatory, which is related to the digitalisation reform and the optical-electronic technique reform, is introduced respectively in this paper.

  14. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  15. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    Science.gov (United States)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  16. Precise Object Tracking under Deformation

    International Nuclear Information System (INIS)

    Saad, M.H.

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results. xiiiThe precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high

  17. Reliable Control of Ship-mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2010-01-01

    Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption in the communi...

  18. Dual Fine Tracking Control of a Satellite Laser Communication Uplink

    National Research Council Canada - National Science Library

    Noble, Louis A

    2006-01-01

    A dual fine tracking control system (FTCS) is developed for a single aperture optical communication receiver to compensate for high frequency disturbances affecting tracking of two incident laser communication beams...

  19. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  20. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  1. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    Science.gov (United States)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  2. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  3. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  4. Moderating Argos location errors in animal tracking data

    Science.gov (United States)

    Douglas, David C.; Weinziert, Rolf; Davidson, Sarah C.; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2012-01-01

    1. The Argos System is used worldwide to satellite-track free-ranging animals, but location errors can range from tens of metres to hundreds of kilometres. Low-quality locations (Argos classes A, 0, B and Z) dominate animal tracking data. Standard-quality animal tracking locations (Argos classes 3, 2 and 1) have larger errors than those reported in Argos manuals.

  5. Pennsylvania Source Term Tracking System

    International Nuclear Information System (INIS)

    1992-08-01

    The Pennsylvania Source Term Tracking System tabulates surveys received from radioactive waste generators in the Commonwealth of radioactive waste is collected each quarter from generators using the Low-Level Radioactive Waste Management Quarterly Report Form (hereafter called the survey) and then entered into the tracking system data base. This personal computer-based tracking system can generate 12 types of tracking reports. The first four sections of this reference manual supply complete instructions for installing and setting up the tracking system on a PC. Section 5 presents instructions for entering quarterly survey data, and Section 6 discusses generating reports. The appendix includes samples of each report

  6. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.; Bingham, D.N.; Anderson, A.A.

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device

  7. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  8. Field-Testing of an Active Laser Tracking System

    Science.gov (United States)

    Markov, V.; Khiznyak, A.; Woll, D.; Liu, S.

    Comprehensive space surveillance demands a more accurate technique in tracking multi-dimensional state vector (3D coordinate, velocity, vibration, etc.) of the space objects. RF radiometric techniques typically can not provide the needed accuracy, while passive optical (and laser) tracking systems can provide distance to the object and its angular position, but not a direct reading of velocity, the parameter of primary importance for space object tracking and characterization. Addressing this problem with active optical tracking techniques is challenging because of the great distances involved, the high velocity of the satellites, and the optical aberrations induced by the atmosphere. We have proposed a phase conjugation based laser tracking concept, and accomplished the first version of design and engineering of a prototype for an Active Laser Tracking System (ALTS). In its current state the ALTS is capable to demonstrate the very basics operational principles of the proposed active tracking technique. We then performed a number of experiments to prove operational capabilities of this prototype both at MetroLaser's lab environment and at Edwards AFB Test Range. In its current architecture the ALTS is comprised of two laser cavities, Master and Slave that are coupled through a Phase Conjugate Mirror (PCM) formed in a non-linear medium (NLM) set at Master laser cavity. By pumping NLM and forming PCM, Master laser establishes the cavities coupling mode and injects the photons in the slave cavity. It is essential that the specific features of the PCM not only serve to couple ALTS cavities, but also serves to compensate optical aberrations of the ALTS (gain media and optical elements of the laser resonator). Due to its ability to compensate optical aberrations, phase conjugate resonators are capable of sustaining oscillation with a remote target as an output coupler. The entire system comprises of several modules, including a laser, emitting/receiving telescope, gimbal

  9. Study of chaos in chaotic satellite systems

    Science.gov (United States)

    Khan, Ayub; Kumar, Sanjay

    2018-01-01

    In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.

  10. Satellite and acoustic tracking device

    KAUST Repository

    Berumen, Michael L.

    2014-02-20

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  11. Satellite and acoustic tracking device

    KAUST Repository

    Berumen, Michael L.; De la Torre, Pedro

    2014-01-01

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  12. Wildfire Detection and Tracking over Greece Using MSG‑SEVIRI Satellite Data

    Directory of Open Access Journals (Sweden)

    Nicolaos I. Sifakis

    2011-03-01

    Full Text Available Greece is a high risk Mediterranean country with respect to wildfires. This risk has been increasing under the impact of climate change, and in summer 2007 approximately 200,000 ha of vegetated land were burnt. The SEVIRI sensor, on board the Meteosat Second Generation (MSG geostationary satellite, is the only spaceborne sensor providing five and 15-minute observations of Europe in 12 spectral channels, including a short-wave infrared band sensitive to fire radiative temperature. In August 2007, when the bulk of the destructive wildfires started in Greece, the receiving station, operated by the Institute for Space Applications and Remote Sensing, provided us with a time series of MSG-SEVIRI images. These images were processed in order to test the reliability of a real‑time detection and tracking system and its complementarity to conventional means provided by the Fire Brigade. EUMETSAT’s Active Fire Monitoring (FIR image processing algorithm for fire detection and monitoring was applied to SEVIRI data, then fine-tuned according to Greek conditions, and evaluated. Alarm announcements from the Fire Brigade’s archives were used as ground truthing data in order to assess detection reliability and system performance. During the examined period, MSG-SEVIRI data successfully detected 82% of the fire events in Greek territory with less than 1% false alarms.

  13. Stratospheric aerosol effects from Soufriere Volcano as measured by the SAGE satellite system

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1982-01-01

    During its April 1979 eruption series, Soufriere Volcano produced two major stratospheric plumes that the SAGE (Stratospheric Aerosol and Gas Experiment) satellite system tracked to West Africa and the North Atlantic Ocean. The total mass of these plumes, whose movement and dispersion are in agreement with those deduced from meteorological data and dispersion theory, was less than 0.5 percent of the global stratospheric aerosol burden; no significant temperature or climate perturbation is therefore expected.

  14. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    Science.gov (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  15. Activities of Canadian Satellite Communications, Inc.

    Science.gov (United States)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  16. Second sound tracking system

    Science.gov (United States)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  17. Defining management units for cetaceans by combining genetics, morphology, acoustics and satellite tracking

    Directory of Open Access Journals (Sweden)

    Signe Sveegaard

    2015-01-01

    Full Text Available Managing animal units is essential in biological conservation and requires spatial and temporal identification of such units. Since even neighbouring populations often have different conservation status and face different levels of anthropogenic pressure, detailed knowledge of population structure, seasonal range and overlap with animals from neighbouring populations is required to manage each unit separately. Previous studies on genetic structure and morphologic separation suggests three distinct populations of harbour porpoises with limited geographic overlap in the North Sea (NS, the Belt Sea (BS and the Baltic Proper (BP region. In this study, we aim to identify a management unit for the BS population of harbour porpoises. We use Argos satellite data and genetics from biopsies of tagged harbour porpoises as well as acoustic data from 40 passive acoustic data loggers to determine management areas with the least overlap between populations and thus the least error when abundance and population status is estimated. Discriminant analysis of the satellite tracking data from the BS and NS populations showed that the best fit of the management unit border during the summer months was an east–west line from Denmark to Sweden at latitude 56.95°N. For the border between BS and BP, satellite tracking data indicate a sharp decline in population density at 13.5°E, with 90% of the locations being west of this line. This was supported by the acoustic data with the average daily detection rate being 27.5 times higher west of 13.5°E as compared to east of 13.5°E. By using this novel multidisciplinary approach, we defined a management unit for the BS harbour porpoise population. We recommend that these boundaries are used for future monitoring efforts of this population under the EU directives. The boundaries may also be used for conservation efforts during the summer months, while seasonal movements of harbour porpoises should be considered during

  18. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  19. Optical Tracking Data Validation and Orbit Estimation for Sparse Observations of Satellites by the OWL-Net

    Directory of Open Access Journals (Sweden)

    Jin Choi

    2018-06-01

    Full Text Available An Optical Wide-field patroL-Network (OWL-Net has been developed for maintaining Korean low Earth orbit (LEO satellites’ orbital ephemeris. The OWL-Net consists of five optical tracking stations. Brightness signals of reflected sunlight of the targets were detected by a charged coupled device (CCD. A chopper system was adopted for fast astrometric data sampling, maximum 50 Hz, within a short observation time. The astrometric accuracy of the optical observation data was validated with precise orbital ephemeris such as Consolidated Prediction File (CPF data and precise orbit determination result with onboard Global Positioning System (GPS data from the target satellite. In the optical observation simulation of the OWL-Net for 2017, an average observation span for a single arc of 11 LEO observation targets was about 5 min, while an average optical observation separation time was 5 h. We estimated the position and velocity with an atmospheric drag coefficient of LEO observation targets using a sequential-batch orbit estimation technique after multi-arc batch orbit estimation. Post-fit residuals for the multi-arc batch orbit estimation and sequential-batch orbit estimation were analyzed for the optical measurements and reference orbit (CPF and GPS data. The post-fit residuals with reference show few tens-of-meters errors for in-track direction for multi-arc batch and sequential-batch orbit estimation results.

  20. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    -agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour

  1. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element for an...

  2. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    NARCIS (Netherlands)

    de Weerd, N.; van Langevelde, F.; van Oeveren, H.; Nolet, Bart A.; Kölzsch, Andrea; Prins, H.H.T.; De Boer, W.F.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable

  3. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    NARCIS (Netherlands)

    Weerd, de N.; Langevelde, van F.; Oeveren, van H.; Nolet, B.A.; Kölzsch, A.; Prins, H.H.T.; Boer, de W.F.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data.We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable

  4. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  5. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets

  6. Dynamical history of coplanar two-satellite systems

    International Nuclear Information System (INIS)

    Ruskol, E.L.; Nikolajeva, E.V.; Syzdykov, A.S.

    1975-01-01

    One of the possible early states of the Earth-Moon system was a system of several large satellites around the Earth. The dynamical evolution of coplanar three-body systems is studied; a planet (Earth) and two massive satellites (proto-moons) with geocentric orbits of slightly different radii. Such configurations may arise in multiple satellite systems receding from a planet due to tidal friction. The numerical integration of the equations of motion shows that initially circular Keplerian orbits are soon transformed into disturbed elliptic orbits which are intersecting. The life-time of such a coplanar system between two probable physical collisions of satellites is roughly from one day to one year for satellite systems with radii less than 20 R(Earth), and may reach 100 yr for three-dimensional systems. This time-scale is short in comparison with the duration of the removal of satellites due to tides raised on the planet, which is estimated as 10 6 -10 8 yr for the same orbital dimensions. Therefore, the life-time of a system of several proto-moons is mainly determined by their tidal interactions with the Earth. For conditions which we have considered, the most probable result of the evolution was coalescence of satellites as the consequence of the collisions. (Auth.)

  7. Noncoherent Doppler tracking: first flight results

    Science.gov (United States)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  8. Texstar: The all-Texas educational satellite system

    Science.gov (United States)

    1990-01-01

    Longhorn Satellite Company (LSC) has designed Texstar, and educational satellite communications system which will be considered as a means of equalizing the distribution of educational resources throughout the state of Texas. Texstar will be capable of broadcasting live lectures and documentaries in addition to transmitting data from a centralized receiving-transmitting station. Included in the design of Texstar is the system and subsystem design for the satellite and the design of the ground stations. The launch vehicle used will be the Texas-built Conestoga 421-48. The Texstar system incorporates three small satellites in slightly inclined geosynchronous orbits. Due to the configuration and spacing of these satellites, the system will be accessed as if it were one large, geostationary satellite. Texstar is shown to be a viable option to the educational crisis in the state of Texas.

  9. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  10. Function integrated track system

    OpenAIRE

    Hohnecker, Eberhard

    2010-01-01

    The paper discusses a function integrated track system that focuses on the reduction of acoustic emissions from railway lines. It is shown that the combination of an embedded rail system (ERS), a sound absorbing track surface, and an integrated mini sound barrier has significant acoustic advantages compared to a standard ballast superstructure. The acoustic advantages of an embedded rail system are particularly pronounced in the case of railway bridges. Finally, it is shown that a...

  11. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  12. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  13. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Directory of Open Access Journals (Sweden)

    Christopher L. Coxen

    2017-07-01

    Full Text Available Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1 satellite tracked birds and 2 observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4, and high overlap between suitability scores (I statistic 0.786 and suitable habitat patches (relative rank 0.639. Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  14. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Science.gov (United States)

    Coxen, Christopher L.; Frey, Jennifer K.; Carleton, Scott A.; Collins, Daniel P.

    2017-01-01

    Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata) species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1) satellite tracked birds and 2) observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4), and high overlap between suitability scores (I statistic 0.786) and suitable habitat patches (relative rank 0.639). Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  15. Tracking errors in a prototype real-time tumour tracking system

    International Nuclear Information System (INIS)

    Sharp, Gregory C; Jiang, Steve B; Shimizu, Shinichi; Shirato, Hiroki

    2004-01-01

    In motion-compensated radiation therapy, radio-opaque markers can be implanted in or near a tumour and tracked in real-time using fluoroscopic imaging. Tracking these implanted markers gives highly accurate position information, except when tracking fails due to poor or ambiguous imaging conditions. This study investigates methods for automatic detection of tracking errors, and assesses the frequency and impact of tracking errors on treatments using the prototype real-time tumour tracking system. We investigated four indicators for automatic detection of tracking errors, and found that the distance between corresponding rays was most effective. We also found that tracking errors cause a loss of gating efficiency of between 7.6 and 10.2%. The incidence of treatment beam delivery during tracking errors was estimated at between 0.8% and 1.25%

  16. Scientific analysis of satellite ranging data

    Science.gov (United States)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  17. Precise object tracking under deformation

    International Nuclear Information System (INIS)

    Saad, M.H

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This frame-work focuses on the precise object tracking under deformation such as scaling , rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results.

  18. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  19. Polar bears from space: Assessing satellite imagery as a tool to track Arctic wildlife

    Science.gov (United States)

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  20. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Directory of Open Access Journals (Sweden)

    Seth Stapleton

    Full Text Available Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105 was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152. Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  1. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Science.gov (United States)

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  2. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    Science.gov (United States)

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  3. Non-exclusive satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.E. (Power Conversion Technology, Inc., San Diego, Calif.); Cowhey, P.F. (California, University, La Jolla, Calif.)

    1980-09-01

    A modification of the satellite solar power system employing smaller satellites that are not stationary but move in circular or elliptical orbits of two or three hour periods is discussed. The orbits could be inclined at plus or minus 63.4 deg, 73.1 deg, or 14.3 deg to the equatorial plane. This Interregional or Isoinsolation Power System (IPS) greatly reduces the mass and cost of the antenna needed in the sky and the area required for the rectenna and safety region on the ground (the product of the areas of the antennas and rectennas of the IPS system being between 10 and 20 times lower than that required in the conventional SPS system). International control of IPS through a Solar Satellite Consortium (Solsat) is advocated, patterned after the successful Intelsat consortium, and it is stressed that the system must not be allowed to acquire a military capacity. It is emphasized that the smaller rectennas would not destabilize the ionosphere.

  4. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    Science.gov (United States)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  5. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  6. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  7. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  8. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  9. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  10. Application of one-axis sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Sefa, Ibrahim; Demirtas, Mehmet; Colak, Ilhami [Gazi University, Faculty of Technical Education, Department of Electrical Education, GEMEC-Gazi Electric Machines and Control Group, Ankara (Turkey)

    2009-11-15

    This paper introduces design and application of a novel one-axis sun tracking system which follows the position of the sun and allows investigating effects of one-axis tracking system on the solar energy in Turkey. The tracking system includes a serial communication interface based on RS 485 to monitor whole processes on a computer screen and to plot data as graphic. In addition, system parameters such as the current, the voltage and the panel position have been observed by means of a microcontroller. The energy collected is measured and compared with a fixed solar system for the same solar panel. The results show that the solar energy collected on the tracking system is considerably much efficient than the fixed system. The tracking system developed in this study provides easy installation, simple mechanism and less maintenance. (author)

  11. Application of one-axis sun tracking system

    International Nuclear Information System (INIS)

    Sefa, Ibrahim; Demirtas, Mehmet; Colak, Ilhami

    2009-01-01

    This paper introduces design and application of a novel one-axis sun tracking system which follows the position of the sun and allows investigating effects of one-axis tracking system on the solar energy in Turkey. The tracking system includes a serial communication interface based on RS 485 to monitor whole processes on a computer screen and to plot data as graphic. In addition, system parameters such as the current, the voltage and the panel position have been observed by means of a microcontroller. The energy collected is measured and compared with a fixed solar system for the same solar panel. The results show that the solar energy collected on the tracking system is considerably much efficient than the fixed system. The tracking system developed in this study provides easy installation, simple mechanism and less maintenance.

  12. Seasonal and circadian biases in bird tracking with solar GPS-tags

    OpenAIRE

    Silva, Rafa; Afán, Isabel; Gil, Juan A.; Bustamante, Javier

    2017-01-01

    Global Positioning System (GPS) tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus), tracked for several years...

  13. Ultra-Wideband Tracking System Design for Relative Navigation

    Science.gov (United States)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  14. A new digital land mobile satellite system

    Science.gov (United States)

    Schneider, Philip

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  15. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish P., E-mail: Amish.Shah@orlandohealth.com [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States); Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L. [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States)

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still

  16. A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series

    Directory of Open Access Journals (Sweden)

    Keke Zhang

    2018-01-01

    Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.

  17. Space Solar Power: Satellite Concepts

    Science.gov (United States)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  18. Thinking Tracks for Integrated Systems Design

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Denkena, B.; Gausemeijer, J.; Scholz-Reiter, B.

    2012-01-01

    The paper investigates systems thinking and systems engineering. After a short literature review, the paper presents, as a means for systems thinking, twelve thinking tracks. The tracks can be used as creativity starter, checklist, and as means to investigate effects of design decisions taken early

  19. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    Science.gov (United States)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  20. Core Flight System Satellite Starter Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — The Core Flight System Satellite Starter Kit (cFS Kit) will allow a small satellite or CubeSat developer to rapidly develop, deploy, test, and operate flight...

  1. New progress of ranging technology at Wuhan Satellite Laser Ranging Station

    Science.gov (United States)

    Xia, Zhiz-Hong; Ye, Wen-Wei; Cai, Qing-Fu

    1993-01-01

    A satellite laser ranging system with an accuracy of the level of centimeter has been successfully developed at the Institute of Seismology, State Seismological Bureau with the cooperation of the Institute of Geodesy and Geophysics, Chinese Academy of Science. With significant improvements on the base of the second generation SLR system developed in 1985, ranging accuracy of the new system has been upgraded from 15 cm to 3-4 cm. Measuring range has also been expanded, so that the ETALON satellite with an orbit height of 20,000 km launched by the former U.S.S.R. can now be tracked. Compared with the 2nd generation SLR system, the newly developed system has the following improvements. A Q modulated laser is replaced by a mode-locked YAG laser. The new device has a pulse width of 150 ps and a repetition rate of 1-4 pps. A quick response photomultiplier has been adopted as the receiver for echo; for example, the adoption of the MCP tube has obviously reduced the jitter error of the transit time and has improved the ranging accuracy. The whole system is controlled by an IBM PC/XT Computer to guide automatic tracking and measurement. It can carry out these functions for satellite orbit calculation, real-time tracking and adjusting, data acquisition and the preprocessed of observing data, etc. The automatization level and reliability of the observation have obviously improved.

  2. Astrometry and Geostationary Satellites in Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  3. Geocenter Motion Derived from GNSS and SLR Tracking Data of LEO

    Science.gov (United States)

    Li, Y. S.; Ning, F. S.; Tseng, K. H.; Tseng, T. P.; Wu, J. M.; Chen, K. L.

    2017-12-01

    Space geodesy techniques can provide the monitoring data of global variations with high precision and large coverage through the satellites. Geocenter motion (GM) describes the difference of CF (Center of Figure) respect to CM (Center of Mass of the Earth System) due to the re-distribution and deformation of the earth system. Because satellite tracking data between ground stations and satellites orbit around the CM, geocenter motion is related to the realization of the ITRF (International Terrestrial Reference Frame) origin. In this study, GPS (Global Positioning System) observation data of IGS (International GNSS Service) and SLR (Satellite Laser Ranging) tracking data are applied to estimate the coordinates of observing sites on Earth's surface. The GPS observing sites are distributed deliberately and globally by 15° ×15° grids. Meanwhile, two different global ocean tide models are applied here. The model used in ITRF comparison and combination is parameter transformation, which is a mathematical formula allowing to transform the different frames between ITRF and CM system. Following the parameter transformation, the results of geocenter motion can be determined. The FORMOSAT-7/COSMIC-2 (F7C2) mission is a constellation of LEO (Low-Earth-Orbit) satellites, which will be launched in 2018. Besides the observing system for Meteorology, Ionosphere, and Climate, the F7C2 will be equipped with LRR (Laser Ranging Retroreflector). This work is a pilot survey to study the application of LEO SLR data in Taiwan.

  4. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  5. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  6. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  7. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    Science.gov (United States)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  8. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  9. Quality assurance tracking and trending system (QATTS)

    International Nuclear Information System (INIS)

    Anderson, W.J.

    1987-01-01

    In 1984, The Philadelphia Electric Company (PECo) Quality Assurance (QA) Division recognized a need to modify the existing quality finding tracking program to generate a nuclear trending program that could detect trends of PECo-initiated findings that were not detectable to a day-to-day observer. Before 1984, each quality organization in PECo had a separate tracking system. An adequate quality trending program demanded that all findings be tracked in a common data base. The Quality Assurance Tracking and Trending System (QATTS) is divided into two parts, an on-line subsystem that provides access to QATTS data via corporate computer data screens and a reports and graphics subsystem that connects commercially available reports and graphic software computer packages to the QATTS data base. The QATTS can be accessed from any terminal connected to the main frame computer at PECo headquarters. The paper discusses the tracking system, report generation, responsible organization commitment tracking system (ROCT), and trending program

  10. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel high accurate sensorless dual-axis solar tracker. • It has the advantages of both sensor based and sensorless solar trackers. • It does not have the disadvantages of sensor based and sensorless solar trackers. • Tracking error of only 0.11° that is less than the tracking errors of others. • An increase of 28.8–43.6% depending on the seasons in the energy efficiency. - Abstract: In this study, a novel high accurate sensorless dual-axis solar tracker controlled by the maximum power point tracking unit available in almost all photovoltaic systems is proposed. The maximum power point tracking controller continuously calculates the maximum output power of the photovoltaic module/panel/array, and uses the altitude and azimuth angles deviations to track the sun direction where the greatest value of the maximum output power is extracted. Unlike all other sensorless solar trackers, the proposed solar tracking system is a closed loop system which means it uses the actual direction of the sun at any time to track the sun direction, and this is the contribution of this work. The proposed solar tracker has the advantages of both sensor based and sensorless dual-axis solar trackers, but it does not have their disadvantages. Other sensorless solar trackers all are open loop, i.e., they use offline estimated data about the sun path in the sky obtained from solar map equations, so low exactness, cloudy sky, and requiring new data for new location are their problems. A photovoltaic system has been built, and it is experimentally verified that the proposed solar tracking system tracks the sun direction with the tracking error of 0.11° which is less than the tracking errors of other both sensor based and sensorless solar trackers. An increase of 28.8–43.6% depending on the seasons in the energy efficiency is the main advantage of utilizing the proposed solar tracking system.

