WorldWideScience

Sample records for satellite launching vehicle

  1. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  2. Small Satellite Transceiver for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NAL Research Corporation proposes to develop a small, light-weight, low-cost transceivers capable of establishing satellite communications links for telemetry and...

  3. Small Satellite Transceiver for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NAL Research Corporation proposes to develop a small, light-weight, low-cost transceivers capable of establishing satellite communications links for telemetry and...

  4. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  5. Regeneratively-Cooled, Pump-Fed Propulsion Technology for Nano / Micro Satellite Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on demand placement of cube and nano-satellites into LEO. The proposed...

  6. Flexible Low Cost Avionics for NanoSatellite Launch Vehicle Control and GPS Metric Tracking Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, Tyvak Nano-Satellite Systems LLC (Tyvak) will develop nano-launch vehicle avionics solutions based on the latest commercial electronics products...

  7. New Opportunitie s for Small Satellite Programs Provided by the Falcon Family of Launch Vehicles

    Science.gov (United States)

    Dinardi, A.; Bjelde, B.; Insprucker, J.

    2008-08-01

    The Falcon family of launch vehicles, developed by Space Exploration Technologies Corporation (SpaceX), are designed to provide the world's lowest cost access to orbit. Highly reliable, low cost launch services offer considerable opportunities for risk reduction throughout the life cycle of satellite programs. The significantly lower costs of Falcon 1 and Falcon 9 as compared with other similar-class launch vehicles results in a number of new business case opportunities; which in turn presents the possibility for a paradigm shift in how the satellite industry thinks about launch services.

  8. Hyper Heuristic Approach for Design and Optimization of Satellite Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    Amer Farhan RAFIQUE; HE Linshu; Ali KAMRAN; Qasim ZEESHAN

    2011-01-01

    Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization (MDO) process. The complexity of problem demands highly efficient and effective algorithm that can optimize the design. Hyper heuristic approach (HHA) based on meta-heuristics is applied to the optimization of air launched satellite launch vehicle (ASLV). A non-learning random function (NLRF) is proposed to control low-level meta-heuristics (LLMHs) that increases certainty of global solution, an essential ingredient required in product conceptual design phase of aerospace systems. Comprehensive empirical study is performed to evaluate the performance advantages of proposed approach over popular non-gradient based optimization methods. Design of ASLV encompasses aerodynamics,propulsion, structure, stages layout, mass distribution, and trajectory modules connected by multidisciplinary feasible design approach. This approach formulates explicit system-level goals and then forwards the design optimization process entirely over to optimizer. This distinctive approach for launch vehicle system design relieves engineers from tedious, iterative task and enables them to improve their component level models. Mass is an impetus on vehicle performance and cost, and so it is considered as the core of vehicle design process. Therefore, gross launch mass is to be minimized in HHA.

  9. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  10. LM-2C Series Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    XueFuxing

    2004-01-01

    On December 30, 2003, a LM-2C/SM launch vehicle was launched from Xichang Satellite Launch Center (XSLC), successfully sending TC-1 satellite into orbit. The satellite is the first one of the two scientific satellites known as Double Star. The operation orbit of the satellite is the highest compared with China's other satellites ever launched.

  11. Parametric fault estimation based on H∞ optimization in a satellite launch vehicle

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Stoustrup, Jakob

    2008-01-01

    Correct diagnosis under harsh environmental conditions is crucial for space vehiclespsila health management systems to avoid possible hazardous situations. Consequently, the diagnosis methods are required to be robust toward these conditions. Design of a parametric fault detector, where the fault...... estimation is formulated in the so-called standard set-up for Hinfin control design problem, is addressed in this paper. In particular, we investigate the tunability of the design through the dedicated choice of the fault model. The method is applied to the model of turbopump as a subsystem of the jet engine...... for the satellite launch vehicle and the results are discussed....

  12. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  13. LM-3B Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    LM-3B launch vehicle is a heavy three-stage liquid propellant strap-on launch vehicle, which was developed based on the mature technologies of the LM-3A and LM-2E. It not only has the highest payload capacity to send China's satellites to GTO, but is also one of the most advanced launch vehicles in the world with high reliability, reasonable price and perfect technological design.

  14. LM-4B Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2004-01-01

    The history of LM-4B traces back to the end of the 1970s. The feasibility study of LM-4 began in 1982 and the engineering development was initiated in the following year.Initially, the LM-4 served as a back-up launch vehicle for LM-3 to launch China's communications satellites. After the successful launch of China's first communications satellites by LM-3 in 1984, the main mission of the LM-4 was shifted to launch sun-synchronous orbit meteorological satellites.

  15. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  16. CHINA LAUNCHES 2 SCIENTIFIC EXPERIMENT SATELLITES

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the Xi'an Satellite Monitor and Control Center said that one satellite,

  17. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  18. Enabling Technology for Small Satellite Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses of small...

  19. Enabling Technology for Small Satellite Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses need to...

  20. Metallurgical analysis of a failed maraging steel shear screw used in the band separation system of a satellite launch vehicle

    Directory of Open Access Journals (Sweden)

    S.V.S. Narayana Murty

    2016-10-01

    Full Text Available Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.

  1. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  2. Flight Record Of Long March Series Of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2008-01-01

    @@ (Continued) The 13th Launch On February 1, 1986, a LM-3 launch vehicle sent DFH-2, the 3rd geosynehronous experimental communications satellite of China, into space. The satellite entered the preset orbit.

  3. Launch vehicle selection model

    Science.gov (United States)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  4. Expendable launch vehicle studies

    Science.gov (United States)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to

  5. Flight Record of the Long March Series of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2010-01-01

    @@ (Continued) THE 56TH LAUNCH The FY-1C meteorological satellite and the Shijian 5 (SJ-5) satellite were put into their predetermined orbits by a LM-4B launch vehicle on May 10,1999. Launch Site: Taiyuan Satellite Launch Center Launch Result: Success At 09:33 on May 10, a LM-4B lifted off with two satellites.749 seconds after the lift-off, the FY-1C satellite separated with the rocket, and the SJ-5 satellite separated with LM-4B 814 seconds after it was fired.The two satellites entered sun-synchronous orbit which is 870km above the Earth.

  6. LM-3A Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2004-01-01

    The LM-3A launch vehicle is a large three-stage liquidpropellant launch vehicle developed on the basis ot LM-3 ana LM-2C. By incorporating the mature technologies of LM-3 and adding a more powerful improved LOX/LH cryogenic third stage and more capable control system, LM-3A has a

  7. Launch Vehicle Dynamics Demonstrator Model

    Science.gov (United States)

    1963-01-01

    Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov

  8. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  9. The Falcon I Launch Vehicle

    OpenAIRE

    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne

    2004-01-01

    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  10. Australia and the new reusable launch vehicles

    Science.gov (United States)

    Stalker, R. J.

    The new generation of reusable launch vehicles represented by ESA's Hermes and HOTOL, NASA's National Aerospace Plane, and the DFVLR's Saenger, promises to radically alter the economic basis of space flight by allowing such operations as the on-orbit servicing of satellites. Attention is presently drawn to the opportunities that arise for Australia's aerospace industry from the availability in Australia of two wind tunnel facilities capable of furnishing the requisite hypersonic aerothermodynamics testing capabilities for these vehicles' development.

  11. Fight Record Of Long March Series Of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2008-01-01

    @@ On June 1,2007,China launched SinoSat-3,a communications satellite,onboard a Long March(LM)-3A launch vehicle,marking the 100th flight of the Long March series of launch vehicles and the 58th consecutive success since October 1996 (at the end of 2007,the number of consecutive successes was further increased to 62).

  12. The Vega launch vehicle

    Science.gov (United States)

    Geffroy, B.; Fabrizi, R.; Guilleux, Willy; Berna, Claude

    2004-11-01

    ESA, ELV, Arianespace are introducing for the small satellites market a new class of launcher, VEGA, complementing the European launchers portfolio (Ariane 5, Soyuz). ESA is leading the development and qualification programme with Prime Contractor ELV, while Arianespace is insuring the marketing, sales and operations of the Vega launcher from the European Spaceport in Kourou, French Guiana.

  13. China Plans to Launch FY-3 Meteorological Satellite in 2006

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China's new generation polar orbit weather satellite FY-3 will be launched by LM-4B launch vehicle in 2006. The FY-3 would be equipped with new global, all-weather, multi-spectral, threedimensional sensors. The new satellite, an improved version of the FY-1, has the resolution of 250m and

  14. Flight Record Of The Long March Series Of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2009-01-01

    @@ (Continued) The 27th launch On August 9, 1992, a LM-2D launch vehicle sent the 13th recoverable satellite into space. The satellite operated in orbit for 16 days, fulfilled missions of scientific exploration and technical experiment and returned on August 25.

  15. Flight Record Of Long March Series Of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2008-01-01

    @@ (Continued) The 7th Launch On September 9,1982,a LM-2C launch vehicle sent the 4th recoverable satellite,FSW-4 into space.The satellite returned to Earth on September 14 after it fulfilled its mission for scientific research and tests during 5-day operation in space.

  16. FY-3A Launched Atop A LM-4C Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    Rain.L

    2008-01-01

    @@ FY-3A,the first satellite of China's new generation of polar-orbiting meteorological satellites,was launched into space atop a modified LM-4C launch vehicle.The satellite separated from the rocket 19 minutes after the takeoff.Flying at an altitude of 807km with an inclination of 98.8 degrees,the satellite circles in polar orbit 14 times everyday,covering the whole globe twice a day.

  17. Prospects For China's Expendable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    Long Lehao; Wang Xiaojun; Rong Yi

    2009-01-01

    @@ The expendable launch vehicle ( ELV) is the major means for human beings to enter space. Up until April 2009, China's Long March (LM) series launch vehicle has conducted 117 launches, and realized 75 consecutive successful launches since October 1996, which marks China's ELV development has entered a new historical era. Based on the analysis of China's LM series launch vehicle development status, combining with the new generation launch vehicle development, this raises a development prospect for China's ELV to meet the demands for future launch vehicle technology development.

  18. EADS Roadmap for Launch Vehicles

    Science.gov (United States)

    Eymar, Patrick; Grimard, Max

    2002-01-01

    still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2

  19. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    Science.gov (United States)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  20. NASA to launch second business communications satellite

    Science.gov (United States)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  1. Launch vehicle systems design analysis

    Science.gov (United States)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  2. Determining the Economic Plausibility of Dual Manifesting Reusable Launch Vehicles and Reusable Orbital Transfer Vehicles for the Replenishment of Military Satellites

    Science.gov (United States)

    2011-07-28

    C4)~ ;1 6c . Lt io )V - CM- C4V r- If C14 0)0 0D0 VcE ) ) O( -0) V-00 0Df-0C -U’ o0C00 C)0 GO M C) Vco’) m r- e C)0[- -Oc 𔃺 C N --- 0 60 6 NNNc6 r- ’j...Satellite Launch Policies: The Dynamic Case," submitted for publication in Management Science, November 1995. Griffin, M.D. and Claybaugh, W.R. "On the...34Policy Recommendations for a Shipment- Consolidation Program," Journal of Business Logistics, 15:87-111 (1994). Hill, P. and Peterson, C. Mechanics and

  3. China Launches Two Natural Disaster Monitoring Satellites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China launched two satellites, HJ-1A and HJ-1B, to monitor the environment and natural disasters at 11:25am on September 6 (Beijing time) from the Taiyuan Satellite Launch Center in Shanxi Province. The two satellites are expected to improve the country's ability in the rapid monitoring of environmental changes and reducing calamities.

  4. First China-Europe Satellite Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    HeYing

    2004-01-01

    On December 30, 2003 China successfully launched TC-1,the first of two scientific satellites known as Double Star, The mission,the first time that European instruments were integrated with Chinese satellites,was carried out by a Long March 2C/SM rocket at 3:06 am from the Xichang Satellite Launch Center in Sichuan province.

  5. A computer model for evaluation of launch vehicle and target tracking error assignments for direct ascent, deep space ASAT (Anti-satellite) systems

    Science.gov (United States)

    Barclay, R. C.

    1983-12-01

    An unclassified computer model was developed for first order evaluation of deep space Anti-satellite (ASAT) targeting error assignments. Two independent error sources are modeled. With deep space tracking accuracies on the order of kilometers, there is uncertainty in the exact target position. Errors introduced by the launch vehicle guidance system result in uncertainty in the exact position of the ASAT itself. Once the target is acquired by the ASAT sensor subsystem, the maneuver subsystem must then have the capability to make the necessary trajectory corrections to precent a miss. The model assumes a direct ascent vehicle for which the user selects a trajectory by choosing the burnout and intercept position vectors, and a time of flight between them. Monte Carlo simulation is used to generate errors in burnout position and velocity, and intercept position from trivariate normal distributions scaled to user input standard deviations. This is repeated for 500 iterations, from which a mean miss distance and delta V required for trajectory correction can be determined, and used for further analysis.

  6. Chuangxin-1-02 And Shiyan Satellite 3 Launched Atop A LM-2D

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A LM-2D launch vehicle blasted off from Jiuquan Satellite Launch Center (JSLC) at 08:15 (Beijing time) on November 5, sending Chuangxin-l-02 and Shiyan Satellite 3 into space. According to the data released by the Xi'an Satellite Control Center (XSCC), Chuangxin-1-02 separated from the launch vehicle 856 seconds after the takeoff, and Shiyan Satellite 3 separated from the rocket 63 seconds thereafter.

  7. China Launches First Ever Nano-satellite

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    China successfully launched two scientific satellites, including a nano-satellite for the first time, heralding a breakthrough in space technology. A LM-2C rocket carrying Nano-Satellite I (NS-1), which weighs just 25kg and an Experiment Satellite I, weighing 204kg blasted off at 11:59 p.m. on April 18,

  8. Magnetic Launch Assist Vehicle-Artist's Concept

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  9. LM-3B/E Launched Eutelsat's W3C Satellite

    Institute of Scientific and Technical Information of China (English)

    Bian Ji

    2011-01-01

    At 16:21 Beijing time on October 7,2011,China successfully launched the W3C commercial telecommunications satellite manufactured by Thales Alenia Space for Eutelsat Communications into geostationary transfer orbit by using an enhanced LM-3B (LM-3B/E) launch vehicle from Xichang Satellite Launch Center.

  10. Geostationary Space Launch Vehicles and the U.S. Dilemma

    Science.gov (United States)

    1994-06-17

    maintaining capability. The goal for satellite companies has been to push the size and weight limits of space launch vehicles. A new technology has...Week & Space Tecnolog , 10 January 1994, p. 27. 7. "Satellites: No Wires, No Cables," The Providence Sunday Journal, 3 April 1994, p. Fl. 2-17 CHAPTER I1...payload-to-takeoff weight ratios, but seldom performed as originally marketed because the first few flights were usually basic systems that did not push

  11. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    Science.gov (United States)

    Novack, Steven D.; Rogers, Jim; Al Hassan, Mohammad; Hark, Frank

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk, and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results, and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods, such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty, are rendered obsolete, since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods. This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper describes how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  12. A LM-3B Launch Vehicle Sent Chinasat-9 Into Space

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Chinasat-9 direct-broadcast television satellite was launched by a LM-3B launch vehicle from Xichang Satellite Launch Center (XSLC) on June 9.According to Xi'an Satellite Control Center (XSCC),the satellite entered the preset super-geosynchronous transfer orbit 26 minutes after the liftoff with an apogee of 49887km,a perigee of 214km and an inclination of 24.2 degrees.

  13. Metric Tracking of Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  14. GPS Attitude Determination for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  15. The DARPA/USAF Falcon Program Small Launch Vehicles

    Science.gov (United States)

    Weeks, David J.; Walker, Steven H.; Thompson, Tim L.; Sackheim, Robert; London, John R., III

    2006-01-01

    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA/USAF Falcon Program include the development of a low-cost small launch vehicle(s) that demonstrates responsive launch and has the potential for achieving a per mission cost of less than $5M when based on 20 launches per year for 10 years. This vehicle class can lift 1000 to 2000 lbm payloads to a reference low earth orbit. Responsive operations include launching the rocket within 48 hours of call up. A history of the program and the current status will be discussed with an emphasis on the potential impact on small satellites.

  16. 微纳卫星专用发射运载器发展趋势研究%Research on the Trends of Developing Dedicated Launch Vehicle for Micro/Nano Satellite

    Institute of Scientific and Technical Information of China (English)

    战培国

    2013-01-01

    微纳卫星低成本、快速专用发射运载器是近些年来航天运输领域人们研究关注的问题之一。本文在简要介绍国外微纳卫星发展现状及趋势的基础上,分析微纳卫星发射运载器市场及供求关系,研究专用发射运载器研发及概念技术发展趋势,探讨专用发射运载器在民用和军事领域的发展前景。%The low-cost/responsive dedicated launch vehicle for micro/nano satellite is one of the problem in the area of aerospace transportation. This paper introduces development states and trends of micro/nano satelite , analyzes the supply and demand of the dedicated launch vehicle market, researches the development, concept and technology of the dedicated launch vehicle, discusses the trends of the dedicated launch vehicle in civil and military area.

  17. Evolved Expendable Launch Vehicle (EELV)

    Science.gov (United States)

    2015-12-15

    2015. When the draft RFP was posted a Space and Missile Systems Center (SMC) internal Comment Resolution Matrix ( CRM ) was inadvertently exposed for...competitiveness; and benefit the U.S. economy. The overall goal of the EELV December 2015 SAR March 14, 2016 16:05:14 UNCLASSIFIED 8 launch system investment is

  18. Navigation System for Reusable Launch Vehicle

    OpenAIRE

    Schlotterer, Markus

    2008-01-01

    PHOENIX is a downscaled experimental vehicle to demonstrate automatic landing capabilities of future Reusable Launch Vehicles (RLVs). PHOENIX has flown in May 2004 at NEAT (North European Aerospace Test range) in Vidsel, Sweden. As the shape of the vehicle has been designed for re-entry, the dynamics are very high and almost unstable. This requires a fast and precise GNC system. This paper describes the navigation system and the navigation filter of PHOENIX. The system is introduced and the h...

  19. Wireless Instrumentation Use on Launch Vehicles

    Science.gov (United States)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  20. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  1. Integrated Navigation System for the Second Generation Reusable Launch Vehicle

    Science.gov (United States)

    2002-01-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  2. Strategy of Khrunichev's Launch Vehicles Further Evolution

    Science.gov (United States)

    Medvedev, A. A.; Kuzin, A. I.; Karrask, V. K.

    2002-01-01

    vehicles and it is concerned with a further evolution of its launcher fleet in order to meet arising demands of their services customers. Continuing to provide an operation of current "Proton" heavy launch vehicle and "Rockot" small launch vehicle, Khrunichev is carrying out a permanent improvement of these launchers as well as is developing new advanced launch systems. Thus, the `Proton' just has the improved "Proton-M" version, which was successfully tested in a flight, while an improvement of the "Rockot" is provided by a permanent modernization of its "Breeze-KM" upper stage and a payload fairing. Enhancing of the "Proton/Proton-M's" lift capabilities and flexibility of operation is being provided by introduction of advanced upper stages, the "Breeze- M", which was just put into service, and KVRB being in the development. "Angara-1.1" small launcher is scheduled to a launch in 2003. A creation of this family foresees not only a range of small, medium and heavy launch vehicles based on a modular principle of design but also a construction of high-automated launch site at the Russian Plesetsk spaceport. An operation of the "Angara" family's launchers will allow to inject payloads of actually all classes from Russian national territory into all range of applicable orbits with high technical and economic indices. ecological safety of drop zones, Khrunichev is developing the "Baikal" fly-back reusable booster. This booster would replace expendable first stages of small "Angaras" and strap-ons of medium/heavy launchers, which exert a most influence on the Earth's environment. intercontinental ballistic missiles to current and advanced space launch vehicles of various classes. A succession of the gained experience and found technological solutions are shown.

  3. Atomic hydrogen as a launch vehicle propellant

    Energy Technology Data Exchange (ETDEWEB)

    Palaszewski, B.A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I{sub sp}) were 750 and 1500 lb{sub f}/s/lb{sub m}. The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I{sub sp} (greater than 750 lb{sub f}/s/lb{sub m}) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  4. Longitudinal oscillation of launch vehicles

    Science.gov (United States)

    Glaser, R. F.

    1973-01-01

    During powered flight a vehicle may develop longitudinal self-excited oscillations, so-called oscillations, of its structure. The energy supplying the vibration is tapped from the thrust by the activity of the system itself; that is, oscillation of the structure causes oscillation of the propellant system, especially of the pumps. In this way an oscillating thrust can be created that, by a feedback loop, may sustain the structural oscillation under certain circumstances. Two special features of the system proved to be essential for creation of instability. One is the effect of the inherent time interval that the thrust oscillation is lagging behind the structural oscillation. The other is the decreased of system mass caused by the exhausting of gas. The latter feature may cause an initially stable system to become unstable. To examine the stability of the system, a single mass-spring model, which is the result of a one-term Galerkin approach to the equation of motion, has been considered. The Nyquist stability criterion leads to a stability graph that shows the stability conditions in terms of the system parameter and also demonstrates the significance of time lag, feedback magnitude, and loss of mass. An important conclusion can be drawn from the analysis: large relative displacements of the pump-engine masses favor instability. This is also confirmed by flight measurements.

  5. Structural Weight Estimation for Launch Vehicles

    Science.gov (United States)

    Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd

    2002-01-01

    This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.

  6. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv; Self, Timothy A.

    2007-01-01

    The Ares launch vehicles team, managed by the Ares Projects Office (APO) at NASA Marshall Space Flight Center, has completed the Ares I Crew Launch Vehicle System Requirements Review and System Definition Review and early design work for the Ares V Cargo Launch Vehicle. This paper provides examples of how Lean Manufacturing, Kaizen events, and Six Sigma practices are helping APO deliver a new space transportation capability on time and within budget, while still meeting stringent technical requirements. For example, Lean philosophies have been applied to numerous process definition efforts and existing process improvement activities, including the Ares I-X test flight Certificate of Flight Readiness (CoFR) process, risk management process, and review board organization and processes. Ares executives learned Lean practices firsthand, making the team "smart buyers" during proposal reviews and instilling the team with a sense of what is meant by "value-added" activities. Since the goal of the APO is to field launch vehicles at a reasonable cost and on an ambitious schedule, adopting Lean philosophies and practices will be crucial to the Ares Project's long-term SUCCESS.

  7. A High-Payload Fraction, Pump-Fed, 2-Stage Nano Launch Vehicle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on-demand placement of cube and nano-satellites into LEO. The proposed...

  8. Flight Testing of Wireless Networking for Nanosat Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here addresses the testing and evaluation of wireless networking technologies for small launch vehicles by leveraging existing nanosat launch...

  9. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  10. Integrated Entry Guidance for Reusable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    NING Guo-dong; ZHANG Shu-guang; FANG Zhen-ping

    2007-01-01

    A method for the implementation of integrated three-degree-of-freedom constrained entry guidance for reusable launch vehicle is presented. Given any feasible entry conditions, terminal area energy management interface conditions, and the reference trajectory generated onboard then, the method can generate a longitudinal guidance profile rapidly, featuring linear quadratic regular method and a proportional-integral-derivative tracking law with time-varying gains, which satisfies all the entry corridor constraints and meets the requirements with high precision. Afterwards, by utilizing special features of crossrange parameter, establishing bank-reversal corridor,and determining bank-reversals according to dynamically adjusted method, the algorithm enables the lateral entry guidance system to fly a wide range of missions and provides reliable and good performance in the presence of significant aerodynamic modeling uncertainty.Fast trajectory guidance profiles and simulations with a reusable launch vehicle model for various missions and aerodynamic uncertainties are presented to demonstrate the capacity and reliability of this method.

  11. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv, N.; Self, Timothy A.

    2008-01-01

    This viewgraph presentation describes test strategies and lean philisophies and practices that are applied to Ares Launch Vehicles. The topics include: 1) Testing strategy; 2) Lean Practices in Ares I-X; 3) Lean Practices Applied to Ares I-X Schedule; 4) Lean Event Results; 5) Lean, Six Sigma, and Kaizen Practices in the Ares Projects Office; 6) Lean and Kaizen Success Stories; and 7) Ares Six Sigma Practices.

  12. Illustration of Saturn V Launch Vehicle

    Science.gov (United States)

    1967-01-01

    This is a cutaway illustration of the Saturn V launch vehicle with callouts of the major components. The Saturn V is the largest and most powerful launch vehicle developed in the United States. It was a three stage rocket, 363 feet in height, used for sending American astronauts to the moon and for placing the Skylab in Earth orbit. The Saturn V was designed to perform Earth orbital missions through the use of the first two stages, while all three stages were used for lunar expeditions. The S-IC stage (first stage) was powered by five F- engines, which burned kerosene and liquid oxygen to produce more than 7,500,000 pounds of thrust. The S-II (second) stage was powered by five J-2 engines, that burned liquid hydrogen and liquid oxygen and produced 1,150,000 pounds thrust. The S-IVB (third) stage used one J-2 engine, producing 230,000 pounds of thrust, with a re-start capability. The Marshall Space Flight Center and its contractors designed, developed, and assembled the Saturn V launch vehicle stages.

  13. Parametric Testing of Launch Vehicle FDDR Models

    Science.gov (United States)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  14. Aerodynamic Characterization of a Modern Launch Vehicle

    Science.gov (United States)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  15. Ares Launch Vehicles Overview: Space Access Society

    Science.gov (United States)

    Cook, Steve

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  16. Resonant mode controllers for launch vehicle applications

    Science.gov (United States)

    Schreiner, Ken E.; Roth, Mary Ellen

    Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.

  17. PEGASUS - A Flexible Launch Solution for Small Satellites with Unique Requirements

    Science.gov (United States)

    Richards, B. R.; Ferguson, M.; Fenn, P. D.

    The financial advantages inherent in building small satellites are negligible if an equally low cost launch service is not available to deliver them to the orbit they require. The weight range of small satellites puts them within the capability of virtually all launch vehicles. Initially, this would appear to help drive down costs through competition since, by one estimate, there are roughly 75 active space launch vehicles around the world that either have an established flight record or are planning to make an inaugural launch within the year. When reliability, budget constraints, and other issues such as inclination access are factored in, this list of available launch vehicles is often times reduced to a very limited few, if any at all. This is especially true for small satellites with unusual or low inclination launch requirements where the cost of launching on the heavy-lift launchers that have the capacity to execute the necessary plane changes or meet the mission requirements can be prohibitive. For any small satellite, reducing launch costs by flying as a secondary or even tertiary payload is only advantageous in the event that a primary payload can be found that either requires or is passing through the same final orbit and has a launch date that is compatible. If the satellite is able to find a ride on a larger vehicle that is only passing through the correct orbit, the budget and technical capability must exist to incorporate a propulsive system on the satellite to modify the orbit to that required for the mission. For these customers a launch vehicle such as Pegasus provides a viable alternative due to its proven flight record, relatively low cost, self- contained launch infrastructure, and mobility. Pegasus supplements the existing world-wide launch capability by providing additional services to a targeted niche of payloads that benefit greatly from Pegasus' mobility and flexibility. Pegasus can provide standard services to satellites that do not

  18. Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles

    Science.gov (United States)

    Shaw, Eric J.; Greenberg, Joel

    1998-01-01

    The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.

  19. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  20. Lidar measurements of launch vehicle exhaust plumes

    Science.gov (United States)

    Dao, Phan D.; Curtis, David; Farley, Robert; Soletsky, Philip; Davidson, Gilbert; Gelbwachs, Jerry A.

    1997-10-01

    The Mobile Lidar Trailer (MLT) was developed and operated to characterize launch vehicle exhaust plume and its effects on the environment. Two recent applications of this facility are discussed in this paper. In the first application, the MLT was used to characterize plumes in the stratosphere up to 45 km in support of the Air Force Space and Missile Center's Rocket Impact on Stratospheric Ozone program. Solid rocket motors used by Titan IV and other heavy launch vehicles release large quantities of gaseous hydrochloric acid in the exhaust and cause concerns about a possible depletion of the ozone layer. The MLT was deployed to Cape Canaveral Air Station since October 1995 to monitor ozone and to investigate plume dynamics and properties. Six campaigns have been conducted and more are planned to provide unique data with the objective of addressing the environmental issues. The plume was observed to disperse rapidly into horizontally extended yet surprisingly thin layer with thickness recorded in over 700 lidar profiles to be less than 250 meters. MLT operates with the laser wavelengths of 532, 355 and 308 nm and a scanning receiving telescope. Data on particle backscattering at the three wavelengths suggest a consistent growth of particle size in the 2-3 hour observation sessions following the launch. In the second type of application, the MLT was used as a remote sensor of nitrogen dioxide, a caustic gaseous by-product of common liquid propellant oxidizer. Two campaigns were conducted at the Sol Se Mete Canyon test site in New Mexico in December 1996 an January 1997 to study the dispersion of nitrogen dioxide and rocket plume.

  1. Performance evaluation of multi-sensor data-fusion systems in launch vehicles

    Indian Academy of Sciences (India)

    B N Suresh; K Sivan

    2004-04-01

    In this paper, the utilization of multi-sensors of different types, their characteristics, and their data-fusion in launch vehicles to achieve the goal of injecting the satellite into a precise orbit is explained. Performance requirements of sensors and their redundancy management in a typical launch vehicle are also included. The role of an integrated system level-test bed for evaluating multi-sensors and mission performance in a typical launch vehicle mission is described. Some of the typical simulation results to evaluate the effect of the sensors on the overall system are highlighted.

  2. Expandable External Payload Carrier for Existing Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous existing launch vehicles have excess performance that is not being optimized. By taking advantage of excess, unused, performance, additional NASA...

  3. Launch mission summary and terminal countdown, Delta 153 Satellite Business Systems satellite (SBS-A)

    Science.gov (United States)

    1980-01-01

    A brief summary of the launch vehicle, spacecraft, and mission is contained. Information relative to launch windows, vehicle telemetry coverage, realtime data flow, telemetry coverage by station, selected trajectory information, and a brief sequence of flight events is also included.

  4. Wireless Data Acquisition System for Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Sabooj Ray

    2013-03-01

    Full Text Available Present launch vehicle integration architecture for avionics uses wired link to transfer data between various sub-systems. Depending on system criticality and complexity, MIL1553 and RS485 are the common protocols that are adopted. These buses have their inherent complexity and failure issues due to harness defects or under adverse flight environments. To mitigate this problem, a prototype wireless, data acquisition system for telemetry applications has been developed and demonstrated. The wireless system simplifies the integration, while reducing weight and costs. Commercial applications of wireless systems are widespread. Few systems have recently been developed for complex and critical environments. Efforts have been underway to make such architectures operational in promising application scenarios. This paper discusses the system concept for adapting a wireless system to the existing bus topology. The protocol involved and the internal implementation of the different modules are described. The test results are presented; some of the issues faced are discussed and the; future course of action is identified.Defence Science Journal, 2013, 63(2, pp.186-191, DOI:http://dx.doi.org/10.14429/dsj.63.4262

  5. Innovative Manufacturing of Launch Vehicle Structures - Integrally Stiffened Cylinder Process

    Science.gov (United States)

    Wagner, John; Domack, Marcia; Tayon, Wesley; Bird, Richard K.

    2017-01-01

    Reducing launch costs is essential to ensuring the success of NASA's visions for planetary exploration and earth science, economical support of the International Space Station, and competitiveness of the U.S. commercial launch industry. Reducing launch vehicle manufacturing cost supports NASA's budget and technology development priorities.

  6. 76 FR 52694 - National Environmental Policy Act: Launch of NASA Routine Payloads on Expendable Launch Vehicles

    Science.gov (United States)

    2011-08-23

    ... SPACE ADMINISTRATION National Environmental Policy Act: Launch of NASA Routine Payloads on Expendable... availability and request for comments on the draft environmental assessment (``Draft EA'') for launch of NASA routine payloads on expendable launch vehicles. SUMMARY: Pursuant to the National Environmental Policy...

