WorldWideScience

Sample records for satellite ku-band radar

  1. Satellite communications application to Pacific countries above Ku band

    Science.gov (United States)

    Iida, Takashi

    1992-01-01

    An application of satellite communications above the Ku band to the Pacific region is described, focusing on: (1) Lightsat system and (2) a high capacity satellite system. A small geostationary satellite system using Ku band for the Federated States of Micronesia is shown as an example. A concept of multi-gigabits/second high capacity communications system using two satellites in the Ka band is described. The onboard bit-by-bit processing is very useful in the low link margin environment due to rain attenuation. These topics were obtained by the Asia Pacific Telecommunications Study granted by NASA conducted by the University of Colorado at Boulder.

  2. Architectures for ku-band broadband airborne satellite communication antennas

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Jorna, Pieter; Roeloffzen, Chris G.H.; Marpaung, David A.I.; Baggen, Rens; Sanadgol, Bahram

    2010-01-01

    This paper describes different architectures for a broadband antenna for satellite communication on aircraft. The antenna is a steerable (conformal) phased array antenna in Ku-band (receive-only). First the requirements for such a system are addressed. Subsequently a number of potential architecture

  3. Design of a Ku band Instrumentation Synthetic Aperture Radar System

    Science.gov (United States)

    2015-10-14

    small form-factor Ku band Synthetic Aperture Radar (SAR) for use on aerial drones . Group 105 have also been using this radar as an instrumentation...frequency of the LFM chirp would be over the Nyquist frequency. To solve this problem , the bandwidth of the LFM chirp was halved to 275 MHz. The...to 40 m/s based off of the speed of a predator drone . Parameter Value Speed of Light 299720000 m/s Center Frequency 16.75 GHz Wavelength 0.0179 m

  4. A Ku-band satellite system for the cable television industry

    Science.gov (United States)

    Napoli, Joseph

    This paper describes the satellite requirements for the Ku-band used for satellite delivery of television programming. The case for using the Ku-band is reviewed, including the business benefits to the cable industry, the superior protection against failure, the pace of technical advances, and the channel capacity. The characteristics of the satellites carrying the Ku-band are described, and a protection plan for the satellites is considered. The technical characteristics of the Ku-band and related systems considerations are addressed. Signal outage at the Ku-band is discussed, and Ku-band receiving system design is examined, including system installation and operations.

  5. Ku-band radar penetration into snow cover Arctic sea ice using airborne data

    OpenAIRE

    Willatt, R.; Laxon, S.; Giles, K.; R. Cullen; Haas, C.; V. Helm

    2011-01-01

    Satellite radar altimetry provides data to monitor winter Arctic sea-ice thickness variability on interannual, basin-wide scales. When using this technique an assumption is made that the peak of the radar return originates from the snow/ice interface. This has been shown to be true in the laboratory for cold, dry snow as is the case on Arctic sea ice during winter. However, this assumption has not been tested in the field. We use data from an airborne normal-incidence Ku-band radar altimeter ...

  6. Novel Ku Band Reflectarray Antenna for Satellite Communication

    Directory of Open Access Journals (Sweden)

    Sridhar Bilvam

    2014-04-01

    Full Text Available This study focuses on the design and analysis of Ku band reflectarray antenna using a novel crossed dumbbell (clover patch unit cell. The reflectarray is proposed for application in satellite communication more specifically for Satellite newsgathering (12.5-13.75 GHz. The clover shaped unit cell is designed for 13.07 GHz and the suitability of the unit cell is validated using the phase characteristics analysis. The effect of the elements on the performance represented by the range of the reflection phase is of prime importance. From the observation, Clover unit cell has large phase variation compared to minkowski and koch unit cells. Therefore, the main purpose of this study is to investigate and validate the novel unit cell with a wide phase characteristics and the reflectarray constructed.

  7. Flat Array Antennas for Ku-Band Mobile Satellite Terminals

    Directory of Open Access Journals (Sweden)

    Roberto Vincenti Gatti

    2009-01-01

    Full Text Available This work presents the advances in the development of two innovative flat array antennas for Ku-band mobile satellite terminals. The first antenna is specifically conceived for double-deck trains to allow a bi-directional high data rate satellite link. The available circular surface (diameter 80 cm integrates both a transmitting and a receiving section, operating in orthogonal linear polarizations. The TX frequency range is fully covered while the RX bandwidth is around 1 GHz arbitrarily allocated on the DVB range depending on requirements. The beam is steered in elevation through a phased array architecture not employing costly phase shifters, while the steering in azimuth is mechanical. Active BFNs allow excellent performance in terms of EIRP and G/T, maintaining extremely low profile. High antenna efficiency and low fabrication cost are ensured by the employment of innovative SIW (Substrate Integrated Waveguide structures. The second antenna, receiving-only, is designed for radio/video streaming services in mobile environment. Full DVB coverage is achieved thanks to cavity-backed patches operating in double linear polarization. Two independent broadband active BFNs allow simultaneous reception of both polarizations with full tracking capabilities and a squintless beam steering from 20∘ to 60∘ in elevation. A minimum gain of 20 dBi and G/T >−3 dB/∘K are achieved, while maintaining extremely compact size and flat profile. In the design of both antennas fabrication cost is considered as a driving factor, yet providing high performance with a flat profile and thus resulting in a great commercial potentiality.

  8. Simulation of radar backscattering from snowpack at X-band and Ku-band

    Science.gov (United States)

    Gay, Michel; Phan, Xuan-Vu; Ferro-Famil, Laurent

    2016-04-01

    This paper presents a multilayer snowpack electromagnetic backscattering model, based on Dense Media Radiative Transfer (DMRT). This model is capable of simulating the interaction of electromagnetic wave (EMW) at X-band and Ku-band frequencies with multilayer snowpack. The air-snow interface and snow-ground backscattering components are calculated using the Integral Equation Model (IEM) by [1], whereas the volume backscattering component is calculated based on the solution of Vector Radiative Transfer (VRT) equation at order 1. Case study has been carried out using measurement data from NoSREx project [2], which include SnowScat data in X-band and Ku-band, TerraSAR-X acquisitions and snowpack stratigraphic in-situ measurements. The results of model simulations show good agreement with the radar observations, and therefore allow the DMRT model to be used in various applications, such as data assimilation [3]. [1] A.K. Fung and K.S. Chen, "An update on the iem surface backscattering model," Geoscience and Remote Sensing Letters, IEEE, vol. 1, no. 2, pp. 75 - 77, april 2004. [2] J. Lemmetyinen, A. Kontu, J. Pulliainen, A. Wiesmann, C. Werner, T. Nagler, H. Rott, and M. Heidinger, "Technical assistance for the deployment of an x- to ku-band scatterometer during the nosrex ii experiment," Final Report, ESA ESTEC Contract No. 22671/09/NL/JA., 2011. [3] X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard, "3d-var multilayer assimilation of x-band sar data into a detailed snowpack model," The Cryosphere Discussions, vol. 7, no. 5, pp. 4881-4912, 2013.

  9. Ku-band satellite data networks using very small aperture terminals. II - System design

    Science.gov (United States)

    Raychaudhuri, D.

    1987-12-01

    An overview is presented of system design for Ku-band star networks intended for interactive data applications. The component elements of such a network are discussed, and the critical items for performance, capacity, and cost are identified. A systematic design procedure combining delay-throughput characterization of the multiaccess inbound and TDM outbound channels with satellite link analysis is provided by which system components and their parameters are selected once the network response time and availability objectives are specified. The results are presented in the form of charts and tables which may serve as the basis for star network design over a range of typical traffic models, component parameters, and performance objectives. The methodology is potentially useful for evaluating alternative network architectures and traffic scenarios which may become important as VSAT technology evolves.

  10. Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard

    Directory of Open Access Journals (Sweden)

    O. Brandt

    2008-11-01

    Full Text Available We compare coincident data from the European Space Agency's Airborne SAR/Interferometric Radar Altimeter System (ASIRAS with ground-based Very High Bandwidth (VHB stepped-frequency radar measurements in the Ku-band. The ASIRAS instrument obtained data from ~700 m above the surface, using a 13.5 GHz center frequency and a 1 GHz bandwidth. The ground-based VHB radar measurements were acquired using the same center frequency, but with a variable bandwidth of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the transition region from superimposed ice to firn, and two sites in the long-term firn area (wet-snow zone. The greater bandwidth VHB measurements show that the first peak in the airborne data is a composite of the return from the surface (i.e. air-snow interface and returns of similar or stronger amplitude from reflectors in the upper ~30 cm of the subsurface. The peak position in the airborne data is thus not necessarily a good proxy for the surface since the maximum and width of the first return depend on the degree of interference between surface and subsurface reflectors. The major response from the winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm surrounded by large crystals (>3 mm. In the airborne data, it is possible to track such layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last year's summer surface, characterized by a low density large crystal layer overlaying a harder denser layer, gives a strong radar response, frequently the strongest. The clear relationship observed between the VHB and ASIRAS waveforms, justifies the use of ground-based radar measurements in the validation of air- or spaceborne radars.

  11. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    Sea ice freeboard measurements are of great interest for basin-scale ice mass balance monitoring. Typically, laser- and radar-altimeters are used for freeboard retrieval in operational systems such as aircrafts and satellites. For laser beams it can be assumed that the dominant reflector......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...... observations are converted into freeboard profiles, taking the different footprints into account when comparing the two systems. Based on the probability distribution of laser and radar freeboard we discuss the specific characteristics of both systems and the apparent radar penetration over sea ice...