  11. Modular Track System For Positioning Mobile Robots

    Science.gov (United States)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  12. 40 CFR 73.30 - Allowance tracking system accounts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...

  13. Computer controlled scanning systems for quantitative track measurements

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Preston, C.C.; Ruddy, F.H.

    1982-01-01

    The status of three computer cntrolled systems for quantitative track measurements is described. Two systems, an automated optical track scanner (AOTS) and an automated scanning electron microscope (ASEM) are used for scanning solid state track recorders (SSTR). The third system, the emulsion scanning processor (ESP), is an interactive system used to measure the length of proton tracks in nuclear research emulsions (NRE). Recent advances achieved with these systems are presented, with emphasis placed upon the current limitation of these systems for reactor neutron dosimetry

  14. Students paperwork tracking system (SPATRASE)

    Science.gov (United States)

    Ishak, I. Y.; Othman, M. B.; Talib, Rahmat; Ilyas, M. A.

    2017-09-01

    This paper focused on a system for tracking the status of the paperwork using the Near Field Communication (NFC) technology and mobile apps. Student paperwork tracking system or known as SPATRASE was developed to ease the user to track the location status of the paperwork. The current problem faced by the user is the process of approval paperwork takes around a month or more. The process took around a month to get full approval from the department because of many procedures that need to be done. Nevertheless, the user cannot know the location status of the paperwork immediately because of the inefficient manual system. The submitter needs to call the student affairs department to get the information about the location status of the paperwork. Thus, this project was purposed as an alternative to solve the waiting time of the paperwork location status. The prototype of this system involved the hardware and software. The project consists of NFC tags, RFID Reader, and mobile apps. At each checkpoint, the RFID Reader was placed on the secretary desk. While the system involved the development of database using Google Docs that linked to the web server. After that, the submitter received the URL link and be directed to the web server and mobile apps. This system is capable of checking their location status tracking using mobile apps and Google Docs. With this system, it makes the tracking process become efficient and reliable to know the paperwork at the exact location. Thus, it is preventing the submitter to call the department all the time. Generally, this project is fully functional and we hope it can help Universiti Tun Hussein Onn Malaysia (UTHM) to overcome the problem of paperwork missing and location of the paperwork.

  15. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    Science.gov (United States)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  16. Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report

    Science.gov (United States)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.

  17. Augmentation of Quasi-Zenith Satellite Positioning System Using High Altitude Platforms Systems (HAPS)

    Science.gov (United States)

    Tsujii, Toshiaki; Harigae, Masatoshi

    Recently, some feasibility studies on a regional positioning system using the quasi-zenith satellites and the geostationary satellites have been conducted in Japan. However, the geometry of this system seems to be unsatisfactory in terms of the positioning accuracy in north-south direction. In this paper, an augmented satellite positioning system by the High Altitude Platform Systems (HAPS) is proposed since the flexibility of the HAPS location is effective to improve the geometry of satellite positioning system. The improved positioning performance of the augmented system is also demonstrated.

  18. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  19. About Nano-JASMINE Satellite System and Project Status

    Science.gov (United States)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  20. Satellite Sanitary Systems in Kampala, Uganda

    NARCIS (Netherlands)

    Letema, S.C.; Vliet, van B.J.M.; Lier, van J.B.

    2012-01-01

    Satellite sewage collection and treatment systems have been independently developed and managed in East African cities outside the centrally planned and sewered areas. A satellite approach is a promising provisioning option parallel to public sewerage for middle- and high-income residential areas,

  1. Satellite Sanitary Systems in Kampala, Uganda

    NARCIS (Netherlands)

    Letema, S.; Van Vliet, B.; Van Lier, J.B.

    2011-01-01

    Satellite sewage collection and treatment systems have been independently developed and managed in East African cities outside the centrally planned and sewered areas. A satellite approach is a promising provisioning option parallel to public sewerage for middle- and high-income residential areas,

  2. Investigation of tracking systems properties in CAVE-type virtual reality systems

    Science.gov (United States)

    Szymaniak, Magda; Mazikowski, Adam; Meironke, Michał

    2017-08-01

    In recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one. The user feeling of "immersion" and interaction with virtual world depend on many factors, in particular on the accuracy of the tracking system of the user. In this paper properties of the tracking systems applied in I3DVL was investigated. For analysis two parameters were selected: the accuracy of the tracking system and the range of detection of markers by the tracking system in space of the CAVE. Measurements of system accuracy were performed for six-screen installation, equipped with four tracking cameras for three axes: X, Y, Z. Rotation around the Y axis was also analyzed. Measured tracking system shows good linear and rotating accuracy. The biggest issue was the range of the monitoring of markers inside the CAVE. It turned out, that the tracking system lose sight of the markers in the corners of the installation. For comparison, for a simplified version of CAVE (four-screen installation), equipped with eight tracking cameras, this problem was not occur. Obtained results will allow for improvement of cave quality.

  3. COMBINING INDEPENDENT VISUALIZATION AND TRACKING SYSTEMS FOR AUGMENTED REALITY

    Directory of Open Access Journals (Sweden)

    P. Hübner

    2018-05-01

    Full Text Available The basic requirement for the successful deployment of a mobile augmented reality application is a reliable tracking system with high accuracy. Recently, a helmet-based inside-out tracking system which meets this demand has been proposed for self-localization in buildings. To realize an augmented reality application based on this tracking system, a display has to be added for visualization purposes. Therefore, the relative pose of this visualization platform with respect to the helmet has to be tracked. In the case of hand-held visualization platforms like smartphones or tablets, this can be achieved by means of image-based tracking methods like marker-based or model-based tracking. In this paper, we present two marker-based methods for tracking the relative pose between the helmet-based tracking system and a tablet-based visualization system. Both methods were implemented and comparatively evaluated in terms of tracking accuracy. Our results show that mobile inside-out tracking systems without integrated displays can easily be supplemented with a hand-held tablet as visualization device for augmented reality purposes.

  4. Vehicle Tracking System, Vehicle Infrastructure Provided with Vehicle Tracking System and Method for Tracking

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A vehicle tracking system is described comprising - a plurality of sensor nodes (10) that each provide a message (D) indicative for an occupancy status of a detection area of an vehicle infrastructure monitored by said sensor node, said sensor nodes (10) being arranged in the vehicle infrastructure

  5. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    Lyapunov exponents are estimated. From these studies, chaosin satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the ...

  6. A distributed database view of network tracking systems

    Science.gov (United States)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  7. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H.; Mozurkewich, D.; Armstrong, J.; Restaino, S.; Hindsley, R.

    2011-09-01

    Geostationary satellites are generally too small to image at high resolution with conventional single-dish telescopes. Obtaining many resolution elements across a typical geostationary satellite body requires a single-dish telescope with a diameter of 10’s of m or more, with a good adaptive optics system. An alternative is to use an optical/infrared interferometer consisting of multiple smaller telescopes in an array configuration. In this paper and companion papers1, 2 we discuss the performance of a common-mount 30-element interferometer. The instrument design is presented by Mozurkewich et al.,1 and imaging performance is presented by Schmitt et al.2 In this paper we discuss signal-to-noise ratio for both fringe-tracking and imaging. We conclude that the common-mount interferometer is sufficiently sensitive to track fringes on the majority of geostationary satellites. We also find that high-fidelity images can be obtained after a short integration time of a few minutes to a few tens of minutes.

  8. Automated Tracking of Tornado-Producing Mesoscale Convective Systems in the United States

    Science.gov (United States)

    Kuo, K.; Hong, Y.; Clune, T. L.

    2011-12-01

    The great majority of Earth Science events are studied using "snap-shot" observations in time, mainly due to the scarcity of observations with dense temporal coverage and the lack of robust methods amenable to connecting the "snap shots". To enable the studies of these events in the four-dimensional (4D) spatiotemporal space and to demonstrate the utility of this capability, we have applied the neighbor enclosed area tracking (NEAT) method of Inatsu (2009) to three years of high-resolution (in both time and space) NEXRAD-derived and rain-gauge-corrected QE2 precipitation observations and GOES satellite Rapid Scan Operation imagery to track tornado-producing mesoscale convective systems (MCS's). We combine information from the databases of the Tornado History Project (which provides tornado occurrence and trajectory) and the NWS Watch/Warning Archive (which provides severe weather watch/warning locations) to obtain initial estimate of the time and location of a tornado-producing MCS. The NEAT algorithm is then applied to QE2 and GOES data, both forward and backward in time, to identify the entire system as one integral entity from its inception to its eventual dissipation in the 4D spatiotemporal space. For each system so identified, we extract its morphological/structural parameters, such as perimeter length, area, and orientation, from each of the snap shots in time. We also record physical parameters such as minimum and maximum precipitation rates. In addition, we perform areal integral on the precipitation rate field, which in turn enables time integral for the entire MCS throughout its lifecycle to obtain an estimate of the system's precipitation production. We can extend this proof-of-concept prototype to other precipitation producing severe weather events, such as blizzards. Furthermore, the spatiotemporal data collected may be used to discover other data, such as satellite remote sensing observations and model analyses/simulations, which can then be combined

  9. Real Property Project Tracking System (RPPTS)

    Data.gov (United States)

    Department of Veterans Affairs — The Real Property Project Tracking System (RPPTS), formerly known as the Lease/Project Tracking (LEASE) database, contains information about lease and land projects...

  10. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor

    2015-01-01

    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  11. Protocols for second-generation business satellites systems

    Science.gov (United States)

    Evans, B. G.; Coakley, F. P.; El Amin, M. H. M.

    The paper discusses the nature and mix of traffic in business satellite systems and describes the limitations on the protocol imposed by the differing impairments of speech, video, and data. A simple TDMA system protocol is presented which meets the requirements of mixed-service operation. The efficiency of the protocol together with implications for allocation, scheduling and synchronisation are discussed. Future-generation satellites will probably use on-board processing. Some initial work on protocols that make use of on-board processing and the implications for satellite and earth-station equipment are presented.

  12. Joint Polar Satellite System (JPSS) System Architecture: Suomi-NPP to the Future

    Science.gov (United States)

    Furgerson, J.; Layns, A.; Feeley, J. H.; Griffin, A.; Trumbower, G.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). NOAA has overall responsibility for the system including funding and requirements while the National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. S-NPP and the follow-on JPSS satellites will operate in the 1330 LTAN orbit. JPSS-1 is scheduled to launch in early 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for S-NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes S-NPP/JPSS satellite data to provide environmental data products to U.S. and international partners as well as remote terminal users throughout the world.

  13. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  14. Defining management units for cetaceans by combining genetics, morphlogy, acoustics and satellite tracking

    DEFF Research Database (Denmark)

    Sveegaard, Signe; Galatius, Anders; Dietz, Rune

    2015-01-01

    Managing animal units is essential in biological conservation and requires spatial and temporal identification of such units. Since even neighbouring populations often have different conservation status and face different levels of anthropogenic pressure, detailed knowledge of population structure......, seasonal range and overlap with animals from neighbouring populations is required to manage each unit separately. Previous studies on genetic structure and morphologic separation suggests three distinct populations of harbour porpoises with limited geographic overlap in the North Sea (NS), the Belt Sea (BS...... with the least overlap between populations and thus the least error when abundance and population status is estimated. Discriminant analysis of the satellite tracking data from the BS and NS populations showed that the best fit of the management unit border during the summer months was an east-west line from...

  15. MTB-USDH Compensation Tracking System (MTB-CTS)

    Data.gov (United States)

    US Agency for International Development — MTB-USDH Compensation Tracking System: is the USDH Compensation Tracking System (MTB-CTS) to assist managers in monitoring their payroll costs for U.S. direct hires....

  16. Flight Activity and Crew Tracking System -

    Data.gov (United States)

    Department of Transportation — The Flight Activity and Crew Tracking System (FACTS) is a Web-based application that provides an overall management and tracking tool of FAA Airmen performing Flight...

  17. Thinking Tracks for Multidisciplinary System Design

    Directory of Open Access Journals (Sweden)

    Gerrit Maarten Bonnema

    2016-11-01

    Full Text Available Systems engineering is, for a large part, a process description of how to bring new systems to existence. It is valuable as it directs the development effort. Tools exist that can be used in this process. System analysis investigates existing and/or desired situations. However, how to create a system that instantiates the desired situation depends significantly on human creativity and insight; the required human trait here is commonly called systems thinking. In literature, this trait is regularly used, but information on how to do systems thinking is scarce. Therefore, we have introduced earlier twelve thinking tracks that are concrete and help system designers to make an optimal fit between the system under design, the identified issue, the user, the environment and the rest of the world. The paper provides the scientific rationale for the thinking tracks based on literature. Secondly, the paper presents three cases of application, leading to the conclusion that the tracks are usable and effective.

  18. Long-term GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring.

    Science.gov (United States)

    Sims, David W; Queiroz, Nuno; Humphries, Nicolas E; Lima, Fernando P; Hays, Graeme C

    2009-10-09

    Satellite tracking of large pelagic fish provides insights on free-ranging behaviour, distributions and population structuring. Up to now, such fish have been tracked remotely using two principal methods: direct positioning of transmitters by Argos polar-orbiting satellites, and satellite relay of tag-derived light-level data for post hoc track reconstruction. Error fields associated with positions determined by these methods range from hundreds of metres to hundreds of kilometres. However, low spatial accuracy of tracks masks important details, such as foraging patterns. Here we use a fast-acquisition global positioning system (Fastloc GPS) tag with remote data retrieval to track long-term movements, in near real time and position accuracy of GPS tagging to provide tracks of unparalleled accuracy for monitoring movements of large pelagic fish, and with nearly four times as many locations obtained by the GPS tag than by a conventional Argos transmitter. The results signal the potential of GPS-tagged pelagic fish that surface regularly to be detectors of resource 'hotspots' in the blue ocean and provides a new capability for understanding large pelagic fish behaviour and habitat use that is relevant to ocean management and species conservation.

  19. Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Reidt, Felix; Collaboration, for the ALICE

    2014-01-01

    During the Long Shutdown 2 of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System. It will replace the current six layer detector system with a seven layer detector using Monolithic Active Pixel Sensors. The upgraded Inner Tracking System will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity of the LHC. The choice of Monolithic Active Pixel Sensors has be...

  20. Audit Follow-up Tracking System (AFTS)

    Data.gov (United States)

    Office of Personnel Management — The Audit Follow-up Tracking System (AFTS) is used to track, monitor, and report on audits and open recommendations of the U.S. Office of Personnel Management (OPM)...

  1. SOVCAN STAR: An international satellite system

    Science.gov (United States)

    Skatchkov, Valery A.

    SOVCAN STAR is a Russian-Canadian cooperative venture company formed to manufacture, test, launch and operate a Ku-band satellite system. Drawing on the more than twenty years communications satellite experience of the founding companies, the SOVCAN STAR satellites are being designed to be competitive and cost effective. They will be equipped with 24 transponders and four steerable antennas. The design allows the operators to switch individual transponders between the various antenna coverage beams. These satellites will offer a high degree of operational flexibility and performance. The SOVCAN STAR strategy is to develop a network of satellites in parallel with the growth and evolution of the traffic requirements. Such an approach minimizes the technical, schedule and program risks while at the same time significantly reduces the financial exposure. The first SOVCAN STAR satellite will be commissioned in 1996 and operated at 14 deg W. The beams will be aligned to North America and Europe offering International service between Canada, the Eastern U.S.A., Europe, Russia and the Western C.I.S. Republics. The second SOVCAN STAR satellite will be commissioned a year later and operated at 145 deg E. This satellite will cover the Western Pacific Ocean, Eastern Asia and Australasia.

  2. Technical Description of Radar and Optical Sensors Contributing to Joint UK-Australian Satellite Tracking, Data-fusion and Cueing Experiment

    Science.gov (United States)

    Eastment, J.; Ladd, D.; Donnelly, P.; Ash, A.; Harwood, N.; Ritchie, I.; Smith, C.; Bennett, J.; Rutten, M.; Gordon, N.

    2014-09-01

    DSTL, DSTO, EOS and STFC have recently participated in a campaign of co-ordinated observations with both radar and optical sensors in order to demonstrate and to refine methodologies for orbit determination, data fusion and cross-sensor cueing. The experimental programme is described in detail in the companion paper by Harwood et al. At the STFC Chilbolton Observatory in Southern England, an S-band radar on a 25 m diameter fully-steerable dish antenna was used to measure object range and radar cross-section. At the EOS Space Systems facility on Mount Stromlo, near Canberra, Australia, an optical system comprising a 2 m alt / az observatory, with Coude path laser tracking at 400W power, was used to acquire, lock and laser track the cued objects, providing accurate orbit determinations for each. DSTO, located at Edinburgh, Australia, operated an optical system consisting of a small commercial telescope and mount, measuring the direction to the objects. Observation times were limited to the evening solar terminator period. Data from these systems was processed independently, using DSTL-developed and DSTO / EOS-developed algorithms, to perform orbit determination and to cross-cue: (i) the radar, based on the optical measurements; (ii) the optical system, based on the radar measurements; and (iii) the radar, using its own prior observations (self-cueing). In some cases, TLEs were used to initialise the orbit determination process; in other cases, the cues were derived entirely from sensor data. In all 3 scenarios, positive results were obtained for a variety of satellites in low earth orbits, demonstrating the feasibility of the different cue generation techniques. The purpose of this paper is to describe the technical characteristics of the radar and optical systems used, the modes of operation employed to acquire the observations, and details of the parameters measured and the data formats.

  3. Decontamination and Decommissioning Equipment Tracking System (DDETS)

    International Nuclear Information System (INIS)

    Cook, S.

    1994-07-01

    At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned

  4. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-01-01

    . Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...

  5. DCS Budget Tracking System

    Data.gov (United States)

    Social Security Administration — DCS Budget Tracking System database contains budget information for the Information Technology budget and the 'Other Objects' budget. This data allows for monitoring...

  6. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  7. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  8. Automation system for optical counting of nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V

    1999-06-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2{center_dot}10{sup 5} tracks/cm{sup 2}. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  9. Automation system for optical counting of nuclear tracks

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V.

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2·10 5 tracks/cm 2 . The automatic system was applied in the experimental investigation of uranium and transuranium elements

  10. Automation system for optical counting of nuclear tracks

    CERN Document Server

    Boulyga, S F; Lomonosova, E M; Zhuk, I V

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2 centre dot 10 sup 5 tracks/cm sup 2. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  11. Reasonable Accommodation Information Tracking System

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reasonable Accommodation Information Tracking System (RAITS) is a case management system that allows the National Reasonable Accommodation Coordinator (NRAC) and...

  12. Design and control of the precise tracking bed based on complex electromechanical design theory

    Science.gov (United States)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  13. R&D of a Next Generation LEO System for Global Multimedia Mobile Satellite Communications

    Science.gov (United States)

    Morikawa, E.; Motoyoshi, S.; Koyama, Y.; Suzuki, R.; Yasuda, Y.

    2002-01-01

    satellite communication systems. Therefore, the experimental DBF network with 16 radiating elements was developed for confirming a basic signal processing performance. A/D sampled data are processed by using FPGA circuit for beam forming by real-time basis. Optical Inter-Satellite Link Technology: The inter-satellite link (ISL) technology is also important, because the inter-satellite network is essential to realize the low delay network connection for multimedia services. The optical ISL simulator was developed for the study of optical modem and optical tracking mechanism. And the sensitivity of 56 photons/bit at 10-9 of error rate has been achieved by employing the Erbium doped fiber amplifier, polarizing filter and narrow band optical filter. Coude path type, the active universal joint (AUJ) type and two flat mirror type of optical antenna mechanism were developed. Satellite Network Technology: For constructing this optical ISL ring, the utilization of wavelength division multiplexing (WDM) technology is envisaged. By applying WDM technology to the optical intra-orbital ISL, logical mesh connections can be achieved by assigning the appropriate wavelength for the links among satellites. By using inclined orbit, inter-orbital ISL connection can be keep continuously. Therefore, WDM technology is also applicable to the inter-orbital ISL network. The satellite ATM network simulator was developed in order to investigate the effect of delay fluctuation caused by the satellite constellations. This simulator works as real-time basis by using commercial ATM switches and personal computers. This simulator was installed Dijkstra's algorithm to determine satellite routing path in order to minimize the end-to-end delay time from the source terminal to the destination terminal. The satellite IP network simulator has been developed in order to evaluate the congestion of the multimedia traffic. Variable Rate Modulation Technology: Considering the propagation impairments in the mobile

  14. Matter Tracking Information System -

    Data.gov (United States)

    Department of Transportation — The Matter Tracking Information System (MTIS) principle function is to streamline and integrate the workload and work activity generated or addressed by our 300 plus...

  15. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  16. Satellite data transferring subsystem based on system 'Materik'

    International Nuclear Information System (INIS)

    Belogub, V.P.; Kal'schikov, I.B.; Kirillov, Yu.K.; Kulikov, V.N.; Shumov, A.N.

    1998-01-01

    One of the most important indicators of successful function of the International Monitoring System is existence of highly reliable communication channels providing transfer data from observation points in a real time scales. Up to present, the most communication channels were provided with existing VF-channels (Voice Frequency) that are relatively low-speedy in transfer process (4.8-9.6 kbit/sec.). In addition, reliability of the channels is insufficient because of many retransmission points. In connection with it, the special control service of MD RF decided to improve the information transfer system (ITS) installed between the observation point and National Data Center (Dubna-city). The improvement of the ITS comprises replacement of wire lines of VF-channels with satellite ones within the framework of the computer-aided satellite communication system (CASCS) M aterik . Besides it was considered to be expedient that the satellite system of data transfer from NPP to the Crisis Center of 'ROSENERGOATOM' Concern would be combined with CASCS M aterik , using the facilities of the Central Earth Station of Satellite Communication (CESSC) in Dubna. Such approach to the creation of Satellite communication has advantages in solution of radiation safety and global monitoring issues

  17. Leonardo-BRDF: A New Generation Satellite Constellation

    Science.gov (United States)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    alongtrack or cross-track mode, or anything in between, at ground command. This provides inherent system redundancy and cross-calibration capability. Several "wing-man" satellites in non-static orbits fly in formation up to 1000 km out from the keystone satellites to provide additional along- and cross-track angular sampling. They view the target(s) observed by the keystone satellites from different zenith and azimuth angles and are maneuverable within a limited range of zenith angle using thrusters, and within a large range of azimuth angle using clever orbit design. The wing-man satellites carry single miniature imaging radiometers with just a few wavelength bands in order to be lighter and more agile.

  18. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  19. Acquisition, tracking, and pointing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986

    Science.gov (United States)

    Auelmann, Richard R. (Editor); Richard, Herbert L. (Editor)

    1987-01-01

    The present conference discusses the effect of target signatures on active tracking, the high resolution obtainable with a two-degrees-of-freedom angle sensor having a high update rate, solar object tracking for the Hubble Space Telescope, scaled experiments for the assessment of precise active tracking, and large aperture high-accuracy satellite laser tracking. Also discussed are laboratory test results for the Spaceborne Geodynamic Ranging System's high speed optical tracking system, jitter stabilization for precise optical pointing, scan stabilization and jitter control for an airborne telescope, a simulation of the Solar Optical Telescope's pointing performance, a microprocessor-based dual-speed angle converter, and image localization for alignment by means of adaptive preprocessing.