  7. Capture Scheme of the Antenna in Ka-band for Launch Vehicle Based on Tracking and Data Relay Satellite%运载火箭Ka频段天基测控的天线捕获方法

    Institute of Scientific and Technical Information of China (English)

    宫长辉; 曾贵明; 张恒

    2011-01-01

    In order to transmit the space-based signal, the capture and track between the tracking and data relay satellite(TDRS) antenna and the user's aerocraft antenna should be completed firstly. In this paper, the uncertain area of the antenna scan is analyzed, adopting antenna-scan capture scheme for capturing the antenna on TORS by the phased-array antenna on launch vehicle. The values of the antenna array and EIRP are conformed and the capture time is given by computer simulation.%为实现天基信息的传输,首先要完成中继卫星天线与用户飞行器天线之间的捕获与跟踪.针对箭载相控阵天线对中继卫星的捕获,采用Ka频段相控阵天线扫描捕获策略,分析了天线扫描的不确定区域,确定了天线阵元数及EIRP值,给出了捕获时间的仿真结果,为工程应用提供参考.

  8. Solar thermal OTV - applications to reusable and expendable launch vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Thomas L. [Boeing Co., Phantom Works (United States); Frye, Patrick [Boeing Co., Rocketdyne Propulsion and Power (United States); Partch, Russ [Air Force Research Lab. (United States)

    2000-11-01

    The Solar Orbit Transfer Vehicle (SOTV) program being sponsored by the U.S. Air Force Research Laboratory (AFRL) is developing technology that will engender revolutionary benefits to satellites and orbit-to-orbit transfer systems. Solar thermal propulsion offers significant advantages for near-term expendable launch vehicles (ELVs) such as Delta IV, mid- to far-term reusable launch vehicles (RLVs) and ultimately to manned exploration of the Moon and Mars. Solar thermal propulsion uses a relatively large mirrored concentrator to focus solar energy onto a compact absorber, which is in turn heated to >2200 K. This heat can then be used in two major ways. By flowing hydrogen or another working fluid through the absorber, high efficiency thrust can be generated with 800 sec or more specific impulse (Isp), almost twice that of conventional cryogenic stages and comparable with typical solid-core nuclear thermal stages. Within a decade, advances in materials and fabrication processes hold the promise of the Isp ranging up to 1,100 sec. In addition, attached thermionic or alkali metal thermoelectric converter (AMTEC) power converters can be used to generate 20 to 100 kilowatts (kW) of electricity. The SOTV Space Experiment (SOTV-SE), planned to be flown in 2003, will demonstrate both hydrogen propulsion and thermionic power generation, including advanced lightweight deployable concentrators suitable for large-scale applications. Evolutionary geosynchronous-transfer orbit/geosynchronous-Earth orbit (GTO/GEO) payload lift capability improvements of 50% or more to the Delta IV launch vehicles could be implemented as part of the Delta IV P4I plan shortly thereafter. Beyond that, SOTV technology should allow long-term storage of stages in orbits up to GEO with tremendous manoeuvring capability, potentially 4 to 5 km/sec or more. Servicing of low-Earth orbit (LEO) and GEO assets and reusable (ROTVs) are other possible applications. Offering a combination of high Isp and high

  9. Adaptive Attitude Control of the Crew Launch Vehicle

    Science.gov (United States)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  10. Vehicle Dynamics due to Magnetic Launch Propulsion

    Science.gov (United States)

    Galaboff, Zachary J.; Jacobs, William; West, Mark E.; Montenegro, Justino (Technical Monitor)

    2000-01-01

    The field of Magnetic Levitation Lind Propulsion (MagLev) has been around for over 30 years, primarily in high-speed rail service. In recent years, however, NASA has been looking closely at MagLev as a possible first stage propulsion system for spacecraft. This approach creates a variety of new problems that don't currently exist with the present MagLev trains around the world. NASA requires that a spacecraft of approximately 120,000 lbs be accelerated at two times the acceleration of gravity (2g's). This produces a greater demand on power over the normal MagLev trains that accelerate at around 0.1g. To be able to store and distribute up to 3,000 Mega Joules of energy in less than 10 seconds is a technical challenge. Another problem never addressed by the train industry and, peculiar only to NASA, is the control of a lifting body through the acceleration of and separation from the MagLev track. Very little is understood about how a lifting body will react with external forces, Such as wind gusts and ground effects, while being propelled along on soft springs such as magnetic levitators. Much study needs to be done to determine spacecraft control requirements as well as what control mechanisms and aero-surfaces should be placed on the carrier. Once the spacecraft has been propelled down the track another significant event takes place, the separation of the spacecraft from the carrier. The dynamics involved for both the carrier and the spacecraft are complex and coupled. Analysis of the reaction of the carrier after losing, a majority of its mass must be performed to insure control of the carrier is maintained and a safe separation of the spacecraft is achieved. The spacecraft angle of attack required for lift and how it will affect the carriage just prior to separation, along with the impacts of around effect and aerodynamic forces at ground level must be modeled and analyzed to define requirements on the launch vehicle design. Mechanisms, which can withstand the

  11. Structural dynamics for new launch vehicles

    Science.gov (United States)

    Neighbors, Joyce; Ryan, Robert S.

    1992-01-01

    An overview is presented of current studies that will permit more robust designs and reduce the safety hazards of maximum dynamic pressure during launches. Key considerations in the assessment of future operable launch capabilities are the dynamics problems that arise during the initial minutes of transition from the static configuration on the launch pad to the attainment of orbital velocity. Attention is given to a typical attempt to achieve robustness that involves creating a design in which the first bending mode will have a high enough frequency to allow decoupling between the autopilot design and the flexible body dynamics.

  12. Launch Vehicle Design Process Characterization Enables Design/Project Tool

    Science.gov (United States)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Robinson, Nancy (Technical Monitor)

    2001-01-01

    The objectives of the project described in this viewgraph presentation included the following: (1) Provide an overview characterization of the launch vehicle design process; and (2) Delineate design/project tool to identify, document, and track pertinent data.

  13. Fiber Optic Sensing Systems for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The FOSS project primary test objectives are to demonstrate by flying on an Antares launch vehicle, the ability of FOSS flight hardware to measure strain and...

  14. Risk Considerations of Bird Strikes to Space Launch Vehicles

    Science.gov (United States)

    Hales, Christy; Ring, Robert

    2016-01-01

    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  15. Nytrox Oxidizers for NanoSat Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Propulsion Group, Inc. proposes to conduct systems studies to quantify the performance and cost advantages of Nytrox oxidizers for small launch vehicles. This...

  16. Platform Independent Launch Vehicle Avionics with GPS Metric Tracking Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this award, Tyvak proposes to develop a complete suite of avionics for a Nano-Launch Vehicle (NLV) based on the architecture determinations performed during...

  17. Electromagnetic Cavity Effects from Transmitters Inside a Launch Vehicle Fairing

    Science.gov (United States)

    Trout, Dawn H.; Wahid, Parveen F.; Stanley, James E.

    2009-01-01

    This paper provides insight into the difficult analytical issue for launch vehicles and spacecraft that has applicability outside of the launch industry. Radiation from spacecraft or launch vehicle antennas located within enclosures in the launch vehicle generates an electromagnetic environment that is difficult to accurately predict. This paper discusses the test results of power levels produced by a transmitter within a representative scaled vehicle fairing model and provides preliminary modeling results at the low end of the frequency test range using a commercial tool. Initially, the walls of the fairing are aluminum and later, layered with materials to simulate acoustic blanketing structures that are typical in payload fairings. The effects of these blanketing materials on the power levels within the fairing are examined.

  18. Space debris proximity analysis in powered and orbital phases during satellite launch

    Science.gov (United States)

    Bandyopadhyay, Priyankar; Sharma, R. K.; Adimurthy, V.

    2004-01-01

    This paper describes the methodology of the space debris proximity analysis in powered and orbital phase at the time of a satellite launch. The details of the SPADEPRO analysis package, developed for this purpose, are presented. It consists of modules which provide the functions related to ephemeris generation and reconstruction of primary object (launch vehicle or its payload upon insertion), determination of close approaches with resident space objects, computation of the state vector variance of the primary and the secondary objects to represent the knowledge uncertainty, and computation of the collision risk given the variance. This has been successfully applied during the recent launches of the Indian Space Research Organization.

  19. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    Science.gov (United States)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  20. The Sketch of a New Generation Launch Vehicle of Long-March Family

    Science.gov (United States)

    Tang, Yihua; Wang, Xiaojun; Cheng, Tangming

    2002-01-01

    To meet the ever-expanding requirements of satellite customers, a new generation launch vehicle of Long-March (LM) family is being studied according to theprinciples of low-cost, high-reliability, and maximum flexibility. With reducing prelaunch processing times, the launch system will strengthen the capability of providing international commercial launching services in the future. The new generation launch system is constructed with some standard modules, while featuring two types of newly developed engines and three new modules with non-toxic, non-polluting propellant. Based on the three modules, 5-m module powered by two 50-ton-thrust engines which burn liquid hydrogen (LH2) and liquid oxygen (LO2), 3.35-m module powered by two 120-ton-thrust engines which burn LO2 and kerosene (KO), and 2.25-m module powered by one 120-ton-thrust engine, first can combine into a serial large-scale launch vehicles with 5-m-dia common core. By modified the modules, next combine into medium launch vehicles with 3.35-m-dia core and a small launch vehicle with 2.25-m-dia core. Then a new group of launch vehicles will be formed to accommodate a wide range of performance requirements, which provide a capable of delivering payloads ranging from 1.5-14 ton to geosynchronous transfer orbit (GTO) and up to 25 ton to low earth orbit (LEO). This paper will highlight the design principles, system concept and serial configurations for the new generation launch system.

  1. General Purpose Satellites: a concept for affordable low earth orbit vehicles

    OpenAIRE

    Boyd, Austin W.; Fuhs, Allen E.

    1997-01-01

    A general purpose satellite has been designed which will be launched from the Space Shuttle using a NASA Get-Away-Special (GAS) canister. The design is based upon the use of a new extended GAS canister and a low profile launch mechanism. The satellite is cylindrical. measuring 19 inches in diameter and 35 inches long. The maximum vehicle weight is 250 pounds, of which 50 pounds is dedicated to user payloads. The remaining 200 pounds encompasses the satellite structure and support ...

  2. Micro, nano and pico satellites launched from the Romanian territory

    Science.gov (United States)

    Savu, G.

    2006-10-01

    In the frame of National Program "Aerospatial" The National Institute of Turbomachinery—COMOTI, Bucharest, Romania proposes a project of launching with minimum cost of microsatellites using the national territory. The geographical position of Romania is optimum for satellites launching due to the presence of the Black Sea in the eastern part of the country and due to its elongated shape, West-East, offering a launching surface of 1500 km (W-E) ×250km (N-S). Two modes of launching were analyzed: vertical, from the soil and horizontal, from a carrier aircraft. The second mode of launching doubtless has some advantages, particularly from the point of view of costs. It was analyzed the launching of a LEO satellite as a payload of a single stage rocket with solid propellant, launched from a fighter aircraft. The aerodynamic coefficients of the rocket, the equation of movement on the trajectory and the rocket engine thrust were calculated using a FORTRAN program—LSCS (language for the simulation the continuous systems). The shape of the trajectory was imposed (not optimized), finally resulting the performances, the main geometrical dimensions of the rocket and the mass of the satellite.

  3. Safety and mission capabilities of manned launch vehicles

    Science.gov (United States)

    Utz, H.; Hornik, A.; Sax, H.; Loetzerich, K.

    In this paper we compare and discuss the safety of vertical launched manned spacecraft: capsules as well as winged vehicles. As examples we use HERMES and a manned capsule suitable for ARIANE 5. In the calculations we use ARIANE 5 as launcher for the compared vehicles. The installation of safety and rescue systems like ejection seats or rescue capsules always leads to additional weight and usually causes a reduction of payload capability. Due to relatively low launching rates it is hard to obtain exact safety data of manned space vehicles and launchers. Therefore we discuss the relative safety gains of different rescue systems by investigating their properties, such as mission capabilities, weight and operational aspects. We also consider the advantages of these rescue systems for the safety of manned spacecraft. The main criterion of our comparison is the payload that each type of manned vehicle is able to transport in LEO under nearly equal safety conditions during ascent - i.e., by installing comparable rescue systems. Capsules offer a better payload capability then winged launch vehicles. The advantages of winged launch vehicles must be paid for by essential loss of margins for additional safety equipment. Operational aspects like mision abort during ascent and payload accommodation are also included in this comparison.

  4. Liquid propellant analogy technique in dynamic modeling of launch vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The coupling effects among lateral mode,longitudinal mode and torsional mode of a launch vehicle cannot be taken into account in traditional dynamic analysis using lateral beam model and longitudinal spring-mass model individually.To deal with the problem,propellant analogy methods based on beam model are proposed and coupled mass-matrix of liquid propellant is constructed through additional mass in the present study.Then an integrated model of launch vehicle for free vibration analysis is established,by which research on the interactions between longitudinal and lateral modes,longitudinal and torsional modes of the launch vehicle can be implemented.Numerical examples for tandem tanks validate the present method and its necessity.

  5. LARES succesfully launched in orbit: satellite and mission description

    CERN Document Server

    Paolozzi, Antonio

    2013-01-01

    On February 13th 2012, the LARES satellite of the Italian Space Agency (ASI) was launched into orbit with the qualification flight of the new VEGA launcher of the European Space Agency (ESA). The payload was released very accurately in the nominal orbit. The name LARES means LAser RElativity Satellite and summarises the objective of the mission and some characteristics of the satellite. It is, in fact, a mission designed to test Einstein's General Relativity Theory (specifically 'frame dragging' and Lense-Thirring effect). The satellite is passive and covered with optical retroreflectors that send back laser pulses to the emitting ground station. This allows accurate positioning of the satellite, which is important for measuring the very small deviations from Galilei-Newton's laws. In 2008, ASI selected the prime industrial contractor for the LARES system with a heavy involvement of the universities in all phases of the programme, from the design to the construction and testing of the satellite and separation...

  6. Information Flow in the Launch Vehicle Design/Analysis Process

    Science.gov (United States)

    Humphries, W. R., Sr.; Holland, W.; Bishop, R.

    1999-01-01

    This paper describes the results of a team effort aimed at defining the information flow between disciplines at the Marshall Space Flight Center (MSFC) engaged in the design of space launch vehicles. The information flow is modeled at a first level and is described using three types of templates: an N x N diagram, discipline flow diagrams, and discipline task descriptions. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It is also intended to provide design managers with a better understanding of information flow in the launch vehicle design cycle.

  7. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    Science.gov (United States)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  8. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  9. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  10. Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle

    Science.gov (United States)

    Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.

    2007-01-01

    The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.

  11. An Evolvable Approach to Launch Vehicles for Exploration

    Science.gov (United States)

    Cheuvront, David L.; Nguyen, Tri X.

    2005-01-01

    This paper presents ideas that may be used individually or in combination to mitigate high costs for separate developments of new crew and heavy-lift cargo launch vehicles, while providing the foundation for a highly reliable and evolvable approach to exploration. Consideration is given to reclassification of cargo for launch purposes into high value versus low value categories, rather than the presently-defined crew versus cargo categories. Objectives for the reclassification are to reduce the gap between payload mass requirements for crew and cargo payloads to better allow closure on a single moderately-sized common core vehicle to reduce development cost, achieve an economical balance between launch frequency and payload mass, and to improve total mission reliability and safety, as compared a light-weight crew vehicle and heavy cargo lift approach. Concepts to reduce design and flight qualification costs for a common core vehicle with derivatives are presented. Appropriate types and mass of cargo for each class of vehicle are identified. Utilization of existing infrastructure and flight hardware is considered to reduce costs and build on proven capabilities. The approach enables low-risk incorporation of international and commercial launch of relatively low-cost, easily replaceable assets as a means to evolve toward longer-duration and more distant missions. Benefits are identified for ground idrastructure, personnel, training, logistics, spares, and system evolution. Technology needs are compared with needs for other aspects of exploration. Technology development phasing, demonstration, and reliability growth opportunities are considered. Flexibility to adapt to future technologies such as advanced in-space propulsion is contrasted with an approach of sizing the cargo launch vehicle based on today's in-space propellants.

  12. Servicing of multiple satellites using an OMV-derived transfer vehicle

    Science.gov (United States)

    Graves, Carl D.; Meissinger, Hans F.; Rosen, Alan

    Servicing vehicles and supplies to be used for extending the mission life of polar orbiting satellites will be launched into orbit by expendable launch vehicles, since the Space Shuttle currently is not expected to operate in this orbital regime. The Orbital Maneuvering Vehicle or a smaller version being designed for this purpose, and its performance potential as a permanently space-based satellite servicing vehicle, are the subject of this paper. A single servicing vehicle of this class can maneuver, as required, to visit multiple user satellites in their respective orbits. Cost-effective orbit transfer techniques are essential for a viable multi-satellite servicing scenario. Such transfer modes and servicing scenarios, and the usable payload delivery performance achievable are analyzed and compared.

  13. Illustration of Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  14. The cart before the horse: Mariner spacecraft and launch vehicles

    Science.gov (United States)

    1984-01-01

    Evolution of unmanned space exploration (Pioneer, Ranger, Surveyor, and Prospector) up to 1960, and the problems in the design and use of the Atlas Centaur launch vehicle were discussed. The Mariner Program was developed from the experience gained from the previous unmanned flights.

  15. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    Science.gov (United States)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  16. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    Science.gov (United States)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    Human missions to Mars, particularly to the Martian surface, are grand endeavors that place extensive demands on ground infrastructure, launch capabilities, and mission systems. The interplay of capabilities and limitations among these areas can have significant impacts on the costs and ability to conduct Mars missions and campaigns. From a mission and campaign perspective, decisions that affect element designs, including those based on launch vehicle and ground considerations, can create effects that ripple through all phases of the mission and have significant impact on the overall campaign. These effects result in impacts to element designs and performance, launch and surface manifesting, and mission operations. In current Evolvable Mars Campaign concepts, the NASA Space Launch System (SLS) is the primary launch vehicle for delivering crew and payloads to cis-lunar space. SLS is currently developing an 8.4m diameter cargo fairing, with a planned upgrade to a 10m diameter fairing in the future. Fairing diameter is a driving factor that impacts many aspects of system design, vehicle performance, and operational concepts. It creates a ripple effect that influences all aspects of a Mars mission, including: element designs, grounds operations, launch vehicle design, payload packaging on the lander, launch vehicle adapter design to meet structural launch requirements, control and thermal protection during entry and descent at Mars, landing stability, and surface operations. Analyses have been performed in each of these areas to assess and, where possible, quantify the impacts of fairing diameter selection on all aspects of a Mars mission. Several potential impacts of launch fairing diameter selection are identified in each of these areas, along with changes to system designs that result. Solutions for addressing these impacts generally result in increased systems mass and propellant needs, which can further exacerbate packaging and flight challenges. This paper

  17. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  18. Tracks for Eastern/Western European Future Launch Vehicles Cooperation

    Science.gov (United States)

    Eymar, Patrick; Bertschi, Markus

    2002-01-01

    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2

  19. Development of a Launch Vehicle Manufacturing Process. Chapter 4

    Science.gov (United States)

    Vickers, John; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    One of the goals of this chapter is to provide sufficient information so that you can develop a manufacturing process for a potential launch vehicle. With the variety of manufacturing options available, you might ask how this can possibly be done in the span of a single chapter. Actually, it will be quite simple because a basic manufacturing process is nothing more than a set of logical steps that are iterated until they produce a desired product. Although these statements seem simple and logical, don't let this simplicity fool you. Manufacturing problems with launch vehicles and their subassemblies have been the primary cause of project failures because the vehicle concept delivered to the manufacturing floor could not be built as designed.

  20. The Impact of New Trends in Satellite Launches on Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goktug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into

  1. The Next Giant Leap: NASA's Ares Launch Vehicles Overview

    Science.gov (United States)

    Cook, Stephen A.; Vanhooser, Teresa

    2008-01-01

    The next chapter in NASA's history also promises to write the next chapter in America's history, as the Agency makes measurable strides toward developing new space transportation capabilities that wi!! put astronauts on course to explore the Moon as the next giant leap toward the first human footprint on Mars. This paper will present top-level plans and progress being made toward fielding the Ares I crew launch vehicle in the 2013 timeframe and the Ares V cargo launch vehicle in the 2018 timeframe. It also gives insight into the objectives for the first test flight, known as the Ares I-X, which is scheduled for April 2009. The U.S. strategy to scientifically explore space will fuel innovations such as solar power and water recycling, as well as yield new knowledge that directly benefits life on Earth. For the Ares launch vehicles, NASA is building on heritage hardware and unique capabilities; as well as almost 50 years of lessons learned from the Apollo Saturn, Space Shuttle, and commercial launch vehicle programs. In the Ares I Project's inaugural year, extensive trade studies and evaluations were conducted to improve upon the designs initially recommended by the Exploration Systems Architecture Study, resulting in significant reduction of near-term and long-range technical and programmatic risks; conceptual designs were analyzed for fitness against requirements; and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. The Exploration Launch Projects team completed the Ares I System Requirements Review (SRR) at the end of 2006--the first such engineering milestone for a human-rated space transportation system in over 30 years.

  2. Reliability and cost considerations for launch vehicle avionics

    Science.gov (United States)

    Wensley, John H.; Uhrich, Don D.

    The optimum redundancy for an avionics processor can be determined from cost and reliability considerations. The use and expense of redundant architectures are examined, along with the cost and advantages of using space-qualified parts. The advanced launch system (ALS) vehicle model was used for the comparisons. Avionics redundancy models included duplex, triple modular redundancy, and quad systems. Processors were modeled as simplex, dual self-checking pairs, or triplex checking. Cost factors were those which result in the cost per launched vehicle. These included cost of launch equipment, cost of scrubbing a launch, failure investigation, repair, and the cost of money due to schedule delays. The primary conclusion reached was that the use of redundancy to achieve fault tolerance is required for higher value missions. The use of less-highly qualified parts can lower costs for less expensive payloads, but will require a culture change to allow launching with known faults. The need for greater emphasis on determination of coverage for fault-tolerant systems was demonstrated.

  3. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  4. 20 Years Experience with using Low Cost Launch Opportunities for 20 Small Satellite Missions

    Science.gov (United States)

    Meerman, Maarten; Sweeting, Martin, , Sir

    these larger 'small satellites' are too big to be carried 'piggy-back'. The entrepreneurial efforts of leading FSU rocket &missile organisations in converting existing vehicles to meet the small satellite launch market at an appropriate cost has resulted in the FSU now holding the prime position for providing launches for the small satellite community - and with an excellent track record of successful launches. However, negotiating and completing a Launch Services Agreement (LSA) for a nano-micro-minisatellite with any launcher organisation is a complex matter and risky territory for the unwary or inexperienced who may easily fall prey to unexpected additional costs and delays. Whilst this warning should be heeded when dealing with European and US organisations, it is particularly relevant when negotiating launches from the FSU where there is a plethora of agencies and organisations offering a bewildering range of launch vehicles and options. Furthermore, the FSU has developed a very different technical and managerial philosophy towards launchers when compared with the west and this can be unnerving to 'first-time buyers'. Organisations experienced in dealing in the FSU will encounter a different but excellent service - once the launch service agreement has been thoroughly and fiercely negotiated in every detail. The inexperienced, however, have encountered frustrating delays, lost opportunities, unexpected taxes and costs for additional services or facilities not originally specified, and bewilderment at the different procedures used in the FSU. Fortunately, all this can be avoided with proper experience and the FSU is the current mainstay for launching small satellites quickly, affordably and reliably. Surrey has unique experience gathered over 20 years in handling launches for 20 small satellites, ranging from a 6kg nanosatellite, 50-100kg microsatellites, and a 325kg minisatellite, using 7 different launchers from the USA, Russia, Ukraine, and Europe. By working

  5. Evolved expendable launch vehicle system: RS-68 main engine development

    Energy Technology Data Exchange (ETDEWEB)

    Conley, David [USAF SMC/MVB (United States); Lee, Norman Y.; Portanova, Peter L. [Aerospace Corp. (United States); Wood, Byron K. [Boeing Co., Rocketdyne Propulsion and Power (United States)

    2003-11-01

    Delta IV is one of two competing Evolved Expendable Launch Vehicle (EELV) systems being developed in an industry/United States Government partnership to meet the needs of the new era of space launch for the early decades of the 21st Century. The Rocketdyne Division of The Boeing Company and the United States Air Force have developed a 650 Klbf sea-level (2.9 MN) class liquid hydrogen/liquid oxygen main engine for the Delta IV family of EELV. The purpose of this paper is to present the innovative approach to the design, development, testing and certification of the RS-68 engine. (Author)

  6. Bantam: A Systematic Approach to Reusable Launch Vehicle Technology Development

    Science.gov (United States)

    Griner, Carolyn; Lyles, Garry

    1999-01-01

    The Bantam technology project is focused on providing a low cost launch capability for very small (100 kilogram) NASA and University science payloads. The cost goal has been set at one million dollars per launch. The Bantam project, however, represents much more than a small payload launch capability. Bantam represents a unique, systematic approach to reusable launch vehicle technology development. This technology maturation approach will enable future highly reusable launch concepts in any payload class. These launch vehicle concepts of the future could deliver payloads for hundreds of dollars per pound, enabling dramatic growth in civil and commercial space enterprise. The National Aeronautics and Space Administration (NASA) has demonstrated a better, faster, and cheaper approach to science discovery in recent years. This approach is exemplified by the successful Mars Exploration Program lead by the Jet Propulsion Laboratory (JPL) for the NASA Space Science Enterprise. The Bantam project represents an approach to space transportation technology maturation that is very similar to the Mars Exploration Program. The NASA Advanced Space Transportation Program (ASTP) and Future X Pathfinder Program will combine to systematically mature reusable space transportation technology from low technology readiness to system level flight demonstration. New reusable space transportation capability will be demonstrated at a small (Bantam) scale approximately every two years. Each flight demonstration will build on the knowledge derived from the previous flight tests. The Bantam scale flight demonstrations will begin with the flights of the X-34. The X-34 will demonstrate reusable launch vehicle technologies including; flight regimes up to Mach 8 and 250,000 feet, autonomous flight operations, all weather operations, twenty-five flights in one year with a surge capability of two flights in less than twenty-four hours and safe abort. The Bantam project will build on this initial

  7. Design Considerations for a Launch Vehicle Development Flight Instrumentation System

    Science.gov (United States)

    Johnson, Martin L.; Crawford, Kevin

    2011-01-01

    When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.

  8. Proceedings of the heavy lift launch vehicle tropospheric effects workshop

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    A workshop, sponsored by the Argonne National Laboratory, on Heavy Lift Launch Vehicle (HLLV) troposheric effects was held in Chicago, Illinois, on September 12, 13, and 14, 1978. Briefings were conducted on the latest HLLV congigurations, launch schedules, and proposed fuels. The geographical, environmental, and ecological background of three proposed launch sites were presented in brief. The sites discussed were launch pads near the Kennedy Space Center (KSC), a site in the southwestern United States near Animus, New Mexico, and an ocean site just north of the equator off the coast of Ecuador. A review of past efforts in atmospheric dynamics modeling, source term prediction, atmospheric effects, cloud rise modeling, and rainout/washout effects for the Space Shuttle tropospheric effects indicated that much of the progress made in these areas has direct applicability to the HLLV. The potential pollutants from the HLLV are different and their chymical interactions with the atmosphere are more complex, but the analytical techniques developed for the Space Shuttle can be applied, with the appropriate modification, to the HLLV. Reviews were presented of the ecological baseline monitoring being performed at KSC and the plant toxicology studies being conducted at North Carolina State. Based on the proposed launch sites, the latest HLLV configuration fuel, and launch schedule, the attendees developed a lit of possible environmental issues associated with the HLLV. In addition, a list of specific recommendations for short- and long-term research to investigate, understand, and possibly mitigate the HLLV environmental impacts was developed.

  9. Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher

    Science.gov (United States)

    Vu, Bruce T.

    2007-01-01

    A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.

  10. Design for Safety - The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  11. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design

    Science.gov (United States)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.

    1997-01-01

    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  12. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview

    Science.gov (United States)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

    1999-01-01

    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  13. Beyond Percheron - Launch vehicle systems from the private sector

    Science.gov (United States)

    Horne, W. C.; Pavia, T. C.; Schrick, B. L.; Wolf, R. S.; Fruchterman, J. R.; Ross, D. J.

    Private ventures for operation of spacecraft launching services are discussed in terms of alternative strategies for commercialization of space activities. The Percheron was the product of a philosophy of a cost-, rather than a weight-, minimized a lunch vehicle. Although the engine exploded during a static test firing, other private projects continued, including the launch of the Conestoga, an Aries second stage Minuteman I. Consideration is being directed toward commercial production and launch of the Delta rocket, and $1 and a $1.5 billion offers have been tendered for financing a fifth Orbiter for NASA in exchange for marketing rights. Funding for the ventures is contingent upon analyses of the size and projected growth rate of payload markets, a favorable national policy, investor confidence, and agreeable capitalization levels. It is shown that no significant barriers exist against satisfying the criteria, and private space ventures are projected to result in more cost-effective operations due to increased competition.

  14. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  15. The Impact of New Trends in Satellite Launches on the Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goektug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. As a foundation for the study, we developed a deployment scenario for satellites and associated rocket bodies based on publicly announced future missions. The upcoming orbital injection technologies, such as the new launch vehicles dedicated for small spacecraft and propulsive interstages, are also considered in this scenario. We then used a simulation tool developed in-house to propagate the objects within this scenario using variable-sized time-steps as small as one second to detect conjunctions between objects. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation in the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is our hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.

  16. The Soyuz launch vehicle the two lives of an engineering triumph

    CERN Document Server

    Lardier, Christian

    2013-01-01

    The Soyuz launch vehicle has had a long and illustrious history. Built as the world's first intercontinental missile, it took the first man into space in April 1961, before becoming the workhorse of Russian spaceflight, launching satellites, interplanetary probes, every cosmonaut from Gagarin onwards, and, now, the multinational crews of the International Space Station. This remarkable book gives a complete and accurate description of the two lives of Soyuz, chronicling the cooperative space endeavor of Europe and Russia. First, it takes us back to the early days of astronautics, when technology served politics. From archives found in the Soviet Union the authors describe the difficulty of designing a rocket in the immediate post-war period. Then, in Soyuz's golden age, it launched numerous scientific missions and manned flights which were publicized worldwide while the many more numerous military missions were kept highly confidential! The second part of the book tells the contemporary story of the second li...

  17. United States commitment to heavy lift launch vehicles

    Science.gov (United States)

    Gabris, Edward A.

    Observers of the United States' space program will note progress toward the development of a new launch system capable of supporting the nation's future space missions. The process of defining mission requirements, developing technically and politically acceptable solutions, making policy decisions, and developing budget support in a democratic society is protracted, but eventually yields decisions that represent the public interest. The consensus developing within the United States on a new launch capability including heavy-lift is embodied in the Joint NASA/DoD National Launch System. This launch vehicle concept has emerged after more than five years of studies by NASA, the DoD and every major industrial aerospace contractor in the U.S. In July 1991, Vice President Quayle, in his capacity as Chairman of the National Space Council stated the Nation's commitment to support of the NLS. This paper reviews progress to date, and the involvement of the four major constituencies; the Executive Branch operating through the National Space Council, the Legislative Branch, the various elements of the DoD, and NASA. The evolution of launch system "requirements", along with the form, content and rationale for the various decisions that have been made will be described and discussed.

  18. Particle swarm optimization of ascent trajectories of multistage launch vehicles

    Science.gov (United States)

    Pontani, Mauro

    2014-02-01

    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state

  19. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Science.gov (United States)

    2010-01-01

    ... vehicle poses risk to public health and safety and the safety of property in excess of acceptable flight... LAUNCH VEHICLE (RLV) Safety Review and Approval for Launch and Reentry of a Reusable Launch Vehicle § 431... RLV mission safety approval shall submit procedures— (1) That ensure RLV mission risks do not exceed...