  12. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    Results from two years of the CryoSat Validation Experiment (CryoVEx) over sea ice in the western Arctic Ocean are presented. The estimation of freeboard, the height of sea ice floating above the water level, is one the main goals of the CryoSat-2 mission of the European Space Agency (ESA) in order...... to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...... of the airborne validation dataset, since the radar overestimates the amount of open water and thin ice as well the freeboard of heavy ice deformation zones....

  13. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    Sea ice freeboard measurements are of great interest for basin-scale ice mass balance monitoring. Typically, laser- and radar-altimeters are used for freeboard retrieval in operational systems such as aircrafts and satellites. For laser beams it can be assumed that the dominant reflector is the s......Sea ice freeboard measurements are of great interest for basin-scale ice mass balance monitoring. Typically, laser- and radar-altimeters are used for freeboard retrieval in operational systems such as aircrafts and satellites. For laser beams it can be assumed that the dominant reflector...... is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness...

  14. SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal

    2006-01-01

    A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model...... is initialised with in situ data collected during the May 2004 GreenIce ice camp in the Lincoln Sea (73ºW; 85ºN). Our results show that the snow cover is important for the effective scattering surface depth in sea ice and thus for the range measurement, ice freeboard and ice thickness estimation....

  15. ACCORD Broadband ATM Satellite Experiment (BASE)-DS3 Ku-band channel

    Science.gov (United States)

    1997-12-01

    broadband ATM traf- fic. ATM was initially designed for fibre - optic media, i.e. a random error, low delay, and virtually error free channel...satellite links will soon be required to support broadband ATM traffic. ATM was initially designed for fibre - optic media, i.e. a random error, low...traffic generator and analyser. - Fibre Loop Converter: converts a DS-3 signal into a single-mode fibre optic signal and vice-versa. - EF Data Modem

  16. Rain Rate-Radar Reflectivity Relationship for Drop Size Distribution and Rain Attenuation Calculation of Ku Band Signals

    Directory of Open Access Journals (Sweden)

    Govardhani.Immadi

    2014-05-01

    Full Text Available With the increased demand for long distance Tele communication day by day, satellite communication system was developed. Satellite communications utilize L, C, Ku and Ka bands of frequency to fulfil all the requirements. Utilization of higher frequencies causes severe attenuation due to rain. Rain attenuation is noticeable for frequencies above 10ghz. Amount of attenuation depends on whether the operating wave length is comparable with rain drop diameter or not. In this paper the main focus is on drop size distribution using empirical methods, especially Marshall and Palmer distributions. Empirical methods deal with power law relation between the rain rate(mm/h and radar reflectivity(dBz. Finally it is discussed about the rain rate variation, radar reflectivity, drop size distribution, that is made for two rain events at K L University, Vijayawada on 4th September 2013 and on 18 th August 2013.

  17. Subcarrier phase recovery performance in bent-pipe mode of Shuttle data transmission. [on Tracking and Data Relay Satellite System Ku-band return link

    Science.gov (United States)

    Mckenzie, T. M.; Braun, W. R.

    1978-01-01

    The subcarrier phase recovery is analyzed for the bent-pipe mode of Space Shuttle detached-payload data transmission on the Tracking and Data Relay Satellite System (TDRSS) Ku-band return link. The high-power component of the subcarrier modulation is unrestored payload data, either at baseband or modulating another subcarrier. At the receiver a Costas loop recovers the subcarrier phase. To analyze its performance in the baseband case, we obtain the loop S-curve, the power spectral density of the equivalent noise process, and the loop phase error variance.

  18. Ku-Band Data-Communication Adapter

    Science.gov (United States)

    Schadelbauer, Steve

    1995-01-01

    Data-communication adapter circuit on single printed-circuit board serves as general-purpose interface between personal computer and satellite communication system. Designed as direct interface with Ku-band data-communication system for payloads on space shuttle, also used with any radio-frequency transmission systems. Readily installed in almost any personal computer via widely used Industry Standard Architecture (ISA) bus.

  19. Ku Band Rotary Joint Design for SNG Vehicles

    Directory of Open Access Journals (Sweden)

    H. Torpi

    2015-12-01

    Full Text Available A wideband I-type rectangular waveguide rotary joint (RJ is designed, simulated and built. It has an excellent performance over the whole Ku Band (10.7-14.5 GHz where the return loss is less than -23 dB at its highest and the insertion loss is below 0.4 dB. The rotary joint is specifically designed for satellite news gathering (SNG vehicles providing elevation and azimuthal movement to the antenna and matching polarization when it is needed at the feed. It can also be used in other high power microwave applications,where rotation ability of the antenna is a must during the transmission such as radars.

  20. Rainfall measurement from opportunistic use of earth-space link in Ku Band

    Directory of Open Access Journals (Sweden)

    L. Barthès

    2013-02-01

    Full Text Available The present study deals with the development of a low cost microwave device devoted to measure average rain rate observed along earth – satellite links. The principle is to use rain atmospheric attenuation along Earth – space links in Ku-band to deduce the path averaged rain rate. These links are characterized by a path length of a few km through the troposphere. Ground based power measurements are carried out by receiving TV channels from different geostationary satellites in Ku-band.

    The major difficulty in this study is to retrieve rain characteristics among many fluctuations of the received signal which are due to atmospheric scintillations, changes in the composition of the atmosphere (water vapour concentration, cloud water content or satellite features (variation of the emitted power, satellite motions. In order to perform a feasibility study of such a device, a measurement campaign has been performed for five months near Paris. This paper proposes an algorithm based on an artificial neural network to identify drought and rainy periods and to suppress the variability of the received signal due to no-rain effects. Taking into account the height of the rain layer, rain attenuation is then inverted to obtain path averaged rain rate. Obtained rainfall rates are compared with co-located rain gauges and radar measurements on the whole experiment period, then the most significant rainy events are analyzed.

  1. Analysis of Fade Dynamic at Ku-Band in Malaysia

    OpenAIRE

    2014-01-01

    This work investigates fade dynamics of satellite communication systems in equatorial heavy rain region based on a one year of Ku-band propagation measurement campaign carried out in Universiti Teknologi Malaysia (UTM), Johor, Malaysia. First order statistics of rain attenuation are deduced and the results are found to be in good agreement with those obtained from other beacon measurements gathered within the same area (Kuala Lumpur). Moreover, the fade duration and slope statistics of the sa...

  2. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  3. Desain dan Implementasi Antena Mikrostrip VSAT Bergerak pada Frekuensi Downlink Ku Band

    Directory of Open Access Journals (Sweden)

    HANNY MADIAWATI

    2016-08-01

    Full Text Available ABSTRAK Kebutuhan sistem komunikasi satelit bergerak pada pita Ku sekarang ini mulai berkembang di Indonesia. Ku-band memiliki ketersediaan lebar pita yang besar dan memilikipanjang gelombang yang lebih pendek. Panjang gelombang yang pendek berpengaruh pada dimensi perangkat yang lebih kecil.Pada umumnya antena satelit untuk sistem yang bergerak menggunakan parabola namun penggunaannya pada kendaraanterkendalaberatnya masa keseluruhan sistem sehingga diperlukan sistem kendali motor dengan harga mahal. Oleh karena itu, penggunaan antena mikrostrip dengan metode antena susun (array menjadi solusi yang dapat memungkinkan kendaraan tetap bergerak dengan baikdengan tetap menjaga kelangsungan hubungan telekomunikasi selama bergerak.Pada penilitian ini, suatu antena mikrostrip penerima dengan menggunakan metode array dengan jumlah patch2x16 yang mampu bekerja pada pita Ku-Band telah dirancang dan direalisasikan. Antena ini bekerja pada frekuensi 11,9 GHz dengan gain sebesar18,69 dB. Kata kunci: komunikasi satelit, Ku-Band, antena mikrostrip, antena mikrostrip array. ABSTRACT Needs of mobile satellite communication system at Ku Band are currently being widely grown in Indonesia. Ku-band has a large bandwidth availability and has a shorter wavelengt. The short wavelength effect on the smaller device dimensions. In general, satellite antennas for mobile system uses parabolic antenna but if its use on vehicles the obstacle is weighing of the whole system so it takes motor control system with an expensive price. Therefor, the use of microstrip antenna by using antenna array is a solution that can allow the vehicle to keep moving well while maintaining the continuity of telecommunication links during the move. In this research, a microstrip antenna array receiver using the patch number 2x16 are able to work in the Ku-band has been design dan realized. The antenna work at 11.9GHz with a gain 18,69dB.   Keywords: satellite communication, Ku-Band, microstrip

  4. Design of Ku Band Satellite Transmission and Video Monitoring System%Ku卫星传输及视频监测系统设计

    Institute of Scientific and Technical Information of China (English)

    赵李华

    2012-01-01

      通过VSAT卫星网络将先进管理手段延伸到作业现场,为油田管理ERP系统提供传输平台,为生产远程监控和指挥调度提供信息通信保障。考虑到卫星网络所特有的覆盖范围广、不受地理条件限制、建设周期短、且具有可搬移性,可重复利用、以及能够迅速开通提供服务等优势,网络中还可加入车载站,以满足紧急情况下应急通信的需要。%  Through the VSAT satellite network, the advanced management tools will be extended to working sites, and it will provide transmission platform for oil field ERP management system and provide information communication support for remote monitoring of production, command and dispatch. In consideration of satellite network having the following special feature and superiority, such as, wide cover range, unlimited geography condition, short construction period, stronger portability, recycling, opening quickly and providing services, we can also add the vehicle earth station to the network to meet the needs of emergency communication.