  20. Evolution of the SOFIA tracking control system

    Science.gov (United States)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  1. Developing a multipurpose sun tracking system using fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Alata, Mohanad [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)]. E-mail: alata@just.edu.jo; Al-Nimr, M.A. [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan); Qaroush, Yousef [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)

    2005-05-01

    The present work demonstrates the design and simulation of time controlled step sun tracking systems that include: one axis sun tracking with the tilted aperture equal to the latitude angle, equatorial two axis sun tracking and azimuth/elevation sun tracking. The first order Sugeno fuzzy inference system is utilized for modeling and controller design. In addition, an estimation of the insolation incident on a two axis sun tracking system is determined by fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm, along with least square estimation (LSE), generates the fuzzy rules that describe the relationship between the input/output data of solar angles that change with time. The fuzzy rules are tuned by an adaptive neuro-fuzzy inference system (ANFIS). Finally, an open loop control system is designed for each of the previous types of sun tracking systems. The results are shown using simulation and virtual reality. The site of application is chosen at Amman, Jordan (32 deg. North, 36 deg. East), and the period of controlling and simulating each type of tracking system is the year 2003.

  2. Tethered Satellite System Contingency Investigation Board

    Science.gov (United States)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether

  3. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  4. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias; Sharma, Gopal; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  5. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias

    2016-12-19

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  6. Mobile Tracking Systems Using Meter Class Reflective Telescopes

    Science.gov (United States)

    Sturzenbecher, K.; Ehrhorn, B.

    This paper is a discussion on the use of large reflective telescopes on mobile tracking systems with modern instrument control systems. Large optics can be defined as reflective telescopes with an aperture of at least 20 inches in diameter. New carbon composite construction techniques allow for larger, stronger, and lighter telescopes ranging from 240 pounds for a 20 inch, to 800 pounds for a 32 inch, making them ideal for mobile tracking systems. These telescopes have better light gathering capability and produce larger images with greater detail at a longer range than conventional refractive lenses. In a mobile configuration these systems provide the ability to move the observation platform to the optimal location anywhere in the world. Mounting and systems integration - We will discuss how large telescopes can be physically fit to the mobile tracking system and the integration with the tracking systems' digital control system. We will highlight the remote control capabilities. We will discuss special calibration techniques available in a modern instrument control system such as star calibration, calibration of sensors. Tracking Performance - We will discuss the impact of using large telescopes on the performance of the mobile tracking system. We will highlight the capabilities for auto-tracking and sidereal rate tracking in a mobile mount. Large optics performance - We will discuss the advantages of two-mirror Ritchey-Chrétien reflective optics which offer in-focus imaging across the spectrum, from visible to Long Wave Infrared. These zero expansion optics won't lose figure or focus during temperature changes. And the carbon composite telescope tube is thermally inert. The primary mirror is a modern lightweight "dish" mirror for low thermal mass and is center supported/self balancing. Applications - We will discuss Visible - IR Imaging requirements, Optical Rangefinders, and capabilities for special filters to increase resolution in difficult conditions such as

  7. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Meyer, Juergen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-01-01

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s 2 in the lateral direction, and 9.5 mm/s and 29.5 mm/s 2 in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system

  8. OBIS - ARGOS Satellite Tracking of Animals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various species have been tracked using ARGOS PTT trackers since the early 1990's. These include Emperor, King and Adelie pengiuns, Light-mantled Sooty, Grey-headed...

  9. Tracking the MJO Convection and its Impact on the Diurnal Cycle over the Maritime Continent Using Satellite Observations

    Science.gov (United States)

    Kerns, B. W.; Chen, S. S.

    2017-12-01

    The Indo-Pacific Maritime Continent (MC) is the most active convection center in the tropics, and the most important modes of variability are the diurnal cycle and the Madden-Julian Oscillation (MJO). Previous studies have shown that the MC has strong diurnal variability compared with the rest of the tropics, and the diurnal cycle of convection over the MC is amplified during the passage of an MJO. One outstanding science question is how the passage of the active MJO affects the diurnal cycle. The atmospheric, upper ocean, and land surface forcing factors contributing to the diurnal cycle need to be clarified. In order to address this, large scale precipitation tracking (LPT) is used to identify MJO active and suppressed periods for 2000-2015. To document the diurnal cycle of convection during the active and suppressed periods, TRMM/GPM and mesoscale cloud cluster tracking are used. Finally, the LPT tracking is used to composite the satellite-estimated surface wind, humidity, temperature, cloud cover, and soil moisture over the islands for active versus suppressed MJO periods. In active MJO periods, the diurnal convection in the surrounding marginal seas is enhanced and the diurnal convection over land is decreased. The islands of the MC have greater soil moisture, more cloud cover, and do not warm up as much during the day, leading to a weaker afternoon maximum over land. But how is nocturnal convection over the sea increased? The largest, most mature convective cloud systems are found over the marginal seas in the early morning. This is hypothesized to mainly be a consequence of the longer life cycle of convective systems in the favorable large-scale active MJO. The propagation of the MJO across the MC is facilitated by the enhanced nocturnal deep convection over the sea. In contrast, In the suppressed period the convection is mostly daytime forced convection over land which is locked to the terrain.

  10. Systems for tracking minimally invasive surgical instruments.

    Science.gov (United States)

    Chmarra, M K; Grimbergen, C A; Dankelman, J

    2007-01-01

    Minimally invasive surgery (e.g. laparoscopy) requires special surgical skills, which should be objectively assessed. Several studies have shown that motion analysis is a valuable assessment tool of basic surgical skills in laparoscopy. However, to use motion analysis as the assessment tool, it is necessary to track and record the motions of laparoscopic instruments. This article describes the state of the art in research on tracking systems for laparoscopy. It gives an overview on existing systems, on how these systems work, their advantages, and their shortcomings. Although various approaches have been used, none of the tracking systems to date comes out as clearly superior. A great number of systems can be used in training environment only, most systems do not allow the use of real laparoscopic instruments, and only a small number of systems provide force feedback.

  11. Advanced Alignment of the ATLAS Tracking System

    CERN Document Server

    Pedraza Lopez, S; The ATLAS collaboration

    2012-01-01

    In order to reconstruct trajectories of charged particles, ATLAS is equipped with a tracking system built using different technologies embedded in a 2T solenoidal magnetic field. ATLAS physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters in order to assure accurate invariant mass reconstruction and interaction and decay vertex finding. These critically depend on the systematic effects related to the alignment of the tracking system. In order to eliminate malicious systematic deformations, various advanced tools and techniques have been put in place. These include information from known mass resonances, energy of electrons and positrons measured by the electromagnetic calorimeters, etc. Despite being stable under normal running conditions, ATLAS tracking system responses to sudden environ-mental changes (temperature, magnetic field) by small collective deformations. These have to be identified and corrected in order to assure uniform, highest quality tracking...

  12. Procurement Tracking System (PTS)

    Data.gov (United States)

    Office of Personnel Management — The Procurement Tracking System (PTS) is used solely by the procurement staff of the Office of the Inspector General (OIG) at the U.S. Office of Personnel Management...

  13. Grand Challenges in Space Technology: Distributed Satellite Systems

    National Research Council Canada - National Science Library

    Miller, David

    2001-01-01

    The MITIAFRL Distributed Satellite Systems program examines the motivation, analysis and development of technology associated with the distribution of assets and functionality over a number of cooperating satellites...

  14. Networks for Autonomous Formation Flying Satellite Systems

    Science.gov (United States)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  15. Electro-Optical Data Acquisition and Tracking System

    Data.gov (United States)

    Federal Laboratory Consortium — The Electro-Optical Data Acquisition and Tracking System (EDATS) dynamically tracks and measures target signatures. It consists of an instrumentation van integrated...

  16. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  17. Cladistical Analysis of the Jovian and Saturnian Satellite Systems

    Science.gov (United States)

    Holt, Timothy. R.; Brown, Adrian. J.; Nesvorný, David; Horner, Jonathan; Carter, Brad

    2018-06-01

    Jupiter and Saturn each have complex systems of satellites and rings. These satellites can be classified into dynamical groups, implying similar formation scenarios. Recently, a larger number of additional irregular satellites have been discovered around both gas giants that have yet to be classified. The aim of this paper is to examine the relationships between the satellites and rings of the gas giants, using an analytical technique called cladistics. Cladistics is traditionally used to examine relationships between living organisms, the “tree of life.” In this work, we perform the first cladistical study of objects in a planetary science context. Our method uses the orbital, physical, and compositional characteristics of satellites to classify the objects in the Jovian and Saturnian systems. We find that the major relationships between the satellites in the two systems, such as families, as presented in previous studies, are broadly preserved. In addition, based on our analysis of the Jovian system, we identify a new retrograde irregular family, the Iocaste family, and suggest that the Phoebe family of the Saturnian system can be further divided into two subfamilies. We also propose that the Saturnian irregular families be renamed, to be consistent with the convention used in Jovian families. Using cladistics, we are also able to assign the new unclassified irregular satellites into families. Taken together, the results of this study demonstrate the potential use of the cladistical technique in the investigation of relationships between orbital bodies.

  18. 47 CFR 64.1320 - Payphone call tracking system audits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement... Completing Carrier must undergo an audit of its § 64.1310(a)(1) tracking system by an independent third party...

  19. A survey on the automatic object tracking technology using video signals

    International Nuclear Information System (INIS)

    Lee, Jae Cheol; Jun, Hyeong Seop; Choi, Yu Rak; Kim, Jae Hee

    2003-01-01

    Recently, automatic identification and tracking of the object are actively studied according to the rapid development of signal processing and vision technology using improved hardware and software. The object tracking technology can be applied to various fields such as road watching of the vehicles, weather satellite, traffic observation, intelligent remote video-conferences and autonomous mobile robots. Object tracking system receives subsequent pictures from the camera and detects motions of the objects in these pictures. In this report, we investigate various object tracking techniques such as brightness change using histogram characteristic, differential image analysis, contour and feature extraction, and try to find proper methods that can be used to mobile robots actually

  20. Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J. (Decision and Information Sciences); (USDOE)

    2010-01-01

    The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

  1. Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials

    International Nuclear Information System (INIS)

    Tsai, H.C.; Chen, K.; Liu, Y.Y.; Shuler, J.

    2010-01-01

    The US Department of Energy (DOE) (Environmental Management (EM), Office of Packaging and Transportation (EM-45)) Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

  2. The Challenge of Small Satellite Systems to the Space Security Environment

    Science.gov (United States)

    2012-03-01

    Space, 1945–1995, (New York: Dodd, Mead & Company, Inc . 1984), 142. 40 Moltz, The Politics of Space Security, 93. 41William E. Burrows, Deep Black...Experimental World Circling Spaceship,” Report No. SE: 11827, Douglas Aircraft Company, Inc ., Santa Monica Plant Engineering Division, Contract WBB-038... Nike Zeus nuclear missile as a means to track and intercept targeted adversarial satellites. The commonality of antiballistic missile (ABM) and ASAT

  3. Advanced Lyapunov control of a novel laser beam tracking system

    Science.gov (United States)

    Nikulin, Vladimir V.; Sofka, Jozef; Skormin, Victor A.

    2005-05-01

    Laser communication systems developed for mobile platforms, such as satellites, aircraft, and terrain vehicles, require fast wide-range beam-steering devices to establish and maintain a communication link. Conventionally, the low-bandwidth, high-steering-range part of the beam-positioning task is performed by gimbals that inherently constitutes the system bottleneck in terms of reliability, accuracy and dynamic performance. Omni-WristTM, a novel robotic sensor mount capable of carrying a payload of 5 lb and providing a full 180-deg hemisphere of azimuth/declination motion is known to be free of most of the deficiencies of gimbals. Provided with appropriate controls, it has the potential to become a new generation of gimbals systems. The approach we demonstrate describes an adaptive controller enabling Omni-WristTM to be utilized as a part of a laser beam positioning system. It is based on a Lyapunov function that ensures global asymptotic stability of the entire system while achieving high tracking accuracy. The proposed scheme is highly robust, does not require knowledge of complex system dynamics, and facilitates independent control of each channel by full decoupling of the Omni-WristTM dynamics. We summarize the basic algorithm and demonstrate the results obtained in the simulation environment.

  4. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    Science.gov (United States)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  5. Demonstrating EnTracked a System for Energy-Efficient Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben

    An important feature of a modern mobile device is that it can position itself. Not only for use on the device but also for remote applications that require tracking of the device. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life...... of the mobile device. To address this challenge we have build a system named EnTracked that, based on the estimation and prediction of system conditions and mobility, schedules position updates to both minimize energy consumption and optimize robustness. In this demonstration we would like to show how...

  6. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    Science.gov (United States)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  7. High Dynamic Optimized Carrier Loop Improvement for Tracking Doppler Rates

    Directory of Open Access Journals (Sweden)

    Amirhossein Fereidountabar

    2015-01-01

    Full Text Available Mathematical analysis and optimization of a carrier tracking loop are presented. Due to fast changing of the carrier frequency in some satellite systems, such as Low Earth Orbit (LEO or Global Positioning System (GPS, or some planes like Unmanned Aerial Vehicles (UAVs, high dynamic tracking loops play a very important role. In this paper an optimized tracking loop consisting of a third-order Phase Locked Loop (PLL assisted by a second-order Frequency Locked Loop (FLL for UAVs is proposed and discussed. Based on this structure an optimal loop has been designed. The main advantages of this approach are the reduction of the computation complexity and smaller phase error. The paper shows the simulation results, comparing them with a previous work.

  8. Phase tracking system for ultra narrow bandwidth applications

    NARCIS (Netherlands)

    Hill, M.T.; Cantoni, A.

    2002-01-01

    Recent advances make it possible to mitigate a number of drawbacks of conventional phase locked loops. These advances permit the design of phase tracking systems with much improved characteristics that are sought after in modern communication system applications. A new phase tracking system is

  9. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    Science.gov (United States)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  10. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  11. Remote gaze tracking system for 3D environments.

    Science.gov (United States)

    Congcong Liu; Herrup, Karl; Shi, Bertram E

    2017-07-01

    Eye tracking systems are typically divided into two categories: remote and mobile. Remote systems, where the eye tracker is located near the object being viewed by the subject, have the advantage of being less intrusive, but are typically used for tracking gaze points on fixed two dimensional (2D) computer screens. Mobile systems such as eye tracking glasses, where the eye tracker are attached to the subject, are more intrusive, but are better suited for cases where subjects are viewing objects in the three dimensional (3D) environment. In this paper, we describe how remote gaze tracking systems developed for 2D computer screens can be used to track gaze points in a 3D environment. The system is non-intrusive. It compensates for small head movements by the user, so that the head need not be stabilized by a chin rest or bite bar. The system maps the 3D gaze points of the user onto 2D images from a scene camera and is also located remotely from the subject. Measurement results from this system indicate that it is able to estimate gaze points in the scene camera to within one degree over a wide range of head positions.

  12. Information content in reflected global navigation satellite system signals

    DEFF Research Database (Denmark)

    Høeg, Per; Carlstrom, Anders

    2011-01-01

    The direct signals from satellites in global satellite navigation satellites systems (GNSS) as, GPS, GLONASS and GALILEO, constitute the primary source for positioning, navigation and timing from space. But also the reflected GNSS signals contain an important information content of signal travel...

  13. The tracking of high level waste shipments-TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-01-01

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users

  14. The tracking of high level waste shipments - TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The TRANSCOM (transportation tracking and communication) system is the US Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY 1993 to track almost 100 shipments within the US DOE complex, and it is accessed weekly by 10 to 20 users

  15. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2010-01-01

    ATLAS is a multipurpose experiment that records the LHC collisions. To reconstruct trajectories of charged particles produced in these collisions, ATLAS tracking system is equipped with silicon planar sensors and drift‐tube based detectors. They constitute the ATLAS Inner Detector. In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determine accurately its almost 36000 degrees of freedom. Thus the demanded precision for the alignment of the silicon sensors is below 10 micrometers. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Then the raw data with the hits information of the triggered tracks is stored in a calibration stream. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment. The implementation of the track based alignment within the ATLAS software framework unifies different alignment approaches and allows the alignment of ...

  16. MICROCONTROLLER BASED SOLAR-TRACKING SYSTEM AND ITS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Okan BİNGÖL

    2006-02-01

    Full Text Available In this paper, a new micro-controller based solar-tracking system is proposed, implemented and tested. The scheme presented here can be operated as independent of the geographical location of the site of setting up. The system checks the position of the sun and controls the movement of a solar panel so that radiation of the sun comes normally to the surface of the solar panel. The developed-tracking system tracks the sun both in the azimuth as well as in the elevation plane. PC based system monitoring facility is also included in the design.

  17. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  18. Advanced Deployable Structural Systems for Small Satellites

    Science.gov (United States)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  19. Modeling of Target Tracking System for Homing Missiles and Air Defense Systems

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-06-01

    Full Text Available One reason of why the guidance and control systems are imperfect is due to the dynamics of both the tracker and the missile, which appears as an error in the alignment with the LOS and delay in the response of the missile to change its orientation. Other reasons are the bias and disturbances as well as the noise about and within the system such as the thermal noise. This paper deals with the tracking system used in the homing guidance and air defense systems. A realistic model for the tracking system model is developed including the receiver servo dynamics and the possible disturbance and noise that may affect the accuracy of the tracking signals measured by the seeker sensor. Modeling the parameters variability and uncertainty is also examined to determine the robustness margin of the tracking system.

  20. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  1. Advanced Communications Technology Satellite (ACTS) and potential system applications

    Science.gov (United States)

    Wright, David L.; Balombin, Joseph R.; Sohn, Philip Y.

    1990-01-01

    A description of the advanced communications technology satellite (ACTS) system is given with special emphasis on the communication characteristics. Potential satellite communications scenarios, including future operational ACTS-like satellite systems, are discussed. The description of the ACTS system updates previously published ACTS system references. Detailed information on items such as experimental ground stations is presented. The potential services can be generically described as voice, video, and data services. The implementation of these services on future operational ACTS-like systems can lead to unique quality, flexibility, and capacity characteristics at lower service costs. The specific service applications that could be supported range from low to high data rates and include both domestic and international applications.

  2. Intelligent Materials Tracking System for Construction Projects Management

    Directory of Open Access Journals (Sweden)

    Narimah Kasim

    2015-05-01

    Full Text Available An essential factor adversely affecting the performance of construction projects is the improper handling of materials during site activities. In addition, paper-based reports are mostly used to record and exchange information related to the material components within the supply chain, which is problematic and inefficient. Generally, technologies (such as wireless systems and RFID are not being adequately used to overcome human errors and are not well integrated with project management systems to make tracking and management of materials easier and faster. Findings from a literature review and surveys showed that there is a lack of positive examples of such tools having been used effectively. Therefore, this research focused on the development of a materials tracking system that integrates RFID-based materials management with resources modelling to improve on-site materials tracking. Rapid prototyping was used to develop the system and testing of the system was carried out to examine the functionality and working appropriately. The proposed system is intended to promote the employment of RFID for automatic materials tracking with integration of resource modelling (Microsoft (R Office Project in the project management system in order to establish which of the tagged components are required resources for certain project tasks. In conclusion, the system provides an automatic and easy tracking method for managing materials during materials delivery and inventory management processes in construction projects.

  3. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    Science.gov (United States)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  4. European Telecommunications Satellite II (EUTELSAT II)

    Science.gov (United States)

    Laemmel, G.; Brittinger, P.

    1991-01-01

    EUTELSAT II is a regional public telecommunications system for Europe. The services which will be provided are telephone and television. The satellites will be placed at a geostationary orbit within the arcs of 6 degrees east to 19 degrees east or 26 degrees to 36 degrees east. The designed lifetime is 7 years. After separation of the satellites from the launch vehicles, telemetry, telecommand, and ranging will be performed within the S-band frequencies. After positioning of the satellite at its final geostationary orbit, the Ku-band telecommunication equipment will be activated. From this time on, all satellite control operations will be performed in Ku-band. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas at Goldstone and Canberra as prime support for the transfer and drift orbits. Maximum support will consist of a 7-day period, plus 14 days of contingency support. Information is given in tabular form for DSN support, frequency assignments, telemetry, command, and tracking support responsibility.

  5. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  6. ORIGIN OF THE DIFFERENT ARCHITECTURES OF THE JOVIAN AND SATURNIAN SATELLITE SYSTEMS

    International Nuclear Information System (INIS)

    Sasaki, T.; Ida, S.; Stewart, G. R.

    2010-01-01

    The Jovian regular satellite system mainly consists of four Galilean satellites that have similar masses and are trapped in mutual mean-motion resonances except for the outer satellite, Callisto. On the other hand, the Saturnian regular satellite system has only one big icy body, Titan, and a population of much smaller icy moons. We have investigated the origin of these major differences between the Jovian and Saturnian satellite systems by semi-analytically simulating the growth and orbital migration of proto-satellites in an accreting proto-satellite disk. We set up two different disk evolution/structure models that correspond to Jovian and Saturnian systems, by building upon previously developed models of an actively supplied proto-satellite disk, the formation of gas giants, and observations of young stars. Our simulations extend previous models by including the (1) different termination timescales of gas infall onto the proto-satellite disk and (2) different evolution of a cavity in the disk, between the Jovian and Saturnian systems. We have performed Monte Carlo simulations and have shown that in the case of the Jovian systems, four to five similar-mass satellites are likely to remain trapped in mean-motion resonances. This orbital configuration is formed by type I migration, temporal stopping of the migration near the disk inner edge, and quick truncation of gas infall caused by Jupiter opening a gap in the solar nebula. The Saturnian systems tend to end up with one dominant body in the outer regions caused by the slower decay of gas infall associated with global depletion of the solar nebula. The total mass and compositional zoning of the predicted Jovian and Saturnian satellite systems are consistent with the observed satellite systems.

  7. Satellite tracking and geospatial analysis of feral swine and their habitat use in Louisiana and Mississippi

    Science.gov (United States)

    Hartley, Stephen B.; Spear, Kathryn A.; Goatcher, Buddy L.

    2012-01-01

    Feral swine (Sus scrofa) is an invasive species that was first introduced to the continental United States in the 1500s by European explorers. Also known as feral hogs or feral pigs, the animals typically weigh about 200 pounds (up to 400 pounds), have characteristic tusks up to 3 inches long, are territorial, and live in groups, except for the boars, who are solitary and typically interact with sows only to breed. They have an average litter size of 5-6 piglets and occasionally two litters per year, and because they have few natural predators, survival of their young can be nearly 100 percent. Because of the detrimental impacts of this invasive species---including rooting, damaging agricultural lands, competing for food with and destroying the habitats of native animals, and spreading diseases and parasites---many public lands implement feral swine control programs on an annual basis. This activity is not enough to control or prevent an increase in swine populations, however, because of their distribution beyond the boundaries of public lands. Currently, little is known about feral swine populations, their habitat use and movement patterns, and the resulting habitat destruction in Louisiana and Mississippi. To abate this lack of knowledge, researchers at the U.S. Geological Survey National Wetlands Research Center (NWRC)---in cooperation with the U.S. Fish and Wildlife Service, the Louisiana Department of Wildlife and Fisheries, and several large landholding companies---are using collars equipped with Global Positioning System (GPS) receivers to track feral swine in Louisiana and Mississippi to examine population movement patterns, document destruction of habitat and wildlife, and help increase and facilitate removal. The NWRC researchers are using the "Judas pig" system of attaching GPS-satellite telemetry collars to select feral swine to (1) track movement patterns on the landscape, (2) document habitat destruction and effects on native wildlife, and (3) improve

  8. Official Union Time Tracking System

    Data.gov (United States)

    Social Security Administration — Official Union Time Tracking System captures the reporting and accounting of the representational activity for all American Federation of Government Employees (AFGE)...

