WorldWideScience

Sample records for satellite monitoring methods

  1. Anomaly Monitoring Method for Key Components of Satellite

    Directory of Open Access Journals (Sweden)

    Jian Peng

    2014-01-01

    Full Text Available This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM, which is made up of state estimation based on Multivariate State Estimation Techniques (MSET and anomaly detection based on Sequential Probability Ratio Test (SPRT. On the basis of analysis failure of lithium-ion batteries (LIBs, we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (Re and the charge transfer resistance (Rct as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (RX and healthy residual value (RL of LIBs based on the state estimation of MSET, and then, through the residual values (RX and RL of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM.

  2. Snow Cover Monitoring Method by Using H J-1 Satellite Data%Snow Cover Monitoring Method by Using H J-1Satellite Data

    Institute of Scientific and Technical Information of China (English)

    WANG Li-tao; ZHOU Yi; ZHOU Qiang; WANG Shi-xin; YAN Fu-li

    2011-01-01

    Environment and Disasters Monitoring Microsatellite Constellation with high spatial resolution,high temporal resolution and high spectral resolution characteristics was put forward by China.HJ-1B satellite,one of the first two small optical satellites,had a CCD camera and an infrared camera,which would provide an important new data source for snow monitoring.In the present paper,through analyzing the sensor and data characteristics of HJ-1B,we proposed a new infrared normalized difference snow index (INDSI) referring to the traditional normalized difference snow index (NDSI).The accuracy of these two automatic snow recognition methods was estimated based on a supervised classification method.The accuracy of the traditional NDSI method was 97.761 9% while that of the new INDSI method was 98.617 1%.

  3. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    Science.gov (United States)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  4. Satellite-based monitoring of particulate matter pollution at very high resolution: the HOTBAR method

    Science.gov (United States)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Particulate matter air pollution is a major health risk, and is responsible for millions of premature deaths each year. Concentrations tend to be highest in urban areas - particularly in the mega-cities of rapidly industrialising countries, where there are limited ground monitoring networks. Satellite-based monitoring has been used for many years to assess regional-scale trends in air quality, but currently available satellite products produce data at 1-10km resolution: too coarse to discern the small-scale patterns of sources and sinks seen in urban areas. Higher-resolution satellite products are required to provide accurate assessments of particulate matter concentrations in these areas, and to allow analysis of localised air quality effects on health. The Haze Optimized Transform-based Aerosol Retrieval (HOTBAR) method is a novel method which provides estimates of PM2.5 concentrations from high-resolution (approximately 30m) satellite imagery. This method is designed to work over a wide range of land covers and performs well over the complex land-cover mosaic found in urban areas. It requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT), which was originally designed for assessing areas of thick haze in satellite imagery. This was done by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to estimate Aerosol Optical Thickness (a measure of the column-integrated haziness of the atmosphere) instead, from which PM2.5 concentrations can then be estimated. Significant extensions to the original HOT method include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values

  5. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    Science.gov (United States)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  6. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  7. Development of monitoring method of coffee leaf rust fungus (Hemileia vastatrix) infected area using satellite remote sensing

    Science.gov (United States)

    Katsuhama, N.; Ikeda, K.; Imai, M.; Watanabe, K.; Marpaung, F.; Yoshii, T.; Naruse, N.; Takahashi, Y.

    2016-12-01

    Since 2008, coffee leaf rust fungus (Hemileia vastatrix) has expanded its infection in Latin America, and early trimming and burning infected trees have been only effective countermeasures to prevent spreading infection. Although some researchers reported a case about the monitoring of coffee leaf rust using satellite remote sensing in 1970s, the spatial resolution was unsatisfied, and therefore, further technological development has been required. The purpose of this research is to develop effective method of discovering coffee leaf rust infected areas using satellite remote sensing. Annual changes of vegetation indices, i.e. Normalized Difference Vegetation Index (NDVI) and Modified Structure Insensitive Pigment Index (MSIPI), around Cuchumatanes Mountains, Republic of Guatemala, were analyzed by Landsat 7 images. Study fields in the research were limited by the coffee farm areas based on a previous paper about on site surveys in different damage areas. As the result of the analysis, the annual change of NDVI at the coffee farm areas with damages tended to be lower than those without damages. Moreover, the decline of NDVI appear from 2008 before the damage was reported. On the other hand, the change of MSIPI had no significant difference. NDVI and MSIPI are mainly related to the amount of chlorophyll and carotenoid in the leaves respectively. This means that the infected coffee leaves turned yellow without defoliation. This situation well matches the symptom of coffee leaf rust. The research concluded that the property of infected leaves turning yellow is effective to monitoring of infection areas by satellite remote sensing.

  8. Heart Monitoring By Satellite

    Science.gov (United States)

    1978-01-01

    The ambulance antenna shown is a specially designed system that allows satellite-relayed two-way communications between a moving emergency vehicle and a hospital emergency room. It is a key component of a demonstration program aimed at showing how emergency medical service can be provided to people in remote rural areas. Satellite communication permits immediate, hospital- guided treatment of heart attacks or other emergencies by ambulance personnel, saving vital time when the scene of the emergency is remote from the hospital. If widely adopted, the system could save tens of thousands of lives annually in the U.S. alone, medical experts say. The problem in conventional communication with rural areas is the fact that radio signals travel in line of sight. They may be blocked by tall buildings, hills and mountains, or even by the curvature of the Earth, so signal range is sharply limited. Microwave relay towers could solve the problem, but a complete network of repeater towers would be extremely expensive. The satellite provides an obstruction-free relay station in space.

  9. Monitoring auroral electrojets with satellite data

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.

    2013-01-01

    satellites. The method is simple enough to be implemented for real-time monitoring, especially since it does not require the full vector field measurement. We demonstrate the method on 5 years of Challenging Minisatellite Payload (CHAMP) data and show how the monitoring depends on the local time...... of the satellite orbit and how it varies with local time and season in both hemispheres. Statistically, the strongest currents are observed in the predawn and predusk local time quadrants at latitudes that depend on the general magnetic activity level. We also show how the satellite-derived parameters relate...... to and complement existing ground-based indices. The CHAMP magnetometer in 350–450km altitude easily measures an electrojet which on the ground would produce an Auroral Electrojet (AE)-type signal as small as 20 nT. Thus, while the signal decreases roughly proportionally to the square of the distance to the current...

  10. MEMOS - Mars Environment Monitoring Satellite

    Science.gov (United States)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass ELT) Proximity-1 transceiver will autonomously communicate with the parent satellite at inter-satellite ranges 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Systems MOEMS and new materials to achieve low mass at high performance. Thereby it will profit from Swedish developments and heritage in small- / microsatellites like Astrid-2, SMART-1 or the upcoming rendezvous and formation flying demonstration mission PRISMA.

  11. China Launches Two Natural Disaster Monitoring Satellites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China launched two satellites, HJ-1A and HJ-1B, to monitor the environment and natural disasters at 11:25am on September 6 (Beijing time) from the Taiyuan Satellite Launch Center in Shanxi Province. The two satellites are expected to improve the country's ability in the rapid monitoring of environmental changes and reducing calamities.

  12. Satellites monitor Los Alamos fires

    Science.gov (United States)

    Kalluri, Satya; White, Benjamin

    A man-made fire that was intended to be a “controlled burn” for clearing brush and wilderness at the Bandelier National Monument, New Mexico, became an inferno that devastated significant portions of Los Alamos during the first week of May 2000. Now known as the Cerro Grande fire, it was not confined to Los Alamos alone. The fire spread to 15% of the Santa Clara Indian Reservation and a substantial area of the surrounding national parks and U.S. forests.The National Weather Service estimates that more than 100,000 fires occur in the natural environment each year within the United States alone, of which about 90% are manmade. Remote sensing images from satellites could be used to detect and monitor these active fires and biomass burning. Forest fires have a significant environmental and economic impact, and timely information about their location and magnitude is essential to contain them.

  13. Inter-satellite links for satellite autonomous integrity monitoring

    Science.gov (United States)

    Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco

    2011-01-01

    A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.

  14. Monitor Forest Fires with FY Serial Satellites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Remote sensing as the measure to monitor disasters has the advantage of temporal resolution and large scale. Since "5.6 catastrophe" in 1987, China began to monitor forest fires broadly. In the summer of 2002, many forest/grass fires occurred in the Daxing'anling Mountains, and the damage was very heavy. In the forest fires fighting, the meteorological satellites play an important role in monitoring the fires. Especially the FY serial meteorological satellites have the advantage of large scale monitorin...

  15. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  16. Long-code Signal Waveform Monitoring Method for Navigation Satellites%卫星导航长码信号波形监测方法

    Institute of Scientific and Technical Information of China (English)

    刘建成; 王宇; 宫磊; 徐晓燕

    2016-01-01

    Due to the weakness of signal,signal waveform monitoring for navigation satellites in orbit is one of the difficulties in satellite navigation signal quality monitoring research,so a signal waveform monitoring method for navigation satellites in orbit is pro⁃posed.Based on the Vernier sampling principle,a large⁃diameter parabolic antenna is used for in⁃orbit satellite signal collection.After in⁃itial phase and residual frequency elimination,accumulation and combination,a clear chip waveform is obtained.For civilian and long⁃code signals with the same code rate,the PN code phase bias can be determined.By using a large⁃diameter parabolic antenna for COM⁃PASS satellite tracking,the civilian and long⁃code chip waveforms of several COMPASS satellites in B1 band are obtained,and the PN code phase bias of the satellite signals are got.The results show that there is little difference between the civilian signal waveform and long⁃code signal waveform,but there is a code phase bias between them.%由于信号微弱,如何获得在轨导航卫星的清晰信号波形是卫星导航信号质量监测研究中的难点之一,为此提出了一种在轨导航卫星的信号波形监测方法。该方法基于Vernier采样原理,利用大口径抛物面天线对在轨卫星进行信号采集,经过消除初相和残余频率、累加平均和数据组合等处理,获得清晰的码片波形。对于相同码速率的民用信号和长码信号,可确定民用信号和长码信号的伪码相位偏差。利用大口径抛物面天线对北斗卫星进行跟踪,获得了多颗北斗卫星B1频点民用信号和长码信号的码片波形。结果表明,民用信号和长码信号的码片波形的轮廓差异较小,但伪码相位存在偏差。

  17. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  18. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  19. Satellite Monitoring for REDD: Radar vs. Optical

    Science.gov (United States)

    Mitchard, E. T.; Saatchi, S. S.; Ryan, C.; Woollen, E.; Goodman, L. E.; Williams, M.; Gerard, F.; Starkey, M.; Meir, P.

    2010-12-01

    The proposed REDD (Reducing Emissions from Deforestation and Degradation) protocol will only succeed in reducing emissions if deforestation and degradation can be accurately monitored. Ground surveys are prohibitively expensive over large areas, so satellite monitoring will be essential for independently monitoring deforestation and degradation rates, and thus calculating payments. In addition, remote sensing will be needed for developing historical baselines. It is clear that different methodologies will be needed for different project areas, scales and threat types. In addition different methodologies are needed depending on the capabilities of the countries in question: in the context of Africa for example, in-country monitoring tends to be at a basic level, yet for REDD it is important that countries are able to do their own monitoring, so simple methods must be developed and tested. In this paper we present change detection results for different remote sensing methodologies for potential REDD projects in Cameroon and Mozambique. We have shown previously that a good relationship exists between aboveground biomass (AGB) and L-band radar backscatter (Mitchard et al. 2009). The errors in estimation of absolute biomass were still relatively high, in the region of ±25 %. However, it is suspected that some of these errors are intransient, being due to the structure of the landscape and vegetation within a site, and so it has been predicted that errors in change detection are smaller than those for absolute estimation. We present evidence from these sites that this is indeed correct, using ALOS PALSAR L-band radar data from 2007, 2008 and 2009. Optical satellite data is widely used for monitoring deforestation, for example the excellent system run by INPE in Brazil. However, while optical data is good at detecting deforestation occurring progressively in large clear-fell blocks, as in the Amazon, it is less good at detecting small-scale deforestation or degradation

  20. Satellite radar for monitoring forest resources

    Science.gov (United States)

    Hoffer, Roger M.; Lee, Kyu-Sung

    1990-01-01

    An evaluation is made of the computer analysis results of a study which used Seasat satellite radar data obtained in 1978 and Shuttle Imaging Radar-B data obtained in 1984. The change-detection procedures employed demonstrate that deforestation and reforestation activities can be effectively monitored on the basis of radar data gathered at satellite altitudes. The computer-processing techniques applied to the data encompassed (1) overlay display, (2) ratios, (3) differences, (4) principal-component analysis, and (5) classification; of these, overlay display is noted to quickly and easily yield a qualitative display of the multidate data.

  1. National Satellite Forest Monitoring systems for REDD+

    Science.gov (United States)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  2. Monitoring of wetlands Ecosystems using satellite images

    Science.gov (United States)

    Dabrowska-Zielinska, K.; Gruszczynska, M.; Yesou, H.; Hoscilo, A.

    Wetlands are very sensitive ecosystems, functioning as habitat for many organisms. Protection and regeneration of wetlands has been the crucial importance in ecological research and in nature conservation. Knowledge on biophysical properties of wetlands vegetation retrieved from satellite images will enable us to improve monitoring of these unique areas, very often impenetrable. The study covers Biebrza wetland situated in the Northeast part of Poland and is considered as Ramsar Convention test site. The research aims at establishing of changes in biophysical parameters as the scrub encroachment, lowering of the water table, and changes of the farming activity caused ecological changes at these areas. Data from the optical and microwave satellite images collected for the area of Biebrza marshland ecosystem have been analysed and compared with the detailed soil-vegetation ground measurements conducted in conjunction with the overflights. Satellite data include Landsat ETM, ERS-2 ATSR and SAR, SPOT VEGETATION, ENVISAT MERIS and ASAR, and NOAA AVHRR. From the optical data various vegetation indices have been calculated, which characterize the vegetation surface roughness, its moisture conditions and stage of development. Landsat ETM image has been used for classification of wetlands vegetation. For each class of vegetation various moisture indices have been developed. Ground data collected include wet and dry biomass, LAI, vegetation height, and TDR soil moisture. The water cloud model has been applied for retrieval of soil vegetation parameters taking into account microwave satellite images acquired at VV, HV and HH polarisations at different viewing angles. The vegetation parameters have been used for to distinguish changes, which occurred at the area. For each of the vegetation class the soil moisture was calculated from microwave data using developed algorithms. Results of this study will help mapping and monitoring wetlands with the high spatial and temporal

  3. Development of environmental monitoring satellite systems in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With the increase in global environmental problems,the necessity and urgency of remote sensing technology being applied to environmental monitoring has been widely recognized around the world.China has launched the environment and disaster monitoring and forecasting small satellite constellation HJ-1A/B and the FY3 atmosphere and environmental satellite,but they still cannot fully satisfy requirements for environmental monitoring.This paper summarizes the current status of satellite environmental monitoring in China and the existing problems of inadequate load design and low data utilization efficiency,and discusses the demand for environmental monitoring satellites.Based on the development of foreign satellite systems for environmental monitoring,the future development and key tasks of the environmental monitoring satellite system in China is discussed,as are some related initiatives.

  4. Satellite Gravimetry Applied to Drought Monitoring

    Science.gov (United States)

    Rodell, Matthew

    2010-01-01

    Near-surface wetness conditions change rapidly with the weather, which limits their usefulness as drought indicators. Deeper stores of water, including root-zone soil wetness and groundwater, portend longer-term weather trends and climate variations, thus they are well suited for quantifying droughts. However, the existing in situ networks for monitoring these variables suffer from significant discontinuities (short records and spatial undersampling), as well as the inherent human and mechanical errors associated with the soil moisture and groundwater observation. Remote sensing is a promising alternative, but standard remote sensors, which measure various wavelengths of light emitted or reflected from Earth's surface and atmosphere, can only directly detect wetness conditions within the first few centimeters of the land s surface. Such sensors include the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) C-band passive microwave measurement system on the National Aeronautic and Space Administration's (NASA) Aqua satellite, and the combined active and passive L-band microwave system currently under development for NASA's planned Soil Moisture Active Passive (SMAP) satellite mission. These instruments are sensitive to water as deep as the top 2 cm and 5 cm of the soil column, respectively, with the specific depth depending on vegetation cover. Thermal infrared (TIR) imaging has been used to infer water stored in the full root zone, with limitations: auxiliary information including soil grain size is required, the TIR temperature versus soil water content curve becomes flat as wetness increases, and dense vegetation and cloud cover impede measurement. Numerical models of land surface hydrology are another potential solution, but the quality of output from such models is limited by errors in the input data and tradeoffs between model realism and computational efficiency. This chapter is divided into eight sections, the next of which describes

  5. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  6. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  7. Cryosphere Monitoring from Satellites and Aircrafts

    DEFF Research Database (Denmark)

    Nilsson, Johan

    The cryosphere is collective term for all the components containing frozen water on the Earth’s surface. These components are highly sensitive to changes in the air temperature and precipitation, and hence to climate change. The major components of frozen water in the cryosphere are the ice sheet...... is of vital importance to gain insight into the behaviour of these systems and how they affect the global sea level. Satellite altimetry has for the last two decades been used to monitor the changes of the worlds ice sheets, allowing for the determination of their mass balance. In recent years this has been...... terrain in the Arctic region. The results from this validation study was then inter-compared with results derived from the ESA L2 baseline-B product to judge the quality of both products. From this inter-comparison it was shown that the new processing chains, developed in this thesis, performed better...

  8. Robust satellite techniques for oil spill detection and monitoring

    Science.gov (United States)

    Casciello, D.; Pergola, N.; Tramutoli, V.

    Discharge of oil into the sea is one of the most dangerous, among technological hazards, for the maritime environment. In the last years maritime transport and exploitation of marine resources continued to increase; as a result, tanker accidents are nowadays increasingly frequent, continuously menacing the maritime security and safety. Satellite remote sensing could contribute in multiple ways, in particular for what concerns early warning and real-time (or near real-time) monitoring. Several satellite techniques exist, mainly based on the use of SAR (Synthetic Aperture Radar) technology, which are able to recognise, with sufficient accuracy, oil spills discharged into the sea. Unfortunately, such methods cannot be profitably used for real-time detection, because of the low observational frequency assured by present satellite platforms carrying SAR sensors (the mean repetition rate is something like 30 days). On the other hand, potential of optical sensors aboard meteorological satellites, was not yet fully exploited and no reliable techniques have been developed until now for this purpose. Main limit of proposed techniques can be found in the ``fixed threshold'' approach which makes such techniques difficult to implement without operator supervision and, generally, without an independent information on the oil spill presence that could drive the choice of the best threshold. A different methodological approach (RAT, Robust AVHRR Techniques) proposed by Tramutoli (1998) and already successfully applied to several natural and environmental emergencies related to volcanic eruptions, forest fires and seismic activity. In this paper its extension to near real-time detection and monitoring of oil spills by means of NOAA-AVHRR (Advanced Very High Resolution Radiometer) records will be described. Briefly, RAT approach is an automatic change-detection scheme that considers a satellite image as a space-time process, described at each place (x,y) and time t, by the value of

  9. Monitoring volcanic threats using ASTER satellite data

    Science.gov (United States)

    Duda, K.A.; Wessels, R.; Ramsey, M.; Dehn, J.

    2008-01-01

    This document summarizes ongoing activities associated with a research project funded by the National Aeronautics and Space Administration (NASA) focusing on volcanic change detection through the use of satellite imagery. This work includes systems development as well as improvements in data analysis methods. Participating organizations include the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, the Alaska Volcano Observatory (AVO) at the USGS Alaska Science Center, the Jet Propulsion Laboratory/California Institute of Technology (JPL/CalTech), the University of Pittsburgh, and the University of Alaska Fairbanks. ?? 2007 IEEE.

  10. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    Science.gov (United States)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  11. Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data

    Directory of Open Access Journals (Sweden)

    Michelle J. Devlin

    2015-09-01

    Full Text Available A strong driver of water quality change in the Great Barrier Reef (GBR is the pulsed or intermittent nature of terrestrial inputs into the GBR lagoon, including delivery of increased loads of sediments, nutrients, and toxicants via flood river plumes (hereafter river plumes during the wet season. Cumulative pressures from extreme weather with a high frequency of large scale flooding in recent years has been linked to the large scale reported decline in the health of inshore seagrass systems and coral reefs in the central areas of the GBR, with concerns for the recovery potential of these impacted ecosystems. Management authorities currently rely on remotely-sensed (RS and in situ data for water quality monitoring to guide their assessment of water quality conditions in the GBR. The use of remotely-sensed satellite products provides a quantitative and accessible tool for scientists and managers. These products, coupled with in situ data, and more recently modelled data, are valuable for quantifying the influence of river plumes on seagrass and coral reef habitat in the GBR. This article reviews recent remote sensing techniques developed to monitor river plumes and water quality in the GBR. We also discuss emerging research that integrates hydrodynamic models with remote sensing and in situ data, enabling us to explore impacts of different catchment management strategies on GBR water quality.

  12. Potentials of satellite imagery for monitoring arctic goose productivity

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper reports upon the exciting possibility that satellite imagery may now provide feasible means for grossly monitoring arctic habitat conditions in a timely...

  13. Satellite image time series simulation for environmental monitoring

    Science.gov (United States)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of

  14. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  15. Application of the HY-1 satellite to sea ice monitoring and forecasting

    Institute of Scientific and Technical Information of China (English)

    LUO Yawei; WU Huiding; ZHANG Yunfei; SUN Congrong; LIU Yu

    2004-01-01

    The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002~2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. The sea ice retrieval system of the HY-1A has been constructed. It receives 1B data from the satellite, outputs sea ice images and provides digital products of ice concentration, ice thickness and ice edge, which can be used as important information for sea ice monitoring and the initial fields of the numeric sea ice forecast and as one of the reference data for the sea ice forecasting verification. The sea ice retrieval system of the satellite is described, including its processes, methods and parameters. The retrieving results and their application to the sea ice monitoring and forecasting for the Bohai Sea are also discussed.

  16. Method for radioactivity monitoring

    Science.gov (United States)

    Umbarger, C. John; Cowder, Leo R.

    1976-10-26

    The disclosure relates to a method for analyzing uranium and/or thorium contents of liquid effluents preferably utilizing a sample containing counting chamber. Basically, 185.7-keV gamma rays following .sup.235 U alpha decay to .sup.231 Th which indicate .sup.235 U content and a 63-keV gamma ray doublet found in the nucleus of .sup.234 Pa, a granddaughter of .sup.238 U, are monitored and the ratio thereof taken to derive uranium content and isotopic enrichment .sup.235 U/.sup.235 U + .sup.238 U) in the liquid effluent. Thorium content is determined by monitoring the intensity of 238-keV gamma rays from the nucleus of .sup.212 Bi in the decay chain of .sup.232 Th.

  17. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  18. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  19. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  20. Operational monitoring of turbidity in rivers: how satellites can contribute

    Science.gov (United States)

    Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn

    2016-10-01

    The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be

  1. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    Science.gov (United States)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  2. Satellite Formation based on SDDF Method

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-04-01

    Full Text Available The technology of satellite formation flying has being a research focus in flight application. The relative position and velocity between satellites are basic parameters to achieve the control of formation flight during the satellite formation flying mission. In order to improve the navigation accuracy, a new filter different from Extended Kalman Filter (EKF should be adopted to estimate the errors of relative position and velocity, which is based on the nonlinearity of the kinetic model for the satellite formation flying. A nonlinear Divided Difference Filter (DDF based on Stirling interpolation formula was proposed in this paper. According to the linearity of the measurement equation for the filter, a simplified differential filter was designed by means of expanding the polynomial of the nonlinear system equation and linear approximating of the finite differential interpolation. Digital simulation experiment for the relative positioning of satellite formation flying was carried out. The result demonstrates that the filter proposed in this paper has a higher filtering accuracy, faster convergence speed and better stability. Compared with the EKF, the estimation accuracy of the relative position and velocity has improved by 77.1%and 47% respectively in the method of simplified DDF, which indicates the significance for practical applications. 

  3. Improving flood prediction by the assimilation of satellite soil moisture in poorly monitored catchments

    Science.gov (United States)

    Flood prediction in poorly monitored catchments is among the greatest challenges faced by hydrologists. To address this challenge, an increasing number of studies in the last decade have explored methods to integrate various existing observations from ground and satellites. One approach in particula...

  4. Satellite monitoring of sea surface pollution

    Science.gov (United States)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  5. Dynamic characterization of satellite components through non-invasive methods

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Joshua G [Los Alamos National Laboratory; Wiest, Heather K [Los Alamos National Laboratory; Mascarenas, David D. L. [Los Alamos National Laboratory; Macknelly, David [INST-OFF/AWE; Park, Gyuhae [Los Alamos National Laboratory

    2010-10-21

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. This harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as a replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modelling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  6. Geodetic imaging: Reservoir monitoring using satellite interferometry

    Science.gov (United States)

    Vasco, D.W.; Wicks, C.; Karasaki, K.; Marques, O.

    2002-01-01

    Fluid fluxes within subsurface reservoirs give rise to surface displacements, particularly over periods of a year or more. Observations of such deformation provide a powerful tool for mapping fluid migration within the Earth, providing new insights into reservoir dynamics. In this paper we use Interferometric Synthetic Aperture Radar (InSAR) range changes to infer subsurface fluid volume strain at the Coso geothermal field. Furthermore, we conduct a complete model assessment, using an iterative approach to compute model parameter resolution and covariance matrices. The method is a generalization of a Lanczos-based technique which allows us to include fairly general regularization, such as roughness penalties. We find that we can resolve quite detailed lateral variations in volume strain both within the reservoir depth range (0.4-2.5 km) and below the geothermal production zone (2.5-5.0 km). The fractional volume change in all three layers of the model exceeds the estimated model parameter uncertainly by a factor of two or more. In the reservoir depth interval (0.4-2.5 km), the predominant volume change is associated with northerly and westerly oriented faults and their intersections. However, below the geothermal production zone proper [the depth range 2.5-5.0 km], there is the suggestion that both north- and northeast-trending faults may act as conduits for fluid flow.

  7. Supply Chain Management of Satellite Mechanisms- Product Development and Monitoring

    OpenAIRE

    Sreejith; Vishnu G Nair

    2014-01-01

    The project report primary deals with the Testing, Analysis, Modeling of the components of the Solar Array deployment Mechanism and a preliminary design. It also discusses the Monitoring of the supply chain management system for the procurement of the components from vendors. The deployment of solar array or any other appendage is a mission critical activity of any satellite. It is necessary to study about the deployment mechanism because once the array latches up, the satelli...

  8. Robust satellite techniques for volcanicand seismic hazards monitoring

    Directory of Open Access Journals (Sweden)

    I. Scaffidi

    2004-06-01

    Full Text Available Several satellite techniques have been proposed to monitor events related to seismic and volcanic activity. A selfadaptive approach (RAT, Robust AVHRR Techniques has recently been proposed which seems able to recognise space-time anomalies, differently related to such events, also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions. On the basis of NOAA-AVHRR data, the RAT aprroach has already been applied to Mount Etna volcanic ash cloud monitoring in daytime, and to seismic area monitoring in Southern Italy. This paper presents the theoretical basis for the extension of RAT approach also to nighttime volcanic ash cloud detection, together with its possible implementation to lava flow monitoring. One example of successful forecasting (few days before of a new lava vent opening during the Mount Etna eruption of July 2001 will be discussed in some detail. Progress on the use of the same approach on seismically active area monitoring will be discussed by comparison with previous results achieved on the Irpinia-Basilicata earthquake (MS = 6.9, which occurred on November 23rd 1980 in Southern Italy.

  9. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  10. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  11. Satellite radar altimetry for monitoring small river and lakes in Indonesia

    Directory of Open Access Journals (Sweden)

    Y. B. Sulistioadi

    2014-03-01

    Full Text Available Remote sensing and satellite geodetic observations are capable for hydrologic monitoring of freshwater resources. For the case of satellite radar altimetry, limited temporal resolutions (e.g., satellite revisit period prohibit the use of this method for a short ( To address this scientific challenge, this study tries to monitor small (40–200 m width and medium-sized (200–800 m width rivers and lakes using satellite altimetry through identification and choice of the over-water radar waveforms corresponding to the appropriately waveform-retracked water level. This study addresses the humid tropics of Southeast Asia, specifically in Indonesia, where similar studies do not yet exist and makes use Level 2 radar altimeter measurements generated by European Space Agency's (ESA's Envisat (Environmental Satellite mission. This experiment proves that satellite altimetry provides a good alternative, or the only means in some regions, to measure the water level of medium-sized river (200–800 m width and small lake (extent 2 in Southeast Asia humid tropic with reasonable accuracy. In addition, the procedure to choose retracked Envisat altimetry water level heights via identification or selection of standard waveform shapes for inland water is recommended and should be a standard measure especially over small rivers and lakes. This study also found that Ice-1 is not necessarily the best retracker as reported by previous studies, among the four standard waveform retracking algorithms for Envisat radar altimetry observing inland water bodies.

  12. Research on GPS Receiver Autonomous Integrity Monitoring Algorithm In the Occurrence of Two-satellite Faults

    Directory of Open Access Journals (Sweden)

    Wang Er Shen

    2016-01-01

    Full Text Available Reliability is an essential factor for GPS navigation system. Therefore, an integrity monitoring is considered as one of the most important parts for a navigation system. GPS receiver autonomous integrity monitoring (RAIM technique can detect and isolate fault satellite. Based on particle filter, a novel RAIM method was proposed to detect two-satellite faults of the GPS signal by using hierarchical particle filter. It can deal with any system nonlinear and any noise distributions. Because GNSS measurement noise does not follow the Gaussian distribution perfectly, the particle filter can estimate the posterior distribution more accurately. In order to detect fault, the consistency test statistics is established through cumulative log-likelihood ratio (LLR between the main and auxiliary particle filters (PFs.Specifically, an approach combining PF with the hierarchical filter is used in the process of two-satellite faults. Through GPS real measurement, the performance of the proposed GPS two-satellite faults detection algorithm was illustrated. Some simulation results are given to evaluate integrity monitoring performance of the algorithm. Validated by the real measurement data, the results show that the proposed algorithm can successfully detect and isolate the faulty satellite in the case of non-Gaussian measurement noise.

  13. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  14. 不同卫星遥感干旱指数在黑龙江的对比应用%Satellite Remote Sensing Drought Monitoring Methods Based on Different Biophysical Indicators

    Institute of Scientific and Technical Information of China (English)

    于敏; 王春丽

    2011-01-01

    采用MODIS的1 km×1 km分辨率数据,以我国黑龙江为研究区,对基于植被指数的植被状态指数(IVC)、基于地表温度的温度状态指数(ITC)和基于植被指数-地表温度特征空间的植被温度状态指数(IVTC)与10 cm,20 cm土壤相对湿度、降水量的关系、3种指数监测结果及其相互关系进行了对比分析.结果表明:IVTC相对于ITC,IVC更适于反映土壤湿度的变化,对浅层土壤湿度更加敏感;IVTC相对于ITC,IVC对降水更敏感,与监测时段的降水和前期总体降水都密切相关;在生长季早期,IVTC和ITC用于干旱监测的适用性明显优于IVC;不同区域间,IVTC的可比性较好,IVC和ITC则较差;IVTC所反映的地表温度信息对干旱的直接指示作用最强,所反映的植被信息对干旱的直接指示作用较弱.%As a frequent natural hazard, drought causes the heaviest damage to daily life and ecological environment among all natural disasters.The large scale and dynamic drought monitoring has been frontier and hot topic in the global climate change and food security research.Satellite remote sensing is the main method of obtaining distributed information of the land surface.However, the applicability of a drought monitoring method varies by region and period.So it's necessary to inspect and evaluate the drought monitoring method to ensure the validity and accuracy in drought monitoring.Vegetation index based IVC, land surface temperature based and Surface Temperature-Normalized Difference Vegetation Index space (Ts-INDv space) based are compared to analyze and evaluate their characteristics and applicability in drought monitoring.The MODIS 16-day NDVI (MOD13A2) and 8-day Ts (MOD11A2) provided at 1 km spatial resolution as a gridded level-3 product in the Sinusoidal projection are used, and the Heilongjiang Province, the main food production area in China, is chosen as the study area.The monitoring period is from 9 May to 9 June of the year 2000 to 2008.The

  15. Band-monitoring Payload for a CubeSat Satellite

    Directory of Open Access Journals (Sweden)

    P. Vagner

    2012-04-01

    Full Text Available During changing sun activity, the ionosphere is responding accordingly and therefore it is interesting to observe the propagation behavior of shortwave bands. For the above mentioned purpose we have designed a band-monitoring payload for an experimental CubeSat satellite. The payload consists of a receiver, which is able to receive SSB modulated narrowband signals in 28 MHz uplink band, and a transmitter with FM modulation in UHF downlink band. The receiver frequency is selected to be at the center of radio amateur activity with low data rate digital modulations.

  16. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Peter Corke

    2009-05-01

    Full Text Available Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs. We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.

  17. The space environment monitor aboard FY-2 satellite

    Institute of Scientific and Technical Information of China (English)

    ZHU; Guangwu; LI; Baoquan; WANG; Shijin; LIN; Hua'an; LIAN

    2005-01-01

    The space environment monitor (SEM) aboard FY-2 satellite consists of the high energy particle detector (HEPD) and the solar X-ray flux detector (SXFD). The SEM can provide real-time monitoring of flare and solar proton event for its operation at geostationary orbit and is also the first Chinese space system for monitoring and alerting solar proton event. During the 23rd solar maximum cycle, almost all the solar proton events that took place in this period are monitored and some of them are predicted successfully by analyzing the characteristics of X-ray flare monitored by the SEM. Some basic variation characteristics of particle at geostationary orbit are found such as day-night periodic variation of particle flux, the electron flux with energy >1.4 MeV in the scope from 10 to 200/cm2.s-sr and the proton flux with energy >1.1 MeV in the scope from 600 to 8000/cm2-s.sr during the time with no magnetic storm and solar eruption.

  18. Methodology of traffic flows remote monitoring in the Ural Federal District largest cities using satellite monitoring data

    Science.gov (United States)

    Testeshev, Alexander; Timohovetz, Vera

    2017-01-01

    The article considers the method of remote research of traffic flow characteristics in the largest cities based on satellite monitoring. The aim of the research is to develop mathematical conformities of traffic flow theory that allow interpreting the results of decoding the traffic situation static picture obtained from free online services into primary and derived traffic characteristics. Data on functional dependences of traffic density and traffic flow speed differentiated with respect to transport and road conditions is provided. The developed technique made it possible to minimize resource costs to conduct simultaneous monitoring of traffic flows on the road network in the largest cities of the Ural Federal District.

  19. Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF

    Directory of Open Access Journals (Sweden)

    J. Schulz

    2008-05-01

    Full Text Available The Satellite Application Facility on Climate Monitoring (CM-SAF aims at the provision of satellite-derived geophysical parameter data sets suitable for climate monitoring. CM-SAF provides climatologies for Essential Climate Variables (ECV, as required by the Global Climate Observing System implementation plan in support of the UNFCCC. Several cloud parameters, surface albedo, radiation fluxes at the top of the atmosphere and at the surface as well as atmospheric temperature and humidity products form a sound basis for climate monitoring of the atmosphere. The products are categorized in monitoring data sets obtained in near real time and data sets based on carefully intercalibrated radiances. The CM-SAF products are derived from several instruments on-board operational satellites in geostationary and polar orbit, i.e., the Meteosat and NOAA satellites, respectively. The existing data sets will be continued using data from the instruments on-board the new EUMETSAT Meteorological Operational satellite (MetOP. The products have mostly been validated against several ground-based data sets both in situ and remotely sensed. The accomplished accuracy for products derived in near real time is sufficient to monitor variability on diurnal and seasonal scales. Products based on intercalibrated radiance data can also be used for climate variability analysis up to inter-annual scale. A central goal of the recently started Continuous Development and Operations Phase of the CM-SAF (2007–2012 is to further improve all CM-SAF data sets to a quality level that allows for studies of inter-annual variability.

  20. Monitoring of the Canadian Oil Sands from the Aura Satellite

    Science.gov (United States)

    McLinden, C. A.; Shephard, M. W.; Fioletov, V.; Cady-Pereira, K. E.; Krotkov, N. A.; Boersma, K. F.; Li, C.; Luo, M.; Joiner, J.; Bhartia, P. K.

    2014-12-01

    Two instruments on-board the NASA Aura satellite, the Ozone Monitoring Instrument (OMI) and Tropospheric Emission Spectrometer (TES), have been used to monitor air pollution over the Canadian oil sands region. Between them they provide a unique perspective on the distributions, evolution, and sources of several key pollutants. This presentation will detail some highlights from these Aura-based oil sands studies: (i) the evolution of OMI-measured nitrogen dioxide and sulfur dioxide enhancements over the past decade, including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from TES special-observation transects, and (iii) preliminary insights into emissions derived from these observations.

  1. On identifying the specular reflection of sunlight in earth-monitoring satellite data.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, James M., Jr.; Hohlfelder, Robert James; Jackson, Dale Clayton; Longenbaugh, Randolph S.

    2009-03-01

    Among the background signals commonly seen by Earth-monitoring satellites is the specular reflection of sunlight off of Earth's surface, commonly referred to as a glint. This phenomenon, involving liquid or ice surfaces, can result in the brief, intense illumination of satellite sensors appearing from the satellite perspective to be of terrestrial origin. These glints are important background signals to be able to identify with confidence, particularly in the context of analyzing data from satellites monitoring for transient surface or atmospheric events. Here we describe methods for identifying glints based on the physical processes involved in their production, including spectral fitting and polarization measurements. We then describe a tool that, using the WGS84 spheroidal Earth model, finds the latitude and longitude on Earth where a reflection of this type could be produced, given input Sun and satellite coordinates. This tool enables the user to determine if the surface at the solution latitude and longitude is in fact reflective, thus identifying the sensor response as a true glint or an event requiring further analysis.

  2. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia

    NARCIS (Netherlands)

    Sulistioadi, Y.B.; Tseng, K.H.; Shum, C.K.; Hidayat, Hidayat; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S.

    2015-01-01

    Remote sensing and satellite geodetic observations are capable of hydrologic monitoring of freshwater resources. Although satellite radar altimetry has been used in monitoring water level or discharge, its use is often limited to monitoring large rivers (>1 km) with longer interval periods (&g

  3. Use of satellite images for the monitoring of water systems

    Science.gov (United States)

    Hillebrand, Gudrun; Winterscheid, Axel; Baschek, Björn; Wolf, Thomas

    2015-04-01

    Satellite images are a proven source of information for monitoring ecological indicators in coastal waters and inland river systems. This potential of remote sensing products was demonstrated by recent research projects (e.g. EU-funded project Freshmon - www.freshmon.eu) and other activities by national institutions. Among indicators for water quality, a particular focus was set on the temporal and spatial dynamics of suspended particulate matter (SPM) and Chlorophyll-a (Chl-a). The German Federal Institute of Hydrology (BfG) was using the Weser and Elbe estuaries as test cases to compare in-situ measurements with results obtained from a temporal series of automatically generated maps of SPM distributions based on remote sensing data. Maps of SPM and Chl-a distributions in European inland rivers and alpine lakes were generated by the Freshmon Project. Earth observation based products are a valuable source for additional data that can well supplement in-situ monitoring. For 2015, the BfG and the Institute for Lake Research of the State Institute for the Environment, Measurements and Nature Conservation of Baden-Wuerttemberg, Germany (LUBW) are in the process to start implementing an operational service for monitoring SPM and Chl-a based on satellite images (Landsat 7 & 8, Sentinel 2, and if required other systems with higher spatial resolution, e.g. Rapid Eye). In this 2-years project, which is part of the European Copernicus Programme, the operational service will be set up for - the inland rivers of Rhine and Elbe - the North Sea estuaries of Elbe, Weser and Ems. Furthermore - Lake Constance and other lakes located within the Federal State of Baden-Wuerttemberg. In future, the service can be implemented for other rivers and lakes as well. Key feature of the project is a data base that holds the stock of geo-referenced maps of SPM and Chl-a distributions. Via web-based portals (e.g. GGInA - geo-portal of the BfG; UIS - environmental information system of the

  4. Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data

    Science.gov (United States)

    Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven

    2003-01-01

    The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone

  5. Earthquake Monitoring in Australia Using Satellite Radar Interferometry

    Institute of Scientific and Technical Information of China (English)

    Ge Lin-lin; E. Cheng; D. Polonska; C. Rizos; C. Collins; C. Smith

    2003-01-01

    Are there any earthquakes in Australia? Although most Australians are not as familiar with earthquakes as citizens in countries such as Japan, there are some quakes on the Australian continent every year. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been widely used in recent years for monitoring crustal deformation due to earthquakes, volcanoes, underground mining, oil extraction,and so on. Hence the follow-on question is, can repeat-pass satellite DInSAR be used in Australian regions to monitor earthquakes? Nine ERS-1 and ERS-2 radar images of the Burakin region in Western Australia were used to form the InSAR pairs.Twenty-two InSAR pairs were formed and were used to study the temporal decorrelation characteristics in the Burakin area. It was found that good coherence could be maintained all over the full scene for a pair spanning 211 d. The repeat cycles of RADARSAT and ERS (all C-band SAR missions) are 24 and 35 drespectively, Furthermore it is easier to maintain good coherence in L-band SAR images (e.g. the JERS-1 mission has a 44 d repeat cycle). Therefore the authors are confident that repeat-pass differential InSAR can be used to monitor ground deformation due to earthquakes in the Burakin region.

  6. Frost monitoring of fruit tree with satellite data

    Science.gov (United States)

    Fan, Jinlong; Zhang, Mingwei; Cao, Guangzheng; Zhang, Xiaoyu; Liu, Chenchen; Niu, Xinzan; Xu, Wengbo

    2012-09-01

    The orchards are developing very fast in the northern China in recent years with the increasing demands on fruits in China. In most parts of the northern China, the risk of frost damage to fruit tree in early spring is potentially high under the background of global warming. The growing season comes earlier than it does in normal year due to the warm weather in earlier spring and the risk will be higher in this case. According to the reports, frost event in spring happens almost every year in Ningxia Region, China. In bad cases, late frosts in spring can be devastating all fruit. So lots of attention has been given to the study in monitoring, evaluating, preventing and mitigating frost. Two orchards in Ningxia, Taole and Jiaozishan orchards were selected as the study areas. MODIS data were used to monitor frost events in combination with minimum air temperature recorded at weather station. The paper presents the findings. The very good correlation was found between MODIS LST and minimum air temperature in Ningxia. Light, middle and severe frosts were captured in the study area by MODIS LST. The MODIS LST shows the spatial differences of temperature in the orchards. 10 frost events in April from 2000 to 2010 were captured by the satellite data. The monitoring information may be hours ahead circulated to the fruit farmers to prevent the damage and loss of fruit trees.