  5. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  6. Rain fade in Ku-band VSAT networks - A design consideration

    Science.gov (United States)

    Raust, Eric H.

    The components of a Very Small Aperture Terminal (VSAT) network are shown to determine the effect that rainfall has on Ku-band satellite communications. This paper considers the effect of the signal attenuation caused by rain as predicted by a well known rain fade model. The result, of considering the highest rain attenuations experienced is related to both transmission availabilities and signal margins. The results of link calculations are tabulated for typical network designs. These results show that proper selection of the VSAT's components and the satellite transponder power can all but eliminate rain outages while maintaining the economics of a Ku-band VSAT network.

  7. Development of an integrated photonic beamformer for electronically-steered Ku-band phased array antenna

    NARCIS (Netherlands)

    Zhuang, L.; Marpaung, D.A.I.; Burla, M.; Boot, R.; Hulzinga, A.; Beeker, W.P.; Beeker, Willem; van Dijk, P.; Roeloffzen, C.G.H.

    2011-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) system for satellite communications is being developed within a Dutch Point One R&D Innovation Project “Broadband Satellite Communication Services on High-Speed Transport Vehicles‿, targeting

  8. Development of a broadband integrated optical beamformer for Ku-Band Phased Array Antennas

    NARCIS (Netherlands)

    Roeloffzen, C.G.H.; van Dijk, Paul; Marpaung, D.A.I.; Burla, M.; Zhuang, L.

    2012-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) systems for satellite communications is being developed, targeting continuous reception of the full DVB-S band (10.7- 12.75 GHz), squint-free and seamless beam steering, and polarization

  9. Interdisciplinary Earth Science Applications Using Satellite Radar Altimetry

    Science.gov (United States)

    Kuo, C.; Shum, C.; Lee, H.; Dai, C.; Yi, Y.

    2012-12-01

    Satellite altimetry was conceived as a space geodetic concept for ocean surface topography mapping in the NASA-sponsored 1969 Williamstown, MA Conference, and was tested as part of the passive and active radar payload (S192), along with a radiometer and a scatterometer, on Skylab-1 in May 14, 1973. Since then, numerous radar and laser satellite altimetry missions orbiting/flying-by the Earth, Mars, Mercury, Titan and the Moon have been launched, evolving from the original scientific objective of marine gravity field mapping to a geodetic tool to address interdisciplinary Earth and planetary sciences. The accuracy of the radar altimeter has improved from 0.9 m RMS for the S-192 Skylab Ku-band compressed-pulse altimeter, to 2 cm RMS (2 second average) for the dual-frequency pulse-limited radar altimetry and associated sensors onboard TOPEX/POSEIDON. Satellite altimetry has evolved into a unique cross-disciplinary geodetic tool in addressing contemporary Earth science problems including sea-level rise, large-scale general ocean circulation, ice-sheet mass balance, terrestrial hydrology, and bathymetry. Here we provide a concise review and describe specific results on the additional recent innovative and unconventional applications of interdisciplinary science research using satellite radar altimetry, including geodynamics, land subsidence, snow depth, wetland and cold region hydrology.

  10. Rainfall measurement from the opportunistic use of an Earth–space link in the Ku band

    Directory of Open Access Journals (Sweden)

    L. Barthès

    2013-08-01

    Full Text Available The present study deals with the development of a low-cost microwave device devoted to the measurement of average rain rates observed along Earth–satellite links, the latter being characterized by a tropospheric path length of a few kilometres. The ground-based power measurements, which are made using the Ku-band television transmissions from several different geostationary satellites, are based on the principle that the atmospheric attenuation produced by rain encountered along each transmission path can be used to determine the path-averaged rain rate. This kind of device could be very useful in hilly areas where radar data are not available or in urban areas where such devices could be directly placed in homes by using residential TV antenna. The major difficulty encountered with this technique is that of retrieving rainfall characteristics in the presence of many other causes of received signal fluctuation, produced by atmospheric scintillation, variations in atmospheric composition (water vapour concentration, cloud water content or satellite transmission parameters (variations in emitted power, satellite pointing. In order to conduct a feasibility study with such a device, a measurement campaign was carried out over a period of five months close to Paris. The present paper proposes an algorithm based on an artificial neural network, used to identify dry and rainy periods and to model received signal variability resulting from effects not related to rain. When the altitude of the rain layer is taken into account, the rain attenuation can be inverted to obtain the path-averaged rain rate. The rainfall rates obtained from this process are compared with co-located rain gauges and radar measurements taken throughout the full duration of the campaign, and the most significant rainfall events are analysed.

  11. An integrated Ka/Ku-band payload for personal, mobile and private business communications

    Science.gov (United States)

    Hayes, Edward J.; Keelty, J. Malcolm

    1991-01-01

    The Canadian Department of Communications has been studying options for a government-sponsored demonstration payload to be launched before the end of the century. A summary of the proposed system concepts and network architectures for providing an advanced private business network service at Ku-band and personal and mobile communications at Ka-band is presented. The system aspects addressed include coverage patterns, traffic capacity, and grade of service, multiple access options as well as special problems, such as Doppler in mobile applications. Earth terminal types and the advanced payload concept proposed in a feasibility study for the demonstration mission are described. This concept is a combined Ka-band/Ku-band payload which incorporates a number of advanced satellite technologies including a group demodulator to convert single-channel-per-carrier frequency division multiple access uplink signals to a time division multiplex downlink, on-board signal regeneration, and baseband switching to support packet switched data operation. The on-board processing capability of the payload provides a hubless VSAT architecture which permits single-hop full mesh interconnectivity. The Ka-band and Ku-band portions of the payload are fully integrated through an on-board switch, thereby providing the capability for fully integrated services, such as using the Ku-band VSAT terminals as gateway stations for the Ka-band personal and mobile communications services.

  12. The Ku-band Polarization Identifier

    CERN Document Server

    Gundersen, J O

    2003-01-01

    The Ku-band Polarization Identifier (KUPID) will integrate a very low noise 12-18 GHz, correlation polarimeter onto the Crawford Hill seven meter, millimeter-wave antenna. The primary components of the polarimeter will be built at the University of Miami and other key components, including the microwave horn and data acquisition system will be built at the University of Chicago and Princeton University. This project will measure the Q and U Stokes parameters in regions near the north celestial pole, in regions of low galactic contamination, and in regions near the galactic plane. The KUPID survey experiment makes use of many of the techniques employed in the Princeton IQU Experiment (PIQUE) that was developed by the members of this collaboration to detect CMB polarization at shorter wavelengths. The KUPID experiment will be constructed in parallel and on the same timescale as the CAPMAP experiment (see Barkats, this volume) which is the follow-on experiment to PIQUE. KUPID will observe on the Crawford Hill an...

  13. Analysis of Fade Dynamic at Ku-Band in Malaysia

    Directory of Open Access Journals (Sweden)

    Siat Ling Jong

    2014-01-01

    Full Text Available This work investigates fade dynamics of satellite communication systems in equatorial heavy rain region based on a one year of Ku-band propagation measurement campaign carried out in Universiti Teknologi Malaysia (UTM, Johor, Malaysia. First order statistics of rain attenuation are deduced and the results are found to be in good agreement with those obtained from other beacon measurements gathered within the same area (Kuala Lumpur. Moreover, the fade duration and slope statistics of the satellite signal variations are also carefully derived and subsequently compared with the ITU-R recommendation model. Such information is useful for the system operator and radio communication engineer for the design of appropriate fade mitigation techniques as well as the quality of service that could be offered to the user (according to the time interval for a typical day. Further evaluation on the performances of several ITU-R models in the heavy rain region are needed based on the measurement database available of this climatic region.

  14. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    Science.gov (United States)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2017-04-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  15. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    Science.gov (United States)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2016-07-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  16. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    Science.gov (United States)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  17. Towards structural integration of airborne Ku-band SatCom antenna

    NARCIS (Netherlands)

    Schippers, Harmen; Verpoorte, Jaco; Hulzinga, Adriaan; Roeloffzen, C.G.H.; Baggen, Rens

    2013-01-01

    The paper describes research towards a fully structurally integrated Ku-band SatCom antenna. This antenna covers the complete receive band for aeronautical earth stations and DVB-S broadcast in Ku band (10.7 - 12.75 GHz). The antenna front-end consists of 32 tiles where each tile has 8×8 Ku-band

  18. Design of a Ku band miniature multiple beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India); Saini, Anil; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  19. Enhanced International Space Station Ku-Band Telemetry Service

    Science.gov (United States)

    Cecil, Andrew J.; Pitts, R. Lee; Welch, Steven J.; Bryan, Jason D.

    2014-01-01

    The International Space Station (ISS) is in an operational configuration. To fully utilize the ISS and take advantage of the modern protocols and updated Ku-band access, the Huntsville Operations Support Center (HOSC) has designed an approach to extend the Kuband forward link access for payload investigators to their on-orbit payloads. This dramatically increases the ground to ISS communications for those users. This access also enables the ISS flight controllers operating in the Payload Operations and Integration Center to have more direct control over the systems they are responsible for managing and operating. To extend the Ku-band forward link to the payload user community the development of a new command server is necessary. The HOSC subsystems were updated to process the Internet Protocol Encapsulated packets, enable users to use the service based on their approved services, and perform network address translation to insure that the packets are forwarded from the user to the correct payload repeating that process in reverse from ISS to the payload user. This paper presents the architecture, implementation, and lessons learned. This will include the integration of COTS hardware and software as well as how the device is incorporated into the operational mission of the ISS. Thus, this paper also discusses how this technology can be applicable to payload users of the ISS.