  9. Wire chamber requirements and tracking simulation studies for tracking systems at the superconducting super collider

    International Nuclear Information System (INIS)

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1989-02-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. Such computer simulation studies are necessary to determine the feasibility of wire chamber tracking systems for complex events in a high-rate environment such as the SSC. 11 refs., 9 figs., 1 tab

  10. Control system design for UAV trajectory tracking

    Science.gov (United States)

    Wang, Haitao; Gao, Jinyuan

    2006-11-01

    In recent years, because of the emerging requirements for increasing autonomy, the controller of uninhabited air vehicles must be augmented with a very sophisticated autopilot design which is capable of tracking complex and agile maneuvering trajectory. This paper provides a simplified control system framework to solve UAV maneuvering trajectory tracking problem. The flight control system is divided into three subsystems including command generation, transformation and allocation. According to the kinematics equations of the aircraft, flight path angle commands can be generated by desired 3D position from path planning. These commands are transformed to body angular rates through direct nonlinear mapping, which is simpler than common multi-loop method based on time scale separation assumption. Then, by using weighted pseudo-inverse method, the control surface deflections are allocated to follow body angular rates from the previous step. In order to improve the robustness, a nonlinear disturbance observer-based approach is used to compensate the uncertainty of system. A 6DOF nonlinear UAV model is controlled to demonstrate the performance of the trajectory tracking control system. Simulation results show that the control strategy is easy to be realized and the precision of tracking is satisfying.

  11. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  12. Tracking on non-active collaborative objects from San Fernando Laser station

    Science.gov (United States)

    Catalán, Manuel; Quijano, Manuel; Cortina, Luis M.; Pazos, Antonio A.; Martín-Davila, José

    2016-04-01

    The Royal Observatory of the Spanish Navy (ROA) works on satellite geodesy from the early days of the space age, when the first artificial satellite tracking telescope was installed in 1958: the Baker-Nunn camera. In 1975 a French satellite Laser ranging (SLR) station was installed and operated at ROA . Since 1980, ROA has been operating this instrument which was upgraded to a third generation and it is still keep into a continuous update to reach the highest level of operability. Since then ROA has participated in different space geodesy campaigns through the International Laser Service Stations (ILRS) or its European regional organization (EUROLAS), tracking a number of artificial satellites types : ERS, ENVISAT, LAGEOS, TOPEX- POSEIDON to name but a few. Recently we opened a new field of research: space debris tracking, which is receiving increasing importance and attention from international space agencies. The main problem is the relatively low accuracy of common used methods. It is clear that improving the predicted orbit accuracy is necessary to fulfill our aims (avoiding unnecessary anti-collision maneuvers,..). Following results obtained by other colleagues (Austria, China, USA,...) we proposed to share our time-schedule using our satellite ranging station to obtain data which will make orbital elements predictions far more accurate (sub-meter accuracy), while we still keep our tracking routines over active satellites. In this communication we report the actions fulfill until nowadays.

  13. Solar energy estimated from geostationary satellites and its application on the energy management system

    Science.gov (United States)

    Nakajima, T. Y.; Takamatsu, T.; Funayama, T.; Yamamoto, Y.; Takenaka, H.; Nakajima, T.; Irie, H.; Higuchi, A.

    2017-12-01

    Recently, estimating and forecasting the solar radiation in terms of the electric power generation by photovoltaic (PV) systems is needed for the energy management system (EMS). The estimation technique depends on the latest atmospheric sciences. For instance, when one like to estimate solar radiation reached to ground surface, one will focus on the existence of clouds and their properties, because clouds exert an important influence to the radiative transfer. Visible-to-infared imaging radiometer aboard the geostationary satellites, Himawari, GOES, and Meteosat are useful for such objective, since they observe clouds for full disk of the Earth with high temporal frequency and moderately spatial resolution. Estimation of solar radiation at the ground surface from satellite imagery consists of two steps. The first step is retrieval of cloud optical and microphysical properties by use of the multispectral imaging data. Indeed, we retrieve cloud optical thickness, cloud particle sizes, and cloud top height from visible, near-infrared, and thermal infrared wavelength of the satellite imageries, respectively. The second step is the radiative transfer calculation. We will obtain solar radiation reached to the ground surface, using cloud properties retrieved from the first step, and radiative transfer calculations. We have built a system for near-real time estimation of solar radiation for global scale, named the AMATERASS system, under the support of JST (Japan Science and Technology Agency), CREST/EMS (Energy Management System). The AMATERASS dataset has been used for several researches. For example, Waseda University group applied the AMATERASS data in the electric power system, considering accidental blackout in the electric system for local scale. They made it clear that when AMATERASS data exists the chance of electric voltage deviancy is mitigated when the blackout is over. We have supported a solar car race in Australia, named World Solar Challenge (WSC) 2013

  14. Advanced Alignment of the ATLAS Tracking System

    CERN Document Server

    Butti, P; The ATLAS collaboration

    2014-01-01

    In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, planar silicon modules or microstrips (PIX and SCT detectors) and gaseous drift tubes (TRT), all embedded in a 2T solenoidal magnetic field. Misalignments and deformations of the active detector elements deteriorate the track reconstruction resolution and lead to systematic biases on the measured track parameters. The alignment procedures exploits various advanced tools and techniques in order to determine for module positions and correct for deformations. For the LHC Run II, the system is being upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL).

  15. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  16. Track star : Merrick's RFID system tracks oilpatch equipment

    Energy Technology Data Exchange (ETDEWEB)

    Louie, J

    2006-10-15

    Designed by Merrick Systems, the new Rig-Hand system uses radio frequency identification (RFID) in conjunction with downhole components to manage both surface and downhole equipment. The Rig-Hand system consists of RFID tags which can either be installed to new pipe or retrofitted to existing components; handheld or fixed RFID tag readers; and, software modules. The tags can be mounted to a wide range of surface and downhole components. The system can be used by rig personnel to scan tags with handheld computers, or can be used by a designated reader for greater automation and efficiency. The software modules have been designed for typical rig, pipeyard and service company users. The system provides essential drillstring information that helps to reduce pipe failures, fishing costs and downtime. Component tracking may also impact on both personnel safety and operational risks, as a recent survey has suggested that 14 per cent of catastrophic drillstring failures are due to pipe fatigue. When drilling deviated wells, operators typically have difficulty tracking which pipe may have become fatigued. It is anticipated that the system will also allow for improved logistics management, as it is currently estimated that 70 per cent of casing returned from the wellsite to a pipe yard goes to rust. The tagged components will also demand a higher resale or salvage value than untagged components with limited traceability. The system has gone through extensive testing, and to date has provided extensive savings in both onshore and offshore rigs. Commercialization is expected by the end of 2006. 1 fig.

  17. Track star : Merrick's RFID system tracks oilpatch equipment

    International Nuclear Information System (INIS)

    Louie, J.

    2006-01-01

    Designed by Merrick Systems, the new Rig-Hand system uses radio frequency identification (RFID) in conjunction with downhole components to manage both surface and downhole equipment. The Rig-Hand system consists of RFID tags which can either be installed to new pipe or retrofitted to existing components; handheld or fixed RFID tag readers; and, software modules. The tags can be mounted to a wide range of surface and downhole components. The system can be used by rig personnel to scan tags with handheld computers, or can be used by a designated reader for greater automation and efficiency. The software modules have been designed for typical rig, pipeyard and service company users. The system provides essential drillstring information that helps to reduce pipe failures, fishing costs and downtime. Component tracking may also impact on both personnel safety and operational risks, as a recent survey has suggested that 14 per cent of catastrophic drillstring failures are due to pipe fatigue. When drilling deviated wells, operators typically have difficulty tracking which pipe may have become fatigued. It is anticipated that the system will also allow for improved logistics management, as it is currently estimated that 70 per cent of casing returned from the wellsite to a pipe yard goes to rust. The tagged components will also demand a higher resale or salvage value than untagged components with limited traceability. The system has gone through extensive testing, and to date has provided extensive savings in both onshore and offshore rigs. Commercialization is expected by the end of 2006. 1 fig

  18. Advanced Satellite Workstation - An integrated workstation environment for operational support of satellite system planning and analysis

    Science.gov (United States)

    Hamilton, Marvin J.; Sutton, Stewart A.

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.

  19. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  20. NGSI: Function Requirements for a Cylinder Tracking System

    International Nuclear Information System (INIS)

    Branney, S.

    2012-01-01

    While nuclear suppliers currently track uranium hexafluoride (UF 6 ) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF 6 cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF 6 cylinder' and reviewed IAEA practices related to UF 6 cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF 6 cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF 6 cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.

  1. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  2. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  3. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  4. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her; Wang, Jiunn-Cherng

    2012-01-01

    was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI

  5. Assignment and Correspondence Tracking System - Tactical / Operational Reporting

    Data.gov (United States)

    Social Security Administration — Reporting data store for the Assignment and Correspondence Tracking System (ACT). ACT automates the assignment and tracking of correspondence processing within the...

  6. Tracking Behavioral Progress within a Children's Mental Health System: The Vermont Community Adjustment Tracking System.

    Science.gov (United States)

    Bruns, Eric J.; Burchard, John D.; Froelich, Peter; Yoe, James T.; Tighe, Theodore

    1998-01-01

    Describes the Vermont Community Adjustment Tracking System (VT-CATS), which utilizes four behavioral instruments to allow intensive, ongoing, and interpretable behavioral assessment of a service system's most challenging children and adolescents. Also explains the adjustment indicator checklists and the ability of VT-CATS to address agencies'…

  7. Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    CERN Document Server

    Aamodt, K; Abeysekara, U; Abrahantes Quintana, A; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad, A; Ahmad, N; Ahn, S U; Akimoto, R; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Almaráz Aviña, E; Alme, J; Altini, V; Altinpinar, S; Alt, T; Andrei, C; Andronic, A; Anelli, G; Angelov, V; Anson, C; Anticic, T; Antinori, F; Antinori, S; Antipin, K; Antonczyk, D; Antonioli, P; Anzo, A; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arceo, R; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bablok, S; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baldit, A; Bán, J; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L; Barret, V; Bartke, J; Basile, M; Basmanov, V; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Becker, B; Belikov, I; Bellwied, R; Belmont-Moreno, E; Belogianni, A; Benhabib, L; Beolé, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchin, C; Bianchi, N; Bielcík, J; Bielcíková, J; Bilandzic, A; Bimbot, L; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Bohm, J; Boldizsár, L; Bombara, M; Bombonati, C; Bondila, M; Borel, H; Borshchov, V; Bortolin, C; Bose, S; Bosisio, L; Bossú, F; Botje, M; Böttger, S; Bourdaud, G; Boyer, B; Braun, M; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Bruckner, G; Bruna, E; Bruno, G E; Brun, R; Budnikov, D; Buesching, H; Bugaev, K; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Caines, H; Cai, X; Camacho, E; Camerini, P; Campbell, M; Canoa Roman, V; Capitani, G P; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Caselle, M; Castillo Castellanos, J; Castillo Hernandez, J F; Catanescu, V; Cattaruzza, E; Cavicchioli, C; Cerello, P; Chambert, V; Chang, B; Chapeland, S; Charpy, A; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Choi, K; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chuman, F; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Cobanoglu, O; Coffin, J P; Coli, S; Colla, A; Conesa Balbastre, G; Conesa del Valle, Z; Conner, E S; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Cussonneau, J; Dainese, A; Dalsgaard, H H; Danu, A; Dash, A; Dash, S; Das, I; Das, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gaspari, M; de Groot, J; De Gruttola, D; de Haas, A P; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; de Vaux, G; Delagrange, H; Dellacasa, G; Deloff, A; Demanov, V; Dénes, E; Deppman, A; D'Erasmo, G; Derkach, D; Devaux, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dialinas, M; Díaz, L; Díaz, R; Dietel, T; Ding, H; Divià, R; Djuvsland, Ø; do Amaral Valdiviesso, G; Dobretsov, V; Dobrin, A; Dobrowolski, T; Dönigus, B; Domínguez, I; Dordic, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Enokizono, A; Espagnon, B; Estienne, M; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Ferretti, R; Figueredo, M A S; Filchagin, S; Fini, R; Fionda, F M; Fiore, E M; Floris, M; Fodor, Z; Foertsch, S; Foka, P; Fokin, S; Formenti, F; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Frolov, A; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Ganoti, P; Ganti, M S; Garabatos, C; García Trapaga, C; Gebelein, J; Gemme, R; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glasow, R; Glässel, P; Glenn, A; Gomez, R; González Santos, H; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gorbunov, Y; Gotovac, S; Gottschlag, H; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J Y; Grosso, R; Guarnaccia, C; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Gustafsson, H A; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamblen, J; Han, B H; Harris, J W; Hartig, M; Harutyunyan, A; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernández, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hiei, A; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivnácová, I; Huber, S; Humanic, T J; Hu, S; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Iwasaki, T; Jachokowski, A; Jacobs, P; Jancurová, L; Jangal, S; Janik, R; Jayananda, K; Jena, C; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanovic, P; Jung, H; Jung, W; Jusko, A; Kaidalov, A B; Kalcher, S; Kalinák, P; Kalliokoski, T; Kalweit, A; Kamal, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kapitan, J; Kaplin, V; Kapusta, S; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kikola, D; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J H; Kim, J; Kim, J S; Kim, M; Kim, M; Kim, S H; Kim, S; Kim, Y; Kirsch, S; Kiselev, S; Kisel, I; Kisiel, A; Klay, J L; Klein-Bösing, C; Klein, J; Kliemant, M; Klovning, A; Kluge, A; Kniege, S; Koch, K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornas, E; Kour, R; Kowalski, M; Kox, S; Kozlov, K; Králik, I; Kral, J; Kramer, F; Kraus, I; Kravcáková, A; Krawutschke, T; Krivda, M; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kumar, L; Kumar, N; Kupczak, R; Kurashvili, P; Kurepin, A; Kurepin, A N; Kuryakin, A; Kushpil, S; Kushpil, V; Kutouski, M; Kvaerno, H; Kweon, M J; Kwon, Y; Lackner, F; Ladrón de Guevara, P; Lafage, V; Lal, C; Lara, C; La Rocca, P; Larsen, D T; Laurenti, G; Lazzeroni, C; Le Bornec, Y; Le Bris, N; Lee, H; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; León Monzón, I; León Vargas, H; Lévai, P; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Listratenko, O; Liu, L; Li, Y; Loginov, V; Lohn, S; López Noriega, M; López-Ramírez, R; López Torres, E; Lopez, X; Løvhøiden, G; Lozea Feijo Soares, A; Lunardon, M; Luparello, G; Luquin, L; Lu, S; Lutz, J R; Luvisetto, M; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahajan, A; Mahapatra, D P; Maire, A; Makhlyueva, I; Ma, K; Malaev, M; Maldonado Cervantes, I; Malek, M; Mal'Kevich, D; Malkiewicz, T; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Martashvili, I; Martinengo, P; Martínez Davalos, A; Martínez García, G; Martínez, M I; Maruyama, Y; Ma, R; Marzari Chiesa, A; Masciocchi, S; Masera, M; Masetti, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Mattos Tavares, B; Matyja, A; Mayani, D; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Meoni, M; Mercado Pérez, J; Mereu, P; Miake, Y; Michalon, A; Miftakhov, N; Milosevic, J; Minafra, F; Mischke, A; Miskowiec, D; Mitu, C; Mizoguchi, K; Mlynarz, J; Mohanty, B; Molnar, L; Mondal, M M; Montaño Zetina, L; Monteno, M; Montes, E; Morando, M; Moretto, S; Morsch, A; Moukhanova, T; Muccifora, V; Mudnic, E; Muhuri, S; Müller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nianine, A; Nicassio, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyatha, A; Nygaard, C; Nyiri, A; Nystrand, J; Ochirov, A; Odyniec, G; Oeschler, H; Oinonen, M; Okada, K; Okada, Y; Oldenburg, M; Oleniacz, J; Oppedisano, C; Orsini, F; Ortíz Velázquez, A; Ortona, G; Oskamp, C; Oskarsson, A; Osmic, F; Österman, L; Ostrowski, P; Otterlund, I; Otwinowski, J; Øvrebekk, G; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paic, G; Painke, F; Pajares, C; Palaha, A; Palmeri, A; Pal, S K; Pal, S; Panse, R; Pappalardo, G S; Park, W J; Pastircák, B; Pastore, C; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pepato, A; Pereira, H; Peressounko, D; Pérez, C; Perini, D; Perrino, D; Peryt, W; Peschek, J; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petrácek, V; Petridis, A; Petris, M; Petrovici, M; Petrov, P; Petta, C; Peyré, J; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinsky, L; Pitz, N; Piuz, F; Platt, R; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta Lerma, P L M; Poggio, F; Poghosyan, M G; Poghosyan, T; Polák, K; Polichtchouk, B; Polozov, P; Polyakov, V; Pommeresch, B; Pop, A; Posa, F; Poskon, M; Pospisil, V; Potukuchi, B; Pouthas, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pujahari, P; Pulvirenti, A; Punin, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Räsänen, S; Rashevskaya, I; Rath, S; Read, K F; Real, J; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodriguez Cahuantzi, M; Røed, K; Röhrich, D; Román López, S; Romita, R; Ronchetti, F; Rosinský, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio-Montero, A J; Rui, R; Rusanov, I; Russo, G; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safarík, K; Sahoo, R; Saini, J; Saiz, P; Sakata, D; Salgado, C A; Salgueiro Dominques da Silva, R; Salur, S; Samanta, T; Sambyal, S; Samsonov, V; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schindler, H; Schmidt, C; Schmidt, H R; Schossmaier, K; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Segato, G; Semenov, D; Senyukov, S; Seo, J; Serci, S; Serkin, L; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharkov, G; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddi, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simili, E; Simonetti, G; Singaraju, R; Singhal, V; Singh, R; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Snow, H; Søgaard, C; Sokolov, O; Soloviev, A; Soltveit, H K; Soltz, R; Sommer, W; Son, C W; Song, M; Son, H S; Soos, C; Soramel, F; Soyk, D; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Staley, F; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stolpovsky, P; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sumbera, M; Susa, T; Swoboda, D; Symons, J; Szanto de Toledo, A; Szarka, I; Szostak, A; Szuba, M; Tadel, M; Tagridis, C; Takahara, A; Takahashi, J; Tanabe, R; Tapia Takaki, J D; Taureg, H; Tauro, A; Tavlet, M; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Tieulent, R; Tlusty, D; Toia, A; Tolyhy, T; Torcato de Matos, C; Torii, H; Torralba, G; Toscano, L; Tosello, F; Tournaire, A; Traczyk, T; Tribedy, P; Tröger, G; Truesdale, D; Trzaska, W H; Tsiledakis, G; Tsilis, E; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A; Tveter, T S; Tydesjö, H; Tywoniuk, K; Ulery, J; Ullaland, K; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vala, M; Valencia Palomo, L; Vallero, S; van den Brink, A; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasiliev, A; Vassiliev, I; Vassiliou, M; Vechernin, V; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vetlitskiy, I; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopianov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, V; Wallet, L; Wan, R; Wang, D; Wang, Y; Watanabe, K; Wen, Q; Wessels, J; Wiechula, J; Wikne, J; Wilk, A; Wilk, G; Williams, M C S; Willis, N; Windelband, B; Xu, C; Yang, C; Yang, H; Yasnopolsky, A; Yermia, F; Yi, J; Yin, Z; Yokoyama, H; Yoo, I-K; Yuan, X; Yushmanov, I; Zabrodin, E; Zagreev, B; Zalite, A; Zampolli, C; Zanevsky, Yu; Zaporozhets, Y; Zarochentsev, A; Závada, P; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zepeda, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zhou, S; Zhu, J; Zichichi, A; Zinchenko, A; Zinovjev, G; Zinovjev, M; Zoccarato, Y; Zychácek, V

    2010-01-01

    ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that h...

  8. Proposed systems configurations for a satellite based ISDN

    Science.gov (United States)

    Capece, M.; Pavesi, B.; Tozzi, P.; Galligan, K. P.

    This paper summarizes concepts developed during a study for the ESA in which the evolution of ISDN capability and the impact in the satellite land mobile area are examined. Following the progressive steps of the expected ISDN implementation and the potential market penetration, a space based system capable of satisfying particular user services classes has been investigated. The approach used is to establish a comparison between the requirements of potential mobile users and the services already envisaged by ISDN, identifying the service subclasses that might be adopted in a mobile environment through a satellite system. Two system alternatives, with different ISDN compatibility, have been identified. The first option allows a partial compatibility, by providing the central stations of the earth segment with suitable interface units. The second option permits a full integration, operating on the satellite on-board capabilities.

  9. The influence of image sensor irradiation damage on the tracking and pointing accuracy of optical communication system

    Science.gov (United States)

    Li, Xiaoliang; Luo, Lei; Li, Pengwei; Yu, Qingkui

    2018-03-01

    The image sensor in satellite optical communication system may generate noise due to space irradiation damage, leading to deviation for the determination of the light spot centroid. Based on the irradiation test data of CMOS devices, simulated defect spots in different sizes have been used for calculating the centroid deviation value by grey-level centroid algorithm. The impact on tracking & pointing accuracy of the system has been analyzed. The results show that both the amount and the position of irradiation-induced defect pixels contribute to spot centroid deviation. And the larger spot has less deviation. At last, considering the space radiation damage, suggestions are made for the constraints of spot size selection.

  10. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  11. FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS

    International Nuclear Information System (INIS)

    Hyodo, Ryuki; Ohtsuki, Keiji; Takeda, Takaaki

    2015-01-01

    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets

  12. Supercavitating Projectile Tracking System and Method

    Science.gov (United States)

    2009-12-30

    Distribution is unlimited 20100104106 Attorney Docket No. 96681 SUPERCAVITATING PROJECTILE TRACKING SYSTEM AND METHOD STATEMENT OF GOVERNMENT...underwater track or path 14 of a supercavitating vehicle under surface 16 of a body of water. In this embodiment, passive acoustic or pressure...transducers 12 are utilized to measure a pressure field produced by a moving supercavitating vehicle. The present invention provides a low-cost, reusable

  13. Dynamic Ocean Track System Plus -

    Data.gov (United States)

    Department of Transportation — Dynamic Ocean Track System Plus (DOTS Plus) is a planning tool implemented at the ZOA, ZAN, and ZNY ARTCCs. It is utilized by Traffic Management Unit (TMU) personnel...

  14. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  15. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  16. WGS 84 Coordinate Validation and Improvement for the NIMA and Air Force GPS Tracking Stations

    National Research Council Canada - National Science Library

    Cunningham, James

    1996-01-01

    Using 10 days of Global Positioning System (GPS) pseudorange and carrier phase data collected in 1995 from 31 stations and 24 Block II/IIA satellites, estimates of GPS clocks, orbits, and tracking station coordinates were generated...

  17. Real-time resource allocation for tracking systems

    NARCIS (Netherlands)

    Satsangi, Y.; Whiteson, S.; Oliehoek, F.A.; Bouma, H.