  7. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Science.gov (United States)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  8. Real-time satellite monitoring of volcanic hot spots

    Science.gov (United States)

    Harris, Andrew J. L.; Flynn, Luke P.; Dean, Ken; Pilger, Eric; Wooster, Martin; Okubo, Chris; Mouginis-Mark, Peter; Garbeil, Harold; Thornber, Carl; De la Cruz-Reyna, Servando; Rothery, Dave; Wright, Robert

    Direct satellite data reception at high temporal frequencies and automated processing enable near-real-time, near-continuous thermal monitoring of volcanoes. We review what has been achieved in terms of turning this capability into real-time tools of use to volcano monitoring agencies. Current capabilities focus on 2 instruments: the advanced very high resolution radiometer (AVHRR) and the Geostationary Operational Environmental Satellite (GOES) imager. Collection of lO AVHRR images per day covering Alaska, the Aleutians, and Kamchatka allows routine, on-reception analysis of volcanic hot spots across this region. Data collected between 1996 and 1998 detected 302 hot spots due to lava flows, lava domes, pyroclastic flows, fumaroles, and geothermally heated lakes at 12 different volcanoes. Information was used for hazard mitigation by the Alaskan Volcano Observatory. GOES provides data for North and South American volcanoes every 15-30 minutes. Automated processing allows eruption information and alerts to be posted on the Internet within 15-60 minutes of reception. We use June 1998 to demonstrate the frequency of data acquisition. During this month 2879 GOES images were collected from which 14,832 sub-images of 6 active volcanoes were processed. Although 82% (12,200) of these sub-images were cloud covered, hot spots were still evident on 11% (1634) of the sub-images. Analysis of GOES data for 1998 identified hot spots due to (1) lava flows at Kilauea and Cerro Azul, (2) dome extrusion and explosive activity at Lascar, Popocatepetl, Colima and Pacaya, and (3) dome cooling and collapse at Soufriere Hills. We were also able to suggest that reports of lava flow activity at Cerro Negro were false. This information was supplied to, and used by, various agencies whose task it is to monitor these volcanoes. Global thermal monitoring will become a reality with the launch of the Earth Observing System's moderate resolution imaging spectrometer (MODIS). An automated thermal

  9. A new method for determination of satellite orbits by transfer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The original idea of a new method for determination of satellite orbits by transfer is from Two-Way Satellite Time and Frequency Transfer (TWSTFT). The original method is called "determination of satellite orbit by transfer". The method is not only for determination of satellite orbit but also for the time transfer with high accuracy and precision. The advantage is that the accuracy and the precision for determination of satellite orbit are very high and the new method is favorable for various applications. The combination of various signals disseminated and received forms various modes of satellite orbit determinations. If receivers at stations receive the own station-disseminated signals via a satellite transponder, it forms an orbit determination mode called "receiving the own station-disseminated signals mode". If receivers at all stations receive the signals disseminated from the master station via satellite transponders, it forms an orbit determination mode called "receiving the master station-disseminated signals mode". If all of receivers at stations receive all stations-disseminated signals via satellite transponders, it forms an orbit determination mode called "receiving all stations-disseminated signals mode". Also there are other combinations of signals for satellite orbit determination. For dif- ferent orbit determination modes with different signal combinations, their rigorous formulae of proc- essing are hereby presented in this paper. The accurate and the precise satellite orbit determination for both of the modes, "receiving the own station-disseminated signals mode" and "receiving the master station-disseminated signals mode" is attempted. It shows that the accuracy and precision for both of modes are nearly the same, the ranging accuracy is better than 1 cm, and the observation residuals of satellite orbit determination are better than 9 cm in the observation duration of 1 day.

  10. A new method for determination of satellite orbits by transfer

    Institute of Scientific and Technical Information of China (English)

    LI ZhiGang; YANG XuHai; AI GuoXiang; SI HuLi; QIAO RongChuan; FENG ChuGang

    2009-01-01

    The original idea of a new method for determination of satellite orbits by transfer is from Two-Way Satellite Time and Frequency Transfer (TWSTFT).The original method is called "determination of satellite orbit by transfer".The method is not only for determination of satellite orbit but also for the time transfer with high accuracy and precision.The advantage is that the accuracy and the precision for determination of satellite orbit are very high and the new method is favorable for various applications.The combination of various signals disseminated and received forms various modes of satellite orbit determinations.If receivers at stations receive the own station-disseminated signals via a satellite transponder,it forms an orbit determination mode called "receiving the own station-disseminated signals mode".If receivers at all stations receive the signals disseminated from the master station via satellite transponders,it forms an orbit determination mode called "receiving the master station-disseminated signals mode".If all of receivers at stations receive all stations-disseminated signals via satellite transponders,it forms an orbit determination mode called "receiving all stations-disseminated signals mode".Also there are other combinations of signals for satellite orbit determination.For different orbit determination modes with different signal combinations,their rigorous formulae of processing are hereby presented in this paper.The accurate and the precise satellite orbit determination for both of the modes,"receiving the own station-disseminated signals mode" and "receiving the master station-disseminated signals mode" is attempted.It shows that the accuracy and precision for both of modes are nearly the same,the ranging accuracy is better than 1 cm,and the observation residuals of satellite orbit determination are better than 9 cm in the observation duration of 1 day.

  11. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.

    Science.gov (United States)

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.

  12. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    Science.gov (United States)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  13. Recent Developments for Satellite-Based Fire Monitoring in Canada

    Science.gov (United States)

    Abuelgasim, A.; Fraser, R.

    2002-05-01

    Wildfires in Canadian forests are a major source of natural disturbance. These fires have a tremendous impact on the local environment, humans and wildlife, ecosystem function, weather, and climate. Approximately 9000 fires burn 3 million hectares per year in Canada (based on a 10-year average). While only 2 to 3 percent of these wildfires grow larger than 200 hectares in size, they account for almost 97 percent of the annual area burned. This provides an excellent opportunity to monitor active fires using a combination of low and high resolution sensors for the purpose of determining fire location and burned areas. Given the size of Canada, the use of remote sensing data is a cost-effective way to achieve a synoptic overview of large forest fire activity in near-real time. In 1998 the Canada Centre for Remote Sensing (CCRS) and the Canadian Forest Service (CFS) developed a system for Fire Monitoring, Mapping and Modelling (Fire M3;http://fms.nofc.cfs.nrcan.gc.ca/FireM3/). Fire M3 automatically identifies, monitors, and maps large forest fires on a daily basis using NOAA AVHRR data. These data are processed daily using the GEOCOMP-N satellite image processing system. This presentation will describe recent developments to Fire M3, included the addition of a set of algorithms tailored for NOAA-16 (N-16) data. The two fire detection algorithms are developed for N-16 day and night-time daily data collection. The algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. The set of N-16 day and night algorithms was used to generate daily active fire maps across North America for the 2001 fire season. Such a combined approach for fire detection leads to an improved detection rate, although day-time detection based on the new 1.6 um channel was much less effective (note - given the low detection rate with day time imagery, I don't think we can make the statement about capturing the diurnal cycle). Selected validation sites in western

  14. Monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  15. Supply Chain Management of Satellite Mechanisms- Product Development and Monitoring

    Directory of Open Access Journals (Sweden)

    Sreejith

    2014-01-01

    Full Text Available The project report primary deals with the Testing, Analysis, Modeling of the components of the Solar Array deployment Mechanism and a preliminary design. It also discusses the Monitoring of the supply chain management system for the procurement of the components from vendors. The deployment of solar array or any other appendage is a mission critical activity of any satellite. It is necessary to study about the deployment mechanism because once the array latches up, the satellite can have disturbance resulting in attitude change. To begin, a detail study of the drawings of all the components, assemblies and sub-assemblies incorporated in the deployment mechanism was done. A literary review was carried out to investigate the research done previously and the research currently being done in the field of deployment mechanisms. This was followed by the designing of the components of SADM in Unigraphics. The components were assembled with their respective sub-assemblies. The next step was to perform the testing of components on various testing machines & thereafter analyzing the results. A conceptual design was prepared for the Solar Array Deployment Mechanism. A proper approach was used for the supply chain management of the procurement of raw materials.The torsion spring parameters were calculated, which importantly included the pre rotation angle, spring angular and the time required by the wings to deploy. The hinges were tested on the auto hinge characterization setup and the torque value required to deploy the wings was compared with the required value. The testing of micro switches was performed and the values of loads at actuation point, deactuation point, over travel and the gap between actuation and deactuation was compared with the actual values required. Torsion springs were tested and it was seen whether the stiffness values of the torsion springs are in limit to the defined value or not.Several components of Solar Array Deployment

  16. A virtual reference satellite differential method for relative correction of satellite ephemeris errors

    Science.gov (United States)

    Cai, Chenglin; Li, Xiaohui; Wu, Haitao

    2010-12-01

    In order to solve the problems that the novel wide area differential method on the satellite clock and ephemeris relative correction (CERC) in the non-geostationary orbit satellite constellation, a virtual reference satellite (VRS) differential principle using relative correction of satellite ephemeris errors is proposed. It is referred to be as the VRS differential principle, and the elaboration is focused on the construction of pseudo-range errors of VRS. Through qualitative analysis, it can be found that the impact of the satellite's clock and ephemeris errors on positioning can basically be removed and the users' positioning errors are near zero. Through simulation analysis of the differential performance, it is verified that the differential method is universal in all kinds of satellite navigation systems with geostationary orbit (GEO) constellation, Medium orbit (MEO) constellation or hybrid orbit constellation, and it has insensitivity to abnormal aspects of a satellite ephemeris and clock. Moreover, the real time positioning accuracy of differential users can be maintained within several decimeters after the pseudo-range measurement noise is effectively weakened or eliminated.

  17. A review of uses of satellite imagery in monitoring mangrove forests

    Science.gov (United States)

    Rhyma Purnamasayangsukasih, P.; Norizah, K.; Ismail, Adnan A. M.; Shamsudin, I.

    2016-06-01

    Satellite image could provide much information of earth surfaces in a large scale in a short time, thus saving time. With the evolution and development of sensors providing satellite image, resolution of object captured enhanced with advance image processing techniques. In forestry, satellite image has been widely used for resources management, planning, monitoring, predicting, etc. However, the uses of satellite image are reported to be moderate and sometimes poor for mangrove forests due to homogenous species existed in salty and inundation areas. Many researches had been carried out to improve the uses of satellite imagery of either optical or radar data for mangrove forests. This paper reviews the uses of satellite imagery data in mangrove with the main focus of the literature related to mangroves monitoring.

  18. The application of the instantaneous states reduction to the orbital monitoring of pivotal arcs of the Chang’E-1 satellite

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the Chinese lunar exploration project,the Chang’E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.

  19. Global near-realtime monitoring of Tropical Cyclones Using Weather Satellites

    Science.gov (United States)

    Lee, T.; Hawkins, J.; Turk, F.; Miller, S.; Sampson, C.; Kuciauskas, A.; Richardson, K.; Kent, J.

    2006-12-01

    The Naval Research Laboratory maintains a satellite web portal that monitors global tropical cyclones in every basin on a continuing basis. The portal is used routinely by agencies around the world in forecasting operations and the issuance of warnings. Products from this site are widely redistributed and published frequently in journal articles, seasonal storm summaries, and ongoing World Wide Web discussions. Traditionally, weather satellite reconnaissance of tropical cyclones has depended on the interpretation of visible and infrared imagery. But such methods have limitations. Visible images are not available during the nighttime, and both kinds of imagery often fail to detect important structure, including storm eyes, which are vital for determining the strength and location of tropical systems. Thus, the portal supplements visible and infrared coverage with products from satellite microwave sensors. These sensors penetrate higher clouds to reveal important detail about low-level cloud and precipitation features. The first part of the talk will discuss how these various products can be used together for improved analysis. The second part of talk will present information about tropical cyclone structure. Surface winds from aircraft will be compared to features seen in passive microwave images. We see that low brightness temperature features on 85 GHz images often corresponding to wind maxima near the sea surface. We shall make some inferences about how the observation of specific structures in satellite images can help characterize the wind field when no aircraft data are available. Special attention will be paid to multiple eye walls apparent on satellite images. These are associated with very intense storms which undergo an evolutionary process not observed in weaker systems.

  20. A Novel Method for Satellite Maneuver Prediction

    Science.gov (United States)

    Shabarekh, C.; Kent-Bryant, J.; Keselman, G.; Mitidis, A.

    2016-09-01

    A space operations tradecraft consisting of detect-track-characterize-catalog is insufficient for maintaining Space Situational Awareness (SSA) as space becomes increasingly congested and contested. In this paper, we apply analytical methodology from the Geospatial-Intelligence (GEOINT) community to a key challenge in SSA: predicting where and when a satellite may maneuver in the future. We developed a machine learning approach to probabilistically characterize Patterns of Life (PoL) for geosynchronous (GEO) satellites. PoL are repeatable, predictable behaviors that an object exhibits within a context and is driven by spatio-temporal, relational, environmental and physical constraints. An example of PoL are station-keeping maneuvers in GEO which become generally predictable as the satellite re-positions itself to account for orbital perturbations. In an earlier publication, we demonstrated the ability to probabilistically predict maneuvers of the Galaxy 15 (NORAD ID: 28884) satellite with high confidence eight days in advance of the actual maneuver. Additionally, we were able to detect deviations from expected PoL within hours of the predicted maneuver [6]. This was done with a custom unsupervised machine learning algorithm, the Interval Similarity Model (ISM), which learns repeating intervals of maneuver patterns from unlabeled historical observations and then predicts future maneuvers. In this paper, we introduce a supervised machine learning algorithm that works in conjunction with the ISM to produce a probabilistic distribution of when future maneuvers will occur. The supervised approach uses a Support Vector Machine (SVM) to process the orbit state whereas the ISM processes the temporal intervals between maneuvers and the physics-based characteristics of the maneuvers. This multiple model approach capitalizes on the mathematical strengths of each respective algorithm while incorporating multiple features and inputs. Initial findings indicate that the combined

  1. CONCEPTUAL PAPER : Utilization of GPS Satellites for Precise Irradiation Measurement and Monitoring

    Indian Academy of Sciences (India)

    S. Vijayan

    2008-03-01

    Precise measurement of irradiance over the earth under various circumstances like solar flares, coronal mass ejections, over an 11-year solar cycle, etc. leads to better understanding of Sun–earth relationship. To continuously monitor the irradiance over earth-space regions several satellites at several positions are required. For that continuous and multiple satellite monitoring we can use GPS (Global Positioning System) satellites (like GLONASS, GALILEO, future satellites) installed with irradiance measuring and monitoring instruments. GPS satellite system consists of 24 constellations of satellites. Therefore usage of all the satellites leads to 24 measurements of irradiance at the top of the atmosphere (or 12 measurements of those satellites which are pointing towards the Sun) at an instant. Therefore in one day, numerous irradiance observations can be obtained for the whole globe, which will be very helpful for several applications like Albedo calculation, Earth Radiation Budget calculation, monitoring of near earth-space atmosphere, etc. Moreover, measuring irradiance both in ground (using ground instruments) and in space at the same instant of time over a same place, leads to numerous advantages. That is, for a single position we obtain irradiance at the top of the atmosphere, irradiance at ground and the difference in irradiance from over top of the atmosphere to the ground. Measurement of irradiance over the atmosphere and in ground at a precise location gives more fine details about the solar irradiance influence over the earth, path loss and interaction of irradiance with the atmosphere.

  2. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    National Research Council Canada - National Science Library

    Handcock, Rebecca N; Swain, Dave L; Bishop-Hurley, Greg J; Patison, Kym P; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J

    2009-01-01

    ...). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor...

  3. A Study on the Potential Applications of Satellite Data in Air Quality Monitoring and Forecasting

    Science.gov (United States)

    Li, Can; Hsu, N. Christina; Tsay, Si-Chee

    2011-01-01

    In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectroradiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM(sub 10) concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT-PM(sub 10) correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions, Meteorological factors, particularly relative humidity, were found to influence the AOT-PM(sub 10) relationship. Their inclusion in regression models leads to more accurate assessment of PM(sub 10) from space borne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution, In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM(sub 10) level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM(sub 10) hindcasts for 2008-2009, using ohservations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error less than or equal to 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing, Further studies will be

  4. Object-Based Forest Cover Monitoring Using GAOFEN-2 High Resolution Satellite Images

    Science.gov (United States)

    Li, S. M.; Li, Z. Y.; Chen, E. X.; Liu, Q. W.

    2016-10-01

    Forest cover monitoring is an important part of forest management in local or regional area. The structure and tones of forest can be identified in high spatial remote sensing images. When forests cover change, the spectral characteristics of forests is also changed. In this paper a method on object-based forest cover monitoring with data transformation from time series of high resolution images is put forward. First the NDVI difference image and the composite of PC3,PC4, PC5 of the stacked 8 layers of time series of high resolution satellites are segmented into homogeneous objects. With development of the object-based ruleset classification system, the spatial extent of deforestation and afforestation can be identified over time across the landscape. Finally the change accuracy is achieved with reference data.

  5. A virtual reference satellite differential method for relative correction of satellite ephemeris errors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to solve the problems that the novel wide area differential method on the satellite clock and ephemeris relative correction (CERC) in the non-geostationary orbit satellite constellation, a virtual reference satellite (VRS) differential principle using relative correction of satellite ephemeris errors is proposed. It is referred to be as the VRS differential principle, and the elaboration is focused on the construction of pseudo-range errors of VRS. Through qualitative analysis, it can be found that the impact of the satellite’s clock and ephemeris errors on positioning can basically be removed and the users’ positioning errors are near zero. Through simulation analysis of the differential performance, it is verified that the differential method is universal in all kinds of satellite navigation systems with geostationary orbit (GEO) constellation, Medium orbit (MEO) constellation or hybrid orbit constellation, and it has insensitivity to abnormal aspects of a satellite ephemeris and clock. Moreover, the real time positioning accuracy of differential users can be maintained within several decimeters after the pseudo-range measurement noise is effectively weakened or eliminated.

  6. VIIRS satellite and ground pm2.5 monitoring data

    Data.gov (United States)

    U.S. Environmental Protection Agency — contains all satellite, pm2.5, and meteorological data used in statistical modeling effort to improve prediction of pm2.5. This dataset is associated with the...

  7. Monitoring the Total Suspended Solids (TSS) using High Spatial Resolution Satellite of THEOS

    Science.gov (United States)

    Syahreza, S.; Lim, H. S.; Mat Jafri, M. Z.; Abdullah, K.

    2010-12-01

    Environmental monitoring through the method of traditional ship sampling is time consuming and requires a high survey cost. Our study uses an empirical model, based on actual water quality of total suspended solids (TSS) measurements from the Penang Island, Malaysia to predict TSS based on optical properties of Thailand Earth Observation Satellite (THEOS) digital imagery. The objective of this study is to examine the performance of the proposed algorithm for retrieving TSS concentration by using THEOS satellite image over Penang Island, Malaysia. Water samples were collected simultaneously with the airborne image acquisition and later analyzed in the laboratory. Water sample locations were determined by using a Global Positioning System (GPS). The collected water samples were combined for algorithm calibration. The algorithm used was based on the reflectance model, which is a function of the inherent optical properties of water, and these in turn can be related to the concentration of the pollutants. Digital numbers for each band corresponding to the sea-truth data collected simultaneously with the digital image acquisition were determined for later use in the algorithm calibration analysis. The accuracy of each algorithm was determined based on the values of the correlation coefficient (R) and Root-Mean-Square deviation (RMS). This algorithm was then used to map the TSS concentration over Penang, Malaysia. The TSS map was color-coded and geometrically corrected for visual interpretation. This study indicates that TSS mapping can be carried out using remote sensing technique of the satellite digital photography system over Penang, Malaysia.

  8. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    Science.gov (United States)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  9. Monitoring the frozen duration of Qinshai Lake using satellite passive microwave remote sensing low frequency data

    Institute of Scientific and Technical Information of China (English)

    CHE Tao; LI Xin; JIN Rui

    2009-01-01

    The Qinghai Lake is the largest inland lake in China.The significant difference of dielectric properties between water and ice suggests that a simple method of monitoring the Qinghai lake freeze-up and break-up dates using satellite passive microwave remote sensing data could be used.The freeze-up and break-up dates from the Qinghai Lake hydrological station and the MODIS L1B reflectance data were used to validate the passive microwave remote sensing results.The validation shows that passive microwave remote sensing data can accurately monitor the lake ice.Some uncertainty comes mainly from the revisit frequency of satellite overpass.The data from 1978 to 2006 show that lake ice duration is reduced by about 14-15 days.The freeze-up dates are about 4 days later and break-up dates about 10 days earlier.The regression analyses show that,at the 0.05 significance level,the correlations are 0.83,0.66 and 0.89 between monthly mean air temperature (MMAT) and lake ice duration days,freeze-up dates,break-up dates,respectively.Therefore,inter-annual variations of the Qinghai Lake ice duration days can significantly reflect the regional climate variation.

  10. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  11. Methods for mapping and monitoring global glaciovolcanism

    Science.gov (United States)

    Curtis, Aaron; Kyle, Philip

    2017-03-01

    The most deadly (Nevado del Ruiz, 1985) and the most costly (Eyjafjallajökull, 2010) eruptions of the last 100 years were both glaciovolcanic. Considering its great importance to studies of volcanic hazards, global climate, and even astrobiology, the global distribution of glaciovolcanism is insufficiently understood. We present and assess three algorithms for mapping, monitoring, and predicting likely centers of glaciovolcanic activity worldwide. Each algorithm intersects buffer zones representing known Holocene-active volcanic centers with existing datasets of snow, ice, and permafrost. Two detection algorithms, RGGA and PZGA, are simple spatial join operations computed from the Randolph Glacier Inventory and the Permafrost Zonation Index, respectively. The third, MDGA, is an algorithm run on all 15 available years of the MOD10A2 weekly snow cover product from the Terra MODIS satellite radiometer. Shortcomings and advantages of the three methods are discussed, including previously unreported blunders in the MOD10A2 dataset. Comparison of the results leads to an effective approach for integrating the three methods. We show that 20.4% of known Holocene volcanic centers host glaciers or areas of permanent snow. A further 10.9% potentially interact with permafrost. MDGA and PZGA do not rely on any human input, rendering them useful for investigations of change over time. An intermediate step in MDGA involves estimating the snow-covered area at every Holocene volcanic center. These estimations can be updated weekly with no human intervention. To investigate the feasibility of an automatic ice-loss alert system, we consider three examples of glaciovolcanism in the MDGA weekly dataset. We also discuss the potential use of PZGA to model past and future glaciovolcanism based on global circulation model outputs. Combined, the three algorithms provide an automated system for understanding the geographic and temporal patterns of global glaciovolcanism which should be of use

  12. Wildfire monitoring using satellite images, ontologies and linked geospatial data

    NARCIS (Netherlands)

    Kyzirakos, K.; Karpathiotakis, M.; Garbis, G.; Nikolaou, C.; Bereta, K.; Papoutsis, I.; Herekakis, T.; Michail, D.; Koubarakis, M.; Kontoes, C.

    2014-01-01

    Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many scientific and

  13. APPLICABILITY EVALUATION OF OBJECT DETECTION METHOD TO SATELLITE AND AERIAL IMAGERIES

    Directory of Open Access Journals (Sweden)

    K. Kamiya

    2016-06-01

    Full Text Available Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  14. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    Science.gov (United States)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  15. Long-term monitoring of ocean deep convection using multisensors altimetry and ocean color satellite data

    Science.gov (United States)

    Herrmann, Marine; Auger, Pierre-Amael; Ulses, Caroline; Estournel, Claude

    2017-02-01

    Deep convection occurs in oceanic regions submitted to strong atmospheric buoyancy losses and results in the formation of deep water masses (DWF) of the ocean circulation. It shows a strong interannual variability, and could drastically weaken under the influence of climate change. In this study, a method is proposed to monitor quantitatively deep convection using multisensors altimetry and ocean color satellite data. It is applied and evaluated for the well-observed Northwestern Mediterranean Sea (NWMS) case study. For that, a coupled hydrodynamical-biogeochemical numerical simulation is used to examine the signature of DWF on sea level anomaly (SLA) and surface chlorophyll concentration. Statistically significant correlations between DWF annual indicators and the areas of low surface chlorophyll concentration and low SLA in winter are obtained, and linear relationships between those indicators and areas are established. These relationships are applied to areas of low SLA and low chlorophyll concentration computed, respectively, from a 27 year altimetry data set and a 19 year ocean color data set. The first long time series (covering the last 2 decades) of DWF indicators obtained for the NWMS from satellite observations are produced. Model biases and smoothing effect induced by the low resolution of gridded altimetry data are partly taken into account by using corrective methods. Comparison with winter atmospheric heat flux and previous modeled and observed estimates of DWF indicators suggests that those DWF indicators time series capture realistically DWF interannual variability in the NWMS. The advantages as well as the weaknesses and uncertainties of the method are finally discussed.

  16. Can satellite-based monitoring techniques be used to quantify volcanic CO2 emissions?

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kuze, Akihiko; Kataoka, Fumie; Shiomi, Kei; Goto, Naoki; Popp, Christoph; Ajiro, Masataka; Suto, Hiroshi; Takeda, Toru; Kanekon, Sayaka; Sealing, Christine; Flower, Verity

    2014-05-01

    Since 2010, we investigate and improve possible methods to regularly target volcanic centers from space in order to detect volcanic carbon dioxide (CO2) point source anomalies, using the Japanese Greenhouse gas Observing SATellite (GOSAT). Our long-term goals are: (a) better spatial and temporal coverage of volcano monitoring techniques; (b) improvement of the currently highly uncertain global CO2 emission inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude, strong point source emission and dispersion studies in atmospheric science. The difficulties posed by strong relief, orogenic clouds, and aerosols are minimized by a small field of view, enhanced spectral resolving power, by employing repeat target mode observation strategies, and by comparison to continuous ground based sensor network validation data. GOSAT is a single-instrument Earth observing greenhouse gas mission aboard JAXA's IBUKI satellite in sun-synchronous polar orbit. GOSAT's Fourier-Transform Spectrometer (TANSO-FTS) has been producing total column XCO2 data since January 2009, at a repeat cycle of 3 days, offering great opportunities for temporal monitoring of point sources. GOSAT's 10 km field of view can spatially integrate entire volcanic edifices within one 'shot' in precise target mode. While it doesn't have any spatial scanning or mapping capability, it does have strong spectral resolving power and agile pointing capability to focus on several targets of interest per orbit. Sufficient uncertainty reduction is achieved through comprehensive in-flight vicarious calibration, in close collaboration between NASA and JAXA. Challenges with the on-board pointing mirror system have been compensated for employing custom observation planning strategies, including repeat sacrificial upstream reference points to control pointing mirror motion, empirical individualized target offset compensation, observation pattern simulations to minimize view angle azimuth. Since summer 2010

  17. Knowledge Fusion Design Method: Satellite Module Layout

    Institute of Scientific and Technical Information of China (English)

    Wang Yishou; Teng Hongfei

    2009-01-01

    s the way to represent aforementioned three types of design knowledge, the model to describe problem and the method to fuse, and the roles human plays. The numerical experiments have demonstrated the feasibility of the proposed approach.

  18. Global near real-time disturbance monitoring using MODIS satellite image time series

    Science.gov (United States)

    Verbesselt, J.; Kalomenopoulos, M.; de Jong, R.; Zeileis, A.; Herold, M.

    2012-12-01

    Global disturbance monitoring in forested ecosystems is critical to retrieve information on carbon storage dynamics, biodiversity, and other socio-ecological processes. Satellite remote sensing provides a means for cost-effective monitoring at frequent time steps over large areas. However, for information about current change processes, it is required to analyse image time series in a fast and accurate manner and to detect abnormal change in near real time. An increasing number of change detection techniques have become available that are able to process historical satellite image time series data to detect changes in the past. However, methods that detect changes near real-time, i.e. analysing newly acquired data with respect to the historical series, are lacking. We propose a statistical technique for monitoring change in near-real time by comparing current data with a seasonal-trend model fitted onto the historical time series. As such, identification of consistent and abnormal change in near-real time becomes possible as soon as new image data is captured. The method is based on the "Break For Additive Seasonal Trend" (BFAST) concept (http://bfast.r-forge.r-project.org/). Disturbances are detected by analysing 16-daily MODIS combined vegetation and temperature indices. Validation is carried out by comparing the detected disturbances with available disturbance data sets (e.g. deforestation in Brazil and MODIS fire products). Preliminary results demonstrated that abrupt changes at the end of time series can be successfully detected while the method remains robust for strong seasonality and atmospheric noise. Cloud masking, however, was identified as a critical issue since periods of persistent cloudiness can be detected as abnormal change. The proposed method is an automatic and robust change detection approach that can be applied on different types of data (e.g. future sensors like the Sentinel constellation that provide higher spatial resolution at regular time

  19. Satellite Monitoring Systems for Shipping and Offshore Oil and Gas Industry in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Kostianoy A.G.

    2015-06-01

    Full Text Available Shipping activities, oil production and transport in the sea, oil handled in harbors, construction and exploitation of offshore oil and gas pipelines have a number of negative impacts on the marine environment and coastal zone of the seas. In 2004-2014 we elaborated several operational satellite monitoring systems for oil and gas companies in Russia and performed integrated satellite monitoring of the ecological state of coastal waters in the Baltic, Black, Caspian, and Kara seas, which included observation of oil pollution, suspended matter, and algae bloom at a fully operational mode. These monitoring systems differ from the existing ones by the analysis of a wide spectrum of satellite, meteorological and oceanographic data, as well as by a numerical modeling of oil spill transformation and transport in real weather conditions. Our experience in the Baltic Sea includes: (1 integrated satellite monitoring of oil production at the LUKOIL-KMN Ltd. D-6 oil rig in the Southeastern Baltic Sea (Kravtsovskoe oil field in 2004-2014; (2 integrated satellite monitoring of the “Nord Stream” underwater gas pipeline construction and exploitation in the Gulf of Finland (2010-2013; (3 numerical modeling of risks of oil pollution caused by shipping along the main maritime shipping routes in the Gulf of Finland, the Baltic Proper, and in the Southeastern Baltic Sea; (4 numerical modeling of risks of oil pollution caused by oil production at D-6 oil rig and oil transportation on shore via the connecting underwater oil pipeline.

  20. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  1. Review on gyroless attitude determination methods for small satellites

    Science.gov (United States)

    Hajiyev, Chingiz; Cilden Guler, Demet

    2017-04-01

    This study surveys the developments in the gyroless attitude determination system, especially for small satellites. Two kinds of gyroless satellite attitude determination algorithms were reviewed namely, vector measurements and Kalman filter based methods. Traditional and nontraditional Kalman filters were considered in the Kalman filter based methods including Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF). Also, robust versions of those Kalman filters, which were incorporated with single, and multiple measurement noise scale factors (SMNSF, MMNSF respectively) are investigated and compared in the presence of measurement faults.

  2. Satellite Magnetic Residuals Investigated With Geostatistical Methods

    DEFF Research Database (Denmark)

    Fox Maule, Chaterine; Mosegaard, Klaus; Olsen, Nils

    2005-01-01

    (which consists of measurement errors and unmodeled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyze the residuals of the Oersted (09d/04) field model (www.dsri.dk/Oersted/Field models/IGRF 2005 candidates/), which is based...

  3. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

    Science.gov (United States)

    2014-09-30

    radars to monitor the melting and freezing cycles of the Arctic Ocean north of 65o. Satellite data collections will support in-situ buoy clusters and... ice -type, and lead expansion/contraction with temporal resolutions from hours to days. Ultimately provide a routine Arctic coverage and generate...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation. b) Develop a Neural Network algorithm for ice -type

  4. Use of satellite imagery to map and monitor vegetation in New Zealand

    OpenAIRE

    Stephens, P. R.; Dymond, J. R.; Brown, L J

    1995-01-01

    研究概要:Land resource and environmental decision makers require quantitative information on the spatial distribution of vegetation types and their condition, and changes in these over time. Such vegetation mapping and monitoring is often required to be undertaken quickly. Remotely-sensed satellite imagery, in conjunction with other data sources, have been used to satisfy this need. This paper describes the uses of satellite imagery by reference to three regional mapping projects in New Zealand. ...

  5. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

    Science.gov (United States)

    2013-09-30

    of glaciers and the speed of motion. h) Monitoring of the Northwest Passage. APPROACH 2013 MIZ Pilot Program: Starting in June to end of...Flux Buoy (AOFB), and CRREL Ice Mass Balance (IMB) buoy so comparisons of the in-situ data can be calculated with the SAR data. By tracking the...programming the satellite collections for the dynamic and sometimes erratic movements of the buoy was not trivial and required tasking the satellite

  6. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery.

    Directory of Open Access Journals (Sweden)

    Jingcheng Zhang

    Full Text Available Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B, green (G, red (R and near infrared (NIR bands from HJ-CCD (CCD sensor on Huanjing satellite to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72. However, by comparing these disease maps with ground survey data (validation samples, all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59. The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale.

  7. Methods of rapid orbit forecasting after maneuvers for geostationary satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A geostationary(GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining satellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statis-tical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit meas-urement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SINOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit(RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.

  8. An autonomous orbit determination method for MEO and LEO satellite

    Science.gov (United States)

    Zhang, Hui; Wang, Jin; Yu, Guobin; Zhong, Jie; Lin, Ling

    2014-09-01

    A reliable and secure navigation system and assured autonomous capability of satellite are in high demand in case of emergencies in space. This paper introduces a novel autonomous orbit determination method for Middle-Earth-Orbit and Low-Earth-Orbit (MEO and LEO) satellite by observing space objects whose orbits are known. Generally, the geodetic satellites, such as LAGEOS and ETALONS, can be selected as the space objects here. The precision CCD camera on tracking gimbal can make a series of photos of the objects and surrounding stars when MEO and LEO satellite encounters the space objects. Then the information processor processes images and attains sightings and angular observations of space objects. Several clusters of such angular observations are incorporated into a batch least squares filter to obtain an orbit determination solution. This paper describes basic principle and builds integrated mathematical model. The accuracy of this method is analyzed by means of computer simulation. Then a simulant experiment system is built, and the experimental results demonstrate the feasibility and effectiveness of this method. The experimental results show that this method can attain the accuracy of 150 meters with angular observations of 1 arcsecond system error.

  9. COMPARISON OF TWO METHODS IN SATELLITE FORMATION FLYING

    Institute of Scientific and Technical Information of China (English)

    高云峰; 宝音贺西; 李俊峰

    2003-01-01

    Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire's (C-W's) equations, which describe the relative motion between two satellites. But according to some special examples and qualitative analysis, neither the initial parameters nor the period of the solution of C-W' s equations accord with the actual situation, and the conservation of energy is no longer held. A new method developed from orbital element description of single satellite, named relative orbital element method ( ROEM), was introduced. This new method, with clear physics conception and wide application range, overcomes the limitation of C-W's equation, and the perio dic solution is a natural conclusion. The simplified equation of the relative motion is obtained when the eccentricity of the main satellite is small. Finally,the results of the two methods ( C-W' s equation and ROEM) are compared and the limitations of C-W' s equations are pointed out and explained.

  10. Moscow State University near-Earth radiation monitoring satellite system: current status and development

    Science.gov (United States)

    Panasyuk, Mikhail

    2016-07-01

    Radiation measurements using instruments have been designed and manufacturing in the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University and installed onboard different satellites,i.e. LEO -"Meteor", ISS, GPS - GLONASS, GEO - "Electro" are presented as a basis of radiation monitoring system for control of radiation condition with a goal for to decrease radiation risk of spacecraft's damage on different orbits. Development of this system including radiation measurements onboard "Lomonosov"(LEO) satellite will be presented as well together with future project of multispacecraft LEO system for radiation monitoring.

  11. The best printing methods to print satellite images

    Directory of Open Access Journals (Sweden)

    G.A. Yousif

    2011-12-01

    In this paper different printing systems were used to print an image of SPOT-4 satellite, caver part of Sharm Elshekh area, Sinai, Egypt, on the same type of paper as much as possible, especially in the photography. This step is followed by measuring the experimental data, and analyzed colors to determine the best printing systems for satellite image printing data. The laser system is the more printing system where produce a wider range of color and highest densities of ink and access much color detail. Followed by the offset system which it recorded the best dot gain. Moreover, the study shows that it can use the advantages of each method according to the satellite image color and quantity to be produced.

  12. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  13. The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods

    Directory of Open Access Journals (Sweden)

    C. Domenikiotis

    2003-01-01

    Full Text Available The increasing number of extreme natural phenomena, which are related to the climate variability and are mainly caused by anthropogenic factors, escalate the frequency and severity of natural disasters. Operational monitoring of natural hazards and assessment of the affected area impose quick and efficient methods based on large-scale data, readily available to the agencies. The growing number of satellite systems and their capabilities give rise to remote sensing applications to all types of natural disasters, including forest fires and floods. Remote sensing techniques can be used in all three aspects of disaster management viz: forecasting, monitoring and damage assessment. The purpose of this paper is to highlight the importance of satellite remote sensing for monitoring and near-real time assessment of the affected by forest fires and floods areas. As a tool, two satellite indices are presented, namely the Normalized Difference Vegetation Index (NDVI and the Surface Temperature (ST, extracted by the meteorological satellite NOAA/AVHRR. In the first part of the paper, a review of utilized techniques using NDVI and ST is given. In the second part, the application of various methodologies to three case studies are presented: the forest fire of 21–24 July 1995 in Penteli Mountain near Athens and 16 September 1994 in Pelion Mountain in Thessaly region, central Greece, and finally the flood of 17–23 October 1994 in Thessaly region, central Greece. For all studies the NDVI has been utilized for hazard assessment. The method of ST has been applied to the flood event in Thessaly, for the estimation of the areal extent of the floods. As emerged from the studies, remote sensing data can be decisive for monitoring and damage assessment, caused by forest fires and floods.

  14. Gamma ray spectroscopy monitoring method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  15. Methods of rapid orbit forecasting after maneuvers for geostationary satellites

    Institute of Scientific and Technical Information of China (English)

    YANG XuHai; LI ZhiGang; FENG ChuGang; GUO Ji; SHI HuLi; AI GuoXiang; WU FengLei; QIAO RongChuan

    2009-01-01

    A geostationary (GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining setellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statistical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit measurement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SlNOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit (RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.

  16. Monitoring water quality from LANDSAT. [satellite observation of Virginia

    Science.gov (United States)

    Barker, J. L.

    1975-01-01

    Water quality monitoring possibilities from LANDSAT were demonstrated both for direct readings of reflectances from the water and indirect monitoring of changes in use of land surrounding Swift Creek Reservoir in a joint project with the Virginia State Water Control Board and NASA. Film products were shown to have insufficient resolution and all work was done by digitally processing computer compatible tapes. Land cover maps of the 18,000 hectare Swift Creek Reservoir watershed, prepared for two dates in 1974, are shown. A significant decrease in the pine cover was observed in a 740 hectare construction site within the watershed. A measure of the accuracy of classification was obtained by comparing the LANDSAT results with visual classification at five sites on a U-2 photograph. Such changes in land cover can alert personnel to watch for potential changes in water quality.

  17. Novel method for fog monitoring using cellular networks infrastructures

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2012-08-01

    A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.

  18. Modeling radiation conditions in orbits of projected system of small satellites for radiation monitoring

    Science.gov (United States)

    Panasyuk, M. I.; Podzolko, M. V.; Kovtyukh, A. S.; Osedlo, V. I.; Tulupov, V. I.; Yashin, I. V.

    2016-11-01

    Calculated estimates are presented for the accumulated radiation doses behind the shields of various thicknesses in the orbits of projected at Skobeltsyn Institute of Nuclear Physics, Moscow State University system of small satellites for radiation monitoring. The results are analyzed and compared with the calculation data for other actively exploited near-Earth orbits.

  19. Improving Flood Prediction By the Assimilation of Satellite Soil Moisture in Poorly Monitored Catchments.

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Ryu, D.; Western, A. W.; Crow, W. T.; Su, C. H.; Robertson, D. E.

    2014-12-01

    Flood prediction in poorly monitored catchments is among the greatest challenges faced by hydrologists. To address this challenge, an increasing number of studies in the last decade have explored methods to integrate various existing observations from ground and satellites. One approach in particular, is the assimilation of satellite soil moisture (SM-DA) into rainfall-runoff models. The rationale is that satellite soil moisture (SSM) can be used to correct model soil water states, enabling more accurate prediction of catchment response to precipitation and thus better streamflow. However, there is still no consensus on the most effective SM-DA scheme and how this might depend on catchment scale, climate characteristics, runoff mechanisms, model and SSM products used, etc. In this work, an operational SM-DA scheme was set up in the poorly monitored, large (>40,000 km2), semi-arid Warrego catchment situated in eastern Australia. We assimilated passive and active SSM products into the probability distributed model (PDM) using an ensemble Kalman filter. We explored factors influencing the SM-DA framework, including relatively new techniques to remove model-observation bias, estimate observation errors and represent model errors. Furthermore, we explored the advantages of accounting for the spatial distribution of forcing and channel routing processes within the catchment by implementing and comparing lumped and semi-distributed model setups. Flood prediction is improved by SM-DA (Figure), with a 30% reduction of the average root-mean-squared difference of the ensemble prediction, a 20% reduction of the false alarm ratio and a 40% increase of the ensemble mean Nash-Sutcliffe efficiency. SM-DA skill does not significantly change with different observation error assumptions, but the skill strongly depends on the observational bias correction technique used, and more importantly, on the performance of the open-loop model before assimilation. Our findings imply that proper

  20. Electronic Field Data Collection in Support of Satellite-Based Food Security Monitoring in Tanzania

    Science.gov (United States)

    Nakalembe, C. L.; Dempewolf, J.; Justice, C. J.; Becker-Reshef, I.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ibrahim, K.; Materu, S.

    2016-12-01

    In Tanzania agricultural extension agents traditionally collect field data on agriculture and food security on paper, covering most villages throughout the country. The process is expensive, slow and cumbersome and prone to data transcription errors when the data get entered at the district offices into electronic spreadsheets. Field data on the status and condition of agricultural crops, the population's nutritional status, food storage levels and other parameters are needed in near realtime for early warning to make critical but most importantly timely and appropriate decisions that are informed with verified data from the ground. With the ubiquitous distribution of cell phones, which are now used by the vast majority of the population in Tanzania including most farmers, new, efficient and cost-effective methods for field data collection have become available. Using smartphones and tablets data on crop conditions, pest and diseases, natural disasters and livelihoods can be collected and made available and easily accessible in near realtime. In this project we implemented a process for obtaining high quality electronic field data using the GeoODK application with a large network of field extension agents in Tanzania and Uganda. These efforts contribute to work being done on developing an advanced agriculture monitoring system for Tanzania, incorporating traditional data collection with satellite information and field data. The outcomes feed directly into the National Food Security Bulletin for Tanzania produced by the Ministry of Agriculture as well as a form a firm evidence base and field scale monitoring of the disaster risk financing in Uganda.

  1. River monitoring from satellite radar altimetry in the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-03-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.

  2. Leveraged fault identification method for receiver autonomous integrity monitoring

    Directory of Open Access Journals (Sweden)

    Sun Yuan

    2015-08-01

    Full Text Available Receiver autonomous integrity monitoring (RAIM provides integrity monitoring of global positioning system (GPS for safety-of-life applications. In the process of RAIM, fault identification (FI enables navigation to continue in the presence of fault measurement. Affected by satellite geometry, the leverage of each measurement in position solution may differ greatly. However, the conventional RAIM FI methods are generally based on maximum likelihood of ranging error for different measurements, thereby causing a major decrease in the probability of correct identification for the fault measurement with high leverage. In this paper, the impact of leverage on the fault identification is analyzed. The leveraged RAIM fault identification (L-RAIM FI method is proposed with consideration of the difference in leverage for each satellite in view. Furthermore, the theoretical probability of correct identification is derived to evaluate the performance of L-RAIM FI method. The experiments in various typical scenarios demonstrate the effectiveness of L-RAIM FI method over conventional FI methods in the probability of correct identification for the fault with high leverage.

  3. MONITORING OF ENERGETIC PARTICLE ENVIRONMENT INSIDE THE CHINA-BRAZIL EARTH RESOURCE SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged

  4. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.

    2015-06-02

    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  5. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  6. Monitoring volcanic systems through cross-correlation of coincident A-Train satellite data.

    Science.gov (United States)

    Flower, V. J. B.; Carn, S. A.; Wright, R.