  20. Performance of the Dual-frequency Precipitation Radar on the GPM core satellite

    Science.gov (United States)

    Iguchi, Toshio; Seto, Shinta; Awaka, Jun; Meneghini, Robert; Kubota, Takuji; Oki, Riko; Chandra, Venkatchalam; Kawamoto, Nozomi

    2016-04-01

    The GPM core satellite was launched on February 28, 2014. This paper describes some of the results of precipitation measurements with the Dual-Frequency Precipitation Radar (DPR) on the GPM core satellite. The DPR, which was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT), consists of two radars: Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The performance of the DPR is evaluated by comparing the level 2 products with the corresponding TRMM/PR data and surface rain measurements. The scanning geometry and footprint size of KuPR and those of PR are nearly identical. The major differences between them are the sensitivity, visiting frequency, and the rain retrieval algorithm. KuPR's sensitivity is twice as good as PR. The increase of sensitivity reduces the cases of missing light rain. Since relatively light rain prevails in Japan, the difference in sensitivity may cause a few percentage points in the bias. Comparisons of the rain estimates by GPM/DPR with AMeDAS rain gauge data over Japan show that annual KuPR's estimates over Japan agree quite well with the rain gauge estimates although the monthly or local statistics of these two kinds of data scatter substantially. KuPR's esimates are closer to the gauge estimates than the TRMM/PR. Possible sources of the differences that include sampling errors, sensitivity, and the algorithm are examined.

  1. Validation of Chinese HY-2 satellite radar altimeter significant wave height

    Institute of Scientific and Technical Information of China (English)

    YE Xiaomin; LIN Mingsen; XU Ying

    2015-01-01

    Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC)in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (–0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data,the RMSE and the mean bias is 0.36m and (–0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than –0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.

  2. Ku Band Hemispherical Fully Electronic Antenna for Aircraft in Flight Entertainment

    Directory of Open Access Journals (Sweden)

    Alfredo Catalani

    2009-01-01

    Full Text Available The results obtained in the frame of the ESA activity “Advanced Antenna Concepts For Aircraft In Flight Entertainment” are presented. The aim of the activity consists in designing an active antenna able to guarantee the Ku band link between an aircraft and a geostationary satellite in order to provide in flight entertainment services. The transmit-receive antenna generates a single narrow beam to be steered electronically in a half sphere remaining compliant with respect to stringent requirements in terms of pattern shape, polarization alignment, EIRP, G/T, and using customized electronic devices. At the same time, the proposed solution should be competitive in terms of cost and complexity.

  3. Low-cost Ku band interferometer for educational purposes

    Science.gov (United States)

    Herrera, Daniel E.; Saez, Alejandro F.; Dauvin, Louise

    2016-07-01

    Latest discoveries in the field of astronomy have been associated to the development of extremely sophisticated instruments. With regards to radio-astronomy, instrumentation has evolved to higher processing data rates and a continuous performance improvement, in the analog and digital domain. Developing, maintaining, and using such kinds of instruments - especially in radio-astronomy - requires understanding complex processes which involve plenty of subtle details. The above has inspired the engineering and astronomical communities to design low-cost instruments, which can be easily replicated by the non-specialist or highly skilled personnel who possess a basic technical background. The final goal of this work is to provide the means to build an affordable tool for teaching radiometry sciences. In order to take a step further this way, a design of a basic interferometer (two elements) is here below introduced, intended to turn into a handy tool for learning the basic principles behind the interferometry technique and radiometry sciences. One of the pedagogical experiences using this tool will be the measurement of the sun's angular diameter. Using these two Ku band receptors, we aim to capture the solar radiation in the 11-12GHz frequency range, the power variations at the earth spin, with a proper phase-lock of the receptors will generate a cross-correlation power oscillation where we can obtain an approximation of the angular sun's diameter. Variables of interest in this calculation are the declination of the sun (which depends on the capture date and location) and the relation between maximal and minimal power within a fringe cycle.

  4. Analysis and comparison model for measuring tropospheric scintillation intensity for Ku-band frequency in Malaysia

    Directory of Open Access Journals (Sweden)

    Mandeep JS

    2011-06-01

    Full Text Available This study has been based on understanding local propagation signal data distribution characteristics and identifying and predicting the overall impact of significant attenuating factors regarding the propagation path such as impaired propagation for a signal being transmitted. Predicting propagation impairment is important for accurate link budgeting, thereby leading to better communication network system designation. This study has thus used sample data for one year concerning beacon satellite operation in Malaysia from April 2008 to April 2009. Data concerning 12GHz frequency (Ku-band and 40° elevation angle was collected and analysed, obtaining average signal amplitude value, ÷ and also standard deviation ó which is normally measured in dB to obtain long-term scintillation intensity distribution. This analysis showed that scintillation intensity distribution followed Gaussian distribution for long-term data distribution. A prediction model was then selected based on the above; Karasawa,
    ITU-R, Van de Kamp and Otung models were compared to obtain the best prediction model performance for selected data regarding specific meteorological conditions. This study showed that the Karasawa model had the best performance for predicting scintillation intensity for the selected da ta.

  5. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss

    Directory of Open Access Journals (Sweden)

    Yurong Cui

    2016-06-01

    Full Text Available Snow water equivalent (SWE is a key parameter in the Earth’s energy budget and water cycle. It has been demonstrated that SWE can be retrieved using active microwave remote sensing from space. This necessitates the development of forward models that are capable of simulating the interactions of microwaves and the snow medium. Several proposed models have described snow as a collection of sphere- or ellipsoid-shaped ice particles embedded in air, while the microstructure of snow is, in reality, more complex. Natural snow usually forms a sintered structure following mechanical and thermal metamorphism processes. In this research, the bi-continuous vector radiative transfer (bi-continuous-VRT model, which firstly constructs snow microstructure more similar to real snow and then simulates the snow backscattering signal, is used as the forward model for SWE estimation. Based on this forward model, a parameterization scheme of snow volume backscattering is proposed. A relationship between snow optical thickness and single scattering albedo at X and Ku bands is established by analyzing the database generated from the bi-continuous-VRT model. A cost function with constraints is used to solve effective albedo and optical thickness, while the absorption part of optical thickness is obtained from these two parameters. SWE is estimated after a correction for physical temperature. The estimated SWE is correlated with the measured SWE with an acceptable accuracy. Validation against two-year measurements, using the SnowScat instrument from the Nordic Snow Radar Experiment (NoSREx, shows that the estimated SWE using the presented algorithm has a root mean square error (RMSE of 16.59 mm for the winter of 2009–2010 and 19.70 mm for the winter of 2010–2011.

  6. Satellite radar for monitoring forest resources

    Science.gov (United States)

    Hoffer, Roger M.; Lee, Kyu-Sung

    1990-01-01

    An evaluation is made of the computer analysis results of a study which used Seasat satellite radar data obtained in 1978 and Shuttle Imaging Radar-B data obtained in 1984. The change-detection procedures employed demonstrate that deforestation and reforestation activities can be effectively monitored on the basis of radar data gathered at satellite altitudes. The computer-processing techniques applied to the data encompassed (1) overlay display, (2) ratios, (3) differences, (4) principal-component analysis, and (5) classification; of these, overlay display is noted to quickly and easily yield a qualitative display of the multidate data.

  7. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    Science.gov (United States)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  8. A 1-Watt Ku-Band Power Amplifier MMIC Using Cost-Effective Organic SMD Package

    NARCIS (Netherlands)

    Bessemoulin, A.; Parisot, M.; Quentin, P.; Saboureau, C.; Heijningen, M. van; Priday, J.

    2004-01-01

    This paper presents the design and performance of a compact 1-Watt Ku-band power amplifier MMIC implemented in a novel microwave organic power package, compatible with SMD assembly lines. Due to the use of simple materials, like RO4003 substrate and copper, it allows significant cost reduction for

  9. A 1-Watt Ku-Band Power Amplifier MMIC Using Cost-Effective Organic SMD Package

    NARCIS (Netherlands)

    Bessemoulin, A.; Parisot, M.; Quentin, P.; Saboureau, C.; Heijningen, M. van; Priday, J.

    2004-01-01

    This paper presents the design and performance of a compact 1-Watt Ku-band power amplifier MMIC implemented in a novel microwave organic power package, compatible with SMD assembly lines. Due to the use of simple materials, like RO4003 substrate and copper, it allows significant cost reduction for R

  10. Multifrequency Two-Dimensional Fourier Transform ESR: An X/Ku Band Spectrometer

    Science.gov (United States)

    Borbat, Petr P.; Crepeau, Richard H.; Freed, Jack H.