    2017-01-01

    Automated tracking is key to many computer vision applications. However, many tracking systems struggle to perform in real-time due to the high computational cost of detecting people, especially in ultra high resolution images. We propose a new algorithm called PartiMax that greatly reduces this

  18. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  19. Patient tracking system

    International Nuclear Information System (INIS)

    Chapman, L.J.; Hakimi, R.; Salehi, D.; McCord, T.; Zionczkowski, B.; Churchill, R.

    1987-01-01

    This exhibit describes computer applications in monitoring patient tracking in radiology and the collection of management information (technologist productivity, patient waiting times, repeat rate, room utilization) and quality assurance information. An analysis of the reports that assist in determining staffing levels, training needs, and patient scheduling is presented. The system is designed to require minimal information input and maximal information output to assist radiologists, quality assurance coordinators, and management personnel in departmental operations

  20. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  1. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  2. How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors

    Science.gov (United States)

    Strandberg, Roine; Klaassen, Raymond H. G.; Hake, Mikael; Alerstam, Thomas

    2010-01-01

    We investigated the risk associated with crossing the Sahara Desert for migrating birds by evaluating more than 90 journeys across this desert by four species of raptors (osprey Pandion haliaetus, honey buzzard Pernis apivorus, marsh harrier Circus aeruginosus and Eurasian hobby Falco subbuteo) recorded by satellite telemetry. Forty per cent of the crossings included events of aberrant behaviours, such as abrupt course changes, slow travel speeds, interruptions, aborted crossings followed by retreats from the desert and failed crossings due to death, indicating difficulties for the migrants. The mortality during the Sahara crossing was 31 per cent per crossing attempt for juveniles (first autumn migration), compared with only 2 per cent for adults (autumn and spring combined). Mortality associated with the Sahara passage made up a substantial fraction (up to about half for juveniles) of the total annual mortality, demonstrating that this passage has a profound influence on survival and fitness of migrants. Aberrant behaviours resulted in late arrival at the breeding grounds and an increased probability of breeding failure (carry-over effects). This study also demonstrates that satellite tracking can be a powerful method to reveal when and where birds are exposed to enhanced risk and mortality during their annual cycles. PMID:19955169

  3. Hazardous chemical tracking system (HAZ-TRAC)

    International Nuclear Information System (INIS)

    Bramlette, J.D.; Ewart, S.M.; Jones, C.E.

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA)

  4. Hazardous chemical tracking system (HAZ-TRAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  5. Multiple Drosophila Tracking System with Heading Direction

    Directory of Open Access Journals (Sweden)

    Pudith Sirigrivatanawong

    2017-01-01

    Full Text Available Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly D r o s o p h i l a m e l a n o g a s t e r , a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities.

  6. Active Multimodal Sensor System for Target Recognition and Tracking.

    Science.gov (United States)

    Qu, Yufu; Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-06-28

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system.

  7. The Design Concept of the First Mobile Satellite Laser Ranging System (ARGO-M in Korea

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo

    2011-03-01

    Full Text Available Korea Astronomy and Space Science Institute (KASI launched the development project of two satellite laser ranging (SLR systems in early 2008 after the government fund approval of the SLR systems in 2007. One mobile SLR system and one permanent SLR station will be developed with the completion of the project. The main objectives of these systems will be focused on the Space Geodetic researches. A system requirement review was held in the second half of the same year. Through the following system design review meeting and other design reviews, many unsolved technical and engineering issues would be discussed and resolved. However, the design of the mobile SLR system is a corner stone of whole project. The noticeable characteristics of Korea’s first SLR system are 1 use of light weight main mirror, 2 design of compact optical assembly, 3 use of KHz laser pulse, 4 use of commercial laser generator, 5 remote operation capability, 6 automatic tracking, 7 state of art operation system, etc. In this paper, the major user requirement and pre-defined specification are presented and discussed.

  8. Robust tracking control of uncertain Duffing-Holmes control systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the notion of virtual stabilizability for dynamical systems is introduced and the virtual stabilizability of uncertain Duffing-Holmes control systems is investigated. Based on the time-domain approach with differential inequality, a tracking control is proposed such that the states of uncertain Duffing-Holmes control system track the desired trajectories with any pre-specified exponential decay rate and convergence radius. Moreover, we present an algorithm to find such a tracking control. Finally, a numerical example is provided to illustrate the use of the main results.

  9. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    Science.gov (United States)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  10. An Instructional Satellite System for the United States: Preliminary Considerations.

    Science.gov (United States)

    DuMolin, James R.; Morgan, Robert P.

    Based on educational, social, political, and other considerations, an instructional satellite system, AVSIN (Ausio-Visual Satellite Instruction), is hypothesized which represents one possible organizational and administrative arrangement for delivering large amounts of quality software to schools and learning centers. The AVSIN system is conceived…

  11. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  12. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    Science.gov (United States)

    Hoskins, Aaron B.

    Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the

  13. Two axes sun tracking system with PLC control

    International Nuclear Information System (INIS)

    Abdallah, Salah; Nijmeh, Salem

    2004-01-01

    In this paper, an electromechanical, two axes sun tracking system is designed and constructed. The programming method of control with an open loop system is employed where the programmable logic controller is used to control the motion of the sun tracking surface. An experimental study was performed to investigate the effect of using two axes tracking on the solar energy collected. The collected energy was measured and compared with that on a fixed surface tilted at 32 deg. towards the south. The results indicate that the measured collected solar energy on the moving surface was significantly larger than that on a fixed surface. The two axes tracking surface showed a better performance with an increase in the collected energy of up to 41.34% compared with the fixed surface

  14. Video-based Chinese Input System via Fingertip Tracking

    Directory of Open Access Journals (Sweden)

    Chih-Chang Yu

    2012-10-01

    Full Text Available In this paper, we propose a system to detect and track fingertips online and recognize Mandarin Phonetic Symbol (MPS for user-friendly Chinese input purposes. Using fingertips and cameras to replace pens and touch panels as input devices could reduce the cost and improve the ease-of-use and comfort of computer-human interface. In the proposed framework, particle filters with enhanced appearance models are applied for robust fingertip tracking. Afterwards, MPS combination recognition is performed on the tracked fingertip trajectories using Hidden Markov Models. In the proposed system, the fingertips of the users could be robustly tracked. Also, the challenges of entering, leaving and virtual strokes caused by video-based fingertip input can be overcome. Experimental results have shown the feasibility and effectiveness of the proposed work.

  15. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  16. PAMTRAK: A personnel and material tracking system

    International Nuclear Information System (INIS)

    Anspach, D.A.; Anspach, J.P.; Crain, B. Jr.

    1996-01-01

    There is a need for an automated system for protecting and monitoring sensitive or classified parts and material. Sandia has developed a real-time personnel and material tracking system (PAMTRAK) that has been installed at selected DOE facilities. It safeguards sensitive parts and material by tracking tags worn by personnel and by monitoring sensors attached to the parts or material. It includes remote control and alarm display capabilities and a complementary program in Keyhole to display measured material attributes remotely. This paper describes the design goals, the system components, current installations, and the benefits a site can expect when using PAMTRAK

  17. The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement

    Directory of Open Access Journals (Sweden)

    Philip D. Taylor

    2017-06-01

    Full Text Available We describe a new collaborative network, the Motus Wildlife Tracking System (Motus; https://motus.org, which is an international network of researchers using coordinated automated radio-telemetry arrays to study movements of small flying organisms including birds, bats, and insects, at local, regional, and hemispheric scales. Radio-telemetry has been a cornerstone of tracking studies for over 50 years, and because of current limitations of geographic positioning systems (GPS and satellite transmitters, has remained the primary means to track movements of small animals with high temporal and spatial precision. Automated receivers, along with recent miniaturization and digital coding of tags, have further improved the utility of radio-telemetry by allowing many individuals to be tracked continuously and simultaneously across broad landscapes. Motus is novel among automated arrays in that collaborators employ a single radio frequency across receiving stations over a broad geographic scale, allowing individuals to be detected at sites maintained by others. Motus also coordinates, disseminates, and archives detections and associated metadata in a central repository. Combined with the ability to track many individuals simultaneously, Motus has expanded the scope and spatial scale of research questions that can be addressed using radio-telemetry from local to regional and even hemispheric scales. Since its inception in 2012, more than 9000 individuals of over 87 species of birds, bats, and insects have been tracked, resulting in more than 250 million detections. This rich and comprehensive dataset includes detections of individuals during all phases of the annual cycle (breeding, migration, and nonbreeding, and at a variety of spatial scales, resulting in novel insights into the movement behavior of small flying animals. The value of the Motus network will grow as spatial coverage of stations and number of partners and collaborators increases. With

  18. A Video Game Platform for Exploring Satellite and In-Situ Data Streams

    Science.gov (United States)

    Cai, Y.

    2014-12-01

    Exploring spatiotemporal patterns of moving objects are essential to Earth Observation missions, such as tracking, modeling and predicting movement of clouds, dust, plumes and harmful algal blooms. Those missions involve high-volume, multi-source, and multi-modal imagery data analysis. Analytical models intend to reveal inner structure, dynamics, and relationship of things. However, they are not necessarily intuitive to humans. Conventional scientific visualization methods are intuitive but limited by manual operations, such as area marking, measurement and alignment of multi-source data, which are expensive and time-consuming. A new development of video analytics platform has been in progress, which integrates the video game engine with satellite and in-situ data streams. The system converts Earth Observation data into articulated objects that are mapped from a high-dimensional space to a 3D space. The object tracking and augmented reality algorithms highlight the objects' features in colors, shapes and trajectories, creating visual cues for observing dynamic patterns. The head and gesture tracker enable users to navigate the data space interactively. To validate our design, we have used NASA SeaWiFS satellite images of oceanographic remote sensing data and NOAA's in-situ cell count data. Our study demonstrates that the video game system can reduce the size and cost of traditional CAVE systems in two to three orders of magnitude. This system can also be used for satellite mission planning and public outreaching.

  19. Rural applications of Advanced Traveler Information Systems : evaluation of satellite communications systems for mayday applications

    Science.gov (United States)

    This report documents the results of an evaluation of satellite communication systems for mayday applications conducted as part of the Rural Applications of Advanced Traveler Information Systems (ATIS) study. It focuses on satellite communications sy...

  20. Target tracking system based on preliminary and precise two-stage compound cameras

    Science.gov (United States)

    Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie

    2018-02-01

    Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.

  1. Cyclone track forecasting based on satellite images using artificial neural networks

    OpenAIRE

    Kovordanyi, Rita; Roy, Chandan

    2009-01-01

    Many places around the world are exposed to tropical cyclones and associated storm surges. In spite of massive efforts, a great number of people die each year as a result of cyclone events. To mitigate this damage, improved forecasting techniques must be developed. The technique presented here uses artificial neural networks to interpret NOAA-AVHRR satellite images. A multi-layer neural network, resembling the human visual system, was trained to forecast the movement of cyclones based on sate...

  2. Space Time – Track Circuits with Trellis Code Modulation

    Directory of Open Access Journals (Sweden)

    Marius Enulescu

    2017-07-01

    Full Text Available The track circuits are very important equipments used in the railway transportation system. Today these are used to send vital information, to the running train, in the same time with the integrity checking of the rail. The actual track circuits have a small problem due to the use of the same transmission medium by the signals containing vital information and the return traction current, the running track rails. But this small problem can produce big disturbances in the train circulation, especially in the rush hours. To improve the data transmission to the train on-board equipment, the implementation of new track circuits using new communication technology were studied. This technology is used by the mobile and satellite communications and applies the principle of diversity encoding both time and space through the use of multiple transmission points of the track circuit signal for telegram which is sent to the train. Since this implementation does not satisfy the intended purpose, other modern communication principles such as 8PSK signals modulation and encoding using Trellis Coded Modulation were developed. This new track circuit aims to solve the problems which appeared in the current operation of track circuits and theoretically manages to transmit vital information to the train on board equipment without being affected by disturbances in electric traction transport systems.

  3. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  4. Determination of the System Mass and the Individual Masses of Pluto and Charon from New Horizons Radio Tracking

    Science.gov (United States)

    Hahn, M.; Paetzold, M.; Andert, T.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.; Linscott, I.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2016-12-01

    One objective of the New Horizons Radio Science Experiment REX is the direct determination of the system mass and the individual masses of Pluto and Charon. About four weeks of two-way radio tracking centered around the closest approach of New Horizons to the Pluto system were processed. Major problems during the processing were the changes in spacecraft attitude by thrusters which applied extra Δv to the spacecraft motion masking partially the continuously perturbed motion caused by the attracting forces of the Pluto system members. The times of the spacecraft thruster activity are known but the applied Δv magnitude needed to be specifically adjusted. No two-way tracking was available during the flyby day on 14th July but slots of the REX one-way uplink observations cover the most important time near closest approach, these are for example the Pluto and Charon Earth occultation entries and exits. The REX data during the flyby day allowed to extract the individual masses of Pluto and Charon from the system mass at high precision. The relative errors of the mass determinations are below 0.02% and 0.2%, respectively. The masses of the 4 small satellites in the Pluto system could not be resolved.

  5. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  6. A spring stopover of a migratory osprey (Pandion haliaetus in northern Spain as revealed by satellite tracking: implications for conservation

    Directory of Open Access Journals (Sweden)

    Galarza, A.

    2009-12-01

    Full Text Available Improvements in the accuracy of satellite telemetry locations now allow detailed studies on territorial behaviour or use of habitat that can be used to enhance bird conservation. In this paper we describe the behaviour of a satellite-tracked adult female osprey (Pandion haliaetus in the Urdaibai Biosphere Reserve (N Spain to evaluate the suitability of this protected area for the species. The data set consisted of 10 complete days with a total of 145 exact fixes received. Night roosts were mainly surrounded by high or intermediate level protected land, separated from roads or buildings by more than 200 m and located less than one km away from the feeding area. During daylight hours, most fixes (76.5% were located in wooded areas. We found that the bird selected holm oak woods and we suggest that this is related to low disturbance from human activity. We also suggest that northern Spanish estuaries are important as stopovers by migrating ospreys for feeding during migration.

  7. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  8. Customer premise service study for 30/20 GHz satellite system

    Science.gov (United States)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  9. Implementation and development of vehicle tracking and immobilization technologies.

    Science.gov (United States)

    2010-01-01

    Since the mid-1980s, limited use has been made of vehicle tracking using satellite communications to mitigate the security and safety risks created by the highway transportation of certain types of hazardous materials. However, vehicle-tracking techn...

  10. Protected transitional solution to transformational satellite communications

    Science.gov (United States)

    Brand, Jerry C.

    2005-06-01

    As the Warfighter progresses into the next generation battlefield, transformational communications become evident as an enabling technology. Satellite communications become even more vital as the battles range over greater non-contiguous spaces. While current satellite communications provide suitable beyond line-of-sight communications and the Transformational Communications Architecture (TCA) sets the stage for sound information exchange, a realizable transition must occur to ensure successful succession to this higher level. This paper addresses the need for a planned escalation to the next generation satellite communications architecture and offers near-term alternatives. Commercial satellite systems continue to enable the Warfighter to reach back to needed information resources, providing a large majority of available bandwidth. Four areas of concentration for transition include encrypted Telemetry, Tracking and Control (or Command) (TT&C), encrypted and covered data, satellite attack detection and protection, and operational mobility. Solution methodologies include directly embedding COMSEC devices in the satellites and terminals, and supplementing existing terminals with suitable equipment and software. Future satellites planned for near-term launches can be adapted to include commercial grade and higher-level secure equipment. Alternately, the expected use of programmable modems (Software Defined Radios (SDR)) enables incorporation of powerful cipher methods approaching military standards as well as waveforms suitable for on-the-move operation. Minimal equipment and software additions on the satellites can provide reasonable attack detection and protection methods in concert with the planned satellite usage. Network management suite modifications enable cohesive incorporation of these protection schemes. Such transitional ideas offer a smooth and planned transition as the TCA takes life.

  11. Advanced alignment of the ATLAS tracking system

    CERN Document Server

    AUTHOR|(CDS)2085334; The ATLAS collaboration

    2016-01-01

    In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, silicon planar modules or microstrips (PIX and SCT detectors) and gaseous drift tubes (TRT), all embedded in a 2T solenoidal magnetic field. Misalignments of the active detector elements and deformations of the structures (which can lead to \\textit{Weak Modes}) deteriorate resolution of the track reconstruction and lead to systematic biases on the measured track parameters. The applied alignment procedures exploit various advanced techniques in order to minimise track-hit residuals and remove detector deformations. For the LHC Run II, the Pixel Detector has been refurbished and upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL).

  12. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.

    Science.gov (United States)

    Depuydt, Tom; Verellen, Dirk; Haas, Olivier; Gevaert, Thierry; Linthout, Nadine; Duchateau, Michael; Tournel, Koen; Reynders, Truus; Leysen, Katrien; Hoogeman, Mischa; Storme, Guy; De Ridder, Mark

    2011-03-01

    VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. An Indoor Tracking System Based on Bluetooth Technology

    OpenAIRE

    Opoku, Samuel King

    2012-01-01

    Implementations of tracking systems have become prevalent issues in modern technology due to its advantage of location detection of objects. Objects are usually tracked using trackers based on GPS, GSM, RFID and Bluetooth signal strength implementation. These mechanisms usually require line of sight operations, limited coverage and low level programming language for accessing Bluetooth signal strength. This paper presents an alternative technique for tracking the movement of indoor objects ba...

  14. Long-term GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring.

    Directory of Open Access Journals (Sweden)

    David W Sims

    Full Text Available Satellite tracking of large pelagic fish provides insights on free-ranging behaviour, distributions and population structuring. Up to now, such fish have been tracked remotely using two principal methods: direct positioning of transmitters by Argos polar-orbiting satellites, and satellite relay of tag-derived light-level data for post hoc track reconstruction. Error fields associated with positions determined by these methods range from hundreds of metres to hundreds of kilometres. However, low spatial accuracy of tracks masks important details, such as foraging patterns. Here we use a fast-acquisition global positioning system (Fastloc GPS tag with remote data retrieval to track long-term movements, in near real time and position accuracy of <70 m, of the world's largest bony fish, the ocean sunfish Mola mola. Search-like movements occurred over at least three distinct spatial scales. At fine scales, sunfish spent longer in highly localised areas with faster, straighter excursions between them. These 'stopovers' during long-distance movement appear consistent with finding and exploiting food patches. This demonstrates the feasibility of GPS tagging to provide tracks of unparalleled accuracy for monitoring movements of large pelagic fish, and with nearly four times as many locations obtained by the GPS tag than by a conventional Argos transmitter. The results signal the potential of GPS-tagged pelagic fish that surface regularly to be detectors of resource 'hotspots' in the blue ocean and provides a new capability for understanding large pelagic fish behaviour and habitat use that is relevant to ocean management and species conservation.

  15. Mobile Robot Positioning by using Low-Cost Visual Tracking System

    Directory of Open Access Journals (Sweden)

    Ruangpayoongsak Niramon

    2017-01-01

    Full Text Available This paper presents an application of visual tracking system on mobile robot positioning. The proposed method is verified on a constructed low-cost tracking system consisting of 2 DOF pan-tilt unit, web camera and distance sensor. The motion of pan-tilt joints is realized and controlled by using LQR controller running on microcontroller. Without needs of camera calibration, robot trajectory is tracked by Kalman filter integrating distance information and joint positions. The experimental results demonstrate validity of the proposed positioning technique and the obtained mobile robot trajectory is benchmarked against laser rangefinder positioning. The implemented system can successfully track a mobile robot driving at 14 cm/s.

  16. Initial validations for pursuing irradiation using a gimbals tracking system

    International Nuclear Information System (INIS)

    Takayama, Kenji; Mizowaki, Takashi; Kokubo, Masaki; Kawada, Noriyuki; Nakayama, Hiroshi; Narita, Yuichiro; Nagano, Kazuo; Kamino, Yuichiro; Hiraoka, Masahiro

    2009-01-01

    Our newly designed image-guided radiotherapy (IGRT) system enables the dynamic tracking irradiation with a gimbaled X-ray head and a dual on-board kilovolt imaging subsystem for real-time target localization. Examinations using a computer-controlled three-dimensionally movable phantom demonstrated that our gimbals tracking system significantly reduced motion blurring effects in the dose distribution compared to the non-tracking state.

  17. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  18. Distributed formation tracking using local coordinate systems

    DEFF Research Database (Denmark)

    Yang, Qingkai; Cao, Ming; Garcia de Marina, Hector

    2018-01-01

    This paper studies the formation tracking problem for multi-agent systems, for which a distributed estimator–controller scheme is designed relying only on the agents’ local coordinate systems such that the centroid of the controlled formation tracks a given trajectory. By introducing a gradient...... descent term into the estimator, the explicit knowledge of the bound of the agents’ speed is not necessary in contrast to existing works, and each agent is able to compute the centroid of the whole formation in finite time. Then, based on the centroid estimation, a distributed control algorithm...

  19. Tracking of Environment Changes by Exploitation of Suomi-NPP VIIRS Data

    Science.gov (United States)

    Ibrahim, W.; Greene, E.; van Poollen, C.; Cumpton, D.

    2017-12-01

    NOAA's next-generation environmental satellite system, Joint Polar Satellite System (JPSS), replaces the current Polar-orbiting Operational Environmental Satellites. JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite, Suomi National Polar-orbiting Partnership (S-NPP), was launched in 2011. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). S-NPP satellite includes the Visible Infrared Imaging Radiometer Suite (VIIRS), a 22-band scanning radiometer that provides top-of-atmosphere radiances and reflectances at a range of visible and infrared frequencies. Data collected from VIIRS are output by CGS DP into Raw Data Records (RDRs; Level-0), Sensor Data Records (SDRs; Level-1B) and Environmental Data Records (EDRs; Level-1C). This paper presents a methodology of monitoring and tracking impact of weather conditions on environment changes by exploitation of data from S-NPP VIIRS products. Three different products created from VIIRS data, SDR M-band True-Color (TC) composite visible imagery RGB (M5, M4 and M3), SDR M-band Natural-Color (NC) composite imagery RGB (M10, M7 and M5) and Vegetation Index (VI) EDR, are used to analyze the change in springtime vegetation and snowpack in California, USA, over four years from the height of the drought in 2014 to its end in 2017. While the TC composite images are more appealing to the human observer, utilization of the NC composite images allows for tracking and monitoring the changes in the snowpack in the Sierra Nevada, the reappearance of bodies of water and the changes in the vegetation composite. The VI product uses NDVI to characterize the vegetation temporally. By combining multiple VIIRS products, complex scenes can be visualized and analyzed temporally and spatially more accurately than just using a

  20. Home Range and Habitat Use of the New Zealand Falcon (Falco novaeseelandiae within a Plantation Forest: A Satellite Tracking Study

    Directory of Open Access Journals (Sweden)

    Bindi Thomas

    2010-01-01

    Full Text Available We tracked two adult and three juvenile New Zealand falcons (Falco novaeseelandiae in Kaingaroa Forest pine plantation from 2002 to 2008 using Argos satellite technology. The home ranges for both adults and juveniles varied, ranging between 44 and 587 km2. The falcons occasionally utilised areas outside the forest and used stands of all ages within the forest, generally in proportion to their availability. For the most part, the juveniles remained within ca. 8 km of their nests and dispersed at 58, 69, and 68 days after fledging. Falcon movement information was obtained from an average of four location points per tracking day per falcon at a putative accuracy of 350 m. The transmitters, including their solar charge capability, performed well in the forest environment. The use of all stand ages highlights the importance of forestry practises that maintain a mosaic of different aged pine stands.