    2014-12-01

    The remote location and inaccessibility of many active volcanic systems around the world hinders detailed investigation of their eruptive dynamics. One methodology for monitoring such locations is through the utilisation of multiple satellite datasets to elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation, including the Ozone Monitoring Instrument (OMI) on Aura and Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. OMI measures volcanic emissions (e.g. sulphur dioxide, ash) whilst MODIS enables monitoring of thermal anomalies (e.g. lava flows, lava lakes, pyroclastic deposits), allowing analysis of a more diverse range of volcanic unrest than is possible using a single measurement technique alone, and permitting cross-correlation between datasets for specific locations to assess cyclic activity. A Multi-taper (MTM) Fast Fourier Transform (FFT) analysis was implemented at an initial sample site (Soufriere Hills volcano [SHV], Montserrat) facilitating cycle identification and subsequent comparison with existing ground-based data. Corresponding cycles at intervals of 8, 12 and ~50 days were identified in both the satellite-based SO2 and thermal infrared signals and ground-based SO2 measurements (Nicholson et al. 2013), validating the methodology. Our analysis confirms the potential for identification of cyclical volcanic activity through synergistic analysis of satellite data, which would be of particular value at poorly monitored volcanic systems. Following our initial test at SHV, further sample sites have been selected in locations with varied eruption dynamics and monitoring capabilities including Ambrym (Vanuatu), Kilauea (Hawaii), Nyiragongo (DR Congo) and Etna (Italy) with the intention of identifying not only cyclic signals that can be attributed to volcanic systems but also those which are

  7. Modeling vegetation reflectance from satellite and in-situ monitoring data

    Science.gov (United States)

    Zoran, Maria; Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Dida, Adrian

    2010-05-01

    Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and, especially, its very strong reflectance in the near-IR. Different types of vegetation show often distinctive variability from one another owing to such parameters as leaf shape and size, overall plant shape, water content, and associated background (e.g., soil types and spacing of the plants (density of vegetative cover within the scene). Different three-dimensional numerical models explicitly represent the vegetation canopy and use numerical methods to calculate reflectance. These models are computationally intensive and are therefore not generally suited to the correction of satellite imagery containing millions of pixels. Physically based models do provide understanding and are potentially more robust in extrapolation. They consider the vegetation canopy to comprise thin layers of leaves, suspended in air like sediment particles in water forming a turbid medium. Monitoring of vegetation cover changes by remote sensing data is one of the most important applications of satellite imagery. Vegetation reflectance has variations with sun zenith angle, view zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used a three parameters model and developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy with randomly oriented leaves. Multiple scattering theory was used to extend the model to function for both near-infrared and visible light. This vegetation reflectance model may be used to correct satellite imagery for bidirectional and topographic effects. For two ASTER images over Cernica forested area, placed to the East of Bucharest town , Romania, acquired within minutes from one another ,a nadir and off-nadir for band 3

  8. DESERT ECOSYSTEMS: MAPPING, MONITORING & ASSESSMENT USING SATELLITE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    A. S. Arya

    2012-09-01

    Full Text Available Desert ecosystems are unique but fragile ecosystems , mostly vulnerable to a variety of degradational processes like water erosion, vegetal degradation, salinity, wind erosion , water logging etc. Some researchers consider desertification to be a process of change, while others view it as the end result of a process of change. There is an urgent need to arrest the process of desertification and combat land degradation. Under the auspices of the United Nations Convention to Combat Desertification (UNCCD, Space Applications Centre, Ahmedabad has undertaken the task of mapping, monitoring and assessment of desertification carrying out pilot project in hot and cold desert regions in drylands on 1:50,000 scale followed by systematic Desertification Status Mappaing (DSM of India on 1:500,000 scale.

  9. Drought and vegetation stress monitoring in Portugal using satellite data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2009-02-01

    Full Text Available Remote sensed information on vegetation and soil moisture, namely the Normalised Difference Vegetation Index (NDVI and the Soil Water Index (SWI, is employed to monitor the spatial extent, severity and persistence of drought episodes over Continental Portugal, from 1999 to 2006. The severity of a given drought episode is assessed by evaluating the cumulative impact over time of drought conditions on vegetation. Special attention is given to the drought episodes that have occurred in the last decade, i.e., 1999, 2002 and particularly the major event of 2005. During both the 1999 and 2005 drought episodes negative anomalies of NDVI are observed over large sectors of Southern Portugal for up to nine months (out of eleven of the vegetative cycle. On the contrary, the 2002 event was characterized by negative anomalies in the northern half of Portugal and for a shorter period (eight out of eleven months. The impact of soil moisture on vegetation dynamics is evaluated by analyzing monthly anomalies of SWI and by studying the annual cycle of SWI vs. NDVI. While in the case of the drought episode of 1999 the scarcity of water in the soil persisted until spring, in the recent episode of 2005 the deficit in greenness was already apparent at the end of summer. The impact of dry periods on vegetation is clearly observed in both arable land and forest, and it is found that arable land presents a higher sensitivity. From an operational point of view, obtained results reveal the possibility of using the developed methodology to monitor, in quasi real-time, vegetation stress and droughts in Mediterranean ecosystems.

  10. Drought and vegetation stress monitoring in Portugal using satellite data

    Science.gov (United States)

    Gouveia, C.; Trigo, R. M.; Dacamara, C. C.

    2009-02-01

    Remote sensed information on vegetation and soil moisture, namely the Normalised Difference Vegetation Index (NDVI) and the Soil Water Index (SWI), is employed to monitor the spatial extent, severity and persistence of drought episodes over Continental Portugal, from 1999 to 2006. The severity of a given drought episode is assessed by evaluating the cumulative impact over time of drought conditions on vegetation. Special attention is given to the drought episodes that have occurred in the last decade, i.e., 1999, 2002 and particularly the major event of 2005. During both the 1999 and 2005 drought episodes negative anomalies of NDVI are observed over large sectors of Southern Portugal for up to nine months (out of eleven) of the vegetative cycle. On the contrary, the 2002 event was characterized by negative anomalies in the northern half of Portugal and for a shorter period (eight out of eleven months). The impact of soil moisture on vegetation dynamics is evaluated by analyzing monthly anomalies of SWI and by studying the annual cycle of SWI vs. NDVI. While in the case of the drought episode of 1999 the scarcity of water in the soil persisted until spring, in the recent episode of 2005 the deficit in greenness was already apparent at the end of summer. The impact of dry periods on vegetation is clearly observed in both arable land and forest, and it is found that arable land presents a higher sensitivity. From an operational point of view, obtained results reveal the possibility of using the developed methodology to monitor, in quasi real-time, vegetation stress and droughts in Mediterranean ecosystems.

  11. Flood Monitoring and Hydrologic Studies Using Retracked Satellite Radar Altimetry

    Science.gov (United States)

    Zhang, M.; Shum, C.; Lee, H.; Alsdorf, D.; Schwartz, F.

    2008-12-01

    Nadir, pulse-limited radar altimetry measurements have been used to monitor large surface-water bodies. In spite of progress, there is a need for a robust and automated procedure, which allows classification and stage measurements in small water bodies, which lying along the orbital path, using multiple radar altimeter measurements. Here we used an algorithm, which is mainly based on radar scatter waveform response and statistical analysis of mean and standard deviation of the resulting water level change to classify surface- waters from other land covers. We tested the algorithm using 10-Hz retracked radar altimetry measurements from TOPEX over regions including the Amazon River basin, the Prairie Pothole Region in North America, and south-western Taiwan. The estimated water-level stages are compared with data from available stage measurements, and altimetry data available from public data centers. We also applied the algorithm to study the 1997 hundred-year Red River flood, and the June 2008 fifty-year flood in the Upper Midwest of the United States. For the1997 flood, it is found that the flooded regions detected by altimetry include the Red River Basin in North Dakota and Minnesota, the Missouri River Basin in North Dakota and South Dakota, the Minnesota River Basin and the Mississippi River Basin in Minnesota and Iowa. The extent of the flood agrees with the USGS record. The observed water height in Grand Forks reaches 6 meters above the normal. The ENVISAT altimetry is shown to be able to track the ebb and recede of the 2008 Iowa City flood. The results of this study could be applied to provide improved accuracy and potentially automated classification of nadir radar altimetry observed small inland water body measurements for hydrologic studies and for flood monitoring.

  12. MONITORING OF THE UNDERMINED TERRITORIES OF KARAGANDA COAL BASIN ON THE BASIS OF SATELLITE RADAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    S. B. Ozhigina

    2016-06-01

    Full Text Available In the Karaganda coal basin, mines are located in close proximity to each other and to the city of Karaganda and ongoing mining operations are accompanied by a dangerous process of settling the earth's surface and monitoring are essential for the region's econ-omy. Underground mining leads to the formation of voids in the rock mass, which cause displacement of the earth surface. This paper demonstrates an innovative use of the integrated approach for monitoring on the example of Karaganda coal basin, which includes estimation of the rock mass displacement using leveling profile lines and satellite radar interferometry. It is proved that satellite radar interferometry provides reliable results of surface subsidence measurements in mining areas and can be used for con-sidered sort of monitoring.

  13. Monitoring of the Undermined Territories of Karaganda Coal Basin on the Basis of Satellite Radar Interferometry

    Science.gov (United States)

    Ozhigina, S. B.; Mozer, D. V.; Ozhigin, D. S.; Ozhigin, S. G.; Bessimbayeva, O. G.; Khmyrova, E. N.

    2016-06-01

    In the Karaganda coal basin, mines are located in close proximity to each other and to the city of Karaganda and ongoing mining operations are accompanied by a dangerous process of settling the earth's surface and monitoring are essential for the region's econ-omy. Underground mining leads to the formation of voids in the rock mass, which cause displacement of the earth surface. This paper demonstrates an innovative use of the integrated approach for monitoring on the example of Karaganda coal basin, which includes estimation of the rock mass displacement using leveling profile lines and satellite radar interferometry. It is proved that satellite radar interferometry provides reliable results of surface subsidence measurements in mining areas and can be used for con-sidered sort of monitoring.

  14. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    Science.gov (United States)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  15. Novel evaluation method of TCP performance over satellite links

    Institute of Scientific and Technical Information of China (English)

    Wang Lina; Gu Xuemai

    2006-01-01

    A novel and efficient method to evaluate the transmission control protocol (TCP) performance over satellite links is presented. A TCP module is divided into three functional blocks, namely data processing, congestion control and error control. The re-established TCP module is easy to update TCP congestion control strategy or error control strategy. With the proposed analysis approach, the interactions between different congestion control and error control mechanisms, as well as the performance of various combination protocols in satellite environments have been investigated. Simulation results obtained through a series of experiments have shown that SNACK-based error control strategy can perform well with any other congestion control strategy. The best performance can be achieved by TCP New Reno congestion control strategy and SNACK-based error control strategy.

  16. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    Science.gov (United States)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes

  17. Crop Monitoring Using European and Chinese Medium Resolution Satellite Data

    Science.gov (United States)

    Silvestro, Paolo Cosmo; Yang, Hao; Jin, X. L.; Yang, Guijun; Casa, Raffaele; Pignatti, Stefano

    2016-08-01

    The ultimate aim of this work is to develop methods for the assimilation of the biophysical variables estimated by remote sensing in a suitable crop growth model. Two strategies were followed, one based on the use of Leaf Area Index (LAI) estimated by optical data, and the other based on the use of biomass estimated by SAR. The first one estimates LAI from the reflectance measured by the optical sensors on board of HJ1A, HJ1B and Landsat, using a method based on the training of artificial neural networks (ANN) with PROSAIL model simulations. The retrieved LAI is used to improve wheat yield estimation, using assimilation methods based on the Ensemble Kalman Filter, which assimilate the biophysical variables into growth crop model. The second strategy estimates biomass from SAR imagery. Polarimetric decomposition methods were used based on multi-temporal fully polarimetric Radarsat-2 data during the entire growing season. The estimated biomass was assimilating to FAO Aqua crop model for improving the winter wheat yield estimation, with the Particle Swarm Optimization (PSO) method. These procedures were used in a spatial application with data collected in the rural area of Yangling (Shaanxi Province) in 2014 and were validated for a number of wheat fields for which ground yield data had been recorded and according to statistical yield data for the area.

  18. Monitoring Movement Patterns on a Large Landslide Using Remote Methods.

    Science.gov (United States)

    Murphy, W.; Bulmer, M. H.; Petley, D.

    2002-12-01

    Traditional methods of landslide monitoring have normally employed ground based instrumentation that is either read directly, logged by computer or telemetered to a remote station. While such methods have shown excellent results they remain labour intensive and costly. Furthermore such equipment is frequently lost. In recent years the use of remotely sensed data for the detection and monitoring of landslides has become more common. Such methods may take a number of forms. Firstly, the use of multitemporal satellite-based systems in either multispectral or panchromatic mode has allowed the detection and growth of landslides. These methods, despite allowing a stable platform and regular data collection are limited with regards to their spatial (and sometimes spectral) resolution. Secondly, repeat pass aerial photography now may have the advantage of being collected digitally, and possesses the capability of being orthorectified using either ground control stations or to onboard GPS measurements. These have the advantages of superior ground resolution and can be used to create high resolution digital elevation models allowing the frequent monitoring of landform change by DEM subtraction methods. The limiting factor is that the absence of good spectral coverage may make the detection of landslide related features (such as vegetation stress) difficult. Such a limitation can be overcome by simultaneous collection of airborne multispectral data, such as ATM, that can give excellent results for landslide monitoring and mapping. These techniques compliment the use of InSAR for the monitoring of ground deformation. While the use of InSAR allows the detection of surface deformation other methods allow actual landslide observation. Additionally, the greater precision of DEM derived from orthophotography can enhance the quality of the InSAR product. These complimentary techniques have been combined over the Black Ven landslide on the south-west coast of England to test their

  19. Synergy use of satellite remote sensing and in-situ monitoring data for air pollution impacts on urban climate

    Science.gov (United States)

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.

    2016-10-01

    The increase of urban atmospheric pollution due to particulate matters (PM) in different fraction sizes affects seriously not only human health and environment, but also city climate directly and indirectly. In the last decades, with the economic development and the increased emissions from industrial, traffic and domestic pollutants, the urban atmospheric pollution with remarkable high PM2.5 (particulate matters with aerodynamic diameter less than 2.5 μm) and PM10 (particulate matters with aerodynamic diameter less than 10 μm) concentration levels became serious in the metropolitan area of Bucharest in Romania. Both active as well as satellite remote sensing are key applications in global change science and urban climatology. The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The current study presents a spatiotemporal analysis of the aerosol concentrations in relation with climate parameters in two size fractions (PM10 and PM2.5) in Bucharest metropolitan area. Daily average particle matters concentrations PM10 and PM2.5 for Bucharest metropolitan area have been provided by 8 monitoring stations belonging to air pollution network of Environmental Protection Agency. The C005 (version 5.1) Level 2 and Level 3 Terra and Aqua MODIS AOD550 time-series satellite data for period 01/01/2011- 31/12/2012 have been also used. Meteorological variables (air temperature, relative humidity, sea level atmospheric pressure) have been provided by in-situ measurements. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data for 2011-2012 period provided useful tools for particle matter PM2.5 and PM10 monitoring.

  20. Monitoring Polar Environmental Change Using FORMOSAT-2 Satellite

    Science.gov (United States)

    Huang, C.; Liu, C.; Chang, L.; Wang, S.; Yan, K.; Wu, F.; Wu, A.

    2007-12-01

    Polar ice loss to the sea currently account for virtually all of the sea-level rise that is not attributable to ocean warming. Huge section of the Ayles Ice Shelf broke off into the Arctic Ocean. Permafrost soil is losing its permanence across the Northern Hemisphere, altering ecosystems and damaging roads and buildings across Alaska, Canada, and Russia. Global warming change the polar environment significantly, especially in recent year. The National Space Organization (NSPO) of Taiwan successfully launched FORMOSAT-2 on 20 May 2004. The orbit is designed to be high-altitude,. Sun-synchronous, and daily-revisit. With high agility in attitude control, FORMOSAT-2 can cover the polar areas up to +/- 90 deg latitude. More than 72 Area of interests in Alaska, Canada, Greenland area and Ice land have imaged periodically in 2006 and 2007. The images have 2m resolution in panchromatic band and 8m in multispectral bands, with size of about 24 x 100 km or large. The ability of FORMOSAT-2 daily revisit has been extended to monitor the change of topography for the glacier and ice shelf daily, weekly and monthly. By using the FORMOSAT-2 stereo pair, we can determine the elevation profile (DEM) across the glacier surface. In this paper, we will present the mapping and topography of Greenland glaciers and ice land including Kangerdlugssuaq Glacier, Greenland, Belcher Glacier, Canada and Ayles ice island. We will demonstrate the DEM extract ability from FORMOSAT-2 polar stereo images( up to 82 deg latitude), and compared with the DEM of the popular SRTM, ASTER which can be acquired to 79 deg latitude. It is expected that FORMOSAT-2 polar images will be continuously collected for years and contribute to the research of global environmental change.

  1. Tropical forest monitoring, combining satellite and social data, to inform management and livelihood implications: Case studies from Indonesian West Timor

    Science.gov (United States)

    Fisher, Rohan

    2012-06-01

    Deforestation in the world's tropics is an urgent international issue. One response has been the development of satellite based monitoring initiatives largely focused on the carbon rich forests of western Indonesia. In contrast this study focuses on one eastern Indonesian district, Kabupaten Kupang, which has some of the largest and least studied tracts of remaining forest in West Timor. A combination of remote sensing, GIS and social science methods were used to describe the state of forests in Kabupaten Kupang, how and why they are changing. Using satellite imagery, case studies and on-ground interviews, this study explores the proposition that transdisciplinary local social, cultural and biophysical knowledge is important for effectively using remotely sensed data as a tool to inform local management policies. When compared to some other parts of Indonesia, the rate and extent of deforestation in West Timor was found to be relatively small and a satellite based assessment alone could conclude that it is not a critical issue. However this study showed that when on-ground social data are coupled with (such) satellite-based data a more complex picture emerges, related to key livelihood issues. The causes of forest cover change were found to be multivariate and location specific, requiring management approaches tailored to local social issues. This study suggests that integrative research can maximise the utility of satellite data for understanding causation and thus informing management strategies. In addition, the satellite based assessment found that at the time of the study less than 4% of forested land was within national parks and nature reserves and less than a third of the protected catchment forest zone was forested. These data suggest considerable scope for upland re-forestation activities or the redrawing of protected forest boundaries.

  2. UKF-based attitude determination method for gyroless satellite

    Institute of Scientific and Technical Information of China (English)

    张红梅; 邓正隆

    2004-01-01

    UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF (extended Kalman filtering). As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF.The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.

  3. Particle Filtering Equalization Method for a Satellite Communication Channel

    Directory of Open Access Journals (Sweden)

    Amblard Pierre-Olivier

    2004-01-01

    Full Text Available We propose the use of particle filtering techniques and Monte Carlo methods to tackle the in-line and blind equalization of a satellite communication channel. The main difficulties encountered are the nonlinear distortions caused by the amplifier stage in the satellite. Several processing methods manage to take into account these nonlinearities but they require the knowledge of a training input sequence for updating the equalizer parameters. Blind equalization methods also exist but they require a Volterra modelization of the system which is not suited for equalization purpose for the present model. The aim of the method proposed in the paper is also to blindly restore the emitted message. To reach this goal, a Bayesian point of view is adopted. Prior knowledge of the emitted symbols and of the nonlinear amplification model, as well as the information available from the received signal, is jointly used by considering the posterior distribution of the input sequence. Such a probability distribution is very difficult to study and thus motivates the implementation of Monte Carlo simulation methods. The presentation of the equalization method is cut into two parts. The first part solves the problem for a simplified model, focusing on the nonlinearities of the model. The second part deals with the complete model, using sampling approaches previously developed. The algorithms are illustrated and their performance is evaluated using bit error rate versus signal-to-noise ratio curves.

  4. Using ISERV and Commercial Satellite Imagery to Assess and Monitor Recovery Efforts in Urban Damaged Areas

    Science.gov (United States)

    Bell, Jordan R.; Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.

    2014-01-01

    NASA's Short-term Prediction, Research, and Transition (SPoRT) Center uses a wide array of satellites to monitor and assess the impacts of natural disasters, with support from NASA's Applied Sciences Program. One of the newest sensors SPoRT is utilizing in these activities is the International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. ISERV provides a unique view of the areas impacted and will play a big role in monitoring the recovery these areas. High-resolution commercial satellite data is also used to monitor urban areas that have been impacted by natural disasters. SPoRT is developing techniques to measure the extent of these disasters and to monitor recovery. Several of these techniques include semi-automatic feature detection and change as well as developing an experimental damage assessment based upon the visible damage observed by the satellites. Furthermore, throughout these activities SPoRT hopes to provide additional data to the NOAA National Weather Service Damage Assessment Toolkit, which will help to supplement those activities being performed in the field.

  5. Soil Moisture Drought Monitoring and Forecasting Using Satellite and Climate Model Data over Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuejun; Tang, Qiuhong; Liu, Xingcai; Leng, Guoyong; Li, Zhe

    2017-01-01

    Real-time monitoring and predicting drought development with several months in advance is of critical importance for drought risk adaptation and mitigation. In this paper, we present a drought monitoring and seasonal forecasting framework based on the Variable Infiltration Capacity (VIC) hydrologic model over Southwest China (SW). The satellite precipitation data are used to force VIC model for near real-time estimate of land surface hydrologic conditions. As initialized with satellite-aided monitoring, the climate model-based forecast (CFSv2_VIC) and ensemble streamflow prediction (ESP)-based forecast (ESP_VIC) are both performed and evaluated through their ability in reproducing the evolution of the 2009/2010 severe drought over SW. The results show that the satellite-aided monitoring is able to provide reasonable estimate of forecast initial conditions (ICs) in a real-time manner. Both of CFSv2_VIC and ESP_VIC exhibit comparable performance against the observation-based estimates for the first month, whereas the predictive skill largely drops beyond 1-month. Compared to ESP_VIC, CFSv2_VIC shows better performance as indicated by the smaller ensemble range. This study highlights the value of this operational framework in generating near real-time ICs and giving a reliable prediction with 1-month ahead, which has great implications for drought risk assessment, preparation and relief.

  6. DroughtView: Satellite Based Drought Monitoring and Assessment

    Science.gov (United States)

    Hartfield, K. A.; Van Leeuwen, W. J. D.; Crimmins, M.; Marsh, S. E.; Torrey, Y.; Rahr, M.; Orr, B. J.

    2014-12-01

    Drought is an ever growing concern within the United States and Mexico. Extended periods of below-average precipitation can adversely affect agricultural production and ecosystems, impact local water resources and create conditions prime for wildfire. DroughtView (www.droughtview.arizona.edu) is a new on-line resource for scientists, natural resource managers, and the public that brings a new perspective to remote-sensing based drought impact assessment that is not currently available. DroughtView allows users to monitor the impact of drought on vegetation cover for the entire continental United States and the northern regions of Mexico. As a spatially and temporally dynamic geospatial decision support tool, DroughtView is an excellent educational introduction to the relationship between remotely sensed vegetation condition and drought. The system serves up Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data generated from 250 meter 16-day composite Moderate-resolution Imaging Spectroradiometer (MODIS) imagery from 2000 to the present. Calculation of difference from average, previous period and previous year greenness products provide the user with a proxy for drought conditions and insight on the secondary impacts of drought, such as wildfire. The various image products and overlays are served up via the ArcGIS Server platform. DroughtView serves as a useful tool to introduce and teach vegetation time series analysis to those unfamiliar with the science. High spatial resolution imagery is available as a reference layer to locate points of interest, zoom in and export images for implementation in reports and presentations. Animation of vegetation time series allows users to examine ecosystem disturbances and climate data is also available to examine the relationship between precipitation, temperature and vegetation. The tool is mobile friendly allowing users to access the system while in the field. The systems capabilities and

  7. A new approach for agroecosystems monitoring using high-revisit multitemporal satellite data series

    Science.gov (United States)

    Diez, M.; Moclán, C.; Romo, A.; Pirondini, F.

    2014-10-01

    With increasing population pressure throughout the world and the need for increased agricultural production there is a definite need for improved management of the world's agricultural resources. Comprehensive, reliable and timely information on agricultural resources is necessary for the implementation of effective management decisions. In that sense, the demand for high-quality and high-frequency geo-information for monitoring of agriculture and its associated ecosystems has been growing in the recent decades. Satellite image data enable direct observation of large areas at frequent intervals and therefore allow unprecedented mapping and monitoring of crops evolution. Furthermore, real time analysis can assist in making timely management decisions that affect the outcome of the crops. The DEIMOS-1 satellite, owned and operated by ELECNOR DEIMOS IMAGING (Spain), provides 22m, 3-band imagery with a very wide (620-km) swath, and has been specifically designed to produce high-frequency revisit on very large areas. This capability has been proved through the contracts awarded to Airbus Defence and Space every year since 2011, where DEIMOS-1 has provided the USDA with the bulk of the imagery used to monitor the crop season in the Lower 48, in cooperation with its twin satellite DMCii's UK-DMC2. Furthermore, high density agricultural areas have been targeted with increased frequency and analyzed in near real time to monitor tightly the evolution. In this paper we present the results obtained from a campaign carried out in 2013 with DEIMOS-1 and UK-DMC2 satellites. These campaigns provided a high-frequency revisit of target areas, with one image every two days on average: almost a ten-fold frequency improvement with respect to Landsat-8. The results clearly show the effectiveness of a high-frequency monitoring approach with high resolution images with respect to classic strategies where results are more exposed to weather conditions.

  8. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti......-angiogenic treatment is presented in the first manuscript. In the second and third manuscript, two separate methods of quantifying perfusion, blood volume and vessel permeability are presented. The methods are used to show that drug delivery to a xenografted tumor is plausible and to show possible vascular maturation...

  9. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  10. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  11. Satellite-based forest monitoring: spatial and temporal forecast of growing index and short-wave infrared band.

    Science.gov (United States)

    Bayr, Caroline; Gallaun, Heinz; Kleb, Ulrike; Kornberger, Birgit; Steinegger, Martin; Winter, Martin

    2016-04-18

    For detecting anomalies or interventions in the field of forest monitoring we propose an approach based on the spatial and temporal forecast of satellite time series data. For each pixel of the satellite image three different types of forecasts are provided, namely spatial, temporal and combined spatio-temporal forecast. Spatial forecast means that a clustering algorithm is used to group the time series data based on the features normalised difference vegetation index (NDVI) and the short-wave infrared band (SWIR). For estimation of the typical temporal trajectory of the NDVI and SWIR during the vegetation period of each spatial cluster, we apply several methods of functional data analysis including functional principal component analysis, and a novel form of random regression forests with online learning (streaming) capability. The temporal forecast is carried out by means of functional time series analysis and an autoregressive integrated moving average model. The combination of the temporal forecasts, which is based on the past of the considered pixel, and spatial forecasts, which is based on highly correlated pixels within one cluster and their past, is performed by functional data analysis, and a variant of random regression forests adapted to online learning capabilities. For evaluation of the methods, the approaches are applied to a study area in Germany for monitoring forest damages caused by wind-storm, and to a study area in Spain for monitoring forest fires.

  12. Micro-satellite constellations for monitoring cryospheric processes and related natural hazards

    Science.gov (United States)

    Kaeaeb, A.; Altena, B.; Mascaro, J.

    2016-12-01

    Currently, several micro-satellite constellations for earth-observation are planned or under build-up. Here, we assess the potential of the well-advanced Planet satellite constellation for investigating cryospheric processes. In its final stage, the Planet constellation will consist of 150 free-flying micro-satellites in near-polar and ISS orbits. The instruments carry RGB+NIR frame cameras that image the Earth surface in nadir direction with resolutions of 3-5 m, covering 20 x 13 km per image. In its final set-up, the constellation will be able to image the (almost) entire land surface at least once per day, under the limitation of cloud cover. Here, we explore new possibilities for insight into cryospheric processes that this very high repeat cycle combined with high image resolution offer. Based on repeat Planet imagery we derive repeat glacier velocity fields for example glaciers in the northern and southern hemispheres. We find it especially useful to monitor the ice velocities near calving fronts and simultaneously detect changes of the front, pointing to calving events. We also explore deformation fields over creeping mountain permafrost, so-called rockglaciers. As a second, very promising cryospheric application we suggest monitoring of glacier and permafrost related natural hazards. In cases such as temporary lakes, lake outbursts, landslides, rock avalanches, visual information over remote areas and at high frequencies are crucial for hazard assessment, early warning or disaster management. Based on several examples, we demonstrate that massive micro-satellite constellations such Planet's are exactly able to provide this type of information. As a third promising example, we show how such high-repeat optical satellite data are useful to monitor river ice and related jams and flooding. At certain latitudes, the repeat frequency of the data is even high enough to track river ice floes and thus water velocities.

  13. Monitoring Niger River Floods from satellite Rainfall Estimates : overall skill and rainfall uncertainty propagation.

    Science.gov (United States)

    Gosset, Marielle; Casse, Claire; Peugeot, christophe; boone, aaron; pedinotti, vanessa

    2015-04-01

    Global measurement of rainfall offers new opportunity for hydrological monitoring, especially for some of the largest Tropical river where the rain gauge network is sparse and radar is not available. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of satellite rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them into the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This paper analyses the potential of satellite rainfall products combined with hydrological modeling to monitor the Niger river floods in the city of Niamey, Niger. A dramatic increase of these floods has been observed in the last decades. The study focuses on the 125000 km2 area in the vicinity of Niamey, where local runoff is responsible for the most extreme floods recorded in recent years. Several rainfall products are tested as forcing to the SURFEX-TRIP hydrological simulations. Differences in terms of rainfall amount, number of rainy days, spatial extension of the rainfall events and frequency distribution of the rain rates are found among the products. Their impacts on the simulated outflow is analyzed. The simulations based on the Real time estimates produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some

  14. Monitoring volcanic activity with satellite remote sensing to reduce aviation hazard and mitigate the risk: application to the North Pacific

    Science.gov (United States)

    Webley, P. W.; Dehn, J.

    2012-12-01

    Volcanic activity across the North Pacific (NOPAC) occurs on a daily basis and as such monitoring needs to occur on a 24 hour, 365 days a year basis. The risk to the local population and aviation traffic is too high for this not to happen. Given the size and remoteness of the NOPAC region, satellite remote sensing has become an invaluable tool to monitor the ground activity from the regions volcanoes as well as observe, detect and analyze the volcanic ash clouds that transverse across the Pacific. Here, we describe the satellite data collection, data analysis, real-time alert/alarm systems, observational database and nearly 20-year archive of both automated and manual observations of volcanic activity. We provide examples of where satellite remote sensing has detected precursory activity at volcanoes, prior to the volcanic eruption, as well as different types of eruptive behavior that can be inferred from the time series data. Additionally, we illustrate how the remote sensing data be used to detect volcanic ash in the atmosphere, with some of the pro's and con's to the method as applied to the NOPAC, and how the data can be used with other volcano monitoring techniques, such as seismic monitoring and infrasound, to provide a more complete understanding of a volcanoes behavior. We focus on several large volcanic events across the region, since our archive started in 1993, and show how the system can detect both these large scale events as well as the smaller in size but higher in frequency type events. It's all about how to reduce the risk, improve scenario planning and situational awareness and at the same time providing the best and most reliable hazard assessment from any volcanic activity.

  15. Satellite Remote Sensing Atmospheric Compositions and their Application in Air Quality Monitoring in China

    Science.gov (United States)

    Zhang, P.; Zhang, X. Y.; Bai, W. G.; Wang, W. H.; Huang, F. X.; Li, X. J.; Sun, L.; Wang, G.; Qi, J.; Qiu, H.; Zhang, Y.; van der A, R. J.; Mijling, B.

    2013-01-01

    This paper summarizes the achievements related to atmospheric compositions remote sensing from the bilateral cooperation under the framework of MOST-ESA Dragon Programme. The algorithms to retrieve Aerosol, ozone amount and profile, NO2, SO2, CH4, CO2, etc. have been developed since 2004. Such algorithms are used to process FY-3 series (Chinese second generation polar orbit satellites) observation and ground based FTIR observation. The results are validated with in-situ measurements. Aerosol, total ozone amount shows the very good consistent with the ground measurements. The temporal and spatial characteristics of the important atmospheric compositions, such as aerosol, O3, NO2, SO2, CH4, CO etc., have been analysed from satellite derived products. These works demonstrate the satellite’s capacity on atmospheric composition monitoring, as well as the possible application in the air quality monitoring and climate change research.

  16. Satellite Monitoring Over the Canadian Oil Sands: Highlights from Aura OMI and TES

    Science.gov (United States)

    Shephard, Mark W.; McLinden, Chris; Fioletov, Vitali; Cady-Pereira, Karen E.; Krotkov, Nick A.; Boersma, Folkert; Li, Can; Luo, Ming; Bhartia, P. K.; Joiner, Joanna

    2014-01-01

    Satellite remote sensing provides a unique perspective for air quality monitoring in and around the Canadian Oil Sands as a result of its spatial and temporal coverage. Presented are Aura satellite observations of key pollutants including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ammonia (NH3), methanol (CH3OH), and formic acid (HCOOH) over the Canadian Oil Sands. Some of the highlights include: (i) the evolution of NO2 and SO2 from the Ozone Monitoring Instrument (OMI), including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from 240 km North-South Tropospheric Emission Spectrometer (TES) transects through the oils sands, and (iii) preliminary insights into emissions derived from these observations.

  17. Satellite Monitoring and Characterization of the 2010 Rockslide-Dammed Lake Gojal, North Pakistan

    Science.gov (United States)

    Leonard, G. J.; Kargel, J. S.; Crippen, R. E.; Evans, S. G.; Delaney, K. B.; Schneider, J. F.

    2010-12-01

    applied vegetation indices (NDVI), landcover classifications, and image differencing change detection techniques to obtain reconnaissance level characterizations of lake-flood affected areas, including flooding of agricultural lands. Our successful prediction of lake growth and initial estimates of affected lands highlights the effectiveness of GIS methods applied to modern satellite datasets, and indicates the importance of monitoring natural hazard events with remote sensing, which can provide rapid assessments and augment onsite observations for disaster management support.

  18. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  19. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  20. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  1. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  2. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.;

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study...... is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements...

  3. Scale effects of leaf area index inversion based on environmental and disaster monitoring satellite data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The spatial distribution of sub-pixel components has an impact on retrieval accuracy,and should be accounted for when inverting a three-dimensional adiative transfer model to retrieve leaf area index(LAI).To investigate this effect,we constructed three realistic scenarios with the same LAI values and other properties,except that the simulated plants had different distributions.We implemented the radiosity method to subsequently produce synthetic bidirectional reflectance factor(BRF) datasets based upon these simulated scenes.The inversion was conducted using these data,which showed that spatial distribution affects retrieval accuracy.The inversion was also conducted for LAI based on charge-coupled device(CCD) data from the Environment and Disaster Monitor Satellite(HJ-1),which depicted both forest and drought-resistant crop land cover.This showed that heterogeneity in coarse-resolution remote sensing data is the main error source in LAI inversion.The spatial distribution of global fractal dimension index,which can be used to describe the area of sub-pixel components and their spatial distribution modes,shows good consistency with the coarse resolution LAI inversion error.

  4. Linking morphology to ecosystem structure using satellite for monitoring Wetlands

    Science.gov (United States)

    Filipponi, F.; Valentini, E.; Taramelli, A.; Giulio, S.; Persichillo, M.; D'Alpaos, A.

    2013-12-01

    typologies and cover percent, sediment typology and length of the different branches highlighting the mosaic of spatial pattern of vegetation, sediments and morphology. Then our results support the fact that the most frequent patch sizes, corresponding to the smallest vegetation patches as consistent with a power law relationship, are associated with the highest length values and specific sediments values; as the patch sizes become larger, and thus less frequent, the length next to patches decreases and reaches much lower values in relations to sediments classes. This indicates that at first, the formation of small vegetation patches increases flow resistance and facilitates the formation of new morphology; at the same time, when a threshold size is reached (due to patch growth or merging between adjacent patches), vegetation controls length of the different branches. In the framework of spatial self-organization, this method gives rise to a new approach to the study of landscape-forming processes, taking into account the prominent role of living organisms in shaping Earth's surface, in order to develop new instruments and tools that allow modular variation of spatial and temporal scales of observation (i.e. from local to regional; from seasonal to inter annual) that is mandatory for a valuable implementation of current management and conservation strategies (Integrated Coastal Zone Management).

  5. Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard

    Science.gov (United States)

    Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.

    2017-07-01

    Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.

  6. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    -angiogenic treatment is presented in the first manuscript. In the second and third manuscript, two separate methods of quantifying perfusion, blood volume and vessel permeability are presented. The methods are used to show that drug delivery to a xenografted tumor is plausible and to show possible vascular maturation...... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...... in a transgenic mouse model. The last manuscript presents a new method for in vivo cell labeling. This method could find use in studying the metastatic spread of cancer cells throughout the body....

  7. 基于High-1卫星影像的土地整治遥感监测方法研究与实践%Method and application of remote sensing monitoring in land consolidation based on High-1 satellite image

    Institute of Scientific and Technical Information of China (English)

    张兵; 崔希民; 赵彦博; 袁德宝

    2015-01-01

    Nowadays, China spends approximately 100 billion yuan on land consolidation every year, which has positive effects on both newly-cultivated land and efficiency of land use. However, there are still a lot of problems appearing in the process of land consolidation, for instance, the project funds are not used as what is required, the plans of land consolidation are not carried out completely, and there are even Jerry-built projects and false and concealed accounts. Because of these existing problems, the goals of the land consolidation cannot be achieved as expected. To solve the problems, Ministry of Land and Resources of the People's Republic of China developed and used the monitoring and controlling system of land consolidation project as early as in 2009, which monitors and manages the results of land consolidation all over the country. The procedures are as follows: the local authorities that are in charge of the project management will report the results to the higher authorities after land consolidation, and then the competent department will arrange to check the results on the spot. There are some certain problems, for instance, the distribution of land consolidation is wide and the area is large, yet the amount of samples is limited, therefore, the specific results of land consolidation cannot be obtained thoroughly and the system cannot be applied widely. So, it is necessary and urgent for land resources management sectors (LRMS) to find an effective and reliable technical method, with which the LRMS can monitor and evaluate the project results of land consolidation. Based on the panchromatic images and multi-spectral images with high resolution got by the High-1 satellite and the software tools including ENVI, AutoCAD and ArcGIS, the paper puts forward the complete technical method and operation procedures for land consolidation monitoring and evaluation, and also studies the ways of extracting the information of newly increased farmlands, newly

  8. Satellite image based methods for fuels maps updating

    Science.gov (United States)

    Alonso-Benito, Alfonso; Hernandez-Leal, Pedro A.; Arbelo, Manuel; Gonzalez-Calvo, Alejandro; Moreno-Ruiz, Jose A.; Garcia-Lazaro, Jose R.

    2016-10-01

    Regular updating of fuels maps is important for forest fire management. Nevertheless complex and time consuming field work is usually necessary for this purpose, which prevents a more frequent update. That is why the assessment of the usefulness of satellite data and the development of remote sensing techniques that enable the automatic updating of these maps, is of vital interest. In this work, we have tested the use of the spectral bands of OLI (Operational Land Imager) sensor on board Landsat 8 satellite, for updating the fuels map of El Hierro Island (Spain). From previously digitized map, a set of 200 reference plots for different fuel types was created. A 50% of the plots were randomly used as a training set and the rest were considered for validation. Six supervised and 2 unsupervised classification methods were applied, considering two levels of detail. A first level with only 5 classes (Meadow, Brushwood, Undergrowth canopy cover >50%, Undergrowth canopy cover <15%, and Xeric formations), and the second one containing 19 fuel types. The level 1 classification methods yielded an overall accuracy ranging from 44% for Parellelepided to an 84% for Maximun Likelihood. Meanwhile, level 2 results showed at best, an unacceptable overall accuracy of 34%, which prevents the use of this data for such a detailed characterization. Anyway it has been demonstrated that in some conditions, images of medium spatial resolution, like Landsat 8-OLI, could be a valid tool for an automatic upgrade of fuels maps, minimizing costs and complementing traditional methodologies.

  9. Electrical condition monitoring method for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jr. Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA); Masakowski, Daniel D. (Worcester, MA); Wong, Ching Ping (Duluth, GA); Luo, Shijian (Boise, ID)

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  10. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  11. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas

    Science.gov (United States)

    Hutchison, Keith D.

    The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in

  12. Africa-Wide Monitoring of Small Surface Water Bodies Using Multisource Satellite Data: A Monitoring System for FEWS NET

    Science.gov (United States)

    Velpuri, N. M.; Senay, G. B.; Rowland, J.; Budde, M. E.; Verdin, J. P.

    2015-12-01

    Continental Africa has the largest volume of water stored in wetlands, large lakes, reservoirs and rivers, yet it suffers with problems such as water availability and access. Furthermore, African countries are amongst the most vulnerable to the impact of natural hazards such as droughts and floods. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access is bound to increase. The U.S Geological Survey Famine Early Warning Systems Network (FEWS NET), funded by the U.S. Agency for International Development, has initiated a large-scale project to monitor small to medium surface water bodies in Africa. Under this project, multi-source satellite data and hydrologic modeling techniques are integrated to monitor these water bodies in Africa. First, small water bodies are mapped using satellite data such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat, and high resolution Google Earth imagery. Stream networks and watersheds for each water body are identified using Shuttle Radar Topography Mission (SRTM) digital elevation data. Finally, a hydrologic modeling approach that uses satellite-derived precipitation estimates and evapotranspiration data calculated from global data assimilation system climate parameters is applied to model water levels. This approach has been implemented to monitor nearly 300 small water bodies located in 10 countries in sub-Saharan Africa. Validation of modeled scaled depths with field-installed gauge data in East Africa demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60% of the observed gauge variability with an average RMSE of 22%. Current and historic data (since 2001) on relative water level, precipitation, and evapotranspiration for each water body is made available in near real time. The water point monitoring network

  13. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye

    2016-10-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30 years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and evaluate their applicability for agricultural drought evaluation when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ rainfall measurements across Chile were initially compared to the satellite-based precipitation estimates. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite-based estimates. Nine statistics were used to evaluate the performance of satellite products to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to

  14. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  15. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring

    Science.gov (United States)

    Obregón, A.; Nitsche, H.; Körber, M.; Kreis, A.; Bissolli, P.; Friedrich, K.; Rösner, S.

    2014-05-01

    The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).

  16. Industry leading satellite based GNSS (Global Navigation Satellite System) positioning and monitoring solutions with real-time CORS (Continuously Operating Reference Station) networks

    Science.gov (United States)

    Janousek, Martin

    2010-05-01

    Real-Time CORS (Continuously Operating Reference Station Networks) today are typically GNSS networks for positioning and monitoring purposes. Real-Time networks can consist of a few stations for a local network up to nation- or continental wide networks with several hundred CORS stations. Such networks use wide area modeling of GNSS error sources including ionospheric, tropospheric and satellite orbit correction parameters to produce highest precision and efficiency method of positioning using GNSS. In 1998 Trimble Navigation Ltd. introduced a method of surveying with a non-physical or computed base station, called VRS (Virtual Reference Station). It is the most widely supported method of producing a network solution for precise carrier phase positioning in the industry. Surveying historically required one base as the fixed point of reference, and one or multiple rovers using that point of reference to compute their location by processing a vector result, either in real-time or in a postprocessed sense. Real-time survey is often referred to as RTK, short for real-time kinematic, and as the name suggests the results are in real time and you can move. The power of VRS is in the ability to compute a real-time wide-area solution to the factors that cause single base methods to degrade with distance. Namely, ionospheric and tropospheric modeling, and satellite orbit corrections. This is achieved by the reference network of CORS. A wide scattering of CORS across a state, typically 50-70km in mid-latitudes, creates a ground based sampling which significantly reduces the distance dependent errors that accumulate in the single base-rover relationship described early. Furthermore, GNSS networks can be used for real-time monitoring purposes at various distance range. Trimble Integrity Manager software provides a suite of motion engines designed to detect and quantify any movement in a range of scales from slow, creeping movement like subsidence, through sudden events such as

  17. Electrical condition monitoring method for polymers

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  18. Review: Advances in delta-subsidence research using satellite methods

    Science.gov (United States)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  19. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods

    Science.gov (United States)

    Xu, Qing; Zhang, Hongyuan; Cheng, Yongcun

    2016-06-01

    The massive Ulva (U.) prolifera bloom in the Yellow Sea was first observed and reported in summer of 2008. After that, the green tide event occurred every year and influenced coastal areas of Jiangsu and Shandong provinces of China. Satellite remote sensing plays an important role in monitoring the floating macroalgae. In this paper, U. prolifera patches are detected from quasisynchronous satellite images with different spatial resolution, i.e., Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), HJ-1A/B (China Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting), CCD (Charge-Coupled Device), Landsat 8 OLI (Operational Land Imager), and ENVISAT (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) images. Two comparative experiments are performed to explore the U. prolifera monitoring abilities by different data using detection methods such as NDVI (Normalized Difference Vegetation Index) with different thresholds. Results demonstrate that spatial resolution is an important factor affecting the extracted area of the floating macroalgae. Due to the complexity of Case II sea water characteristics in the Yellow Sea, a fixed threshold NDVI method is not suitable for U. prolifera monitoring. A method with adaptive ability in time and space, e.g., the threshold selection method proposed by Otsu (1979), is needed here to obtain accurate information on the floating macroalgae.