    1997-08-01

    A two-dimensional Fourier Transform ESR (2D FT ESR) spectrometer operating at 9.25 and 17.35 GHz is described. The Ku-band bridge uses an efficient heterodyne technique wherein 9.25 GHz is the intermediate frequency. At Ku-band the sensitivity is increased by almost an order of magnitude. One may routinely collect a full 2D ELDOR spectrum in less than 20 min for a sample containing 0.5-5 nmol of nitroxide spin-probe in the slow-motional regime. Broad spectral coverage at Ku-band is obtained by use of a bridged loop-gap resonator (BLGR) and of a dielectric ring resonator (DR). It is shown that an even more uniform spectral excitation is obtained by using shorter microwave pulses of about 3 ns duration. The dead-time at Ku-band is just 30-40 ns, yielding an improved SNR in 2D ELDOR spectra of nitroxide spin-probes withT2as short as 20-30 ns. A comparison of 2D ELDOR spectra obtained at 9.25 and 17.35 GHz for spin-labeled phospholipid probes (16PC) in 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) membrane vesicles showed that both spectra could be satisfactorily simulated using the same set of model parameters even though they are markedly different in appearance. The improved sensitivity and shorter dead-time at Ku-band made it possible to obtain orientation-dependent 2D ELDOR spectra of the Cholestane (CSL) spin-probe in macroscopically aligned lipid bilayers of egg yolk PC using samples containing only 1 mg of lipid and just 5 nmol of spin-probe.

  11. Haystack Ultrawideband Satellite Imaging Radar

    Science.gov (United States)

    2014-09-01

    enable long-range imaging. In 2013, a major upgrade to the facility was completed, adding a millimeter - wave W-band radar capability to Haystack’s X...diameter antenna was completely rebuilt to provide a 100 μm root-mean-square (rms) surface accuracy to support operation at the 3 mm wave - length (W...electromagnetic wave propagation through the troposphere. − The signal processing system lev- eraged Lincoln Laboratory‘s Radar Open Systems

  12. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  13. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    Science.gov (United States)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  14. Experimental research on Ku-band magnetically insulated transmission line oscillator

    Science.gov (United States)

    Jiang, Tao; Zhang, Jiande; He, Juntao; Li, Zhiqiang; Ling, Junpu

    2015-10-01

    An improved Ku-band magnetically insulated transmission line oscillator is proposed and investigated experimentally. In the particle-in-cell simulation, the Ku-band MILO generates the microwave with a power of 1.62 GW and a frequency of 13 GHz at the input voltage of 474 kV. The device is fabricated based on the simulation results, and an experiment system is designed. In the preliminary experiments, output microwave with frequency of 13.02 GHz, power of 150 MW, and pulse width of 17 ns is generated, under the diode voltage of 450 kV. Analysis on the experiment results shows that plasma produced due to the large current hitting to the outside of the collection tank is the essential cause for the low amplitude of the microwave power and short pulse width.

  15. Experimental research on Ku-band magnetically insulated transmission line oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Zhang, Jiande; He, Juntao; Li, Zhiqiang; Ling, Junpu [College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2015-10-15

    An improved Ku-band magnetically insulated transmission line oscillator is proposed and investigated experimentally. In the particle-in-cell simulation, the Ku-band MILO generates the microwave with a power of 1.62 GW and a frequency of 13 GHz at the input voltage of 474 kV. The device is fabricated based on the simulation results, and an experiment system is designed. In the preliminary experiments, output microwave with frequency of 13.02 GHz, power of 150 MW, and pulse width of 17 ns is generated, under the diode voltage of 450 kV. Analysis on the experiment results shows that plasma produced due to the large current hitting to the outside of the collection tank is the essential cause for the low amplitude of the microwave power and short pulse width.

  16. Design, fabrication and characterising of 100 W GaN HEMT for Ku-band application

    Science.gov (United States)

    Chunjiang, Ren; Shichang, Zhong; Yuchao, Li; Zhonghui, Li; Yuechan, Kong; Tangsheng, Chen

    2016-08-01

    Ku-band GaN power transistor with output power over 100 W under the pulsed operation mode is presented. A high temperature A1N nucleation together with an Fe doped GaN buffer was introduced for the developed GaN HEMT. The AlGaN/GaN hetero-structure deposited on 3 inch SiC substrate exhibited a 2DEG hall mobility and density of ˜2100 cm2/(V·s) and 1.0 × 1013 cm-2, respectively, at room temperature. Dual field plates were introduced to the designed 0.25 μm GaN HEMT and the source connected field plate was optimized for minimizing the peak field plate near the drain side of the gate, while maintaining excellent power gain performance for Ku-band application. The load-pull measurement at 14 GHz showed a power density of 5.2 W/mm for the fabricated 400 μm gate periphery GaN HEMT operated at a drain bias of 28 V. A Ku-band internally matched GaN power transistor was developed with two 10.8 mm gate periphery GaN HEMT chips combined. The GaN power transistor exhibited an output power of 102 W at 13.3 GHz and 32 V operating voltage under pulsed operation mode with a pulse width of 100 μs and duty cycle of 10%. The associated power gain and power added efficiency were 9.2 dB and 48%, respectively. To the best of the authors' knowledge, the PAE is the highest for Ku-band GaN power transistor with over 100 W output power.

  17. Bistatic synthetic aperture radar using two satellites

    Science.gov (United States)

    Tomiyasu, K.

    1978-01-01

    The paper demonstrates the feasibility of a bistatic synthetic aperture radar (BISAR) utilizing two satellites. The proposed BISAR assumes that the direction of the two narrow antenna beams are programmed to coincide over the desired area to be imaged. Functionally, the transmitter and receiver portions can be interchanged between the two satellites. The two satellites may be in one orbit plane or two different orbits such as geosynchronous and low-earth orbits. The pulse repetition frequency and imaging geometry are constrained by contours of isodops and isodels. With two images of the same area viewed from different angles, it is possible in principle to derive three-dimensional stereo images. Applications of BISAR include topography, water resource management, and soil moisture determination.. Advantages of BISAR over a monostatic SAR are mentioned, including lower transmitter power and greater ranges in incidence angle and coverage.

  18. Analysis of a Compact Wideband Slotted Antenna for Ku Band Applications

    Directory of Open Access Journals (Sweden)

    M. R. Ahsan

    2014-01-01

    Full Text Available The design procedure and physical module of a compact wideband patch antenna for Ku band application are presented in this paper. Finite element method based on 3D electromagnetic field solver has been utilized for the designing and analyzing process of proposed microstrip line fed modified E-H shaped electrically small patch antenna. After successful completion of the design process through various simulations, the proposed antenna has been fabricated on printed circuit board (PCB and its characteristics have been studied. The parameters of the proposed antenna prototype have been measured in standard far-field rectangular shape anechoic measurement compartment. It is apparent from the measured antenna parameters that the proposed antenna achieved almost stable variation of radiation pattern over the entire operational band with 1380 MHz of -10 dB return loss bandwidth. The maximum gain of 7.8 dBi and 89.97% average efficiency within the operating band from 17.15 GHz to 18.53 GHz ensure the suitability of the proposed antenna for Ku band applications.

  19. Shuttle Ku-band and S-band communications implementation study

    Science.gov (United States)

    Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.

    1980-05-01

    Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.

  20. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  1. A Cryogenic GaAs PHEMT/ Ferroelectric Ku-Band Tunable Oscillator

    Science.gov (United States)

    Romanofsky, Robert R.; Miranda, Felix A.; VanKeuls, Fred W.

    1998-01-01

    A Ku-band tunable oscillator operated at and below 77 K is described. The oscillator is based on two separate technologies: a 0.25 mm GaAs pseudomorphic high electron mobility transistor (PHEMT) circuit optimized for cryogenic operation, and a gold microstrip ring resonator patterned on a thin ferroelectric (SrTiO3) film which was laser ablated onto a LaAlO3 substrate. A tuning range of up to 3% of the center frequency was achieved by applying dc bias between the ring resonator and ground plane. To the best of our knowledge, this is the first tunable oscillator based on a thin film ferroelectric structure demonstrated in the microwave frequency range. The design methodology of the oscillator and the performance characteristics of the tunable resonator are described.

  2. Three-year study on feasibility of Snow Water Equivalent retrieval using X- to Ku band SAR

    Science.gov (United States)

    Lemmetyinen, Juha; Pulliainen, Jouni; Kontu, Anna; Wiesmann, Andreas; Mätzler, Christian; Rott, Helmut; Nagler, Thomas; Meta, Adriano; Schneebeli, Martin; Proksch, Martin; Davidson, Malcolm; Schüttemeyer, Dirk; Kern, Michael

    2013-04-01

    The possibility of high-resolution SAR imagery to derive information on the Snow Water Equivalent (SWE) of seasonal snow cover is one of the main goals of the proposed CoReH2O (Cold Regions Hydrology High-Resolution Observatory) mission. CoReH2O is a candidate 7th Earth Explorer Core mission by the European Space Agency (ESA), currently in Phase A. The NoSREx (Nordic Snow Radar Experiment) campaign was initiated in 2009 to provide data for development of the CoReH2O geophysical retrieval algorithm. The campaign provides a time-series of backscatter observations at X to Ku bands, the dual frequency bands proposed for CoReH2O, from snow covered terrain in the boreal forest/taiga region. The campaign was designed to cover entire winter periods from snow free conditions to eventual snow melt-off. Backscatter measurements of snow cover are complemented by microwave emission (radiometer) observations and numerous in situ observations of snow, soil and atmospheric properties. The campaign thus provides a unique, near-continuous dataset of coinciding microwave observations of snow cover and diverse measurements of snow characteristics over several winter seasons. The main instrument of the campaign is the ESA SnowScat scatterometer, installed for the entire campaign at a fixed location. The instrument provides a consistent time series of observations, allowing relating the backscatter signature to small scale changes in the snowpack at a high temporal resolution. During the second and third seasons of the campaign, SnowScat measurements were complemented by extensive airborne data acquisitions using the ESA X/Ku band SnowSAR instrument. The airborne data provide additional information on spatial variability of the backscattering signal, and allow demonstration of the CoReH2O SWE retrieval concept. As a reference to backscatter observations, the campaign provides routinely both manual and automated measurements of snow properties throughout the season. In addition, several

  3. Investigation on the performance of an optically generated RF local oscillator signal in Ku-band DVB-S systems

    NARCIS (Netherlands)

    Khan, M.R.H.; Marpaung, D.A.I.; Burla, M.; Roeloffzen, C.G.H.; Bernhardi, E.H.; Ridder, de R.M.