  1. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    Science.gov (United States)

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  2. Satellites for U.S. education - Needs, opportunities and systems.

    Science.gov (United States)

    Morgan, R. P.; Singh, J. P.; Anderson, B. D.; Greenberg, E.

    1972-01-01

    This paper presents results of a continuing interdisciplinary study of the potential applications of Fixed- and Broadcast-Satellites for educational information transfer in the United States for the period 1975-1985. The status of U.S. education is examined and needs, trends and issues are discussed. The existing educational telecommunications infrastructure is examined and opportunities for satellite services are defined. Potential uses include networking of educational institutions and service centers for delivery of public and instructional television, computer-aided instruction, computing and information resources to regions and groups not now adequately served. Systems alternatives and some of the organizational and economic issues inherent in the deployment of an educational satellite system are discussed.-

  3. THE THREE-DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM; STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES

    International Nuclear Information System (INIS)

    Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M. J.; Ferguson, A. M. N.; Chapman, S. C.

    2013-01-01

    We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with an rms thickness of just 12.34 +0.75 -0.43 kpc. This disk is oriented approximately edge-on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk-like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.

  4. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  5. Tracking strategy for photovoltaic solar systems in high latitudes

    International Nuclear Information System (INIS)

    Quesada, Guillermo; Guillon, Laura; Rousse, Daniel R.; Mehrtash, Mostafa; Dutil, Yvan; Paradis, Pierre-Luc

    2015-01-01

    Highlights: • In cloudy conditions tracking the sun is ineffective. • A methodology to estimate a theoretical threshold for solar tracking was developed. • A tracking strategy to maximize electricity production was proposed. - Abstract: Several studies show that from about 20% to 50% more solar energy can be recovered by using photovoltaic systems that track the sun rather than systems set at a fixed angle. For overcast or cloudy days, recent studies propose the use of a set position in which each photovoltaic panel faces toward the zenith (horizontal position). Compared to a panel that follows the sun’s path, this approach claims that a horizontal panel increases the amount of solar radiation captured and subsequently the quantity of electricity produced. The present work assesses a solar tracking photovoltaic panel hourly and seasonally in high latitudes. A theoretical method based on an isotropic sky model was formulated, implemented, and used in a case study analysis of a grid-connected photovoltaic system in Montreal, Canada. The results obtained, based on the definition of a critical hourly global solar radiation, were validated numerically and experimentally. The study confirmed that a zenith-set sun tracking strategy for overcast or mostly cloudy days in summer is not advantageous

  6. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  7. Kinect-Based Moving Human Tracking System with Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Abdel Mehsen Ahmad

    2017-04-01

    Full Text Available This paper is an extension of work originally presented and published in IEEE International Multidisciplinary Conference on Engineering Technology (IMCET. This work presents a design and implementation of a moving human tracking system with obstacle avoidance. The system scans the environment by using Kinect, a 3D sensor, and tracks the center of mass of a specific user by using Processing, an open source computer programming language. An Arduino microcontroller is used to drive motors enabling it to move towards the tracked user and avoid obstacles hampering the trajectory. The implemented system is tested under different lighting conditions and the performance is analyzed using several generated depth images.

  8. Satellite Tracking and Site Fidelity of Short Ocean Sunfish, Mola ramsayi, in the Galapagos Islands

    Directory of Open Access Journals (Sweden)

    Tierney M. Thys

    2017-01-01

    Full Text Available Ocean sunfishes, with their peculiar morphology, large size, and surface habits, are valuable assets in ecotourism destinations worldwide. This study investigates site fidelity and long-range movements of short ocean sunfish, Mola ramsayi (Giglioli 1883, at Punta Vicente Roca (PVR off Isabela Island in the Galapagos Islands. Five individuals were tracked between 32 and 733 days using ultrasonic receivers and transmitters. Two of the 5 were also tracked with towed pop-off satellite tags. One travelled to the equatorial front covering 2700 km in 53 days, with dive depths in the upper 360 m at temperatures between 9.2°C and 22°C. During its westward travel, dives extended to 1112 m (the deepest depth yet recorded for Molidae into temperatures ranging between 4.5°C and 23.2°C. The remaining four individuals demonstrated site fidelity to PVR and were detected at the site between 128–1361 times for a total of 3557 reports. Forty-eight percent of the reports occurred during daytime hours and 52% after dark. Presumed cleaning session durations had a median of 15 minutes and a maximum of nearly 100 minutes. No other ultrasonic arrays around Galapagos or in the Eastern Pacific regional network recorded the presence of tagged individuals. These data are combined with tourist vessel sightings and submersible observations to confirm Punta Vicente Roca as an important sunfish hotspot.

  9. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    Science.gov (United States)

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  10. Satellite power system in the service of man

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, F.W.

    1981-01-01

    The solar power satellite concept is discussed in its various aspects: technical assumptions; unit power output; economic impact; impact on resources; environmental impacts; primary system functions; transmission of energy to earth; reception and conversion to usable energy on earth; space transport; station-keeping and attitude control; fabrication and assembly in space; power beam phase control; satellite maintenance; ancillary functions at rectenna site; and emerging technologies.

  11. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  12. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 1: System engineering

    Science.gov (United States)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 1, of a seven volume report is presented. Part 1 encompasses Satellite Power Systems (SPS) systems engineering aspects and is divided into three sections. The first section presents descriptions of the various candidate concepts considered and conclusions and recommendations for a preferred concept. The second section presents a summary of results of the various trade studies and analysis conducted during the course of the study. The third section describes the Photovoltaic Satellite Based Satellite Power System (SPS) Point Design as it was defined through studies performed during the period January 1977 through March 1979.

  13. Tracking Control of Nonlinear Mechanical Systems

    NARCIS (Netherlands)

    Lefeber, A.A.J.

    2000-01-01

    The subject of this thesis is the design of tracking controllers for certain classes of mechanical systems. The thesis consists of two parts. In the first part an accurate mathematical model of the mechanical system under consideration is assumed to be given. The goal is to follow a certain

  14. Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyelim [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Li, Zhanqing [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing (China)

    2012-12-15

    Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth's radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds. (orig.)

  15. Evaluation of environmental commitment tracking systems for use at CDOT.

    Science.gov (United States)

    2011-10-01

    "The purpose of this study is to review existing Environmental Tracking Systems (ETSs) used by other, : select state Departments of Transportation (DOTs), as well as the existing Environmental Commitment : Tracking System (ECTS) currently in use by C...

  16. Grants Reporting and Tracking System (GRTS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Grants Reporting and Tracking System (GRTS) is the primary tool for management and oversight of EPA's Nonpoint Source (NPS) Pollution Control Program. GRTS pulls...

  17. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    International Nuclear Information System (INIS)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W.

    2010-01-01

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

  18. Future Satellite Gravimetry and Earth Dynamics

    CERN Document Server

    Flury, Jakob

    2005-01-01

    Currently, a first generation of dedicated satellite missions for the precise mapping of the Earth’s gravity field is in orbit (CHAMP, GRACE, and soon GOCE). The gravity data from these satellite missions provide us with very new information on the dynamics of planet Earth. In particular, on the mass distribution in the Earth’s interior, the entire water cycle (ocean circulation, ice mass balance, continental water masses, and atmosphere), and on changes in the mass distribution. The results are fascinating, but still rough with respect to spatial and temporal resolution. Technical progress in satellite-to-satellite tracking and in gravity gradiometry will allow more detailed results in the future. In this special issue, Earth scientists develop visions of future applications based on follow-on high-precision satellite gravimetry missions.

  19. Quality Assurance Tracking System - R7 (QATS-R7)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is metadata documentation for the Quality Assurance Tracking System - R7, an EPA Region 7 resource that tracks information on quality assurance reviews. Also...

  20. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  1. The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2016-01-01

    Full Text Available This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs. These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC’s critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005, the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

  2. An auxiliary frequency tracking system for general purpose lock-in amplifiers

    Science.gov (United States)

    Xie, Kai; Chen, Liuhao; Huang, Anfeng; Zhao, Kai; Zhang, Hanlu

    2018-04-01

    Lock-in amplifiers (LIAs) are designed to measure weak signals submerged by noise. This is achieved with a signal modulator to avoid low-frequency noise and a narrow-band filter to suppress out-of-band noise. In asynchronous measurement, even a slight frequency deviation between the modulator and the reference may lead to measurement error because the filter’s passband is not flat. Because many commercial LIAs are unable to track frequency deviations, in this paper we propose an auxiliary frequency tracking system. We analyze the measurement error caused by the frequency deviation and propose both a tracking method and an auto-tracking system. This approach requires only three basic parameters, which can be obtained from any general purpose LIA via its communications interface, to calculate the frequency deviation from the phase difference. The proposed auxiliary tracking system is designed as a peripheral connected to the LIA’s serial port, removing the need for an additional power supply. The test results verified the effectiveness of the proposed system; the modified commercial LIA (model SR-850) was able to track the frequency deviation and continuous drift. For step frequency deviations, a steady tracking error of less than 0.001% was achieved within three adjustments, and the worst tracking accuracy was still better than 0.1% for a continuous frequency drift. The tracking system can be used to expand the application scope of commercial LIAs, especially for remote measurements in which the modulation clock and the local reference are separated.

  3. Combined Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  4. Auto Mission Planning System Design for Imaging Satellites and Its Applications in Environmental Field

    Directory of Open Access Journals (Sweden)

    He Yongming

    2016-10-01

    Full Text Available Satellite hardware has reached a level of development that enables imaging satellites to realize applications in the area of meteorology and environmental monitoring. As the requirements in terms of feasibility and the actual profit achieved by satellite applications increase, we need to comprehensively consider the actual status, constraints, unpredictable information, and complicated requirements. The management of this complex information and the allocation of satellite resources to realize image acquisition have become essential for enhancing the efficiency of satellite instrumentation. In view of this, we designed a satellite auto mission planning system, which includes two sub-systems: the imaging satellite itself and the ground base, and these systems would then collaborate to process complicated missions: the satellite mainly focuses on mission planning and functions according to actual parameters, whereas the ground base provides auxiliary information, management, and control. Based on the requirements analysis, we have devised the application scenarios, main module, and key techniques. Comparison of the simulation results of the system, confirmed the feasibility and optimization efficiency of the system framework, which also stimulates new thinking for the method of monitoring environment and design of mission planning systems.

  5. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  6. Perspective : component tracking on the Nova system

    International Nuclear Information System (INIS)

    MacDonald, S.

    1999-01-01

    The issue of introducing Component Tracking as a service to natural gas producers, shippers and straddle plant operators was discussed. Approximately 39 companies in the industry were contacted by consultants at Nova Gas Transmission in an effort to assess if introducing this service would add value to individual producers. The numerous implications that may have to be dealt with if Component Tracking is introduced were also described. Component Tracking would provide an equitable approach to the allocation of molecules in the gas stream, and could provide producers with the ability to avoid capital outlay in field plants by alternatively contracting for recovery of the liquids at the straddle plants. Component Tracking is to be voluntary and each shipper would be able to decide whether to utilize the service at each of their receipt points onto the Nova system

  7. A novel track imaging system as a range counter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. [National Institute of Radiological Sciences (Japan); Matsufuji, N. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kanayama, S. [Chiba University (Japan); Ishida, A. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kohno, T. [Tokyo Institute of Technology (Japan); Koba, Y.; Sekiguchi, M.; Kitagawa, A.; Murakami, T. [National Institute of Radiological Sciences (Japan)

    2016-05-01

    An image-intensified, camera-based track imaging system has been developed to measure the tracks of ions in a scintillator block. To study the performance of the detector unit in the system, two types of scintillators, a dosimetrically tissue-equivalent plastic scintillator EJ-240 and a CsI(Tl) scintillator, were separately irradiated with carbon ion ({sup 12}C) beams of therapeutic energy from HIMAC at NIRS. The images of individual ion tracks in the scintillators were acquired by the newly developed track imaging system. The ranges reconstructed from the images are reported here. The range resolution of the measurements is 1.8 mm for 290 MeV/u carbon ions, which is considered a significant improvement on the energy resolution of the conventional ΔE/E method. The detector is compact and easy to handle, and it can fit inside treatment rooms for in-situ studies, as well as satisfy clinical quality assurance purposes.

  8. NASA to launch second business communications satellite

    Science.gov (United States)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  9. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  10. Eumetcast receiving station integration withinthe satellite image database interface (SAIDIN) system.

    OpenAIRE

    Chic, Òscar

    2010-01-01

    Within the tasks devoted to operational oceanography, Coastal Ocean Observatory at Institut de Ciències del Mar (CSIC) has acquired an European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Broadcast System for Environmental Data (EUMETCast reception system) to replace a satellite direct broadcast system that receives data via High Resolution Picture Transmission (HRPT). EUMETCast system can receive data based on standard Digital Video Broadcastin...

  11. 78 FR 31576 - Enforcement Proceeding; Certain Two-Way Global Satellite Communication Devices, System and...

    Science.gov (United States)

    2013-05-24

    ...-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Institution of... importation of certain two-way global satellite communication devices, system and components thereof by reason... importation any two-way global satellite communication devices, system, and components thereof that infringe...

  12. Developing an electronic system to manage and track emergency medications.

    Science.gov (United States)

    Hamm, Mark W; Calabrese, Samuel V; Knoer, Scott J; Duty, Ashley M

    2018-03-01

    The development of a Web-based program to track and manage emergency medications with radio frequency identification (RFID) is described. At the Cleveland Clinic, medication kit restocking records and dispense locations were historically documented using a paper record-keeping system. The Cleveland Clinic investigated options to replace the paper-based tracking logs with a Web-based program that could track the real-time location and inventory of emergency medication kits. Vendor collaboration with a board of pharmacy (BOP) compliance inspector and pharmacy personnel resulted in the creation of a dual barcoding system using medication and pocket labels. The Web-based program was integrated with a Cleveland Clinic-developed asset tracking system using active RFID tags to give the real-time location of the medication kit. The Web-based program and the asset tracking system allowed identification of kits nearing expiration or containing recalled medications. Conversion from a paper-based system to a Web-based program began in October 2013. After 119 days, data were evaluated to assess the success of the conversion. Pharmacists spent an average of 27 minutes per day approving medication kits during the postimplementation period versus 102 minutes daily using the paper-based system, representing a 74% decrease in pharmacist time spent on this task. Prospective reports are generated monthly to allow the manager to assess the expected workload and adjust staffing for the next month. Implementation of a BOP-approved Web-based system for managing and tracking emergency medications with RFID integration decreased pharmacist review time, minimized compliance risk, and increased access to real-time data. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  13. Testbeam results of the first real-time embedded tracking system with artificial retina

    Energy Technology Data Exchange (ETDEWEB)

    Neri, N., E-mail: nicola.neri@mi.infn.it; Abba, A.; Caponio, F.; Citterio, M.; Coelli, S.; Fu, J.; Merli, A.; Monti, M.; Petruzzo, M.

    2017-02-11

    We present the testbeam results of the first real-time embedded tracking system based on artificial retina algorithm. The tracking system prototype is capable of fast track reconstruction with a latency of the response below 1 μs and track parameter resolutions that are comparable with the offline results. The artificial retina algorithm was implemented in hardware in a custom data acquisition board based on commercial FPGA. The system was tested successfully using a 180 GeV/c proton beam at the CERN SPS with a maximum track rate of about 280 kHz. Online track parameters were found in good agreement with offline results and with the simulated response. - Highlights: • First real-time tracking system based on artificial retina algorithm tested on beam. • Fast track reconstruction within one microsecond latency and offline like quality. • Fast tracking algorithm implemented in commercial FPGAs.

  14. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  15. A simultaneous localization and tracking method for a worm tracking system

    Directory of Open Access Journals (Sweden)

    Kowalski Mateusz

    2014-09-01

    Full Text Available The idea of worm tracking refers to the path analysis of Caenorhabditis elegans nematodes and is an important tool in neurobiology which helps to describe their behavior. Knowledge about nematode behavior can be applied as a model to study the physiological addiction process or other nervous system processes in animals and humans. Tracking is performed by using a special manipulator positioning a microscope with a camera over a dish with an observed individual. In the paper, the accuracy of a nematode’s trajectory reconstruction is investigated. Special attention is paid to analyzing errors that occurred during the microscope displacements. Two sources of errors in the trajectory reconstruction are shown. One is due to the difficulty in accurately measuring the microscope shift, the other is due to a nematode displacement during the microscope movement. A new method that increases path reconstruction accuracy based only on the registered sequence of images is proposed. The method Simultaneously Localizes And Tracks (SLAT the nematodes, and is robust to the positioning system displacement errors. The proposed method predicts the nematode position by using NonParametric Regression (NPR. In addition, two other methods of the SLAT problem are implemented to evaluate the NPR method. The first consists in ignoring the nematode displacement during microscope movement, and the second is based on a Kalman filter. The results suggest that the SLAT method based on nonparametric regression gives the most promising results and decreases the error of trajectory reconstruction by 25% compared with reconstruction based on data from the positioning system

  16. A WebGIS system on the base of satellite data processing system for marine application

    Science.gov (United States)

    Gong, Fang; Wang, Difeng; Huang, Haiqing; Chen, Jianyu

    2007-10-01

    From 2002 to 2004, a satellite data processing system for marine application had been built up in State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, State Oceanic Administration). The system received satellite data from TERRA, AQUA, NOAA-12/15/16/17/18, FY-1D and automatically generated Level3 products and Level4 products(products of single orbit and merged multi-orbits products) deriving from Level0 data, which is controlled by an operational control sub-system. Currently, the products created by this system play an important role in the marine environment monitoring, disaster monitoring and researches. Now a distribution platform has been developed on this foundation, namely WebGIS system for querying and browsing of oceanic remote sensing data. This system is based upon large database system-Oracle. We made use of the space database engine of ArcSDE and other middleware to perform database operation in addition. J2EE frame was adopted as development model, and Oracle 9.2 DBMS as database background and server. Simply using standard browsers(such as IE6.0), users can visit and browse the public service information that provided by system, including browsing for oceanic remote sensing data, and enlarge, contract, move, renew, traveling, further data inquiry, attribution search and data download etc. The system is still under test now. Founding of such a system will become an important distribution platform of Chinese satellite oceanic environment products of special topic and category (including Sea surface temperature, Concentration of chlorophyll, and so on), for the exaltation of satellite products' utilization and promoting the data share and the research of the oceanic remote sensing platform.

  17. Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    NARCIS (Netherlands)

    Aamodt, K.; Chojnacki, M.; Christakoglou, P.; de Haas, A.P.; de Rooij, R. S.; Grelli, A.|info:eu-repo/dai/nl/326052577; Ivan, C.G.|info:eu-repo/dai/nl/304847747; Kamermans, R.|info:eu-repo/dai/nl/073698733; Mischke, A.|info:eu-repo/dai/nl/325781435; Nooren, G.J.L.|info:eu-repo/dai/nl/07051349X; Oskamp, C.J.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Simili, E.; van den Brink, A.; van Leeuwen, M.|info:eu-repo/dai/nl/250599171; Verweij, M.|info:eu-repo/dai/nl/330542133

    2010-01-01

    ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with

  18. NOAA-L satellite arrives at Vandenberg AFB

    Science.gov (United States)

    2000-01-01

    Outside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., a crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is lowered to the ground before being moved inside. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. Gravity Probe-B (GP-B) Mission and Tracking, Telemetry and Control Subsystem Overview

    Science.gov (United States)

    Kennedy, Paul; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) in Huntsville, Alabama will launch the Gravity Probe B (GP-B) space experiment in the Fall of 2002. The GP-B spacecraft was developed to prove Einstein's theory of General Relativity. This paper will provide an overview of the GPB mission and will discuss the design, and test of the spacecraft Tracking, Telemetry and Control (TT&C) subsystem which incorporates NASA's latest generation standard transponder for use with the NASA Tracking and Data Relay Satellite System (TDRSS).

  19. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  1. Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter

    Science.gov (United States)

    Rahimi, Afshin; Kumar, Krishna Dev; Alighanbari, Hekmat

    2017-05-01

    Reaction wheels, as one of the most commonly used actuators in satellite attitude control systems, are prone to malfunction which could lead to catastrophic failures. Such malfunctions can be detected and addressed in time if proper analytical redundancy algorithms such as parameter estimation and control reconfiguration are employed. Major challenges in parameter estimation include speed and accuracy of the employed algorithm. This paper presents a new approach for improving parameter estimation with adaptive unscented Kalman filter. The enhancement in tracking speed of unscented Kalman filter is achieved by systematically adapting the covariance matrix to the faulty estimates using innovation and residual sequences combined with an adaptive fault annunciation scheme. The proposed approach provides the filter with the advantage of tracking sudden changes in the system non-measurable parameters accurately. Results showed successful detection of reaction wheel malfunctions without requiring a priori knowledge about system performance in the presence of abrupt, transient, intermittent, and incipient faults. Furthermore, the proposed approach resulted in superior filter performance with less mean squared errors for residuals compared to generic and adaptive unscented Kalman filters, and thus, it can be a promising method for the development of fail-safe satellites.

  2. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  3. Communications Satellite Systems Conference, 9th, San Diego, CA, March 7-11, 1982, Collection of Technical Papers

    Science.gov (United States)

    The Shuttle-to-Geostationary Orbital Transfer by mid-level thrust is considered along with multibeam antenna concepts for global communications, the antenna pointing systems for large communication satellites, the connection phase of multidestination protocols for broadcast satellites, and an experiment in high-speed international packet switching. Attention is given to a dynamic switch matrix for the TDMA satellite switching system, the characterization of 16 bit microprocessors for space use, in-orbit operation and test of Intelsat V satellites, the first operational communications system via satellite in Europe, the Arab satellite communications systems, second generation business satellite systems for Europe, and a high performance Ku-band satellite for the 1980's. Other topics investigated are related to Ku-band terminal design tradeoffs, progress in the definition of the Italian satellite for domestic telecommunications, future global satellite systems for Intelsat, and satellite refuelling in orbit.

  4. Satellite communication system for emergency monitoring within the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Franchini, C.; Mensa, M.; Kanevsky, V.A.

    1997-01-01

    A Satellite Emergency Monitoring system of the Chernobyl Exclusive Zone (SEM CEZ) was designed to provide the Ukraine authorities and the neighbouring countries with updated information when an emergency situation occurs in the Exclusion Zone. This is of particular importance when environment contamination has transboundary effect. SEM system consists of mobile and fixed sensors reporting data via a dedicated satellite communications link. Mobile sensors are fitted with Global Positioning System (GPS) receivers that determine current coordinates of the sensor. Sensors data are transmitted to the Emergency Monitoring Centre equipped with PC and a satellite terminal. Both sensors data and the current position are visualized on digital maps

  5. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  6. Symmetry breaking of adjacent tracks in perpendicular recording system

    International Nuclear Information System (INIS)

    Xie Huang; Wei Dan

    2007-01-01

    The track density increase in a perpendicular magnetic recording system is limited by the adjacent-track interference (ATI). In this work, a composite micromagnetic simulation model of the read/write process is developed to analyse ATI by the symmetry of signal and noise in two adjacent W = 60 nm tracks with the track pitch of the order of 100 nm. Based on the two-dimensional medium noise distribution of dibit recording, it is found that the noise in the first and later recorded tracks start to be asymmetric when the track pitch is lower than 2 W; if the read width is limited within 2/3 of the write width, the asymmetry of noise appears when the track pitch is less than 1.5 W. At higher recording densities, the signal-to-noise ratio degradation is mainly due to the noise caused by the interference from the signal of the adjacent track. Side writing can be effectively eliminated by the use of a guard band whose width is at least half the track width

  7. The Creation of Differential Correction Systems and the Systems of Global Navigation Satellite System Monitoring

    National Research Council Canada - National Science Library

    Polishchuk, G. M; Kozlov, V. I; Urlichich, Y. M; Dvorkin, V. V; Gvozdev, V. V

    2002-01-01

    ... for the Russian Federation and a system of global navigation satellite system monitoring. These projects are some of the basic ones in the Federal program "Global Navigation System," aimed at maintenance and development of the GLONASS system...