  20. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze

  1. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  2. Validation of Satellite-Derived Land Surface Temperature Products - Methods and Good Practice

    Science.gov (United States)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Biard, J.; Ghent, D.

    2014-12-01

    Land Surface Temperature (LST) is a key variable for surface water and energy budget calculations that can be obtained globally and operationally from satellite observations. LST is used for many applications, including weather forecasting, short-term climate prediction, extreme weather monitoring, and irrigation and water resource management. In order to maximize the usefulness of LST for research and studies it is necessary to know the uncertainty in the LST measurement. Multiple validation methods and activities are necessary to assess LST compliance with the quality specifications of operational users. This work presents four different validation methods that have been widely used to determine the uncertainties in LST products derived from satellite measurements. 1) The temperature based validation method involves comparisons with ground-based measurements of LST. The method is strongly limited by the number and quality of available field stations. 2) Scene-based comparisons involve comparing a new satellite LST product with a heritage LST product. This method is not an absolute validation and satellite LST inter-comparisons alone do not provide an independent validation measurement. 3) The radiance-based validation method does not require ground-based measurements and is usually used for large scale validation effort or for LST products with coarser spatial resolution (> 1km). 4) Time series comparisons are used to detect problems that can occur during the instrument's life, e.g. calibration drift, or unrealistic outliers due to cloud coverage. This study enumerates the sources of errors associated with each method. The four different approaches are complementary and provide different levels of information about the quality of the retrieved LST. The challenges in retrieving the LST from satellite measurements are discussed using results obtained for MODIS and VIIRS. This work contributes to the objective of the Land Product Validation (LPV) sub-group of the

  3. Water-transparency (Secchi Depth) monitoring in the China Sea with the SeaWiFS satellite sensor

    Science.gov (United States)

    He, Xianqiang; Pan, Delu; Mao, Zhihua

    2004-10-01

    Water transparency (Secchi depth) is a basic parameter that describes the optical property of water, and it is a traditional item measured in situ. The traditional method of monitoring water transparency is the in-situ measurement by ship. However, because of its inherent shortcoming, this in situ method can not satisfy the requirement of the large-scale, quick and real-time monitoring of the water transparency. Therefore, it must be combined with the remote sensing technology to fulfill the monitoring of the water transparency. This paper studies the water transparency monitoring in China Sea by using SeaWiFS satellite sensor. First, the inversing algorithm of water transparency is introduced briefly, which based on the radiative transfer theory and bio-optical model of water. Second, the accuracy of the algorithm is validated by using the large-scale in-situ data from the Japan Meteorological Agency (JMA), which covered most of the Northwest Pacific ocean. The result shows the inversing relative error of water transparency is 22.6% by using the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data, and it is even better in the open sea. Third, using this algorithm and SeaWiFS data, a remote sensing product data set of water transparency in China Sea was generated. Finally, we present the analysis of seasonal distribution and fluctuation patterns of water transparency in China Sea by using the generated remote sensing product collection of water transparency.

  4. Developing a sustainable satellite-based environmental monitoring system In Nigeria

    Science.gov (United States)

    Akinyede, J. O.; Adepoju, K. A.; Akinluyi, F. O.; Anifowose, A. Y. B.

    2015-10-01

    Increased anthropogenic activities over the year have remained a major factor of the Earth changing environment. This phenomenon has given rise to a number of environmental degraded sites that characterize the Nigeria's landscape. The human-induced elements include gully erosion, mangrove ecosystems degradation, desertification and deforestation, particularly in the south east, Niger Delta, north east and south west of Nigeria respectively, as well as river flooding/flood plain inundation and land degradation around Kainji lake area. Because of little or no effective management measures, the attendant environmental hazards have been extremely damaging to the infrastructures and socio-economic development of the affected area. Hence, a concerted effort, through integrated and space-based research, is being intensified to manage and monitor the environment in order to restore the stability, goods and services of the environment. This has justified Nigeria's investment in its space programme, especially the launch of NigeriaSat-1, an Earth observation micro-satellite in constellation with five (5) other similar satellites, Alsat-1, China DMC, Bilsat-1, DEMOS and UK DMC belonging to Algeria, China, Turkey, Spain and United Kingdom respectively. The use of data from these satellites, particularly NigeriaSat-1, in conjunction with associated technologies has proved to be very useful in understanding the influence of both natural and human activities on the Nigeria's ecosystems and environment. The results of some researches on specific applications of Nigerian satellites are presented in this paper. Appropriate sustainable land and water resources management in the affected areas, based on Nigeria's satellite data capture and integration, are also discussed.

  5. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-06-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  6. A conceptual method for monitoring locust habitat

    Science.gov (United States)

    Howard, Stephen M.; Loveland, Thomas R.; Ohlen, Donald O.; Moore, Donald G.; Gallo, Kevin P.; Olsson, Jonathon

    1987-01-01

    A procedure to map and monitor vegetation conditions in near-real time was developed at the United States Geological Survey;s Earth Resources Observation Systems Data Center for use in locust control efforts. Meteorological satellite dat were acquired daily for 3 weeks in October and November 1986 over a 1.4-million-square-kilometer study area centered on Botswana in southern Africa. Advanced Very High Resolution Radiometer data were screened to remove cloud-contaminated data and registered to a 1-kilometer geographic base. Each day the normalized difference vegetation index (NDVI) was calculated to determine the presence and relative amounts of green vegetation in the area. Over a 10-day cycle, subsequent dates of NDVI data were composited to fill in data removed by the cloud-screening process. At any pixel location, the maximum NDVI value was retained. At the end of the 10-day cycle, a composite vegetation-greenness map was produced and another cycle started. Greenness-change maps were produced by comparing two 10-day composite greenness images. Automated map production procedures were used to merge the NDVI image data with cartographic data (boundaries, roads, tick marks) digitized from 1:1,000,000-scale operational navigation charts. The vegetation-greenness map shoes the current distribution of vegetation in the region and can be used to locate potential locust breeding area. The change map shows areas where increases and decreases in greenness have occurred between processing cycles. Significant areas of locust damage in remote regions are characterized by an unexpected decrease in greenness. These maps can be used by locust control teams to efficiently target areas for reconnaissance. In general, the procedures and products have utility for resource managers who are required to monitor vegetation resources over large geographic regions.

  7. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain.

    Science.gov (United States)

    Trescott, A; Park, M-H

    2013-01-01

    Lake Champlain is significantly impaired by excess phosphorus loading, requiring frequent lake-wide monitoring for eutrophic conditions and algal blooms. Satellite remote sensing provides regular, synoptic coverage of algal production over large areas with better spatial and temporal resolution compared with in situ monitoring. This study developed two algal production models using Landsat Enhanced Thematic Mapper Plus (ETM(+)) satellite imagery: a single band model and a band ratio model. The models predicted chlorophyll a concentrations to estimate algal cell densities throughout Lake Champlain. Each model was calibrated with in situ data compiled from summer 2006 (July 24 to September 10), and then validated with data for individual days in August 2007 and 2008. Validation results for the final single band and band ratio models produced Nash-Sutcliffe efficiency (NSE) coefficients of 0.65 and 0.66, respectively, confirming satisfactory model performance for both models. Because these models have been validated over multiple days and years, they can be applied for continuous monitoring of the lake.

  8. Using Satellite Data to Build Climate Resilience: A Novel East Africa Drought Monitor

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.

    2016-12-01

    East Africa is affected by recurrent drought. The 2015-2016 El Niño triggered a severe drought across East Africa causing serious impacts to regional water security, health, and livelihoods. Ethiopia was the hardest hit, with the United Nations Office for the Coordination of Humanitarian Affairs calling the recent drought the worst in 50 years. Resources to monitor the severity and progression of droughts are a critical component to disaster risk reduction, but are challenging to implement in regions with sparse data collection networks such as East Africa. Satellite data is used by the United Nations Food and Agriculture Organization Global Information and Early Warning System, the USAID Famine Early Warning System, and the Africa Drought and Flood Monitor. These systems use remotely sensed vegetation, soil moisture, and meteorological data to develop drought indices. However, they do not directly monitor impacts to water resources, which is necessary to appropriately target drought mitigation efforts. The current study combines new radar data from the European Space Agency's Sentinel-1 mission with satellite imagery to perform a retrospective analysis of the impact of the 2015-2016 drought in East Africa on regional surface water. Inland water body extents during the drought are compared to historical trends to identify the most severely impacted areas. The developed tool has the potential to support on-the-ground humanitarian relief efforts and to refine predictions of water scarcity and crop impacts from existing hydrologic models and famine early warning systems.

  9. Newer methods of cardiac output monitoring

    Institute of Scientific and Technical Information of China (English)

    Yatin; Mehta; Dheeraj; Arora

    2014-01-01

    Cardiac output(CO) is the volume of blood ejected by each ventricle per minute and is the product of stroke volume and heart rate. CO can thus be manipulated by alteration in heart rate or rhythm, preload, contractility and afterload. Moreover it gives important information about tissue perfusion and oxygen delivery. CO can be measured by various methods and thermodilution method using pulmonary artery catheter(PAC) is till date considered as gold standard method. Complications associated with PAC led to development of newer methods which are minimally or non-invasive. Newer methods fulfil other properties like continuous and reproducible reading, cost effective, reliable during various physiological states and have fast response time. These methods are validated against the gold standard with good level agreement. In this review we have discussed various newer methods of CO monitoring and their effectiveness in clinical use.

  10. Integrated snow and avalanche monitoring syatem for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    . Different methods have been used for the analysis of the temporal changes in satellite images. Multi-sensor data fusion techniques have been applied to increase the accuracy of classification, and also for extraction of necessary information about characteristics of snow and avalanches and the ground conditions. The results of the analysis of time series of last two winters are reported. The study confirms that significant changes in snow characteristics and wetness are mainly due to large variations in temperature at these altitudes, which contribute towards avalanche activities in early winter. A definite relationship has been observed between snow wetness, altitude and period of the year with respect to the probability of an avalanche occurrence. Snow wetness is found to be inversely proportional to the altitude, whereas probability of an avalanche is directly proportional to the wetness of snow, lying either over thin grass or boulder-covered ground. The results were verified through extensive field measurements. The emphasis has been laid on establishment of a dense network of Automatic Weather Stations (AWS), Upper Air Stations (UAS) and observatories in entire Himalaya; development of GIS based data bases using satellite imageries and other ancillary data for weather, snow and land cover monitoring. Records of past years will provide base information for realistic estimation of the impact of climatic changes and confidence to predict the weather and avalanches in various regions of Himalaya. Key Words: Integrated Monitoring System, Time series multi-sensor/multi-temporal Satellite Imageries, Multi-sensor Data Fusion, Change Detection, Snow characteristics

  11. Integrated snow and avalanche monitoring system for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    . Different methods have been used for the analysis of the temporal changes in satellite images. Multi-sensor data fusion techniques have been applied to increase the accuracy of classification, and also for extraction of necessary information about characteristics of snow and avalanches and the ground conditions. The results of the analysis of time series of last two winters are reported. The study confirms that significant changes in snow characteristics and wetness are mainly due to large variations in temperature at these altitudes, which contribute towards avalanche activities in early winter. A definite relationship has been observed between snow wetness, altitude and period of the year with respect to the probability of an avalanche occurrence. Snow wetness is found to be inversely proportional to the altitude, whereas probability of an avalanche is directly proportional to the wetness of snow, lying either over thin grass or boulder-covered ground. The results were verified through extensive field measurements. The emphasis has been laid on establishment of a dense network of Automatic Weather Stations (AWS), Upper Air Stations (UAS) and observatories in entire Himalaya; development of GIS based data bases using satellite imageries and other ancillary data for weather, snow and land cover monitoring. Records of past years will provide base information for realistic estimation of the impact of climatic changes and confidence to predict the weather and avalanches in various regions of Himalaya. Key Words: Integrated Monitoring System, Time series multi-sensor/multi-temporal Satellite Imageries, Multi-sensor Data Fusion, Change Detection, Snow characteristics

  12. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  13. The Role of Satellite Data for the National Forest Monitoring Systems in the Context of REDD+

    Science.gov (United States)

    Jonckheere, Inge

    2012-04-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. “REDD+” goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification (MRV), FAO supports the countries to develop national forest monitoring systems (NFMS) based on satellite data that allow for credible MRV of REDD+ activities through time. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a multi-user basis, allows countries to adapt it to country needs. With the technical assistance of FAO, INPE and other stakeholders, the countries will set up an autonomous operational satellite forest monitoring systems. A beta version and the methodologies of the system for DRC and PNG are launched in Durban (SA) during COP 17, while Paraguay, Zambia and Viet Nam are in development in 2012.

  14. Validation of Reef-Scale Thermal Stress Satellite Products for Coral Bleaching Monitoring

    Directory of Open Access Journals (Sweden)

    Scott F. Heron

    2016-01-01

    Full Text Available Satellite monitoring of thermal stress on coral reefs has become an essential component of reef management practice around the world. A recent development by the U.S. National Oceanic and Atmospheric Administration’s Coral Reef Watch (NOAA CRW program provides daily global monitoring at 5 km resolution—at or near the scale of most coral reefs. In this paper, we introduce two new monitoring products in the CRW Decision Support System for coral reef management: Regional Virtual Stations, a regional synthesis of thermal stress conditions, and Seven-day Sea Surface Temperature (SST Trend, describing recent changes in temperature at each location. We describe how these products provided information in support of management activities prior to, during and after the 2014 thermal stress event in the Commonwealth of the Northern Mariana Islands (CNMI. Using in situ survey data from this event, we undertake the first quantitative comparison between 5 km satellite monitoring products and coral bleaching observations. Analysis of coral community characteristics, historical temperature conditions and thermal stress revealed a strong influence of coral biodiversity in the patterns of observed bleaching. This resulted in a model based on thermal stress and generic richness that explained 97% of the variance in observed bleaching. These findings illustrate the importance of using local benthic characteristics to interpret the level of impact from thermal stress exposure. In an era of continuing climate change, accurate monitoring of thermal stress and prediction of coral bleaching are essential for stakeholders to direct resources to the most effective management actions to conserve coral reefs.

  15. Oil monitoring methods based on information theory

    Institute of Scientific and Technical Information of China (English)

    XIA Yan-chun; HUO Hua

    2009-01-01

    To evaluate the Wear condition of machines accurately,oil spectrographic entropy,mutual information and ICA analysis methods based on information theory are presented.A full-scale diagnosis utilizing all channels of spectrographic analysis can be obtained.By measuring the complexity and correlativity,the characteristics of wear condition of machines can be shown clearly.The diagnostic quality is improved.The analysis processes of these monitoring methods are given through the explanation of examples.The availability of these methods is validated and further research fields are demonstrated.

  16. Method for monitoring slow dynamics recovery

    Science.gov (United States)

    Haller, Kristian C. E.; Hedberg, Claes M.

    2012-11-01

    Slow Dynamics is a specific material property, which for example is connected to the degree of damage. It is therefore of importance to be able to attain proper measurements of it. Usually it has been monitored by acoustic resonance methods which have very high sensitivity as such. However, because the acoustic wave is acting both as conditioner and as probe, the measurement is affecting the result which leads to a mixing of the fast nonlinear response to the excitation and the slow dynamics material recovery. In this article a method is introduced which, for the first time, removes the fast dynamics from the process and allows the behavior of the slow dynamics to be monitored by itself. The new method has the ability to measure at the shortest possible recovery times, and at very small conditioning strains. For the lowest strains the sound speed increases with strain, while at higher strains a linear decreasing dependence is observed. This is the first method and test that has been able to monitor the true material state recovery process.

  17. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    Science.gov (United States)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  18. Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems

    Science.gov (United States)

    Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph; Voronka, Nestor; Williams, Scott

    2013-01-01

    Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.

  19. The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests

    Directory of Open Access Journals (Sweden)

    Astrid Verhegghen

    2016-11-01

    Full Text Available In this study, the recently launched Sentinel-2 (S2 optical satellite and the active radar Sentinel-1 (S1 satellite supported by active fire data from the MODIS sensor were used to detect and monitor forest fires in the Congo Basin. In the context of a very strong El Niño event, an unprecedented outbreak of fires was observed during the first months of 2016 in open forests formations in the north of the Republic of Congo. The anomalies of the recent fires and meteorological situation compared to historical data show the severity of the drought. Burnt areas mapped by the S1 SAR and S2 Multi Spectral Instrument (MSI sensors highlight that the fires occurred mainly in Marantaceae forests, characterized by open tree canopy cover and an extensive tall herbaceous layer. The maps show that the origin of the fires correlates with accessibility to the forest, suggesting an anthropogenic origin. The combined use of the two independent and fundamentally different satellite systems of S2 and S1 captured an extent of 36,000 ha of burnt areas, with each sensor compensating for the weakness (cloud perturbations for S2, and sensitivity to ground moisture for S1 of the other.

  20. Monitoring the Depth of Anaesthesia Using Fractal Complexity Method

    Science.gov (United States)

    Klonowski, W.; Olejarczyk, E.; Stepien, R.; Jalowiecki, P.; Rudner, R.

    We propose a simple and effective method of characterizing complexity of EEG-signals for monitoring the depth of anaesthesia using Higuchi's fractal dimension method. We demonstrate that the proposed method may compete with the widely used BIS monitoring method.

  1. Influence of satellite alerts on the efficiency of aircraft monitoring of maritime oil pollution in German waters

    Science.gov (United States)

    Helmke, Peer; Baschek, Björn; Hunsänger, Thomas; Kranz, Susanne

    2014-10-01

    For detecting accidental and illegal pollution by mineral oil, the German exclusive economic zone and surrounding waters have been monitored by aircraft operationally for more than 25 years. Aircraft surveillance uses predominantly Side-Looking-Airborne-Radar for visualization of the effect of oil to smoothen capillary waves. A set of near range sensors complements the remote sensing data available for the human operator to classify the detected features as "mineral oil", "natural phenomenon", "other substance" or "unknown" pollution. Today, as an add-on to aerial surveillance, the German Central Command of Maritime Emergencies uses the operational satellite service "CleanSeaNet" provided by the European Maritime Safety Agency: Radar satellite data is analyzed in near real time and alerts of potential pollution are sent out. Shortly after receiving the results, aircraft surveillance flights are started by the 3rd Naval Air Wing and the locations of the satellite alerts are checked. Thus, a combined system of satellite and aerial surveillance is in place. The German Federal Institute of Hydrology, BfG, has access to the data of the pollution events detected during these flights and the corresponding meta-data of flights and satellite images. In this work, a period of two years of this data is analyzed. The probability to detect pollutions is evaluated for (A) flight missions associated with satellite scenes, and (B) additional flights performed independently from satellite scenes. Thus, the influence of satellite alerts on the efficiency of aircraft monitoring is investigated. Coverage and coordination of the monitoring by aircraft and satellite are assessed and implications for the operational monitoring are discussed.

  2. Further Evaluation of a Satellite-based Real-time Global Flood Monitoring System

    Science.gov (United States)

    Wu, H.; Adler, R. F.; Tian, Y.; Hong, Y.; Policelli, F.

    2011-12-01

    A real-time global flood monitoring system (GFMS) driven by Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall was further developed with a relatively more physically based hydrological model. The performance in flood detection of this new version of the GFMS was evaluated against available flood event archives (Wu et al, 2011). This new GFMS is quantitatively evaluated in terms of flood event detection during the TRMM era (1998-2010) using a global retrospective simulation (3-hourly and 1/8 degree spatial resolution) with the TMPA 3B42V6 rainfall. Four methods were explored to define flood events from the model results, including three percentile-based statistic methods and a Log Pearson-III flood frequency curve method. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The impact of dams was detected in the validation statistics. The presence of dams tends to result in more false alarms and false alarm duration. The GFMS statistics for flood durations > 3 days and for areas without dams vary across the four identification methods, but center around a POD of ~ 0.70 and a FAR of ~ 0.65. When both flood events-based categorical verification metrics and flood duration metrics are considered, a method using the 95th percentile runoff depth plus two parameters related to variability and basin size (method 3) may be more suitable for application to our routine, real-time flood calculations. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The new GFMS (operationally available at http://trmm.gsfc.nasa.gov/) improved not only the flood detection performance, but also in the presentation of flood evolution (start, development and recession) in the drainage network. The new GFMS is further evaluated with more quantitative flood properties including flood peak timing, peak stage, peak volumes

  3. Space in environmental diplomacy: Exploring the role of earth observing satellites for monitoring international environmental agreements

    Science.gov (United States)

    Johnston, Shaida Sahami

    This research determines under what conditions, and for what types of environmental treaties, Earth observation (EO) is useful for monitoring international environmental agreements. The research extracts specific monitoring requirements from nine multilateral environmental agreements (MEAs) and explores how satellite EO data can be used to support them. The technical characteristics of the sensor systems and science data products associated with current and planned EO satellites were analyzed and mapped to the MEA requirements, providing a significant step toward linking the EO community with the international treaty community implementing these environmental agreements. The research results include a listing and analysis of the positive and negative factors that influence whether EO data are useful for monitoring and verifying MEAs, analysis of existing international EO institutions, and a set of key findings describing the conditions under which EO data are most useful to the treaties. The use of EO data in various treaty phases is also analyzed, drawing the conclusion that EO data are most useful for monitoring and treaty refinement and not very useful for compliance verification or enforcement. MEAs manage compliance using governance structures that offer expertise and resources to assist states that are reported to be in non-compliance, rather than enforce compliance with sanctions or other punishments. In addition, the temporal and spatial resolution of the current and planned fleet of satellites does not provide the required detail needed for MEA verification. Identifying specific treaty implementation deficiencies requires additional information that cannot be gathered from EO data; on-site economic, social, and environmental conditions are critical elements in assessing compliance verification. But for environmental monitoring and assessments, MEA effectiveness reviews, and national reporting required for each MEA, EO data are very useful. They provide

  4. NEW METHOD OF FORMATION DESIGN FOR BOTH GMTI AND INSAR USING DISTRIBUTED SATELLITES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This letter proposes a method for designing a specific formation of satellites where the flying motion only exists in a circle orbit plane of the reference satellite, which means that the orbit eccentricity is zero. This method combines the Hill equation, the Kepler equation, and the geometrical meaning of orbit elements. It creates the redundancy condition to simplify the deducing process, utilizes multiple conditions to solve the orbit elements for the satellite formation, and obtains the analytical relationship of the orbit elements for the formation satellites with the formation parameters and the orbit elements of the reference satellite. Using these formulations, the orbit elements and formation parameters for the formation satellites can be solved for the given orbit elements of the reference satellite. The letter describes the proposed double-ellipse formation for both GMTI and InSAR, and the validity of the formation is demonstrated via simulation.

  5. Title: Rice Crop Monitoring by Fusing Microwave and Optical Satellite Data

    Science.gov (United States)

    Oyoshi, K.; Takeuchi, W.; LE Toan, T.; Sobue, S.

    2015-12-01

    Rapid population and economic growth, and the increase in extreme weather events, are destabilizing global food security. In Asia, rice is a staple cereal crop, and the continent accounts for about 90% of global rice production and consumption. The Group on Earth Observations (GEO) Global Agricultural Monitoring (GLAM) was launched in 2011 to utilize remote sensing tools to enhance crop production projections in order to promote food security and foster sustainable economic growth. Asia---‒Rice Crop Estimation & Monitoring (Asia---‒RiCE) is a component of GEOGLAM, and aims to use remote sensing tools to develop rice---‒related information such as maps of paddy fields, rice growing conditions, yield, and production. However, in some regions in Southeast Asia, rice is planted and harvested more than twice a year, and the crop calendar is quite complicated. In addition, rice is mainly cultivated in the rainy season, and the high density of cloud cover during that season limits the observations that can be made from space using only optical sensors. In contrast, Synthetic Aperture Radar (SAR) is a robust tool because it penetrates cloud cover; however, the revisit frequency of a single SAR satellite is limited, making it difficult to capture the complicated rice crop calendar in Asia. In this research, time---‒series SAR data were fused with optical data to monitor rice crops in Southeast Asia with complicated crop calendars. In addition, a microwave radiometer that also penetrates clouds and has a high revisit frequency but a coarse spatial resolution (greater than several kilometers), was used. The integrated use of a large variety of satellite data enables us to periodically monitor surface conditions such as water inundation, transplanting, and rice crop growth and harvesting, which in turn enables us to examine rice planted areas, rice crop calendars, and rice growing conditions in order to estimate rice production.

  6. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    Science.gov (United States)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab

  7. Statistical methods for environmental pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, R.O.

    1987-01-01

    The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Some statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.

  8. Statistical Methods for Environmental Pollution Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Richard O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1987-01-01

    The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Some statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.

  9. Development of satellite-based drought monitoring and warning system in Asian Pacific countries

    Science.gov (United States)

    Takeuchi, W.; Oyoshi, K.; Muraki, Y.

    2013-12-01

    This research focuses on a development of satellite-based drought monitoring warning system in Asian Pacific countries. Drought condition of cropland is evaluated by using Keeth-Byram Drought Index (KBDI) computed from rainfall measurements with GSMaP product, land surface temperature by MTSAT product and vegetation phenology by MODIS NDVI product at daily basis. The derived information is disseminated as a system for an application of space based technology (SBT) in the implementation of the Core Agriculture Support Program. The benefit of this system are to develop satellite-based drought monitoring and early warning system (DMEWS) for Asian Pacific counties using freely available data, and to develop capacity of policy makers in those countries to apply the developed system in policy making. A series of training program has been carried out in 2013 to officers and researchers of ministry of agriculture and relevant agencies in Greater Mekong Subregion countries including Cambodia, China, Myanmar, Laos, Thailand and Vietnam. This system is running as fully operational and can be accessed at http://webgms.iis.u-tokyo.ac.jp/DMEWS/.

  10. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  11. The evolution of satellite-monitored radio tags for large whales: One laboratory's experience

    Science.gov (United States)

    Mate, Bruce; Mesecar, Roderick; Lagerquist, Barbara

    2007-02-01

    Despite several centuries of whaling and directed research, there are only a few whale stocks whose year-round whereabouts are reasonably well known. For the vast majority of depleted populations, the link between seasonal feeding and breeding concentrations remains unknown. This lack of information on range, seasonal distribution, stock structure, and migration routes makes it difficult to design and implement effective conservation measures to promote recovery. The use of such information would have been valuable to develop stock-specific quotas for whaling, but now it may be even more important for recovery of depleted stocks and identifying anthropogenic threats throughout a depleted stock's range. Building upon the preliminary findings of Discovery tags and more recent photo identification studies, satellite-monitored radio tags are now providing range and seasonal distribution information for many stocks of depleted large whales. These parameters are important to better estimate population abundance, characterize habitats, identify threats to recovery, and design effective protection measures when needed. This paper traces one laboratory's experience with the development of satellite-monitored radio tag technology for large whales, including attachment mechanisms and delivery systems, in the hope that others will profit from our successes and our mistakes. Selected examples are used to demonstrate how such tags contribute to new insights about whales' habitats, migrations, behaviour, and management.

  12. An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2006-01-01

    Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.

  13. Fine Resolution Air Quality Monitoring from a Small Satellite: CHRIS/PROBA

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2008-11-01

    Full Text Available Current remote sensing techniques fail to address the task of air quality monitoring over complex regions where multiple pollution sources produce high spatial variability. This is due to a lack of suitable satellite-sensor combinations and appropriate aerosol optical thickness (AOT retrieval algorithms. The new generation of small satellites, with their lower costs and greater flexibility has the potential to address this problem, with customised platform-sensor combinations dedicated to monitoring single complex regions or mega-cities. This paper demonstrates the ability of the European Space Agency’s small satellite sensor CHRIS/PROBA to provide reliable AOT estimates at a spatially detailed level over Hong Kong, using a modified version of the dense dark vegetation (DDV algorithm devised for MODIS. Since CHRIS has no middle-IR band such as the MODIS 2,100 nm band which is transparent to fine aerosols, the longest waveband of CHRIS, the 1,019 nm band was used to approximate surface reflectance, by the subtraction of an offset derived from synchronous field reflectance spectra. Aerosol reflectance in the blue and red bands was then obtained from the strong empirical relationship observed between the CHRIS 1,019 nm, and the blue and red bands respectively. AOT retrievals for three different dates were shown to be reliable, when compared with AERONET and Microtops II sunphotometers, and a Lidar, as well as air quality data at ground stations. The AOT images exhibited considerable spatial variability over the 11 x 11km image area and were able to indicate both local and long distance sources.

  14. CROP YIELD AND CO2 FIXATION MONITORING IN ASIA USING A PHOTOSYNTHETICSTERILITY MODEL WITH SATELLITES AND METEOROLOGICAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Daijiro Kaneko [Department of Civil and Environmental Engineering, Matsue National College of Technology, Matsue (Japan); Toshiro Kumakura [Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka (Japan); Peng Yang [Laboratory of Resources Remote Sensing and Digital Agriculture, Ministry of Agriculture, Beijing (China)

    2008-09-30

    This study is intended to develop a model for estimating carbon dioxide (CO{sub 2}) fixation in the carbon cycle and for monitoring grain yields using a photosynthetic-sterility model, which integrates solar radiation and air temperature effects on photosynthesis, along with grain-filling from heading to ripening. Grain production monitoring would support orderly crisis management to maintain food security in Asia, which is facing climate fluctuation through this century of global warming. The author improved a photosynthesis-and-sterility model to compute both the crop yield and crop situation index CSI, which gives a percentage of rice yields compared to normal annual production. The model calculates photosynthesis rates including biomass effects, lowtemperature sterility, and high-temperature injury by incorporating solar radiation, effective air temperature, the normalized difference vegetation index NDVI, and the effect of temperature on photosynthesis by grain plant leaves. A decision-tree method classifies the distribution of crop fields in Asia using MODIS fundamental landcover and SPOT VEGETATION data, which include the Normalized Vegetation index (NDVI) and Land Surface Water Index (LSWI). This study provides daily distributions of the photosynthesis rate, which is the CO2 fixation in Asian areas combined with the land-cover distribution, the Japanese geostationary meteorological satellite (GMS), and meteorological re-analysis data by National Centers for Environmental Prediction (NCEP). The method is based on routine observation data, enabling automated monitoring of crop yields.

  15. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States

    Science.gov (United States)

    Yi, Hang; Wen, Lianxing

    2016-01-01

    We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.

  16. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    Science.gov (United States)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    Leptospirosis became recently a major public-health problem that is closely related with the environment (Nature review Oct 2009, Vol 7, pp 736-747). This disease originates from zoonotic pathogens associated with asymptomatic rodent carriers. Unfortunately, it effects human populations via various direct and indirect routes. This disease can claim many victims with large outbreaks during natural disasters or floods occurring during seasonal conditions. The severity of the illness ranges from subclinical infection to a fulminating fatal disease. Improved water quality monitoring techniques based on biosensor, optical, micro-fluidic and information technologies are leading to radical changes in our ability to perceive and monitor the aquatic environment. Biosensors are capable of providing specific, high spatial resolution information and allow unattended operation that will be particularly useful for water borne related diseases. Current research on biosensors is leading to solutions to problems for several contaminants that were previously irresolvable due to their high degree of complexity. Networking of the sensors enables sensitive monitoring systems allowing real-time monitoring of pollutants and facilitates data transmission between the measurement points and central control stations for continuous surveillance and to provide an early warning capability. The application of intelligent biosensor networks for water quality monitoring and detection of localized sources of pollution are discussed together with the setting up of a methodology that utilizes images from satellite coupled with in-situ sensors for anticipating the zones of potential evolution of this disease and assessing the population at risk. Environmental and climatic conditions that are associated the outbreaks are described and the rational of combining earth observations coupled with advanced in-situ biosensors is explained. The implementation of sensor networks for data collection and exposure

  17. Satellite attitude prediction by multiple time scales method

    Science.gov (United States)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  18. Satellite data acquisition requirements for monitoring of permafrost in polar regions

    Science.gov (United States)

    Bartsch, Annett

    2015-04-01

    Requirements for space based monitoring of permafrost features had been already defined within the IGOS Cryosphere Theme Report at the start of the IPY in 2007 (IGOS, 2007). In 2012 the Polar Space Task Group (PSTG, http://www.wmo.int/pages/prog/sat/pstg_en.php) has been established as the coordinating body of space agencies, in particular the Space Task Group (STG), for space -based observations of Polar Regions after the International Polar Year (IPY) and under the auspices of the World Meteorological Organization's (WMO) Executive Council Panel of Experts on Polar Observations Research and Services (EC-PORS). The PSTG identified the need to review the requirements for permafrost monitoring and to update these requirements as necessary in 2013. Relevant surveys with focus on satellite data are already available from the ESA DUE Permafrost User requirements survey (2009), the United States National Research Council (2014) and the ESA - CliC - IPA - GTN -P workshop in February 2014. These reports have been reviewed and specific needs discussed within the community. Acquisition requirements for monitoring of especially terrain changes (incl. rock glaciers and coastal erosion) and lakes (extent, ice properties etc.) with respect to current satellite missions have been specified. Of special interest for these applications are SAR missions. Current acquisition strategies for space borne SAR data only partially cover polar permafrost regions and some of the longterm in-situ measurement sites. Many stations are located in the proximity to coastal areas and glaciers which to some extent may allow joint usage by different cryosphere applications but requirements may deviate. The results of the discussion are presented in this paper.

  19. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  20. Monitoring of the orbital position of a geostationary satellite by the spatially separated reception of signals of digital satellite television

    Science.gov (United States)

    Kaliuzny, M. P.; Bushuev, F. I.; Sibiriakova, Ye. S.; Shulga, O. V.; Shakun, L. S.; Bezrukovs, V.; Kulishenko, V. F.; Moskalenko, S. S.; Malynovsky, Ye. V.; Balagura, O. A.

    2017-02-01

    The results of the determination of the geostationary satellite "Eutelsat-13B" orbital position obtained during 2015-2016 years using European stations' network for reception of DVB-S signals from the satellite are presented. The network consists of five stations located in Ukraine and Latvia. The stations are equipped with a radio engineering complex developed by the RI "MAO". The measured parameter is a time difference of arrival (TDOA) of the DVB-S signals to the stations of the network. The errors of TDOA determination and satellite coordinates, obtained using a numerical model of satellite motion, are equal ±2.6 m and ±35 m respectively. Software implementation of the numerical model is taken from the free space dynamics library OREKIT.

  1. Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Directory of Open Access Journals (Sweden)

    T. Lacava

    2005-01-01

    Full Text Available Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV. Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit, flying aboard NOAA (National Oceanic and Atmospheric Administration satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI, developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail

  2. An ASIFT-Based Local Registration Method for Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiangjun Wang

    2015-05-01

    Full Text Available Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion. Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE and better distribution of feature points.

  3. Method of Time-Delay Calculating and Correcting to Control Spin-Stabilized Satellite Synchronously

    Institute of Scientific and Technical Information of China (English)

    YangTianshe; LiJisheng; HuangYongxuan

    2005-01-01

    The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.

  4. Biodiversity of Fungi : Inventory and Monitoring Methods

    Science.gov (United States)

    Mueller, G.M.; Bills, G.F.; Foster, M.S.

    2004-01-01

    Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. An wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. Fungi are among the most important organisms in the world; they play vital roles in ecosystem functions and have wide-ranging effects, both positive and negative, on humans and human-related activities. There are about 1.5 million species of fungi. The combination of fungal species and abundances in an ecosystem are often used as indicators of ecosystem health and as indicators of the effects of pollution and of different management and use plans. Because of their significance, it is important that these organisms be monitored. This book is the first comprehensive treatment of fungal inventory and monitoring, including standardized sampling protocols as well as information on study design, sample preservation, and data analysis.

  5. A Method for Estimating BeiDou Inter-frequency Satellite Clock Bias

    Directory of Open Access Journals (Sweden)

    LI Haojun

    2016-02-01

    Full Text Available A new method for estimating the BeiDou inter-frequency satellite clock bias is proposed, considering the shortage of the current methods. The constant and variable parts of the inter-frequency satellite clock bias are considered in the new method. The data from 10 observation stations are processed to validate the new method. The characterizations of the BeiDou inter-frequency satellite clock bias are also analyzed using the computed results. The results of the BeiDou inter-frequency satellite clock bias indicate that it is stable in the short term. The estimated BeiDou inter-frequency satellite clock bias results are molded. The model results show that the 10 parameters of model for each satellite can express the BeiDou inter-frequency satellite clock bias well and the accuracy reaches cm level. When the model parameters of the first day are used to compute the BeiDou inter-frequency satellite clock bias of the second day, the accuracy also reaches cm level. Based on the stability and modeling, a strategy for the BeiDou satellite clock service is presented to provide the reference of our BeiDou.

  6. A Satellite Based Method for Wetland Inundation Mapping

    Science.gov (United States)

    Di Vittorio, C.; Georgakakos, A. P.

    2016-12-01

    Hydrologic models of wetlands enable hydrologists and water resources managers to appreciate the environmental and societal roles of wetlands and manage them in ways that preserve their integrity and sustain their valuable services. However, wetland model reliability and accuracy are often unsatisfactory due to the complexity of the underlying processes and the lack of adequate in-situ data. In this research, we demonstrate how MODIS satellite imagery can be used to characterize wetland flooding over time and to support the development of more reliable wetland models. We apply this method to the Sudd, a seasonal wetland in South Sudan that is part of the Nile River Basin. The database consists of 16 years of 8-day composite ground surface reflectance data with a 500 m spatial resolution downloaded from Earth Explorer. After masking poor quality pixels, monthly mean NDWI and NDVI values were extracted. Based on literature and personal accounts describing the Sudd as well as Google Earth imagery, a set of ground truth locations were identified for each land class and monthly distributions of the indices were derived. The indices were then combined in a unique way and statistics of the new distributions were used to classify land types present in the full area of interest. Subsequently, annual statistics were derived from the same indices and used to identify pixels that undergo flooding as well as the timing and duration of flooding for each year (2000-2015). An independent set of ground truth locations were selected for method validation. The combined indices demonstrate high land classification accuracy and outperform the individual indices as well as other existing land classification algorithms. The derived monthly inundation series agrees well with literature and anecdotal observations. This information is currently being used to develop wetland models as part of a comprehensive modeling system for the Nile River Basin. The new method is general and can be used

  7. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    Science.gov (United States)

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  8. Efforts in assimilating Indian satellite data in the NGFS and monitoring of their quality

    Science.gov (United States)

    Prasad, V. S.; Singh, Sanjeev Kumar

    2016-05-01

    Megha-Tropiques (MT) is an Indo-French Joint Satellite Mission, launched on 12 October 2011. MT-SAPHIR is a sounding instrument with 6 channels near the absorption band of water vapor at 183 GHz, for studying the water cycle and energy exchanges in the tropics. The main objective of this mission is to understand the life cycle of convective systems that influence the tropical weather and climate and their role in associated energy and moisture budget of the atmosphere in tropical regions. India also has a prestigious space programme and has launched the INSAT-3D satellite on 26 July 2013 which has an atmospheric sounder for the first time along with improved VHRR imager. NCMRWF (National Centre for Medium Range Weather Forecasting) is regularly receiving these new datasets and also making changes to its Global Data Assimilation Forecasting (GDAF) system from time-to-time to assimilate these new datasets. A well planned strategy involving various steps such as monitoring of data quality, development of observation operator and quality control procedures, and finally then studying its impact on forecasts is developed to include new observations in global data analysis system. By employing this strategy observations having positive impact on forecast quality such as MT-SAPHIR, and INSAT-3D Clear Sky Radiance (CSR) products are identified and being assimilated in the Global Data Assimilation and Forecasting (GDAF) system.

  9. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Drews, A.; Lorenz, E.; Betcke, J.; Heinemann, D. [Oldenburg University, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg (Germany); de Keizer, A.C.; van Sark, W.G.J.H.M. [University of Utrecht, Copernicus Institute, Department of Science, Technology, and Society, Heidelberglaan 2, 3584 CH Utrecht (Netherlands); Beyer, H.G. [University of Applied Sciences Magdeburg-Stendal (FH), Institute of Electrical Engineering, Breitscheidstr. 2, 39114 Magdeburg (Germany); Heydenreich, W.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Stettler, S.; Toggweiler, P. [Enecolo AG, Lindhofstr. 52, 8617 Moenchaltorf (Switzerland); Bofinger, S.; Schneider, M.; Heilscher, G. [Meteocontrol GmbH, Spicherer Strasse 48, 86157 Augsburg (Germany)

    2007-04-15

    Small grid-connected photovoltaic systems up to 5 kW{sub p} are often not monitored because advanced surveillance systems are not economical. Hence, some system failures which lead to partial energy losses stay unnoticed for a long time. Even a failure that results in a larger energy deficit can be difficult to detect by PV laymen due to the fluctuating energy yields. Within the EU project PVSAT-2, a fully automated performance check has been developed to assure maximum energy yields and to optimize system maintenance for small grid-connected PV systems. The aim is the early detection of system malfunctions and changing operating conditions to prevent energy and subsequent financial losses for the operator. The developed procedure is based on satellite-derived solar irradiance information that replaces on-site measurements. In conjunction with a simulation model the expected energy yield of a PV system is calculated. In case of the occurrence of a defined difference between the simulated and actual energy yield, an automated failure detection routine searches for the most probable failure sources and notifies the operator. This paper describes the individual components of the developed procedure - the satellite-derived irradiance, the used PV simulation model, and the principles of the automated failure detection routine. Moreover, it presents results of an 8-months test phase with 100 PV systems in three European countries. (author)

  10. A Multi-Satellite Approach for Water Storage Monitoring in an Arid Watershed

    Directory of Open Access Journals (Sweden)

    Dawit T. Ghebreyesus

    2016-07-01

    Full Text Available The objective of this study was to use satellite imagery to monitor the water budget of Al Ain region in the United Arab Emirates (UAE. Inflows and outflows were estimated and the trend of water storage variation in the study area was examined from 2005 to 2014. Evapotranspiration was estimated using the simplified Penman-Monteith equation. Landsat images were used to determine the extent of agricultural and green areas. Time series of gravity recovery and climate experiment (GRACE observations over the study area were used to assess the inferred water storage variation from satellite data. The change of storage inferred from the Water Budget Equation showed a decreasing trend at an average rate of 2.57 Mm3 annually. Moreover, GRACE readings showed a decreasing trend at a rate of 0.35 cm of water depth annually. Mann-Kendal, a non-parametric trend test, proved the presence of significant negative trends in both time series at a 5% significance level. A two-month lag resulted in a better agreement (R2 = 0.55 between the change in water storage and GRACE anomalies within the study area. These results suggest that water storage in the study area is being depleted significantly. Moreover, the potential of remote sensing in water resource management, especially in remote and arid areas, was demonstrated.

  11. An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration

    Directory of Open Access Journals (Sweden)

    Michal Heliasz

    2011-08-01

    Full Text Available We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  12. An optical sensor network for vegetation phenology monitoring and satellite data calibration.