    2011-01-01

    We investigate a way to externally generate the local oscillator (LO) signal used for downconversion of the Ku-band (10.7 − 12.75 GHz) RF signal received from a phased array antenna (PAA). The signal is then translated to an intermediate frequency (950 − 2150 MHz) at the output of the mixer of stand

  4. Satellite Monitoring for REDD: Radar vs. Optical

    Science.gov (United States)

    Mitchard, E. T.; Saatchi, S. S.; Ryan, C.; Woollen, E.; Goodman, L. E.; Williams, M.; Gerard, F.; Starkey, M.; Meir, P.

    2010-12-01

    The proposed REDD (Reducing Emissions from Deforestation and Degradation) protocol will only succeed in reducing emissions if deforestation and degradation can be accurately monitored. Ground surveys are prohibitively expensive over large areas, so satellite monitoring will be essential for independently monitoring deforestation and degradation rates, and thus calculating payments. In addition, remote sensing will be needed for developing historical baselines. It is clear that different methodologies will be needed for different project areas, scales and threat types. In addition different methodologies are needed depending on the capabilities of the countries in question: in the context of Africa for example, in-country monitoring tends to be at a basic level, yet for REDD it is important that countries are able to do their own monitoring, so simple methods must be developed and tested. In this paper we present change detection results for different remote sensing methodologies for potential REDD projects in Cameroon and Mozambique. We have shown previously that a good relationship exists between aboveground biomass (AGB) and L-band radar backscatter (Mitchard et al. 2009). The errors in estimation of absolute biomass were still relatively high, in the region of ±25 %. However, it is suspected that some of these errors are intransient, being due to the structure of the landscape and vegetation within a site, and so it has been predicted that errors in change detection are smaller than those for absolute estimation. We present evidence from these sites that this is indeed correct, using ALOS PALSAR L-band radar data from 2007, 2008 and 2009. Optical satellite data is widely used for monitoring deforestation, for example the excellent system run by INPE in Brazil. However, while optical data is good at detecting deforestation occurring progressively in large clear-fell blocks, as in the Amazon, it is less good at detecting small-scale deforestation or degradation

  5. Rainfall effects on Ku-band satellite link design in rainy tropical climate

    Science.gov (United States)

    Mandeep, J. S.; Hassan, S. I. S.; Tanaka, K.

    2008-03-01

    The performance of rain attenuation models in equatorial zones is still a debated issue due to the lack of measurements reported from these areas. Therefore,Therefore the rainfall path attenuation at 12.255 GHz measured at Universiti Sains Malaysia (USM) for three years is presented. It shows that the power law function of rain attenuation with ground rain rate deviates at very high rain rate. A comparison is made between the measured cumulative distributions and current prediction models, in order to determine which model gives the best prediction for this location.

  6. Design studies of the Ku-band, wide-band Gyro-TWT amplifier

    Science.gov (United States)

    Jung, Sang Wook; Lee, Han Seul; Jang, Kwong Ho; Choi, Jin Joo; Hong, Yong Jun; Shin, Jin Woo; So, Jun Ho; Won, Jong Hyo

    2014-02-01

    This paper reports a Ku-band, wide band Gyrotron-Traveling-wave-tube(Gyro-TWT) that is currently being developed at Kwangwoon University. The Gyro-TWT has a two stage linear tapered interaction circuit to obtain a wide operating bandwidth. The linearly-tapered interaction circuit and nonlinearly-tapered magnetic field gives the Gyro-TWT a wide operating bandwidth. The Gyro-TWT bandwidth is 23%. The 2d-Particle-in-cell(PIC) and MAGIC2d code simulation results are 17.3 dB and 24.34 kW, respectively for the maximum saturated output power. A double anode MIG was simulated with E-Gun code. The results were 0.7 for the transvers to the axial beam velocity ratio (=alpha) and a 2.3% axial velocity spread at 50 kV and 4 A. A magnetic field profile simulation was performed by using the Poisson code to obtain the grazing magnetic field of the entire interaction circuit with Poisson code.

  7. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.

    1997-01-01

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  8. Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band

    Energy Technology Data Exchange (ETDEWEB)

    Tehrani, Masoud Kavosh, E-mail: m_kavosh@mut-es.ac.ir [Department of Physics, Malek-ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Ghasemi, Ali [Department of Material Engineering, Malek-ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Moradi, Mahmood; Alam, Reza Shams [Department of Physics, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2011-08-18

    Highlights: > Substituted barium hexaferrite BaMg{sub 0.25}Mn{sub 0.25}Co{sub 0.5}Ti{sub 1.0}Fe{sub 10}O{sub 19} was prepared in powder configuration by solid state reaction. > The results exhibit a wideband single-layer microwave absorber with a satisfactory reflection loss throughout Ku-band. > The composite specimens for measurement of microwave absorber properties were prepared by mixing doped barium ferrite and PVC with a concentration of 70:30 by weight. > The bandwidth that can be achieved by utilization of this sample is 4.5 GHz. Minimum reflection loss of -34 dB can be obtained by sample '(e)'. - Abstract: Substituted barium hexaferrite BaMg{sub 0.25}Mn{sub 0.25}Co{sub 0.5}Ti{sub 1.0}Fe{sub 10}O{sub 19} was prepared in powder configuration by solid state reaction. The ferrite powders were mixed with polyvinylcloride (PVC) plasticizer to fabricate a microwave absorbing composite. X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and vector network analyzer were employed to characterize phase identification coupled with size and morphology of powder and microwave absorption properties of synthesized composites. It was found that the maximum reflection loss of -40 dB was appeared at frequency range of 12-18 GHz. In the present work, new cation substitutions in iron sites in the crystal lattice of barium ferrite, which can easily tune the bandwidth of the reflection loss, were used. To the best of our knowledge, this is the first study which displays the wideband absorber by employing single layer hexaferrite backed on the surface of copper.

  9. Study and Application Prospect of Ku-band Automatic Tracking System of Double Satellites’ Antenna%双卫星Ku波段自动对星系统研究及应用展望

    Institute of Scientific and Technical Information of China (English)

    郑学东; 高云勇

    2015-01-01

    The invention is a set of equipment for Ku-band antenna’s switch of two communication modes, including satellite-tracking controller of two communication systems, man-machine operation unit, antenna, duplexer, LNB(Low Noise Block), power divider, downlink frequency adapter, ordinary satellite modem, IP-STAR satellite modem, ordinary satellite BUC(Block Up-Converter), IP-STAR satellite BUC(Block Up-Converter) and uplink waveguide switch. This invention also disclosed application methods based on the said equipment. The invention added downlink frequency adapter and uplink waveguide switch to the existing satellite communication system and merged the original two discrete Ku-band communication systems into one system, which reduced the costs by a large margin, and was beneifcial to the popularization application of satellite communication technology.%本文介绍了一套Ku波段天线切换两种通信模式的装置,包括双通信系统寻星控制器、人机操作单元、天线、双工器、LNB、功分器、下行频率适配器、普通卫星调制解调器、IP-STAR卫星调制解调器、普通卫星BUC、IP-STAR卫星BUC及上行波导转换器。它在现有卫星通信系统上增加了下行频率适配器和上行波导转换器,将原来分立的两套Ku波段通信系统融合为一套系统,大幅度减少成本,有利于卫星通信技术的推广应用。

  10. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.

    1997-01-01

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...... front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise.......Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  11. Study of the Effect of Simulated Rain on the Offset Parabolic Antenna at Ku-Band with Different Elevation Angles

    Directory of Open Access Journals (Sweden)

    H. Mostafa

    2007-01-01

    Full Text Available Effect of rain on the receiver antenna is a major factor to degrade the system performance in a frequency above 10 GHz. This paper deals with the wet antenna attenuation at Ku-band with three different frequencies at different rain rates. During the Ku-band propagation experiment, it was discovered that rain water on the antenna caused a significant attenuation. It is necessary to estimate the losses caused by water on the antenna in order to separate these losses from the atmospheric propagation losses. The experiment was done at USM Engineering Campus to study the attenuation for these physical parameters. A Ku-band RF signal was generated by a signal generator and transmitted via horn antenna. The signal was received using a smooth offset antenna of 60 cm by 54 cm (Astro dish and measured using spectrum analyzer. In order to simulate a rain, pipes with bores of a same distance were implemented. Three cases were considered: in the first case one pipe was used to simulate low rain rate, the second case two pipes were used to simulate medium rain rate, and the third case three pipes were used to simulate heavy rain rate. In addition, the tap was used to control the flow of water in order to get more values of rain rate. The total attenuation of RF signals due to water layer on the feed and on the reflector feed was found to be 3.1 dB at worst case. On the other hand, the attenuation of RF signal due to the feed only was 2.83 dB, so the major attenuation occur was due to feed.