  20. Onboard Sensor Data Qualification in Human-Rated Launch Vehicles

    Science.gov (United States)

    Wong, Edmond; Melcher, Kevin J.; Maul, William A.; Chicatelli, Amy K.; Sowers, Thomas S.; Fulton, Christopher; Bickford, Randall

    2012-01-01

    The avionics system software for human-rated launch vehicles requires an implementation approach that is robust to failures, especially the failure of sensors used to monitor vehicle conditions that might result in an abort determination. Sensor measurements provide the basis for operational decisions on human-rated launch vehicles. This data is often used to assess the health of system or subsystem components, to identify failures, and to take corrective action. An incorrect conclusion and/or response may result if the sensor itself provides faulty data, or if the data provided by the sensor has been corrupted. Operational decisions based on faulty sensor data have the potential to be catastrophic, resulting in loss of mission or loss of crew. To prevent these later situations from occurring, a Modular Architecture and Generalized Methodology for Sensor Data Qualification in Human-rated Launch Vehicles has been developed. Sensor Data Qualification (SDQ) is a set of algorithms that can be implemented in onboard flight software, and can be used to qualify data obtained from flight-critical sensors prior to the data being used by other flight software algorithms. Qualified data has been analyzed by SDQ and is determined to be a true representation of the sensed system state; that is, the sensor data is determined not to be corrupted by sensor faults or signal transmission faults. Sensor data can become corrupted by faults at any point in the signal path between the sensor and the flight computer. Qualifying the sensor data has the benefit of ensuring that erroneous data is identified and flagged before otherwise being used for operational decisions, thus increasing confidence in the response of the other flight software processes using the qualified data, and decreasing the probability of false alarms or missed detections.

  1. Illustration of Ares I Launch Vehicle With Call Outs

    Science.gov (United States)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  2. Gain Scheduling for the Orion Launch Abort Vehicle Controller

    Science.gov (United States)

    McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.

    2011-01-01

    One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.

  3. An Experimental Study of Launch Vehicle Propellant Tank Fragmentation

    Science.gov (United States)

    Richardson, Erin; Jackson, Austin; Hays, Michael; Bangham, Mike; Blackwood, James; Skinner, Troy; Richman, Ben

    2014-01-01

    In order to better understand launch vehicle abort environments, Bangham Engineering Inc. (BEi) built a test assembly that fails sample materials (steel and aluminum plates of various alloys and thicknesses) under quasi-realistic vehicle failure conditions. Samples are exposed to pressures similar to those expected in vehicle failure scenarios and filmed at high speed to increase understanding of complex fracture mechanics. After failure, the fragments of each test sample are collected, catalogued and reconstructed for further study. Post-test analysis shows that aluminum samples consistently produce fewer fragments than steel samples of similar thickness and at similar failure pressures. Video analysis shows that there are several failure 'patterns' that can be observed for all test samples based on configuration. Fragment velocities are also measured from high speed video data. Sample thickness and material are analyzed for trends in failure pressure. Testing is also done with cryogenic and noncryogenic liquid loading on the samples. It is determined that liquid loading and cryogenic temperatures can decrease material fragmentation for sub-flight thicknesses. A method is developed for capture and collection of fragments that is greater than 97 percent effective in recovering sample mass, addressing the generation of tiny fragments. Currently, samples tested do not match actual launch vehicle propellant tank material thicknesses because of size constraints on test assembly, but test findings are used to inform the design and build of another, larger test assembly with the purpose of testing actual vehicle flight materials that include structural components such as iso-grid and friction stir welds.

  4. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    Science.gov (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  5. The European launch vehicle Ariane: Its commercial status - Its evolution

    Science.gov (United States)

    Glavany, M.

    The status of the Ariane program is summarized. The shareholders and participating countries in the French private firm Arianespace are listed and the Ariane rocket is very briefly described, depicting the planned models and showing their anticipated performances and the types of fairing available to them, and comparing the available volume in Ariane 3 and 4 and foreign competitors. The current status of the Ariane program, including the development phase, promotional series, and commercial phase are briefly presented. The Guiana space center and second launch pad are described and the advantages of Arianespace's launch service and the vehicle are listed, along with Ariane's advantages over the Space Shuttle. The expected market share for Ariane is shown in comparison with that of the Shuttle and other nations.

  6. Evolved Expendable Launch Vehicle: DOD Is Assessing Data on Worldwide Launch Market to Inform New Acquisition Strategy

    Science.gov (United States)

    2016-07-22

    Worldwide Launch Market to Inform New Acquisition Strategy Dear Mr. Chairman: This report formally transmits the information we provided in a briefing on...efforts to incorporate consideration of the global launch market into the next Evolved Expendable Launch Vehicle (EELV) program acquisition strategy . The...current and predicted military, civil and commercial launch markets into its acquisition strategy , we obtained information from Air Force and DOD

  7. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control

    Science.gov (United States)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  8. Systems design analysis applied to launch vehicle configuration

    Science.gov (United States)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  9. Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle

    Science.gov (United States)

    Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.

    2003-01-01

    Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.

  10. Sustained small oscillations in nonlinear control systems. [launch vehicle dynamics

    Science.gov (United States)

    George, J. H.; Gunderson, R. W.; Hahn, H.

    1975-01-01

    Some results of bifurcation theory were used to study the existence of small-amplitude periodic behavior in launch vehicle dynamics, assuming that nonlinearity exists as a cubic term in the rudder response. The analysis follows closely Sattinger's (1973) approach to the theory of periodic bifurcations. The conditions under which a bifurcating branch of orbitally stable periodic solutions will exist are determined. It is shown that in more complicated cases, the conditions under which the system matrix has a pair of simple purely imaginary eigenvalues can be determined with the aid of linear stability techniques.

  11. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  12. LQG controller designs from reduced order models for a launch vehicle

    Indian Academy of Sciences (India)

    Ashwin Dhabale; R N Banavar; M V Dhekane

    2008-02-01

    The suppression of liquid fuel slosh motion is critical in a launch vehicle (LV). In particular, during certain stages of the launch, the dynamics of the fuel interacts adversely with the rigid body dynamics of the LV and the feedback controller must attentuate these effects. This paper describes the effort of a multivariable control approach applied to the Geosynchronous Satellite Launch Vehicle (GSLV) of the Indian Space Research Organization (ISRO) during a certain stage of its launch. The fuel slosh dynamics are modelled using a pendulum model analogy. We describe two design methodologies using the Linear-Quadratic Gaussian (LQG) technique. The novelty of the technique is that we apply the LQG design for models that are reduced in order through inspection alone. This is possible from a perspective that the LV could be viewed as many small systems attached to a main body and the interactions of some of these smaller systems could be neglected at the controller design stage provided sufficient robustness is ensured by the controller. The first LQG design is carried out without the actuator dynamics incorporated at the design stage and for the second design we neglect the slosh dynamics as well.

  13. Near-Optimal Operation of Dual-Fuel Launch Vehicles

    Science.gov (United States)

    Ardema, M. D.; Chou, H. C.; Bowles, J. V.

    1996-01-01

    A near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. Of interest are both the optimal operation of the propulsion system and the optimal flight path. A methodology is developed to investigate the optimal throttle switching of dual-fuel engines. The method is based on selecting propulsion system modes and parameters that maximize a certain performance function. This function is derived from consideration of the energy-state model of the aircraft equations of motion. Because the density of liquid hydrogen is relatively low, the sensitivity of perturbations in volume need to be taken into consideration as well as weight sensitivity. The cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize vehicle empty weight for a given payload mass and volume in orbit.

  14. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  15. Mobile satellite communications - Vehicle antenna technology update

    Science.gov (United States)

    Bell, D.; Naderi, F. M.

    1986-01-01

    This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.

  16. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  17. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  18. Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned

    Science.gov (United States)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.

    2001-01-01

    Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.

  19. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    Science.gov (United States)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  20. Illustration of Ares V Launch Vehicle With Call Outs

    Science.gov (United States)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  1. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  2. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    Science.gov (United States)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares 1-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  3. LM-2F: A Great Launch Vehicle for China's Manned Spaceflight

    Institute of Scientific and Technical Information of China (English)

    Ren Shufang; Zhang Huiting

    2011-01-01

    The LM-2F launch vehicle is China's first launch carrier developed for China's Manned Space Program,which is one of the most important parts of the Program.It is developed from the LM-2E launch vehicle,with addition of two new systems,an escape system and a fault detection system.

  4. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Science.gov (United States)

    2010-01-01

    ...) Safety Review and Approval for Launch and Reentry of a Reusable Launch Vehicle § 431.35 Acceptable reusable launch vehicle mission risk. (a) To obtain safety approval for an RLV mission, an applicant must...) To obtain safety approval, an applicant shall demonstrate: (i) For public risk, the risk level to the...

  5. Orion Launch Abort Vehicle Attitude Control Motor Testing

    Science.gov (United States)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  6. Controls for Reusable Launch Vehicles During Terminal Area Energy Management

    Science.gov (United States)

    Driessen, Brian J.

    2005-01-01

    During the terminal energy management phase of flight (last of three phases) for a reusable launch vehicle, it is common for the controller to receive guidance commands specifying desired values for (i) the roll angle roll q(sub roll), (ii) the acceleration a(sub n) in the body negative z direction, -k(sub A)-bar, and (iii) omega(sub 3), the projection of onto the body-fixed axis k(sub A)-bar, is always indicated by guidance to be zero. The objective of the controller is to regulate the actual values of these three quantities, i.e make them close to the commanded values, while maintaining system stability.

  7. Development of an acoustic actuator for launch vehicle noise reduction.

    Science.gov (United States)

    Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M

    2002-01-01

    In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators.

  8. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    Science.gov (United States)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  9. High-Fidelity Prediction of Launch Vehicle Liftoff Acoustic Fields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-intensity level acoustic load generated by large launch vehicle lift-off propulsion is of major concern for the integrity of the launch complex and the...

  10. An Overview of the Launch Vehicle Blast Environments Development Efforts

    Science.gov (United States)

    Richardson, Erin; Bangham, Mike; Blackwood, James; Skinner, Troy; Hays, Michael; Jackson, Austin; Richman, Ben

    2014-01-01

    NASA has been funding an ongoing development program to characterize the explosive environments produced during a catastrophic launch vehicle accident. These studies and small-scale tests are focused on the near field environments that threaten the crew. The results indicate that these environments are unlikely to result in immediate destruction of the crew modules. The effort began as an independent assessment by NASA safety organizations, followed by the Ares program and NASA Engineering and Safety Center and now as a Space Launch Systems (SLS) focused effort. The development effort is using the test and accident data available from public or NASA sources as well as focused scaled tests that are examining the fundamental aspects of uncontained explosions of Hydrogen and air and Hydrogen and Oxygen. The primary risk to the crew appears to be the high-energy fragments and these are being characterized for the SLS. The development efforts will characterize the thermal environment of the explosions as well to ensure that the risk is well understood and to document the overall energy balance of an explosion. The effort is multi-path in that analytical, computational and focused testing is being used to develop the knowledge to understand potential SLS explosions. This is an ongoing program with plans that expand the development from fundamental testing at small-scale levels to large-scale tests that can be used to validate models for commercial programs. The ultimate goal is to develop a knowledge base that can be used by vehicle designers to maximize crew survival in an explosion.

  11. Use of the Collaborative Optimization Architecture for Launch Vehicle Design

    Science.gov (United States)

    Braun, R. D.; Moore, A. A.; Kroo, I. M.

    1996-01-01

    Collaborative optimization is a new design architecture specifically created for large-scale distributed-analysis applications. In this approach, problem is decomposed into a user-defined number of subspace optimization problems that are driven towards interdisciplinary compatibility and the appropriate solution by a system-level coordination process. This decentralized design strategy allows domain-specific issues to be accommodated by disciplinary analysts, while requiring interdisciplinary decisions to be reached by consensus. The present investigation focuses on application of the collaborative optimization architecture to the multidisciplinary design of a single-stage-to-orbit launch vehicle. Vehicle design, trajectory, and cost issues are directly modeled. Posed to suit the collaborative architecture, the design problem is characterized by 5 design variables and 16 constraints. Numerous collaborative solutions are obtained. Comparison of these solutions demonstrates the influence which an priori ascent-abort criterion has on development cost. Similarly, objective-function selection is discussed, demonstrating the difference between minimum weight and minimum cost concepts. The operational advantages of the collaborative optimization

  12. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  13. Grid Fin Stabilization of the Orion Launch Abort Vehicle

    Science.gov (United States)

    Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.

    2011-01-01

    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide

  14. A Modular Minimum Cost Launch System for Nano-Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As minimum cost will be required for a dedicated Nano-Sat Launch Vehicle, a parallel staged, highly modular vehicle architecture is proposed for development. The...

  15. Considerations in Launch Vehicle Abort Capability and Failure Tolerance

    Science.gov (United States)

    Hale, N. W., Jr.; Conte, B. A.

    2002-01-01

    operations, the Space Shuttle was designed to incur loss of thrust from one engine at liftoff and return safely to a runway. This is a very unusual capability in space launch vehicles and, if desired, must be designed into the system initially. For some extremely high value payloads on future expendable launch vehicles, this capability may be cost effective as well as for human space flights. Current designers may be inclined to design a "simple" emergency escape pod to resolve this issue. That may neither be the most effective nor the safest way to provide ascent failure tolerance. This paper discusses some real-world issues associated with this capability that the designers of the Space Shuttle did take into account that have become serious issues in real operations. paper discusses the affect of payload mass on abort capability. Issues related to abort modes can also be influence by other aspects of payload mass including center of gravity concerns. In a similar mode, consumables such as on-orbit attitude control propellant is a major factor in abort mode design. multiple engine failures during the powered ascent trajectory and have a happy outcome: landing on a runway. This paper discusses options and post-design fixes to the Space Shuttle to enhance multiple engine out capability. scenarios. include propellant underload on STS-61C, off nominal performance of engine clusters on STS-78 and STS-93, and other flights. Designers of these future human rated vehicles should consider the Space Shuttle experience in designing their systems. About the Authors: N. Wayne Hale, Jr. is currently the Deputy Chief for Shuttle of the NASA/JSC Flight Director Office. In 23 years with NASA at Houston's Johnson Space Center, he has served in the Mission Control Center for 41 Space Shuttle flights including 25 as Entry Flight Director. Mr. Hale received his Bachelor of Science Degree in Mechanical Engineering from Rice University in 1976 and his Master of Science Degree in

  16. China Plans To Carry Out 15 Launch Missions In 2008

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In 2007,China made 10 launch missions and achieved complete success,including the launch of Chang'e-1 satellite,in-orbit delivery of Nigcomsat-1 and 100th launch of Long March series launch vehicle.

  17. Sentinel-1A - Launching the first satellite and launching the operational Copernicus programme

    Science.gov (United States)

    Aschbacher, Josef; Milagro Perez, Maria Pilar

    2014-05-01

    The first Copernicus satellite, Sentinel-1A, is prepared for launch in April 2014. It will provide continuous, systematic and highly reliable radar images of the Earth. Sentinel-1B will follow around 18 months later to increase observation frequency and establish an operational system. Sentinel-1 is designed to work in a pre-programmed conflict-free operation mode ensuring the reliability required by operational services and creating a consistent long-term data archive for applications based on long time series. This mission will ensure the continuation and improvement of SAR operational services and applications addressing primarily medium- to high-resolution applications through a main mode of operation that features both a wide swath (250 km) and high geometric (5 × 20 m) and radiometric resolution, allowing imaging of global landmasses, coastal zones, sea ice, polar areas, and shipping routes at high resolution. The Sentinel-1 main operational mode (Interferometric Wide Swath) will allow to have a complete coverage of the Earth in 6 days in the operational configuration when the two Sentinel-1 spacecraft will be in orbit simultaneously. High priority areas like Europe, Canada and some shipping routes will be covered almost daily. This high global observation frequency is unprecedented and cannot be reached with any other current radar mission. Envisat, for example, which was the 'workhorse' in this domain up to April 2012, reached global coverage every 35 days. Sentinel-1 data products will be made available systematically and free of charge to all users including institutional users, the general public, scientific and commercial users. The transition of the Copernicus programme from the development to operational phase will take place at about the same time when the first Sentinel-1 satellite will be launched. During the operational phase, funding of the programme will come from the European Union Multiannual Financial Framework (MFF) for the years 2014

  18. Computer program provides improved longitudinal response analysis for axisymmetric launch vehicles

    Science.gov (United States)

    Smith, W. W.; Walton, W. C., Jr.

    1967-01-01

    Computer program calculates axisymmetric launch vehicle steady-state response to axisymmetric sinusoidal loads. A finite element technique is utilized to construct the total launch vehicle stiffness matrix and mass matrix by subdividing the prototype structure into a set of axisymmetric shell components, fluid components, and spring-mass components.

  19. Sliding Mode Control of the X-33 Vehicle in Launch Mode

    Science.gov (United States)

    Shtessel, Yuri; Jackson, Mark; Hall, Charles; Krupp, Don; Hendrix, N. Douglas

    1998-01-01

    The "nested" structure of the control system for the X33 vehicle in launch mode is developed. Employing backstopping concepts, the outer loop (guidance) and the Inner loop (rates) continuous sliding mode controllers are designed. Simulations of the 3-DOF model of the X33 launch vehicle showed an accurate, robust, de-coupled tracking performance.

  20. The Disposal of Spacecraft and Launch Vehicle Stages in Low Earth Orbit

    Science.gov (United States)

    Johnson, Nicholas L.

    2007-01-01

    This viewgraph presentation reviews the rationale for disposal of Low Earth Orbit (LEO) satelites and other spacecraft after the operational lifetime for the space craft and launch vehicle stages. It also reviews the National and International Space Debris Mitigation Guidelines, LEO Spacecraft Disposals, and the LEO Launch Vehicle Stage Disposals. Several examples of space craft disposals or passivation are given.

  1. SCORPIUS, A New Generation of Responsive, Low Cost Expendable Launch Vehicles

    Science.gov (United States)

    Conger, R. E.; Chakroborty, S. P.; Wertz, J. R.

    2002-01-01

    The Scorpius vehicle family extends from one and two stage sub-orbital vehicles for target and science applications to small, medium and heavy lift orbital vehicles. These new liquid fueled vehicles have LEO and GTO capabilities. Microcosm and the Scorpius Space Launch Company (SSLC) are well into the development of this all-new generation of expendable launch vehicles to support commercial and government missions. This paper presents the projected performance of the family of vehicles, status of the development program and projected launch service prices. The paper will discuss the new low cost ablative engines and low cost pressure-fed LOX/Jet-A propulsion systems. Schedules, payload volumes, dispensers, attach fittings, and planned dual manifest capabilities will be presented. The unique configuration of the wide base first stage allows fairings that may extend beyond the current 4-meters. The Scorpius family is designed to facilitate encapsulated payloads and launch-on-demand. The implications of these new operational procedures will be addressed, including the techniques that will be used to drive down the cost of access to space while improving reliability. The Scorpius family of low cost vehicles addresses the full range of payloads from 700 lbs. in the Sprite Mini-Lift to over 50,000 lbs. to LEO in the Heavy-Lift, and over 18,000 lbs. to GTO. Two sub-orbital vehicles have been developed and successfully launched, with the latest vehicle (SR-XM) launched in March of 2001 from White Sands Missile Range. Development of the family of vehicles commenced in 1993 under contracts with the Air Force Research Laboratory Space Vehicle Directorate after a number of years of independent studies and system engineering. The Sprite Mini-Lift Small Expendable Launch Vehicle (SELV) that utilizes the SR-XM technologies is planned for an initial launch in mid 2005 with larger, scaled-up vehicles to follow.

  2. The Air Force’s Evolved Expendable Launch Vehicle Competitive Procurement

    Science.gov (United States)

    2014-03-04

    with ULA, committing the government to buy 35 launch vehicle booster cores over a five-year period, and the associated capability to launch them.2...EELV programmatic forecast dated June 2012. 2 The booster core is the main body of a launch vehicle. In the EELV program, common booster cores are...contributors to this report were Art Gallegos, Assistant Director; Peter Anderson, Claire Buck , Raj Chitikila, Desiree Cunningham, Laura Hook, John

  3. Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing

    Science.gov (United States)

    Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath

    2017-08-01

    Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.

  4. Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing

    Science.gov (United States)

    Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath

    2016-06-01

    Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.

  5. Performance analysis of IMU-augmented GNSS tracking systems for space launch vehicles

    Science.gov (United States)

    Braun, Benjamin; Markgraf, Markus; Montenbruck, Oliver

    2016-06-01

    European space launch operators consider the potential of GNSS (global navigation satellite system) as a promising novel means of localization for the purpose of range safety of launch vehicles like Ariane and Vega, since it is expected that recurring costs are lower and accuracy is higher than currently existing systems like radar tracking. Range safety requires continuous information about the position and velocity of the launch vehicle to quickly detect the occurrence of catastrophic events. However, GNSS outages due, for example, to high jerks at fairing and stage jettisons or other external interferences like (un-)intentional jamming cannot be precluded. The OCAM-G experiment on Ariane 5 flight VA219 has provided evidence that GNSS is capable of providing a highly accurate position and velocity solution during most of the flight, but that outages of several seconds do occur. To increase the continuity of a GNSS-based localization system, it is proposed that the GNSS receiver is augmented by an inertial measurement unit (IMU), which is able to output a position and velocity solution even during GNSS outages. Since these outages are expected to be short, a tactical- or even consumer-grade IMU is expected to be sufficient. In this paper, the minimum IMU performance that is required to bridge outages of up to 10 s, and thereby meeting the accuracy requirements of range safety, is determined by means of a thorough simulation study. The focus of the analysis is on current generation microelectromechanical system (MEMS)-based IMU, which is lightweight, low-cost, available commercially and has reached acceptable maturity in the last decade.

  6. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review for unproven... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for...

  7. 14 CFR 420.30 - Launch site location review for permitted launch vehicles.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review for permitted... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.30 Launch site location review...

  8. Demonstration of Launch Vehicle Slosh Instability on Pole-Cart Platform

    Science.gov (United States)

    Pei, Jing; Rothhaar, Paul

    2015-01-01

    Liquid propellant makes up a significant portion of the total weight for large launch vehicles such as Saturn V, Space Shuttle, and the Space Launch System (SLS). Careful attention must be given to the influence of fuel slosh motion on the stability of the vehicle. A well-documented slosh danger zone occurs when the slosh mass is between the vehicle center of mass and the center of percussion. Passive damping via slosh baffle is generally required when the slosh mass is within this region. The pole-cart hardware system, typically used for academic purposes, has similar dynamic characteristics as an unstable launch vehicle. This setup offers a simple and inexpensive way of analyzing slosh dynamics and its impact on flight control design. In this paper, experimental and numerical results from the pole-cart system will be shown and direct analogies to launch vehicle slosh dynamics will be made.

  9. Solar thermal OTV—Applications to reusable and expendable launch vehicles

    Science.gov (United States)

    Kassler, Thomas L.; Frye, Patrick; Partch, Russ

    2000-07-01

    The Solar Orbit Transfer Vehicle (SOTV) program being sponsored by the U.S. Air Force Research Laboratory (AFRL) is developing technology that will engender revolutionary benefits to satellites and orbitto-orbit transfer systems. Solar thermal propulsion offers significant advantages for near-term expendable launch vehicles (ELVs) such as Delta IV, mid- to farterm reusable launch vehicles (RLVs) and ultimately to manned exploration of the Moon and Mars. Solar thermal propulsion uses a relatively large mirrored concentrator to focus solar energy onto a compact absorber, which is in turn heated to > 2200 K. This heat can then be used in two major ways. By flowing hydrogen or another working fluid through the absorber, high efficiency thrust can be generated with 800 sec or more specific impulse (Isp), almost twice that of conventional cryogenic stages and comparable with typical solid-core nuclear thermal stages. Within a decade, advances in materials and fabrication processes hold the promise of the Isp ranging up to 1,100 sec. In addition, attached thermionic or alkali metal thermoelectric converter (AMTEC) power converters can be used to generate 20 to 100 kilowatts (kW) of electricity. The SOTV Space Experiment (SOTV-SE), planned to be flown in 2003, will demonstrate both hydrogen propulsion and thermionic power generation, including advanced lightweight deployable concentrators suitable for large-scale applications. Evolutionary geosynchronous-transfer orbit/ geosynchronous-Earth orbit (GTO/GEO) payload lift capability improvements of 50% or more to the Delta IV launch vehicles could be implemented as part of the Delta IV P4I plan shortly thereafter. Beyond that, SOTV technology should allow long-term storage of stages in orbits up to GEO with tremendous maneuvering capability, potentially 4 to 5 km/sec or more. Servicing of low-Earth orbit (LEO) and GEO assets and reusable (ROTVs) are other possible applications. Offering a combination of high Isp and high

  10. Optimal control theory determination of feasible return-to-launch-site aborts for the HL-20 Personnel Launch System vehicle

    Science.gov (United States)

    Dutton, Kevin E.

    1994-01-01

    The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.

  11. US access to space: Launch vehicle choices for 1990 to 2010

    Science.gov (United States)

    Pace, Scott N.

    1989-12-01

    Combinations of U.S. launch vehicles capable of meeting a range of government space traffic needs between 1990 and 2010 are evaluated. The purpose of this evaluation is to clarify alternatives available to the United States in pursuing potential national goals and to increase understanding of the implications of those alternatives. Wartime requirements for space launches were not included. Four levels of U.S. space traffic demand for 1990 to 2010 were defined. The first level was budget constrained to limit new program starts. The second level was a continuation of current space traffic plans, including the Space Station program. The third level assumed an expansion of civil space efforts such as a return to the Moon. The fourth level assumed expanded military space efforts such as the development of strategic defenses. Differing combination of existing and proposed launch vehicles were defined to fulfill each demand level. The costs and uncertainties (e.g., payload losses) associated with each launch vehicle combination were estimated. The interrelations of payload costs, launch vehicle costs, and system reliabilities are discussed in the appendices. The space transportation planning process, current issues, and political factors affecting analysis are reviewed. Senior space transportation planners and decision-makers were interviewed on differing institutional criteria for evaluating launch vehicle mixes. Evaluation criteria were defined to assess the launch vehicle mixes for each demand level and for the case of uncertain demand. Recommendations on preferred U.S. actions in space transportation are made based both on analyses and interview results.

  12. Standard Electric Interface for Payload and Launch Vehicle Enabling Secondary Rideshare Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity. An integration process that minimizes risk to the primary, allows parallel...

  13. The design of a kerosene turbopump for a South African commercial launch vehicle

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2012-08-01

    Full Text Available hypothetical commercial launch vehicle capable of inserting 50-500kg payloads into 500km sun synchronous orbit. A preliminary design is presented with the focus on the turbopump impeller geometry and its predicted performance....

  14. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  15. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground...

  16. Commercial suborbital reusable launch vehicles: ushering in a new era for turbopause exploration (Invited)

    Science.gov (United States)

    Smith, H. T.

    2013-12-01

    Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is

  17. Modeling and Simulation of Reliability & Maintainability Parameters for Reusable Launch Vehicles using Design of Experiments

    Science.gov (United States)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.

    2004-01-01

    This paper describes the development of a methodology for estimating reliability and maintainability distribution parameters for a reusable launch vehicle. A disciplinary analysis code and experimental designs are used to construct approximation models for performance characteristics. These models are then used in a simulation study to estimate performance characteristic distributions efficiently. The effectiveness and limitations of the developed methodology for launch vehicle operations simulations are also discussed.

  18. Aerodynamic Control-Augmentation Devices For Saturn-Class Launch Vehicles With Aft Centers Of Gravity

    Science.gov (United States)

    Barret, Chris

    1995-01-01

    Report describes study of aerodynamic flight-control-augmentation devices proposed for use in increasing payload capabilities of future launch vehicles by allowing more aft centers of gravity. Proposed all-movable devices not only provide increased control authority during ascent trajectory, but also reduce engine gimballing requirements and enhance crew safety. Report proposes various aerodynamic control surfaces mounted fore and aft on Saturn-class launch vehicle.

  19. Floodlights illuminate view of Skylab 3 vehicle at Pad B, Launch Complex 39

    Science.gov (United States)

    1973-01-01

    Floodlights illuminate this nighttime view of the Skylab 3/Saturn 1B space vehicle at Pad B, Launch Complex 39, Kennedy Space Center, Florida, during prelaunch preparations. The reflection in the water adds to the scene. In addition to the Command/Service Module and its launch escape system, the Skylab 3 space vehicle consists of the Saturn 1B first (S-1B) stage and the Saturn 1B second (S-1VB) stage.

  20. A Low-Cost Launch Assistance System for Orbital Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Oleg Nizhnik

    2012-01-01

    Full Text Available The author reviews the state of art of nonrocket launch assistance systems (LASs for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks.

  1. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    Science.gov (United States)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  2. Design and Analysis of an Airborne, solid Propelled, Nanosatellite Launch Vehicle using Multidisciplinary Design Optimization

    NARCIS (Netherlands)

    Van Kesteren, M.W.; Zandbergen, B.T.C.; Naeije, M.C.; Van Kleef, A.J.P.

    2015-01-01

    The work focusses on the use of multidisciplinary optimization to design a cost optimized airborne nanosatellite launch vehicle capable of bringing a 10 kg payload into low earth orbit (LEO). Piggyback or shared launch options currently available for nanosatellites are relatively low cost (~45,000 €

  3. Design and Analysis of an Airborne, solid Propelled, Nanosatellite Launch Vehicle using Multidisciplinary Design Optimization

    NARCIS (Netherlands)

    Van Kesteren, M.W.; Zandbergen, B.T.C.; Naeije, M.C.; Van Kleef, A.J.P.

    2015-01-01

    The work focusses on the use of multidisciplinary optimization to design a cost optimized airborne nanosatellite launch vehicle capable of bringing a 10 kg payload into low earth orbit (LEO). Piggyback or shared launch options currently available for nanosatellites are relatively low cost (~45,000

  4. Design and Analysis of an Airborne, solid Propelled, Nanosatellite Launch Vehicle using Multidisciplinary Design Optimization

    NARCIS (Netherlands)

    Van Kesteren, M.W.; Zandbergen, B.T.C.; Naeije, M.C.; Van Kleef, A.J.P.

    2015-01-01

    The work focusses on the use of multidisciplinary optimization to design a cost optimized airborne nanosatellite launch vehicle capable of bringing a 10 kg payload into low earth orbit (LEO). Piggyback or shared launch options currently available for nanosatellites are relatively low cost (~45,000 €

  5. Optimal RTLS abort trajectories for an HL-20 personnel launch vehicle

    Science.gov (United States)

    Dutton, Kevin

    1993-12-01

    The primary objective of this study was to determine whether Return To Launch Site (RTLS) abort at T seconds along the launch trajectory of the Personnel Launch System (PLS) is possible using optimal control theory. The secondary objective is to assess effects of bank angle constraint, lift coefficient constraint, free and fixed final boundary conditions, etc. of the vehicle. The PLS is a complementary system to the Space Shuttle.

  6. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    Science.gov (United States)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  7. Computer controlled vent and pressurization system. [of launch vehicle cryogenic propellant tanks

    Science.gov (United States)

    Cieslewicz, E. J.

    1975-01-01

    The paper illustrates how the Centaur space launch vehicle airborne computer, which was primarily used to perform guidance, navigation, and sequencing tasks, was further used to monitor and control inflight pressurization and venting of the cryogenic propellant tanks. Computer software flexibility also provided a failure detection and correction capability necessary to adopt and operate redundant hardware techniques and enhance the overall vehicle reliability.

  8. The Falcon Launch Vehicle - An Attempt at Making Access to Space More Affordable, Reliable and Pleasant

    OpenAIRE

    Musk, Elon; Koenigsmann, Hans; Gurevich, Gwynne

    2003-01-01

    Falcon is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle being built by Space Exploration Technologies (SpaceX) from the ground up. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon can carry over 470 kg to a 700 km sun-synchronous orbit and a heavy Falcon can deliver 1450 kg to the same orbit. To minimize failure modes, the vehicle has the minimum pragmatic...

  9. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    Science.gov (United States)

    Decker, Ryan K.

    2017-01-01

    Spatial separation of HR rawinsonde data is directly correlated with climatological tropospheric wind environment over ER. Stronger winds in the winter result in further downrange drift. Lighter winds in the summer result in the less horizontal drift during ascent. Maximum downrange distance can exceed 200 km during winter months. Data could misrepresent the environment the vehicle will experience during ascent. PRESTO uses all available data sources to produce the best representative, vertically complete atmosphere for launch vehicle DOL operations. Capability planned for use by NASA Space Launch System vehicle's first flight scheduled for Fall 2018.