    Science.gov (United States)

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  13. A radiation belt monitor for the High Energy Transient Experiment Satellite

    Science.gov (United States)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-01-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  14. Use of global navigation satellite systems for monitoring deformations of water-development works

    Energy Technology Data Exchange (ETDEWEB)

    Kaftan, V. I. [Russian Academy of Sciences, Geophysical Center (Russian Federation); Ustinov, A. V. [JSC Institut Gidropreoekt (Russian Federation)

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  15. Satellite Monitoring for Early Warning and Triggering Disaster Risk Financing in Uganda

    Science.gov (United States)

    Nakalembe, C. L.; Owor, M.

    2016-12-01

    Natural disasters typically occur with little warning and can have grave and long-lasting negative consequences especially for populations fully dependent on rainfed agriculture. Disaster risk financing (DRF) aims to scale up alternative livelihoods such as Labour Intensive Public Works (LIPW) when a disaster hits to minimize the likely impacts on communities. In data-rich regions triggering DRF or crop insurances payouts can be easily implemented e.g in the case of agriculture, yield losses due to drought can be measured directly. This is constrained in Uganda, because seasonal/annual production data are scarce due to the subsistence and smallholder nature of agriculture in addition to low capacity for data collection and analysis in the country. Satellite remote sensing based indices, in particular the Normalized Difference Vegetation Index (NDVI), provides an objective and dependable solution to this challenge. Using MODIS satellite imagery provided through the GLAM East-Africa portal (Global Agricultural Monitoring system adapted for East-Africa) for obtaining NDVI time-series in near real-time, the Office of the Prime Minister of Uganda (OPM) is designing an operational crop conditions monitoring system in support of its recently initiated DRF Project, under the Third Northern Uganda Social Action Fund (NUSAF 2). The basis for triggering the DRF mechanism under this project is the deviation from the long-term NDVI (NDVI Anomaly data) within the growing season beyond a defined threshold. The NDVI data that are preprocessed in the GLAM system offer spatially explicit information on vegetation and crop conditions forming an adequate base for assessing generalized growing season conditions and enabling the quick implementation of DRF using transparent and objective criteria. The system and criteria serve also as an early-warning mechanism as the NDVI anomaly approaches the triggering threshold allowing time for planning and implementing LIPW projects.

  16. Satellite Remote Sensing Analysis to Monitor Desertification Processes in Central Plateau of Mexico

    Science.gov (United States)

    Becerril, R.; González Sosa, E.; Diaz-Delgado, C.; Mastachi-Loza, C. A.; Hernández-Tellez, M.

    2013-05-01

    Desertification is defined as land degradation in arid, semi-arid and sub-humid areas due to climatic variations and human activities. Therefore there is a need to monitor the desertification process in the spatiotemporal scale in order to develop strategies to fight against desertification (Wu and Ci, 2002). In this sense, data provided by remote sensing is an important source for spatial and temporal information, which allows monitoring changes in the environment at low cost and high effectiveness. In Mexico, drylands hold 65% of the area, with about 1,280,494 km2 (UNESCO, 2010), where is located 46% of the national population (SEMARNAT, 2008). Given these facts, there is interest in monitoring the degradation of these lands, especially in Mexico because no specific studies have identified trends and progress of desertification in the country so far. However, it has been considered land degradation as an indicator of desertification process. Thus, it has been determined that 42% of soils in Mexico present some degradation degree. The aim of this study was to evaluate the spatial and temporal dynamics of desertification for 1993, 2000 and 2011 in the semiarid central plateau in Mexico based on demographic, climatic and satellite data. It took into consideration: 1) the Anthropogenic Impact Index (HII), based on the spatial population distribution and its influence on the use of resources and 2) the Aridity Index (AI), calculated with meteorological station records for annual rainfall and potential evapotranspiration. Mosaics were made with Landsat TM scenes; considering they are a data source that allows evaluate surface processes regionally and with high spectral resolution. With satellite information five indices were estimated to assess the vegetation and soil conditions: Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Weighted Difference Vegetation Index (WDVI), Grain Size Index (GSI) and Bare Soil Index (BSI). The rates

  17. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  18. Data eye monitor method and apparatus

    Science.gov (United States)

    Gara, Alan G [Mount Kisco, NY; Marcella, James A [Rochester, MN; Ohmacht, Martin [Yorktown Heights, NY

    2012-01-31

    An apparatus and method for providing a data eye monitor. The data eye monitor apparatus utilizes an inverter/latch string circuit and a set of latches to save the data eye for providing an infinite persistent data eye. In operation, incoming read data signals are adjusted in the first stage individually and latched to provide the read data to the requesting unit. The data is also simultaneously fed into a balanced XOR tree to combine the transitions of all incoming read data signals into a single signal. This signal is passed along a delay chain and tapped at constant intervals. The tap points are fed into latches, capturing the transitions at a delay element interval resolution. Using XORs, differences between adjacent taps and therefore transitions are detected. The eye is defined by segments that show no transitions over a series of samples. The eye size and position can be used to readjust the delay of incoming signals and/or to control environment parameters like voltage, clock speed and temperature.

  19. Pomino: An Improved Satellite NO2 Product for the Ozone Monitoring Instrument

    Science.gov (United States)

    Lin, J.; Martin, R.; Boersma, K. F.; Sneep, M.; Stammes, P.; Spurr, R. J. D.; Wang, P.; Van Roozendael, M.; Clemer, K.; Irie, H.

    2014-12-01

    Tropospheric NO2 columns retrieved from satellite instruments are useful to infer NOx pollution, NOx emissions and atmospheric chemistry. Current satellite products are subject to limitations in assumptions of aerosol optical effects, surface reflectance anisotropy, vertical profiles of NO2, and/or cloud optical properties. Here we develop an improved Peking University Ozone Monitoring Instrument NO2 product (POMINO) for China, complementing the popular DONIMO v2 product. POMINO explicitly accounts for aerosol optical effects, angular dependence of surface reflectance, and dynamically varying atmospheric profiles of air pressure, air temperature and NO2 at a high horizontal resolution (50 km). Prior to the NO2 retrieval, we retrieve cloud top pressure and cloud fraction using consistent assumptions about the states of the atmosphere and surface. For our NO2 and cloud retrievals, we adopt from KNMI (via www.temis.nl) the SCDs of tropospheric NO2 (DOMINO v2) and O2-O2 dimer (OMCLDO2 v1.1.1.3), the TOA reflectance, and some other ancillary information. We develop the AMFv6 code for radiative transfer calculation, based on LIDORT v3.6. Radiative transfer is calculated explicitly for each satellite pixel with no need to use a look-up table. The calculation of AMFv6 is parallelized and is sufficiently fast so that one day of retrieval with global coverage would only take about three hours using 16 CPU cores. POMINO is consistent with MAX-DOAS NO2 data in China, with a R2of 0.96 as compared to the value at 0.72 for DOMINO v2. The improved consistency is related to explicit pixel-by-pixel radiative transfer calculation (instead of using a look-up table), consistent treatments of all parameters in retrieving clouds and NO2, explicit consideration of aerosol optical effects (rather than adjusting 'effective' clouds to implicitly account for aerosols), and consideration of surface reflectance anisotropy. Additional analyses are being conducted on the daily, seasonal and

  20. Enlisting qualitative methods to improve environmental monitoring

    Science.gov (United States)

    Environmental monitoring tracks ecological changes in order to support environmental management decisions. Monitoring design is driven by natural scientists, usually lacking a formal social science basis. However, human perspectives drive environmental resource decisions, with ...

  1. Preliminary design of pseudo satellites: Basic methods and feasibility criteria

    Science.gov (United States)

    Klimenko, N. N.

    2016-12-01

    Analytical models of weight and energy balances, aerodynamic models, and solar irradiance models to perform pseudo-satellite preliminary design are presented. Feasibility criteria are determined in accordance with the aim of preliminary design dependent on mission scenario and type of payload.

  2. Environmental monitoring in peat bog areas by change detection methods

    Science.gov (United States)

    Michel, Ulrich; Mildes, Wiebke

    2016-10-01

    Remote sensing image analysis systems and geographic information systems (GIS) show great promise for the integration of a wide variety of spatial information supporting tasks such as urban and regional planning, natural resource management, agricultural studies and topographic or thematic mapping. Current and future remote sensing programs are based on a variety of sensors that will provide timely and repetitive multisensor earth observation on a global scale. GIS offer efficient tools for handling, manipulating, analyzing and presenting spatial data that are required for sensible decision making in various areas. The Environmental Monitoring project may serve as a convincing example of the operational use of integrated GIS/remote sensing technologies. The overall goal of the project is to assess the capabilities of satellite remote sensing for the analysis of land use changes, especially in moor areas. These areas are recognized as areas crucial to the mission of the Department of Environment and, therefore, to be placed under an extended level of protection. It is of critical importance, however, to have accurate and current information about the ecological and economic state of these sensitive areas. In selected pasture and moor areas, methods for multisensor data fusion have being developed and tested. The results of this testing show which techniques are useful for pasture and moor monitoring at an operational level. A hierarchical method is used for extracting bog land classes with respect to the environmental protection goals. A highly accurate classification of the following classes was accomplished: deciduous- and mixed forest, coniferous forest, water, very wet areas, meadowland/farmland with vegetation, meadowland/farmland with partly vegetation, meadowland/ farmland without vegetation, peat quarrying with maximum of 50% vegetation, de- and regeneration stages. In addition, a change detection analysis is performed in comparison with the existing

  3. a Comparison of Empirical and Inteligent Methods for Dust Detection Using Modis Satellite Data

    Science.gov (United States)

    Shahrisvand, M.; Akhoondzadeh, M.

    2013-09-01

    Nowadays, dust storm in one of the most important natural hazards which is considered as a national concern in scientific communities. This paper considers the capabilities of some classical and intelligent methods for dust detection from satellite imagery around the Middle East region. In the study of dust detection, MODIS images have been a good candidate due to their suitable spectral and temporal resolution. In this study, physical-based and intelligent methods including decision tree, ANN (Artificial Neural Network) and SVM (Support Vector Machine) have been applied to detect dust storms. Among the mentioned approaches, in this paper, SVM method has been implemented for the first time in domain of dust detection studies. Finally, AOD (Aerosol Optical Depth) images, which are one the referenced standard products of OMI (Ozone Monitoring Instrument) sensor, have been used to assess the accuracy of all the implemented methods. Since the SVM method can distinguish dust storm over lands and oceans simultaneously, therefore the accuracy of SVM method is achieved better than the other applied approaches. As a conclusion, this paper shows that SVM can be a powerful tool for production of dust images with remarkable accuracy in comparison with AOT (Aerosol Optical Thickness) product of NASA.

  4. A COMPARISON OF EMPIRICAL AND INTELIGENT METHODS FOR DUST DETECTION USING MODIS SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    M. Shahrisvand

    2013-09-01

    Full Text Available Nowadays, dust storm in one of the most important natural hazards which is considered as a national concern in scientific communities. This paper considers the capabilities of some classical and intelligent methods for dust detection from satellite imagery around the Middle East region. In the study of dust detection, MODIS images have been a good candidate due to their suitable spectral and temporal resolution. In this study, physical-based and intelligent methods including decision tree, ANN (Artificial Neural Network and SVM (Support Vector Machine have been applied to detect dust storms. Among the mentioned approaches, in this paper, SVM method has been implemented for the first time in domain of dust detection studies. Finally, AOD (Aerosol Optical Depth images, which are one the referenced standard products of OMI (Ozone Monitoring Instrument sensor, have been used to assess the accuracy of all the implemented methods. Since the SVM method can distinguish dust storm over lands and oceans simultaneously, therefore the accuracy of SVM method is achieved better than the other applied approaches. As a conclusion, this paper shows that SVM can be a powerful tool for production of dust images with remarkable accuracy in comparison with AOT (Aerosol Optical Thickness product of NASA.

  5. Assimilation of GMS-5 satellite winds using nudging method with MM5

    Institute of Scientific and Technical Information of China (English)

    GAO Shanhong; WU Zengmao; YANG Bo

    2006-01-01

    With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.

  6. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    CAI ChengLin; LI XiaoHui; WU HaiTao

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including satellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem-eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseudo-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  7. Monitoring Cataract Surgical Outcomes: 'Hand Written' Registration Method

    Directory of Open Access Journals (Sweden)

    Colin Cook

    2002-01-01

    Full Text Available The purpose of this hand written method of monitoring cataract surgery outcomes is to provide a practical method, assisting cataract surgeons and programme managers to monitor qualitatively the results of their cataract surgery. Such monitoring is the key to improving the quality and results of our cataract surgery.The hand registered method is quick, simple, and friendly to use!

  8. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    Science.gov (United States)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  9. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Nourbakhsh, S. M; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  10. Monitoring and characterizing natural hazards with satellite InSAR imagery

    Science.gov (United States)

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel

    2010-01-01

    Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.

  11. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  12. Frequency based detection and monitoring of small scale explosive activity by comparing satellite and ground based infrared observations at Stromboli Volcano, Italy

    Science.gov (United States)

    Worden, Anna; Dehn, Jonathan; Ripepe, Maurizio; Donne, Dario Delle

    2014-08-01

    Thermal activity is a common precursor to explosive volcanic activity. The ability to use these thermal precursors to monitor the volcano and obtain early warning about upcoming activity is beneficial for both human safety and infrastructure security. By using a very reliably active volcano, Stromboli Volcano in Italy, a method has been developed and tested to look at changes in the frequency of small scale explosive activity and how this activity changes prior to larger, ash producing explosive events. Thermal camera footage was used to designate parameters for typical explosions at Stromboli (size of spatter field, cooling rate, frequency of explosions) and this information was applied to characterize explosions in satellite imagery. Satellite data from The National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS) and US/Japan designed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for numerous periods in 2002 to 2009 were analyzed for thermal features which were used to calculate an estimate of the level of activity during the given time period. The results at Stromboli showed a high level of small scale explosions which stop completely prior to large paroxysmal eruptive episodes. This activity also corresponds well to seismic and infrasonic records at Stromboli, indicating that this thermal infrared monitoring method may be used in conjunction with other detection methods where available, and also indicates that it may be a useful method for volcano monitoring when other methods (e.g. seismic instrumentation, infrasound arrays, etc.) are not available.

  13. Optical satellite data volcano monitoring: a multi-sensor rapid response system

    Science.gov (United States)

    Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan

    2009-01-01

    In this chapter, the use of satellite remote sensing to monitor active geological processes is described. Specifically, threats posed by volcanic eruptions are briefly outlined, and essential monitoring requirements are discussed. As an application example, a collaborative, multi-agency operational volcano monitoring system in the north Pacific is highlighted with a focus on the 2007 eruption of Kliuchevskoi volcano, Russia. The data from this system have been used since 2004 to detect the onset of volcanic activity, support the emergency response to large eruptions, and assess the volcanic products produced following the eruption. The overall utility of such integrative assessments is also summarized. The work described in this chapter was originally funded through two National Aeronautics and Space Administration (NASA) Earth System Science research grants that focused on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. A skilled team of volcanologists, geologists, satellite tasking experts, satellite ground system experts, system engineers and software developers collaborated to accomplish the objectives. The first project, Automation of the ASTER Emergency Data Acquisition Protocol for Scientific Analysis, Disaster Monitoring, and Preparedness, established the original collaborative research and monitoring program between the University of Pittsburgh (UP), the Alaska Volcano Observatory (AVO), the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, and affiliates on the ASTER Science Team at the Jet Propulsion Laboratory (JPL) as well as associates at the Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan. This grant, completed in 2008, also allowed for detailed volcanic analyses and data validation during three separate summer field campaigns to Kamchatka Russia. The second project, Expansion and synergistic use

  14. A method of autonomous orbit determination for satellite using star sensor

    Institute of Scientific and Technical Information of China (English)

    MA; Jianbo; XU; Jin

    2005-01-01

    In this paper a method of autonomous orbit determination using star sensor is studied. By building relatively consummate dynamical models which simulate attitude motion of satellite and observation from satellite to background stars, the simulant computation of this method is executed, and it is shown that the method of autonomous orbit determination is feasible. Academic and calculation analyses have been done for the relation between the direction of star sensor with respect to satellite-body coordinate system and the accuracy of autonomous orbit determination.

  15. Nightfire method to track volcanic eruptions from multispectral satellite images

    Science.gov (United States)

    Trifonov, Grigory; Zhizhin, Mikhail; Melnikov, Dmitry

    2016-04-01

    This work presents the first results of an application of the Nightfire hotspot algorithm towards volcano activity detection. Nightfire algorithm have been developed to play along with a Suomi-NPP polar satellite launched in 2011, which has a new generation multispectral VIIRS thermal sensor on board, to detect gas flares related to the upstream and downstream production of oil and natural gas. Simultaneously using of nighttime data in SWIR, MWIR, and LWIR sensor bands the algorithm is able to estimate the hotspot temperature, size and radiant heat. Four years of non-filtered observations have been accumulated in a spatio-temporal detection database, which currently totals 125 GB in size. The first part of this work presents results of retrospective cross-match of the detection database with the publicly available observed eruptions databases. The second part discusses how an approximate 3D shape of a lava lake could be modeled based on the apparent source size and satellite zenith angle. The third part presents the results of fusion Landsat-8 and Himawari-8 satellites data with the VIIRS Nightfire for several active volcanoes.

  16. An Automatic Cloud Detection Method for ZY-3 Satellite

    Directory of Open Access Journals (Sweden)

    CHEN Zhenwei

    2015-03-01

    Full Text Available Automatic cloud detection for optical satellite remote sensing images is a significant step in the production system of satellite products. For the browse images cataloged by ZY-3 satellite, the tree discriminate structure is adopted to carry out cloud detection. The image was divided into sub-images and their features were extracted to perform classification between clouds and grounds. However, due to the high complexity of clouds and surfaces and the low resolution of browse images, the traditional classification algorithms based on image features are of great limitations. In view of the problem, a prior enhancement processing to original sub-images before classification was put forward in this paper to widen the texture difference between clouds and surfaces. Afterwards, with the secondary moment and first difference of the images, the feature vectors were extended in multi-scale space, and then the cloud proportion in the image was estimated through comprehensive analysis. The presented cloud detection algorithm has already been applied to the ZY-3 application system project, and the practical experiment results indicate that this algorithm is capable of promoting the accuracy of cloud detection significantly.

  17. An inversion method for retrieving soil moisture information from satellite altimetry observations

    Science.gov (United States)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i

  18. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    Science.gov (United States)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  19. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  20. Satellite Monitoring of Cyanobacterial Harmful Algal Bloom Frequency in Recreational Waters and Drinking Water Sources

    Science.gov (United States)

    Clark, John M.; Schaeffer, Blake A.; Darling, John A.; Urquhart, Erin A.; Johnston, John M.; Ignatius, Amber R.; Myer, Mark H.; Loftin, Keith A.; Werdell, P. Jeremy; Stumpf, Richard P.

    2017-01-01

    Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and sh kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking water sources because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection. In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentinel-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs greater than 1 ha in area. Results from this study show that 5.6% of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7% of waterbodies were resolvable when a three by three pixel (3 x 3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3 x 3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organizations (WHO) high threshold for risk of 100,000 cells m/L. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1%) and Grand Lake St. Marys, OH (83%) had the highest observed bloom frequencies per region. The method presented here may indicate

  1. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  2. Improvements on Near Real Time Detection of Volcanic Ash Emissions for Emergency Monitoring with Limited Satellite Bands

    Directory of Open Access Journals (Sweden)

    Torge Steensen

    2015-03-01

    Full Text Available Quantifying volcanic ash emissions syneruptively is an important task for the global aviation community. However, due to the near real time nature of volcano monitoring, many parameters important for accurate ash mass estimates cannot be obtained easily. Even when using the best possible estimates of those parameters, uncertainties associated with the ash masses remain high, especially if the satellite data is only available in the traditional 10.8 and 12.0 μm bands. To counteract this limitation, we developed a quantitative comparison between the ash extents in satellite and model data. The focus is the manual cloud edge definition based on the available satellite reverse absorption (RA data as well as other knowledge like pilot reports or ground-based observations followed by an application of the Volcanic Ash Retrieval on the defined subset with an RA threshold of 0 K. This manual aspect, although subjective to the experience of the observer, can show a significant improvement as it provides the ability to highlight ash that otherwise would be obscured by meteorological clouds or, by passing over different surfaces with unaccounted temperatures, might be lost entirely and thus remains undetectable for an automated satellite approach. We show comparisons to Volcanic Ash Transport and Dispersion models and outline a quantitative match as well as percentages of overestimates based on satellite or dispersion model data which can be converted into a level of reliability for near real time volcano monitoring

  3. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    Science.gov (United States)

    Lasaponara, R.

    2009-04-01

    Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining

  4. Thinking on Standardization of Satellite Meteorology and Space Weather Monitoring Early Waming

    Institute of Scientific and Technical Information of China (English)

    Sun Anlai; Zhang Jiashen; Le Guiming

    2011-01-01

    Introduction After 40 years of development,China's satellite meteorological service has made remarkable achievements.Fengyun satellites have realized the transformation from trial operation to full operational service and achieved a coordinated space-based earth cbservation system with polar and geostationary meteorological satellites.

  5. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.B.; Barnard, J.W.; Bird, G.A. [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  6. Winter fog monitoring over south asia by using multi satellite data

    Science.gov (United States)

    Yasmin, Naila

    2016-07-01

    committing The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots of increasing atmospheric pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially a major havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 terra Product and MODIS Aerosol Product and OMI Absorbing Aerosol Index. The datasets used in this study includes MODIS Corrected Reflectance RGBs are used to analyse fog situation over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are characterised using aerosol type land. In order to study the variation of ground based observations from satellite data MODIS, CALIPSO, AERONET and high volume air Sampler were used. Objectives of the study was to map the spatial extent of fog as well as monitor its causes and similarly to analyze the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo Gangetic Plans (IGP). Current studies show an increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over south Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET

  7. Near-Real-Time Detection and Monitoring of Intense Pyroconvection from Geostationary Satellites

    Science.gov (United States)

    Peterson, D. A.; Fromm, M. D.; Hyer, E. J.; Surratt, M. L.; Solbrig, J. E.; Campbell, J. R.

    2016-12-01

    Intense fire-triggered thunderstorms, known as pyrocumulonimbus (or pyroCb), can alter fire behavior, influence smoke plume trajectories, and hinder fire suppression efforts. PyroCb are also known for injecting a significant quantity of aerosol mass into the upper-troposphere and lower-stratosphere (UTLS). Near-real-time (NRT) detection and monitoring of pyroCb is highly desirable for a variety of forecasting and research applications. The Naval Research Laboratory (NRL) recently developed the first automated NRT pyroCb detection algorithm for geostationary satellite sensors. The algorithm uses multispectral infrared observations to isolate deep convective clouds with the distinct microphysical signal of pyroCb. Application of this algorithm to 88 intense wildfires observed during the 2013 fire season in western North America resulted in detection of individual intense events, pyroCb embedded within traditional convection, and multiple, short-lived pulses of activity. Comparisons with a community inventory indicate that this algorithm captures the majority of pyroCb. The primary limitation of the current system is that pyroCb anvils can be small relative to satellite pixel size, especially in in regions with large viewing angles. The algorithm is also sensitive to some false positives from traditional convection that either ingests smoke or exhibits extreme updraft velocities. This algorithm has been automated using the GeoIPS processing system developed at NRL, which produces a variety of imagery products and statistical output for rapid analysis of potential pyroCb events. NRT application of this algorithm has been extended to the majority of regions worldwide known to have a high frequency of pyroCb occurrence. This involves a constellation comprised of GOES-East, GOES-West, and Himawari-8. Imagery is posted immediately to an NRL-maintained web page. Alerts are generated by the system and disseminated via email. This detection system also has potential to serve

  8. Wireless sensor systems and methods, and methods of monitoring structures

    Science.gov (United States)

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  9. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    Science.gov (United States)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  10. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  11. Blood monitoring systems and methods thereof

    Science.gov (United States)

    Mir, Jose (Inventor); Zander, Dennis (Inventor)

    2012-01-01

    A blood monitoring system is capable of monitoring the blood of a subject in vivo. The blood monitoring system comprises: 1) an array of movable microneedle micromachined within associated wells; 2) array of motion actuators able to move each needle in and out of their associated wells; 3) array of microvalves associated with each microneedle able to control the flow of air around the microneedle; 4) an array of chemical sensors inserted into patient by movable microneedles; 5) an array of inductors able to measure chemical concentration in the vicinity of inserted chemical sensors; 6) conducting vias that provide timed actuating signal signals from a control system to each motion actuator; 7) conducting vias that transmit signal produced by array of chemical sensors to the control system for processing, although the blood monitoring system can comprise other numbers and types of elements in other configurations.

  12. OPTIMIZATION METHODS FOR HYDROECOLOGICAL MONITORING SYSTEMS

    OpenAIRE

    Inna Pivovarova

    2016-01-01

    The paper describes current approaches to the rational distribution of monitoring stations. A short review and the organization of the system of hydro-geological observations in different countries are presented. On the basis of real data we propose a solution to the problem of how to calculate the average area per one hydrological station, which is the main indicator of the efficiency and performance of the monitoring system in general. We conclude that a comprehensive approach to the monito...

  13. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa

    Science.gov (United States)

    Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe

    2017-05-01

    Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.

  14. Satellite Observations of Groundwater Storage Variations and Their Application for Water Security Monitoring

    Science.gov (United States)

    Rodell, M.; Famiglietti, J. S.; Li, B.; Kumar, S.; Reager, J. T., II

    2015-12-01

    Fresh water demand is steadily increasing around the world due to population growth, economic development, and people's desire for a "western" lifestyle and diet. Where surface water availability is not sufficient or consistent, groundwater is often the resource of choice for agriculture, industry, and municipal and domestic uses. However, unlike lake levels, aquifer levels are unseen and are not easily measured. This can create the illusion of an infinite water source and impede efforts to monitor and conserve groundwater. Moreover, even where depth-to-water measurements do exist, they often are not digitized, centralized, and accessible. The GRACE satellites are a partial solution to this problem, enabling space-based estimates of groundwater variability at regional scales that are not limited by political boundaries. Here we discuss emerging trends in groundwater storage around the world based on GRACE observations and how they can be combined with other information in order attribute these apparent trends and support sub-regional scale analyses of changing groundwater availability.

  15. Monitoring carbon monoxide pollution over the largest ten cities in the US using satellite observations

    Science.gov (United States)

    Zheng, B.; de Beurs, K.; Owsley, B.; Krehbiel, C. P.; Henebry, G. M.

    2015-12-01

    Carbon monoxide (CO) is one of the several air pollutants that are largely produced by anthropogenic activities in urban areas as a result of incomplete combustion of carbon-containing fuels. Long-term satellite data can monitor spatial and temporal changes in CO globally. Here we investigated spatial, vertical, and temporal changes in CO concentrations over the largest ten US metropolitan statistical areas (MSAs) using Version 6 MOPITT TIR-only CO retrievals. The 15-year average of MOPITT Surface CO concentrations over urban areas were highest (388 ppbv) over New York City and lowest (151 ppbv) over Miami. The influence of cities on elevated CO levels extends well beyond the immediate urban area. The CO seasonal profiles above the surface show distinct seasonality with peaks March-April and troughs September-October. However, larger cities show a lack of CO seasonality near the surface. We applied the nonparametric Seasonal Kendall (SK) trend test to the CO time series. Results revealed significant decreasing trends in CO concentration, with stronger trends in the lower atmosphere (>700 hPa) than in the mid-troposphere (500-700 hPa). Our results demonstrate the strong influence of local urban emissions on (near-) surface CO concentrations. Decreasing urban CO over the past 15 years reflects improved urban metabolism through improved energy efficiency, and increasing use of alternative transportation and zero-emission vehicles.

  16. Satellite cloud and precipitation property retrievals for climate monitoring and hydrological applications

    Science.gov (United States)

    Wolters, E. L. A.

    2012-03-01

    This thesis presents the retrieval, evaluation, and application of cloud physical property datasets (cloud phase, cloud particle effective radius, and precipitation occurrence and intensity) obtained from Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectance measurements using the Cloud Physical Properties (CPP) retrieval algorithm. In Chapter 3 it is shown that the CPP cloud-phase retrieval algorithm has sufficient accuracy (West Africa. During the afternoon, precipitation occurrence frequency over dry soils becomes significantly higher than over wet soils, whereas for precipitation intensity no significant difference is discerned. The study demonstrates that the combination of satellite-based soil moisture and precipitation observations can be helpful in improving the understanding of the land surface-precipitation interaction over tropical areas. The thesis concludes with a number of recommendations on future algorithm improvements and potential research applications. For both cloud phase and precipitation properties, extension of the algorithm to include nighttime observations would be desirable to enable detailed studies on the full diurnal cycle. Further, the SEVIRI High-Resolution Visible (HRV) channel could be incorporated to correct retrieved cloud physical properties for broken and inhomogeneous cloud cases. Finally, the accurate cloud phase and precipitation datasets combined with the high SEVIRI spatial and temporal sampling resolution enables possibilities for detailed research on climate monitoring, nowcasting applications, evaluation of cloud schemes in climate models, studies on land surface-precipitation interactions (with a special focus on the diurnal cycle), and assimilation of the datasets in weather and climate models

  17. Monitoring the hydrologic and vegetation dynamics of arid land with satellite remote sensing and mathematic modeling

    Science.gov (United States)

    Zhan, Xiwu; Gao, Wei; Pan, Xiaoling; Ma, Yingjun

    2003-07-01

    Terrestrial ecosystems, in which carbon is retained in live biomass, play an important role in the global carbon cycling. Among these ecological systems, vegetation and soils in deserts and semi deserts control significant proportions in the total carbon stocks on the land surface and the carbon fluxes between the land surface and the atmosphere (IPCC special report: Land Use, Land Use Change and Forestry, June 2000). Therefore, accurate assessment of the carbon stocks and fluxes of the desert and semi desert areas at regional scales is required in global carbon cycle studies. In addition, vegetative ecosystem in semi-arid and arid land is strongly dependent on the water resources. Monitoring the hydrologic processes of the land is thus also required. This work explores the methodology for the sequential continuous estimation of the carbon stocks, CO2 flux, evapotranspiration, and sensible heat fluxes over desert and semidesert area using data from the Jornada desert in New Mexico, USA. A CO2 and energy flux coupled model is used to estimate CO2, water vapor and sensible heat fluxes over the desert area. The model is driven by the observed meteorological data. Its input land surface parameters are derived from satellite images. Simulated energy fluxes are validated for specific sites with eddy covariance observations. Based on the output of spatially distributed CO2 fluxes, carbon accumulations over the desert area during a period of time is calculated and the contribution of the desert ecosystem to the atmospheric carbon pool is discussed.

  18. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    Science.gov (United States)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  19. Sentinel-3 Satellite Applications In The Monitoring Of The Active Forest Fires

    Science.gov (United States)

    Calle, A.; Gonzalez-Alonso, F.

    2013-12-01

    FRP (Fire Radiative Power) is the magnitude associated to the thermal radiance which explains the ecological effects of active fire; it is the component of the chemical power released from burning vegetation and emitted as radiation during the process of combustion. In this paper, a discussion of the procedures for active fire FRP is presented: The Dozier method, the MODIS (Moderate Resolution Imaging Spectroradiometer) fire detection algorithm and semi-empirical relation-ship based on previous studies of BIRD (Bi-spectral InfraRed Detection) satellite. These procedures, described above, are applied to simulated data by a radiative transfer model, based on Sentinel-3/SLSTR spectral characteristics in order to analyze the impact of atmospheric conditions on FRP estimations.

  20. Monitoring the Water Quality of Lake Koronia Using Long Time-Series of Multispectral Satellite Images

    Science.gov (United States)

    Perivolioti, Triantafyllia-Maria; Mouratidis, Antonios; Doxani, Georgia; Bobori, Dimitra

    2016-08-01

    In this study, a comprehensive 30-year (1984-2016) water quality parameter database for lake Koronia - one of the most important Ramsar wetlands of Greece - was compiled from Landsat imagery. The reliability of the data was evaluated by comparing water Quality Element (QE) values computed from Landsat data against in-situ data. Water quality algorithms developed from previous studies, specifically for the determination of Water Temperature, pH, Transparency/Secchi Disk Depth (SDD), Chlorophyll a and Conductivity, were applied to Landsat images. In addition, Water Depth, as well as the distribution of floating vegetation and cyanobacterial blooms were mapped. The performed comprehensive analysis posed certain questions, regarding the applicability of single empirical models across multi- temporal, multi-sensor datasets, towards the accurate prediction of key water quality indicators for shallow inland systems. This assessment demonstrates that satellite imagery can provide an accurate method for obtaining comprehensive spatial and temporal coverage of key water quality characteristics.

  1. Satellite remote sensing applications for surface soil moisture monitoring: A review

    Institute of Scientific and Technical Information of China (English)

    Lingli WANG; John J.QU

    2009-01-01

    Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/ atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques,each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical,thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

  2. Body monitoring and imaging apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    McEwan, T.E.

    1998-06-16

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator. 13 figs.

  3. Body monitoring and imaging apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    McEwan, T.E.

    1996-11-12

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. 12 figs.

  4. Body monitoring and imaging apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator.

  5. Body monitoring and imaging apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung.

  6. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  7. OPTIMIZATION METHODS FOR HYDROECOLOGICAL MONITORING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Inna Pivovarova

    2016-09-01

    Full Text Available The paper describes current approaches to the rational distribution of monitoring stations. A short review and the organization of the system of hydro-geological observations in different countries are presented. On the basis of real data we propose a solution to the problem of how to calculate the average area per one hydrological station, which is the main indicator of the efficiency and performance of the monitoring system in general. We conclude that a comprehensive approach to the monitoring system organization is important, because only hydrometric and hydrochemical activities coordinated in time provide possibilities needed to analyse the underline causes of the observed pollutants content dynamics in water bodies in the long term.

  8. A method of using commercial virtual satellite image to check the pattern painting spot effect

    Science.gov (United States)

    Wang, Zheng-gang; Kang, Qing; Shen, Zhi-qiang; Cui, Chang-bin

    2014-02-01

    A method of using commercial virtual satellite image to check the pattern painting spot effect contrast with the satellite images before painting and after painting have been discussed. Using a housetop as the testing platform analyses and discusses the factors' influence such as resolution of satellite image, spot size and color of pattern painting spot and pattern painting camouflage method choosing to the plan implement. The pattern painting design and spot size used in the testing has been ensured, and housetop pattern painting has been painted. Finally, the small spot pattern painting camouflage effect of engineering using upon painting pattern size, color and texture have been checked, contrasting with the satellite image before painting and after painting.

  9. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...

  10. HJ-1A And HJ-1B Small Satellite Constellation For Environment And Disaster Monitoring

    Institute of Scientific and Technical Information of China (English)

    Bai Zhaoguang

    2009-01-01

    @@ HJ-1A and HJ-1B small satellites were launched atop a LM-2C/SMA on September 6, 2008 from Taiyuan Satellite Launch Center. The satellites began to transmit back images from September 8 and the constellation formed on October 13. After 5 months of orbit testing and operationevaluation, China's first optical satelliteconstellation passed its performancereview and was delivered to the Ministryof Civil Affairs and the Ministry ofEnvironmental Protection by ChinaAerospace Science and Technology Corporation and China Satellite Launch6 Tracking Control General.

  11. Monitoring Strategies for REDD+: Integrating Field, Airborne, and Satellite Observations of Amazon Forests

    Science.gov (United States)

    Morton, Douglas; Souza, Carlos, Jr.; Souza, Carlos, Jr.; Keller, Michael

    2012-01-01

    Large-scale tropical forest monitoring efforts in support of REDD+ (Reducing Emissions from Deforestation and forest Degradation plus enhancing forest carbon stocks) confront a range of challenges. REDD+ activities typically have short reporting time scales, diverse data needs, and low tolerance for uncertainties. Meeting these challenges will require innovative use of remote sensing data, including integrating data at different spatial and temporal resolutions. The global scientific community is engaged in developing, evaluating, and applying new methods for regional to global scale forest monitoring. Pilot REDD+ activities are underway across the tropics with support from a range of national and international groups, including SilvaCarbon, an interagency effort to coordinate US expertise on forest monitoring and resource management. Early actions on REDD+ have exposed some of the inherent tradeoffs that arise from the use of incomplete or inaccurate data to quantify forest area changes and related carbon emissions. Here, we summarize recent advances in forest monitoring to identify and target the main sources of uncertainty in estimates of forest area changes, aboveground carbon stocks, and Amazon forest carbon emissions.

  12. CBERS-2B Brazilian remote sensing satellite to help to monitor the Bolivia-Brazil gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Hernandes, Gilberto Luis Sanches [TBG Transportadora Brasileira Gasoduto Bolivia-Brasil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper presents the results of CBERS-2B' Brazilian Remote Sensing Satellite to help to monitor the Bolivia-Brazil Gas Pipeline. The CBERS-2B is the third satellite launched in 2007 by the CBERS Program (China-Brazil Earth Resources Satellite) and the innovation was the HRC camera that produces high resolution images. It will be possible to obtain one complete coverage of the country every 130 days. In this study, 2 images from different parts of the Bolivia- Brazil Gas Pipeline were selected. Image processing involved the geometric registration of CBERS-2B satellite images with airborne images, contrast stretch transform and pseudo color. The analysis of satellite and airborne images in a GIS software to detect third party encroachment was effective to detect native vegetation removal, street construction, growth of urban areas, farming and residential/industrial land development. Very young, the CBERS-2B is a good promise to help to inspect the areas along the pipelines. (author)

  13. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells

    Directory of Open Access Journals (Sweden)

    Baquero-Perez Belinda

    2012-06-01

    Full Text Available Abstract Background Current methods of isolation of muscle satellite cells from different animal species are highly variable making inter-species comparisons problematic. This variation mainly stems from the use of different proteolytic enzymes to release the satellite cells from the muscle tissue (sometimes a single enzyme is used but often a combination of enzymes is preferred and the different extracellular matrix proteins used to coat culture ware. In addition, isolation of satellite cells is frequently laborious and sometimes may require pre-plating of the cell preparation on uncoated flasks or Percoll centrifugation to remove contaminating fibroblasts. The methodology employed to isolate and culture satellite cells in vitro can critically determine the fusion of myoblasts into multi-nucleated myotubes. These terminally differentiated myotubes resemble mature myofibres in the muscle tissue in vivo, therefore optimal fusion is a keystone of in vitro muscle culture. Hence, a simple method of muscle satellite cell isolation and culture of different vertebrate species that can result in a high fusion rate is highly desirable. Results We demonstrate here a relatively simple and rapid method of isolating highly enriched muscle satellite cells from different avian and mammalian species. In brief, muscle tissue was mechanically dissociated, digested with a single enzyme (pronase, triturated with a 10-ml pipette, filtered and directly plated onto collagen coated flasks. Following this method and after optimization of the cell culture conditions, excellent fusion rates were achieved in the duck, chicken, horse and cow (with more than 50% cell fusion, and to a lesser extent pig, pointing to pronase as a highly suitable enzyme to release satellite cells from muscle tissue. Conclusions Our simplified method presents a quick and simple alternative to isolating highly enriched muscle satellite cell cultures which can subsequently rapidly differentiate

  14. The Method and Key Technology of Dynamic RS-GIS Environment Monitoring

    Science.gov (United States)

    Chen, Jianping; Xiang, Jie; Tarolli, Paolo; Lai, Zili

    2016-04-01

    Demographic growth, socio-economic development and urbanization have resulted in excessive exploitation and exerted increasing pressure on limited resources and the fragile ecological environment in China. There is an urgent need for theory and technology to achieve the comprehensive evaluation of environment. Remote sensing is one of the most important technology to monitor and evaluate environment. This study summed up dynamic RS (Remote Sensing)-GIS (Geographic Information System) environment monitoring theory, and established a dynamic monitoring system, adopting comprehensive methods of multi-source, multi-scale and multi-temporal remote sensing data acquisition. A software system is developed based on RS-GIS analysis method to support the whole dynamic monitoring and evaluation theory. The main work and results obtained are as follows: 1)Summarized the evaluation theory of dynamic RS-GIS environment monitoring, using remote sensing technology as the main method to monitor environment; 2) established an advanced space-air-ground digital terrain data acquisition and processing technology (advanced satellite constellations, airborne and terrestrial laser scanner, low-cost Structure from Motion (SfM), photogrammetry, Unmanned Aerial Vehicle (UAV) and ground camera surveys); 3) Deeply study the application of quantitative digital terrain analysis in the assessment of environment, which successfully position geological disaster information and automatically extracted information; 4) Developed the RESEE software to support the whole dynamic monitoring and evaluation theory based on 4D-GIS; 5) A demonstration study of the dynamic monitoring environment is carried out in Beijing Miyun Iron Mine. Results show that the space-air-ground integrated and dynamic RS-GIS environment monitoring method and key technology can realize the positioning and quantitative monitoring the environment problem, and realize the risk assessment of the geological hazard.

  15. Method and apparatus for monitoring machine performance

    Science.gov (United States)

    Smith, Stephen F.; Castleberry, Kimberly N.

    1996-01-01

    Machine operating conditions can be monitored by analyzing, in either the time or frequency domain, the spectral components of the motor current. Changes in the electric background noise, induced by mechanical variations in the machine, are correlated to changes in the operating parameters of the machine.

  16. Monitoring urban impervious surface area change using China-Brazil Earth Resources Satellites and HJ-1 remote sensing images

    Science.gov (United States)

    Du, Peijun; Xia, Junshi; Feng, Li

    2015-01-01

    Impervious surface area (ISA) plays an important role in monitoring urbanization and related environmental changes, and has become a hotspot in urban and environmental studies. Xuzhou City, located in northwest Jiangsu Province, China, is chosen as the study area, and two scenes of China-Brazil Earth Resources Satellites images and one scene of HJ-1 image are employed to estimate ISA percentage and analyze the change trend from 2001 to 2009. Using a linear spectral mixture model (LSMM) and nonlinear backpropagation neural network (BPNN) method, all pixels are decomposed to derive four fraction images representing the abundance of four endmembers: vegetation, high-albedo objects, low-albedo objects, and soil. The ISA percentage is then derived by the combination of high- and low-albedo fraction images after removing the influence of water. Some high spatial resolution images are selected to validate the ISA estimation results, and the experimental results indicate that the accuracy of BPNN is higher than LSMM. By comparing the urban ISA abundances derived by BPNN from three dates, it is found that the ISA of Xuzhou City has increased rapidly from 2001 to 2009, especially in the northeast and southeast regions, corresponding to the urban planning scheme and fast urbanization. Compared to other medium remote sensing images, the revisit cycle of HJ-1 multispectral image is only two days, demonstrating the potential of such data for ISA extraction in urbanization, disaster, and other related applications.

  17. Satellite and in-situ monitoring of urban air pollution in relation with children's asthma

    Science.gov (United States)

    Dida, Mariana R.; Zoran, Maria A.

    2013-10-01

    Urban air pollution and especially aerosols have significant negative health effects on urban population, of which children are most exposed for the rapid increase of asthma disease. An allergic reaction to different allergens is a major contributor to asthma in urban children, but new research suggests that the allergies are just one part of a more complex story. Very early exposure to certain components of air pollution can increase the risk of developing of different allergies by age 7. The epidemiological research on the mutagenic effects of airborne particulate matter pointed their capability to reach deep lung regions, being vehicles of toxic substances. The current study presents a spatio-temporal analysis of the aerosol concentrations in relation with meteorological parameters in two size fractions (PM10 and PM2.5) and possible health effects in Bucharest metropolitan area. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data of particle matter PM2.5 and PM10 concentrations have been used to qualitatively assess distribution of aerosols in the greater metropolitan are of Bucharest comparative with some other little towns in Romania during 2010- 2011 period. It was found that PM2.5 and PM10 aerosols exhibit their highest concentration mostly in the central part of the towns, mainly due to road traffic as well as in the industrialized parts outside of city's centre. Pediatric asthma can be managed through medications prescribed by a healthcare provider, but the most important aspect is to avoid urban locations with high air pollution concentrations of air particles and allergens.