  12. Search for molecular bremsstrahlung radiation signals in Ku band with coincidental operations of radio telescopes with air shower detectors

    Directory of Open Access Journals (Sweden)

    Fukushima Masaki

    2013-06-01

    Full Text Available Microwave radiation from extensive air showers is expected to provide a new technique to observe UHECR. We insatlled and operate radio telescopes in Osaka and at Telescope Array site in Utah, USA. In Osaka, we are coincidentally operating two Ku band radio telescopes with an air shower array which consists of nine plastic scintillators with about 10 m separation. In Utah, we installed two telescopes just beside the Black Rock Mesa fluorescence detector (FD station of the Telescope Array experiment, and we operated the radio telescopes coincidentally with FD event triggers. We report the experimental setups and the results of these measurements.

  13. An interactive system for compositing digital radar and satellite data

    Science.gov (United States)

    Heymsfield, G. M.; Ghosh, K. K.; Chen, L. C.

    1983-01-01

    This paper describes an approach for compositing digital radar data and GOES satellite data for meteorological analysis. The processing is performed on a user-oriented image processing system, and is designed to be used in the research mode. It has a capability to construct PPIs and three-dimensional CAPPIs using conventional as well as Doppler data, and to composite other types of data. In the remapping of radar data to satellite coordinates, two steps are necessary. First, PPI or CAPPI images are remapped onto a latitude-longitude projection. Then, the radar data are projected into satellite coordinates. The exact spherical trigonometric equations, and the approximations derived for simplifying the computations are given. The use of these approximations appears justified for most meteorological applications. The largest errors in the remapping procedure result from the satellite viewing angle parallax, which varies according to the cloud top height. The horizontal positional error due to this is of the order of the error in the assumed cloud height in mid-latitudes. Examples of PPI and CAPPI data composited with satellite data are given for Hurricane Frederic on 13 September 1979 and for a squall line on 2 May 1979 in Oklahoma.

  14. Triple Band Parasitic Array Antenna for C-X-Ku-Band Application Using Out-of-Phase Coupling Approach

    Directory of Open Access Journals (Sweden)

    Anubhuti Khare

    2014-01-01

    Full Text Available Triple band parasitic array antenna for C-X-Ku-band application is presented. The proposed antenna is designed using the concept of parasitic array and out-of-phase coupling approach. The objects of research are to optimize total inductance of geometry by using out-of-phase inductance approach. The out of phase inductance of geometry consists of using two U-patches novel director on the left side of geometry, appropriate dimension of ground plan, and gap coupling between parasitic and active patches. The dimension of the ground plan geometry is 0.5λ mil × 0.5154λ mil. The usable impedance bandwidth of design antenna is “5.8 GHz to 18 GHz” (102% impedance bandwidth and gain enhancement is up to 11.8 dBi. The proposed antenna can be used for X-Ku band and C-band applications. Both simulated and measured results are presented, which are in good agreement. The proposed antenna was fabricated with a thin copper layer printed on a thin lossy FR4 substrate for low-cost production.

  15. A unified C-band and Ku-band geophysical model function determined by neural network approach

    Institute of Scientific and Technical Information of China (English)

    ZOU Juhong; LIN Mingsen; PAN Delu; CHEN Zhenghua; YANG Le

    2008-01-01

    The geophysical model function (GMF) describes the relationship between backscattering and sea surface wind,so that wind vec-tors can be retrieved from backscattering measurement.The GMF plays an important role in ocean wind vector retrievals,its per-formance will directly influence the accuracy of the retrieved wind vector.Neural network (NN) approach is used to develop a unified GMF for C-band and Ku-band (NN-GMF).Empirical GMF CMOD4 and QSCAT-1 are used to generate the simulated training data-set,and Gaussian noise at a signal noise ratio of 30 dB is added to the data-set to simulate the noise in the backscat-tering measurement.The NN-GMF employs radio frequency as an additional parameter,so it can be applied for both C-hand and Ku-band.Analyses show that the σ0 predicted by the NN-GMF is comparable with the σ0predicted by CMOD4 and QSCAT-1.Al-so the wind vectors retrieved from the NN-GMF and empirical GMF CMOD4 and QSCAT-1 are comparable,indicating that the NN-GMF is as effective as the empirical GMF,and has the advantages of the universal form.

  16. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    Science.gov (United States)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  17. Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation

    Science.gov (United States)

    Tang, Guoqiang; Wen, Yixin; Gao, Jinyu; Long, Di; Ma, Yingzhao; Wan, Wei; Hong, Yang

    2017-05-01

    Precipitation is one of the most important components in the water and energy cycles. Radars are considered the best available technology for observing the spatial distribution of precipitation either from the ground since the 1980s or from space since 1998. This study, for the first time ever, compares and evaluates the only three existing spaceborne precipitation radars, i.e., the Ku-band precipitation radar (PR), the W-band Cloud Profiling Radar (CPR), and the Ku/Ka-band Dual-frequency Precipitation Radar (DPR). The three radars are matched up globally and intercompared in the only period which they coexist: 2014-2015. In addition, for the first time ever, TRMM PR and GPM DPR are evaluated against hourly rain gauge data in Mainland China. Results show that DPR and PR agree with each other and correlate very well with gauges in Mainland China. However, both show limited performance in the Tibetan Plateau (TP) known as the Earth's third pole. DPR improves light precipitation detectability, when compared with PR, whereas CPR performs best for light precipitation and snowfall. DPR snowfall has the advantage of higher sampling rates than CPR; however, its accuracy needs to be improved further. The future development of spaceborne radars is also discussed in two complementary categories: (1) multifrequency radar instruments on a single platform and (2) constellations of many small cube radar satellites, for improving global precipitation estimation. This comprehensive intercomparison of PR, CPR, and DPR sheds light on spaceborne radar precipitation retrieval and future radar design.

  18. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  19. A Ku-band high power density AlGaN/GaN HEMT monolithic power amplifier

    Institute of Scientific and Technical Information of China (English)

    Ge Qin; Chen Xiaojuan; Luo Weijun; Yuan Tingting; Pang Lei; Liu Xinyu

    2011-01-01

    A high power density monolithic power amplifier operated at Ku band is presented utilizing a 0.3 μm AlGaN/GaN HEMT production process on a 2-inch diameter semi-insulating (SI) 4H-SiC substrate by MOCVD.Over the 12-14 GHz frequency range,the single chip amplifier demonstrates a maximum power of 38 dBm (6.3 W),a peak power added efficiency (PAE) of 24.2% and linear gain of 6.4 to 7.5 dB under a 10% duty pulse conditionwhen operated at Vds =25 V and Vgs =-4 V.At these power levels,the amplifier exhibits a power density in excess of 5 W/mm.

  20. Novel approach for designing a thin and broadband microwave absorber in Ku band based on substituted M-hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Afghahi, Seyyed Salman Seyyed [Department of Materials Engineering, Imam Hossein University, Tehran (Iran, Islamic Republic of); Jafarian, Mojtaba, E-mail: m.jafarian@srbiau.ac.ir [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Atassi, Yomen [Department of Applied Physics, Higher Institute for Applied Sciences and Technology, Damascus (Syrian Arab Republic)

    2016-12-01

    The design of novel microwave absorbers in the Ku band is still challenging. The aim of this work is to report the design of a new Ku absorber based on the combination of three M-hexaferrites with the formula of BaX{sub 0.3}Y{sub 0.3}Cr{sub 0.3}Fe{sub 11.1}O{sub 19} (XY=Co{sup 2+}Zr{sup 4+}, Zn{sup 2+}Ti{sup 4+}, Mn{sup 2+}Ce{sup 4+}), 15 wt% of each in epoxy matrix. The results indicate the formation of a broadband absorber with a reflection loss (RL) lower than −10 dB over the whole bandwidth 13.75–18 GHz. It has three matching frequencies (14.2, 15.3 and 16.8 GHz) with RL (−29.2, −21.5 and −24.7 dB, respectively) at a matching thickness of only 2.5 mm. This is to be compared with the RL of the absorbers based on 45 wt% of each ferrite alone in epoxy matrix are (−15, −28.8 and −20 dB, respectively) at matching frequency of (14.15, 13.55 and 16.5 GHz) and a matching thickness of 4 mm. This favorable performance resulting from combining the three ferrites within the absorber may be attributed to the enhanced exchange coupling interactions between the three powders of distinct magnetic characteristics. - Highlights: • Design a novel microwave absorber in the Ku band. • Proper combination of the 3 types of substituted M-hexaferrites in one layer. • Making broad band absorber with a maximum RL of −29.2 dB at 14.2 GHz. • The sample had 4.2 GHz bandwidth at a matching thickness of only 2.5 mm.

  1. Microwave-assisted synthesis of graphene–Ni composites with enhanced microwave absorption properties in Ku-band

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zetao [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China); Sun, Xin [Science and Technology on Electromagnetic Scattering Laboratory, 100854 Beijing (China); Li, Guoxian [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang (China); Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China); He, Jianping, E-mail: jianph@nuaa.edu.cn [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide–nickel (RGO–Ni) composites. The phase and morphology of as-synthesized RGO–Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO–Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO–Ni-2 composite with the thickness of 2 mm can reaches −42 dB at 17.6 GHz. The RGO–Ni composite is an attractive candidate for the new type of high performance microwave absorbing material. - Highlights: • Ni nanoparticles are grown densely and uniformly on the RGO sheets via microwave-assisted heating approach. • Ni resistance effect is proposed to explain the mechanism to decrease the permittivity with the rising combination of Ni and RGO. • The microwave absorption properties in Ku-band of RGO–Ni composites are effectively enhanced. • The mechanism to improve the microwave absorption properties is discussed.