  10. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  11. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-12-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  12. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Overview

    Science.gov (United States)

    Popp, Chris; Butt, Adam; Sharp, David; Pitts, Hank

    2008-01-01

    NASA's Ares I launch vehicle, consisting of a five segment solid rocket booster first stage and a liquid bi-propellant J-2X engine upper stage, is the vehicle that's been chosen to return humans to the moon, mars, and beyond. This paper provides an overview of the work that has taken place on the Ares I launch vehicle roll and reaction control systems. Reaction control systems are found on many launch vehicles and provide a vehicle with a three degree of freedom stabilization during the mission. The Ares I baseline configuration currently consists of a first stage roll control system that will provide the vehicle with a method of counteracting the roll torque that is expected during launch. An upper stage reaction control system will allow the upper stage three degrees of freedom control as needed. Design assessments and trade studies are being conducted on the roll and reaction control systems including: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Other vehicle considerations and issues include thruster plume impingement, thruster module aerothermal and aerodynamic effects, and system integration. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  13. Land vehicle antennas for satellite mobile communications

    Science.gov (United States)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  14. 76 FR 33139 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles

    Science.gov (United States)

    2011-06-08

    ... satellite or camera as well. A person may also look at images of the conditions outside to ascertain... certain exceptions and decreasing waiting time requirements because of recognition that the risk of... this mixture of phases that can produce a strong electrical generator within the cloud. When the...

  15. Ares V and Future Very Large Launch Vehicles to Enable Major Astronomical Missions

    Science.gov (United States)

    Thronson, Harley; Langhoff, Stephanie; Stahl, H. Philip; Lester, Daniel

    2008-01-01

    The current NASA architecture planned to return humans to the lunar surface includes the Ares V heavy lift launch vehicle designed primarily to carry the Altair lunar lander and to be available before about 2020. However. the capabilities of this system (and its variants) are such that adapting the vehicle to launch very large optical systems could achieve major scientific goals that are not otherwise possible. For example, an 8-m monolith UV/visual/IR telescope appears able to be launched to the Sun-Earth L2 location by an Ares V with a 10-m fairing. Even larger apertures that are deployed or assembled in space seem possible, which may take advantage of other elements of NASA's future human spaceflight architecture. Alternatively. multiple elements of a spatial array or two or three astronomical observatories might he launched simultaneously. That is, Ares V appears to offer the astronomy communities an opportunity to put into orbit extremely capable observatories, in addition to being a key element of NASA's current architecture for human spaceflight. For the past year, a number of scientists and engineers have been eva1uating concepts for astronomical observatories that take advantage of future large launch vehicles, including the science goals of such missions and design modifications to the vehicle to enable the observatories. In parallel, members of the Solar System science communities have likewise been considering what major science goals can be achieved if new, extremely capable launch systems become available.

  16. Three Satellites to Be Launched on One Rocket in 2011

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Aspace storm observation project has recently been put into implementation. The project consists of three exploration satellites. One will operate in an orbit of proximity 700km altitude for scientific research in ionosphere and thermosphere, one in an orbit of 50,O00km for near earth magnetic sphere research and the last one in 150,O00km orbit for the research on solar winds outside the earth magnetic sphere.

  17. Reusable Launch Vehicle Design Implications for Regeneration Time

    Science.gov (United States)

    2009-03-01

    Michalski & Johnson, 2007). The problem with developing a generic model is that the vehicle does not yet exist; therefore, recovery, maintenance, and...Assessment For the second objective of gaining insight into ground operations using the model) many studies were performed (Johnson et al, 2006; Michalski ...2007; Michalski and Johnson, 2007; Michalski and Johnson 2008; Johnson and Jackson 2008, Johnson et al, 2008). Although the baseline MILEPOST

  18. Aerodynamic flight control to increase payload capability of future launch vehicles

    Science.gov (United States)

    Cochran, John E., Jr.; Cheng, Y.-M.; Leleux, Todd; Bigelow, Scott; Hasbrook, William

    1993-01-01

    In this report, we provide some examples of French, Russian, Chinese, and Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design of the fins is considered in Section 3. Some comments on basic static stability and control theory are followed by a brief description of an aerodynamic characteristics prediction code that was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin designs are proposed and some estimated aerodynamic characteristics presented and discussed. Also included in Section 3 is a discussion of possible methods of enhancement of the aerodynamic efficiency of fins, such as vortex generators and jet flaps. We consider the construction of fins for launch vehicles in Section 4 and offer an assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on high speed vehicles. We also comment on the use of smart materials for launch vehicle fins. The dynamic stability and control of a launch vehicle that utilizes both thrust vector control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We give a short derivation of equations of motion for a launch vehicle moving in a vertical plane above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form of the period equations linearized about such a nominal. We then consider feedback control of vehicle attitude using both engine gimballing and fin deflection. Conclusions are stated and recommendations made in Section 6. An appendix contains aerodynamic data in tabular and graphical formats.

  19. Launch Vehicle Abort Analysis for Failures Leading to Loss of Control

    Science.gov (United States)

    Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.

    2013-01-01

    Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.

  20. Vehicle Detection and Classification from High Resolution Satellite Images

    Science.gov (United States)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  1. Expendable launch vehicles in Space Station Freedom logistics resupply operations

    Science.gov (United States)

    Newman, J. Steven; Courtney, Roy L.; Brunt, Peter

    The projected Space Station Freedom (SSF) annual logistics resupply requirements were predicted to exceed the 1988 baseline Shuttle resupply system capability. This paper examines the implications of employing a 'mixed fleet' of Shuttles and ELVs to provide postassembly, steady-state logistics resupply. The study concluded that ELVs supported by the OMV could provide the additional required resupply capability with one to three launches per annum. However, the study determined that such a capability would require significant programmatic commitments, including baseline SSF OMV accommodations, on-orbit OMV monoprop replenishment capability, and substantial economics investments. The study also found the need for a half-size pressurized logistics module for the increase in the efficiency of logistics manifesting on the Shuttle as well as ELVs.

  2. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    Science.gov (United States)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  3. Next Generation Heavy-Lift Launch Vehicle: Large Diameter, Hydrocarbon-Fueled Concepts

    Science.gov (United States)

    Holliday, Jon; Monk, Timothy; Adams, Charles; Campbell, Ricky

    2012-01-01

    With the passage of the 2010 NASA Authorization Act, NASA was directed to begin the development of the Space Launch System (SLS) as a follow-on to the Space Shuttle Program. The SLS is envisioned as a heavy lift launch vehicle that will provide the foundation for future large-scale, beyond low Earth orbit (LEO) missions. Supporting the Mission Concept Review (MCR) milestone, several teams were formed to conduct an initial Requirements Analysis Cycle (RAC). These teams identified several vehicle concept candidates capable of meeting the preliminary system requirements. One such team, dubbed RAC Team 2, was tasked with identifying launch vehicles that are based on large stage diameters (up to the Saturn V S-IC and S-II stage diameters of 33 ft) and utilize high-thrust liquid oxygen (LOX)/RP engines as a First Stage propulsion system. While the trade space for this class of LOX/RP vehicles is relatively large, recent NASA activities (namely the Heavy Lift Launch Vehicle Study in late 2009 and the Heavy Lift Propulsion Technology Study of 2010) examined specific families within this trade space. Although the findings from these studies were incorporated in the Team 2 activity, additional branches of the trade space were examined and alternative approaches to vehicle development were considered. Furthermore, Team 2 set out to define a highly functional, flexible, and cost-effective launch vehicle concept. Utilizing this approach, a versatile two-stage launch vehicle concept was chosen as a preferred option. The preferred vehicle option has the capability to fly in several different configurations (e.g. engine arrangements) that gives this concept an inherent operational flexibility which allows the vehicle to meet a wide range of performance requirements without the need for costly block upgrades. Even still, this concept preserves the option for evolvability should the need arise in future mission scenarios. The foundation of this conceptual design is a focus on low

  4. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  5. Dynamical Modeling and Control Simulation of a Large Flexible Launch Vehicle

    Science.gov (United States)

    Du, Wei; Wie, Bong; Whorton, Mark

    2008-01-01

    This paper presents dynamical models of a large flexible launch vehicle. A complete set of coupled dynamical models of propulsion, aerodynamics, guidance and control, structural dynamics, fuel sloshing, and thrust vector control dynamics are described. Such dynamical models are used to validate NASA s SAVANT Simulink-based program which is being used for the preliminary flight control systems analysis and design of NASA s Ares-1 Crew Launch Vehicle. SAVANT simulation results for validating the performance and stability of an ascent phase autopilot system of Ares-1 are also presented.

  6. Deep Impact Delta II Launch Vehicle Cracked Thick Film Coating on Electronic Packages Technical Consultation Report

    Science.gov (United States)

    Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.

    2009-01-01

    The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.

  7. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    Science.gov (United States)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  8. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    Science.gov (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  9. The Ares Launch Vehicles: Critical for America's Continued Leadership in Space

    Science.gov (United States)

    Cook, Stephen A.

    2009-01-01

    This video is designed to accompany the presentation of the paper delivered at the Joint Army, Navy, NASA, Airforce (JANNAF) Propulsion Meeting held in 2009. It shows various scenes: from the construction of the A-3 test stand, construction of portions of the vehicles, through various tests of the components of the Ares Launch Vehicles, including wind tunnel testing of the Ares V, shell buckling tests, and thermal tests of the avionics, to the construction of the TPS thermal spray booth.

  10. Environmental statement for National Aeronautics and Space Administration, Office of Space Science, launch vehicle and propulsion programs

    Science.gov (United States)

    1972-01-01

    NASA OSS Launch Vehicle and Propulsion Programs are responsible for the launch of approximately 20 automated science and applications spacecraft per year. These launches are for NASA programs and those of other U. S. government agencies, private organizations, such as the Comsat Corporation, foreign countries, and international organizations. Launches occur from Cape Kennedy, Florida; Vandenberg Air Force Base, California; Wallops Island, Virginia; and the San Marco Platform in the Indian Ocean off Kenya. Spacecraft launched by this program contribute in a variety of ways to the control of and betterment of the environment. Environmental effects caused by the launch vehicles are limited in extent, duration, and intensity and are considered insignificant.

  11. Satellite Splat: An Inelastic Collision with a Surface-launched Projectile

    Science.gov (United States)

    2015-04-23

    Satellite splat: an inelastic collision with a surface-launched projectile Philip R Blanco1 and Carl E Mungan2 1Department of Physics and Astronomy ...orbital motion, inelastic collision, momentum conservation, energy conservation 1. Introduction Introductory physics courses cover momentum conservation

  12. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  13. Launch Vehicle Performance with Solid Particle Feed Systems for Atomic Propellants

    Science.gov (United States)

    Palaszewski, Bryan

    1998-01-01

    An analysis of launch vehicle Gross Liftoff Weight (GLOW) using high energy density atomic propellants with solid particle feed systems was conducted. The analyses covered several propellant combinations, including atoms of aluminum (Al), boron (B). carbon (C), and hydrogen (H) stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents (wt%) for the liquid carrier were investigated and the gross lift off weight (GLOW) of the vehicles using the solid particle feed systems were compared with a conventional 02/H2 propellant vehicle. The potential benefits and effects of feed systems using solid particles in a liquid cryogenic fluid are discussed.

  14. An Empirical Non-TNT Approach to Launch Vehicle Explosion Modeling

    Science.gov (United States)

    Blackwood, James M.; Skinner, Troy; Richardson, Erin H.; Bangham, Michal E.

    2015-01-01

    In an effort to increase crew survivability from catastrophic explosions of Launch Vehicles (LV), a study was conducted to determine the best method for predicting LV explosion environments in the near field. After reviewing such methods as TNT equivalence, Vapor Cloud Explosion (VCE) theory, and Computational Fluid Dynamics (CFD), it was determined that the best approach for this study was to assemble all available empirical data from full scale launch vehicle explosion tests and accidents. Approximately 25 accidents or full-scale tests were found that had some amount of measured blast wave, thermal, or fragment explosion environment characteristics. Blast wave overpressure was found to be much lower in the near field than predicted by most TNT equivalence methods. Additionally, fragments tended to be larger, fewer, and slower than expected if the driving force was from a high explosive type event. In light of these discoveries, a simple model for cryogenic rocket explosions is presented. Predictions from this model encompass all known applicable full scale launch vehicle explosion data. Finally, a brief description of on-going analysis and testing to further refine the launch vehicle explosion environment is discussed.

  15. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    Science.gov (United States)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  16. Commercial and operational impacts on design for the Hotol advanced launch vehicle

    Science.gov (United States)

    Salt, D. J.; Parkinson, R. C.

    1990-10-01

    The development of future Space exploration and exploitation will be paced by launch system capabilities. Current systems are high cost, low reliability, unavailable and inflexible when compared to other forms of transport. Advanced launch systems now being proposed (Hotol, Saenger, NASP) seek to dramatically reduce these drawbacks, particularly to reduce the cost of transport into low earth orbit. There is a more severe requirement on vehicle design and operation than hitherto. The high cost of vehicle losses require system reliability and survivability. Survivability requires an extensive abort capability in all phases of flight. Achieving low operational costs places requirements on vehicle maintainability, turn-around and integration, and the requirements for achieving a high flight rate without compromising system reliability or resiliency. The paper considers the way in which commercial and operational aspects have affected the physical design of the Hotol system.

  17. ESA technology flies on Italian mini-satellite launched from Russia

    Science.gov (United States)

    2000-07-01

    Owned by the Italian space agency (ASI) and developed by Carlo Gavazzi with contributions from many other Italian companies, MITA has two tasks to perform: in a circular orbit at 450 km altitude, the mini satellite will carry a cosmic particle detector, while its platform will be tested for the first time as a vehicle for future scientific missions. MITA also carries the MTS-AOMS payload (MicroTechSensor for Attitude and Orbit Measurement System), developed by Astrium in the framework of ESA's Technology Flight Opportunity trial programme. With the Technology Flight Opportunity scheme, funded by its General Studies Programme, ESA intends to provide access to space for European industry's technology products needing in-orbit demonstration to enhance their competitiveness on the space market. This new form of support to the European space industry ties in with ESA's strategy for fostering the competitiveness of European-made technology for eventual commercialisation. In-orbit demonstration is essential if new technologies are to compete on level terms on non-European markets. It thus consolidates strategic investments made by the space industry. The MTS-AOMS is a highly integrated sensor for autonomous attitude and orbit control systems. It combines three functions in one unit: Earth sensing, star sensing and magnetic field sensing. The equipment incorporates an active pixel array sensor and a 2-D fluxgate magnetometer. The aims of the flight are to verify in situ the payload's inherent functions and performance, which cannot be done on the ground, and to assess the behaviour of this type of technology when exposed to the space environment. The Technology Flight Opportunity rule is that ESA funds the launch and integration costs, industry the development and operating costs. According to present planning, two further in-orbit demonstrations funded by this scheme will be carried out between now and January 2001.

  18. VENESAT-1 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Venezuelan first satellite VENESAT-1 (or Simon Bolivar) was sent to space from the Xichang Satellite Launch Center(XSLC) at 0:53 (Beijing time) on October 30 atop a LM-3B launch vehicle. About 12 minutes later, the satellite entered the preset GTO orbit at the altitude of 36,000km. After four maneuvers, the satellite was normally positioned at 78 degrees west longitude at 15:39 (Beijing time) on November 9,beaming the majority of Latin America and part of the Caribbean region.

  19. Effects of the Orion Launch Abort Vehicle Plumes on Aerodynamics and Controllability

    Science.gov (United States)

    Vicker, Darby; Childs, Robert; Rogers,Stuart E.; McMullen, Matthew; Garcia, Joseph; Greathouse, James

    2013-01-01

    Characterization of the launch abort system of the Multi-purpose Crew Vehicle (MPCV) for control design and accurate simulation has provided a significant challenge to aerodynamicists and design engineers. The design space of the launch abort vehicle (LAV) includes operational altitudes from ground level to approximately 300,000 feet, Mach numbers from 0-9, and peak dynamic pressure near 1300psf during transonic flight. Further complicating the characterization of the aerodynamics and the resultant vehicle controllability is the interaction of the vehicle flowfield with the plumes of the two solid propellant motors that provide attitude control and the main propulsive impulse for the LAV. These interactions are a function of flight parameters such as Mach number, altitude, dynamic pressure, vehicle attitude, as well as parameters relating to the operation of the motors themselves - either as a function of time for the AM, or as a result of the flight control system requests for control torque from the ACM. This paper discusses the computational aerodynamic modeling of the aerodynamic interaction caused by main abort motor and the attitude control motor of the MPCV LAV, showing the effects of these interactions on vehicle controllability.

  20. A Near-Term, High-Confidence Heavy Lift Launch Vehicle

    Science.gov (United States)

    Rothschild, William J.; Talay, Theodore A.

    2009-01-01

    The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.

  1. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    Science.gov (United States)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  2. Contributions of the NASA Langley Transonic Dynamics Tunnel to Launch Vehicle and Spacecraft Development

    Science.gov (United States)

    Cole, Stanley R.; Keller, Donald F.; Piatak, David J.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided wind-tunnel experimental validation and research data for numerous launch vehicles and spacecraft throughout its forty year history. Most of these tests have dealt with some aspect of aeroelastic or unsteady-response testing, which is the primary purpose of the TDT facility. However, some space-related test programs that have not involved aeroelasticity have used the TDT to take advantage of specific characteristics of the wind-tunnel facility. In general. the heavy gas test medium, variable pressure, relatively high Reynolds number and large size of the TDT test section have made it the preferred facility for these tests. The space-related tests conducted in the TDT have been divided into five categories. These categories are ground wind loads, launch vehicle dynamics, atmospheric flight of space vehicles, atmospheric reentry. and planetary-probe testing. All known TDT tests of launch vehicles and spacecraft are discussed in this report. An attempt has been made to succinctly summarize each wind-tunnel test, or in the case of multiple. related tests, each wind-tunnel program. Most summaries include model program discussion, description of the physical wind-tunnel model, and some typical or significant test results. When available, references are presented to assist the reader in further pursuing information on the tests.

  3. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  4. Vibro-Acoustic Response Analysis Of LAUNCH VEHICLE INTER-STAGE

    Directory of Open Access Journals (Sweden)

    Anjana Mariam Alex

    2015-08-01

    Full Text Available Right from lift-off launch vehicles are subjected to extreme dynamic pressure aero and structure borne excitations. Inter-stage is fundamental to the vehicle as it houses the different control equipments actuators sensors motors and avionic packages. This paper involves the creation of two different models so as to study the correlation using two approaches Finite Element method and Hybrid Method involving Statistical Energy Analysis and Finite Element Analysis. The correlation of the response obtained on the Inter-stage from an acoustic ground test to that from the analytical test results carried out with VA One is also addressed in this paper.

  5. Application of CFE/POST2 for Simulation of Launch Vehicle Stage Separation

    Science.gov (United States)

    Pamadi, Bandu N.; Tartabini, Paul V.; Toniolo, Matthew D.; Roithmayr, Carlos M.; Karlgaard, Christopher D.; Samareh, Jamshid A.

    2009-01-01

    The constraint force equation (CFE) methodology provides a framework for modeling constraint forces and moments acting at joints that connect multiple vehicles. With implementation in Program to Optimize Simulated Trajectories II (POST 2), the CFE provides a capability to simulate end-to-end trajectories of launch vehicles, including stage separation. In this paper, the CFE/POST2 methodology is applied to the Shuttle-SRB separation problem as a test and validation case. The CFE/POST2 results are compared with STS-1 flight test data.

  6. Path planning on satellite images for unmanned surface vehicles

    Directory of Open Access Journals (Sweden)

    Joe-Ming Yang

    2015-01-01

    Full Text Available In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle A * algorithm (FAA *, an advanced A * algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV

  7. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  8. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

    Science.gov (United States)

    Decker, Ryan; Barbre, Robert E., Jr.

    2011-01-01

    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  9. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    Science.gov (United States)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  10. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  11. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    Science.gov (United States)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on

  12. Application of fleet ballistic missile components/designs for expendable launch vehicles

    Science.gov (United States)

    Grizzell, Norman E.

    This paper describes the orbital performance and configuration attributes of an expendable launch vehicle (ELV) derived from flight-qualified components. Representative logistical and programmatic data are also provided. The backbone of the ELV program described is the cost-effective use of proven Fleet Ballistic Missile components/designs coupled with other high confidence 'off-the-shelf' equipment. The ELV defined can place over a thousand pounds (1000 lb) of spacecraft (payload) into Low Earth Orbit.

  13. Flight and Integrated Testing: Blazing the Trail for the Ares Launch Vehicles

    Science.gov (United States)

    Taylor, James L.; Cockrell, Charlie; Robinson, Kimberly; Tuma, Margaret L.; Flynn, Kevin C.; Briscoe, Jeri M.

    2007-01-01

    It has been 30 years since the United States last designed and built a human-rated launch vehicle. The National Aeronautics and Space Administration (NASA) has marshaled unique resources from the government and private sectors that will carry the next generation of astronauts into space safer and more efficiently than ever and send them to the Moon to develop a permanent outpost. NASA's Flight and Integrated Test Office (FITO) located at Marshall Space Flight Center and the Ares I-X Mission Management Office have primary responsibility for developing and conducting critical ground and flight tests for the Ares I and Ares V launch vehicles. These tests will draw upon Saturn and the Space Shuttle experiences, which taught the value of using sound systems engineering practices, while also applying aerospace best practices such as "test as you fly" and other lessons learned. FITO will use a variety of methods to reduce the technical, schedule, and cost risks of flying humans safely aboard a launch vehicle.

  14. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  15. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    Science.gov (United States)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  16. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    The theory of System Health Management (SHM) and of its operational subset Fault Management (FM) states that FM is implemented as a "meta" control loop, known as an FM Control Loop (FMCL). The FMCL detects that all or part of a system is now failed, or in the future will fail (that is, cannot be controlled within acceptable limits to achieve its objectives), and takes a control action (a response) to return the system to a controllable state. In terms of control theory, the effectiveness of each FMCL is estimated based on its ability to correctly estimate the system state, and on the speed of its response to the current or impending failure effects. This paper describes how this theory has been successfully applied on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program to quantitatively estimate the effectiveness of proposed abort triggers so as to select the most effective suite to protect the astronauts from catastrophic failure of the SLS. The premise behind this process is to be able to quantitatively provide the value versus risk trade-off for any given abort trigger, allowing decision makers to make more informed decisions. All current and planned crewed launch vehicles have some form of vehicle health management system integrated with an emergency launch abort system to ensure crew safety. While the design can vary, the underlying principle is the same: detect imminent catastrophic vehicle failure, initiate launch abort, and extract the crew to safety. Abort triggers are the detection mechanisms that identify that a catastrophic launch vehicle failure is occurring or is imminent and cause the initiation of a notification to the crew vehicle that the escape system must be activated. While ensuring that the abort triggers provide this function, designers must also ensure that the abort triggers do not signal that a catastrophic failure is imminent when in fact the launch vehicle can successfully achieve orbit. That is

  17. Guidance and control analysis of the entry of a lifting body personnel launch vehicle

    Science.gov (United States)

    Powell, Richard W.; Cruz, Christopher I.

    1991-01-01

    NASA is currently involved in definition studies of a Personnel Launch System (PLS) that could be used to transport people to and from low-earth orbit. This vehicle would serve both to complement the Space Shuttle and to provide alternative access to space in the event the Space Shuttle fleet were unavailable for a prolonged period. The PLS would consist of a manned spacecraft launched by an expendable vehicle, e.g., Titan 4. One promising candidate for the manned component of the PLS is the NASA Langley Research Center HL-20 lifting body. Many studies are currently underway to assess this vehicle, and one of the main areas of study is the development of the capability to successfully enter, glide to the landing site, and land. To provide this capability, guidance and control algorithms have been developed, incorporated into a six-degree-of-freedom simulation, and evaluation in the presence of off-nominal atmospheric conditions, consisting of both density variations and steady-state winds. In addition, the impact of atmospheric turbulence was examined for the portion of flight from Mach 3.5 to touchdown. This analysis showed that the vehicle remained controllable and could successfully land even in the presence of off-nominal atmospheric conditions.

  18. Ares I-X Launch Vehicle Modal Test Measurements and Data Quality Assessments

    Science.gov (United States)

    Templeton, Justin D.; Buehrle, Ralph D.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The Ares I-X modal test program consisted of three modal tests conducted at the Vehicle Assembly Building at NASA s Kennedy Space Center. The first test was performed on the 71-foot 53,000-pound top segment of the Ares I-X launch vehicle known as Super Stack 5 and the second test was performed on the 66-foot 146,000- pound middle segment known as Super Stack 1. For these tests, two 250 lb-peak electro-dynamic shakers were used to excite bending and shell modes with the test articles resting on the floor. The third modal test was performed on the 327-foot 1,800,000-pound Ares I-X launch vehicle mounted to the Mobile Launcher Platform. The excitation for this test consisted of four 1000+ lb-peak hydraulic shakers arranged to excite the vehicle s cantilevered bending modes. Because the frequencies of interest for these modal tests ranged from 0.02 to 30 Hz, high sensitivity capacitive accelerometers were used. Excitation techniques included impact, burst random, pure random, and force controlled sine sweep. This paper provides the test details for the companion papers covering the Ares I-X finite element model calibration process. Topics to be discussed include test setups, procedures, measurements, data quality assessments, and consistency of modal parameter estimates.

  19. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

    Science.gov (United States)

    Bartels, Robert E.

    2012-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  20. An Innovative Structural Mode Selection Methodology: Application for the X-33 Launch Vehicle Finite Element Model

    Science.gov (United States)

    Hidalgo, Homero, Jr.

    2000-01-01

    An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.

  1. Probabilistic Sensitivity Analysis for Launch Vehicles with Varying Payloads and Adapters for Structural Dynamics and Loads

    Science.gov (United States)

    McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.

    2012-01-01

    This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.

  2. New Projects Planed/launched By Cei Wg On Satellite Navigation Systems

    Science.gov (United States)

    Oszczak, S.; Manzoni, G.

    In the paper a short description of main projects on satellite positioning and naviga- tion in CEI countries is given. Special attention is devoted to the activity of members of Working Group on Satellite Navigation Systems. The projects in which they are involved and results of performed experiments can be specified as follows: - EGNOS positioning - the first results in CEI area, - application of various transmission tech- niques to diffusion of DGPS/RTK data from reference stations (SWIFT/DARC, RDS, radiobeacons, UHF transmission), - development of integrated GPS/INS methods for car navigation and GIS purposes, - development of software for integration of satellite vehicle position with numerical maps for car navigation, monitoring and acquisition of terrestrial data for GIS, - elaboration of method and software development for nav- igation and monitoring of aircraft during approaching and landing phase of flight, - elaboration of methods and software for integration of 3D satellite positions of user with Digital Terrain Model (DTM), - development of digital technology for bathy- metric survey with satellite positioning technique; mapping of shallow waters, lakes, rivers and inland water reservoirs, The recently planned studies and experiments cover land, marine and aircraft satellite navigation with EGNOS system in CEI countries. The project of extension of the EGNOS system to the Central and East European region is under preparation. Other important research is conducted on mapping of roads and rails tracks using integrated DGPS/INS techniques.

  3. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle

    Science.gov (United States)

    Sun, Hongsheng

    This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.

  4. China Returning to International Commercial Launch Service Market

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2005-01-01

    China launched its first commercial mission after 6 years since July 1999. APStar 6, the communications satellite manufactured by Alcatel Space, lifted off from Xichang Satellite Launch Center and was put into preset orbit by the LM-3B launch vehicle on the evening of April 12, 2005.

  5. A Mathematical Modeling Approach of the Failure Analysis for the Real-Time Mexican Satellite Space Launch Center

    OpenAIRE

    Omar Ariosto Niño Prieto; Luis Enrique Colmenares Guillén

    2015-01-01

    In this paper, a simulation of the Mathematical Model for Real-Time Satellite Launch Platform approach in Mexico is presented. Mexico holds the fourth best place in the world for building a platform to launch space satellites, since its geographic location is optimal for its construction. It is essential to have the Probabilistic Failure Analysis in Space Systems Engineering from its design, in order to minimize risks and avoid any possible catastrophe. The mathematical approach o...

  6. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  7. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    Science.gov (United States)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  8. Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles

    Science.gov (United States)

    Wagner, John; Domack, Marcia; Hoffman, Eric

    2007-01-01

    Recent applications in launch vehicles use 2195 processed to Super Lightweight Tank specifications. Potential benefits exist by tailoring heat treatment and other processing parameters to the application. Assess the potential benefits and advocate application of Al-Li near-net-shape technologies for other launch vehicle structural components. Work with manufacturing and material producers to optimize Al-Li ingot shape and size for enhanced near-net-shape processing. Examine time dependent properties of 2195 critical for reusable applications.

  9. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    Science.gov (United States)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  10. An air launched, highly responsive military transatmospheric vehicle (TAV), based on existing aerospace systems

    Science.gov (United States)

    Hampsten, Kenneth R.

    1996-03-01

    A novel vehicle design is presented that minimizes Research Development Test and Evaluation (RDT&E) cost. The proposed TAV can satisfy a broad range of military mission applications for the 21st century. TAV deployment is provided by a Rockwell B-1B bomber. Pre-launch orientation of the vehicle is centerline, underneath the B-1B forward weapon bays. Launch occurs at 30,000 ft, Mach 0.90, and at a flight path angle of 15-20 degrees. The TAV is a Two-Stage-To-Orbit (TSTO) vehicle utilizing Liquid Oxygen (LOX) and RP-1 (kerosene) propellants. The reusable upper stage, or TAV, incorporates a 130 cubic foot payload bay for mission specific equipment. The booster can either be expended, or potentially recovered for reuse. TAV reentry relies on a biconic aeroshell for the hypersonic flight phase and a parafoil for the subsonic, terminal recovery phase. Nominal mission performance is between 1,150-1,800 lbs of payload into a 100 nmi circular orbit.

  11. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    Science.gov (United States)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  12. ZY-1 02C Flew into Space- A Perfect Ending for the 2011 Space Launches

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    at 11:26 on December 22,a LM-4B launch vehicle lifted the ZY-1 02C satellite into space from the Taiyuan Satellite Launch Center,marking the complete success of the final launch mission of this year.13 minutes later,the satellite entered into sun-synchronous circular orbit after separating with the rocket.

  13. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    Science.gov (United States)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  14. Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    Science.gov (United States)

    Keller, Donald F.; Ivanco, Thomas G.

    2010-01-01

    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from

  15. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    Science.gov (United States)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  16. LOX/LH2 propulsion system for launch vehicle upper stage, test results

    Science.gov (United States)

    Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.

    1984-01-01

    The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.

  17. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    Science.gov (United States)

    Ruf, Joseph; Rojahn, Josh

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  18. Pseudospectral method based trajectory optimization and fairing rejection time analysis of solid launch vehicle

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The problem of real-time trajectory optimization for small solid launch vehicle of operational responsive space (ORS) was studied by using pseudospectral method. According to the characteristic of the trajectory design, the dynamics model was set up in the inertia right-angled reference frame, and the equation and parameter at the orbit injection point were simplified and converted. The infinite dimension dynamic optimal control problem was converted to a finite dimension static state optimization problem and the algorithm reduced the complexity so as to become a general algorithm in trajectories optimization. With the trajectories optimization of a three-stage solid vehicle with a liquor upper stage as example, the model of the trajectory optimization was set up and simulations were carried out. The results demonstrated the advantage and validity of the pseudospectral method. The rejection time of fairing was also analyzed by the simulation results, and the optimal flight procedure and trajectory were obtained.

  19. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    Science.gov (United States)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  20. Thermographic testing used on the X-33 space launch vehicle program by BFGoodrich Aerospace

    Science.gov (United States)

    Burleigh, Douglas D.

    1999-03-01

    The X-33 program is a team effort sponsored by NASA under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStarTM, an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite- epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor (1) Arc Jet tests at NASA Ames Research Center in Mountain view, CA and NASA Johnson Space Center in Houston, TX, (2) High Temperature (wind) Tunnel Tests (HTT) at Nasa Langley Research Center in Langley, VA, and (3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.