  18. Satellite Air Quality Monitoring Before, During and After the Beijing 2008 Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M. R.; Krotkov, N. A.; Pickering, K. E.; Streets, D. G.; Gleason, J. F.; Gille, J. C.

    2009-12-01

    In 2001, Beijing, China was awarded the hosting rights to the 2008 Olympic and Paralympic Games. Since then, the government has gradually implemented pollution emission control strategies to improve Beijing's air quality in preparation for both games. Long-term industrial and short-term vehicle emission controls have also been enforced upwind of Beijing's neighboring provinces to the south and west. This region is characterized by numerous heavy-polluting industries whose emissions are typically transported towards Beijing, significantly impacting the city's air quality. We examine the efficacy of these emission control measures on tropospheric NO2, SO2, and CO pollution using satellite data from Aura's Ozone Monitoring Instrument (OMI) and Terra's Measurements Of Pollution In The Troposphere (MOPITT) from 2004 to the present. During both games, held in August and September 2008, OMI and MOPITT measured significant decreases in all three tracer gases compared to the past three years: NO2 (-43%), SO2 (-13%), and CO (-12%). This decrease in CO and SO2 over northeastern China continues through 2009, reflecting the longer-term nature of emission controls on heavily polluting industries. The global recession is also a likely contributor, as factories have shut down or slowed production due to the decrease in demand for manufactured goods. The tropospheric NO2 column over Beijing returned to typical monthly mean values when controls on vehicle emissions were lifted by the end of September 2008. However, we observe a slight NO2 decrease at the beginning of 2009 relative to 2008 suggesting a decrease in the contribution of industrial emissions of NOx to the overall NO2 column.

  19. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  20. Optimization and application of satellite observations for air quality monitoring in Central Europe

    Science.gov (United States)

    Zhou, Y.; Brunner, D.; Boersma, F.

    2009-12-01

    Nitrogen oxides are key precursors of both ozone and secondary aerosols, and they are harmful to humans and ecosystems. The Ozone Monitoring Instrument (OMI) is a recent UV/visible spectrometer on NASA’s Aura satellite with a comparatively small pixel size and daily global coverage which makes it particularly suitable for air quality monitoring. Information on vertical tropospheric columns (VTCs) of tropospheric trace gases is derived from the spectroscopic data by means of a retrieval algorithm. The retrieval depends on a number of so-called a priori assumptions which introduce important uncertainties in the derived quantity. Current operational retrievals are based on global a priori data sets at coarse spatial and temporal resolution, which are much coarser than the resolution of individual OMI pixels. In order to obtain a more accurate retrieval of vertical tropospheric columns of nitrogen dioxide (NO2) than currently available, we are developing new data sets of critical retrieval parameters at high temporal and spatial resolution for Europe, such as high resolution surface pressure maps, surface reflectance, and a-priori vertical NO2 profiles from a regional model. As a first step, we analyzed the sensitivity of retrieved NO2 to the surface pressure, and the results demonstrate the importance of an accurate (i.e. high resolution) treatment of this parameter, in particular in the vicinity of complex topography such as the Alps. As a second step, a new illumination and viewing geometry dependent surface reflectance data set has been developed based on high temporal and spatial resolution multiangular reflectance observations from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). Comparisons of this new surface reflectance data set with the coarse albedo data set of the operational OMI product will be shown and a sensitivity analysis of the impact on the retrieved NO2 will be presented. As a third step, a-priori vertical NO2 profiles used in

  1. National Satellite Land Monitoring Systems for REDD+ : the UN-REDD support to countries

    Science.gov (United States)

    Jonckheere, I. G. C.

    2015-12-01

    of in-country policy and institutional change. The outcomes about the role of satellite remote sensing technologies as a tool for national monitoring under the REDD+ mechanism are here presented. Some specific country examples will be shown and the current use(fulness) of radar and high resolution data is discussed.

  2. Method and apparatus for monitoring aircraft components

    Science.gov (United States)

    Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.

    1996-01-01

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  3. Data analysis methods for infrastructure permanent monitoring

    Science.gov (United States)

    Gargaro, Danilo; Rainieri, Carlo; Fabbrocino, Giovanni

    2016-04-01

    Safety and management of road networks is of paramount relevance not only under common operational conditions, but also in the case of extreme events, such as earthquakes or other natural hazards. Structural Health Monitoring systems may represent an attractive option for those institutions and companies having in charge the maintenance. Advances in sensing technology and miniaturization of computational devices make possible and reliable the installation of permanent monitoring systems and bring to operators both local and global data records. In this framework, vibration based monitoring represents an effective tool to track relevant modal properties during time by means of automated procedures. In any case, estimates of modal properties are influenced by environmental and operational factors as well as by the damage pointing out the need of discriminating between the different sources of influence. In the present paper, methodologies and strategies aimed at quantifying the influence of environmental and operational factors on modal parameters of infrastructure components are reviewed and some remarks on the application of blind source separation techniques to this end are proposed.

  4. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-10-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.

  5. Soil monitoring in Germany. Spatial representativity and methodical comparability

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.; Pesch, R.; Schmidt, G. [Inst. fuer Umweltwissenschaften sowie Forschungszentrum fuer Geoinformatik und Fernerkundung der Hochschule Vechta, Vechta (Germany)

    2004-07-01

    Soil monitoring in Germany should register the current soil condition, monitor its changes and provide a forecast for future development. In order to achieve these goals, the long-term soil monitoring sites in Germany (BDF - Bodendauerbeobachtungsflaechen) have been established by the federal states. This has been done according to criteria worked out by soil monitoring experts. In this article a method for the examination of the suitability of Germany's soil monitoring sites for soil conservation and protection purposes, as well as for environmental monitoring and reporting, is introduced. This method includes the landscape representativity of soil monitoring sites as well as the comparability and spatial validity of collected data. Methods. BDF-criteria are operationalized in a three-step procedure: at first, a metadatabase is established containing information that allows the comparison of monitoring sites by means of measuring parameters, methods and quality assurance as well as quality control of measurements. Secondly, the representativity of the BDF-sites for soil types, land use, vegetation, and climate (air temperature, duration of sunlight, precipitation) by means of frequency statistics and neighborhood analysis is quantified. At last, the spatial validity of soil monitoring data is examined through the application of geostatistical methods. Both data and statistical methods are integrated in a geoinformationsystem (GIS). (orig.)

  6. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Science.gov (United States)

    2012-10-05

    ... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent... methods for monitoring ambient air quality. SUMMARY: Notice is hereby given that the Environmental... in the ambient air. FOR FURTHER INFORMATION CONTACT: Robert Vanderpool, Human Exposure...

  7. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  8. A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery

    Science.gov (United States)

    kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2013-12-01

    A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery Ugur ALGANCI1, Sinasi KAYA1,2, Elif SERTEL1,2,Berk USTUNDAG3 1 ITU, Center for Satellite Communication and Remote Sensing, 34469, Maslak-Istanbul,Turkey 2 ITU, Department of Geomatics, 34469, Maslak-Istanbul, Turkey 3 ITU, Agricultural and Environmental Informatics Research Center,34469, Maslak-Istanbul,Turkey alganci@itu.edu.tr, kayasina@itu.edu.tr, sertele@itu.edu.tr, berk@berk.tc ABSTRACT Cultivated land determination and their area estimation are important tasks for agricultural management. Derived information is mostly used in agricultural policies and precision agriculture, in specifically; yield estimation, irrigation and fertilization management and farmers declaration verification etc. The use of satellite image in crop type identification and area estimate is common for two decades due to its capability of monitoring large areas, rapid data acquisition and spectral response to crop properties. With launch of high and very high spatial resolution optical satellites in the last decade, such kind of analysis have gained importance as they provide information at big scale. With increasing spatial resolution of satellite images, image classification methods to derive the information form them have become important with increase of the spectral heterogeneity within land objects. In this research, pixel based classification with maximum likelihood algorithm and object based classification with nearest neighbor algorithm were applied to 2012 dated 2.5 m resolution SPOT 5 satellite images in order to investigate the accuracy of these methods in determination of cotton and corn planted lands and their area estimation. Study area was selected in Sanliurfa Province located on Southeastern Turkey that contributes to Turkey's agricultural production in a major way. Classification results were compared in terms of crop type identification using

  9. Comparison of Satellite Surveying to Traditional Surveying Methods for the Resources Industry

    Science.gov (United States)

    Osborne, B. P.; Osborne, V. J.; Kruger, M. L.

    Modern ground-based survey methods involve detailed survey, which provides three-space co-ordinates for surveyed points, to a high level of accuracy. The instruments are operated by surveyors, who process the raw results to create survey location maps for the subject of the survey. Such surveys are conducted for a location or region and referenced to the earth global co- ordinate system with global positioning system (GPS) positioning. Due to this referencing the survey is only as accurate as the GPS reference system. Satellite survey remote sensing utilise satellite imagery which have been processed using commercial geographic information system software. Three-space co-ordinate maps are generated, with an accuracy determined by the datum position accuracy and optical resolution of the satellite platform.This paper presents a case study, which compares topographic surveying undertaken by traditional survey methods with satellite surveying, for the same location. The purpose of this study is to assess the viability of satellite remote sensing for surveying in the resources industry. The case study involves a topographic survey of a dune field for a prospective mining project area in Pakistan. This site has been surveyed using modern surveying techniques and the results are compared to a satellite survey performed on the same area.Analysis of the results from traditional survey and from the satellite survey involved a comparison of the derived spatial co- ordinates from each method. In addition, comparisons have been made of costs and turnaround time for both methods.The results of this application of remote sensing is of particular interest for survey in areas with remote and extreme environments, weather extremes, political unrest, poor travel links, which are commonly associated with mining projects. Such areas frequently suffer language barriers, poor onsite technical support and resources.

  10. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    Directory of Open Access Journals (Sweden)

    A. R. Naeger

    2015-10-01

    Full Text Available The primary goal of this study was to generate a near-real time (NRT aerosol optical depth (AOD product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS and Suomi National Polar-orbiting Partnership (NPP Visible Infrared Imaging Radiometer Suite (VIIRS satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15 and Japan Meteorological Agency (JMA Multi-functional Transport Satellite (MTSAT-2 to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  11. Satellite image classification methods and Landsat 5TM bands

    CERN Document Server

    Tamouk, Jamshid; Farmanbar, Mina

    2013-01-01

    This paper attempts to find the most accurate classification method among parallelepiped, minimum distance and chain methods. Moreover, this study also challenges to find the suitable combination of bands, which can lead to better results in case combinations of bands occur. After comparing these three methods, the chain method over perform the other methods with 79% overall accuracy. Hence, it is more accurate than minimum distance with 67% and parallelepiped with 65%. On the other hand, based on bands features, and also by combining several researchers' findings, a table was created which includes the main objects on the land and the suitable combination of the bands for accurately detecting of landcover objects. During this process, it was observed that band 4 (out of 7 bands of Landsat 5TM) is the band, which can be used for increasing the accuracy of the combined bands in detecting objects on the land.

  12. Monitoring small reservoirs in semi-arid region by satellite SAR data

    Science.gov (United States)

    Nicolina Papa, Maria; Mitidieri, Francesco; Amitrano, Donato; Ruello, Giuseppe; Di Martino, Gerardo; Iodice, Antonio; Riccio, Daniele

    2016-04-01

    The work presents a novel tool for the monitoring of small reservoirs in semi-arid regions. The pilot project was developed in the Yatenga region, a Sahelian area in northern Burkina Faso. In semi-arid regions, small reservoirs are widely employed for facing seasonal variability in water availability due to the alternation of a rainy (3 months) and a dry (9 months) season. Beside their crucial importance, the small reservoirs are not appropriately monitored, they are often built for the initiative of small local communities and even basic data as their location and capacity are not available. Another major problem is linked to soil erosion due to water and consequent reservoirs' sedimentation that reduces the amount of available water and the life span of reservoirs. This lack of data prevents the implementation of strategies for the optimization of water resources management. It is therefore necessary to improve the data availability through the development of cost-effective monitoring techniques and to adapt the hydrological modeling to the limited available data. In this context the use if satellite data can highly contribute to the achievement of crucial information at low costs, high resolution in time and wide areas. In the present work, we used COSMO-SkyMed Stripmap (3m resolution) and Spotligth (1m resolution) Synthetic Aperture Radar (SAR) data acquired under the aegis of the 2007 Italian Space Agency Announcement of Opportunity and of the HydroCIDOT project. The shorelines of the reservoirs were extracted from the series of SAR images by employing an innovative change-detection framework. A digital elevation model (DEM) of the study area was obtained via standard interferometry processing of images acquired at the end of the dry season, when small reservoirs are completely empty, and information about the surface usually covered by water can be retrieved. The obtained DEM and shorelines were used for bathymetry extraction of reservoirs. For the

  13. The method of the antenna system positioning for satellite communication network radiomonitoring complex

    OpenAIRE

    Гребенюк, Олег Петрович

    2014-01-01

    The method of orientation of the antenna system of complex of radiomonitoring of satellite communication networks is offered. A method takes into account the features of construction and functional setting of a transport stream of standard of DVB ‑ S.

  14. Energy integral method for gravity field determination from satellite orbit coordinates

    NARCIS (Netherlands)

    Visser, P.N.A.M.; Sneeuw, N.; Gerlach, C.

    2003-01-01

    A fast iterative method for gravity field determination from low Earth satellite orbit coordinates has been developed and implemented successfully. The method is based on energy conservation and avoids problems related to orbit dynamics and initial state. In addition, the particular geometry of a re

  15. Monitoring Method for the Electrical Properties of Piezoelectric Transducer

    Institute of Scientific and Technical Information of China (English)

    李文; 朱泽琪

    2012-01-01

    The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.

  16. Third International Satellite Conference on Mathematical Methods in Physics

    Science.gov (United States)

    The aim of the Conference is to present the latest advances in Mathematical Methods to researchers, post-docs and graduated students acting in the areas of Physics of Particles and Fields, Mathematical Physics and Applied Mathematics. Topics: Methods of Spectral and Group Theory, Differential and Algebraic Geometry and Topology in Field Theory, Quantum Gravity, String Theory and Cosmology. http://www.uel.br/eventos/isc/

  17. Hysteroscopic removal of foreign bodies and its method of monitoring

    Institute of Scientific and Technical Information of China (English)

    夏恩兰; 段华; 黄晓武; 郑杰; 于丹; 程玲

    2003-01-01

    Objective To evaluate transcervical removal of foreign bodies (TCRF) and to estimate the effectiveness of its monitoring methods. Methods One hundred and thirteen women were identified as having residual intrauterine devices (IUD), residual pregnancy products, unabsorbed strings and broken hooks, which were not removed during routine curettage or IUD removal. All patients were monitored using B ultrasonography while TCRF was performed. Four cases were monitored by laparoscopy simultaneously. One case was monitored by laparoscopic ultrasonography. Results Foreign bodies of one hundred and nine patients were taken out by TCRF. Uterine bleeding, amenorrhoea, discharge, abdominal pain, micturition and hematuria disappeared postoperatively. Fetal bones embedded into intramural uterin in four cases were not removed completely. Of these four, one became pregnant 4 months later after TCRF and term delivered. One case encountered uterine perforation that was sutured by laparoscopy. Conclusions TCRF is safe and efficient. Sufficient cervical canal distension, selection of equipment and methods to be used is important for successful TCRF. As a non-invasive and effective monitoring method, B ultrasonography is the first choice to monitor for TCRF. For patients with high risk factors for uterine perforation, laparoscopic monitoring should be done simultaneously. Laparoscopic ultrasonography monitoring has both the advantages of B ultrasonography and laparoscopy monitoring, but is invasive and expensive.

  18. A Weekly Indicator of Surface Moisture Status from Satellite Data for Operational Monitoring of Crop Conditions

    Directory of Open Access Journals (Sweden)

    Francesco Nutini

    2017-06-01

    Full Text Available The triangle method has been applied to derive a weekly indicator of evaporative fraction on vegetated areas in a temperate region in Northern Italy. Daily MODIS Aqua Land Surface Temperature (MYD11A1 data has been combined with air temperature maps and 8-day composite MODIS NDVI (MOD13Q1/MYD13Q1 data to estimate the Evaporative Fraction (EF at 1 km resolution, on a daily basis. Measurements at two eddy covariance towers located within the study area have been exploited to assess the reliability of satellite based EF estimations as well as the robustness of input data. Weekly syntheses of the daily EF indicator (EFw were then derived at regional scale for the years 2010, 2011 and 2012 as a proxy of overall surface moisture condition. EFw showed a temporal behavior consistent with growing cycles and agro-practices of the main crops cultivated in the study area (rice, forages and corn. Comparison with official regional corn yield data showed that variations in EFw cumulated over summer are related with crop production shortages induced by water scarcity. These results suggest that weekly-averaged EF estimated from MODIS data is sensible to water stress conditions and can be used as an indicator of crops’ moisture conditions at agronomical district level. Advantages and disadvantages of the proposed approach to provide information useful to issue operational near real time bulletins on crop conditions at regional scale are discussed.

  19. IMAGE ANALYSIS OF GEOSTATIONARY METEOROLOGICAL SATELLITE FOR MONITORING MOVEMENT OF MESOSCALE CONVECTIVE SYSTEMS OVER TIBETAN PLATEAU

    Institute of Scientific and Technical Information of China (English)

    GUO Zhong-yang; DAI Xiao-yan; WU Jian-ping; LIN Hui

    2005-01-01

    Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary Meteorological Satellite (GMS) brightness temperature (Tbb) from June to August 1998, and the MCSs are classified according to their movement direction. Based on these, spatial data mining methods are used to study the relationships between MCSs trajectories and their environmental physical field values. Results indicate that at 400hPa level,the trajectories of MCSs moving across the 105°E boundary are less influenced by water vapor flux divergence, vertical wind velocity, relative humidity and K index. In addition, ifthe gravity central longitude locations of MCSs are between 104°E and 105°E, then geopotential height and wind divergence are two main factors in movement causation.On the other hand, at 500hPa level, the trajectories of MCSs in a north-east direction are mainly influenced by K index and water vapor flux divergence when their central locations are less than 104°E. However, the MCSs moving in an east and south-east direction are influenced by a few correlation factors at this level.

  20. Monitoring and predicting eutrophication of Sri Lankan inland waters using ASTER satellite data

    Science.gov (United States)

    Dahanayaka, D. D. G. L.; Wijeyaratne, M. J. S.; Tonooka, H.; Minato, A.; Ozawa, S.; Perera, B. D. C.

    2014-10-01

    This study focused on determining the past changes and predicting the future trends in eutrophication of the Bolgoda North lake, Sri Lanka using in situ Chlorophyll-a (Chl-a) measurements and Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) satellite data. This Lake is located in a mixed land use area with industries, some agricultural lands, middle income and high income housing, tourist hotels and low income housing. From March to October 2013, water samples from five sampling sites were collected once a month parallel to ASTER overpass and Chl-a, nitrate and phosphate contents of each sample were measured using standard laboratory methods. Cloud-free ASTER scenes over the lake during the 2000-2013 periods were acquired for Chl-a estimation and trend analysis. All ASTER images were atmospherically corrected using FLAASH software and in-situ Chl-a data were regressed with atmospherically corrected three ASTER VNIR band ratios of the same date. The regression equation of the band ratio and Chl-a content with the highest correlation, which was the green/red band ratio was used to develop algorithm for generation of 15-m resolution Chl-a distribution maps. According to the ASTER based Chl-a distribution maps it was evident that eutrophication of this lake has gradually increased from 2008-2011. Results also indicated that there had been significantly high eutrophic conditions throughout the year 2013 in several regions, especially in water stagnant areas and adjacent to freshwater outlets. Field observations showed that this lake is receiving various discharges from factories. Unplanned urbanization and inadequacy of proper facilities in the nearby industries for waste management have resulted in the eutrophication of the water body. If the present trends of waste disposal and unplanned urbanization continue, enormous environmental problems would be resulted in future. Results of the present study showed that information from satellite remote

  1. Radiation portal monitor system and method

    Science.gov (United States)

    Morris, Christopher; Borozdin, Konstantin N.; Green, J. Andrew; Hogan, Gary E.; Makela, Mark F.; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Sossong, Michael J.

    2009-12-15

    A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  2. Geometric Aspects of Ground Augmentation of Satellite Networks for the Needs of Deformation Monitoring

    Science.gov (United States)

    Protaziuk, Elżbieta

    2016-06-01

    Satellite measurements become competitive in many tasks of engineering surveys, however, in many requiring applications possibilities to apply such solutions are still limited. The possibility to widely apply satellite technologies for displacements measurements is related with new challenges; the most important of them relate to increasing requirements concerning the accuracy, reliability and continuity of results of position determination. One of the solutions is a ground augmentation of satellite network, which intention is to improve precision of positioning, ensure comparable accuracy of coordinates and reduce precision fluctuations over time. The need for augmentation of GNSS is particularly significant in situations: where the visibility of satellites is poor because of terrain obstacles, when the determined position is not precise enough or a satellites constellation does not allow for reliable positioning. Ground based source/sources of satellite signal placed at a ground, called pseudosatellites, or pseudolites were intensively investigated during the last two decades and finally were developed into groundbased, time-synchronized transceivers, that can transmit and receive a proprietary positioning signal. The paper presents geometric aspects of the ground based augmentation of the satellite networks using various quality measures of positioning geometry, which depends on access to the constellation of satellites and the conditions of the observation environment. The issue of minimizing these measures is the key problem that allows to obtain the position with high accuracy. For this purpose, the use of an error ellipsoid is proposed and compared with an error ellipse. The paper also describes the results of preliminary accuracy analysis obtained at test area and a comparison of various measures of the quality of positioning geometry.

  3. Near-real time Monitoring of the widespread winter Fog over the Indo-Gangetic Plains using satellite data

    Science.gov (United States)

    Patil, D. L.; Gautam, R.; Rizvi, S.; Singh, M. K.

    2016-12-01

    The persistent and widespread winter fog impacts the Indo-Gangetic Plains (IGP) on an annual basis, disrupting day-to-day lives of millions of people in parts of northern India, Pakistan, Nepal and Bangladesh. The IGP is a densely-populated region located south of the Himalaya, in the northern parts of south Asia. During the past three decades or so, associated with growing population and energy demands, the IGP has witnessed strong upward trends in air pollution, particularly leading to poor air quality in the winter months. Co-occurring with the dense haze over the IGP, severe fog episodes persist throughout the months of December and January. Building on our recent work on satellite-based detection of fog, we have further extended the detection capability towards the development of a near-real time (NRT) fog monitoring system using satellite radiances and products. Here, we use multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for NRT fog monitoring over the IGP for both daytime as well as nighttime. Specifically, the nighttime fog detection algorithm employs a bi-spectral brightness temperature difference technique between two spectral channels: 3.9 μm and 11 μm. Our ongoing efforts also include extending fog detection capability in NRT to geostationary satellites, for providing continuous monitoring of the onset, evolution and spatial-temporal variation of fog, as well as the geospatial integration of surface meteorological observations of visibility, relative humidity, temperature. We anticipate that the ongoing and future development of a fog monitoring system may be of particular assistance to air and rail transportation management, as well as of general interest to the public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  4. Satellite images and geodetic measurements applied to the monitoring of the Horcones Inferior Glacier, Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    M. Gabriela Lenzano

    2011-06-01

    Full Text Available This work analyzes the monitoring of the covered and regenerated Horcones Inferior Glacier (HIG since the implementation of a semi-permanent GNSS station (HISS on its surface during the summer seasons of 2009 and 2010. The glacier is located at 32° 41's and 69° 57'w, at the foot of the south wall of Mt. Aconcagua, Aconcagua Provincial Park, Mendoza, Argentina. The average velocities obtained from the HISS station were of 1.3 cm/d and 3.5 cm/d during the 2009 and 2010 seasons respectively. The data procured using satellite images during the last surges (1984 and 2003 gave average velocities for the HIG front of 8.7 m/d for the first event and 11.5 m/d for the second one. These results allowed getting accurate and reliable movement tendency at the terminal part of the HIG during the 1984-2010 period.El presente trabajo realiza el monitoreo del glaciar Horcones Inferior, cubierto y regenerado a partir de la implementación de una estación GNSS semi-permanente (HISS, instalada sobre su superficie durante las temporadas de verano de 2009 y 2010 respectivamente. El glaciar se encuentra ubicado a los 32° 41's y 69° 57'w, al pie de la pared sur del C° Aconcagua, en el Parque Provincial Aconcagua, Mendoza, Argentina. La estación HISS registró valores de velocidades medias de 1.3 cm/d y 3.5 cm/d durante las temporadas de 2009 y 2010. Se utilizaron imágenes satelitales para el seguimiento del frente del glaciar durante los últimos surges (1984 y 2003, cuyas velocidades medias fueron de 8.7 m/d para el primero y de 11.5 m/d para el segundo evento. Estos resultados permitieron obtener de manera precisa y confiable la tendencia de movimiento de la parte terminal del GHI durante el periodo 1984-2010.

  5. Global Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Smith, M.; Slayback, D. A.; Policelli, F.; Brakenridge, G. R.; Tokay, M.

    2012-12-01

    Flooding is among the most destructive, frequent, and costly natural disasters faced by modern society, with several major events occurring each year. In the past few years, major floods have devastated parts of China, Thailand, Pakistan, Australia, and the Philippines, among others. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we have developed, and are now operating, a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours after flooding events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard. The LANCE system typically processes imagery in less than 3 hours after satellite overpass, and our flood mapping system can output flood products within ½ hour of acquiring the LANCE products. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial assessment of flooding extent by late afternoon, every day, and more robust assessments after accumulating imagery over a longer period; the MODIS sensors are optical, so cloud cover remains an issue, which is partly overcome by using multiple looks over one or more days. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on some of these issues

  6. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  7. Optical Performance Monitoring using Proactive Monitoring and the Time Caliper Method

    Science.gov (United States)

    Luk, Hon Tung

    link-based physical layer monitoring, we propose the Time Caliper Method for the relative delay measurement. Two pulse trains with slightly different time period are injected to two subchannels of the multiplexing system. By calculating time alignment shifting of the pulse trains before and after passing through the fiber/device under test, the relative delay can be derived. The Time Caliper Method is experimentally demonstrated on the chromatic dispersion measurement and polarization mode dispersion measurement. Because of the high accuracy requirement of polarization mode dispersion measurement, a novel measurement system is specially designed with an arbitrary waveform generator and a time demultiplexer so that two pulse trains with very small period difference can be generated. Thus the accuracy of the Time Caliper Method can be improved. This thesis briefly reviews the concept and goals for performance monitoring. Proactive monitoring is effective in reducing monitoring time in dynamic reconfigurable network. A reduction of 70%-77% can be achieved compared to the case without proactive monitoring. The cost for proactive monitoring can be reduced by optimizing the monitoring schemes and monitor placement in static networks. By considering the edge overlapping cases and node overlapping cases, the cost can be further reduced. We also propose the Time Caliper Method for relative delay measurement that belongs to link-based physical layer monitoring. The accuracy of the Time Caliper Method depends on the period difference of the two periodic pulse trains used in the measurement. By proposing a novel method to generate two periodic pulse trains that have period difference of 0.1 ps, the Time Caliper Method is capable of measuring chromatic dispersion and polarization mode dispersion with high accuracy.

  8. THE SATELLITE STRUCTURE TOPOLOGY OPTIMIZATION BASED ON HOMOGENIZATION METHOD AND ITS SIZE SENSITIVITY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    ChenChangya; PanJin; WangDeyu

    2005-01-01

    With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.

  9. Satellite Anomalies: Benefits of a Centralized Anomaly Database and Methods for Securely Sharing Information Among Satellite Operators

    Science.gov (United States)

    2014-01-01

    a hardware defect, accidental interference, purposeful attack , or a space weather event. However, there are obstacles that inhibit satellite owners...operator error in commanding the satellite, electromagnetic interference (“jamming”— be it unintentional or intentional), and targeted attack by an...Russian Cosmos 2251 satellite accidentally collided with the operational Iridium -33 spacecraft at a LEO altitude of 790 km (e.g., Iannotta and Malik

  10. A Project to Map and Monitor Baldcypress Forests in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data

    Science.gov (United States)

    Spruce, Joseph; Sader, Steven; Smoot, James

    2012-01-01

    Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change

  11. Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the CERN PS and the LHC Accelerators

    CERN Document Server

    Steinhagen, R J; Belleman, J; Bohl, T; Damerau, H

    2012-01-01

    While most LHC detectors and instrumentation systems are optimised for a nominal bunch spacing of 25 ns, the LHC RF cavities themselves operate at the 10th harmonic of the maximum bunch frequency. Due to the beam production scheme and transfers in the injector chain, part of the nominally ‘empty’ RF buckets may contain particles, referred to as ghost or satellite bunches. These populations must be accurately quantified for high-precision experiments, luminosity calibration and control of parasitic particle encounters at the four LHC interaction points. This contribution summarises the wall-current-monitor based ghost and satellite bunch measurements in CERN’s PS and LHC accelerators. Instrumentation set-up, post-processing and achieved performance are discussed.

  12. System and Method for Monitoring Distributed Asset Data

    Science.gov (United States)

    Gorinevsky, Dimitry (Inventor)

    2015-01-01

    A computer-based monitoring system and monitoring method implemented in computer software for detecting, estimating, and reporting the condition states, their changes, and anomalies for many assets. The assets are of same type, are operated over a period of time, and outfitted with data collection systems. The proposed monitoring method accounts for variability of working conditions for each asset by using regression model that characterizes asset performance. The assets are of the same type but not identical. The proposed monitoring method accounts for asset-to-asset variability; it also accounts for drifts and trends in the asset condition and data. The proposed monitoring system can perform distributed processing of massive amounts of historical data without discarding any useful information where moving all the asset data into one central computing system might be infeasible. The overall processing is includes distributed preprocessing data records from each asset to produce compressed data.

  13. Numerical methods for computing the temperature distribution in satellite systems

    OpenAIRE

    Gómez-Valadés Maturano, Francisco José

    2012-01-01

    [ANGLÈS] The present thesis has been done at ASTRIUM company to find new methods to obtain temperature distributions. Current software packages such as ESATAN or ESARAD provide not only excellent thermal analysis solutions, at a high price as they are very time consuming though, but also radiative simulations in orbit scenarios. Since licenses of this product are usually limited for the use of many engineers, it is important to provide new tools to do these calculations. In consequence, a dif...

  14. Numerical methods for computing the temperature distribution in satellite systems

    OpenAIRE

    Gómez-Valadés Maturano, Francisco José

    2012-01-01

    [ANGLÈS] The present thesis has been done at ASTRIUM company to find new methods to obtain temperature distributions. Current software packages such as ESATAN or ESARAD provide not only excellent thermal analysis solutions, at a high price as they are very time consuming though, but also radiative simulations in orbit scenarios. Since licenses of this product are usually limited for the use of many engineers, it is important to provide new tools to do these calculations. In consequence, a dif...

  15. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    Science.gov (United States)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  16. Monitoring land cover changes in Isfahan Province, Iran using Landsat satellite data.

    Science.gov (United States)

    Soffianian, Alireza; Madanian, Maliheh

    2015-08-01

    Changes in land cover and land use reveal the effects of natural and human processes on the Earth's surface. These changes are predicted to exert the greatest environmental impacts in the upcoming decades. The purpose of the present study was to monitor land cover changes using Multispectral Scanner Sensor (MSS) and multitemporal Landsat Thematic Mapper (TM) data from the counties of Isfahan Province, Iran, during 1975, 1990, and 2010. The maximum likelihood supervised classification method was applied to map land cover. Postclassification change detection technique was also used to produce change images through cross-tabulation. Classification results were improved using ancillary data, visual interpretation, and local knowledge about the area. The overall accuracy of land cover change maps ranged from 88 to 90.6%. Kappa coefficients associated with the classification were 0.81 for 1975, 0.84 for 1990, and 0.85 for 2010 images. This study monitored changes related to conversion of agricultural land to impervious surfaces, undeveloped land to agricultural land, agricultural land to impervious surfaces, and undeveloped land to impervious surfaces. The analyses of land cover changes during the study period revealed the significant development of impervious surfaces in counties of Isfahan Province as a result of population growth, traffic conditions, and industrialization. The image classification indicated that agricultural lands increased from 2520.96 km(2) in 1975 to 4103.85 km(2) in 2010. These land cover changes were evaluated in different counties of Isfahan Province.

  17. Satellite-based detection and monitoring of phytoplankton blooms along the Oregon coast

    Science.gov (United States)

    McKibben, S. M.; Strutton, P. G.; Foley, D. G.; Peterson, T. D.; White, A. E.

    2012-12-01

    We have applied a normalized difference algorithm to 8 day composite chlorophyll-a (CHL) and fluorescence line height (FLH) imagery obtained from the Moderate Resolution Imaging Spectroradiometer aboard the Aqua spacecraft in order to detect and monitor phytoplankton blooms in the Oregon coastal region. The resulting bloom products, termed CHLrel and FLHrel, respectively, describe the onset and advection of algal blooms as a function of the percent relative change observed in standard 8 day CHL or FLH imagery over time. Bloom product performance was optimized to consider local time scales of biological variability (days) and cloud cover. Comparison of CHLrel and FLHrelretrievals to in situ mooring data collected off the central Oregon coast from summer 2009 through winter 2010 shows that the products are a robust means to detect bloom events during the summer upwelling season. Evaluation of winter performance was inconclusive due to persistent cloud cover and limited in situ chl-a records. Pairing the products with coincident in situ physical proxies provides a tool to elucidate the conditions that induce bloom onset and identify the physical mechanisms that affect bloom advection, persistence, and decay. These products offer an excellent foundation for remote bloom detection and monitoring in this region, and the methods developed herein are applicable to any region with sufficient CHL and FLH coverage.

  18. Satellite Monitoring of the Surface Water and Energy Budget in the Central Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YANG Kun; Toshio KOIKE

    2008-01-01

    The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study presents a first-order evaluation on the skill of weather forecasting from GCMs and satellites in producing precipitation and radiation estimates. The satellite data, together with the satellite leaf area index, are then integrated into a land data assimilation system (LDAS-UT) to estimate the soil moisture and surface energy budget on the Plateau. The system directly assimilates the satellite microwave brightness temperature, which is strongly affected by soil moisture but not by cloud layers, into a simple biosphere model. A major feature of this system is a dual-pass assimilation technique, which can auto-calibrate model parameters in one pass and estimate the soil moisture and energy budget in the other pass. The system outputs, including soil moisture, surface temperature, surface energy partition, and the Bowen ratio, are compared with observations, land surface models, the Global Land Data Assimilation System, and four general circulation models. The results show that this satellite data-based system has a high potential for a reliable estimation of the regional surface energy budget on the Plateau.

  19. Aviation-oriented Mobility Management Method in IP/LEO Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    Guo Xin; Zhang Jun; Zhang Tao; Ding Yanwen

    2008-01-01

    Taking into chief consideration the features of aviation nodes in satellite networks,such as high moving speed,long communication distance,and high connection frequency,this article proposes an aviatiun-oriented mobility management method for IP/low earth orbit (LEO) satellite networks.By introducing the concept of ground station real-time coverage area,the proposed method uses ground-station-based IP addressing method and cell paging scheme to decrease the frequency of IP binding update requests as well as the paging cost.In comparison with the paging mobile IP (P-MIP) method and the handover-independent IP mobility management method,as is verified by the mathematical analysis and simulation,the proposed method could decrease the management cost.It also possesses better ability to support the aviation nodes because it is subjected to fewer influences from increased node speeds and newly coming connection rates.

  20. Monitoring the Stephen's kangaroo rat: An analysis of monitoring methods and recommendations for future monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document covers a series of analyses to explore and summarize previous monitoring efforts of Stephens Kangaroo Rats (SKR) and make recommendations for future...

  1. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  2. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  3. Application of H J-1 Satellite Data in Drought Monitoring%环境减灾卫星数据在干旱监测中的应用

    Institute of Scientific and Technical Information of China (English)

    钟仕全; 罗永明; 莫建飞; 贾德伟

    2011-01-01

    HJ-1 is the first small satellite constellation which dedicated to environment and disaster monitoring and forecasting in China. The land surface temperature (LST) over the arid regions were calculated by using the China Centre for Resources Satellite Data and HJ-1B data, and the vegetation supply water index ( VSWI) was obtained by fitting method with the aid of the normalized difference vegetation index ( NDVI) of different underlying surface. Drought monitoring was studied by using VSWI in Longlin county, Tianlin county and Xilin county. The results showed that drought monitoring with the aid of HJ-1 B data was a credible way. HJ-1 was wide image width and relative high spatial resolution, which could provide decision support services for drought monitoring.%环境减灾卫星是首个以防灾减灾和环境监测为直接应用目标的小卫星星座.本文尝试利用环减星HJ -1B上的CCD相机的红光和近红外波段计算归一化植被指数,用IRS光谱仪热红外波段反演地表温度,采用植被供水指数建立干旱监测模型.通过对2010年初广西隆林、田林、西林3县的干旱情况的遥感监测研究,结果表明:遥感干旱监测结果与旱情实况分布基本一致.说明该方法比较可靠,再加上环减星重访周期短、空间分辨率高,据此可以为广西抗旱救灾工作提供快速准确的信息服务.

  4. NOAA Satellite Based Real Time Forest Fire Monitoring System for Russia and North Asian Region

    OpenAIRE

    Kalpoma,Kazi A. / Kawano,Koichi / Kudoh,Jun-ichi; / カワノ,コウイチ / クドウ,ジュンイチ

    2007-01-01

    Forest fires cause severe damages to natural resources and human lives all over the world. Though a lot of forest fires occur in Russia and North Asia every year, there is no system available that monitors forest fire in real time processing. However the MODIS Land Rapid Response System provides near-real time fire observations globally, currently forest fire monitoring techniques are not efficient enough to optimally monitor this disaster. For a real-time forest fire monitor system an effici...

  5. Apparatus, system, and method for traffic monitoring

    KAUST Repository

    Claudel, Christian G.

    2016-08-25

    An apparatus, system, and method for traffic monitory can have a Lagrangian inertial measurement unit. The Lagrangian inertial measurement unit can have a processor, an accelerometer, a gyroscope, and/or a wireless transmitter. The processor can have an integrated direction cosine matrix. The accelerometer can be configured to measure linear accelerations of a vehicle and/or can communicate measured linear acceleration to the processor. The gyroscope can be configured to measure rotational accelerations of the vehicle and/or can communicate measured rotational acceleration to the processor. The processor can be configured to calculate estimated vehicle speed and/or estimated vehicle attitude. The wireless transmitter can be configured to wirelessly transmit estimated vehicle speed and/or estimated vehicle attitude. The apparatus, system, and method can be integrated with a wireless sensor network.

  6. An Attitude Modelling Method Based on the Inherent Frequency of a Satellite Platform

    Science.gov (United States)

    Mo, F.; Tang, X.; Xie, J.; Yan, C.

    2017-05-01

    The accuracy of attitude determination plays a key role in the improvement of surveying and mapping accuracy for high-resolution remote-sensing satellites, and it is a bottleneck in large-scale satellite topographical mapping. As the on-board energy is constrained and the performance of an attitude-measurement device is limited, the attitude acquired is discretely sampled with a settled time interval. The larger the interval, the easier the data transmission, and the more deviation the attitude data will have. Meanwhile, several kinds of jitter frequencies have been detected in satellite platforms. This paper presents a novel attitude modelling (AttModel) method that sufficiently considers the discrete and periodic characteristics, and the attitude model built is continuous and consists of several inherent waves of different frequencies. The process of modelling includes two steps: (a) frequency detection, which uses raw gyroscope data within a period of time to detect the attitude frequencies (as the gyroscope data can actually reflect continuous, very small changes of the satellite platform), and (b) attitude modelling , which processes the attitude data that was filtered by extended Kalman filtering based on general polynomial and trigonometric polynomials, and these trigonometric polynomials are rebuilt by those frequencies detected in the first part of the modelling process. Finally, one experiment designed for verifying the effectiveness of the presented method shows that the AttModel method can reach a slightly better pointing accuracy without ground-control points than traditional attitude-interpolation methods.

  7. Accurate Gain Flattening Filters Manufactured by Optical Compensation Monitoring Method

    Institute of Scientific and Technical Information of China (English)

    J. J. Pan; FengQing Zhou; James Guo; Mingjie Zhang; Ming Zhou; Joy Jiang

    2003-01-01

    GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.

  8. Multivariate Statistical Process Control Process Monitoring Methods and Applications

    CERN Document Server

    Ge, Zhiqiang

    2013-01-01

      Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitoring and is widely used in various industrial areas. Effective routines for process monitoring can help operators run industrial processes efficiently at the same time as maintaining high product quality. Multivariate Statistical Process Control reviews the developments and improvements that have been made to MSPC over the last decade, and goes on to propose a series of new MSPC-based approaches for complex process monitoring. These new methods are demonstrated in several case studies from the chemical, biological, and semiconductor industrial areas.   Control and process engineers, and academic researchers in the process monitoring, process control and fault detection and isolation (FDI) disciplines will be inter...

  9. Systems and method for lagrangian monitoring of flooding conditions

    KAUST Repository

    Claudel, Christian G.

    2015-12-17

    A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do not gather, store, or transmit any unique or identifying information, and thereby preserves the privacy of members of traffic. The system and method provide real-time traffic density and speed mapping. The system and method can further be integrated with a complementary flood monitoring system and method.

  10. System And Method For Monitoring Traffic While Preserving Personal Privacy

    KAUST Repository

    Canepa, Edward

    2015-08-06

    A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do not gather, store, or transmit any unique or identifying information, and thereby preserves the privacy of members of traffic. The system and method provide real-time traffic density and speed mapping. The system and method can further be integrated with a complementary flood monitoring system and method.

  11. Innovative Methods for Engine Health Monitoring

    Science.gov (United States)

    2006-11-30

    C. Amzallag, J.P. Gerey, J.L. Robert and J. Bahuaudt, "Standardization of the rainflow counting method for fatigue analysis", Int. J. Fatigue, Vol. 16...Millwater, R.C. McClung, M.P. Enright , "A new tool for design and certification of aircraft turbine rotors," Journal of Engineering for Gas Turbines...Vol. 31, No. 4, pp. 3443-3455. [4] J. Dundurs: J. Appl. Mech., 1969, Vol. 36, pp. 650-652. [5] K.S. Chan and M. P. Enright : Metall. Mater. Transactions

  12. A semi-analytical method of computation of oceanic tidal perturbations in the motion of artificial satellites

    Science.gov (United States)

    Musen, P.

    1973-01-01

    The method of expansion of the satellite's perturbations, as caused by the oceanic tides, into Fourier series is discussed. The coefficients of the expansion are purely numerical and peculiar to each particular satellite. Such a method is termed as semi-analytical in celestial mechanics. Gaussian form of the differential equations for variation of elements, with the right hand sides averaged over the orbit of the satellite, is convenient to use with the semi-analytical expansion.

  13. Methods of Complex Data Processing from Technical Means of Monitoring

    Directory of Open Access Journals (Sweden)

    Serhii Tymchuk

    2017-03-01

    Full Text Available The problem of processing the information from different types of monitoring equipment was examined. The use of generalized methods of information processing, based on the techniques of clustering combined territorial information sources for monitoring and the use of framing model of knowledge base for identification of monitoring objects was proposed as a possible solution of the problem. Clustering methods were formed on the basis of Lance-Williams hierarchical agglomerative procedure using the Ward metrics. Frame model of knowledge base was built using the tools of object-oriented modeling.

  14. Continuous-flow free acid monitoring method and system

    Science.gov (United States)

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  15. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    Science.gov (United States)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  16. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar operational environmental satellite data for land surface monitoring in Africa

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Anyamba, Assaf; Huber Gharib, Silvia

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth’s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which oft...