  8. Defense Science Board Task Force on Military Satellite Communication and Tactical Networking. Executive Summary

    Science.gov (United States)

    2017-03-01

    Interface Processor BCT Brigade Combat Team BFT Blue Force Tracking BLOS Beyond Line-of-Sight C2 Command And Control C2E Communications in...Satellite Communications and Tactical Networking Appendix D-2 GIG Global Information Grid GMR Ground Mobile Radio GPS Global Positioning System...System SIPRNet Secret Internet Protocol Router Network SITREPS Situational Reports SMART -T Secure Mobile Anti-Jam Reliable Tactical Terminal SMC Space

  9. Fiducial-Based Translational Localization Accuracy of Electromagnetic Tracking System and On-Board Kilovoltage Imaging System

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; Malinowski, Kathleen; Hubenshmidt, James; Dimmer, Steve; Mayse, Martin L.; Bradley, Jeffrey; Chaudhari, Amir; Lechleiter, Kirsten; Goddu, Sree Krishna Murty; Esthappan, Jacqueline; Mutic, Sasa; Low, Daniel A.; Parikh, Parag

    2008-01-01

    Purpose: The Calypso medical four-dimensional localization system uses AC electromagnetics, which do not require ionizing radiation, for accurate, real-time tumor tracking. This investigation compared the static and dynamic tracking accuracy of this system to that of an on-board imaging kilovoltage X-ray system for concurrent use of the two systems. Methods and Materials: The localization accuracies of a kilovoltage imaging system and a continuous electromagnetic tracking system were compared. Using an in-house developed four-dimensional stage, quality-assurance fixture containing three radiofrequency transponders was positioned at a series of static locations and then moved through the ellipsoidal and nonuniform continuous paths. The transponder positions were tracked concurrently by the Calypso system. For static localization, the transponders were localized using portal images and digitally reconstructed radiographs by commercial matching software. For dynamic localization, the transponders were fluoroscopically imaged, and their positions were determined retrospectively using custom-written image processing programs. The localization data sets were synchronized with and compared to the known quality assurance fixture positions. The experiment was repeated to retrospectively track three transponders implanted in a canine lung. Results: The root mean square error of the on-board imaging and Calypso systems was 0.1 cm and 0.0 cm, respectively, for static localization, 0.22 mm and 0.33 mm for dynamic phantom positioning, and 0.42 mm for the canine study. Conclusion: The results showed that both localization systems provide submillimeter accuracy. The Calypso and on-board imaging tracking systems offer distinct sets of advantages and, given their compatibility, patients could benefit from the complementary nature of the two systems when used concurrently

  10. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  11. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  12. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  13. Key issues of multiple access technique for LEO satellite communication systems

    Institute of Scientific and Technical Information of China (English)

    温萍萍; 顾学迈

    2004-01-01

    The large carrier frequency shift caused by the high-speed movement of satellite (Doppler effects) and the propagation delay on the up-down link are very critical issues in an LEO satellite communication system, which affects both the selection and the implementation of a suitable access method. A Doppler based multiple access technique is used here to control the flow and an MPRMA-HS protocol is proposed for the application in LEO satellite communication systems. The extended simulation trials prove that the proposed scheme seems to be a very promising access method.

  14. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  15. A simple tracking system to monitor solar PV panels

    International Nuclear Information System (INIS)

    Bentaher, H.; Kaich, H.; Ayadi, N.; Ben Hmouda, M.; Maalej, A.; Lemmer, U.

    2014-01-01

    Highlights: • We designed and constructed a solar tracking system based on light-dependent resistors (LDRs). • A study was made to determine the optimal angle of LDRs inducing the best precision of the device. • An experimental system was built to test different values of the angle between LDRs. • Results showed a good agreement between the experience and the predicted values. • The obtained results are useful for the design of new trackers based on the use of LDRs. - Abstract: The solar tracking systems are a center of interest of a big number of researchers from the fifties. The deflection of sun rays on a solar photovoltaic panel can reduce its power output until 50%. For concentrators solar trackers are master parts of the systems. A simple tracking system based on light dependent resistors was locally constructed, tested and optimized. Good agreement was recorded between numerical optimization results and experimental ones. These results are useful for the design and construction of new sun trackers

  16. Seasonal and circadian biases in bird tracking with solar GPS-tags.

    Directory of Open Access Journals (Sweden)

    Rafa Silva

    Full Text Available Global Positioning System (GPS tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus, tracked for several years with solar GPS tags, to evaluate the causes and triggers of fix and data retrieval loss biases. We compare two models of solar GPS tags using different data retrieval systems (Argos vs GSM-GPRS, and programmed with different duty cycles. Neither of the models was able to accomplish the duty cycle programed initially. Fix and data retrieval loss rates were always greater than expected, and showed non-random gaps in GPS locations. Number of fixes per month of tracking was a bad criterion to identify tags with smaller biases. Fix-loss rates were four times higher due to battery drain than due to poor GPS satellite geometry. Both tag models were biased due to the uneven solar energy available for the recharge of the tag throughout the annual cycle, resulting in greater fix-loss rates in winter compared to summer. In addition, we suggest that the bias found along the diurnal cycle is linked to a complex three-factor interaction of bird flight behavior, topography and fix interval. More fixes were lost when vultures were perching compared to flying, in rugged versus flat topography. But long fix-intervals caused greater loss of fixes in dynamic (flying versus static situations (perching. To conclude, we emphasize the importance of evaluating fix-loss bias in current tracking projects, and deploying GPS tags that allow remote duty cycle updates so that the most appropriate fix and data retrieval intervals can be selected.

  17. Relay tracking control for second-order multi-agent systems with damaged agents.

    Science.gov (United States)

    Dong, Lijing; Li, Jing; Liu, Qin

    2017-11-01

    This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    International Nuclear Information System (INIS)

    Gering, Stefan; Adamy, Jürgen

    2014-01-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis

  19. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    Science.gov (United States)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  20. An Approach of Tracking Control for Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Jin Xing

    2016-01-01

    Full Text Available Combining the ergodicity of chaos and the Jacobian matrix, we design a general tracking controller for continuous and discrete chaotic systems. The control scheme has the ability to track a bounded reference signal. We prove its globally asymptotic stability and extend it to generalized projective synchronization. Numerical simulations verify the effectiveness of the proposed scheme.

  1. Studies for the ALICE inner tracking system upgrade

    International Nuclear Information System (INIS)

    Reidt, Felix

    2016-01-01

    The ALICE experiment at the CERN LHC identifies D"0 mesons via secondary-vertex reconstruction and topological cuts to reduce the corresponding combinatorial background in heavy-ion collisions. The D"0 meson is produced promptly in initial, hard scatterings via the strong interaction or as feed-down from weakly decaying B hadrons. Within this thesis, a novel method for the separation of prompt and feed-down D"0 mesons using cut variations was implemented and applied to data from p-Pb collisions at √(s_N_N)=5.02 TeV. The effectiveness of the secondary-vertex reconstruction strongly depends on the performance and in particular the pointing resolution of the Inner Tracking System. The upgrade of the ALICE Inner Tracking System for the Long Shutdown 2 of the LHC in 2019/2020 will significantly improve its vertex-reconstruction and tracking capabilities. It will be equipped with Monolithic Active Pixel Sensors manufactured using the TowerJazz 180 nm CMOS process on wafers with a high-resistivity epitaxial layer. In another part of this thesis, several pixel-chip prototypes of the ALPIDE architecture with in-pixel amplification and discrimination as well as in-matrix data reduction were characterised. The pALPIDE-2 prototype was measured to fulfil the requirements in terms of detection efficiency, fake-hit rate, position resolution and tolerance to irradiation with non-ionising energy loss. Based on simulations modelling the tracking and vertex-reconstruction performance of the upgraded Inner Tracking System, the perspective of the feed-down separation using cut variations after the upgrade was assessed within this thesis.

  2. GeoMedStat: an integrated spatial surveillance system to track air pollution and associated healthcare events

    Directory of Open Access Journals (Sweden)

    Fazlay S. Faruque

    2014-12-01

    Full Text Available Air pollutants, such as particulate matter with a diameter ≤2.5 microns (PM2.5 and ozone (O3, are known to exacerbate asthma and other respiratory diseases. An integrated surveillance system that tracks such air pollutants and associated disease incidence can assist in risk assessment, healthcare preparedness and public awareness. However, the implementation of such an integrated environmental health surveillance system is a challenge due to the disparate sources of many types of data and the implementation becomes even more complicated for a spatial and real-time system due to lack of standardised technological components and data incompatibility. In addition, accessing and utilising health data that are considered as Protected Health Information (PHI require maintaining stringent protocols, which have to be supported by the system. This paper aims to illustrate the development of a spatial surveillance system (GeoMedStat that is capable of tracking daily environmental pollutants along with both daily and historical patient encounter data. It utilises satellite data and the groundmonitor data from the US National Aeronautics and Space Administration (NASA and the US Environemental Protection Agenecy (EPA, rspectively as inputs estimating air pollutants and is linked to hospital information systems for accessing chief complaints and disease classification codes. The components, developmental methods, functionality of GeoMedStat and its use as a real-time environmental health surveillance system for asthma and other respiratory syndromes in connection with with PM2.5 and ozone are described. It is expected that the framework presented will serve as an example to others developing real-time spatial surveillance systems for pollutants and hospital visits.

  3. Guidance, Navigation, and Control System for Maneuverable Pico-Satellites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, low-power GN&C system is essential to the success of pico-satellite Automated Rendezvous and Docking (AR&D). Austin Satellite Design (ASD)...

  4. Yarr: A PCIe based readout system for semiconductor tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Heim, Timon [Bergische Universitaet Wuppertal, Wuppertal (Germany); CERN, Geneva (Switzerland); Maettig, Peter [Bergische Universitaet Wuppertal, Wuppertal (Germany); Pernegger, Heinz [CERN, Geneva (Switzerland)

    2015-07-01

    The Yarr readout system is a novel DAQ concept, using an FPGA board connected via PCIe to a computer, to read out semiconductor tracking systems. The system uses the FPGA as a reconfigurable IO interface which, in conjunction with the very high speed of the PCIe bus, enables a focus of processing the data stream coming from the pixel detector in software. Modern computer system could potentially make the need of custom signal processing hardware in readout systems obsolete and the Yarr readout system showcases this for FE-I4 chips, which are state-of-the-art readout chips used in the ATLAS Pixel Insertable B-Layer and developed for tracking in high multiplicity environments. The underlying concept of the Yarr readout system tries to move intelligence from hardware into the software without the loss of performance, which is made possible by modern multi-core processors. The FPGA board firmware acts like a buffer and does no further processing of the data stream, enabling rapid integration of new hardware due to minimal firmware minimisation.

  5. National Satellite Forest Monitoring systems for REDD+

    Science.gov (United States)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  6. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  7. Launching the First Indian Satellite

    Indian Academy of Sciences (India)

    long run, this is not bad since it generates self-confidence and self-reliance - which in the final analysis are .... hopes to find some new X-ray sources. The second ... from the state of health of the satellite can be judged. A tracking network gives ...

  8. Long range position and Orientation Tracking System

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1996-01-01

    The long range Position and Orientation Tracking System is an active triangulation-based system that is being developed to track a target to a resolution of 6.35 mm (0.25 in.) and 0.009 degrees(32.4 arcseconds) over a range of 13.72 m (45 ft.). The system update rate is currently set at 20 Hz but can be increased to 100 Hz or more. The tracking is accomplished by sweeping two pairs of orthogonal line lasers over infrared (IR) sensors spaced with known geometry with respect to one another on the target (the target being a rigid body attached to either a remote vehicle or a remote manipulator arm). The synchronization and data acquisition electronics correlates the time that an IR sensor has been hit by one of the four lasers and the angle of the respective mirror at the time of the hit. This information is combined with the known geometry of the IR sensors on the target to determine position and orientation of the target. This method has the advantage of allowing the target to be momentarily lost due to occlusions and then reacquired without having to return the target to a known reference point. The system also contains a camera with operator controlled lighting in each pod that allows the target to be continuously viewed from either pod, assuming their are no occlusions

  9. Ambiguity resolution for satellite Doppler positioning systems

    Science.gov (United States)

    Argentiero, P.; Marini, J.

    1979-01-01

    The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.

  10. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2016-01-01

    Graphical abstract: 6 kW_p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW_p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The results show that horizontal axis with

  11. A real-time sub-μrad laser beam tracking system

    Science.gov (United States)

    Buske, Ivo; Schragner, Ralph; Riede, Wolfgang

    2007-10-01

    We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.

  12. Broadband and scalable mobile satellite communication system for future access networks

    Science.gov (United States)

    Ohata, Kohei; Kobayashi, Kiyoshi; Nakahira, Katsuya; Ueba, Masazumi

    2005-07-01

    Due to the recent market trends, NTT has begun research into next generation satellite communication systems, such as broadband and scalable mobile communication systems. One service application objective is to provide broadband Internet access for transportation systems, temporal broadband access networks and telemetries to remote areas. While these are niche markets the total amount of capacity should be significant. We set a 1-Gb/s total transmission capacity as our goal. Our key concern is the system cost, which means that the system should be unified system with diversified services and not tailored for each application. As satellites account for a large portion of the total system cost, we set the target satellite size as a small, one-ton class dry mass with a 2-kW class payload power. In addition to the payload power and weight, the mobile satellite's frequency band is extremely limited. Therefore, we need to develop innovative technologies that will reduce the weight and maximize spectrum and power efficiency. Another challenge is the need for the system to handle up to 50 dB and a wide data rate range of other applications. This paper describes the key communication system technologies; the frequency reuse strategy, multiplexing scheme, resource allocation scheme, and QoS management algorithm to ensure excellent spectrum efficiency and support a variety of services and quality requirements in the mobile environment.

  13. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  14. Advanced payload concepts and system architecture for emerging services in Indian National Satellite Systems

    Science.gov (United States)

    Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.

    2008-07-01

    Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.

  15. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    Science.gov (United States)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  16. The Siegen automatic measuring system for nuclear track detectors: new developments

    International Nuclear Information System (INIS)

    Noll, A.; Rusch, G.; Roecher, H.; Dreute, J.; Heinrich, W.

    1988-01-01

    Starting ten years ago we developed completely automatic scanning and measuring systems for nuclear track detectors. In this paper we describe some new developments. Our autofocus systems based on the contrast of the video picture and on a laser autofocus have been improved in speed and in reliability. Based on new algorithms, faster programs have been developed to scan for nuclear tracks in plastic detectors. Methods for separation of overlapping tracks have been improved. Interactive programs for track measurements have been developed which are very helpful for space bio-physics experiments. Finally new methods for track measurements in nuclear emulsions irradiated with a beam perpendicular to the detector surface are described in this paper. (author)

  17. Subaru FATS (fault tracking system)

    Science.gov (United States)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  18. LHCb : Tracking system of the LHCb upgrade

    CERN Multimedia

    Szumlak, Tomasz

    2015-01-01

    The upgrade of the LHCb experiment will run at an instantaneous luminosity of 2x10^33 cm^-2 s^-1 with a fully software based trigger, allowing to read out the detector at a rate of 40MHz. For this purpose, the full tracking system will be newly developed: the vertex locator (VELO) will be replaced by a pixel-based detector, withstanding the high radiation dose and providing an excellent track reconstruction with an efficiency of above 99% for all charged particles of interest. Upstream of the magnet, a silicon mico-strip detector with a high granularity and an improved acceptance coverage, called the Upstream Tracker (UT), will replace the current silicon strip tracker, and provide a rough momentum estimate. The tracking system downstream of the magnet will be replaced by the Scintillating Fibre tracker (SciFi), which will consist of 12 layers using 2.5m long scintillating fibres read out by silicon photo-multipliers, providing a spatial resolution better than 100 micron and resulting in a total momentum reso...

  19. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    Science.gov (United States)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  20. Privacy Act System of Records: Confidential Business Information Tracking System, EPA-20

    Science.gov (United States)

    Learn about the Confidential Business Information Tracking System, including who is covered in the system, the purpose of data collection, routine uses for the system's records, and other security procedures.

  1. Information Technology Procurement Authorization (ITPA) Tracking System

    Data.gov (United States)

    Office of Personnel Management — Information Technology Procurement Authorization (ITPA) Tracking System is used for gathering consistent data from U.S. Office of Personnel Management (OPM) program...

  2. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    Science.gov (United States)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  3. Dynamical and observational constraints on satellites in the inner Pluto-Charon system

    Science.gov (United States)

    Stern, S. Alan; Parker, Joel William; Duncan, Martin J.; Snowdall, J. Clark, Jr.; Levison, Harold F.

    1994-01-01

    It is not known if Pluto has other satellites besides its massive partner Charon. In the past, searches for additional satellites in the Pluto-Charon system have extended from the solar-tidal stability boundary (approximately 90 arcsec from Pluto) inward to about 1 arcsec from Pluto. Here we further explore the inner (i.e., less than 10 arcsec) region of the Pluto-Charon system to determine where additional satellites might lie. In particular, we report on (1) dynamical simulations to delineate the region where unstable orbits lie around Charon, (2) dynamical simulations which use the low orbital eccentricity of Charon to constrain the mass of any third body near Pluto, and (3) analysis of Hubble Space Telescope (HST) archival images to search for satellites in the inner Pluto-Charon system. Although no objects were found, significant new constraints on bodies orbiting in the inner Pluto-Charon system were obtained.

  4. Robust H(infinity) tracking control of boiler-turbine systems.

    Science.gov (United States)

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  6. Integration of Satellite and Terrestrial Systems in Future Multimedia Communications

    OpenAIRE

    Evans, Barry; Werner, Markus; Lutz, Erich; Bousquet, Michel; Corazza, Giovanni E; Maral, Gerard; Rumeau, Robert; Ferro, Erina

    2005-01-01

    In this article we examine the role of satellite communications in future telecommunication networks and service provision. Lessons from the past indicate that satellites are successful as a result of their wide area coverage or speed to market for new services. Niche areas such as coverage of air and sea will persist, but for land masses convergence of fixed, mobile, and broadcasting will dictate that the only way forward for satellites is in an integrated format with terrestrial systems. We...

  7. Satellite tracking of the migration of Whooper Swans Cygnus cygnus wintering in Japan

    Science.gov (United States)

    Shimada, Tetsuo; Yamaguchi, Noriyuki M.; Hijikata, N.; Hiraoka, Emiko N.; Hupp, Jerry; Flint, Paul L.; Tokita, Ken-ichi; Fujita, Go; Uchida, Kiyoshi; Sato, F.; Kurechi, Masayuki; Pearce, John M.; Ramey, Andy M.; Higuchi, Hiroyoshi

    2014-01-01

    We satellite-tracked Whooper Swans Cygnus cygnus wintering in northern Japan to document their migration routes and timing, and to identify breeding areas. From 47 swans that we marked at Lake Izunuma-Uchinuma, Miyagi Prefecture, northeast Honshu, and at Lake Kussharo, east Hokkaido, we observed 57 spring and 33 autumn migrations from 2009-2012. In spring, swans migrated north along Sakhalin Island from eastern Hokkaido using stopovers in Sakhalin, at the mouth of the Amur River and in northern coastal areas of the Sea of Okhotsk. They ultimately reached molting/breedmg areas along the Indigirka River and the lower Kolyma River in northern Russia. In autumn, the swans basically reversed the spring migration routes. We identified northern Honshu, eastern Hokkaido, coastal areas in Sakhalin, the lower Amur River and northern coastal areas of the Sea of Okhotsk as the most frequent stopover sites, and the middle reaches of the Indigirka and the lower Kolyma River as presumed breeding sites. Our results are helpful in understanding the distribution of the breeding and stopover sites of Whooper Swans wintering in Japan and in identifying their major migration habitats. Our findings contribute to understanding the potential transmission process of avian influenza viruses potentially carried by swans, and provide information necessary to conserve Whooper Swans in East Asia.

  8. Adaptive spatial filtering for daytime satellite quantum key distribution

    Science.gov (United States)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2014-11-01

    The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.

  9. NASDA knowledge-based network planning system

    Science.gov (United States)

    Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.

    1993-01-01

    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.

  10. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    Science.gov (United States)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  11. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  12. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  13. Studies for the ALICE inner tracking system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Felix

    2016-04-28

    The ALICE experiment at the CERN LHC identifies D{sup 0} mesons via secondary-vertex reconstruction and topological cuts to reduce the corresponding combinatorial background in heavy-ion collisions. The D{sup 0} meson is produced promptly in initial, hard scatterings via the strong interaction or as feed-down from weakly decaying B hadrons. Within this thesis, a novel method for the separation of prompt and feed-down D{sup 0} mesons using cut variations was implemented and applied to data from p-Pb collisions at √(s{sub NN})=5.02 TeV. The effectiveness of the secondary-vertex reconstruction strongly depends on the performance and in particular the pointing resolution of the Inner Tracking System. The upgrade of the ALICE Inner Tracking System for the Long Shutdown 2 of the LHC in 2019/2020 will significantly improve its vertex-reconstruction and tracking capabilities. It will be equipped with Monolithic Active Pixel Sensors manufactured using the TowerJazz 180 nm CMOS process on wafers with a high-resistivity epitaxial layer. In another part of this thesis, several pixel-chip prototypes of the ALPIDE architecture with in-pixel amplification and discrimination as well as in-matrix data reduction were characterised. The pALPIDE-2 prototype was measured to fulfil the requirements in terms of detection efficiency, fake-hit rate, position resolution and tolerance to irradiation with non-ionising energy loss. Based on simulations modelling the tracking and vertex-reconstruction performance of the upgraded Inner Tracking System, the perspective of the feed-down separation using cut variations after the upgrade was assessed within this thesis.

  14. Cluster-based localization and tracking in ubiquitous computing systems

    CERN Document Server

    Martínez-de Dios, José Ramiro; Torres-González, Arturo; Ollero, Anibal

    2017-01-01

    Localization and tracking are key functionalities in ubiquitous computing systems and techniques. In recent years a very high variety of approaches, sensors and techniques for indoor and GPS-denied environments have been developed. This book briefly summarizes the current state of the art in localization and tracking in ubiquitous computing systems focusing on cluster-based schemes. Additionally, existing techniques for measurement integration, node inclusion/exclusion and cluster head selection are also described in this book.