  1. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    Science.gov (United States)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  2. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    Science.gov (United States)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  3. Design of Neural Network Variable Structure Reentry Control System for Reusable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    HU Wei-jun; ZHOU Jun

    2008-01-01

    A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory. The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method. High precise and robust tracking of required attitude angles can be achieved in complicated air space. A mathematical model of reusable launch vehicle is pre-sented first, and then a controller of flight system is presented. Base on the mathematical model, the controller is divided into two parts: variable-structure controller and neural network module which is used to modify the parameters of con-troller. This control system decouples the lateral/directional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles. After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters. The final simulation shows that the control system has a good accurate, robust and de-coupled tracking performance. The stable state error is less than 1°, and the overshoot is less than 5%.

  4. Overview of Orion Crew Module and Launch Abort Vehicle Dynamic Stability

    Science.gov (United States)

    Owens, Donald B.; Aibicjpm. Vamessa V.

    2011-01-01

    With the retirement of the Space Shuttle, NASA is designing a new spacecraft, called Orion, to fly astronauts to low earth orbit and beyond. Characterization of the dynamic stability of the Orion spacecraft is important for the design of the spacecraft and trajectory construction. Dynamic stability affects the stability and control of the Orion Crew Module during re-entry, especially below Mach = 2.0 and including flight under the drogues. The Launch Abort Vehicle is affected by dynamic stability as well, especially during the re-orientation and heatshield forward segments of the flight. The dynamic stability was assessed using the forced oscillation technique, free-to-oscillate, ballistic range, and sub-scale free-flight tests. All of the test techniques demonstrated that in heatshield-forward flight the Crew Module and Launch Abort Vehicle are dynamically unstable in a significant portion of their flight trajectory. This paper will provide a brief overview of the Orion dynamic aero program and a high-level summary of the dynamic stability characteristics of the Orion spacecraft.

  5. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    Science.gov (United States)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments - Solar Ultra Violet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  6. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    Science.gov (United States)

    Tadikonda, S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todrita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar back-ground-sevents impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  7. Post-launch calibration and testing of space weather instruments on GOES-R satellite

    Science.gov (United States)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-05-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments -- Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  8. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    Science.gov (United States)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical

  9. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance

    Science.gov (United States)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.

    2017-01-01

    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  10. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    Science.gov (United States)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  11. Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed

    Science.gov (United States)

    Palaszewski, Bryan A.

    1999-01-01

    At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.

  12. Analysis of a Hypergolic Propellant Explosion During Processing of Launch Vehicles in the VAB

    Science.gov (United States)

    Chrostowski, Jon D.; Gan Wenshui; Campbell, Michael D.

    2010-01-01

    NASA is developing launch vehicles to support missions to Low Earth Orbit (LEO), the moon and deep space. Whether manned or unmanned, the vehicle components will likely be integrated in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC) and typically include a fueled spacecraft (SC) that sits on top of one or more stages. The processing of a fueled SC involves hazardous operations when it is brought into the VAB Transfer Aisle and lifted a significant height for mating with lower stages. Accidents resulting from these hazardous operations could impact unrelated personnel working in buildings adjacent to the VAB. Safe separation distances based on the DOD Explosives Standards Quantity-Distance (Q-D) approach result in large IBD arcs. This paper presents site-specific air blast and fragmentation hazard analyses for comparison with the Q-D arcs as well as consequence and risk analyses to provide added information for the decision maker. A new physics-based fragmentation model is presented that includes: a) the development of a primary fragment list (which defines the fragment characteristics) associated with a hypergolic propellant explosion, b) a description of a 3D fragment bounce model, c) the results of probabilistic Monte-Carlo simulations (that include uncertainties in the fragment characteristics) to determine: i) the hazardous fragment density distance, ii) the expected number of wall/roof impacts and penetrations to over 40 buildings adjacent to the VAB, and iii) the risk to building occupants.

  13. Microstrip Yagi array antenna for mobile satellite vehicle application

    Science.gov (United States)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  14. Expert system decision support for low-cost launch vehicle operations

    Science.gov (United States)

    Szatkowski, G. P.; Levin, Barry E.

    1991-01-01

    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.

  15. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    Science.gov (United States)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly

  16. A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle

    Science.gov (United States)

    Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin

    1989-01-01

    A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.

  17. Mobile Launch Platform Vehicle Assembly Area (SWMU 056) Biosparge Expansion Interim Measures Work Plan

    Science.gov (United States)

    Burcham, Michael S.; Daprato, Rebecca C.

    2016-01-01

    This document presents the design details for an Interim Measure (IM) Work Plan (IMWP) for the Mobile Launch Platform/Vehicle Assembly Building (MLPV) Area, located at the John F. Kennedy Space Center (KSC), Florida. The MLPV Area has been designated Solid Waste Management Unit Number 056 (SWMU 056) under KSC's Resource Conservation and Recovery Act (RCRA) Corrective Action Program. This report was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B and NNK12CA13B, project control number ENV1642. The Advanced Data Package (ADP) presentation covering the elements of this IMWP report received KSC Remediation Team (KSCRT) approval at the December 2015 Team Meeting; the meeting minutes are included in Appendix A.

  18. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles

    Science.gov (United States)

    Scotti, Stephen J.; Clay, Christopher; Rezin, Marc

    2003-01-01

    This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.

  19. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  20. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

    Science.gov (United States)

    Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

    2016-11-01

    In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

  1. Six-DOF trajectory optimization for reusable launch vehicles via Gauss pseudospectral method

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; Zhong Wu

    2016-01-01

    To be close to the practical flight process and in-crease the precision of optimal trajectory, a six-degree-of- freedom (6-DOF) trajectory is optimized for the reusable launch vehicle (RLV) using the Gauss pseudospectral method (GPM). Different from the traditional trajectory optimization problem which generaly considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.

  2. Virtual Instrumentation Techniques in Test and Evaluation of Launch Vehicle Avionics

    Directory of Open Access Journals (Sweden)

    R. Sethunadh

    2002-10-01

    Full Text Available This paper presents the concept of virtual instrumentation and its importance in test and evaluation of launch vehicle avionics. The experiences at the Vikram Sarabhai Space Centre (VSSC with virtual instrumentation systems, highlighting the virtual instrumentation-based checkout systems of pyro current monitoring package and video image processing unit are presented. The virtual instrumentation system-based checkouts present cost-effective, compact, and user-friendly human-machine interlaces for the test and evaluation of these packages. The issues of a common hardware-software platform for testing different telemetry packages and the capability of real-time virtual instruments for testing navigation, guidance, and control packages have been investigated.

  3. Distributed Algorithm for Computing the Vehicle Launch Dynamics under Interaction with the Medium

    Directory of Open Access Journals (Sweden)

    G. A. Shcheglov

    2015-01-01

    Full Text Available The paper describes a distributed algorithm and a structure of the software package for its implementation in which a program for computing the vehicle launch dynamics under interaction with the medium flow is complemented with a program to determine the unsteady hydrodynamic loads by the vortex element method.A distinctive feature of the developed system is that its local (running on a single computing core LEAVING program to calculate the launch dynamics runs together with concurrent (running on multiple computing cores MDVDD program to compute the unsteady vortex flow and hydrodynamic loads. The LEAVING program is the main one. It is launched app and then runs the MDVDD program in concurrent mode on the specified number of cores. Using MPI technology allows you to use a multiprocessor PC or a local network of multiple PCs to perform calculations. The equations of launcher spring-mass model dynamics and equations of vortex elements parameters evolution are integrated with the same time step. The interprogram communiaction in the step is provided asynchronously using the OS Windows Event mechanism (Events. Interfacing between LEAVING and MDVDD programs is built using the OS Windows FileMapping technology, which allows a specified data structure to be displayed and read to the fixed memory area.The paper provides analysis of acceleration achieved with parallel processing on different numbers of cores, and defines a parallelization degree of various operations. It shows that the parallelization efficiency of the developed algorithm is slower than in case of calculation of the rigid body flow. The causes of reduced efficiency are discussed.It is shown that the developed algorithm can be effectively used to solve problems on a small number of cores, e.g. on PC based on one or two quad-core processors.

  4. Study of forming and Welding performance of Y-shaped transition ring for large launch vehicle tank

    Directory of Open Access Journals (Sweden)

    Chang Zhilong

    2015-01-01

    Full Text Available As the critical load-bearing part of launch vehicle tank, the Y-shaped transition ring is manufactured by integral forging process currently, and it puts forward very high requirements for the forming precision, microstructure and welding performance of the integral forged transition ring. In this paper, the integral forging process for the Y-shaped transition ring of large launch vehicle tank is studied. Microstructure, mechanical properties and welding performance of the transition ring are analyzed. Improvement measures for integral forging process of large Y-shaped transition ring are proposed.

  5. Launch in orbit of the NINA-2 apparatus aboard the satellite MITA

    Science.gov (United States)

    Casolino, M.; NINA-2 Collaboration

    2001-08-01

    The satellite MITA was launched on July the 15th , 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. MITA carries the payload NINA-2 for the study of solar and galactic cosmic rays. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840 km sunsynchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. The scientific objectives of NINA are the study of cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin as well as the trapped component. In this work we present preliminary results concerning particle identification capabilities and nuclear differential spectra for helium, carbon and oxygen in the energy range between 10 and 50 MeV/n.

  6. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    Science.gov (United States)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  7. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation

    Science.gov (United States)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira

    2008-01-01

    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  8. Onboard planning of constrained longitudinal trajectory for reusable launch vehicles in terminal area

    Science.gov (United States)

    Liang, Zixuan; Li, Qingdong; Ren, Zhang

    2016-02-01

    A rapid planning algorithm is developed to generate a constrained longitudinal trajectory onboard for reusable launch vehicles (RLVs) in the terminal area energy management (TAEM) phase. The longitudinal trajectory is planned in the flight-path angle vs. altitude space. This flight-path angle profile is designed with required altitude, flight-path angle and range-to-go, and then optimized as a one-parameter search problem to meet the velocity constraint. Considering the dynamic pressure constraint, a dynamic pressure protection (DPP) method is designed. With the DPP, the highly constrained longitudinal trajectory is generated by tracking the planned flight-path angle profile. Finally, the TAEM trajectory planning algorithm is tested on the X-33 vehicle model in different cases. The algorithm is shown to be effective and robust to generate longitudinal flight trajectories with all constraints satisfied in high precision. In each case, the constrained trajectory is planned within 1 s on a PC, which indicates that the algorithm is feasible to be employed onboard.

  9. Source Data Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models

    Science.gov (United States)

    Al Hassan, Mohammad; Novack, Steven; Ring, Robert

    2016-01-01

    Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system in which it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for suggesting epistemic component uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide one example for assigning environmental factors uncertainty when translating between operating environments for the microelectronic part-type components. The heuristic guidelines will be followed by uncertainty-importance routines to assess the need for more applicable data to reduce model uncertainty.

  10. Overview of U.S. nuclear launch safety approval process, supporting launch vehicle databook and probabilistic risk assessment methods

    Science.gov (United States)

    Reinhart, L. E.

    2001-01-01

    This paper provides an overview of the U.S. space nuclear power system launch approval process as defined by the two separate requirements of the National Environmental Policy Act (NEPA) and Presidential Directive/National Security Council Memorandum No. 25 (PD/NSC-25).

  11. Overview of U.S. nuclear launch safety approval process, supporting launch vehicle databook and probabilistic risk assessment methods

    Science.gov (United States)

    Reinhart, L. E.

    2001-01-01

    This paper provides an overview of the U.S. space nuclear power system launch approval process as defined by the two separate requirements of the National Environmental Policy Act (NEPA) and Presidential Directive/National Security Council Memorandum No. 25 (PD/NSC-25).

  12. Non-Intrusive Techniques of Inspections During the Pre-Launch Phase of Space Vehicle

    Science.gov (United States)

    Thirumalainambi, Rejkumar; Bardina, Jorge E.

    2005-01-01

    This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrophotometer with additional spectrophotometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. This paper addresses a team of micro flying robots with necessary sensors and photometers to monitor the entire space vehicle internally and externally. The micro flying robots can reach altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robot has an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a Supervisor to fix the problems. As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. The robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  13. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    Science.gov (United States)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  14. Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles using the VLOADS 1.4 Program

    Science.gov (United States)

    Graham, J. B.; Luz, P. L.

    1998-01-01

    To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative-the time-consuming, and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 work book on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.

  15. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  16. The Profile Envision and Splicing Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release

  17. Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)

    Science.gov (United States)

    Bowyer, J. M.

    1977-01-01

    The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

  18. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites

    Science.gov (United States)

    Belward, Alan S.; Skøien, Jon O.

    2015-05-01

    This paper presents a compendium of satellites under civilian and/or commercial control with the potential to gather global land-cover observations. From this we show that a growing number of sovereign states are acquiring capacity for space based land-cover observations and show how geopolitical patterns of ownership are changing. We discuss how the number of satellites flying at any time has progressed as a function of increased launch rates and mission longevity, and how the spatial resolutions of the data they collect has evolved. The first such satellite was launched by the USA in 1972. Since then government and/or private entities in 33 other sovereign states and geopolitical groups have chosen to finance such missions and 197 individual satellites with a global land-cover observing capacity have been successfully launched. Of these 98 were still operating at the end of 2013. Since the 1970s the number of such missions failing within 3 years of launch has dropped from around 60% to less than 20%, the average operational life of a mission has almost tripled, increasing from 3.3 years in the 1970s to 8.6 years (and still lengthening), the average number of satellites launched per-year/per-decade has increased from 2 to 12 and spatial resolution increased from around 80 m to less than 1 m multispectral and less than half a meter for panchromatic; synthetic aperture radar resolution has also fallen, from 25 m in the 1970s to 1 m post 2007. More people in more countries have access to data from global land-cover observing spaceborne missions at a greater range of spatial resolutions than ever before. We provide a compendium of such missions, analyze the changes and shows how innovation, the need for secure data-supply, national pride, falling costs and technological advances may underpin the trends we document.

  19. A robust and high precision optimal explicit guidance scheme for solid motor propelled launch vehicles with thrust and drag uncertainty

    Science.gov (United States)

    Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.

    2016-10-01

    A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.

  20. Modelling of stratification in cryogenic launch vehicle tanks in a fast engineering tool

    Science.gov (United States)

    van Foreest, Arnold

    Modelling of stratification in cryogenic launch vehicle tanks in a fast engineering tool Thermal stratification in cryogenic launch vehicle tanks can lead to several problems, such as sudden pressure drops in the tank due to sloshing of the stratified liquid or cavitation in rocket engine turbopumps. To obtain an optimal stage design, the stratification process muss be taken into account. Currently, stratification is often modelled by 3D CFD solvers, which is an extremely time consuming process. Analytical models do exists but are inaccurate. This paper will show how the currently existing analytical models are improved, by using experimental data and results obtained from numerical calculations using the 3D CFD tool FLOW 3D. The goal is to be able to model a stratification process of a few hundred seconds in just a few seconds of CPU time, so about a factor 100 faster than the physical process takes. A simulation using a 3D flow solver can take multiple days. Setting up the model for a 3D flow solver can even take longer. Therefore it would be a big advantage to have fast engineering tools describing the process so that stratification can be taken into account in the preliminary design phase. The stratification process has been investigated experimentally at ZARM (Centre of Applied Spaceflight and Microgravity), using a closed tank filled with liquid nitrogen. Due to unavoidable heat leaks from the surrounding, the liquid will start to heat up and thermal layers will form. The experiments are simulated using the commercial 3D flow solver "FLOW 3D". Once satisfying numerical results have been obtained, the stratification process can be investigated in more detail. The dimensioning parameters can be determined and their influence can be quantified. From these analyses it has been found that for example heat conduction through the tank wall in tangential direction has a big impact on the formation of thermal layers. The currently available analytical models for

  1. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    Science.gov (United States)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off

  2. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    Science.gov (United States)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  3. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    Science.gov (United States)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  4. Experimental investigation of a graphite-composite wing-box section for a reusable launch vehicle

    Science.gov (United States)

    Sawyer, James Wayne; Bush, Harold; Sutter, Tom

    1997-01-01

    The use of graphite-composites as primary structure is essential for the development of a cost effective single-stage-to-orbit reusable launch vehicle (RLV) to replace the Space Shuttle. A full-scale segment of a graphite-composite wing was designed and fabricated by an industry team and tested at NASA Langley Research Center as a part of the RLV technology development program. The wing-box test component was 1.5 m wide by 3.0 m long and 1.1 m deep. It was construction from honeycomb sandwich panels with graphite-bisaleimide composite skins. The test component was loaded to design limit load in reverse bending followed by a test to design ultimate load, also in reverse bending. It was then loaded to failure. Resistance and fiber optic gages were used to measure strains in the wing box section during the test. A comprehensive finite element analysis of the specimen was performed. The test results verified the structural integrity of the wing-box component for RLV design loads, and good correlation between test and analysis was obtained. Both the failure location and the failure load were accurately predicted by the analysis.

  5. Affordable Vehicle Avionics Overview

    Science.gov (United States)

    Cockrell, James J.

    2015-01-01

    Public and private launch vehicle developers are reducing the cost of propulsion for small commercial launchers, but conventional high-performance, high-reliability avionics remain the disproportionately high cost driver for launch. AVA technology performs as well or better than conventional launch vehicle avionics, but with a fraction of the recurring costs. AVA enables small launch providers to offer affordable rides to LEO to nano-satellites as primary payloads meaning, small payloads can afford to specify their own launch and orbit parameters

  6. Synergistic Development, Test, and Qualification Approaches for the Ares I and V Launch Vehicles

    Science.gov (United States)

    Cockrell, Charles E.; Taylor, James L.; Patterson, Alan; Stephens, Samuel E.; Tyson, Richard W.; Hueter, Uwe

    2009-01-01

    The U.S. National Aeronautics and Space Administration is designing and developing the Ares I and Ares V launch vehicles for access to the International Space Station (ISS) and human exploration of the Moon. The Ares I consists of a first stage reusable five-segment solid rocket booster, a upper stage using a J-2X engine derived from heritage experience (Saturn and Space Shuttle External Tank programs), and the Orion crew exploration vehicle (CEV). The Ares V is designed to minimize the development and overall life-cycle costs by leveraging off of the Ares I design. The Ares V consists of two boosters, a core stage, an earth departure stage (EDS), and a shroud. The core stage and EDS use LH2/LO2 propellants, metallic propellant tanks, and composite dry structures. The core stage has six RS-68B upgraded Delta IV engines while the EDS uses a J-2X engine for second stage ascent and trans-lunar injection (TLI) burn. System and propulsion tests and qualification approaches for Ares V elements are being considered as follow-on extensions of the Ares I development program. Following Ares I IOC, testing will be conducted to verify the J-2X engine's orbital restart and TLI burn capability. The Ares I upper stage operation will be demonstrated through integrated stage development and acceptance testing. The EDS will undergo similar development and acceptance testing with additional testing to verify aspects of cryogenic propellant management, operation of sub-systems in a space simulation environment, and orbital re-start of the main propulsion system. RS-68B certification testing will be conducted along with integrated core stage development and acceptance testing. Structural testing of the Ares V EDS and core stage propellant tanks will be conducted similar to the Ares I upper stage. The structural qualification testing may be accomplished with separate propellant tank test articles. Structural development and qualification testing of the dry structure will be pursued as

  7. Small Moving Vehicle Detection in a Satellite Video of an Urban Area

    Science.gov (United States)

    Yang, Tao; Wang, Xiwen; Yao, Bowei; Li, Jing; Zhang, Yanning; He, Zhannan; Duan, Wencheng

    2016-01-01

    Vehicle surveillance of a wide area allows us to learn much about the daily activities and traffic information. With the rapid development of remote sensing, satellite video has become an important data source for vehicle detection, which provides a broader field of surveillance. The achieved work generally focuses on aerial video with moderately-sized objects based on feature extraction. However, the moving vehicles in satellite video imagery range from just a few pixels to dozens of pixels and exhibit low contrast with respect to the background, which makes it hard to get available appearance or shape information. In this paper, we look into the problem of moving vehicle detection in satellite imagery. To the best of our knowledge, it is the first time to deal with moving vehicle detection from satellite videos. Our approach consists of two stages: first, through foreground motion segmentation and trajectory accumulation, the scene motion heat map is dynamically built. Following this, a novel saliency based background model which intensifies moving objects is presented to segment the vehicles in the hot regions. Qualitative and quantitative experiments on sequence from a recent Skybox satellite video dataset demonstrates that our approach achieves a high detection rate and low false alarm simultaneously. PMID:27657091

  8. Small Moving Vehicle Detection in a Satellite Video of an Urban Area.

    Science.gov (United States)

    Yang, Tao; Wang, Xiwen; Yao, Bowei; Li, Jing; Zhang, Yanning; He, Zhannan; Duan, Wencheng

    2016-09-21

    Vehicle surveillance of a wide area allows us to learn much about the daily activities and traffic information. With the rapid development of remote sensing, satellite video has become an important data source for vehicle detection, which provides a broader field of surveillance. The achieved work generally focuses on aerial video with moderately-sized objects based on feature extraction. However, the moving vehicles in satellite video imagery range from just a few pixels to dozens of pixels and exhibit low contrast with respect to the background, which makes it hard to get available appearance or shape information. In this paper, we look into the problem of moving vehicle detection in satellite imagery. To the best of our knowledge, it is the first time to deal with moving vehicle detection from satellite videos. Our approach consists of two stages: first, through foreground motion segmentation and trajectory accumulation, the scene motion heat map is dynamically built. Following this, a novel saliency based background model which intensifies moving objects is presented to segment the vehicles in the hot regions. Qualitative and quantitative experiments on sequence from a recent Skybox satellite video dataset demonstrates that our approach achieves a high detection rate and low false alarm simultaneously.

  9. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    Energy Technology Data Exchange (ETDEWEB)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D. [Astrium GmbH, Space Infrastructure Div. Advanced Programs and System Engineering, Munich (Germany)

    2003-11-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology developments shown in this paper are: Technologies for enhanced heat transfer to the coolant for expander cycle engines. Advanced injector head technologies. Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length. Hot gas side ribs in the chamber. Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques. Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the sub scale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation. (Author)

  10. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    Science.gov (United States)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.

    2003-08-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.

  11. Online Trajectory Reshaping for a Launch Vehicle to Minimize the Final Error Caused by Navigation and Guidance

    Directory of Open Access Journals (Sweden)

    Tessy Thomas

    2013-05-01

    Full Text Available Autonomous launch vehicles, once lifted off from the launch pad, equipped with an onboard intelligence which aids in achieving the mission objectives with high accuracy. The accuracy of the mission depends basically on navigation and guidance errors caused at burnout condition, after which the vehicle follows an elliptical path upto impact. The paper describes how to handle the final impact and injection error caused by these navigation and guidance errors. In the current work the initial burnout conditions are tuned and corrected such that the terminal impact point is achieved within the desired tolerance bounds. A two point boundary value problem is solved using the gradient method, for determining the impact errors. The algorithm is validated by simulation studies for various burnout conditions.Defence Science Journal, 2013, 63(3, pp.254-261, DOI:http://dx.doi.org/10.14429/dsj.63.2414

  12. Online Trajectory Reshaping for a Launch Vehicle to Minimize the Final Error Caused by Navigation and Guidance

    Directory of Open Access Journals (Sweden)

    Tessy Thomas

    2013-05-01

    Full Text Available Autonomous launch vehicles, once lifted off from the launch pad, equipped with an onboard intelligence which aids in achieving the mission objectives with high accuracy. The accuracy of the mission depends basically on navigation and guidance errors caused at burnout condition, after which the vehicle follows an elliptical path upto impact. The paper describes how to handle the final impact and injection error caused by these navigation and guidance errors. In the current work the initial burnout conditions are tuned and corrected such that the terminal impact point is achieved within the desired tolerance bounds. A two point boundary value problem is solved using the gradient method, for determining the impact errors. The algorithm is validated by simulation studies for various burnout conditions.

  13. The Effects of Foam Thermal Protection System on the Damage Tolerance Characteristics of Composite Sandwich Structures for Launch Vehicles

    Science.gov (United States)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2011-01-01

    For any structure composed of laminated composite materials, impact damage is one of the greatest risks and therefore most widely tested responses. Typically, impact damage testing and analysis assumes that a solid object comes into contact with the bare surface of the laminate (the outer ply). However, most launch vehicle structures will have a thermal protection system (TPS) covering the structure for the majority of its life. Thus, the impact response of the material with the TPS covering is the impact scenario of interest. In this study, laminates representative of the composite interstage structure for the Ares I launch vehicle were impact tested with and without the planned TPS covering, which consists of polyurethane foam. Response variables examined include maximum load of impact, damage size as detected by nondestructive evaluation techniques, and damage morphology and compression after impact strength. Results show that there is little difference between TPS covered and bare specimens, except the residual strength data is higher for TPS covered specimens.

  14. The Profile Envision and Splice Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Tropospheric winds are an important driver of the design and operation of space launch vehicles. Multiple types of weather balloons and Doppler Radar Wind Profiler (DRWP) systems exist at NASA's Kennedy Space Center (KSC), co-located on the United States Air Force's (USAF) Eastern Range (ER) at the Cape Canaveral Air Force Station (CCAFS), that are capable of measuring atmospheric winds. Meteorological data gathered by these instruments are being used in the design of NASA's Space Launch System (SLS) and other space launch vehicles, and will be used during the day-of-launch (DOL) of SLS to aid in loads and trajectory analyses. For the purpose of SLS day-of-launch needs, the balloons have the altitude coverage needed, but take over an hour to reach the maximum altitude and can drift far from the vehicle's path. The DRWPs have the spatial and temporal resolutions needed, but do not provide complete altitude coverage. Therefore, the Natural Environments Branch (EV44) at Marshall Space Flight Center (MSFC) developed the Profile Envision and Splice Tool (PRESTO) to combine balloon profiles and profiles from multiple DRWPs, filter the spliced profile to a common wavelength, and allow the operator to generate output files as well as to visualize the inputs and the spliced profile for SLS DOL operations. PRESTO was developed in Python taking advantage of NumPy and SciPy for the splicing procedure, matplotlib for the visualization, and Tkinter for the execution of the graphical user interface (GUI). This paper describes in detail the Python coding implementation for the splicing, filtering, and visualization methodology used in PRESTO.

  15. LM-3B/E will launch Apstar 7

    Institute of Scientific and Technical Information of China (English)

    Zong He

    2009-01-01

    @@ China Great Wall Industry Corporation (CGWlC), a subsidiary of China Aerospace Science and Technology Corporation (CASC), signed a launch services contract with Hong Kong APT Satellite Co., Ltd in Beijing on November 8. According to the contract, a Long March 3B enhanced launch vehicle (LM-3B/E) will launch a French Thales Alenia Space made APstar 7 communications satellite into space in the first half year of 2012.

  16. Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems

    Science.gov (United States)

    Butt, Adam; Paseur, Lila F.; Pitts, Hank M.

    2012-01-01

    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.

  17. Vehicle detection in WorldView-2 satellite imagery based on Gaussian modeling and contextual learning

    Science.gov (United States)

    Shen, Bichuan; Chen, Chi-Hau; Marchisio, Giovanni B.

    2012-06-01

    In this paper, we aim to study the detection of vehicles from WorldView-2 satellite imagery. For this purpose, accurate modeling of vehicle features and signatures and efficient learning of vehicle hypotheses are critical. We present a joint Gaussian and maximum likelihood based modeling and machine learning approach using SVM and neural network algorithms to describe the local appearance densities and classify vehicles from non-vehicle buildings, objects, and backgrounds. Vehicle hypotheses are fitted by elliptical Gaussians and the bottom-up features are grouped by Gabor orientation filtering based on multi-scale analysis and distance transform. Global contextual information such as road networks and vehicle distributions can be used to enhance the recognition. In consideration of the problem complexity the practical vehicle detection task faces due to dense and overlapping vehicle distributions, partial occlusion and clutters by building, shadows, and trees, we employ a spectral clustering strategy jointly combined with bootstrapped learning to estimate the parameters of centroid, orientation, and extents for local densities. We demonstrate a high detection rate 94.8%,with a missing rate 5.2% and a false alarm rate 5.3% on the WorldView-2 satellite imagery. Experimental results show that our method is quite effective to model and detect vehicles.

  18. Robust adaptive constrained backstepping flight controller design for re-entry reusable launch vehicle under input constraint

    Directory of Open Access Journals (Sweden)

    Qin Zou

    2015-09-01

    Full Text Available A nonlinear constrained controller is designed for a reusable launch vehicle during re-entry phase in the presence of model uncertainty, external disturbance, and input constraint, via combining sliding mode control and adaptive backstepping control. Since the complex coupling between the translational and rotational dynamics of reusable launch vehicle, a control-oriented model derived from rotational dynamic is used for controller design. During the virtual control input design procedure, a dynamic robust term is utilized to compensate for the uncertainty. In addition, a filter is applied to handle “explosion of terms” problem during the actual control input design. To reduce the computational burden, adaptive law is used to evaluate the unknown norm bound of the lumped uncertainty. An auxiliary system is constructed to compensate for the input constraint effect. The stability of the closed-loop system is analyzed based on Lyapunov theory. Simulation results demonstrate the validity of the developed controller in providing stable tracking of the guidance command by numerical simulation on the 6-degree-of-freedom model of reusable launch vehicle.

  19. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  20. Concept for a Lunar Transfer Vehicle for Small Satellite Delivery to the Moon from the International Space Station

    Science.gov (United States)

    Elliott, John; Alkalai, Leon

    2010-01-01

    The International Space Station (ISS) has developed as a very capable center for scientific research in Lower Earth Orbit. An additional potential of the ISS that has not thus far been exploited, is the use of this orbiting plat-form for the assembly and launching of vehicles that could be sent to more distant destinations. This paper reports the results of a recent study that looked at an architecture and conceptual flight system design for a lunar transfer vehicle (LTV) that could be delivered to the ISS in segments, assembled, loaded with payload and launched from the ISS with the objective of delivering multiple small and micro satellites to lunar orbit. The design of the LTV was optimized for low cost and high payload capability, as well as ease of assembly. The resulting design would use solar electric propulsion (SEP) to carry a total payload mass of 250 kg from the ISS to a 100 km lunar orbit. A preliminary concept of operations was developed considering currently available delivery options and ISS capabili-ties that should prove flexible enough to accommodate a variety of payloads and missions. This paper will present an overview of the study, including key trades, mission and flight system design, and notional operational concept.

  1. The application of large scale hybrids to NLS and future personnel launch vehicles

    Science.gov (United States)

    McKinney, Bevin C.

    1992-07-01

    Two new space transportation concepts are being investigated in the United States. One, the National Launch System (NLS), is designed to launch unmanned payloads. Another, the Personnel Launch System (PLS), is a small spacecraft designed exclusively for personnel transport. Consideration is being given to launching the PLS using an element of the NLS booster. Because of the demanding requirements for crew safety and safe return after abort, the PLS may be better served by a launcher optimized for crew safety, leaving the NLS to be optimized for its unmanned cargo carrying role. The unique safety characteristics of hybrid propulsion could be invaluable in this manned launch role. This paper reviews the characteristics of hybrid propulsion as they apply to the PLS mission, and describes the features of an example hybrid PLS launcher. The paper suggests that booster elements of this hybrid PLS launcher could be used to augment NLS core performance for missions that require heavier payloads.

  2. Multi-Agent Management System (MAMS) for Air-Launched, Unmanned Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this work is to design, implement, and demonstrate a guidance and mission planning toolbox for air-launched, unmanned systems, such as guided...

  3. 76 FR 6448 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Test...

    Science.gov (United States)

    2011-02-04

    ... Island (SMI). Currently, six space launch vehicle programs use VAFB to launch satellites into polar orbit...) would occur at SMI as a result of the launch; therefore, no biological or acoustical monitoring was required or conducted at SMI. The fourth launch was not modeled or monitored because the vehicle's...

  4. Three ZY-2 Satellites Forming A Constellation

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2005-01-01

    China successfully put its earth resource satellite, the third of ZY-2, into the orbit aboard a LM-4B launch vehicle that blasted off at 11:10 am on Nov. 6, 2004 from Taiyuan Satellite Launch Center in Shanxi Province.