  17. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    Science.gov (United States)

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang

    2014-11-01

    transfer resulting from the thermal plume is the primary reason leading to the temperature variations. Temperature rising (TR) distributions obtained from remote sensing data and in-situ measurements are consistent, except that the interpolated BT shows more level details (> 5 levels) than that of the ST (up to 4 levels). The areas with higher TR levels (> 2) are larger on BT maps, while for lower TR levels (≤ 2), the two methods perform with no obvious differences. Minimal errors for satellite-derived SST occur regularly around local time 10 a. m. This makes the remote sensing results to be substitutes for in-situ measurements. Therefore, for operational applications of HJ-1B IRS4, remote sensing technique can be a practical approach to monitoring the nuclear plant thermal pollution around this time period.

  18. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry, First results

    DEFF Research Database (Denmark)

    Andersen, O.B.; Krogh, P.E.; Michailovsky, C.

    2008-01-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terre......Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration...... and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital...... change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented....

  19. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including sa- tellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem- eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseu- do-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  20. Monitoring Western Siberian Wetlands from satellite observations and in situ observations

    Science.gov (United States)

    Zakharova, E. A.; Kouraev, A. V.; Kolmakova, M. V.; Bazanov, V. A.; Skugarev, A. A.; Berezin, A. E.; Kirpotin, S. N.; Zemtsov, V. A.; Mognard, N. M.

    2009-04-01

    Western Siberia is a large region with mostly flat relief. Most of its territory comprises the watershed of the Ob' river, and much smaller part in the north - watersheds of Nadym, Pur and Taz rivers. Flat relief significantly affects the hydrographical network, creating a multitude of interconnected natural objects - large and small rivers streams, large floodplains, lakes, bogs etc. The region is also abundant with lakes, mainly small ones with surface area less than 1 km2 and depths of 2-5 m. Flooded areas and bogs also act as a buffer zone, providing a dampening "sponge" effect on the water redistribution within the river system. Large area covered by rivers and wetlands results in high rate of evaporation compared to any other large boreal watershed. Contrasting processes are occurring in the Southern and Northern parts of the Western Siberian Plain. In the south, bogs are expanding in the taiga zone and there is progressive swamping which leads to forest death. These bogs act as a carbon sink due to carbon sequestration in their peat layers. Among the bogs of this part of Western Siberia there is the Great Vasiugan Bog - world's largest peatland with a total area of 6.78 million hectares. Bogs of Vasyugan have appeared about 10 000 years ago and since then are constantly growing. 75% of the actual surface of the Great Vasyugan Bog have appeared during the last 500 years. The situation in the northern part (affected by permafrost) is different. The bogs there are reducing their surface and the forest-tundra regions are being subjected to thermokarst activity and colonisation of bogs by trees. Two contrast processes are observed here - a) increase of lake surface due to melting of lakes' coasts, and b) decrease of surface area or disappearance of lakes due to water drain downstream the hydrological network. We combine in situ observations with satellite remote sensing to monitor hydrological regime of the Western Siberian wetlands. Radar altimetry (TOPEX

  1. Monitoring global climate change using SLR data from LARES and other geodetic satellites

    Science.gov (United States)

    Paolozzi, Antonio; Paris, Claudio; Pavlis, Erricos C.; Sindoni, Giampiero; Ciufolini, Ignazio

    2016-04-01

    The Earth Orientation Parameters (EOP), i.e. the spin axis of the Earth, is influenced by the mass redistribution inside and on the surface of the Earth. On the Earth surface, global ice melting, sea level change and atmospheric circulation are the prime contributors. Recent studies have unraveled the majority of the mysteries behind the Chandler wobble, the annual motion and the secular motion of the pole. The differences from the motion of a pole for a rigid Earth is indeed due to the mass redistribution and transfer of angular momentum among the atmosphere, the oceans and solid Earth. The technique of laser ranging and the use of laser ranged satellites such as LARES along with other techniques such Very Long Baseline Interferometry (VLBI) allow to measure the EOP with accuracies at the level of ~200 μas which correspond to few millimeters at the Earth's surface, while the use of Global Navigation Satellite System (GNSS) data can reach an accuracy even below 100 μas. At these unprecedented high levels of accuracy, even tiny anomalous behavior in EOP can be observed and thus correlated to global environmental changes such as ice melting on Greenland and the polar caps, and extreme events that involve strong ocean-atmosphere coupling interactions such as the El Niño. The contribution of Satellite Laser Ranging (SLR) data such as from the LARES mission and similar satellites to this area is outlined in this paper.

  2. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-01-01

    The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192

  3. Miniature and low cost fiber bragg grating interrogator for structural monitoring in nano-satellites

    NARCIS (Netherlands)

    Toet, P.M.; Hagen, R.A.J.; Hakkesteegt, H.C.; Lugtenburg, J.; Maniscalco, M.P.

    2014-01-01

    In this paper we present a newly developed Fiber Optic measurement system, consisting of Fiber Bragg Grating (FBG) sensors and an FBG interrogator. The development of the measuring system is part of the PiezoElectric Assisted Smart Satellite Structure (PEASSS) project, which was initiated at the beg

  4. Can modelled harbour porpoise distribution based on satellite tracking be validated from static acoustic monitoring

    DEFF Research Database (Denmark)

    Mikkelsen, Lonnie; Riget, Frank Farsø; Sveegaard, Signe

    Species distribution models are increasingly being used to model habitat suitability from positioning records. Here we use satellite locations from 15 tagged harbour porpoises (Phocoena phocoena) in the western Baltic Sea to model suitable habitats using the species distribution model MaxEnt (Max...

  5. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion.

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-03-30

    The Earth's surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data.

  6. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    NARCIS (Netherlands)

    Tote, C.; Patricio, D.; Boogaard, H.L.; Wijngaart, van der R.; Tarnavsky, E.; Funk, C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and

  7. Satellite-based monitoring of grassland: assessment of harvest dates and frequency using SAR

    Science.gov (United States)

    Siegmund, R.; Grant, K.; Wagner, M.; Hartmann, S.

    2016-10-01

    Grasslands are among the largest ecosystems worldwide and according to the FAO they contribute to the livelihoods of more than 800 million people. Harvest dates and frequency can be utilised for an improved estimation of grassland yields. In the presented project a highly automatised methodology for detecting harvest dates and frequency using SARamplitude data was developed based on an amplitude change detection techniques. This was achieved by evaluating spatial statistics over field boundaries provided by the European Integrated Administration and Control System (IACS) to identify changes between pre- and post-harvest acquisitions. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. In our contribution we will focus on SAR-remote sensing for monitoring harvest frequencies, discuss the requirements concerning the acquisition system, present the technical approach and analyse the verified results. In terms of the acquisition system a high temporal acquisition rate is required, which is generally met by using SARsatellite constellations providing a revisit time of few days. COSMO-SkyMed data were utilised for the pilot study for developing and prototyping a monitoring system. Subsequently the approach was adapted to the use of the C-Band system Sentinel-1A becoming fully operational with the availability of Sentinal-1B. The study area is situated northeast of Munich, Germany, extending to an area of approx. 40km to 40km and covering major verification sites and in-situ data provided by research farms or continuously surveyed in-situ campaigns. An extended time series of SAR data was collected during the cultivation and vegetation cycles between March 2014 and March 2016. All data were processed and harmonised in a GIS database to be analysed and verified according to corresponding in-situ data.

  8. Monitoring Corals and Submerged Aquatic Vegetation in Western Pacific Using Satellite Remote Sensing Integrated with Field Data

    Science.gov (United States)

    Roelfsema, C. M.; Phinn, S. R.; Lyons, M. B.; Kovacs, E.; Saunders, M. I.; Leon, J. X.

    2013-12-01

    Corals and Submerged Aquatic Vegetation (SAV) are typically found in highly dynamic environments where the magnitude and types of physical and biological processes controlling their distribution, diversity and function changes dramatically. Recent advances in the types of satellite image data and the length of their archives that are available globally, coupled with new techniques for extracting environmental information from these data sets has enabled significant advances to be made in our ability to map and monitor coral and SAV environments. Object Based Image Analysis techniques are one of the most significant advances in information extraction techniques for processing images to deliver environmental information at multiple spatial scales. This poster demonstrates OBIA applied to high spatial resolution satellite image data to map and monitor coral and SAV communities across a variety of environments in the Western Pacific that vary in their extent, biological composition, forcing physical factors and location. High spatial resolution satellite imagery (Quickbird, Ikonos and Worldview2) were acquired coincident with field surveys on each reef to collect georeferenced benthic photo transects, over various areas in the Western Pacific. Base line maps were created, from Roviana Lagoon Solomon island (600 km2), Bikini Atoll Marshall Island (800 Km2), Lizard Island, Australia (30 km2) and time series maps for geomorphic and benthic communities were collected for Heron Reef, Australia (24 km2) and Eastern Banks area of Moreton Bay, Australia (200 km2). The satellite image data were corrected for radiometric and atmospheric distortions to at-surface reflectance. Georeferenced benthic photos were acquired by divers or Autonomous Underwater Vehicles, analysed for benthic cover composition, and used for calibration and validation purposes. Hierarchical mapping from: reef/non-reef (1000's - 10000's m); reef type (100's - 1000's m); 'geomorphic zone' (10's - 100's m); to

  9. A quantitative method for estimating cloud cover over tropical cyclones from satellite data

    OpenAIRE

    BALOGUN, E. E.

    2011-01-01

    A photometric method for quantifying cloud cover over tropical cyclones as observed from satellite photographs is presented. Two gridded photographs of tropical cyclones are analyzed by this method. On each photograph, nine concentric circles are drawn. The observed or reported centre of the cyclones is used as the centre for each set of concentric circles. Photometric estimates of cloud cover are made along the nine concentric circles. The principle of harmonic analysis is applied to the cl...

  10. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A.; Sugimori, Y.; Kubota, M.

    Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science... observations for getting the estimates of heat flux across the air-sea boundary (Miller, 1981; Liu, 1988). Bulk method has widely been used for this purpose and the parameters required are: sea surface temperature, and wind speed, air-temperature and specific...

  11. Description and primary results of Total Solar Irradiance Monitor, a solar-pointing instrument on an Earth observing satellite

    Science.gov (United States)

    Wang, Hongrui; Fang, Wei; Li, Huiduan

    2015-04-01

    Solar driving mechanism for Earth climate has been a controversial problem for centuries. Long-time data of solar activity is required by the investigations of the solar driving mechanism, such as Total Solar Irradiance (TSI) record. Three Total Solar Irradiance Monitors (TSIM) have been developed by Changchun Institute of Optics, Fine Mechanics and Physics for China Meteorological Administration to maintain continuities of TSI data series which lasted for nearly 4 decades.The newest TSIM has recorded TSI daily with accurate solar pointing on the FY-3C meteorological satellite since Oct 2013. TSIM/FY-3C has a pointing system for automatic solar tracking, onboard the satellite designed mainly for Earth observing. Most payloads of FY-3C are developed for observation of land, ocean and atmosphere. Consequently, the FY-3C satellite is a nadir-pointing spacecraft with its z axis to be pointed at the center of the Earth. Previous TSIMs onboard the FY-3A and FY-3B satellites had no pointing system, solar observations were only performed when the sun swept through field-of-view of the instruments. And TSI measurements are influenced inevitably by the solar pointing errors. Corrections of the solar pointing errors were complex. The problem is now removed by TSIM/FY-3C.TSIM/FY-3C follows the sun accurately by itself using its pointing system based on scheme of visual servo control. The pointing system is consisted of a radiometer package, two motors for solar tracking, a sun sensor and etc. TSIM/FY-3C has made daily observations of TSI for more than one year, with nearly zero solar pointing errors. Short time-scale variations in TSI detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE.Instrument details, primary results of solar pointing control, solar observations and etc will be given in the presentation.

  12. Support to Aviation Control Service (SACS: an online service for near real-time satellite monitoring of volcanic plumes

    Directory of Open Access Journals (Sweden)

    H. Brenot

    2013-10-01

    Full Text Available Volcanic eruptions emit plumes of ash and gases in the atmosphere, potentially at very high altitudes. Ash rich plumes are hazardous for airplanes as ash is very abrasive and easily melts inside their engines. With more than 50 active volcanoes per year and the ever increasing number of commercial flights, the safety of airplanes is a real concern. Satellite measurements are ideal for monitoring global volcanic activity and, in combination with atmospheric dispersion models, to track and forecast volcanic plumes. Here we present the Support to Aviation Control Service (SACS, http://sacs.aeronomie.be, which is a free online service initiated by ESA for the near real-time (NRT satellite monitoring of volcanic plumes of SO2 and ash. It combines data from two UV-visible (OMI, GOME-2 and two infrared (AIRS, IASI spectrometers. This new multi-sensor warning system of volcanic plumes, running since April 2012, is based on the detection of SO2 and is optimised to avoid false alerts while at the same time limiting the number of notifications in case of large plumes. The system shows successful results with 95% of our notifications corresponding to true volcanic activity.

  13. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.

    Science.gov (United States)

    Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

    2014-12-01

    This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.

  14. Satellite Monitoring of Chlorophyll-a Concentration in the Water Bodies of the Dnieper and Don River Basins

    Science.gov (United States)

    Moses, W. J.; Berdnikov, S.; Gitelson, A. A.

    2008-12-01

    We present and discuss here the results of our work using satellite data to estimate chlorophyll-a concentration in reservoirs of the Dnieper River and the Sea of Azov, which are typical Case II waters, i.e., turbid and productive. Our objective was two-folded - (i) to test the potential of remote sensing as a tool for near-real-time monitoring of these water bodies, and (ii) to feed the results of our work into a larger project that involved the use of satellite technology to investigate and understand the effects on the bio-optical characteristics of these water bodies due to changes in the land use and land cover in the surrounding regions. MODIS and MERIS images were used. We tested the performance of a three-band model and a two- band model that use the reflectance at the red and NIR spectral bands for the retrieval of chlorophyll-a concentration. The higher spatial resolution and the availability of a spectral band at around 708 nm with the MERIS data offered great promise for the three-band model. We tested the applicability of two standard MODIS and MERIS algorithms for Case II waters. We compared results from several different atmospheric correction procedures available for MODIS and MERIS data. No one particular procedure was consistently and systematically better than the rest. Nevertheless, even in the absence of a perfect atmospheric correction procedure, both the three-band and the two-band models showed promising results when compared to in-situ chlorophyll-a measurements. The challenges and limitations involved in satellite remote monitoring of turbid productive waters are discussed.

  15. 利用林权管理软件确定卫星林火监测热点详细信息的方法%Method for Defining Hotspots of Detailed Information about Satellite Forest Fire Monitoring with Software of Forest Ownership Management

    Institute of Scientific and Technical Information of China (English)

    刘运贵; 聂勇; 田景容; 郑珊; 敖维武

    2009-01-01

    Applying the forest ownership management software, and combining with the information of forest fire monitoring hot spot, the detailed information of monitoring spot could be learned with the very short time period of 10 seconds. The concrete information such as the names of town, village, small site, forest land and the name of people owned the forest could be obtained. Taking Guizhou province as the example, the feasibility and operation method of this method were described.%利用林权管理软件与网上发布的卫星林火监测热点信息相结合,可以在极短的时间(大约10秒钟)内准确掌握热点详情,确切知道热点发生的具体乡(镇)、村、组、山头地块(小地名)以及林地、林权所有者姓名等情况,文章以贵州省为例,就该方法的可行性及具体操作方法进行了概述.

  16. Methods of Celestial Mechanics Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy

    CERN Document Server

    Beutler, Gerhard

    2005-01-01

    G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students as well as an excellent reference for practitioners. Volume II is devoted to the applications and to the presentation of the program system CelestialMechanics. Three major areas of applications are covered: (1) Orbital and rotational motion of extended celestial bodies. The properties of the Earth-Moon system are developed from the simplest case (rigid bodies) to more general cases, including the rotation of an elastic Earth, the rotation of an Earth partly covered by oceans and surrounded by an atmosphere, and the rotation of an Earth composed of a liquid core and a rigid shell (Poincaré model). (2) Artificial Earth Satellites. The oblateness perturbation acting on a satellite and the exploitation of its properties in practice is discussed using simulation methods (CelestialMechanics) and (simplified) first order perturbation methods. The perturbations due to the higher-order terms of the Earth's gravitational potential and reso...

  17. An online substructure identification method for local structural health monitoring

    Science.gov (United States)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  18. Images of war: using satellite images for human rights monitoring in Turkish Kurdistan.

    Science.gov (United States)

    de Vos, Hugo; Jongerden, Joost; van Etten, Jacob

    2008-09-01

    In areas of war and armed conflict it is difficult to get trustworthy and coherent information. Civil society and human rights groups often face problems of dealing with fragmented witness reports, disinformation of war propaganda, and difficult direct access to these areas. Turkish Kurdistan was used as a case study of armed conflict to evaluate the potential use of satellite images for verification of witness reports collected by human rights groups. The Turkish army was reported to be burning forests, fields and villages as a strategy in the conflict against guerrilla uprising. This paper concludes that satellite images are useful to validate witness reports of forest fires. Even though the use of this technology for human rights groups will depend on some feasibility factors such as prices, access and expertise, the images proved to be key for analysis of spatial aspects of conflict and valuable for reconstructing a more trustworthy picture.

  19. [A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI].

    Science.gov (United States)

    Gao, Zhong-ling; Zheng, Xiao-po; Sun, Yue-jun; Wang, Jian-hua

    2015-11-01

    Land surface temperature (Ts) is influenced by soil background and vegetation growing conditions, and the combination of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC). In this study, Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID. Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point, andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper. With LAI-Ts scatter diagram established by the simulation results of CUPID model; how Ts varied with LAI and SMC was found. In the case of the identical soil background, the logarithmic relations between Ts and LAI were more accurate than the linear relations included in Temperature Vegetation Dryness Index (TVDI), based on which ATVDI was then developed. LAI-Ts scatter diagram with satellite imagery were necessary for determining the expression of the upper and lower logarithmic curves while ATVDI was used for monitoring SMC. Ts derived from satellite imagery were then transformed to the Ts-value which has the same SMC and the minimum LAI in study area with look-up table. The measured SMC from the field sites in Weihe Plain, Shanxi Province, China, and the products of LAI and Ts (MOD15A2 and MOD11A2, respectively) produced by the image derived from Moderate Resolution Imaging Spectrometer (MODIS) were collected to validate the new method proposed in this study. The validation results shown that ATVDI (R² = 0.62) was accurate enough to monitor SMC, and it achieved better result than TVDI. Moreover, ATVDI-derived result were Ts values with some physical meanings, which made it comparative in different periods. Therefore, ATVDI is a promising method for monitoring SMC in different time-spatial scales in agricultural fields.

  20. Multi Satellites Monitoring of Land Use/Cover Change and Its Driving Forces in Kashgar Region, China

    Science.gov (United States)

    Maimaitiaili, Ayisulitan; Aji, xiaokaiti; Kondoh, Akihiko

    2016-04-01

    Multi Satellites Monitoring of Land Use/Cover Change and Its Driving Forces in Kashgar Region, China Ayisulitan Maimaitiaili1, Xiaokaiti Aji2 Akihiko Kondoh2 1Graduate School of Science, Chiba University, Japan 2Center for Environmental Remote Sensing, Chiba University The spatio-temporal changes of Land Use/Cover (LUCC) and its driving forces in Kashgar region, Xinjiang Province, China, are investigated by using satellite remote sensing and a geographical information system (GIS). Main goal of this paper is to quantify the drivers of LUCC. First, considering lack of the Land Cover (LC) map in whole study area, we produced LC map by using Landsat images. Land use information from Landsat data was collected using maximum likelihood classification method. Land use change was studied based on the change detection method of land use types. Second, because the snow provides a key water resources for stream flow, agricultural production and drinking water for sustaining large population in Kashgar region, snow cover are estimated by Spot Vegetation data. Normalized Difference Snow Index (NDSI) algorithm are applied to make snow cover map, which is used to screen the LUCC and climate change. The best agreement is found with threshold value of NDSI≥0.2 to generate multi-temporal snow cover and snowmelt maps. Third, driving forces are systematically identified by LC maps and statistical data such as climate and socio-economic data, regarding to i) the climate changes and ii) socioeconomic development that the spatial correlation among LUCC, snow cover change, climate and socioeconomic changes are quantified by using liner regression model and negative / positive trend analysis. Our results showed that water bodies, bare land and grass land have decreasing notably. By contrast, crop land and urban area have continually increasing significantly, which are dominated in study area. The area of snow/ice have fluctuated and has strong seasonal trends, total annual snow cover

  1. Monitoring of environmental change in Dzungar basin by the analysis of multi temporal satellite data sets

    Science.gov (United States)

    Nakayama, Y.; Yanagi, T.; Nishimura, J.

    In recent 40-50 years, rapid environmental changes are shown in the arid and semi-arid regions of the inland areas in each continent. The environment change situation is especially remarkable at closed lakes and their vicinity of the Asian continent inland. This study aimed to investigate the environmental change and its cause in Dzungar basin of the central Asia through the analysis of multi-temporal satellite data sets. The multi temporal and multi stage satellite data sets were firstly created by using high spatial resolution satellite data such as LANDSAT/MSS TM, Terra/ASTER, and JERS-1/OPS, and wide observation satellite data such as NOAA/AVHRR and Terra/MODIS. Next, the fluctuations of the past about 50 years in water area of lakes were investigated in detail by analyzing the data sets, and also changes in the irrigated agricultural lands along the inflow rivers, and the snow and glacier covering the mountainous district were investigated. Finally, hydrological change situation and its cause in the object area were examined by comparing the analyzed results with meteorological data and auxiliary sources. The results of this study are summarized as follows; Most of closed lakes in Dzungar basin have shown the rapid shrinkages in the past about 50 years. However, it changed into the remarkable expansion of the water area since 2001. According to the analysis results of changes in the irrigated agricultural lands, snow and glacier extents, it was shown that the influence of human activities such as development of irrigation lands was bigger than the influence of the nature fluctuation based on the global warming as a cause of the change in closed lakes.

  2. Arctic glacier movement monitoring with GPS method on 2005

    Institute of Scientific and Technical Information of China (English)

    Ai Songtao; E Dongchen; Yan Ming; Ren Jiawen

    2006-01-01

    During the 2005 Arctic Yellow River Station expedition, the research on monitoring the movement and mass balance of two glaciers around Ny-Alesund,Station expedition were conducted. This paper analyzes the feasibility and advantage in using GPS method to monitor the Arctic glaciers'movement, estimates the precision of first time measured GPS data and discusses the relevant problems in surveying on the Arctic Glaciers with GPS.

  3. Method for Continuous Monitoring of Electrospray Ion Formation

    Science.gov (United States)

    Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard

    2017-10-01

    A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.

  4. Cloud detection method for Chinese moderate high resolution satellite imagery (Conference Presentation)

    Science.gov (United States)

    Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo

    2016-10-01

    Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.

  5. Satellite Remote Sensing with Artificial Neural Network Modeling Techniques for Water Quality Monitoring

    Science.gov (United States)

    Kuo, Y. C.; Chen, C. F.

    2016-12-01

    The analyzed parameters of the water quality samples in Lake Nicaragua and Lake Managua include basic physical and chemical water quality parameters, nutrients, bacteria and zooplankton index, heavy metals and organic compounds in the sediments etc. 5 parameters are tested to assess lake eutrophication. To associate with satellite data, the analysis is aim to establish a set of mathematical transformations to convert the model spectra of satellite imagery reactions on water quality parameters and further to calculate the concentration of the parameters in both lakes. The sampling period took place during the rainy season. The high cloud-covered satellite imagery did not provide a completed available data for the analysis. Therefore, we used mathematical techniques to remake an image which contains a completed lake areas. Following by using linear equation to build the water quality models, the results suggested that the testing of chlorophyll in the model performance was the most accurate, and then the suspended solids, total phosphorus and total nitrogen. Fecal colon bacilli, of all parameters, has the worst performance in testing accuracy.

  6. A novel localization method for noninvasive monitoring capsule

    Institute of Scientific and Technical Information of China (English)

    He Wenhui; Yan Guozheng; Jiang Pingping; Guo Xudong

    2006-01-01

    Noninvasive monitoring capsule for gastrointestinal tract can be swallowed by patient. It is of great importance for the physician to monitor the precise position of capsule in gastrointestinal tract. The authors investigated a novel method for it. Using three coils with DC current to excite magnetic field and one triaxial magnetoresistive sensor to measure the excited magnetic vectors, they tried to solve the problem.The authors provided the localization principle of the method and analyzed it by an experiment, too. The method may be applied in practice in the future though it is still immature now.

  7. Monitoring devices and systems for monitoring frequency hopping wireless communications, and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Derr, Kurt W.; Richardson, John G.

    2017-05-02

    Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.

  8. An automated processing chains for surface temperature monitoring on Earth's most active volcanoes by optical data from multiple satellites

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria

    2017-04-01

    The Geohazards Exploitation Platform, or GEP is one of six Thematic Exploitation Platforms developed by ESA to serve data user communities. As a new element of the ground segment delivering satellite results to users, these cloud-based platforms provide an online environment to access information, processing tools, computing resources for community collaboration. The aim is to enable the easy extraction of valuable knowledge from vast quantities of satellite-sensed data now being produced by Europe's Copernicus programme and other Earth observation satellites. In this context, the estimation of surface temperature on active volcanoes around the world is considered. E2E processing chains have been developed for different satellite data (ASTER, Landsat8 and Sentinel 3 missions) using thermal infrared (TIR) channels by applying specific algorithms. These chains have been implemented on the GEP platform enabling the use of EO missions and the generation of added value product such as surface temperature map, from not skilled users. This solution will enhance the use of satellite data and improve the dissemination of the results saving valuable time (no manual browsing, downloading or processing is needed) and producing time series data that can be speedily extracted from a single co-registered pixel, to highlight gradual trends within a narrow area. Moreover, thanks to the high-resolution optical imagery of Sentinel 2 (MSI), the detection of lava maps during an eruption can be automatically obtained. The proposed lava detection method is based on a contextual algorithm applied to Sentinel-2 NIR (band 8 - 0.8 micron) and SWIR (band 12 - 2.25 micron) data. Examples derived by last eruptions on active volcanoes are showed.

  9. PERFORMANCE ANALYSIS AND SIMULATION OF VARIOUS BURST TIME PLAN GENERATION METHODS IN BROADBAND SATELLITE MULTIMEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Feng Shaodong; Li Guangxia; Feng Qi

    2011-01-01

    The Burst Time Plan (BTP) generation is the key for resource allocation in Broadband Satellite Multimedia (BSM) system.The main purpose of this paper is to minimize the system response time to users' request caused by BTP generation as well as maintain the Quality of Service (QoS) and improve the channel utilization efficiency.Traditionally the BTP is generated periodically in order to simplify the implementation of the resource allocation algorithm.Based on the analysis we find that Periodical BTP Generation (P-BTPG) method cannot guarantee the delay performance,channel utilization efficiency and QoS simultaneously,especially when the capacity requests arrived randomly.The Optimized BTP Generation (O-BTPG) method is given based on the optimal scheduling period and scheduling latency without considering the signaling overhead.Finally,a novel Asynchronous BTP Generation (A-BTPG) method is proposed which is invoked according to users' requests.A BSM system application scenario is simulated.Simulation results show that A-BTPG is a trade-off between the performance and signaling overhead which can improve the system performance insensitive to the traffic pattern.This method can be used in the ATM onboard switching satellite system and further more can be expended to Digital Video Broadcasting-Return Channel Satellite (DVB-RCS) system or IP onboard routing BSM system in the future.

  10. SERVIR: From Space to Village. A Regional Monitoring and Visualization System For Environmental Management Using Satellite Applications For Sustainable Development

    Science.gov (United States)

    Sever, Tom; Stahl, H. Philip; Irwin, Dan; Lee, Daniel

    2007-01-01

    NASA is committed to providing technological support and expertise to regional and national organizations for earth science monitoring and analysis. This commitment is exemplified by NASA's long-term relationship with Central America. The focus of these efforts has primarily been to measure the impact of human development on the environment and to provide data for the management of human settlement and expansion in the region. Now, NASA is planning to extend and expand this capability to other regions of the world including Africa and the Caribbean. NASA began using satellite imagery over twenty-five years ago to locate important Maya archeological sites in Mesoamerica and to quantify the affect of deforestation on those sites. Continuing that mission, NASA has partnered with the U.S. Agency for International Development (USAID), the World Bank, the Water Center for the Humid Tropics of Latin America and the Caribbean (CATHALAC) and the Central American Commission for Environment and Development (CCAD) to develop SERVIR (Sistema Regional de Visualizacion y Monitoreo), for the Mesoamerican Biological Corridor. SERVIR has become one of the most important aspects of NASA's geospatial efforts in Central America by establishing a common access portal for information that affects the lives, livelihood and future of everyone in the region. SERVIR, most commonly referred to as a regional visualization and monitoring system, is a scientific and technological platform that integrates satellite and other geospatial data sets to generate tools for improved decision-making capabilities. It has a collection of data and models that are easily accessible to earth science managers, first responders, NGO's (Non-Government Organizations) and a host of others. SERVIR is currently used to monitor and forecast ecological changes as well as provide information for decision support during severe events such as forest fires, red tides,and tropical storms. Additionally, SERVIR addresses the

  11. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  12. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  13. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    Science.gov (United States)

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  14. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    Directory of Open Access Journals (Sweden)

    Carolien Toté

    2015-02-01

    Full Text Available Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT v2.0, Famine Early Warning System NETwork (FEWS NET Rainfall Estimate (RFE v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS are compared to independent gauge data (2001–2012. This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  15. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  16. Monitoring an air pollution episode in Shenzhen by combining MODIS satellite images and the HYSPLIT model

    Science.gov (United States)

    Li, Lili; Liu, Yihong; Wang, Yunpeng

    2017-07-01

    Urban air pollution is influenced not only by local emission sources including industry and vehicles, but also greatly by regional atmospheric pollutant transportation from the surrounding areas, especially in developed city clusters, like the Pearl River Delta (PRD). Taking an air pollution episode in Shenzhen as an example, this paper investigates the occurrence and evolution of the pollution episode and identifies the transport pathways of air pollutants in Shenzhen by combining MODIS satellite images and HYSPLIT back trajectory analysis. Results show that this pollution episode is mainly caused by the local emission of pollutants in PRD and oceanic air masses under specific weather conditions.

  17. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    Science.gov (United States)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  18. 78 FR 67360 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent Methods

    Science.gov (United States)

    2013-11-12

    ... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent... of the designation of five new equivalent methods for monitoring ambient air quality. SUMMARY: Notice... measuring concentrations of PM 10-2.5 , two for measuring PM 2.5, and one for measuring NO 2 in the...

  19. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Science.gov (United States)

    2012-09-11

    ... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method... monitoring ambient air quality. SUMMARY: Notice is hereby given that the Environmental Protection Agency (EPA... concentrations of PM 2.5 in the ambient air. FOR FURTHER INFORMATION CONTACT: Robert Vanderpool, Human...

  20. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  1. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN from a Geostationary Satellite.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The prediction of the short-term quantitative precipitation nowcasting (QPN from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC; the Horn-Schunck optical-flow scheme (PHS; and the Pyramid Lucas-Kanade Optical Flow method (PPLK, which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6. The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  2. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  3. A novel method to retrieve Aerosol Optical Thickness from high-resolution optical satellite images using an extended version of the Haze Optimized Transform (HOTBAR)

    Science.gov (United States)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  4. Tethered Satellites as Enabling Platforms for an Operational Space Weather Monitoring System

    Science.gov (United States)

    Krause, L. Habash; Gilchrist, B. E.; Bilen, S.; Owens, J.; Voronka, N.; Furhop, K.

    2013-01-01

    Space weather nowcasting and forecasting models require assimilation of near-real time (NRT) space environment data to improve the precision and accuracy of operational products. Typically, these models begin with a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g. via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative physics-based forward-prediction calculations. The issue of required space weather observatories to meet the spatial and temporal requirements of these models is a complex one, and we do not address that with this poster. Instead, we present some examples of how tethered satellites can be used to address the shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include very long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements will be presented for each space weather parameter considered in this study.

  5. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges

    Science.gov (United States)

    Cipollini, Paolo; Calafat, Francisco M.; Jevrejeva, Svetlana; Melet, Angelique; Prandi, Pierre

    2016-11-01

    We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.

  6. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley

    Directory of Open Access Journals (Sweden)

    Thomas J. Trout

    2012-02-01

    Full Text Available Reflective bands of Landsat-5 Thematic Mapper satellite imagery were used to facilitate the estimation of basal crop evapotranspiration (ETcb, or potential crop water use, in San Joaquin Valley fields during 2008. A ground-based digital camera measured green fractional cover (Fc of 49 commercial fields planted to 18 different crop types (row crops, grains, orchard, vineyard of varying maturity over 11 Landsat overpass dates. Landsat L1T terrain-corrected images were transformed to surface reflectance and converted to normalized difference vegetation index (NDVI. A strong linear relationship between NDVI and Fc was observed (r2 = 0.96, RMSE = 0.062. The resulting regression equation was used to estimate Fc for crop cycles of broccoli, bellpepper, head lettuce, and garlic on nominal 7–9 day intervals for several study fields. Prior relationships developed by weighing lysimeter were used to transform Fc to fraction of reference evapotranspiration, also known as basal crop coefficient (Kcb. Measurements of grass reference evapotranspiration from the California Irrigation Management Information System were then used to calculate ETcb for each overpass date. Temporal profiles of Fc, Kcb, and ETcb were thus developed for the study fields, along with estimates of seasonal water use. Daily ETcb retrieval uncertainty resulting from error in satellite-based Fc estimation was < 0.5 mm/d, with seasonal uncertainty of 6–10%. Results were compared with FAO-56 irrigation guidelines and prior lysimeter observations for reference.

  7. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges

    Science.gov (United States)

    Cipollini, Paolo; Calafat, Francisco M.; Jevrejeva, Svetlana; Melet, Angelique; Prandi, Pierre

    2017-01-01

    We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.

  8. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring

    Directory of Open Access Journals (Sweden)

    Pauline Dusseux

    2014-06-01

    Full Text Available The aim of this study was to assess the ability of optical images, SAR (Synthetic Aperture Radar images and the combination of both types of data to discriminate between grasslands and crops in agricultural areas where cloud cover is very high most of the time, which restricts the use of visible and near-infrared satellite data. We compared the performances of variables extracted from four optical and five SAR satellite images with high/very high spatial resolutions acquired during the growing season. A vegetation index, namely the NDVI (Normalized Difference Vegetation Index, and two biophysical variables, the LAI (Leaf Area Index and the fCOVER (fraction of Vegetation Cover were computed using optical time series and polarization (HH, VV, HV, VH. The polarization ratio and polarimetric decomposition (Freeman–Durden and Cloude–Pottier were calculated using SAR time series. Then, variables derived from optical, SAR and both types of remotely-sensed data were successively classified using the Support Vector Machine (SVM technique. The results show that the classification accuracy of SAR variables is higher than those using optical data (0.98 compared to 0.81. They also highlight that the combination of optical and SAR time series data is of prime interest to discriminate grasslands from crops, allowing an improved classification accuracy.

  9. Using satellite remote sensing to monitor the total suspended solids (TSS) over Penang Island, Malaysia

    Science.gov (United States)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Mohd. Saleh, N.

    2008-10-01

    Total suspended solid (TSS) is a major factor affecting water quality in aquatic ecosystem. An investigation has been conducted to test the feasibility of using SPOT 5 data for estimating TSS in the coastal waters of Penang Island, Malaysia. Atmospheric correction of the satellite measurements is critical for aquatic remote sensing. Atmospheric correction of the remotely sensed image was performed using the ENVI FLAASH. Water samples were collected simultaneously with the satellite image acquisition and later analyzed in the laboratory. The digital numbers for each band corresponding to the sea-truth locations were extracted and then converted into reflectance values. The variables of the reflectance were used for calibration of the water quality algorithm. Regression technique was employed to calibrate the algorithm using the SPOT multispectral signals. An algorithm was developed based on the reflectance model, which is a function of the inherent optical properties of water that can be related to the concentration of its constituents. Spatial distribution map of the water quality parameter was produced using the calibrated algorithm. The efficiency of the present algorithm, in comparison to other forms of algorithm, was also investigated. Finally, the TSS map was generated using the proposed algorithm.

  10. Comparison of simulation modeling and satellite techniques for monitoring ecological processes

    Science.gov (United States)

    Box, Elgene O.

    1988-01-01

    In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.

  11. The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting

    Science.gov (United States)

    Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas

    2016-04-01

    As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared

  12. Exploiting the power law distribution properties of satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite observations

    Science.gov (United States)

    Kumar, S. S.; Roy, D. P.; Boschetti, L.; Kremens, R.

    2011-10-01

    Instantaneous estimates of the power released by fire (fire radiative power, FRP) are available with satellite active fire detection products. The temporal integral of FRP provides an estimate of the fire radiative energy (FRE) that is related linearly to the amount of biomass burned needed by the atmospheric emissions modeling community. The FRE, however, is sensitive to satellite temporal and spatial FRP undersampling due to infrequent satellite overpasses, cloud and smoke obscuration, and failure to detect cool and/or small fires. Satellite FRPs derived over individual burned areas and fires have been observed to exhibit power law distributions. This property is exploited to develop a new way to derive FRE, as the product of the fire duration and the expected FRP value derived from the FRP power law probability distribution function. The method is demonstrated and validated by the use of FRP data measured with a dual-band radiometer over prescribed fires in the United States and by the use of FRP data retrieved from moderate resolution imaging spectroradiometer (MODIS) active-fire detections over Brazilian deforestation and Australian savanna fires. The biomass burned derived using the conventional FRP temporal integration and power law FRE estimation methods is compared with biomass burned measurements (prescribed fires) and available fuel load information reported in the literature (Australian and Brazilian fires). The results indicate that the FRE power law derivation method may provide more reliable burned biomass estimates under sparse satellite FRP sampling conditions and correct for satellite active-fire detection omission errors if the FRP power law distribution parameters and the fire duration are known.

  13. Evaluation of Satellite Image Correction Methods Caused by Differential Terrain Illumination

    Directory of Open Access Journals (Sweden)

    Purnama Budi Santosa

    2016-08-01

    Full Text Available The problem due to differential terrain illumination on satellite imagery is experienced by most of areas which are on mountainous terrain. This may cause variations in reflectance of similar ground features which lead to a misclassification of land cover classes due to different topographic positions. This phenomenon most commonly occurred in the areas which are located on southern and northern hemisphere because of the low sun inclination. This problem has been a major interest for researchers to be solved prior to the land cover classification process. For satellite images which experience this kind of problem, topographic correction need to be applied in order to reduce the illumination effects prior to land cover classification process. This research is aimed at conducting topographic correction of multi spectral SPOT satellite data as well as evaluating the three topographic correction methods. They are Cosine which is based on Lambertian reflectance assumption, as well as Minnaert correction and C correction methods which are based on non-Lambertian reflectance assumption. The data used in this study are two scenes of SPOT images of forested mountainous area of Miyazaki Prefecture, Kyushu, Japan. Research steps had been conducted in this study including geometric correction, sample data collection for calculating Minnaert constants and C constants at location which represents the whole study area, topographic correction for two scenes SPOT images, and results analysis. The results show that Cosine method did not show good performance for the study area which is topographically dominated by rugged terrain. Whereas Minnaert method and C method gave satisfactory results as is indicated by the statistical data as well as visual interpretation. However the Minnaert correction method showed slightly better performance than the C correction method.

  14. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.

    2014-01-01

    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  15. Satellite Images for Monitoring Mangrove Cover Changes in a Fast Growing Economic Region in Southern Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Kasturi Devi Kanniah

    2015-10-01

    Full Text Available Effective monitoring is necessary to conserve mangroves from further loss in Malaysia. In this context, remote sensing is capable of providing information on mangrove status and changes over a large spatial extent and in a continuous manner. In this study we used Landsat satellite images to analyze the changes over a period of 25 years of mangrove areas in Iskandar Malaysia (IM, the fastest growing national special economic region located in southern Johor, Malaysia. We tested the use of two widely used digital classification techniques to classify mangrove areas. The Maximum Likelihood Classification (MLC technique provided significantly higher user, producer and overall accuracies and less “salt and pepper effects” compared to the Support Vector Machine (SVM technique. The classified satellite images using the MLC technique showed that IM lost 6740 ha of mangrove areas from 1989 to 2014. Nevertheless, a gain of 710 ha of mangroves was observed in this region, resulting in a net loss of 6030 ha or 33%. The loss of about 241 ha per year of mangroves was associated with a steady increase in urban land use (1225 ha per year from 1989 until 2014. Action is necessary to protect the existing mangrove cover from further loss. Gazetting of the remaining mangrove sites as protected areas or forest reserves and introducing tourism activities in mangrove areas can ensure the continued survival of mangroves in IM.

  16. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    Science.gov (United States)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  17. An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

    Science.gov (United States)

    Kother, L. K.; Hammer, M. D.; Finlay, C. C.; Olsen, N.

    2014-12-01

    We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field data are utilized at all latitudes. Estimates of core and large-scale magnetospheric sources are removed from the satellite measurements using the CHAOS-4 model. Quiet-time and night-side data selection criteria are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model regularization (either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices are implemented, accounting for the dependence of data error variances on quasi-dipole latitudes. Results show good consistency with the CM5 and MF7 models for spherical harmonic degrees up to n = 95. Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available. To illustrate this possibility, we present preliminary results from a case study combining satellite measurements and local airborne scalar magnetic measurements of the Norwegian coastline.

  18. Annual and Seasonal Glacier-Wide Surface Mass Balance Quantified from Changes in Glacier Surface State: A Review on Existing Methods Using Optical Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Antoine Rabatel

    2017-05-01

    Full Text Available Glaciers are one of the terrestrial essential climate variables (ECVs as they respond very sensitively to climate change. A key driver of their response is the glacier surface mass balance that is typically derived from field measurements. It deserves to be quantified over long time scales to better understand the accumulation and ablation processes at the glacier surface and their relationships with inter-annual changes in meteorological conditions and long-term climate changes. Glaciers with in situ monitoring of surface mass balance are scarce at the global scale, and satellite remote sensing provides a powerful tool to increase the number of monitored glaciers. In this study, we present a review of three optical remote sensing methods developed to quantify seasonal and annual glacier surface mass balances. These methodologies rely on the multitemporal monitoring of the end-of-summer snow line for the equilibrium-line altitude (ELA method, the annual cycle of glacier surface albedo for the albedo method and the mapping of the regional snow cover at the seasonal scale for the snow-map method. Together with a presentation of each method, an application is illustrated. The ELA method shows promising results to quantify annual surface mass balance and to reconstruct multi-decadal time series. The other two methods currently need a calibration on the basis of existing in situ data; however, a generalization of these methods (without calibration could be achieved. The two latter methods show satisfying results at the annual and seasonal scales, particularly for the summer surface mass balance in the case of the albedo method and for the winter surface mass balance in the case of the snow-map method. The limits of each method (e.g., cloud coverage, debris-covered glaciers, monsoon-regime and cold glaciers, their complementarities and the future challenges (e.g., automating of the satellite images processing, generalization of the methods needing

  19. Monitoring system and methods for a distributed and recoverable digital control system

    Science.gov (United States)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  20. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel

    DEFF Research Database (Denmark)

    Økland, Finn; Thorstad, Eva B.; Westerberg, Håkan

    2013-01-01

    Background Four methods for attaching pop-up satellite transmitters to European eel were tested in the laboratory by recording long-term tag retention, growth and survival; short-term behavioral responses; and physical damage from attachments. Results All eels survived until they lost their tag...... migration studies based on a long tag retention time, minimal behavioral reactions, negligible damage to the swimming muscle, and minimal physical damage both for fish retaining and losing the tag. Although tag retention was 50% over six months, those losing their tags still retained them for 114 to 134...... from 275 silver eels released on European coasts equipped with pop-up satellite transmitters or similarly sized pop-up data storage tags to study the ocean spawning migration indicated a large premature tag release. This was partly related to mechanical tag loss, but probably mainly to a high predation...