  15. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  16. Bug tracking and project management system application in an electronic design company

    Directory of Open Access Journals (Sweden)

    Sadık ARSLAN

    2016-05-01

    Full Text Available In this study, commercially available Bug Tracking and Management Information Systems has been investigated in a comprehensive manner. The systems that commonly used described in detail. Bug Tracking and Project Management Systems requirements analysis of medium-sized companies and Kentkart Ege Electronic which is an Information Technology company has been made. Obtained by the analysis requirements, the appropriate tools are selected for system application. JIRA that a product of Atlassian company was determined as a Bug Tracking and Project Management application tool. In this study, JIRA system adapted to the requirements, Bug Tracking and Project Management systems is designed in a structure which can be easily used by R&D employees. Cost-Benefit analysis is done and using this project was determined to be quite useful.

  17. Track-to-track association for object matching in an inter-vehicle communication system

    Science.gov (United States)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature

  18. Evaluation of a real-time personnel and material tracking system

    International Nuclear Information System (INIS)

    Trujillo, A.A.; Hoover, C.E.; Garcia, B.A.

    1988-01-01

    Past experience in addressing the insider threat has led to the development of general principles for mitigating the insider threat while minimizing adverse impacts on site operations. Among the general principles developed was the requirement of a real-time personnel and material tracking system. A real-time system for personnel and material tracking will aid in mitigating the insider threat by providing critical information regarding the movement and location of personnel and material. In addition, this system can provide an early detection mechanism for potential insider actions. A system integrating Radio Frequency (RF) transmitters for real-time personnel and material tracking has been developed. This system was installed and tested in an operational environment. This test was intended to demonstrate the system's ability to successfully control access to material and areas by personnel, as well as providing information regarding the status of materials in transit and storage

  19. Second-generation mobile satellite system. A conceptual design and trade-off study

    Science.gov (United States)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  20. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  1. Automated Mulitple Object Optical Tracking and Recognition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTRA proposes to develop an optical tracking system that is capable of recognizing and tracking up to 50 different objects within an approximately 2 degree x 3...

  2. National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture

    Science.gov (United States)

    Hinnant, F.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  3. How can present and future satellite missions support scientific studies that address ocean acidification?

    Science.gov (United States)

    Salisbury, Joseph; Vandemark, Douglas; Jonsson, Bror; Balch, William; Chakraborty, Sumit; Lohrenz, Steven; Chapron, Bertrand; Hales, Burke; Mannino, Antonio; Mathis, Jeremy T.; Reul, Nicolas; Signorini, Sergio; Wanninkhof, Rik; Yates, Kimberly K.

    2016-01-01

    Space-based observations offer unique capabilities for studying spatial and temporal dynamics of the upper ocean inorganic carbon cycle and, in turn, supporting research tied to ocean acidification (OA). Satellite sensors measuring sea surface temperature, color, salinity, wind, waves, currents, and sea level enable a fuller understanding of a range of physical, chemical, and biological phenomena that drive regional OA dynamics as well as the potentially varied impacts of carbon cycle change on a broad range of ecosystems. Here, we update and expand on previous work that addresses the benefits of space-based assets for OA and carbonate system studies. Carbonate chemistry and the key processes controlling surface ocean OA variability are reviewed. Synthesis of present satellite data streams and their utility in this arena are discussed, as are opportunities on the horizon for using new satellite sensors with increased spectral, temporal, and/or spatial resolution. We outline applications that include the ability to track the biochemically dynamic nature of water masses, to map coral reefs at higher resolution, to discern functional phytoplankton groups and their relationships to acid perturbations, and to track processes that contribute to acid variation near the land-ocean interface.

  4. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2010-01-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z -1 . It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R vir,host ), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through hydrodynamic interactions with their host galaxies.

  5. TRANSCOM: The US Department of Energy (DOE) system for tracking shipments

    International Nuclear Information System (INIS)

    Boes, K.S.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment)

  6. Freedom of Information Act (FOIA) Tracking System

    Data.gov (United States)

    Office of Personnel Management — Tracking system which allows for the input of the Freedom of Information Act (FOIA) request date, compiles the due date, information pertaining to the request, name...

  7. Effect of digital scrambling on satellite communication links

    Science.gov (United States)

    Dessouky, K.

    1985-01-01

    Digital data scrambling has been considered for communication systems using NRZ symbol formats. The purpose is to increase the number of transitions in the data to improve the performance of the symbol synchronizer. This is accomplished without expanding the bandwidth but at the expense of increasing the data bit error rate (BER). Models for the scramblers/descramblers of practical interest are presented together with the appropriate link model. The effects of scrambling on the performance of coded and uncoded links are studied. The results are illustrated by application to the Tracking and Data Relay Satellite System (TDRSS) links. Conclusions regarding the usefulness of scrambling are also given.

  8. Attitude Control and Orbital Dynamics Challenges of Removing the First 3-Axis Stabilized Tracking and Data Relay Satellite from the Geosynchronous ARC

    Science.gov (United States)

    Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald

    2011-01-01

    Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.

  9. An FDMA system concept for 30/20 GHz high capacity domestic satellite service

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.

    1982-01-01

    The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.

  10. Developing an Undergraduate Information Systems Security Track

    Science.gov (United States)

    Sharma, Aditya; Murphy, Marianne C.; Rosso, Mark A.; Grant, Donna

    2013-01-01

    Information Systems Security as a specialized area of study has mostly been taught at the graduate level. This paper highlights the efforts of establishing an Information Systems (IS) Security track at the undergraduate level. As there were many unanswered questions and concerns regarding the Security curriculum, focus areas, the benefit of…

  11. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo1

    2011-12-01

    Full Text Available The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking

  12. Design and Implementation of Effective Electrical Power System for Surya Satellite-1

    Science.gov (United States)

    Sulistya, A. H.; Hasbi, W.; Muhida, R.

    2018-05-01

    Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.

  13. Integrated quality status and inventory tracking system for FFTF driver fuel pins

    International Nuclear Information System (INIS)

    Gottschalk, G.P.

    1979-11-01

    An integrated system for quality status and inventory tracking of Fast Flux Test Facility (FFTF) driver fuel pins has been developed. Automated fuel pin identification systems, a distributed computer network, and a data base are used to implement the tracking system

  14. Design, Simulation, Software Development, and Testing of a Compact Aircraft Tracking Payload for the CanX-7 Nanosatellite Mission

    Science.gov (United States)

    Bennett, Ian Graham

    Automatic Dependent Surveillance-Broadcast (ADS-B) is quickly becoming the new standard for more efficient air traffic control, but as a satellite/ground-based hybrid system it faces limitations on its usefulness over oceans and remote areas. Tracking of aircraft from space presents many challenges that if overcome will greatly increase the safety and efficiency of commercial air travel in these areas. This thesis presents work performed to develop a flight-ready ADS-B receiver payload for the CanX-7 technology demonstration satellite. Work presented includes a simulation of payload performance and coverage area, the design and testing of a single-feed circularly polarized L-band antenna, the design of software to control the payload and manage its data, and verification of the performance of the hardware prior to integration with the satellite and launch. Also included is a short overview of results from the seven-month aircraft tracking campaign conducted with the spacecraft.

  15. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.

    1999-02-01

    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  16. Studies for the ALICE Inner Tracking System Upgrade

    CERN Document Server

    AUTHOR|(CDS)2079168; Musa, Luciano

    The ALICE experiment at the CERN LHC identifies D0 mesons via secondary-vertex reconstruction and topological cuts to reduce the corresponding combinatorial background in heavy-ion collisions. The D0 meson is produced promptly in initial, hard scatterings via the strong interaction or as feed-down from weakly decaying B hadrons. Within this thesis, a novel method for the separation of prompt and feed-down D0 mesons using cut variations was implemented and applied to data from p–Pb collisions at $\\sqrt(s_\\mathrm{NN})=5.02$ TeV. The effectiveness of the secondary-vertex reconstruction strongly depends on the performance and in particular the pointing resolution of the Inner Tracking System. The upgrade of the ALICE Inner Tracking System for the Long Shutdown 2 of the LHC in 2019/2020 will significantly improve its vertex-reconstruction and tracking capabilities. It will be equipped with Monolithic Active Pixel Sensors manufactured using the TowerJazz 180nm CMOS process on wafers with a high-resistivity epitax...

  17. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R

    2008-01-01

    The ATLAS experiment is equipped with a tracking system for c harged particles built on two technologies: silicon and drift tube base detectors. These kind of detectors compose the ATLAS Inner Detector (ID). The Alignment of the ATLAS ID tracking s ystem requires the determination of almost 36000 degrees of freedom. From the tracking point o f view, the alignment parameters should be know to a few microns precision. This permits to att ain optimal measurements of the parameters of the charged particles trajectories, thus ena bling ATLAS to achieve its physics goals. The implementation of the alignment software, its framewor k and the data flow will be discussed. Special attention will be paid to the recent challenges wher e large scale computing simulation of the ATLAS detector has been performed, mimicking the ATLAS o peration, which is going to be very important for the LHC startup scenario. The alignment r esult for several challenges (real cosmic ray data taking and computing system commissioning) will be...

  18. Design and Implementation of PLC-Based Automatic Sun tracking System for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Wang Jinping

    2016-01-01

    Full Text Available A sun-tracking system for parabolic trough solar concentrators (PTCs is a control system used to orient the concentrator toward the sun always, so that the maximum energy can be collected. The work presented here is a design and development of PLC based sun tracking control system for PTC. Sun tracking control system consists of a Programmable Logic Controller (PLC and a single axis hydraulic drives tracking control system. Hydraulic drives and the necessary tracking angle algorithm have been designed and developed to perform the technical tasks. A PLC unit was employed to control and monitor the mechanical movement of the PTC and to collect and store data related to the tracking angle of PTC. It is found that the tracking error of the system is less than 0.6°. Field experience shows that tracking algorithm act stable and reliable and suit for PTCs.

  19. A Reusable Software Architecture for Small Satellite AOCS Systems

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

    2006-01-01

    This paper concerns the software architecture called Sophy, which is an abbreviation for Simulation, Observation, and Planning in HYbrid systems. We present a framework that allows execution of hybrid dynamical systems in an on-line distributed computing environment, which includes interaction...... with both hardware and on-board software. Some of the key issues addressed by the framework are automatic translation of mathematical specifications of hybrid systems into executable software entities, management of execution of coupled models in a parallel distributed environment, as well as interaction...... with external components, hardware and/or software, through generic interfaces. Sophy is primarily intended as a tool for development of model based reusable software for the control and autonomous functions of satellites and/or satellite clusters....

  20. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    Energy Technology Data Exchange (ETDEWEB)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  1. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    International Nuclear Information System (INIS)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected

  2. Former Prisoner of War Statistical Tracking System

    Data.gov (United States)

    Department of Veterans Affairs — The Former Prisoner of War (POW) Statistical Tracking System database is a registry designed to comply with Public Law 97-37, the Former Prisoner of War Benefits Act...

  3. Assimilation of GMS-5 satellite winds using nudging method with MM5

    Science.gov (United States)

    Gao, Shanhong; Wu, Zengmao; Yang, Bo

    2006-09-01

    With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.

  4. Photovoltaic System with Smart Tracking of the Optimal Working Point

    Directory of Open Access Journals (Sweden)

    PATARAU, T.

    2010-08-01

    Full Text Available A photovoltaic (PV system, based on a Maximum Power Point Tracking (MPPT controller that extracts the maximum possible output power from the solar panel is described. Output efficiency of a PV energy system can be achieved only if the system working point is brought near the maximum power point (MPP. The proposed system, making use of several MPPT control algorithms (Perturb and Observe, Incremental conductance, Fuzzy Logic, demonstrates in simulations as well as in real experiments good tracking of the optimal working point.

  5. Design, construction and operation of spherical solar cooker with automatic sun tracking system

    International Nuclear Information System (INIS)

    Abu-Malouh, Riyad; Abdallah, Salah; Muslih, Iyad M.

    2011-01-01

    In this work, the effect of two axes tracking on a solar cooking system was studied. A dish was built to concentrate solar radiation on a pan that is fixed at the focus of the dish. The dish tracks the sun using a two axes sun tracking system. This system was built and tested. Experimental results obtained show that the temperature inside the pan reached more than 93 o C in a day where the maximum ambient temperature was 32 o C. This temperature is suitable for cooking purposes and this was achieved by using the two axes sun tracking system.

  6. The dE/dx capabilities of the D0 tracking system

    International Nuclear Information System (INIS)

    Rajagopalan, S.

    1992-06-01

    The D0 forward tracking system has been extensively calibrated using electron and pion beams in the energy range from 10 GeV to 150 GeV in the neutrino area fixed target beam line at Fermilab. The forward tracking system provides a spatial resolution of 200 μm and a two hit separation of 2.5 mm at 90% efficiency. The chamber provides 32 samples of pulse height information for a given track equivalent to a dE/dx resolution of 12.7%. The energy loss response of the chamber to low energy-beam has been studied. A Monte Carlo simulation program has been developed based on the Photo Absorption Ionization model to simulate the dE/dx response of the chamber. The observations made using low energy test beam are consistent with the model's predictions. The dE/dx measurement in the D0 tracking system provides identification of electrons against gamma conversions resulting from π 0 decays. The rejection factor of distinguishing doubly minimum ionizing tracks in the chamber has been measured to be 30.5 with the requirement that singly minimum ionizing tracks be identified with a 90% efficiency. This factor improves with lower multiplicity. Using a Monte Carlo program based on GEANT, the identification efficiency of electrons and π 0 's has been determined. Using the capabilities of the outer tracking system alone, the background due to isolated π 0 production is reduced by up to a factor of 60 in the central direction based on measurements made on a sample of simulated QCD two jet events

  7. An airborne meteorological data collection system using satellite relay /ASDAR/

    Science.gov (United States)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The paper describes the aircraft to satellite data relay (ASDAR) project which processes information collected by the navigation and data systems of widebody jet aircraft which cross data-sparse areas of the tropics and southern hemisphere. The ASDAR system consists of a data acquisition and control unit to acquire, store, and format latitude, longitude, altitude, wind speed, wind direction, and outside air temperature data; a transmitter to relay the formatted data via satellite to the ground; and a clock to time the data sampling and transmission periods.

  8. Stability of miniature electromagnetic tracking systems

    International Nuclear Information System (INIS)

    Schicho, Kurt; Figl, Michael; Donat, Markus; Birkfellner, Wolfgang; Seemann, Rudolf; Wagner, Arne; Bergmann, Helmar; Ewers, Rolf

    2005-01-01

    This study aims at a comparative evaluation of two recently introduced electromagnetic tracking systems under reproducible simulated operating-room (OR) conditions: the recently launched Medtronic StealthStation TM Treon-EM TM and the NDI Aurora TM . We investigate if and to what extent these systems provide improved performance and stability in the presence of surgical instruments as possible sources of distortions compared with earlier reports on electromagnetic tracking technology. To investigate possible distortions under pseudo-realistic OR conditions, a large Langenbeck hook, a dental drill with its handle and an ultrasonic (US) scanhead are fixed on a special measurement rack at variable distances from the navigation sensor. The position measurements made by the Treon-EM TM were least affected by the presence of the instruments. The lengths of the mean deviation vectors were 0.21 mm for the Langenbeck hook, 0.23 mm for the drill with handle and 0.56 mm for the US scanhead. The Aurora TM was influenced by the three sources of distortion to a higher degree. A mean deviation vector of 1.44 mm length was observed in the vicinity of the Langenbeck hook, 0.53 mm length with the drill and 2.37 mm due to the US scanhead. The maximum of the root mean squared error (RMSE) for all coordinates in the presence of the Langenbeck hook was 0.3 mm for the Treon TM and 2.1 mm for the Aurora TM ; the drill caused a maximum RMSE of 0.2 mm with the Treon TM and 1.2 mm with the Aurora TM . In the presence of the US scanhead, the maximum RMSE was 1.4 mm for the Treon TM and 5.1 mm for the Aurora TM . The new generation of electromagnetic tracking systems has significantly improved compared to common systems that were available in the middle of the 1990s and has reached a high level of technical development. We conclude that, in general, both systems are suitable for routine clinical application

  9. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  10. Soft-information flipping approach in multi-head multi-track BPMR systems

    Science.gov (United States)

    Warisarn, C.; Busyatras, W.; Myint, L. M. M.

    2018-05-01

    Inter-track interference is one of the most severe impairments in bit-patterned media recording system. This impairment can be effectively handled by a modulation code and a multi-head array jointly processing multiple tracks; however, such a modulation constraint has never been utilized to improve the soft-information. Therefore, this paper proposes the utilization of modulation codes with an encoded constraint defined by the criteria for soft-information flipping during a three-track data detection process. Moreover, we also investigate the optimal offset position of readheads to provide the most improvement in system performance. The simulation results indicate that the proposed systems with and without position jitter are significantly superior to uncoded systems.

  11. New Generation of Broadcasting Satellite Systems: New Markets and Business Developments

    Science.gov (United States)

    Perrot, Bruno; Michel, Cyril; Villaret, Stéfanie

    2002-01-01

    Since the deployment of the first Digital Broadcasting Satellite Systems, European satellite operators and service providers have been faced with the continuously increasing demand for Digital Broadcasting Services. Their success is built on the availability of the MPEG and DVB standards. Undoubtedly, conventional digital television broadcasting is today the `Killer' application. Various service providers already offer multimedia applications through DVB-S systems based upon the `Push' technology. Although these services do not currently represent the core business for broadcasting satellite operators, their percentage is increasing. `Push' technology services include Data Carousel, Webcasting, Turbo Internet, File casting and so on. Such technology can support the implementation of different emerging multimedia services scenarios from Newsgroups, Network collaborative learning, and tele-medicine, to others that may be invented in the near future. The penetration rate of multi-channel television reception is still increasing. Broadcasting satellites benefit both from the development of new, more segmented and sophisticated offers and from the development of Internet services. Satellite is likely to enter these new markets at different levels of the value chain: Even if the satellite has demonstrated its capacity to fully serve the television, combinations with other networks may be necessary to address the new markets: at the consumer premises, Internet-related services will require a return path; at the backbone level, satellite becomes a component of a full telecommunications solution. This article focuses on the European market and proposes:

  12. GNSS global navigation satellite systems : GPS, GLONASS, Galileo, and more

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Wasle, Elmar

    2008-01-01

    This book is an extension to the acclaimed scientific bestseller "GPS - Theory and Practice". It covers Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems.

  13. On board processing for future satellite communications systems: Comparison of FDM, TDM and hybrid accessing schemes

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.

    1982-01-01

    Several satellite uplink and downlink accessing schemes for customer premises service are compared. Four conceptual system designs are presented: satellite-routed frequency division multiple access (FDMA), satellite-switched time division multiple access (TDMA), processor-routed TDMA, and frequency-routed TDMA, operating in the 30/20 GHz band. The designs are compared on the basis of estimated satellite weight, system capacity, power consumption, and cost. The systems are analyzed for fixed multibeam coverage of the continental United States. Analysis shows that the system capacity is limited by the available satellite resources and by the terminal size and cost.

  14. Development of the Open Items Tracking System

    International Nuclear Information System (INIS)

    Riggi, V.

    1994-01-01

    The West Valley Demonstration Project, located on the site of the only commercial nuclear fuel reprocessing facility to have operated in USA, has the directed objectives of solidifying the high-level radioactive waste into a durable, solid form for shipment; decontaminating and decommissioning the tanks and facilities; and disposing of the resulting low-level and transuranic wastes. Since an escalating trend of open work items was noticed in the Fall of 1988, and there was no control mechanism for tracking and closing the open items, a Work Control System was developed for this purpose. It is self-contained system on a mainframe ARTEMIS 9000, which tracks, monitors, and closes out external commitments in a timely manner. Audits, surveillances, site appraisals, preventive maintenance, instrument calibration recall, and scheduling are covered

  15. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  16. Introduction to the Personal Access Satellite System Study

    Science.gov (United States)

    Sue, Miles K.

    1990-01-01

    A recent study by the National Telecommunications and Information Administration (NTIA) has concluded that the 21st century will be the age of information in which the telecommunication infrastructure will be vital to the social and economic well being of society. To meet the challenge of the coming age, JPL has been performing studies on a personal access satellite system (PASS) for the 21st century. The PASS study can be traced back to a study in which the technical feasibility and potential applications of a high frequency, low data rate satellite system were identified using small fixed terminals. Herein, the PASS concept is described along with the strawman design. Then the key challenges are identified along with possible solutions. Finally, the plan for the future is summarized from the key results.

  17. System architecture and market aspects of an European Land Mobile Satellite System via EMS

    Science.gov (United States)

    Ananasso, F.; Mistretta, I.

    1992-03-01

    The paper describes an implementation scenario of a Land Mobile Satellite System via the EMS (European Mobile System) payload embarked on Italsat F-2. Some emphasis is given on market issues aiming at singling out business niches of Land Mobile Satellite Services (LMSS) in Europe. Other crucial issues exist such as: the alternate/competitive systems, the problems of interworking with other existing and/or planned systems, the definition of network architecture that better fits the user requirements, the marketing strategy and, last but not least, the financial evaluation of the project. The paper, on the basis of a study performed by Telespazio on behalf of ESA, discusses some of these issues with emphasis on competitive market aspects.

  18. Mutual Events in the Uranian satellite system in 2007

    Science.gov (United States)

    Arlot, J. E.

    2008-09-01

    The equinox time on the giant planets When the Sun crosses the equatorial plane of a giant planet, it is the equinox time occurring every half orbit of the planet, i.e. every 6 years for Jupiter, 14 years for Saturn, 42 years for Uranus and 82 years for Neptune. Except Neptune, each planet have several major satellites orbiting in the equatorial plane, then, during the equinox time, the satellites will eclipse each other mutually. Since the Earth follows the Sun, during the equinox time, a terrestrial observer will see each satellite occulting each other during the same period. These events may be observed with photometric receivers since the light from the satellites will decrease during the events. The light curve will provide information on the geometric configuration of the the satellites at the time of the event with an accuracy of a few kilometers, not depending on the distance of the satellite system. Then, we are able to get an astrometric observation with an accuracy several times better than using direct imaging for positions. Equinox on Uranus in 2007 In 2007, it was equinox time on Uranus. The Sun crossed the equatorial plane of Uranus on December 6, 2007. Since the opposition Uranus-Sun was at the end of August 2007, observations were performed from May to December 2007. Since the declination of Uranus was between -5 and -6 degrees, observations were better to make in the southern hemisphere. However, some difficulties had to be solved: the faintness of the satellites (magnitude between 14 and 16), the brightness of the planet (magnitude 5) making difficult the photometric observation of the satellites. The used of K' filter associated to a large telescope allows to increase the number of observable events. Dynamics of the Uranian satellites One of the goals of the observations was to evaluate the accuracy of the current dynamical models of the motion of the satellites. This knowledge is important for several reasons: most of time the Uranian system is

  19. Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces 'degraded states' or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance

  20. Reconfigurable materials handling system incorporating part tracking, routing and scheduling

    CSIR Research Space (South Africa)

    Naidu, P

    2006-07-01

    Full Text Available . Transmission range of 10m-30m indoors is common. RFID is a commonly available system which uses either low-cost passive Radio tags, or higher cost active tags, that an RF receiver can then read. An RFID system comprises of a reader, its associated antenna...]. 3. Proposed Tracking System The proposed tracking system consists of a two phases. In the first phase a passive radio frequency (RF) tag is read by a RF reader. In the second phase the information obtained from the reader is wirelessly...