  5. Chinasat 9 to Be Launched in 2007

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    CASC is chosen by China Satellite Communications Corporation (China Satcom) to launch Chinasat 9 direct broadcasting satellite around July 2007, The satellite will be launched into a geostationary orbit by a LM3B from Xichang Satellite Launch Center,

  6. MIT Orbital Transfer Vehicle (MOTV): CASTOR Satellite: Design Document

    Science.gov (United States)

    2010-11-18

    with Chocolate Satellite ................................................... 38 Figure 2.1-1: Ground System Layout...292 Figure 6.2-8: Analog Output Channels ........................................................................... 293 Figure 6.2-9: Turn PID Off...connections. Diagrams of the pin connections are included. The Grounding section identifies the type of grounding connections (i.e. analog , digital

  7. Evolved Expendable Launch Vehicle: The Air Force Needs to Adopt an Incremental Approach to Future Acquisition Planning to Enable Incorporation of Lessons Learned

    Science.gov (United States)

    2015-08-01

    Acquisitions, Technology, and Logistics directed the Air Force to introduce a competitive procurement environment for up to 14 launches.11... competition in the launch industry is a high priority for the service, and not requiring DOD-approved business systems is a key advantage of...program is the primary provider launches for military and intelligence satellites. The Air Force is working to introduce competition into the program

  8. 14 CFR Appendix A to Part 417 - Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown With a Flight Safety...

    Science.gov (United States)

    2010-01-01

    ... (g)(7)(iv) of this section. (iii) X, Y, Z, XD, YD, ZD trajectory coordinates. A launch operator must provide the launch vehicle position coordinates (X, Y, Z) and velocity magnitudes (XD, YD, ZD) referenced... of the sum of the squares of the XD, YD, and ZD components of the trajectory state vector. (vi) Path...

  9. Use of Probabilistic Engineering Methods in the Detailed Design and Development Phases of the NASA Ares Launch Vehicle

    Science.gov (United States)

    Fayssal, Safie; Weldon, Danny

    2008-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.

  10. NATO-3C/Delta launch

    Science.gov (United States)

    1978-01-01

    NATO-3C, the third in a series of NATO defense-related communication satellites, is scheduled to be launched on a delta vehicle from the Eastern Test Range no earlier than November 15, 1978. NATO-3A and -3B were successfully launched by Delta vehicles in April 1976 and January 1977, respectively. The NATO-3C spacecraft will be capable of transmitting voice, data, facsimile, and telex messages among military ground stations. The launch vehicle for the NATO-3C mission will be the Delta 2914 configuration. The launch vehicle is to place the spacecraft in a synchronous transfer orbit. The spacecraft Apogee Kick motor is to be fired at fifth transfer orbit apogee to circularize its orbit at geosynchronous altitude of 35,900 km(22,260 miles) above the equator over the Atlantic Ocean somewhere between 45 and 50 degrees W longitude.

  11. Transonic pressure and load distributions for a group of simulated launch vehicles. [Langley 8-foot transonic pressure tunnel

    Science.gov (United States)

    Kelly, T. C.

    1980-01-01

    Pressure and load distributions for a related group of simulated launch vehicle configurations are presented. The configurations were selected so that the nose cone and interstage transition flare components were relatively close to one another and subject to mutual interference effects. Tests extended over a Mach number range from 0.40 to 1.20 at angles of attack from 0 deg to about 10 deg. The test Reynolds numbers, based on main stage diameter, were of the order of 0.00000098.

  12. Satellite vehicle tracking aiming to increase traffic safety within the Serbian Armed Forces

    Directory of Open Access Journals (Sweden)

    Igor S. Milanović

    2012-10-01

    Full Text Available The purpose of this work is to show how to affect the most important factor of traffic safety - an individual, by using some technical solutions of satellite tracking of vehicles. By using units of the Land Forces as an example, a brief analysis of traffic safety for vehicles less than 5 years old has been performed. It is noticed that the number of traffic accidents with these vehicles involved has increased, so we tried to use one software package commercially available in order to show all advantages and disadvantages which could be noticed during this kind of vehicle tracking. The conclusion is that preventive vehicle tracking can improve traffic safety, but that a techno-economic analysis has to be done as well, in order to create all the necessary conditions for the introduction of this system in the units of the Serbian Armed Forces.

  13. 76 FR 72218 - National Environmental Policy Act; NASA Routine Payloads on Expendable Launch Vehicles

    Science.gov (United States)

    2011-11-22

    ... SPACE ADMINISTRATION National Environmental Policy Act; NASA Routine Payloads on Expendable Launch... (FONSI). SUMMARY: Pursuant to the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321, et seq.), the Council on Environmental Quality (CEQ) Regulations for Implementing the...

  14. The X-38 Vehicle 131R drops away from its launch pylon on the wing of NASA's NB-52B mothership as it

    Science.gov (United States)

    2001-01-01

    The X-38 prototype of the Crew Return Vehicle for the International Space Station drops away from its launch pylon on the wing of NASA's NB-52B mothership as it begins its eighth free flight on Thursday, Dec. 13, 2001. The 13-minute test flight of X-38 vehicle 131R was the longest and fastest and was launched from the highest altitude to date in the X-38's atmospheric flight test program. A portion of the descent was flown under remote control by a NASA astronaut from a ground vehicle configured like the CRV's interior before the X-38 made an autonomous landing on Rogers Dry Lake.

  15. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    Science.gov (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  16. 导弹发射车战场抢修研究%Research on Battlefield Repair for Missile Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    李田科; 于仕财; 于乐; 李建

    2011-01-01

    It analyzed battlefield damage of launch vehicle by method of BFIA,DMEA,DTA,DLA,and built the basic function item trees and damage trees for primary functional parts to establish the damage mode with minimum conventional level and the ultimate effect.It is effective way to acquire damage assessment information and laid a foundation for establishing the BDAR database of launch vehicle.%综合利用基本功能项目分析、损伤模式及影响分析、损伤树分析及损伤定位分析等方法进行了发射车的战场损伤分析,建立了基本功能项目树和主要功能部件的损伤树,确定了最低约定层次的损伤模式及最终影响。该方法是获取导弹发射车损伤评估信息的有效途径,可为建立发射车战场抢修数据库打下理论基础。

  17. Coating Development for GRCop-84 Liners for Reusable Launch Vehicles Aided by Modeling Studies

    Science.gov (United States)

    Raj, Sai V.; Ghosn, Louis J.

    2004-01-01

    The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition invented at the NASA Glenn Research Center. Despite its considerable advantage over other copper alloys, it is expected that GRCop-84 will suffer from environmental degradation depending on the type of rocket fuels used and on thermomechanical fatigue. Applying protective coatings on GRCop-84 substrates can minimize or eliminate many of these problems and extend the operational life of the combustion liner. This could increase component reliability, shorten depot maintenance turnaround times, and lower operating costs. Therefore, Glenn is actively pursuing the development of advanced coatings technology for GRCop-84 liners. Technology is being developed in four major areas: (1) new metallic coating compositions, (2) application techniques, (3) test methods, and (4) life prediction design methodology using finite element analysis. The role of finite element analysis in guiding the coating effort is discussed in this report. Thermal analyses were performed at Glenn for different combinations of top- and bondcoat compositions to determine the temperature variation across the coated cross section with the thickness of the top coat. These calculations were conducted for simulated LH2/LO2 booster engine conditions assuming that the bond coat had a constant thickness of 50 m. The preceding graphs show the predicted temperatures at the outer surface of the top coat (hot wall), at the top-coat/bond-coat interface, at the bond-coat/GRCop-84 interface, and at the GRCop-84 cold wall as a function of top-coat thickness for Cu- 26(wt%)Cr top coat (top graph), Ni-17(wt%)Cr-6%Al-0.5%Y top coat and Cu-26%Cr bond coat, and NiAl top coat and Ni bond coat. In all cases, the temperature of the top coat at the hot wall increased with increasing top-coat thickness and with corresponding decreases in the temperatures at the two interfaces and the cold wall

  18. Integrated G and C Implementation within IDOS: A Simulink Based Reusable Launch Vehicle Simulation

    Science.gov (United States)

    Fisher, Joseph E.; Bevacqua, Tim; Lawrence, Douglas A.; Zhu, J. Jim; Mahoney, Michael

    2003-01-01

    The implementation of multiple Integrated Guidance and Control (IG&C) algorithms per flight phase within a vehicle simulation poses a daunting task to coordinate algorithm interactions with the other G&C components and with vehicle subsystems. Currently being developed by Universal Space Lines LLC (USL) under contract from NASA, the Integrated Development and Operations System (IDOS) contains a high fidelity Simulink vehicle simulation, which provides a means to test cutting edge G&C technologies. Combining the modularity of this vehicle simulation and Simulink s built-in primitive blocks provide a quick way to implement algorithms. To add discrete-event functionality to the unfinished IDOS simulation, Vehicle Event Manager (VEM) and Integrated Vehicle Health Monitoring (IVHM) subsystems were created to provide discrete-event and pseudo-health monitoring processing capabilities. Matlab's Stateflow is used to create the IVHM and Event Manager subsystems and to implement a supervisory logic controller referred to as the Auto-commander as part of the IG&C to coordinate the control system adaptation and reconfiguration and to select the control and guidance algorithms for a given flight phase. Manual creation of the Stateflow charts for all of these subsystems is a tedious and time-consuming process. The Stateflow Auto-builder was developed as a Matlab based software tool for the automatic generation of a Stateflow chart from information contained in a database. This paper describes the IG&C, VEM and IVHM implementations in IDOS. In addition, this paper describes the Stateflow Auto-builder.

  19. Determining Logistics Ground Support Manpower Requirements for a Reusable Military Launch Vehicle

    Science.gov (United States)

    2007-03-01

    Force Link, 28 February 2005. n. pag. 28 December 2006 http://www.af.mil/news/story.asp?storyID=123009914. Leedy , P. D., & Ormrod , J. E...nature” of providing logistics support to a newly-emerging space launch platform ( Leedy , 2005: 94). As such, the research process exhibited the...requirements can only be “easily divided into discrete, measurable variables” ( Leedy , 2005: 96) based upon historical data for a platform. Since

  20. Pre-Launch Radiometric Performance Characterization of the Advanced Technology Microwave Sounder on the Joint Polar Satellite System-1 Satellite

    Science.gov (United States)

    Smith, Craig K.; Kim, Edward; Leslie, R. Vincent; Lyu, Joseph; McCormick, Lisa M.; Anderson, Kent

    2017-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a space-based, cross-track radiometer for operational atmospheric temperature and humidity sounding, utilizing 22 channels over a frequency range from 23 to 183 gigahertz. The ATMS for the Joint Polar Satellite System-1 has undergone two rounds of re-work in 2014-2015 and 2016, following performance issues discovered during and following thermal vacuum chamber (TVAC) testing at the instrument and observatory level. Final shelf-level testing, including measurement of pass band characteristics and spectral response functions, was completed in December 2016. Final instrument-level TVAC testing and calibration occurred during February 2017. Here we will describe the instrument-level TVAC calibration process, and illustrate with results from the final TVAC calibration effort.

  1. Characteristic model based control of the X-34 reusable launch vehicle in its climbing phase

    Institute of Scientific and Technical Information of China (English)

    MENG Bin; WU HongXin; LIN ZongLi; LI Guo

    2009-01-01

    In this paper,a characteristic model based longitudinal control design for the trans-aerosphere vehicle X-34 In its transonic and hypersonic climbing phase is proposed.The design is based on the dynamic characteristics of the vehicle and the curves it is to track in this climbing phase.Through a detailed analysis of the aerodynamics and vehicle dynamics during this climbing phase,an explicit description of the tracking curve for the flight path angle is derived.On the basis of this tracking curve,the tracking curves for the two short-period variables,the angle of attack and the pitch rate,are designed.An all-coefficient adaptive controller is then designed,based on the characteristic modeling,to cause these two short-period variables to follow their respective tracking curves.The proposed design does not require multiple working points,making the design procedure simple.Numerical simulation is performed to validate the performance of the controller.The simulation results Indicate that the resulting control law ensures that the vehicle climbs up successfully under the restrictions on the pitch angle and overloading.

  2. Small Space Launch: Origins & Challenges

    Science.gov (United States)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  3. Probabilistic Design Analysis (PDA) Approach to Determine the Probability of Cross-System Failures for a Space Launch Vehicle

    Science.gov (United States)

    Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.

    2010-01-01

    Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project

  4. Rigid-Flexible Coupling Dynamic Analysis of Sub-Launched Vehicle During the Vertical Tube-Exit Stage

    Institute of Scientific and Technical Information of China (English)

    Weiyao Zhang; Jingbo Gao; Cong Wang

    2015-01-01

    During the launching stage,hydrodynamic pressure and adapters’ reaction loads can influence the vehicle’ s rigid motion as well as cause its structural vibration,which is a typical rigid⁃flexible coupling dynamic problem. This paper presents a 2⁃D rigid⁃flexible coupling model to calculate the vehicle’ s dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation, the vehicle centroid’ s displacements, rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle ’ s rigid⁃flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle’s motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle’ s motion parameters between the rigid⁃flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle’ s transverse internal loads in the rigid⁃flexible coupling model is higher remarkably than that in the rigid body assumption.

  5. Heading Toward Launch with the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    Science.gov (United States)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric J.; Adler, Robert F.

    2012-01-01

    The Day-l algorithm for computing combined precipitation estimates in GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). We plan for the period of record to encompass both the TRMM and GPM eras, and the coverage to extend to fully global as experience is gained in the difficult high-latitude environment. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in the three groups that are contributing expertise: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; 2) the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following cloud motion; and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures. In this talk we summarize the major building blocks and important design issues driven by user needs and practical data issues. One concept being pioneered by the IMERG team is that the code system should produce estimates for the same time period but at different latencies to support the requirements of different groups of users. Another user requirement is that all these runs must be reprocessed as new IMERG versions are introduced. IMERG's status at meeting time will be summarized, and the processing scenario in the transition from TRMM to GPM will be laid out. Initially, IMERG will be run with TRMM-based calibration, and then a conversion to a GPM-based calibration will be employed after the GPM sensor products are validated. A complete reprocessing will be computed, which will complete the transition from TMPA.

  6. Range Safety Real-time System for Satellite Launch Vehicle Missions–Testing Methodologies

    Directory of Open Access Journals (Sweden)

    R. Varaprasad

    2006-11-01

    Full Text Available A real-time system plays a critical role in the range safety decision-making in a satellitelaunch mission. Real-time software, the heart of such systems, is becoming an issue of criticality.Emphasis is being laid on the development of reliable, robust, and operational system. Thispaper purports to delineate prudent testing methodologies implemented to test the real-timesystem.

  7. Use of Heated Helium to Simulate Surface Pressure Fluctuations on the Launch Abort Vehicle During Abort Motor Firing

    Science.gov (United States)

    Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.

    2011-01-01

    The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs, and will be used to establish the acoustic environment for vibro-acoustic qualification testing of the MPCV.

  8. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    Science.gov (United States)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  9. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  10. The issue of ensuring the safe explosion of the spent orbital stages of a launch vehicle with propulsion rocket engine

    Directory of Open Access Journals (Sweden)

    Trushlyakov Valeriy I.

    2017-01-01

    Full Text Available A method for increasing the safe explosion of the spent orbital stages of a space launch vehicle (SLV with a propulsion rocket engine (PRE based on the gasification of unusable residues propellant and venting fuel tanks. For gasification and ventilation the hot gases used produced by combustion of the specially selected gas generating composition (GGC with a set of physical and chemical properties. Excluding the freezing of the drainage system on reset gasified products (residues propellant+pressurization gas+hot gases in the near-Earth space is achieved by selecting the physical-chemical characteristics of the GGC. Proposed steps to ensure rotation of gasified products due to dumping through the drainage system to ensure the most favorable conditions for propellant gasification residues. For example, a tank with liquid oxygen stays with the orbital spent second stage of the SLV “Zenit”, which shows the effectiveness of the proposed method.

  11. Ascent Heating Thermal Analysis on the Spacecraft Adaptor (SA) Fairings and the Interface with the Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Wang, Xiao-Yen; Yuko, James; Motil, Brian

    2009-01-01

    When the crew exploration vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aero heating case. Heating rates from Thermal Environment (TE) 3 aero heating analysis computed by engineers at Marshall Space Flight Center (MSFC) are used in the thermal analysis. Both MSC Patran 2007r1b/Pthermal and C&R Thermal Desktop 5.1/Sinda models are built to validate each other. The numerical results are also compared with those reported by Lockheed Martin (LM) and show a reasonably good agreement.

  12. Summary of the Impact of Launch Vehicle Exhaust and Deorbiting Space and Meteorite Debris on Stratospheric Ozone

    Science.gov (United States)

    2007-11-02

    Strap-Ons) Stage 2 (Core) EUS – Optional RCS – Optional LOX/Kerosene LOX/LH2 LOX/LH2 LOX/Kerosene 705,000 1,810,000 154,000 33 Kosmos Stage 1 Stage 2...H2 1 1 1 2 Kosmos 4 2 0 1 LMLV-1 1 Long March 4 6 6 1 M5 0 1 1 Molniya 3 3 3 1 Pegasus 5 5 6 6 Proton 8 9 5 8 PSLV 1 Soyuz 9 10 8 7 Space Shuttle 7 8 5...their CIS, U.S., or Sheldon name. In the Soviet Union, it was standard practice to name a launch vehicle after its original payload (e.g., Kosmos

  13. A Damage Tolerance Comparison of Composite Hat-Stiffened and Honeycomb Sandwich Structure for Launch Vehicle Interstage Applications

    Science.gov (United States)

    Nettles, A. T.

    2011-01-01

    In this study, a direct comparison of the compression-after-impact (CAI) strength of impact-damaged, hat-stiffened and honeycomb sandwich structure for launch vehicle use was made. The specimens used consisted of small substructure designed to carry a line load of approx..3,000 lb/in. Damage was inflicted upon the specimens via drop weight impact. Infrared thermography was used to examine the extent of planar damage in the specimens. The specimens were prepared for compression testing to obtain residual compression strength versus damage severity curves. Results show that when weight of the structure is factored in, both types of structure had about the same CAI strength for a given damage level. The main difference was that the hat-stiffened specimens exhibited a multiphase failure whereas the honeycomb sandwich structure failed catastrophically.

  14. Demonstration of the Dynamic Flowgraph Methodology using the Titan 2 Space Launch Vehicle Digital Flight Control System

    Science.gov (United States)

    Yau, M.; Guarro, S.; Apostolakis, G.

    1993-01-01

    Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.

  15. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  16. Commentary to "LARES successfully launched in orbit: Satellite and mission description" by A. Paolozzi and I. Ciufolini

    CERN Document Server

    Iorio, Lorenzo

    2014-01-01

    We comment on some statements in a recent paper by Paolozzi and Ciufolini concerning certain remarks raised by us on the realistic accuracy obtainable in testing the general relativistic Lense-Thirring effect in the gravitational field of the Earth with the newly launched LARES satellite together with the LAGEOS and LAGEOS II spacecraft in orbit for a long time. The orbital configuration of LARES is different from that of the originally proposed LAGEOS-3. Indeed, while the latter one should have been launched to the same altitude of LAGEOS (i.e. about $h_{\\rm L}=5890$ km) in an orbital plane displaced by $180$ deg with respect to that of LAGEOS ($I_{\\rm L}=110$ deg, $I_{\\rm L3}=70$ deg), LARES currently moves at a much smaller altitude (about $h_{\\rm LR}=1440$ km) and at a slightly different inclination ($I_{\\rm LR} = 69.5$ deg). As independently pointed out in the literature by different authors, the overall accuracy of a LARES-LAGEOS-LAGEOS II Lense-Thirring test may be unfavorably \\textcolor{black}{impacte...

  17. Flight Reynolds Number Testing of the Orion Launch Abort Vehicle in the NASA Langley National Transonic Facility

    Science.gov (United States)

    Chan, David T.; Brauckmann, Gregory J.

    2011-01-01

    A 6%-scale unpowered model of the Orion Launch Abort Vehicle (LAV) ALAS-11-rev3c configuration was tested in the NASA Langley National Transonic Facility to obtain static aerodynamic data at flight Reynolds numbers. Subsonic and transonic data were obtained for Mach numbers between 0.3 and 0.95 for angles of attack from -4 to +22 degrees and angles of sideslip from -10 to +10 degrees. Data were also obtained at various intermediate Reynolds numbers between 2.5 million and 45 million depending on Mach number in order to examine the effects of Reynolds number on the vehicle. Force and moment data were obtained using a 6-component strain gauge balance that operated both at warm temperatures (+120 . F) and cryogenic temperatures (-250 . F). Surface pressure data were obtained with electronically scanned pressure units housed in heated enclosures designed to survive cryogenic temperatures. Data obtained during the 3-week test entry were used to support development of the LAV aerodynamic database and to support computational fluid dynamics code validation. Furthermore, one of the outcomes of the test was the reduction of database uncertainty on axial force coefficient for the static unpowered LAV. This was accomplished as a result of good data repeatability throughout the test and because of decreased uncertainty on scaling wind tunnel data to flight.

  18. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    Science.gov (United States)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  19. Application of Fault Management Theory to the Quantitive Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial

  20. NASA Facts: Nanosatellite Launch Adapter System (NLAS)

    Science.gov (United States)

    Chartres, James; Cappuccio, Gelsomina

    2013-01-01

    The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or cubesats, onto launch vehicles. A standard cubesat measures about 4inches (10 cm) long, 4 inches wide,and 4 inches high, and is called a one-unit (1U) cubesat. A single NLAS provides the capability to deploy 24U of cubesats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.

  1. Research on Equivalent Equipment of Launch Vehicle Nozzle Base on FPGA%基于FPGA的运载火箭喷管等效装置研究

    Institute of Scientific and Technical Information of China (English)

    夏阳; 高晓颖; 邹莹

    2011-01-01

    In the hardware - in - the - loop simulation of launch vehicle control system, it is common that the e-quivalent equipment of launch vehicle nozzle is needed to simulate the speciality of nozzle and close the control system. The former equivalent equipment of nozzle couldnot meet the application demand of the simulation system nowadays. This paper firstly transforms the transfer function of the launch vehicle nozzle into the corresponding difference equations. Secondly, the operation process is realized with state machine principle based on the algorithm of floating point numbers with VHDL. Finally, the equivalent equipment of launch vehicle nozzle is realized based on the FPGA and other peripheral circuit. The tests of the equivalent equipment of launch vehicle nozzle indicate that it can simulate completely the speciality of the nozzles with high precision.%在运载火箭控制系统半实物仿真和全实物仿真过程中,通常需要喷管等效装置实现对运载火箭喷管的特性模拟和系统闭合.传统的喷管等效装置已不能满足现今的系统应用需求.从工程实际角度出发,首先将喷管传递函数离散化变换为对应的差分方程,再在VHDL浮点算法的基础上,采用状态机电路原理在FPGA上实现该差分方程的运算过程,最后基于该FPGA构建外围硬件电路,实现了运载火箭喷管等效装置.经测试表明,该喷管等效装置完全能够高精度模拟喷管特性.

  2. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  3. Concepts and cost trade-offs for land vehicle antennas in satellite mobile communications

    Science.gov (United States)

    Haddad, H. A.

    1948-01-01

    Several antenna design concepts, operating at UHF (821 to 825 MHz transmit and 866 to 870 MHz receive bands), with gain ranging between 6 and 12 dBic, that are suitable for land mobile vehicles are presented. The antennas may be used within CONUS and ALASKA to communicate to and from a geosynchronous satellite. Depending on the type of steering mechanism, the antennas are broken down into three categories; (1) electronically scanned arrays with phase shifters, (2) electronically switched arrays with switchable power dividers/combiners, and (3) mechanically steered arrays. The operating characteristics of two of these design concepts, one a conformal antenna with electronic beam steering and the other a nonconformal design with mechanical steering, were evaluated with regard to two and three satellite system. Cost estimates of various antenna concepts were made and plotted against their overall gain performance.

  4. Satellite Images-based Obstacle Recognition and Trajectory Generation for Agricultural Vehicles

    Directory of Open Access Journals (Sweden)

    Mehmet Bodur

    2015-12-01

    Full Text Available In this study, a method for the generation of tracking trajectory points, detection and positioning of obstacles in agricultural fields have been presented. Our principal contribution is to produce traceable GPS trajectories for agricultural vehicles to be utilized by path planning algorithms, rather than a new path planning algorithm. The proposed system works with minimal initialization requirements, specifically, a single geographical coordinate entry of an agricultural field. The automation of agricultural plantation requires many aspects to be addressed, many of which have been covered in previous studies. Depending on the type of crop, different agricultural vehicles may be used in the field. However, regardless of their application, they all follow a specified trajectory in the field. This study takes advantage of satellite images for the detection and positioning of obstacles, and the generation of GPS trajectories in the agricultural realm. A set of image processing techniques is applied in Matlab for detection and positioning.

  5. A simplified satellite navigation system for an autonomous Mars roving vehicle.

    Science.gov (United States)

    Janosko, R. E.; Shen, C. N.

    1972-01-01

    The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.

  6. Pitfalls and Precautions When Using Predicted Failure Data for Quantitative Analysis of Safety Risk for Human Rated Launch Vehicles

    Science.gov (United States)

    Hatfield, Glen S.; Hark, Frank; Stott, James

    2016-01-01

    Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account system integration risks such as those attributable to manufacturing and assembly. These sources often dominate component level risk. While consequence of failure is often understood, using predicted values in a risk model to estimate the probability of occurrence may underestimate the actual risk. Managers and decision makers use the probability of occurrence to influence the determination whether to accept the risk or require a design modification. The actual risk threshold for acceptance may not be fully understood due to the absence of system level test data or operational data. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.

  7. Quick Access Rocket Exhaust Rig Testing of Coated GRCop-84 Sheets Used to Aid Coating Selection for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai V.; Robinson, Raymond C.; Ghosn, Louis J.

    2005-01-01

    The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition1 invented at the NASA Glenn Research Center: Cu-8(at.%)Cr-4%Nb. Many of the properties of this alloy have been shown to be far superior to those of other conventional copper alloys, such as NARloy-Z. Despite this considerable advantage, it is expected that GRCop-84 will suffer from some type of environmental degradation depending on the type of rocket fuel utilized. In a liquid hydrogen (LH2), liquid oxygen (LO2) booster engine, copper alloys undergo repeated cycles of oxidation of the copper matrix and subsequent reduction of the copper oxide, a process termed "blanching". Blanching results in increased surface roughness and poor heat-transfer capabilities, local hot spots, decreased engine performance, and premature failure of the liner material. This environmental degradation coupled with the effects of thermomechanical stresses, creep, and high thermal gradients can distort the cooling channel severely, ultimately leading to its failure.

  8. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  9. Experimental and Numerical Investigation of Reduced Gravity Fluid Slosh Dynamics for the Characterization of Cryogenic Launch and Space Vehicle Propellants

    Science.gov (United States)

    Walls, Laurie K.; Kirk, Daniel; deLuis, Kavier; Haberbusch, Mark S.

    2011-01-01

    As space programs increasingly investigate various options for long duration space missions the accurate prediction of propellant behavior over long periods of time in microgravity environment has become increasingly imperative. This has driven the development of a detailed, physics-based understanding of slosh behavior of cryogenic propellants over a range of conditions and environments that are relevant for rocket and space storage applications. Recent advancements in computational fluid dynamics (CFD) models and hardware capabilities have enabled the modeling of complex fluid behavior in microgravity environment. Historically, launch vehicles with moderate duration upper stage coast periods have contained very limited instrumentation to quantify propellant stratification and boil-off in these environments, thus the ability to benchmark these complex computational models is of great consequence. To benchmark enhanced CFD models, recent work focuses on establishing an extensive experimental database of liquid slosh under a wide range of relevant conditions. In addition, a mass gauging system specifically designed to provide high fidelity measurements for both liquid stratification and liquid/ullage position in a micro-gravity environment has been developed. This pUblication will summarize the various experimental programs established to produce this comprehensive database and unique flight measurement techniques.

  10. The Quantification Analysis of Expendable Launch Vehicle Failures%一次性运载火箭飞行失利量化分析研究

    Institute of Scientific and Technical Information of China (English)

    郑立伟; 秦曈; 何巍; 龙乐豪

    2016-01-01

    对1957~2014年全球29个一次性运载火箭系列的发射情况进行统计,从构型、故障子级、首飞、级数、规模、推进剂种类、故障所属分系统、载人、故障原因等多个维度对国内外运载火箭发射失利情况进行了故障统计分析,在量化分析数据的基础上,提出确保我国运载火箭高任务成功率的发展建议。%The failures of world’s major 29 serous of launch vehicles, from 1957 to 2014, are reviewed. This study takes many aspects into consideration, such as types, failure stage, maiden fights, stage number, capabilities, propellant categories, failure subsystem, manned vehicle and failure causes, to analyze the causes of failures of launch vehicles all over the world. Based on data quantification analysis, pertinent suggestions are provided for keeping the high mission success rate of China Long March series launch vehicles.

  11. Launch Services Program EMC Issues

    Science.gov (United States)

    trout, Dawn

    2004-01-01

    Presentation covers these issues: (1) Vehicles of the Launch Services Program, (2) RF Environment, (3) Common EMC Launch Vehicle Payload Integration Issues, (4) RF Sensitive Missions and (5) Lightning Monitoring,

  12. Research on spatial correlation characteristics of interior acoustic field of launch vehicle fairing%运载火箭整流罩内声场空间相关特性研究

    Institute of Scientific and Technical Information of China (English)

    任方; 张正平; 李海波; 刘振皓; 秦朝红; 张忠

    2014-01-01

    During lift-off phase of launch vehicle flight, the noise produced by the deflector tunnel and launch deck when the engine’s plume flow away may destroy the ground launching device. And the noise environment can excite the vibration of launch vehicle. The characteristics of the acoustic field highly depend on total sound pressure level, noise power spectrum density and spatial correlation coefficient. Among them the spatial correlation coefficient is less investigated. However, the acoustic fields with different spatial correlation coefficient, but the same sound pressure level can induce different structural vibration response. In this paper, based on the theory of spatial correlation characteristic of acoustic field, the theoretical curves of spatial correlation are obtained and the spatial correlation characteristic of reverberation chamber is studied. Acoustic test of satellite-rocket system level is developed applying a type of launch vehicle fairing and the regular distribution of acoustic field for launch vehicle is obtained. Based on the test data, the normalized characterization method of spatial correlation is validated. Compared with the interior acoustic field between reverberation chamber and fairing, the spatial correlation characteristic of reverberation chamber is close to the fairing. All these studies can provide the input for load and environment design and provide support for the fairing and satellite ground noise environmental test program.%运载火箭起飞段发动机喷流经过导流槽、发射台产生的噪声载荷会对地面发射设备造成一定的破坏,由噪声引发的振动对于运载火箭自身也会造成严重影响。总声压级、声功率谱密度及空间相关系数3个参数可描述完整的噪声场,但空间相关系数关注很少。由于空间相关特性的差异,同一声压级不同性质的噪声场在结构上产生的振动响应不同。从噪声场空间相关的基础理论出发,给出

  13. GRYPHON: Air launched space booster

    Science.gov (United States)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  14. Small Vehicle Launch Platform

    Science.gov (United States)

    2000-09-19

    the art will appreciate that release 21 mechanisms 41 can be a spring-loaded release pin with a lanyard 22 pull initiated by an actuator mechanism or...an explosive squib 23 which breaks the attachment latching on the small UUV. Whatever 1 release mechanism is used, it is controlled by the host...carries four small 1 UUV’s, it will be understood that, depending on the size of the 3 small UUV’s employed, greater or fewer numbers of UUV’s can be 4

  15. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  16. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  17. Net Shape Spin Formed Cryogenic Aluminum Lithium Cryogenic Tank Domes for Lower Cost Higher Performance Launch Vehicles

    Science.gov (United States)

    Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn

    2013-01-01

    With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.