  1. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  2. Satellite Monitoring of Long-Range Transport of Asian Dust Storms from Sources to Sinks

    Science.gov (United States)

    Hsu, N.; Tsay, S.; Jeong, M.; King, M.; Holben, B.

    2007-05-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Deep Blue algorithm has recently been integrated into the MODIS processing stream and began to provide aerosol products over land as part of the opera-tional MYD04 products. In this talk, we will show the comparisons of the MODIS Deep Blue products with data from AERONET sunphotometers on a global ba-sis. The results indicate reasonable agreements between these two. These new

  3. Seasonally Frozen Soil Monitoring Using Passive Microwave Satellite Data and Simulation Modeling

    Science.gov (United States)

    Toll, D. L.; Owe, M.; Levine, E.

    1998-01-01

    Satellite data and simulation modeling were used to assess seasonally frozen soils in the central US - Canada borders area (46-53 degrees N and 96-108 degrees). We used Scanning Multichannel Microwave Radiometer (SMMR) satellite data to delineate the top layer of frozen soils. SMMR is a passive microwave sensor having five channels (6.6, 10, 18, 21 and 37 GHz) with a horizontal and vertical polarization. SMRR data are available between 1978-1987 with noon and midnight overpass and footprint sizes between 25 km and 150 km. SMMR data were processed from resampled 1/4 degree grid cells during fall freeze-up and spring thaw (fall 1985 - spring 1987). The dielectric properties of a target may directly affect the satellite signal. The dielectric value is an order of magnitude smaller for frozen soil water. There are other significant changes to the emitted microwave signal from changes to the surface physical temperature, attenuation of the soil signal from plant water and soil moisture. We further characterized the temporal and spatial dynamic of frozen soils using the FroST (Frozen Soil Temperature) simulation model. The FroST model was used to further predict soil water and ice content, and soil temperature. SMMR results were compared versus 5-cm soil temperature data from available weather stations (14 in Canada and 11 for available months in the US). SMMR data were analyzed as a function of frequency, polarization, polarization difference, and "frequency gradient". In addition, vegetation density, physical temperature and snow depth were also considered. Preliminary analysis of SMMR derived frozen soil/thaw classification using a simple threshold classification indicates a mean overall classification accuracy by season of 85 percent. A sensitivity analysis for different soils with varying amounts of snow was conducted with FroST, which showed that the amount of snow, and the time of snow fall and melt affected the ice and water content, and depth of thaw. These

  4. The methodical statutes monitoring of activity by innovative structures

    OpenAIRE

    Stoianovskii, Andrii; Baranovska, Sofia; Stoianovska, Iryna

    2012-01-01

    In the article it is suggested to perfect methodical recommendations in relation to monitoring of activity of innovative structures, which, among other, allow to mark off the results of activity of leading organ of management and contractors of innovative projects, registered in her limits an innovative structure.

  5. Fluorescent method for monitoring cheese starter permeabilization and lysis

    NARCIS (Netherlands)

    Bunthof, C.J.; Schalkwijk, van S.; Meijer, W.; Abee, T.; Hugenholtz, J.

    2001-01-01

    A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium iod

  6. Developing a Satellite Based Automatic System for Crop Monitoring: Kenya's Great Rift Valley, A Case Study

    Science.gov (United States)

    Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins

    2016-08-01

    The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.

  7. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations

    NARCIS (Netherlands)

    Drews, A.; de Keizer, A.C.; Beyer, H.G.; Lorenz, E.; Betcke, J.W.H.; van Sark, W.G.J.H.M.; Heydenreich, W.; Wiemken, E.; Stettler, S.; Toggweiler, P.; Bofinger, S.; Schneider, M.; Heilscher, G.; Heinemann, D.

    2007-01-01

    Small grid-connected photovoltaic systems up to 5 kWp are often not monitored because advanced surveillance systems are not economical. Hence, some system failures which lead to partial energy losses stay unnoticed for a long time. Even a failure that results in a larger energy deficit can be diffic

  8. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method.

    Science.gov (United States)

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-03-04

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.

  9. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method

    Directory of Open Access Journals (Sweden)

    Wutao Li

    2016-03-01

    Full Text Available Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms level and the monitoring time is on microsecond (μs level, which make the proposed approach usable in practical interference monitoring applications.

  10. A fast and automatic mosaic method for high-resolution satellite images

    Science.gov (United States)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  11. Role of Indian remote sensing imaging satellites for the Antarctic monitoring and mapping: a case study around Indian Antarctic research stations

    Science.gov (United States)

    Jayaprasad, P.; Mehra, Raghav; Chawla, Saket; Rajak, D. Ram; Oza, Sandip R.

    2016-05-01

    Antarctic research station's existence largely depend on the supply of fuel, food and other commodities through Antarctic Scientific Expedition using ship voyage. Safer Ship Navigation demands high resolution satellite monitoring of the ice conditions which varies from 30 km to 200 km from the Antarctic coast of Research stations. During the last couple of years Indian Satellites play a major role in safer ship navigation in sea ice regions of the Arctic and the Antarctic. Specifically Indian Scientific Expedition to the Antarctica (ISEA) through National Centre for Antarctic and Oceanic Research (NCAOR) is one of the beneficiaries for safer ship navigation using information derived from Indian Satellite data. Space Applications Centre, Indian Space Research Organisation (SAC-ISRO) is providing Sea Ice Advisories for the safer optimum entry and exit for the expedition ship at two of the Research stations Bharati and Maitri. Two of the Indian Satellites namely Radar Imaging Satellite-1 (RISAT-1) and ResourceSAT-2 (RS-2) are the two major workhorses of ISRO for monitoring and mapping of the Antarctic terrain. The present study demonstrate the utilisation potential of these satellite images for various Polar Science Applications. Mosaic of the Antarctic Terrain was generated from RISAT-1 CRS data. The preliminary results of the mosaic from CRS- circular polarisation data is presented. Demonstration of the study is extended for other applications such as change detection studies, safer ship navigation and extreme events of Antarctica. The use of multi resolution multi sensor data is also shown in the study.

  12. Stem cell monitoring with a direct or indirect labeling method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)

    2016-12-15

    The molecular imaging techniques allow monitoring of the transplanted cells in the same individuals over time, from early localization to the survival, migration, and differentiation. Generally, there are two methods of stem cell labeling: direct and indirect labeling methods. The direct labeling method introduces a labeling agent into the cell, which is stably incorporated or attached to the cells prior to transplantation. Direct labeling of cells with radionuclides is a simple method with relatively fewer adverse events related to genetic responses. However, it can only allow short-term distribution of transplanted cells because of the decreasing imaging signal with radiodecay, according to the physical half-lives, or the signal becomes more diffuse with cell division and dispersion. The indirect labeling method is based on the expression of a reporter gene transduced into the cell before transplantation, which is then visualized upon the injection of an appropriate probe or substrate. In this review, various imaging strategies to monitor the survival and behavior change of transplanted stem cells are covered. Taking these new approaches together, the direct and indirect labeling methods may provide new insights on the roles of in vivo stem cell monitoring, from bench to bedside.

  13. Reconstruction of incomplete satellite SST data sets based on EOF method

    Institute of Scientific and Technical Information of China (English)

    DING Youzhuan; WEI Zhihui; MAO Zhihua; WANG Xiaofei; PAN Delu

    2009-01-01

    As for the satellite remote sensing data obtained by the visible and infrared bands inversion, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thin clouds difficult to be detected would cause the data of the inversion products to be abnormal. Alvera et al.(2005) proposed a method for the reconstruction of missing data based on an Empirical Orthogonal Functions (EOF) decomposition, but his method couldn't process these images presenting extreme cloud coverage(more than 95%), and required a long time for reconstruction. Besides, the abnormal data in the images had a great effect on the reconstruction result.Therefore, this paper tries to improve the study result. It has reconstructed missing data sets by twice applying EOF decomposition method. Firstly, the abnormity time has been detected by analyzing the temporal modes of EOF decomposition, and the abnormal data have been eliminated.Secondly, the data sets, excluding the abnormal data, are analyzed by using EOF decomposition,and then the temporal modes undergo a filtering process so as to enhance the ability of reconstructing the images which are of no or just a little data, by using EOF. At last, this method has been applied to a large data set, i.e. 43 Sea Surface Temperature (SST) satellite images of the Changjiang River (Yangtze River) estuary and its adjacent areas, and the total reconstruction root mean square error (RMSE) is 0.82℃. And it has been proved that this improved EOF reconstruction method is robust for reconstructing satellite missing data and unreliable data.

  14. Unsupervised process monitoring and fault diagnosis with machine learning methods

    CERN Document Server

    Aldrich, Chris

    2013-01-01

    This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data

  15. An empirical method of RH correction for satellite estimation of ground-level PM concentrations

    Science.gov (United States)

    Wang, Zifeng; Chen, Liangfu; Tao, Jinhua; Liu, Yang; Hu, Xuefei; Tao, Minghui

    2014-10-01

    A hygroscopic growth model suitable for local aerosol characteristics and their temporal variations is necessary for accurate satellite retrieval of ground-level particulate matters (PM). This study develops an empirical method to correct the relative humidity (RH) impact on aerosol extinction coefficient and to further derive PM concentrations from satellite observations. Not relying on detailed information of aerosol chemical and microphysical properties, this method simply uses the in-situ observations of visibility (VIS), RH and PM concentrations to characterize aerosol hygroscopicity, and thus makes the RH correction capable of supporting the satellite PM estimations with large spatial and temporal coverage. In this method, the aerosol average mass extinction efficiency (αext) is used to describe the general hygroscopic growth behaviors of the total aerosol populations. The association between αext and RH is obtained through empirical model fitting, and is then applied to carry out RH correction. Nearly one year of in-situ measurements of VIS, RH and PM10 in Beijing urban area are collected for this study and RH correction is made for each of the months with sufficient data samples. The correlations between aerosol extinction coefficients and PM10 concentrations are significantly improved, with the monthly correlation R2 increasing from 0.26-0.63 to 0.49-0.82, as well as the whole dataset's R2 increasing from 0.36 to 0.68. PM10 concentrations are retrieved through RH correction and validated for each season individually. Good agreements between the retrieved and observed PM10 concentrations are found in all seasons, with R2 ranging from 0.54 in spring to 0.73 in fall, and the mean relative errors ranging from -2.5% in winter to -10.8% in spring. Based on the satellite AOD and the model simulated aerosol profiles, surface PM10 over Beijing area is retrieved through the RH correction. The satellite retrieved PM10 and those observed at ground sites agree well

  16. Cost Analysis of Algorithm Based Billboard Manger Based Handover Method in LEO satellite Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar Sikdar

    2012-12-01

    Full Text Available Now-a-days LEO satellites have an important role in global communication system. They have some advantages like low power requirement and low end-to-end delay, more efficient frequency spectrum utilization between satellites and spot beams over GEO and MEO. So in future they can be used as a replacement of modern terrestrial wireless networks. But the handover occurrence is more due to the speed of the LEOs. Different protocol has been proposed for a successful handover among which BMBHO is more efficient. But it had a problem during the selection of the mobile node during handover. In our previous work we have proposed an algorithm so that the connection can be established easily with the appropriate satellite. In this paper we will evaluate the mobility management cost of Algorithm based Billboard Manager Based Handover method (BMBHO. A simulation result shows that the cost is lower than the cost of Mobile IP of SeaHO-LEO and PatHOLEO

  17. Inter-satellite coherent optical communication locked frequency analysis and method

    Science.gov (United States)

    Guo, Haichao; She, Shang; Xiaojun, Li; Song, Dawei

    2014-10-01

    In free space optical homodyne receiver that analyze Residual carrier COSTAS loop, Inter-satellite LEO-GEO laser communication link frequency analysis, result from Doppler frequency shift 10GHz in the maximum range, LEO-GEO inter-satellite laser links between Doppler rate of change in the 20MHz/s. The optical homodyne COSTAS receiver is the application in inter-satellite optical link coherent communication system. The homodyne receiver is the three processes: Scanning frequency, Locked frequency and Locked phase, before the homodyne coherent communication. The processes are validated in lab., and the paper presents the locked frequency data and chart, LO laser frequency with triangle control scanning and receiving optical frequency is mixed less 100MHz intermediate frequency, locked frequency range between 100MHz and 1MHz basically, discriminator method determines mixing intermediate frequency less 1MHz between the signal laser and the LO laser with the low-pass filter due to frequency loop and phase loop noise. When two loops are running, the boundary frequency of laser tuning is fuzzy, so that we must be decoupling internal PID parameters. In the Locked frequency and phase COSTAS loop homodyne receiver gave the eye-diagram with Bit error rate 10E-7.

  18. Blind Equalization of a Nonlinear Satellite System Using MCMC Simulation Methods

    Directory of Open Access Journals (Sweden)

    Sénécal Stéphane

    2002-01-01

    Full Text Available This paper proposes the use of Markov Chain Monte-Carlo (MCMC simulation methods for equalizing a satellite communication system. The main difficulties encountered are the nonlinear distorsions caused by the amplifier stage in the satellite. Several processing methods manage to take into account the nonlinearity of the system but they require the knowledge of a training/learning input sequence for updating the parameters of the equalizer. Blind equalization methods also exist but they require a Volterra modelization of the system. The aim of the paper is also to blindly restore the emitted message. To reach the goal, we adopt a Bayesian point of view. We jointly use the prior knowledge on the emitted symbols, and the information available from the received signal. This is done by considering the posterior distribution of the input sequence and the parameters of the model. Such a distribution is very difficult to study and thus motivates the implementation of MCMC methods. The presentation of the method is cut into two parts. The first part solves the problem for a simplified model; the second part deals with the complete model, and a part of the solution uses the algorithm developed for the simplified model. The algorithms are illustrated and their performance is evaluated using bit error rate versus signal-to-noise ratio curves.

  19. Impedance plethysmography: a new method for continuous muscle perfusion monitoring.

    Science.gov (United States)

    Concannon, M J; Stewart, D H; Welsh, C F; Puckett, C L

    1991-08-01

    Vigilant postoperative monitoring of the buried muscle flap is critical after free transfer because early diagnosis of vascular insufficiency is essential to allow prompt correction. We have identified a monitoring method utilizing needle electrodes and impedance plethysmography that gives a beat-to-beat representation of muscular perfusion. In 25 New Zealand White rabbits the gastrocnemius muscle was isolated on its vascular pedicle, and two intramuscular needle electrodes were placed. The instantaneous impedance changes of the muscle (corresponding to the pulsatile volume changes of perfusion) were measured and recorded. Using this representation of perfusion, an independent judge was able to correctly diagnose muscular ischemia 100 percent of the time (n = 25). Further, the judge was able to correctly distinguish the ischemia as arterial (n = 10) or venous (n = 10) in origin 100 percent of the time. Additionally, we monitored muscle perfusion transcutaneously in five free muscle flaps and demonstrated a reliable impedance signal that correlated with perfusion.

  20. 11 years observing with OMC, the Optical Monitoring Camera on board the INTEGRAL satellite

    Science.gov (United States)

    Alfonso-Garzón, J.; Domingo, A.; Mas-Hesse, J. M.

    2015-05-01

    The Optical Monitoring Camera (OMC) on board the INTEGRAL observatory provides photometry in the Johnson V band, complementing the high-energy instruments which take images and spectra in hard X-rays and soft gamma--rays. After 11 years of mission operations, it has been possible to compile optical photometric light curves for a very large number of objects, with observational time spans of more than a decade and with a stable and consistent photometric calibration. In this contribution, we present a summary of some of the most interesting scientific results reached with INTEGRAL/OMC data, including the compilation of a catalogue of optically variable sources, some results on the analysis of temporal correlations between different energy ranges and the OMC monitoring of the supernova SN 2014J.

  1. Near real-time routine for volcano monitoring using infrared satellite data

    Directory of Open Access Journals (Sweden)

    Claudia Spinetti

    2011-12-01

    Full Text Available An Advanced Very-High-Resolution Radiometer (AVHRR routine for hot-spot detection and effusion rate estimation (AVHotRR using AVHRR infrared space-borne images is presented here for the monitoring of active lava flow. AVHotRR uses directly broadcast National Oceanic and Atmospheric Administration (NOAA-AVHRR remotely sensed data. The 2006 summit eruption of Mount Etna provided the opportunity to test the products generated by AVHotRR for monitoring purposes. Low spatial and high temporal resolution products can also be used as inputs of flow models to drive numerical simulations of lava-flow paths and thus to provide quantitative hazard assessment and volcanic risk mitigation.

  2. A New Damage Assessment Method by Means of Neural Network and Multi-Sensor Satellite Data

    Directory of Open Access Journals (Sweden)

    Alessandro Piscini

    2017-08-01

    Full Text Available Artificial Neural Network (ANN is a valuable and well-established inversion technique for the estimation of geophysical parameters from satellite images. After training, ANNs are able to generate very fast products for several types of applications. Satellite remote sensing is an efficient way to detect and map strong earthquake damage for contributing to post-disaster activities during emergency phases. This work aims at presenting an application of the ANN inversion technique addressed to the evaluation of building collapse ratio (CR, defined as the number of collapsed buildings with respect to the total number of buildings in a city block, by employing optical and SAR satellite data. This is done in order to directly relate changes in images with damage that has occurred during strong earthquakes. Furthermore, once they have been trained, neural networks can be used rapidly at application stage. The goal was to obtain a general tool suitable for re-use in different scenarios. An ANN has been implemented in order to emulate a regression model and to estimate the CR as a continuous function. The adopted ANN has been trained using some features obtained from optical and Synthetic Aperture Radar (SAR images, as inputs, and the corresponding values of collapse ratio obtained from the survey of the 2010 M7 Haiti Earthquake, i.e., as target output. As regards the optical data, we selected three change parameters: the Normalized Difference Index (NDI, the Kullback–Leibler divergence (KLD, and Mutual Information (MI. Concerning the SAR images, the Intensity Correlation Difference (ICD and the KLD parameters have been considered. Exploiting an object-oriented approach, a segmentation of the study area into several regions has been performed. In particular, damage maps have been generated by considering a set of polygons (in which satellite parameters have been calculated extracted from the open source Open Street Map (OSM geo-database. The trained

  3. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    Science.gov (United States)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  4. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  5. Development and field-testing of the BENTO box: A new satellite-linked data collection system for volcano monitoring

    Science.gov (United States)

    Roman, D. C.; Behar, A.; Elkins-Tanton, L. T.; Fouch, M. J.

    2013-12-01

    Currently it is impossible to monitor all of Earth's hazardous volcanoes for precursory eruption signals, and it is particularly difficult to monitor volcanoes in remote regions. The primary constraint is the high cost of deploying monitoring instrumentation (e.g., seismometers, gas sensors), which includes the cost of reliable, high-resolution sensors, the cost of maintenance (including periodic travel to remote areas), and the cost/difficulty of developing remote data telemetry. We are developing an integrated monitoring system, the BENTO (Behar's ENvironmental Telemetry and Observation) box that will allow identification of restless volcanoes through widespread deployment of robust, lightweight, low-cost, easily deployable monitoring/telemetry systems. Ultimately, we expect that this strategy will lead to more efficient allocation of instrumentation and associated costs. BENTO boxes are portable, autonomous, self-contained data collection systems are designed for long-term operation (up to ~12 months) in remote environments. They use low-cost two-way communication through the commercial Iridium satellite network, and, depending on data types, can pre-process raw data onboard to obtain useful summary statistics for transmission through Iridium. BENTO boxes also have the ability to receive commands through Iridium, allowing, for example, remote adjustment of sampling rates, or requests for segments of raw data in cases where only summary statistics are routinely transmitted. Currently, BENTO boxes can measure weather parameters (e.g., windspeed, wind direction, rainfall, humidity, atmospheric pressure), volcanic gas (CO2, SO2, and halogens) concentrations, and seismicity. In the future, we plan to interface BENTO boxes with additional sensors such as atmospheric pressure/infrasound, tilt, GPS and temperature. We are currently field-testing 'BENTO 1' boxes equipped with gas and meteorological sensors ('BENTO 1') at Telica Volcano, Nicaragua; Kilauea Volcano, Hawai

  6. A Three-Dimensional Satellite Retrieval Method for Atmospheric Temperature and Moisture Profiles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; QIU Chongjian; HUANG Jianping

    2008-01-01

    A three-dimensional variational method iS proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements.To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture.an EOF technique iS used to decompose the temperature and moisture field in a 3-D space.A number of numerical simulations are conducted and they demonstrate that the 3-D method iS less sensitive to the observation errors compared to the 1-D method.When the observation error iS more than 2.0 K.to get the best results.the truncation number for the EOF'S expansion have to be restricted to 2 in the 1-D method.while it can be set as large as 40 in a 3-D method.This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method.Compared to the 1-D method.the rlTLS errors of the 3-D method are reduced by 48%and 36%for the temperature and moisture retrievals,respectively.Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002,the temperature and moisture profiles are retrieved over a region(20°-45°N,100°-125°E)and compared with 37 collocated radiosonde observations.The results show that the retrieval accuracy with a 3-D method iS significantly higher than those with the 1-D method.

  7. Instrument Description: The Total Solar Irradiance Monitor on the FY-3C Satellite, an Instrument with a Pointing System

    Science.gov (United States)

    Wang, Hongrui; Wang, Yupeng; Ye, Xin; Yang, Dongjun; Wang, Kai; Li, Huiduan; Fang, Wei

    2017-01-01

    The Total Solar Irradiance Monitor (TSIM) onboard the nadir Feng Yun-3C (FY-3C) satellite provides measurements of the total solar irradiance with accurate solar tracking and sound thermal stability of its heat sink. TSIM/FY-3C mainly consists of the pointing system, the radiometer package, the thermal control system, and the electronics. Accurate solar tracking is achieved by the pointing system, which greatly improves the science data quality when compared with the previous TSIM/FY-3A and TSIM/FY-3B. The total solar irradiance (TSI) is recorded by TSIM/FY-3C about 26 times each day, using a two-channel radiometer package. One channel is used to perform routine observation, and the other channel is used to monitor the degradation of the cavity detector in the routine channel. From the results of the ground test, the incoming irradiance is measured by the routine channel (AR1) with a relative uncertainty of 592 ppm. A general description of the TSIM, including the instrument modules, uncertainty evaluation, and its operation, is given in this article.

  8. Question No. 5: What Role Can Satellites Take, as a Complement to Ground Based Measurement Systems, to Provide Sustained Observations to Monitor GHG Emissions?

    Science.gov (United States)

    Chahine, Moustafa; Olsen, Edward

    2011-01-01

    What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions (e.g., CO2, CH4, O3, N2O, CFC s, NH3, and NF3) that contribute to global warming?

  9. Monitoring the Urban Growth of Dhaka (bangladesh) by Satellite Imagery in Flooding Risk Management Perspective

    Science.gov (United States)

    Bitelli, G.; Franci, F.; Mandanici, E.

    2013-01-01

    There is large consensus that demographic changes, the lack of appropriate environmental policies and sprawling urbanization result in high vulnerability and exposure to the natural disasters. This work reports some experiences of using multispectral satellite imagery to produce landuse/cover maps for the Dhaka city, the capital of Bangladesh, which is subject to frequent flooding events.The activity was conducted in collaboration with the non-profit organization ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The Landsat images acquired in 2000, 2002 and 2009 were used to evaluate the urban growth in order to support risk assessment studies; to identify areas routinely flooded during the monsoon season, the image of October 2009 (the most critical month for the effects of rain) was compared with two images acquired in January and February 2010. The analysis between 2000 and 2009 was able to quantify a very rapid growth of the metropolis, with an increase in built-up areas from 75 to 111 km2. The analysis highlights also a sharp rise of Bare soil class, likely related to the construction of embankments for the creation of new building space; consequently a decrease of cultivated land was observed. In particular, these artificial islands have been invading flooding areas. The change detection procedure also showed that the flooding in October 2009 affected about 20% (115 out of 591 km2) of the entire study area; furthermore these areas became wetlands and farmland over the next three/four months.

  10. Satellite geodetic monitoring of the Vladikavkaz active fault zone: First results

    Science.gov (United States)

    Milyukov, V. K.; Mironov, A. P.; Steblov, G. M.; Ovsyuchenko, A. N.; Rogozhin, E. A.; Drobyshev, V. N.; Kusraev, A. G.; Khubaev, Kh. M.; Torchinov, Kh.-M. Z.

    2017-07-01

    A geodetic network of Global Satellite Navigation System (GNSS) observation sites was organized in 2014-2015 for studying the contemporary crustal motions in the zone of the Vladikavkaz deep fault (Milyukov et al., 2014; 2015). The measurements were conducted and the first velocity estimates obtained testifying to the consistency of crustal motions in the Vladikavkaz fault zone and the Ossetian region overall in the ITRG2008 system. The first results show that the velocities and directions of horizontal motions do not change upon the transition of the fault zone. In correspondence with the northeastern orientation of the site displacement vectors and sublatitudinal trend of the disjunctive zone, the presence of left-lateral strike-slip displacements along the branches of an active fault should be expected. However, the signs pointing to the activation of motion in the fault zone are absent. Besides, even the manifestation of weak seismicity has not been observed within the high-magnitude seismogenic Vladikavkaz zone associated with this fault for more than 25 years. This suggests the passive present state of this structure, one of the largest disjunctive structures of the Northern Caucasus. In order to verify this conclusion and revealing the kinematic pattern of the displacements associated with the fault structure it is reasonable to continue the measurements.

  11. Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations.

    Science.gov (United States)

    Bortoli, Daniele; Silva, Ana Maria; Costa, Maria João; Domingues, Ana Filipa; Giovanelli, Giorgio

    2009-07-20

    The SPATRAM (Spectrometer for Atmospheric TRAcers Monitoring) instrument has been developed as a result of the collaboration between CGE-UE, ISAC-CNR and Italian National Agency for New Technologies, Energy and the Environment (ENEA). SPATRAM is a multi-purpose UV-Vis-scanning spectrometer (250 - 950 nm) and it is installed at the Observatory of the CGE, in Evora, since April 2004. A brief description of the instrument is given, highlighting the technological innovations with respect to the previous version of similar equipment. The need for such measurements automatically taken on a routine basis in south-western European regions, specifically in Portugal, has encouraged the development and installation of the equipment and constitutes a major driving force for the present work. The main features and some improvements introduced in the DOAS (Differential Optical Absorption Spectroscopy) algorithms are discussed. The results obtained applying DOAS methodology to the SPATRAM spectrometer measurements of diffused spectral sky radiation are presented in terms of diurnal and seasonal variations of nitrogen dioxide (NO(2)) and ozone (O(3)). NO(2) confirms the typical seasonal cycle reaching the maximum of (6.5 +/- 0.3) x 10(+15) molecules cm(-2) for the sunset values (PM), during the summer season, and the minimum of (1.55 +/- 0.07) x 10(+15) molecules cm(-2) for the sunrise values (AM) in winter. O(3) presents the maximum total column of (433 +/- 5) Dobson Unit (DU) in the spring season and the minimum of (284 +/- 3) DU during the fall period. The huge daily variations of the O(3) total column during the spring season are analyzed and discussed. The ground-based results obtained for NO(2) and O(3) column contents are compared with data from satellite-borne equipment (GOME - Global Ozone Monitoring Experiment; SCIAMACHY - Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY; TOMS - Total Ozone Monitoring Spectrometer) and it is shown that the two data

  12. Evaluation of methods to derive green-up dates based on daily NDVI satellite observations

    Science.gov (United States)

    Doktor, Daniel

    2010-05-01

    Bridging the gap between satellite derived green-up dates and in situ phenological observations has been the purpose of many studies over the last decades. Despite substantial advancements in satellite technology and data quality checks there is as yet no universally accepted method for extracting phenological metrics based on satellite derived vegetation indices. Dependent on the respective method derived green-up dates can vary up to serveral weeks using identical data sets. Consequently, it is difficult to compare various studies and to accurately determine an increased vegetation length due to changing temperature patterns as observed by ground phenological networks. Here, I compared how the characteristic NDVI increase over temperate deciduous forests in Germany in spring relates to respective budburst events observed on the ground. MODIS Terra daily surface reflectances with a 250 m resolution (2000-2008) were gathered to compute daily NDVI values. As ground truth, observations of the extensive phenological network of the German Weather Service were used. About 1500 observations per year and species (Beech, Oak and Birch) were available evenly distributed all over Germany. Two filtering methods were tested to reduce the noisy raw data. The first method only keeps NDVI values which are classified as ‚ideal global quality' and applies on those a temporal moving window where values are removed which differ more than 20% of the mean. The second method uses an adaptation of the BISE (Best Index Slope Extraction) algorithm. Subsequently, three functions were fitted to the selected observations: a simple linear interpolation, a sigmoidal function and a double logistic sigmoidal function allowing to approximate two temporally separated green-up signals. The green-up date was then determined at halfway between minimum and maximum (linear interpolation) or at the inflexion point of the sigmoidal curve. A number of global threshold values (NDVI 0.4,0.5,0.6) and

  13. Video methods for evaluating physiologic monitor alarms and alarm responses.

    Science.gov (United States)

    Bonafide, Christopher P; Zander, Miriam; Graham, Christian Sarkis; Weirich Paine, Christine M; Rock, Whitney; Rich, Andrew; Roberts, Kathryn E; Fortino, Margaret; Nadkarni, Vinay M; Lin, Richard; Keren, Ron

    2014-01-01

    False physiologic monitor alarms are extremely common in the hospital environment. High false alarm rates have the potential to lead to alarm fatigue, leading nurses to delay their responses to alarms, ignore alarms, or disable them entirely. Recent evidence from the U.S. Food and Drug Administration (FDA) and The Joint Commission has demonstrated a link between alarm fatigue and patient deaths. Yet, very little scientific effort has focused on the rigorous quantitative measurement of alarms and responses in the hospital setting. We developed a system using multiple temporarily mounted, minimally obtrusive video cameras in hospitalized patients' rooms to characterize physiologic monitor alarms and nurse responses as a proxy for alarm fatigue. This allowed us to efficiently categorize each alarm's cause, technical validity, actionable characteristics, and determine the nurse's response time. We describe and illustrate the methods we used to acquire the video, synchronize and process the video, manage the large digital files, integrate the video with data from the physiologic monitor alarm network, archive the video to secure servers, and perform expert review and annotation using alarm "bookmarks." We discuss the technical and logistical challenges we encountered, including the root causes of hardware failures as well as issues with consent, confidentiality, protection of the video from litigation, and Hawthorne-like effects. The description of this video method may be useful to multidisciplinary teams interested in evaluating physiologic monitor alarms and alarm responses to better characterize alarm fatigue and other patient safety issues in clinical settings.

  14. Statistical process control methods for expert system performance monitoring.

    Science.gov (United States)

    Kahn, M G; Bailey, T C; Steib, S A; Fraser, V J; Dunagan, W C

    1996-01-01

    The literature on the performance evaluation of medical expert system is extensive, yet most of the techniques used in the early stages of system development are inappropriate for deployed expert systems. Because extensive clinical and informatics expertise and resources are required to perform evaluations, efficient yet effective methods of monitoring performance during the long-term maintenance phase of the expert system life cycle must be devised. Statistical process control techniques provide a well-established methodology that can be used to define policies and procedures for continuous, concurrent performance evaluation. Although the field of statistical process control has been developed for monitoring industrial processes, its tools, techniques, and theory are easily transferred to the evaluation of expert systems. Statistical process tools provide convenient visual methods and heuristic guidelines for detecting meaningful changes in expert system performance. The underlying statistical theory provides estimates of the detection capabilities of alternative evaluation strategies. This paper describes a set of statistical process control tools that can be used to monitor the performance of a number of deployed medical expert systems. It describes how p-charts are used in practice to monitor the GermWatcher expert system. The case volume and error rate of GermWatcher are then used to demonstrate how different inspection strategies would perform.

  15. 环境减灾卫星遥感宏观监测应用评价研究%Research on the application of remote sensing macro- monitoring technology of the environment and disaster mitigation satellite

    Institute of Scientific and Technical Information of China (English)

    胡凤伟; 胡龙华; 李琦

    2012-01-01

    文章介绍了环境减灾卫星的基本情况,结合环境减灾卫星遥感数据(HJ-1)在黑龙江省土地利用宏观监测中的实际应用,针对HJ-1数据的生产流程及生产方法进行了详述,对土地利用遥感宏观监测技术路线进行了研究,并通过高分辨率卫星遥感影像数据对宏观监测成果及其质量进行精度评价与验证,建立一套基于HJ-1数据的土地资源调查监测技术方法与流程,为在全国范围内广泛应用环境减灾卫星数据积累经验和技术方法。%The author makes a brief introduction on the environmental and disaster mtigation satellite. This thesis details the gen- erating processes and methods of I-IJ - 1 satellite data, with a practical situation of using HJ - 1 satellite date to monitor the land utilization in Heilongjiang Province ; studies the remote sensing macro - monitoring technique ; performs precision evaluation and verification of the monitoring results as well as the qualities via remote sensing image data in high - resolution ; establishes a set of monitoring techniques and processes for land resource investigation based on HJ - 1 data, laying a foundation for the extensive use of the environmental and disaster mtigation satellite data in China.

  16. Application of the Terra Modis Satellite Data for Environmental Monitoring in Western Siberia

    Science.gov (United States)

    Yashchenkoa, I. G.; Peremitina, T. O.

    2016-06-01

    Using the MODIS thematic products, the status of vegetation of oil producing areas in Western Siberia for the period 2010-2015 is monitored. An approach for estimating the impact of various factors on the ecology of oil producing areas using the NDVI coefficient and remote sensing data on the status of vegetation is proposed. The approach is tested within four technologically-disturbed lands - four oil fields, Krapivinskoye, Myldzhenskoye, Luginetskoye, and Urmanskoye in Tomsk region. The territory of the Oglatsky Status Nature Reserve of regional importance is investigated as a reference area.

  17. APPLICATION OF THE TERRA MODIS SATELLITE DATA FOR ENVIRONMENTAL MONITORING IN WESTERN SIBERIA

    Directory of Open Access Journals (Sweden)

    I. G. Yashchenkoa

    2016-06-01

    Full Text Available Using the MODIS thematic products, the status of vegetation of oil producing areas in Western Siberia for the period 2010-2015 is monitored. An approach for estimating the impact of various factors on the ecology of oil producing areas using the NDVI coefficient and remote sensing data on the status of vegetation is proposed. The approach is tested within four technologically-disturbed lands – four oil fields, Krapivinskoye, Myldzhenskoye, Luginetskoye, and Urmanskoye in Tomsk region. The territory of the Oglatsky Status Nature Reserve of regional importance is investigated as a reference area.

  18. Climate Monitoring Network on Maunakea - Master Station at Summit and Lower Elevation Satellite Stations

    Science.gov (United States)

    McKenzie, M. M.; Klasner, F.; Giambelluca, T. W.; Businger, S.

    2014-12-01

    Maunakea, a dormant shield volcano on the Big Island of Hawai'i, rises 13,796 feet above sea level, making it the highest point in the Pacific Basin. From sea floor to summit, it's the tallest mountain in the world. The high elevation, low air and light pollution, as well as dry weather year round make it the best location in the world for astronomy observations. The summit is home to 13 ground based telescope facilities. Like all alpine regions, it is an extremely fragile and unique ecosystem because of the harsh conditions and short growing seasons located at high altitudes. The summit is home to several federal and/or state protected species. It supports 11 species of arthropods found nowhere else on Earth. Most noted of these is the Wēkiu bug, whose habitat has been altered by the infrastructural development on the mountain. Arthropod habitat model development has highlighted gaps in climate information, for example, lack of climate precipitation data, snow data and reliable temperature data. Furthermore, in tropical regions, precipitation is the most variable climate component due to topography and local winds. The telescopes collect weather data for the purpose of knowing when it is dry and clear for astronomical observation. Although existing weather stations associated with the telescopes meet some weather and climate monitoring needs, it cannot address the full range of issues needed due to technological limitation and site design. Precipitation does not occur often and is likely to be in the form of snow or ice. Snow cover data has not been directly recorded despite astronomical recording of other meteorological data that began in the1960s. Therefore, the need to monitor the weather and climate in a long-term and well-calibrated way is critical for management of the ecosystems on the slopes of Maunakea. Long-term weather and climate monitoring stations are the primary building blocks for research partnerships, which encourage collaboration and ultimately

  19. Using satellite images to monitor glacial-lake outburst floods: Lago Cachet Dos drainage, Chile

    Science.gov (United States)

    Friesen, Beverly A.; Cole, Christopher J.; Nimick, David A.; Wilson, Earl M.; Fahey, Mark J.; McGrath, Daniel J.; Leidich, Jonathan

    2015-01-01

    The U.S. Geological Survey (USGS) is monitoring and analyzing glacial-lake outburst floods (GLOFs) in the Colonia valley in the Patagonia region of southern Chile. A GLOF is a type of flood that occurs when water impounded by a glacier or a glacial moraine is released catastrophically. In the Colonia valley, GLOFs originating from Lago Cachet Dos, which is dammed by the Colonia Glacier, have recurred periodically since 2008. The water discharged during these GLOFs flows under or through the Colonia Glacier, into Lago Colonia and then the Río Colonia, and finally into the Río Baker—Chile's largest river in terms of volume of water.

  20. Analysis of Benefits and Pitfalls of Satellite SAR for Coastal Area Monitoring

    Science.gov (United States)

    Nunziata, F.; Buono, A.; Mgliaccio, M.; Li, X.; Wei, Y.

    2016-08-01

    This study aims at describing the outcomes of the Dragon-3 project no. 10689. The undertaken activities deal with coastal area monitoring and they include sea pollution and coastline extraction. The key remote sensing tool is the Synthetic Aperture Radar (SAR) that provides fine resolution images of the microwave reflectivity of the observed scene. However, the interpretation of SAR images is not at all straightforward and all the above-mentioned coastal area applications cannot be easily addressed using single-polarization SAR. Hence, the main outcome of this project is investigating the capability of multi-polarization SAR measurements to generate added-vale product in the frame of coastal area management.

  1. Subpixel Accuracy Analysis of Phase Correlation Shift Measurement Methods Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S.M. Badwai

    2013-01-01

    Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.

  2. Selection of the best initial orbital elements of satellite based on fuzzy integration evaluation method

    Institute of Scientific and Technical Information of China (English)

    Yang Yong'an; Zhang Hongwei; Feng Zuren; Luo Yongjin

    2006-01-01

    The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective. The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements.

  3. Attitude Control Synthesis for Small Satellites Using Gradient Method. Part I - Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Teodor-Viorel CHELARU

    2012-12-01

    Full Text Available The paper presents some aspects for synthesis of small satellites attitude control. Thesatellite nonlinear model presented here will be with six degrees of freedom. After movement equationlinearization the stability and command matrixes will be established and the controller will beobtained using gradient and gradient method. Two attitude control cases will be analysed: thereaction wheels and the micro thrusters. The results will be used in the project European Space MoonOrbit - ESMO founded by European Space Agency in which the University POLITEHNICA ofBucharest is involved.

  4. Attitude Control Synthesis for Small Satellites Using Gradient Method. Part II Linear Equations, Synthesis

    Directory of Open Access Journals (Sweden)

    Adrian CHELARU

    2013-03-01

    Full Text Available In order to continue paper [5] which presented the nonlinear equations of the movement for small satellite, this paper presents some aspects regarding the synthesis of the attitude control. Afterthe movement equation linearization, the stability and command matrixes will be established and by using the gradient methods controller we will obtain them. Two attitude control cases will beanalysed: the reaction wheels and the micro thrusters. The results will be used in the project European Space Moon Orbit - ESMO, founded by the European Space Agency in which the POLITEHNICA University of Bucharest is involved.

  5. Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops

    Directory of Open Access Journals (Sweden)

    R. Fieuzal

    2011-04-01

    Full Text Available The objective of this study is to get a better understanding of radar signal over irrigated wheat fields and to assess the potentialities of radar observations for the monitoring of soil moisture. Emphasis is put on the use of high spatial and temporal resolution satellite data (Envisat/ASAR and Formosat-2. Time series of images were collected over the Yaqui irrigated area (Mexico throughout one agricultural season from December 2007 to May 2008, together with measurements of soil and vegetation characteristics and agricultural practices. The comprehensive analysis of these data indicates that the sensitivity of the radar signal to vegetation is masked by the variability of soil conditions. On-going irrigated areas can be detected all over the wheat growing season. The empirical algorithm developed for the retrieval of topsoil moisture from Envisat/ASAR images takes advantage of the Formosat-2 instrument capabilities to monitor the seasonality of wheat canopies. This monitoring is performed using dense time series of images acquired by Formosat-2 to set up the SAFY vegetation model. Topsoil moisture estimates are not reliable at the timing of plant emergence and during plant senescence. Estimates are accurate from tillering to grain filling stages with an absolute error about 9% (0.09 m3 m−3, 35% in relative value. This result is attractive since topsoil moisture is estimated at a high spatial resolution (i.e. over subfields of about 5 ha for a large range of biomass water content (from 5 and 65 t ha−1 independently from the viewing angle of ASAR acquisition (incidence angles IS1 to IS6.

  6. Multiyear monitoring of soil moisture over Iran through satellite and reanalysis soil moisture products

    Science.gov (United States)

    Rahmani, Abdolaziz; Golian, Saeed; Brocca, Luca

    2016-06-01

    Soil moisture (SM) plays a fundamental role for many hydrological applications including water resources, drought analysis, agriculture, and climate variability and extremes. SM is not measured in most parts of Iran and limited measurements do not meet sufficient temporal and spatial resolution. Hence, due to ease of operation, their global coverage and demonstrated accuracy, use of remote sensing SM products is almost the only way for deriving SM information in Iran. In the present research, surface SM (SSM) datasets at six subregions of Iran with different climate conditions were extracted from two satellite-based passive (SMOSL3) and active + passive (ESA CCI SM) microwave observations, and two reanalysis (ERA-Interim and ERA-Interim/Land) products. Time series of averaged monthly mean SSM products and in situ ground precipitation and temperature measurements were derived for each subregion. Results revealed that, generally, all SSM products were in good agreement with each other with correlation coefficients higher than 0.5. The better agreement was found in the Northeast and Southwest region with average correlation values equal to 0.88 and 0.91, respectively. It should be noted that the SSM datasets are characterized by different periods and lengths. Hence, results should be assessed with cautious. Moreover, most SSM products have strong correlations with maximum, minimum and average temperature as well as with total monthly precipitation. Also, trend analysis showed no trend for time series of monthly SSM over all subregions in the two periods 1980-1999 and 2000-2014. The only exceptions were the Southeast subregion for ERA-Interim and Center and Northwest subregions for the ESA CCI SM for which a negative trend was detected for the period 2000-2014. Finally, the Standardized Soil Moisture Index (SSI) calculated from ERA-Interim, ERA-I/Land and ESA CCI SM datasets showed that the Center and Southeast regions suffered from the most severe and longest

  7. Long Term Monitoring of Ground Motions in Upper Silesia Coal Basin (USCB) Using Satellite Radar Interferometry

    Science.gov (United States)

    Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew

    2016-08-01

    Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.

  8. Condition Monitoring of Turbines Using Nonlinear Mapping Method

    Institute of Scientific and Technical Information of China (English)

    Liao Guang-lan; Shi Tie-lin; Jiang Nan

    2004-01-01

    Aiming at the non-linear nature of the signals generated from turbines, curvilinear component analysis (CCA), a novel nonlinear projection method that favors local topology conservation is presented for turbines conditions monitoring. This is accomplished in two steps. Time domain features are extracted from raw vibration signals, and then they are projected into a two-dimensional output space by using CCA method and form regions indicative of specific conditions, which helps classify and identify turbine states visually. Therefore, the variation of turbine conditions can be observed clearly with the trajectory of image points for the feature data in the two-dimensional space, and the occurrence and development of failures can be monitored in time.