  18. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASAs Space Launch System

    Science.gov (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM

  19. Environmental Impact Analysis Process, Final Environmental Assessment for U.S. Air Force Quick Reaction Launch Vehicle Program

    Science.gov (United States)

    2007-11-02

    ait-2 to detect bioindicators of change attributable to the launches. Results from the ait-1 launch showed that total taxa richness measures and... bioindicator of change. 3.4.6 SPECIAL STATUS SPECIES A species is considered "special status" if it is federally- or state-listed or is a candidate

  20. Low gain and steerable vehicle antennas for communications with land mobile satellite

    Science.gov (United States)

    Woo, K.

    1982-01-01

    Current development activities at JPL for ground mobile vehicle antennas to be used with the Land Mobile Satellite Service (LMSS) system are described. Both low gain and electronically steerable high gain type antennas are discussed in terms of their design concept and RF performance. For the low gain type, three classes of antennas are under various stages of development. These are the crossed-drooping dipole, quadrifilar helix, and microstrip patch designs. The antennas are intended to provide circularly-polarized radiation with a minimum of 3-dB gain in the angular region from 19 degrees to 60 deg from the horizon in elevation plane and with an omnidirectional pattern in azimuthal plane. For the electronically steerable high gain type, circularly-polarized microstrip patch phased arrays formed on a planar surface and on the surface of a truncated cone are under study. The arrays are intended to provide a minimum of 12 dB gain in the same angular region in elevation plane at all azimuthal angles. This coverage is accomplished by scanning the high gain pencil beam in both elevation and azimuthal directions. Both types of antennas are to transmit at 821-831 MHz band and to receive at 866-876 MHz band. They must be of low cost design and reasonably conformal to the vehicle.

  1. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  2. 新一代运载火箭增压技术研究%Study on pressurization of new generation launch vehicle

    Institute of Scientific and Technical Information of China (English)

    范瑞祥; 田玉蓉; 黄兵

    2012-01-01

    随着新一代运载火箭研制的开展,新型120t级高压补燃液氧煤油发动机将得到广泛的使用,该发动机采用的推进剂贮箱增压系统设计被列为新一代运载火箭研制的重大关键技术之一。在对国内外主要液体运载火箭增压方案进行分析的基础上对120t级液氧煤油发动机的贮箱增压系统进行了研究,提出了液氧贮箱采用压力传感器与电磁阀组合的常温氦气加温增压,煤油贮箱采用压力传感器与电磁阀组合的常温氦气增压方案,并针对液氧贮箱采用常温氦气加温增压的方案开展了理论分析和全尺寸系统级试验研究。理论分析和试验结果表明,该增压方案可行。%With the development of new generation launch vehicles, a high pressure staged-combustion liquid oxygen/kerosene propellant rocket engine with thrust level of 120 t will be used exten- sively. The design of the pressurization system is one of the key technologies of new generation launch vehicles. Based on the review of pressurization system used on the domestic and foreign launch vehicles, a new tank pressurization system of launch vehicle used on the liquid oxy- gen/kerosene engine was studied, which used helium gas (heated helium gas in liquid oxygen tank and room temperature helium gas in kerosene tank) as the pressurization gas, and tank pressure and helium flow were controlled by tank pressure sensors and electromagnetic valves. Also a full size experimental research and theoretical analysis of heated helium pressurization system for liquid oxygen tank was conducted. The experiment and analysis results indicate that the pressurization system is feasible.

  3. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    Science.gov (United States)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  4. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    Science.gov (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S

  5. 14 CFR Appendix D to Part 420 - Impact Dispersion Areas and Casualty Expectancy Estimate for an Unguided Suborbital Launch Vehicle

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Impact Dispersion Areas and Casualty... LICENSE TO OPERATE A LAUNCH SITE Pt. 420, App. D Appendix D to Part 420—Impact Dispersion Areas and... exclusion zone and impact dispersion areas, and how to evaluate whether the public risk presented by the...

  6. Improved Re-Configurable Sliding Mode Controller for Reusable Launch Vehicle of Second Generation Addressing Aerodynamic Surface Failures and Thrust Deficiencies

    Science.gov (United States)

    Shtessel, Yuri B.

    2002-01-01

    In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.

  7. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    Science.gov (United States)

    Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen

    2015-01-01

    The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that

  8. Low Profile and Low Cost Antenna Technology for Satellite TV Reception on Sports Utility Vehicles (SUV) for the US Market

    Science.gov (United States)

    Vazquez, F. Javier; Pearson, Robert A.; Driscoll, Barry G.

    2003-07-01

    A low profile scanning antenna for reception of satellite TV has been developed for the US market compatible with existing DBS Ku band satellite infrastructure. This antenna technology does not require active RF components and it is inherently low cost (in the order of a few hundred dollars even in moderate production volumes). The antenna is able to scan a circularly polarised beam in the range 20 to 69 degrees, covering three DBS satellites in the US including some margin for vehicle tilt. An antenna demonstrator of 115 mm height, including the radome and tracking electronics has been built and measured. Live tests were performed in the US during 2002 to determine realistic link margins and antenna specifications. A product development is currently being undertaken to turn the demonstrator unit into a product for the US market by the end of 2003.

  9. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  10. On the Possibility of using Alluminium-Magnesium Alloys with Improved Mechanical Characteristics for Body Elements of Zenit-2S Launch Vehicle Propellant Tanks

    Science.gov (United States)

    Sitalo, V.; Lytvyshko, T.

    2002-01-01

    Yuzhnoye SDO developed several generations of launch vehicles and spacecraft that are characterized by weight perfection, optimal cost, accuracy of output geometrical characteristics, stable strength characteristics, high tightness. The main structural material of launch vehicles are thermally welded non-strengthened aluminium- magnesium alloys. The aluminium-magnesium alloys in the annealed state have insufficiently high strength characteristics. Considerable increase of yield strength of sheets and plates can be reached by cold working but in this case, plasticity reduces. An effective way to improve strength of aluminium-magnesium alloys is their alloying with scandium. The alloying with scandium leads to modification of the structure of ingots (size reduction of cast grain) and formation of supersaturated solid solutions of scandium and aluminium during crystallization. During subsequent heatings (annealing of the ingots, heating for deformation) the solid solution disintegrates with the formation of disperse particles of Al3Sc type, that cause great strengthening of the alloy. High degree of dispersion and density of distribution in the matrix of secondary Al3Sc particles contribute to the considerable increase of the temperature of recrystallization of deformed intermediate products and to the formation of stable non-recrystallized structure. The alloying of alluminium-magnesium alloys with scandium increases their strength and operational characteristics, preserves their technological and corrosion properties, improves weldability. The alloys can be used within the temperature limits ­196-/+150 0C. The experimental structures of propellant tanks made of alluminium-magnesium alloys with scandium have been manufactured and tested. It was ascertained that the propellant tanks have higher margin of safety during loading with internal pressure and higher stability factor of the shrouds during loading with axial compression force which is caused by higher value

  11. Arianespace streamlines launch procedures

    Science.gov (United States)

    Lenorovitch, Jeffrey M.

    1992-06-01

    Ariane has entered a new operational phase in which launch procedures have been enhanced to reduce the length of launch campaigns, lower mission costs, and increase operational availability/flexibility of the three-stage vehicle. The V50 mission utilized the first vehicle from a 50-launcher production lot ordered by Arianespace, and was the initial flight with a stretched third stage that enhances Ariane's performance. New operational procedures were introduced gradually over more than a year, starting with the V42 launch in January 1991.

  12. Capillary acquisition devices for high-performance vehicles: Executive summary. [evaluation of cryogenic propellant management techniques using the centaur launch vehicle

    Science.gov (United States)

    Blatt, M. H.; Bradshaw, R. D.; Risberg, J. A.

    1980-01-01

    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined.

  13. The Communications Satellite - Vehicle for a New Kind of Reciprocal Interdependence in International Adult Education

    Science.gov (United States)

    Wedemeyer, Charles A.

    1971-01-01

    Adult education by means of communication satellites is stressed as a key to reciprocal interdependence. The author states that technological advances such as communications satellites can be used effectively to diffuse knowledge and offer options for choice in evolving societies. (RR)

  14. The 10th BeiDou 2 Navigation Satellite Flew into Space

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSLC in Sichuan Province.

  15. Environmental Assessment for the Advanced Extremely High Frequency Satellite Beddown and Deployment Program

    Science.gov (United States)

    2010-07-01

    Fish and Wildlife Service Advanced Extremely High Frequency Satellite Final Environmental Assessment v VIF Vehicle Integration Facility WMO World...Vehicle Mate Operations Upon arrival on CCAFS, the transporter would take the encapsulated payload to the Vehicle Integration Facility ( VIF ), which...is located just south of LC-41 (Figure 2-2). At the VIF , the encapsulated payload would be mated to the Atlas V Launch Vehicle (LV) using a mobile

  16. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    Science.gov (United States)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  17. Aerodynamic Characteristics Simulation Study of Air-launched Launch Vehicle in the Process of Rocket Separating from Plane%空射火箭箭机分离过程气动特性仿真

    Institute of Scientific and Technical Information of China (English)

    屈亮; 张登成; 张艳华; 胡孟权; 李达

    2013-01-01

    为研究内装式空中发射运载火箭在箭机分离过程中的气动特性尤其是大迎角情况下的气动变化规律,应用计算流体力学(CFD)软件中的k-w模型对火箭气动特性进行了仿真研究,得到火箭气动特性随马赫数和迎角的变化规律,同时对改进后的火箭模型进行气动特性分析.仿真结果表明:发现火箭尾部改进成收敛-扩张型喷管可使火箭下落初期有一个抬头力矩,有利于运载火箭初期快速调整姿态;当快到达预期点火姿态时,由于气动力作用点后移产生的与角速度方向相反的力矩,可迫使运载火箭稳定,从而更容易地捕捉到点火角度,并保证点火时的姿态稳定.%For studying the aerodynamic characteristics of rocket in the process of the rocket separating from the plane internally carried air-launched launch vehicle,especially when the rocket is at high angle of attack,CFD is applied to the simulation of rocket aerodynamic characteristics.Based on the improvement of rocket shape,the rocket aerodynamic characteristics with Mach number and angle of attack can be obtained.The analysis of the aerodynamic characteristics of the improved rocket model shows that the rocket tail improved into a convergent nozzle is of great benefit to the attitude adjustment.These analyses provide a theoretical foundation for the further research on rocket attitude stabilization and track design.

  18. 大型导弹车工作模态识别研究及应用%Research and application on the operational modal identification of large missile launch vehicle

    Institute of Scientific and Technical Information of China (English)

    赵威; 张永杰; 王喆; 韦冰峰

    2013-01-01

    To solve some problems of the operational modal identification of large missile launch vehicle, a model reflecting the main dynamic characteristics of large missile launch vehicle was made. Modal experiments were conducted and dynamic characteristics of the model were identified using the Least Square Complex Exponent (LSCE) method. Modal identification results were compared and analyzed to evaluate the LSCE method. It was applied to the operational modal identification of large missile launch vehicle. It is of significance to provide references for the dynamic characteristics analysis of large missile launch vehicle.%针对大型导弹车在运输状态下的动态特性识别问题,设计制作了能够反映大型导弹车主要动力学特征的简化模型,使用最小二乘复指数法(LSCE)对简化模型进行了动态特性识别,对识别结果进行了分析和评估,并将最小二乘复指数法应用到真实大型导弹车运输状态的模态识别中。可为大型导弹车运输状态下的动力学特性分析提供参考。

  19. Peer Review of Launch Environments

    Science.gov (United States)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  20. Buckling of a Longitudinally Jointed Curved Composite Panel Arc Segment for Next Generation of Composite Heavy Lift Launch Vehicles: Verification Testing Analysis

    Science.gov (United States)

    Farrokh, Babak; Segal, Kenneth N.; Akkerman, Michael; Glenn, Ronald L.; Rodini, Benjamin T.; Fan, Wei-Ming; Kellas, Sortiris; Pineda, Evan J.

    2014-01-01

    In this work, an all-bonded out-of-autoclave (OoA) curved longitudinal composite joint concept, intended for use in the next generation of composite heavy lift launch vehicles, was evaluated and verified through finite element (FE) analysis, fabrication, testing, and post-test inspection. The joint was used to connect two curved, segmented, honeycomb sandwich panels representative of a Space Launch System (SLS) fairing design. The overall size of the resultant panel was 1.37 m by 0.74 m (54 in by 29 in), of which the joint comprised a 10.2 cm (4 in) wide longitudinal strip at the center. NASTRAN and ABAQUS were used to perform linear and non-linear analyses of the buckling and strength performance of the jointed panel. Geometric non-uniformities (i.e., surface contour imperfections) were measured and incorporated into the FE model and analysis. In addition, a sensitivity study of the specimens end condition showed that bonding face-sheet doublers to the panel's end, coupled with some stress relief features at corner-edges, can significantly reduce the stress concentrations near the load application points. Ultimately, the jointed panel was subjected to a compressive load. Load application was interrupted at the onset of buckling (at 356 kN 80 kips). A post-test non-destructive evaluation (NDE) showed that, as designed, buckling occurred without introducing any damage into the panel or the joint. The jointed panel was further capable of tolerating an impact damage to the same buckling load with no evidence of damage propagation. The OoA cured all-composite joint shows promise as a low mass factory joint for segmented barrels.

  1. The designing of launch vehicles with liquid propulsion engines ensuring fire, explosion and environmental safety requirements of worked-off stages

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.; Sujmenbaev, B.; Baranov, D.

    2017-02-01

    The paper addresses the problem of the launch vehicles (LV) with main liquid propulsion engines launch technogenic impact in different environment areas. Therefore, as the study subjects were chosen the worked-off stages (WS) with unused propellant residues in tanks, the cosmodrome ecological monitoring system, the worked-off stage design and construction solutions development system and the unified system with the "WS+the cosmodrome ecological monitoring system+design and construction solutions development system" feedback allowing to form the optimal ways of the WS design and construction parameters variations for its fire and explosion hazard management in different areas of the environment. It is demonstrated that the fire hazard effects of propellant residues in WS tanks increase the ecosystem disorder level for the Vostochny cosmodrome impact area ecosystem. Applying the system analysis, the proposals on the selection of technologies, schematic and WS design and construction solutions aimed to the fire and explosion safety improvement during the LV worked-off stages with the main liquid propulsion engines operation were formulated. Among them are the following: firstly, the unused propellant residues in tanks convective gasification based on the hot gas (heat carrier) supply in WS tanks after main liquid propulsion engines cutoff is proposed as the basic technology; secondly, the obtained unused propellant residues in WS tanks gasification products (evaporated propellant residues + pressurizing agent + heat carrier) are used for WS stabilization and orientation while descending trajectory moving. The applying of the proposed technologies allows providing fire and explosion safety requirements of LV with main liquid propulsion engines practically.

  2. Engineering Test Satellite VI (ETS-VI)

    Science.gov (United States)

    Horii, M.; Funakawa, K.

    1991-01-01

    The Engineering Test Satellite-VI (ETS-VI) is being developed as the third Japanese three-axis stabilized engineering test satellite to establish the 2-ton geostationary operational satellite bus system and to demonstrate the high performance satellite communication technology for future operational satellites. The satellite is expected to be stationed at 154 deg east latitude. It will be launched from the Tanegashima Space Center in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the prelaunch compatibility test, data interface verification testing, and launch rehersals. The DSN primary support period is from launch through the final AEF plus 1 hour. Contingency support is from final AEF plus 1 hour until launch plus 1 month. The coverage will consist of all the 26-m antennas as prime and the 34-m antennas at Madrid and Canberra as backup. Maximum support will consist of two 8-hour tracks per station for a 7-day period, plus the contingency support, if required. Information is given in tabular form for DSN support, telemetry, command, and tracking support responsibility.

  3. COLD-SAT orbital experiment configured for Altas launch

    Science.gov (United States)

    Schuster, J. R.; Bennett, F. O.; Wachter, J. P.

    1990-01-01

    A study was done of the feasibility of conducting liquid hydrogen orbital storage, acquisition, and transfer experiments aboard a spacecraft launched by a commercial Atlas launch vehicle. Three hydrogen tanks are mated to a spacecraft bus that is similar to that used for three-axis-controlled satellites. The bus provides power, communications, and attitude control along with acceleration levels ranging from 10 exp -6 to 10 exp -4 g. At launch, all the liquid hydrogen is contained in the largest tank, which has an insulation system designed for both space operation and the short-term launch pad and ascent environment. This tank is much lighter and lower in cost than a vacuum-jacketed design, and is made possible by the experiment tanking options available due to the hydrogen-fueled Centaur upper stage of the Atlas I.

  4. Design and simulation of ex-range gliding wing of high altitude air-launched autonomous underwater vehicles based on SIMULINK

    Institute of Scientific and Technical Information of China (English)

    Pan Changjun; Guo Yingqing

    2013-01-01

    High altitude air-launched autonomous underwater vehicle (AL-AUV) is a new anti-submarine field,which is designed on the Lockheed Martin's high altitude anti-submarine warfare weapons concept (HAAWC) and conducts the basic aerodynamic feasibility in a series of wind tunnel trials.The AL-AUV is composed of a traditional torpedo-like AUV,an additional ex-range gliding wings unit and a descending parachute unit.In order to accurately and conveniently investigate the dynamic and static characteristic of high altitude AL-AUV,a simulation platform is established based on MATLAB/SIMULINK and an AUV 6DOF (Degree of Freedom) dynamic model.Executing the simulation platform for different wing's parameters and initial fixing angle,a set of AUV gliding data is generated.Analyzing the recorded simulation result,the velocity and pitch characteristics of AL-AUV deployed at varying wing areas and initial setting angle,the optimal wing area is selected for specific AUV model.Then the comparative simulations of AL-AUV with the selected wings are completed,which simulate the AUV gliding through idealized windless air environment and gliding with Dryden wind influence.The result indicates that the method of wing design and simulation with the simulation platform based on SIMULINK is accurately effective and suitable to be widely employed.

  5. Comparative Evaluation of the Two Methods of Determining the Unsteady Aerodynamic Characteristics of Cylindrical Patterns Separated Parts of Launch Vehicles for Space Purposes

    Directory of Open Access Journals (Sweden)

    A. I. Khlupnov

    2015-01-01

    Full Text Available Ecology and security clearance of cargo into Earth orbit space considered in unsteadyaerodynamics of the separated parts of of launch vehicles for space applications, which directly involves the definition of the shape and size of fields separated by falling parts, fragmentation issues and software problems aeroballistic reusable space systems (such as "Baikal" (Russian Federation, Falcon - Task 1 (USA and others..To resolve the methodological issues determining the value of the aerodynamic damping (and / or anti-damping separable parts as the object of study was chosen cylindrical model as a bluff body for which there are no systematic dependence of unsteady aerodynamic coefficients pitch moment of defining the parameters of the problem (the Mach number, angle of attack, Reynolds number, etc..The value of the derivative of pitching moment coefficient of the angular velocitydetermined numerically for the most intense stress of supersonic flight mode as the method of curved bodies, and direct numerical simulation of unsteady motion of the body in the air flow within the full Navier-Stokes equations.Comparison of these two approaches implemented as a tool for scientific research in theform of a software package FineOpen (products of the Company Numeca and programs for solving the Navier-Stokes equations (the author's version helped establish the limits of applicability of the curved bodies in the implementation of the marked change in the form of slots defining parameters of the problem.

  6. Uninhabited Combat Air Vehicles and Commercial Satellites: ’The Missing Link’

    Science.gov (United States)

    1998-04-01

    the 2nd Annual Space Policy and Architecture Symposium, Crystal City Marriot Hotel Arlington Va, 11 Feb 97, 2. 2 Ibid. 3 Ibid. 4 General Thomas S... Marriot Hotel Arlington Va, 11 Feb 97. 2. Long, Mark. The 1992/1993 World Satellite Almanac. Mark Long. Third Edition. Winter Beach Florida: MLE INC

  7. Space debris proximity analysis in powered and orbital phases during satelitte launch

    Science.gov (United States)

    Bandyopadhyay, P.; Sharma, R.; Adimurthy, V.

    The need to protect a launch vehicle in its ascent phase as well as the payload upon injection in particular and to prevent generation of debris in general through collision has led to many recent developments in the methodologies of SPAce DEbris PROximity (SPADEPRO) analysis, which is required for COLlision Avoidance or COLA studies. SPADEPRO refers to assessment of collision risk between catalogued resident space objects and launch vehicle or satellite of interest. The detection of close approaches to satellites/launch vehicles during the launch and early post-deployment phase of their lifetimes is an important subset of the overall problem. Potential collisions during this period can usually be avoided by adjusting the time of launch within a specified launch window. In Ref- 1 a series of filters through which candidate objects have to pass before determining its close approach distances from either analytical propagators like SGP4/SDP4 or any numerical prediction package, has been described. Unfortunately, this detection technique cannot strictly be applied since assumption of orbital motion is violated when powered launch trajectories are considered. Ref- 2 has proposed an algorithm for determining launch window blackout intervals based on the avoidance of close approaches for trajectories, which are fixed relative to an Earth Centered Earth Fixed (ECEF) reference frame. In this paper, authors approximate the powered launch trajectory into a series of orbital trajectories so that those trajectories envelope the powered launch trajectory in position-velocity phase space. Following this, filters described in Ref- 1 have been utilized to find out potential candidates from resident space objects. In Ref- 2, 3 &4 the blackout period has been observed when the closest approach distance is below a certain threshold. Instead, in this paper authors use collision probability, considering dispersions in respective trajectories of resident space objects and launch vehicle

  8. Communication Satellites 1958 to 1986

    Science.gov (United States)

    1984-10-01

    effort that is still advancing the state of the art . 2-1 3. EXPERIMENTAL SATELLITES Although the performance of communication satellites could be...bandwidths was much beyond the state of the art . The choice of the Delta launch vehicle provided basic design constraints such as size, weight, and... Griego M6/215 A. S. Gilcrest M4/958 T. J. Carr M5/699 C. H. Bredall M5/690 J. B. Bryson M5/669 R. L. Porter M5/692 T. M. Bedbury M5/669 R. D. Smith

  9. Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch

    Science.gov (United States)

    Schorr, Andrew A.; Creech, Stephen D.

    2016-01-01

    tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.

  10. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images

    Science.gov (United States)

    Fytsilis, Anastasios L.; Prokos, Anthony; Koutroumbas, Konstantinos D.; Michail, Dimitrios; Kontoes, Charalambos C.

    2016-09-01

    In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation.

  11. Satellite mobile data service for Canada

    Science.gov (United States)

    Egan, Glenn R.; Sward, David J.

    A commercial mobile satellite system which is to be constructed and operated in Canada is examined. This is done in two phases. First, mobile data services was introduced. Hub equipment and 3000 mobile data terminals were supplied. Over the satellite tests were performed. The mobile data service provides full two way digital messaging automatic vehicle location and fleet management services. The second phase is to construct, launch and make operational the MSAT satellite and associated network control facilities. The implementation is examined of the mobile data service in Canada, including the technical description. Marketing and applications are also examined.

  12. 亚轨道飞行器返回轨迹快速优化%The Rapid Optimization of Entry Trajectory for Suborbital Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    王文虎

    2012-01-01

    The rapid, accurate and robust trajectory generation methods can substantially improve safety and reliability while reducing cost. For entry trajectory characteristics of suborbital launch vehicle ( SLV ) , the concepts of "pseudo-control variables" and "final approach corridor (FAC) " are introduced to formulate optimal control problem. The Gauss pseudospectral method and forward Radau pseudospectral method are applied to rapid optimization of entry trajectory for SLV. The abilities of these two pseudospectral methods to handle complex trajectory optimization problems are compared. The results of this study show that the forward Radau pseudospectral method is not suited to deal with problems with control variable constraints, but the Gauss pseudospectral can rapidly and accurately generate SLV entry trajectory with various constraints. The feasibility and optimality are verified through the final results.%快速、准确、鲁棒的轨迹生成方法可以增加任务的安全性与可靠性,极大地降低成本.针对亚轨道飞行器返回段特点,引入“伪控制量”、“末端进场走廊”等概念,分别采用高斯伪谱法和向前拉道伪谱法进行了返回轨迹快速优化研究,比较了两种伪谱法在处理复杂问题时的能力.仿真结果表明,向前拉道伪谱法不适合处理含控制量约束的问题,而高斯伪谱法在满足各种约束条件下,能够快速准确地生成亚轨道飞行器返回轨迹,同时验证了结果的可行性与最优性.

  13. 运载火箭结构动力分析的一些新技术 第一部分:模态综合技术%Some New Techniques for Structural Dynamic Analysis of Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    邱吉宝; 王建民; 谭志勇

    2001-01-01

    The structural dynamic research of launch vehicle is summarized, and some new techniques for structural dynamic analysis are introduced. The synthetic techniques for substructure test model and substructure test modal and some synthetic methods for exact modal are proposed. These techniques have been used to analyse the dynamic characteristics of large strap-on launch vehicle.%总结了运载火箭结构动力学的研究,简要地介绍结构动力分析技术的一些新技术,提出子结构试验模型综合技术、子结构试验模态综合技术和几种精确模态综合法,这些技术已用于分析大型捆绑式火箭动力学特性。

  14. Space Ops 2002: Bringing Space Operations into the 21st Century. Track 3: Operations, Mission Planning and Control. 2nd Generation Reusable Launch Vehicle-Concepts for Flight Operations

    Science.gov (United States)

    Hagopian, Jeff

    2002-01-01

    With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions

  15. Persistant Launch Range Surveillance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch site infrastructure and space vehicle assets represent multi-billion dollar investments that must be protected. Additionally, personnel and equipment must be...

  16. Autonomous rendezvous and proximate motion of satellites - A covariance analysis

    Science.gov (United States)

    Mackison, Donald L.; Morenthaler, George W.

    1992-08-01

    The construction of large (10 exp 6 kg) spacecraft in orbit will, in order to meet the requirements of interplanetary launch windows and restrictions of launch facilities require the launch of several 100,000-kg payloads using the Heavy Lift Launch Vehicle (HLLV), and their subsequent in-orbit assembly into a completed spacecraft. This assembly will require that the components rendezvous and dock within a reasonable time, taking into consideration launch window restrictions and the operating time limits on the component spacecraft. This will require that the rendezvous and docking operations be accomplished autonomously, without ground control. The trajectory and attitude control of a chase satellite to rendezvous with a target satellite are modeled using the Euler-Hill equations of relative orbital motion, and a linearized set of relative attitude parameters. The effect of uncertainties in the orbit dynamics and sensors, and the attitude dynamics and sensors are modeled using a linearized covariance analysis.

  17. Magnetic Launch Assist Demonstration Test

    Science.gov (United States)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  18. Atlas V Launch Incorporated NASA Glenn Thermal Barrier

    Science.gov (United States)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    In the Spring of 2002, Aerojet experienced a major failure during a qualification test of the solid rocket motor that they were developing for the Atlas V Enhanced Expendable Launch Vehicle. In that test, hot combustion gas reached the O-rings in the nozzle-to-case joint and caused a structural failure that resulted in loss of the nozzle and aft dome sections of the motor. To improve the design of this joint, Aerojet decided to incorporate three braided carbon-fiber thermal barriers developed at the NASA Glenn Research Center. The thermal barriers were used to block the searing-hot 5500 F pressurized gases from reaching the temperature-sensitive O-rings that seal the joint. Glenn originally developed the thermal barriers for the nozzle joints of the space shuttle solid rocket motors, and Aerojet decided to use them on the basis of the results of several successful ground tests of the thermal barriers in the shuttle rockets. Aerojet undertook an aggressive schedule to redesign the rocket nozzle-to-case joint with the thermal barriers and to qualify it in time for a launch planned for the middle of 2003. They performed two successful qualification tests (Oct. and Dec. 2002) in which the Glenn thermal barriers effectively protected the O-rings. These qualification tests saved hundreds of thousands of dollars in development costs and put the Lockheed-Martin/Aerojet team back on schedule. On July 17, 2003, the first flight of an Atlas V boosted with solid rocket motors successfully launched a commercial satellite into orbit from Cape Canaveral Air Force Station. Aero-jet's two 67-ft solid rocket boosters performed flawlessly, with each providing thrust in excess of 250,000 lbf. Both motors incorporated three Glenn-developed thermal barriers in their nozzle-to-case joints. The Cablevision satellite launched on this mission will be used to provide direct-to-home satellite television programming for the U.S. market starting in late 2003. The Atlas V is a product of the

  19. RLV自主着陆航迹设计与控制研究%Autolanding Trajectory Design and Control for Reusable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    罗欢; 侯明善; 刘文风; 唐成师

    2012-01-01

    研究了重复使用运载器(RLV)自主着陆陡下滑捕获-陡下滑-圆弧拉起-指数拉平模式航迹生成算法设计;为解决不同着陆段航迹控制指令跳变问题,提出了航迹指令自适应平滑算法;以捕获点法向过载跳变最小为指标研究了三次多项式陡下滑捕获点的优化方法;给出了完整的在线航迹生成算法;基于法向过载的开环加闭环复合控制指令跟踪方案,使用simulink进行数值仿真,结果显示文章提出的航迹生成算法可以自动生成有效航迹,控制方法可以保证航迹平滑过渡且对初始扰动具有良好的鲁棒性,从而验证了方法的可行性和有效性.%Autolanding trajectory generation algorithm for reusable launch vehicle (RLV) is investigated, the trajectory includes four parts: steep glideslope capture, steep glideslope. Circular pull-up and exponential flare. The trajectory command adaptive smoothing algorithm is proposed to reduce the command jumps between different trajectory sections. The optimization method based minimum normal acceleration jumps for the capture point in steep glideslope and complete on-line trajectory generation algorithm are presented. Numerical simulations were performed using an open and closed-loop composite control scheme, the results show trajectory generation algorithm can generate effective trajectory autonomy, control method can guarantee a smooth transition and robustness against initial disturbance. It verifies the feasibility and effectiveness of this method.

  20. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    Science.gov (United States)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and

  1. A figure of merit for competing communications satellite designs

    Science.gov (United States)

    Lovell, R. R.; Fordyce, S. W.

    1983-01-01

    Trends in launch schedules, weights, power, and space segment costs per transponder year for Intelsats and North American domsats (domestic communications satellites) are discussed. The Intelsat system currently services 25,000 point to point telephone links at any one moment, and a $3 billion order has been placed for Intelsat VIs, which feature 36,000 telephone circuits each. The Intelsat VI spacecraft will weigh 1670 kg in orbit, a continuance of the trend to heavier satellites, while the domsats will stay at 650 kg due to launch vehicle limitations. Direct television broadcast satellites are being designed for receive only (R/O) earth stations, with each satellite capable of servicing 50,000 individual ground stations. Competition is growing for C and Ku band satellite transponders for DBS, with costs $350,000 each. No standardized design has yet emerged.

  2. Vibration and acoustic testing of TOPEX/Poseidon satellite

    Science.gov (United States)

    Boatman, Dave; Scharton, Terry; Hershfeld, Donald; Larkin, Paul

    1992-01-01

    The satellite was subjected to a 1.5G swept sine vibration test and a 146 dB overall level acoustic test, in accordance with Ariane launch vehicle requirements, at the NASA Goddard Space Flight Center. Extensive pretest analysis of the sine test was conducted to plan the input notching and to justify vibration testing the satellite only in the longitudinal axis. A unique measurement system was utilized to determine the six components of interface force between the shaker and the satellite in the sine vibration test. The satellite was heavily instrumented in both the sine vibration and acoustic test in order to insure that the launch loads were enveloped with appropriate margin and that satellite responses did not exceed the compatibilities of the structure and equipment. The test specification, objectives, instrumentation, and test results are described herein.

  3. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas.

    Science.gov (United States)

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-08-28

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N₀) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N₀. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N₀. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.

  4. 航行体排气水下发射流体动力数值仿真研究%Numerical Simulation on the Flow Dynamics of Underwater Vehicle Launching with Exhaust

    Institute of Scientific and Technical Information of China (English)

    鲍文春; 权晓波; 魏海鹏

    2014-01-01

    Aiming at issues concerning the flow dynamics of underwater vehicle launching with exhaust, the numerical simulation on the flow field of underwater launching process was established. Combining VOF multiphase flow model, the standard turbulence model,and the technique of dynamic mesh, characteristics of the distribution of pressure on the vehicle's surface and the forming process of exhausting bubble were obtained and the numerical result agreed well with those in experiments. The influence of depth of launch and velocity outside tube on the forming process of bubble is numerically studied and some conclusions are achieved which have important reference value to engineering application.%针对航行体排气水下发射流体动力问题,采用VOF(Volume of Fluid)多相流模型、标准湍流模型,结合动网格技术,进行发射过程流场数值仿真,获得了航行体表面压力分布及气泡的发展过程,计算结果与试验结果吻合较好;利用形成的数值方法,研究了发射深度、出筒速度对排气气泡发展过程的影响,获得了对工程设计具有参考价值的结论。

  5. Numerical Study on Tail Flow Field of Underwater Vehicle in Vertical Launching%水下航行体垂直发射尾部流场数值计算

    Institute of Scientific and Technical Information of China (English)

    燕国军; 阎君; 权晓波; 魏海鹏

    2012-01-01

    Numerical simulation of gas-liquid flow field of underwater vehicle in vertical launching process is conducted by solving unsteady RANS equation with Mixture model and dynamic mesh technique. The influence of vehicle tail shape and initial pressure of tail cavity on vehicle tail flow field and axial velocity was studied. The simulation results agree with experimental results well, and show that vehicle tail shape determines the evolutionary process of tail cavity, thereby influences vehicle tail pressure and axial velocity; the bigger initial pressure of tail cavity is, the larger maximum value of vehicle axial velocity after tube-exiting is and the longer oscillation period of vehicle tail pressure is.%采用Mixture多相流模型和动网格技术求解非定常RANS方程,对航行体水下垂直发射过程进行数值模拟,研究了尾部形状和尾空泡初始压力对航行体尾部流场、轴向速度等的影响.计算结果与试验结果吻合较好,结果表明尾部形状决定了航行体尾空泡的生成演化过程,进而影响航行体尾部压力和轴向运动速度;尾空泡初始压力越大,出筒后航行体轴向速度最大值越大,尾部压力振荡周期越长.

  6. Tactical Satellite 3

    Science.gov (United States)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  7. L/E coupling numerical simulation of pressure field near launch canister outlet for underwater vehicle vertical launch%水下航行体垂直发射筒口压力场 L/E耦合数值模拟

    Institute of Scientific and Technical Information of China (English)

    张晓乐; 卢丙举; 胡仁海; 杨兴林

    2016-01-01

    The fluid pressure field near canister outlet for underwater-launched vehicle vertical launch was simulated, using a 3D symmetric model based on the coupling of Lagrange structure mesh and Euler fluid mesh. The water horizontal relative motion and the process of vehicle motion in the launch canister were considered in the model. The characteristics of bubble pulsation were achieved through the simulation. The shape of the two primary pressure waves are approximately identical between simulation results and test results. It shows that, simulation model which consider the lateral flow can be more accurate than the model without lateral flow. The research method and its conclusions are good kind of reference to analysis of pressure field near launch canister.%采用 Lagrange 结构网格和 Euler 流场网格(L/E)耦合的数值仿真方法,对潜射航行器出筒后筒口压力场进行三维数值仿真分析。计算模型考虑海水的横向来流和航行体出筒过程对筒口气泡脉动的影响。仿真计算获得了筒口压力场气泡脉动主要特征,试验与计算的2个主要压力波峰曲线形状基本一致。通过对比计算表明,考虑横向流作用可以有效减少筒口压力场计算偏差。本文的计算方法及结论可为发射筒口压力场分析提供有益指导。

  8. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas

    Directory of Open Access Journals (Sweden)

    Hang Ruan

    2015-08-01

    Full Text Available For vehicle positioning with Global Navigation Satellite System (GNSS in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0 varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.

  9. Launch Control Network Engineer

    Science.gov (United States)

    Medeiros, Samantha

    2017-01-01

    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  10. Magnetic Launch Assist Experimental Track

    Science.gov (United States)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  11. Magnetic Launch Assist

    Science.gov (United States)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  12. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  13. On 23 March ESA’s third Automated Transfer Vehicle (ATV), named in honour of Amaldi, was launched on board an Ariane rocket.

    CERN Multimedia

    CERN Video Productions

    2012-01-01

    Live webcast from CERN on the occasion of the launch of a "Space Ferry", named after Edoardo Amaldi, by the European Space Agency (ESA). Amaldi was CERN's first Secretary General and founding father, and a visionary pioneer for ESA. With the participation of Ugo Amaldi, CERN physicist and son of Edoardo Amaldi, Carlo Rubbia, Nobel Laureate in Physics and Former Director General of CERN and Arturo Russo, historian and author with John Kriege of CERN and ESA's History

  14. CubeSat Launch Initiative

    Science.gov (United States)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  15. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  16. The K-1 reusable aerospace vehicle: managing to achieve low cost.

    Science.gov (United States)

    Mueller (HM), George E.; Lepore, Debra Facktor

    2000-03-01

    Kistler Aerospace Corporation is developing the world's first privately funded, fully reusable aerospace vehicle, the K-1. This vehicle represents a new implementation of proven technologies, designed by an elite, experienced team of engineers and managers and implemented by the best manufacturing capability in the United States. Kistler Aerospace expects to begin commercial operations of the K-1 in 2000. Market researchers predict that during the next decade telecommunications satellite ventures will require launch services for over 1,400 payloads to LEO. This prediction greatly exceeds the current available industry capacity. The K-1 was designed primarily to meet this anticipated growth in demand. Significant progress has been made in constructing the K-1 vehicle fleet. The fully reusable K-1 vehicle is designed to lower the cost of access to space, increase launch reliability, and reduce lead-time-to-launch requirements. The K-1 will offer significant cost benefits and aircraft type reliability based on a proven flight record.

  17. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  18. Environmental Assessment for the Operation and Launch of the Falcon 1 and Falcon 9 Space Vehicles at Cape Canaveral Air Force Station Florida

    Science.gov (United States)

    2007-11-01

    Level MEK Methyl Ethyl Ketone MGD Million Gallons per Day µg/m 3 Micrograms per Cubic Meter MHz Mega-Hertz mm Millimeters MMH...Facility Investigation RHU Radioisotope Heater Units RMP Risk Management Plan ROI Regions of Influence RP-1 Rocket Propellant 1 (standard kerosene ...vehicles use the liquid propellants liquid oxygen (LOX) and RP-1, a type of kerosene commonly used as a rocket propellant (may be cited as kerosene

  19. Launch processing system concept to reality

    Science.gov (United States)

    Bailey, W. W.

    1985-01-01

    The Launch Processing System represents Kennedy Space Center's role in providing a major integrated hardware and software system for the test, checkout and launch of a new space vehicle. Past programs considered the active flight vehicle to ground interfaces as part of the flight systems and therefore the related ground system was provided by the Development Center. The major steps taken to transform the Launch Processing System from a concept to reality with the successful launches of the Shuttle Programs Space Transportation System are addressed.

  20. 77 FR 50956 - Exclusion of Tethered Launches From Licensing Requirements

    Science.gov (United States)

    2012-08-23

    ... strength properties, (2) minimum factor of safety, (3) launch vehicle constraint, (4) no damage displayed... activities, while limiting the vehicle to low altitudes and thereby reducing the risk to the public. When the... thermal damage due to a launch vehicle's exhaust. This requirement would mitigate the risk of a tether...

  1. 箭载导航系统故障重启的参数恢复算法%Parameters Restoration Algorithm of Navigation for Launch Vehicle in Fault Case

    Institute of Scientific and Technical Information of China (English)

    朱海微; 郁丰; 熊智

    2015-01-01

    The navigation recovery algorithm is designed to ensure the normal operation of navigation sys-tem when a short time for fault occurs to the onboard computer of launch vehicle .For the onboard system of launch vehicle ,the rocket can be regarded to fly as reserved during the short time of fault ,so the priori ballistic data and navigation data are similar within error range ,and the trace data after fault can be found by seeking its segment data .Finally,we can get the navigation data when the system is restarted by using compensation method .%针对箭载计算机可能出现的断电等异常情况,需要设计故障后的导航参数恢复算法以保证导航系统正常运行。对于箭载系统,在故障的短时间内可认为火箭以预定航迹飞行,导航值与航迹值在误差范围内保持一致,因此可以利用先验的弹道数据,选用插值法将其细分,找到故障时刻对应的航迹值,并通过查找故障时间得出故障结束后的航迹值,通过补偿算法得到故障恢复时刻的导航值,完成重定位过程。这种方法误差较小,重定位精度较高。

  2. ESTABLISHMENT OF SATELLITE FORMATION WITH INITIAL UNCERTAINTY BY CONTROL LYAPUNOV FUNCTION APPROACH

    Directory of Open Access Journals (Sweden)

    M. Navabi

    2012-03-01

    Full Text Available In recent years, dynamics and control of satellite formation flying have been active areas of research. From the mission planning perspective, three main areas namely formation establishment, maintenance and reconfiguration have been discussed. In this paper, a study of formation establishment under initial uncertainty is presented. In this regard, dynamics of low Earth orbit satellite formation is discussed. Control Lyapunov function approach is adopted to bring a deputy satellite, with perturbed initial conditions into formation with a chief satellite. In order to take account of the initial orbit insertion error, uncertainty in initial conditions of the deputy satellite is considered. For a case study, a relatively small formation is adopted, with air-launched Pegasus as the launch vehicle. For several initial conditions, control function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.

  3. Launching facility constraints on the Space Exploration Initiative

    Science.gov (United States)

    Chan, Kadett; Montoya, Alex J.

    A quantitative tool is developed for envisioning, evaluating, and optimizing the ground and launch operations in order to meet Space Exploration Initiative (SEI) objectives. These objectives include the establishment and operation of the Space Station Freedom, lunar missions, and Mars missions. A Simulation of Logistics model (SIMLOG) is developed to assess which facilities and operations limit the maximum launch rate. This model produces the maximum achievable launch rate for each individual vehicle. The maximum launch rates are then input data for the Launch Vehicle Selection Model (LVSM), a linear integer programming model which selects the optimal number of each launch vehicle from a number of existing and proposed vehicles in order to minimize the overall multiyear launching cost of the SEI program. The simulation indicates that the SEI LEO requirement of 2.1 million lbs can be met with a mixed fleet consisting of current vehicles, a Shuttle C, and the proposed HLLV. Other results are also reported.

  4. In-vehicle navigation system and map database. [Position on map determined by satellite and then use of detailed map]. Car navigation to chizu joho

    Energy Technology Data Exchange (ETDEWEB)

    Mito, K. (Sumitomo Electric Industries, Ltd., Osaka (Japan))

    1991-09-10

    Firstly, an indication is made that most functions of an in-vehicle navigation system relate to the use of a road map data, and on the conditions the map database therefor should provide depending on the intended usage. Secondly, an explanation is given on the self-contained navigation system and a combination of the self-contained navigation system and wireless navigation system to detect a position of the vehicle. In regaeds to the former, a method is introduced that the present location is estimated by means of adding the displacement vector per unit time derived from azimuth and distance sensors, and the error therefrom is cancelled by comparing it with the road map data. In regards to the latter, the wireless navigation aided by an orbital satellite and the proximity wireless navigation are described. Thirdly, functions to indicate the vehicle location on a map, retrieve and set the destination, and retrieve and indicate the facility guidance information are explained. Fourthly, a description is given on an automotive traffic information communicating system which indicates traffic information on a map and guide a recommended course to the destination. 10 refs., 7 figs., 2 tabs.

  5. NASA's Space Launch System: Moving Toward the Launch Pad

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  6. Mobile Launch Platform Vehicle Assembly Building Area (SWMU 056) Hot Spot 3 Bioremediation Interim Measures Work Plan, Kennedy Space Center, Florida

    Science.gov (United States)

    Whitney L. Morrison; Daprato, Rebecca C.

    2016-01-01

    This Interim Measures Work Plan (IMWP) presents an approach and design for the remediation of chlorinated volatile organic compound (CVOC) groundwater impacts using bioremediation (biostimulation and bioaugmentation) in Hot Spot 3, which is defined by the area where CVOC (trichloroethene [TCE], cis-1,2-dichloroethene [cDCE], and vinyl chloride [VC]) concentrations are greater than 10 times their respective Florida Department of Environmental Protection (FDEP) Natural Attenuation Default Concentration (NADC) [10xNADC] near the western Mobile Launch Platform (MLP) structure. The IM treatment area is the Hot Spot 3 area, which is approximately 0.07 acres and extends from approximately 6 to 22 and 41 to 55 feet below land surface (ft BLS). Within Hot Spot 3, a source zone (SZ; area with TCE concentrations greater than 1% solubility [11,000 micrograms per liter (micrograms/L)]) was delineated and is approximately 0.02 acres and extends from approximately 6 to 16 and 41 to 50 ft BLS.

  7. Asiasat launch aboard Long March 3 from Xichang, China

    Science.gov (United States)

    Maack, Lou

    The history of the flight of Asiasat on April 7, 1990 aboard the Long March 3 launch vehicle from Xichang, China, is briefly reviewed. The discussion focuses on the spacecraft, the launch vehicle, and the on-site launch campaign. The discussion of the launch campaign includes the facilities at Xichang, the Hughes on-site organization, technology transfer prevention, transportation and logistics, and telecommunications.

  8. Passive and active launch vibration studies in the LVIS program

    Science.gov (United States)

    Edberg, Donald L.; Bartos, Bruce; Goodding, James C.; Wilke, Paul S.; Davis, Torey

    1998-06-01

    A U.S. Air Force-sponsored team consisting of Boeing (formerly McDonnell Douglas), Honeywell Satellite Systems, and CSA Engineering has developed technology to reduce the vibration felt by an isolated payload during launch. Spacecraft designers indicate that a launch vibration isolation system (LVIS) could provide significant cost benefits in payload design, testing, launch, and lifetime. This paper contains developments occurring since those reported previously. Simulations, which included models of a 6,500 pound spacecraft, an isolating payload attach fitting (PAF) to replace an existing PAF, and the Boeing Delta II launch vehicle, were used to generate PAF performance requirements for the desired levels of attenuation. Hardware was designed to meet the requirements. The isolating PAF concept replaces portions of a conventional metallic fitting with hydraulic- pneumatic struts featuring a unique hydraulic cross-link feature that stiffens under rotation to meet rocking restrictions. The pneumatics provide low-stiffness longitudinal support. Two demonstration isolating PAF struts were designed, fabricated and tested to determine their stiffness and damping characteristics and to verify the performance of the hydraulic crosslink concept. Measurements matched analytical predictions closely. An active closed-loop control system was simulated to assess its potential isolation performance. A factor of 100 performance increase over the passive case was achieved with minor weight addition and minimal power consumption.

  9. Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  10. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    Science.gov (United States)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    One of the main challenges facing current and future environmental satellite systems (e.g, the future National Polar Orbiting Environmental Satellite System (NPOESS)) is reaching and entraining the diverse user community via communication of how these systems address their particular needs. A necessary element to meeting this challenge is effective data visualization: facilitating the display, animation and layering of multiple satellite imaging and sounding sensors (providing complementary information) in a user-friendly and intuitive fashion. In light of the fact that these data are rapidly making their way into the classroom owing to efficient and timely data archival systems and dissemination over the Internet, there is a golden opportunity to leverage existing technology to introduce environmental science to wide spectrum of users. Google Earth's simplified interface and underlying markup language enables access to detailed global geographic information, and contains features which are both desirable and advantageous for geo-referencing and combining a wide range of environmental satellite data types. Since these satellite data are available with a variety of horizontal spatial resolutions (tens of km down to hundreds of meters), the imagery can be sub-setted (tiled) at a very small size. This allows low-bandwidth users to efficiently view and animate a sequence of imagery while zoomed out from the surface, whereas high-bandwidth users can efficiently zoom into the finest image resolution when viewing fine-scale phenomena such as fires, volcanic activity, as well as the details of meteorological phenomena such as hurricanes, rainfall, lightning, winds, etc. Dynamically updated network links allow for near real-time updates such that these data can be integrated with other Earth-hosted applications and exploited not only in the teaching environment, but also for operational users in the government and private industry sectors. To conceptualize how environmental

  11. NASA's Space Launch System: Momentum Builds Towards First Launch

    Science.gov (United States)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  12. Effectiveness of Loan Guarantees versus Tax Incentives for Space Launch Ventures

    Science.gov (United States)

    Scottoline, S.; Coleman, R.

    1999-01-01

    Over the course of the past few years, several new and innovative fully or partiailly reusable launch vehicle designs have been initiated with the objective of reducing the cost of space transportation. These new designs are in various stages hardware development for technology and system demonstrators. The larger vehicles include the Lockheed Martin X-33 technology demonstrator for VentureStar and the Space Access launcher. The smaller launcher ventures include Kelly Space and Technology and Rotary Rocket Company. A common denominator between the new large and small commercial launch systems is the ability to obtain project financing and at an affordable cost. Both are having or will have great difficulty in obtaining financing in the capital markets because of the dollar amounts and the risk involved. The large established companies are pursuing multi-billion dollar developments which are a major challenge to finance because of the size and risk of the projects. The smaller start-up companies require less capital for their smaller systems, however, their lack of corporate financial muscle and launch vehicle track record results in a major challenge to obtain financing also because of high risk. On Wall Street, new launch system financing is a question of market, technical, organizational, legal/regulatory and financial risk. The current limit of acceptable financial risk for Space businesses on Wall Street are the telecommunications and broadcast satellite projects, of which many in number are projected for the future. Tbc recent problems with Iridium market and financial performance are casting a long shadow over new satellite project financing, making it increasingly difficult for the new satellite projects to obtain needed financing.

  13. Small Satellites and the DARPA/Air Force Falcon Program

    Science.gov (United States)

    Weeks, David J.; Walker, Steven H.; Sackheim, Robert L.

    2004-01-01

    The FALCON ((Force Application and Launch from CONUS) program is a technology demonstration effort with three major components: a Small Launch Vehicle (SLV), a Common Aero Vehicle (CAV), and a Hypersonic Cruise Vehicle (HCV). Sponsored by DARPA and executed jointly by the United States Air Force and DARPA with NASA participation, the objectives are to develop and demonstrate technologies that will enable both near-term and far-term capability to execute time-critical, global reach missions. The focus of this paper is on the SLV as it relates to small satellites and the implications of lower cost to orbit for small satellites. The target recurring cost for placing 1000 pounds payloads into a circular reference orbit of 28.5 degrees at 100 nautical miles is $5,000,000 per launch. This includes range costs but not the payload or payload integration costs. In addition to the nominal 1000 pounds to LEO, FALCON is seeking delivery of a range of orbital payloads from 220 pounds to 2200 pounds to the reference orbit. Once placed on alert status, the SLV must be capable of launch within 24 hours.

  14. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    Science.gov (United States)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  15. Satellite power system. Concept development and evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The Reference System description emphasizes technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies. Supporting information has been developed according to a guideline of implementing two 5 GW SPS systems per year for 30 years beginning with an initial operational data of 2000 and with SPS's being added at the rate of two per year (10 GW/year) until 2030. The Reference System concept, which features gallium--aluminum--arsenide (GaAlAs) and silicon solar cell options, is described in detail. The concept utilizes a planar solar array (about 55 km/sup 2/) built on a graphite fiber reinforced thermoplastic structure. The silicon array uses a concentration ratio of one (no concentration), whereas the GaAlAs array uses a concentration ratio of two. A one-kilometer diameter phased array microwave antenna is mounted on one end. The antenna uses klystrons as power amplifiers with slotted waveguides as radiating elements. The satellite is constructed in geosynchronous orbit in a six-month period. The ground receiving stations (rectenna) are completed during the same time period. The other two major components of an SPS program are (1) the construction bases in space and launch and mission control bases on earth and (2) fleets of various transportation vehicles that support the construction and maintenance operations of the satellites. These transportation vehicles include Heavy Lift Launch Vehicles (HLLV), Personnel Launch Vehicles (PLV), Cargo Orbit Transfer Vehicles (COTV), and Personnel Orbit Transfer Vehicles (POTV). The earth launch site chosen is the Kennedy Space Center, pending further study.

  16. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    Science.gov (United States)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  17. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  18. Tabletop Experimental Track for Magnetic Launch Assist

    Science.gov (United States)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  19. Design of control system rapid prototyping for suborbital reusable launch vehicle%亚轨道飞行器控制系统快速原型设计

    Institute of Scientific and Technical Information of China (English)

    毛瑞; 李新国; 泮斌峰

    2014-01-01

    In order to achieve the fast, cheap, efficient and other design requirements for flight vehicle control system, the design of suborbital spacecraft control system based on rapid control prototyping technology is proposed, and the design of hardware system, software system and real-time simulation is done in this paper. The system consists of the overall control computer, two real-time numerical simulation computers, VMIC, hardware interfaces, physical devices and other components. The six degrees of freedom mathematical model of SRLV re-entry process were built. The control distribution and classical control methods for attitude control is designed, too. RtFly platform is selected to the distributed rapid prototyping simulation. Simulation results show that the control parameter adjustment convenient, real-time system is good, rapid control prototyping technology can be effectively applied to aircraft control system design. The result of Simulation shows that the control parameters are easy to adjust and optimize, and the system has good real-time performance. Rapid control prototyping technology could be effectively applied to aircraft control system design.%为了实现对飞行器控制系统的快速、廉价、高效等设计需求,提出了一种基于快速控制原型技术的亚轨道飞行器控制系统设计方案,并完成系统的软硬件设计与实时仿真。该系统由总体控制计算机、两台实时数值仿真机、VMIC、硬件接口以及物理设备等组成,建立了亚轨道飞行器再入阶段六自由度运动模型,设计控制分配并采用经典控制方法进行姿态控制,通过RtFly平台进行分布式快速原型仿真。仿真结果表明,控制参数调节方便,系统实时性良好,快速控制原型技术可以有效应用于飞行器控制系统设计。

  20. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. Experimental Evaluation of the Effect of Angle-of-attack on the External Aerodynamics and Mass Capture of a Symmetric Three-engine Air-breathing Launch Vehicle Configuration at Supersonic Speeds

    Science.gov (United States)

    Kim, Hyun D.; Frate, Franco C.

    2001-01-01

    A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.

  2. 无人机箱式发射助推火箭燃气流场数值模拟%Numerical Simulation of Jet Flow Field of Booster Rocket in the Unmanned Vehicle Container Launching Process

    Institute of Scientific and Technical Information of China (English)

    卞海忠; 李志刚; 郭丽芳

    2011-01-01

    对计算流体力学中的域动分层法动网格更新技术进行了阐述,并且应用该方法对无人机发射时的燃气流场进行数值模拟,得到全流场参数在三维空间上的时间分布.无人机每个时刻的运动速度事先根据推力曲线计算好,随着无人机的运动,根据相应变化的运动边界更新网格,并且计算新网格下的流场分布,相应的流场边界条件也会发生变化.通过分析计算得到的箱上各监测点的压力分布曲线,了解冲击波在箱体表面传播的过程和产生的影响,结果可以为工程应用提供有力的参考.%A new dynamic mesh update method which is zone moving and dynamic layering method in the computational fluid dynamics was presented.The method was used for numerical simulation of the unmanned vehicle launching,and three-dimensional jet flow field distribution was obtained.The velocity-time curve of the unmanned vehicle was previously calculated.New jet flow field distribution was computed using new updated mesh and the boundary conditions of the flow field changed by the motion of the plane.The distribution curves of the monitoring points are obtained and it provides a powerful reference for engineering.

  3. CGWIC S gned The Contract for Launching APStar 6B

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2005-01-01

    Following the successful launch of APStar 6 on April 12, 2005,China Great Wall Industry Corporation (CGWIC), as the general contractor, will provide APStar 6B satellite and launch service with the LM-3B rocket for APT Satellite Holdings Ltd., Hong Kong (APT)

  4. Magnetic Launch Assist System Demonstration Test

    Science.gov (United States)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  6. Artificial Satellites and How to Observe Them

    CERN Document Server

    Schmude, Jr , Richard

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what it is they are observing. This is the basis for the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Every amateur astronomer sees "stars" that aren't natural objects steadily slide across the background of the sky. Artificial satellites can be seen on any night, and some are as bright as the planets. But can you identify which satellite or spent launch vehicle casing you are seeing? Do you know how to image it? Artificial Satellites and How to Observe Them describes all of the different satellites that can be observed, including communication, scientific, spy satellites, and of course, the International Space Station. Richard Schmude describes how to recognize them and even how to predict their orbits. The book tells how to observe artificial satellites with the unaided eye, binoculars and with telesc...

  7. NASA's Space Launch System: Momentum Builds Toward First Launch

    Science.gov (United States)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  8. Motivation for Air-Launch: Past, Present, and Future

    Science.gov (United States)

    Kelly, John W.; Rogers, Charles E.; Brierly, Gregory T.; Martin, J Campbell; Murphy, Marshall G.

    2017-01-01

    Air-launch is defined as two or more air-vehicles joined and working together, that eventually separate in flight, and that have a combined performance greater than the sum of the individual parts. The use of the air-launch concept has taken many forms across civil, commercial, and military contexts throughout the history of aviation. Air-launch techniques have been applied for entertainment, movement of materiel and personnel, efficient execution of aeronautical research, increasing aircraft range, and enabling flexible and efficient launch of space vehicles. For each air-launch application identified in the paper, the motivation for that application is discussed.

  9. Secondary Payload Opportunities on NASA's Space Launch System (SLS) Enable Science and Deep Space Exploration

    Science.gov (United States)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload

  10. Analysis and optimization of an air-launch-to-orbit separation

    Science.gov (United States)

    Sohier, Henri; Piet-Lahanier, Helene; Farges, Jean-Loup

    2015-03-01

    In an air-launch-to-orbit, a space rocket is launched from a carrier aircraft. Air-launch-to-orbit appears as particularly interesting for nano- and microsatellites which are generally launched as secondary loads, that is, placed in the conventional launch vehicle's payload section with a larger primary satellite. In an air-launch-to-orbit, a small satellite can be launched alone as a primary load, away from a carrier aircraft, aboard a smaller rocket vehicle, and in doing so, benefit from more flexible dates and trajectories. One of the most important phases of the mission is the separation between the carrier aircraft and the space rocket. A flight simulator including a large number of factors of uncertainties has been especially developed to study the separation, and a safety criteria has been defined with respect to store collision avoidance. It is used for a sensitivity analysis and an optimization of the possible trajectories. The sensitivity analysis first requires a screening method to select unessential factors that can be held constant. The Morris method is amongst the most popular screening methods. It requires limited calculations, but may result in keeping constant an essential factor which would greatly affect the results of the sensitivity analysis. This paper shows that this risk can be important in spite of recent improvements of the Morris method. It presents an adaptation of this method which divides this risk by a factor of ten on a standard test function. It is based on the maximum of the elementary effects instead of their average. The method focuses the calculations on the factors with a low impact, checking the convergence of this set of factors, and uses two different factor variations instead of one. This adaptation of the Morris method is used to limit the amount of the air-launch-to-orbit simulations and simplify the uncertainty domain for analysis by Sobol's method. The aerodynamic perturbations due to wind, the parameters defining the

  11. Radio imaging of launch vehicles and payloads

    Science.gov (United States)

    Rowe, Harrison E.

    1988-01-01

    The detection and tracing of rockets and payloads by microwave or millimeter-wave passive radio temperature measurements is analytically studied using radio astronomical techniques. Radio image reconstruction is performed by spatial filtering of multiple, simultaneous, equally-spaced radio brightness measurements. Both Wiener filtering for complex images and matched filtering for separated, point targets are considered. Output SNR is found to improve as receiver integration time increases, but blurring due to image motion places a limit on receiver integration time with fixed spatial filters. Little difference is found between an antenna with tapered illumination and low sidelobes and a maximum gain antenna with high sidelobes for interpolation. Several numerical examples are presented in order to give a preliminary indication of the magnitudes of system parameters.

  12. Integrated modular propulsion for launch vehicles

    Science.gov (United States)

    Knuth, William; Crawford, Roger; Litchford, Ron

    1993-01-01

    The paper proposes a modular approach to rocket propulsion which offers a versatile method for realizing the goals of low cost, safety, reliability, and ease of operation. It is shown that, using practical modules made up of only 4-6 individual elements, it is possible to achieve thrust levels of 2-3 mln lbf and more, using turbomachinery, thrust chambers, lines, and valves about the size of SSME hardware. The approach is illustrated by a LOX/LH2 configuration.

  13. Air Launch Instrumented Vehicles Evaluation (ALIVE).

    Science.gov (United States)

    1977-02-01

    i w u t t it Tu, huh ,- TAHl k~ 1 . ‘ rIt\\ NSI ~)Ifl -Vl h~~ i-Jc\\ I iI I ’~M1~NT5 ‘I er)t~it ’t’i t tul i Dr op, M t i x : T in , ’ M ut t I t...points . — — — - I t ‘I t \\ I , l - h I t — - i , u i t i , t ’ l u i - i I t u ’ t u i - ,, I a o l td u ’ u u t h o- I m ot o i - s t u- i- i t s i...u u r u i c h luu ’ i on td j I. i u i n , e u l i i ’ — 5 9 i- t h e u t —~i t I u l t ~i l i - ut I ’ , I It,- u x h u u ’ u - t ( - i l w u i

  14. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  15. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  16. ELaNa - Educational Launch of Nanosatellite Enhance Education Through Space Flight

    Science.gov (United States)

    Skrobot, Garrett Lee

    2011-01-01

    One of NASA's missions is to attract and retain students in the science, technology, engineering and mathematics (STEM) disciplines. Creating missions or programs to achieve this important goal helps strengthen NASA and the nation's future work force as well as engage and inspire Americans and the rest of the world. During the last three years, in an attempt to revitalize educational space flight, NASA generated a new and exciting initiative. This initiative, NASA's Educational Launch of Nanosatellite (ELaNa), is now fully operational and producing exciting results. Nanosatellites are small secondary satellite payloads called CubeSats. One of the challenges that the CubeSat community faced over the past few years was the lack of rides into space. Students were building CubeSats but they just sat on the shelf until an opportunity arose. In some cases, these opportunities never developed and so the CubeSat never made it to orbit. The ELaNa initiative is changing this by providing sustainable launch opportunities for educational CubeSats. Across America, these CubeSats are currently being built by students in high school all the way through graduate school. Now students know that if they build their CubeSat, submit their proposal and are selected for an ELaNa mission, they will have the opportunity to fly their satellite. ELaNa missions are the first educational cargo to be carried on expendable launch vehicles (ELY) for NASA's Launch Services Program (LSP). The first ELaNa CubeSats were slated to begin their journey to orbit in February 2011 with NASA's Glory mission. Due to an anomaly with the launch vehicle, ELaNa II and Glory failed to reach orbit. This first ELaNa mission was comprised of three IU CubeSats built by students at Montana State University (Explorer Prime Flight 1), the University of Colorado (HERMES), and Kentucky Space, a consortium of state universities (KySat). The interface between the launch vehicle and the CubeSat, the Poly

  17. Control of NASA's Space Launch System

    Science.gov (United States)

    VanZwieten, Tannen S.

    2014-01-01

    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  18. CHINA RETRIEVES 19th RECOVERABLE SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept.25 recovered its 19th recoverable sci-tech experimental satellite 27 days after the satellite orbited in space. The satellite, which was launched on Aug.29 from the Jiuquan Satellite Launch Center in Gansu Province, northwest China, touched the ground at 7:55 a.m.on Sept.25. The satellite, atop a Long March 2C carrier rocket, is mainly for

  19. The second Ariane launch complex (ELA-2)

    Science.gov (United States)

    Dana, C.

    1985-05-01

    ELA-2 will, in 1986, become the primary Ariane launch complex, with ELA-1 being relegated to back-up roles. Both Ariane 3 and Ariane 4 vehicles can lift-off from ELA 2, but not ELA-1. In the Preparation Zone, spacecraft, launch vehicles and propellant are unloaded from shipment, stored and assembled in a one month process. The assembly building is equipped with stored ice to ensure continued air conditioning and cooling of electronic equipment and stored fuels in case of power outage. The launch gantry to which the Ariane is transported by rail is equipped with blast channels to redirect the rocket exhausts. The control center has remote cameras and sensors for monitoring launch pad activities and an underground, concrete bunker for the safety of up to 200 personnel.

  20. National Launch System comparative economic analysis

    Science.gov (United States)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.