  2. Design and Performance of a 560-Microsecond Ku-Band Binary Fiber-Optic Delay Line

    Science.gov (United States)

    2015-05-14

    number of channels for coarse, high-speed signal detection. The output of the channelizer cues a high-performance analog-to-digital converter ( ADC ...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data ...and dynamic range of the ADC as well as the time needed for the cueing process. A FODL can also be utilized to emulate range in radar testing such

  3. The SUMO Ship Detector Algorithm for Satellite Radar Images

    Directory of Open Access Journals (Sweden)

    Harm Greidanus

    2017-03-01

    Full Text Available Search for Unidentified Maritime Objects (SUMO is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, C- and X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from Spotlight to ScanSAR and resolutions (from 1–100 m and for all types and sizes of ships, within the physical limits imposed by the radar imaging. This paper describes, in detail, the algorithmic approach in all of the steps of the ship detection: land masking, clutter estimation, detection thresholding, target clustering, ship attribute estimation and false alarm suppression. SUMO is a pixel-based CFAR (Constant False Alarm Rate detector for multi-look radar images. It assumes a K distribution for the sea clutter, corrected however for deviations of the actual sea clutter from this distribution, implementing a fast and robust method for the clutter background estimation. The clustering of detected pixels into targets (ships uses several thresholds to deal with the typically irregular distribution of the radar backscatter over a ship. In a multi-polarization image, the different channels are fused. Azimuth ambiguities, a common source of false alarms in ship detection, are removed. A reliability indicator is computed for each target. In post-processing, using the results of a series of images, additional false alarms from recurrent (fixed targets including range ambiguities are also removed. SUMO can run in semi-automatic mode, where an operator can verify each detected target. It can also run in fully automatic mode, where batches of over 10,000 images have successfully been processed in less than two hours. The number of satellite SAR systems keeps increasing, as does their application to maritime surveillance. The open data policy of the EU

  4. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.K., E-mail: krishna62@rediffmail.com [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abbas, S.M.; Goswami, T.H. [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abhyankar, A.C. [Defence Institute of Advanced Technology( DIAT), Giri Nagar, Pune 411025 (India)

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni–Zn ferrite (Ni {sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8–18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6–1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2–12.4 GHz) and Ku (12–18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense. - Highlights: • Ni–Zn ferrite (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) with acetylene black found effective coating for microwave absorption. • Coating formulation containing 40 wt% ferrite, 3 wt% carbon and 57 wt% PU offered 40% absorption, 20

  5. A Ku band internally matched high power GaN HEMT amplifier with over 30% of PAE

    Science.gov (United States)

    Qin, Ge; Xiaojuan, Chen; Weijun, Luo; Tingting, Yuan; Yan, Pu; Xinyu, Liu

    2012-01-01

    We report a high power Ku band internally matched power amplifier (IMPA) with high power added efficiency (PAE) using 0.3 μm AlGaN/GaN high electron mobility transistors (HEMTs) on 6H-SiC substrate. The internal matching circuit is designed to achieve high power output for the developed devices with a gate width of 4 mm. To improve the bandwidth of the amplifier, a T type pre-matching network is used at the input and output circuits, respectively. After optimization by a three-dimensional electromagnetic (3D-EM) simulator, the amplifier demonstrates a maximum output power of 42.5 dBm (17.8 W), PAE of 30% to 36.4% and linear gain of 7 to 9.3 dB over 13.8-14.3 GHz under a 10% duty cycle pulse condition when operated at Vds = 30 V and Vgs = -4 V. At such a power level and PAE, the amplifier exhibits a power density of 4.45 W/mm.

  6. A Ku band internally matched high power GaN HEMT amplifier with over 30%of PAE

    Institute of Scientific and Technical Information of China (English)

    Ge Qin; Chen Xiaoiuan; Luo Weijun; Yuan Tingting; Pu Yan; Liu Xinyu

    2012-01-01

    We report a high power Ku band internally matched power amplifier (IMPA) with high power added efficiency (PAE) using 0.3 μm AlGaN/GaN high electron mobility transistors (HEMTs) on 6H-SiC substrate.The internal matching circuit is designed to achieve high power output for the developed devices with a gate width of 4 mm.To improve the bandwidth of the amplifier,a T type pre-matching network is used at the input and output circuits,respectively.After optimization by a three-dimensional electromagnetic (3D-EM) simulator,the amplifier demonstrates a maximum output power of 42.5 dBm (17.8 W),PAE of 30% to 36.4% and linear gain of 7 to 9.3 dB over 13.8-14.3 GHz under a 10% duty cycle pulse condition when operated at Vds =30 V and Vgs =-4 V.At such a power level and PAE,the amplifier exhibits a power density of 4.45 W/mm.

  7. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Science.gov (United States)

    Singh, Avanish Pratap; Anoop Kumar, S.; Chandra, Amita; Dhawan, S. K.

    2011-06-01

    β-Naphthalene sulphonic acid (β-NSA) doped polyaniline (PANI)-flyash (FA) composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37-21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D-VRH model. SEM images demonstrate that β-NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ'- iɛ″) and permeability (μ*=μ'- iμ″) of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21) using theoretical calculations given in Nicholson-Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 - 12.4 GHz) & Ku-Band (12.4 - 18 GHz) frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  8. Measurements of Cumulonimbus Clouds using quantitative satellite and radar data

    Science.gov (United States)

    Negri, A. J.; Reynolds, D. W.; Maddox, R. A.

    1977-01-01

    Results are reported for a preliminary study of SMS-2 digital brightness and IR data obtained at frequent 5-7.5 min intervals. The clouds studied were over the Central and Great Plains in midlatitudes and thus were typical of an environment much different from that of the tropical oceans. The satellite data are compared to radar data for both a severe weather event and weak thundershower activity of the type which might be a target for weather modification efforts. The relative importance of short time interval satellite data is shown for both cases, and possible relationships between the two types of data are presented. It is concluded that (1) using a threshold technique for visible reflected brightness, precipitating vs. nonprecipitating clouds can be discriminated; (2) brightness is well related to cloud size and shape; and (3) satellite-derived growth rates may be a significant parameter to be used in determining storm severity, especially if rapid time sequence data are used during the development phase of the storm.

  9. Only Ku-band microwave absorption by Fe{sub 3}O{sub 4}/ferrocenyl-CuPc hybrid nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wei Junji; Zhao Rui [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, High-Temperature Resistant Polymers and Composites Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu Xiaobo, E-mail: liuxb@uestc.edu.cn [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, High-Temperature Resistant Polymers and Composites Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2012-10-15

    A novel kind of hybrid nanospheres made of Fe{sub 3}O{sub 4} and ferrocenyl-CuPc (FCP) was prepared via effective solvothermal method and performed microwave absorptivity only in Ku-band with minimum reflection loss of -25 dB at 16.0 GHz corresponding to absorbing about 99.7% content of microwave. Scanning electron microscopy images indicated that the nanospheres with uniform particle size distribution have the average diameter of 135 nm. Due to the synergistic reaction between magnetic ferrocenyl-CuPc and Fe{sub 3}O{sub 4}, the hybrid nanospheres showed novel electromagnetic properties. The real part of complex permittivity of hybrid nanospheres remains stable in the range of 0.5-12.0 GHz and has a large fluctuation at 16.5 GHz. Moreover, the dielectric loss of hybrid nanospheres also appeared a sharp peak at 16.3 GHz with the value of 2.7. The specific gravity of hybrid nanospheres is about 2.08. On the basis of these results, the novel hybrids are believed to have potential applications in the microwave absorbing area in Ku-band. - Highlights: Black-Right-Pointing-Pointer A novel kind of ferrocenyl-CuPc/Fe{sub 3}O{sub 4} hybrid nanospheres was prepared. Black-Right-Pointing-Pointer The hybrids performed microwave absorptivity only in Ku-band. Black-Right-Pointing-Pointer The minimum absorbtion of hybrid nanospheres achieved -25 dB. Black-Right-Pointing-Pointer The material is believed to have broad application in notch filter in Ku-band.

  10. Gigawatt-class microwave generation from a novel Ku-band coaxial transit-time oscillator with low guiding magnetic field

    Science.gov (United States)

    Ling, Junpu; Zhang, Jiande; He, Juntao; Jiang, Tao; Song, Lili

    2016-10-01

    A non-uniform buncher and a depth-tunable collector have been proposed to improve the power capacity and conversion efficiency of the coaxial foilless transit-time oscillator (TTO) in our previous work. Recently, our Ku-band coaxial TTO with low guiding magnetic field is improved by employing them, and the related experimental investigations are carried out on the TORCH-01 accelerator. It is shown that the non-uniform buncher plays a key role in the enhancement of microwave pulse duration. The influences of the collector's depth on characteristics of the device indicate that the conversion efficiency can be improved by optimizing the collector's depth in the experiments. With the diode voltage 460 kV, the beam current 8.7 kA, and the guiding magnetic field of 0.6 T, a radiation power of 1 GW with the conversion efficiency of 25% at 14.3 GHz is generated by our improved TTO. The output pulse duration is 26 ns and no obvious pulse shortening is observed. The experimental results demonstrate the abilities of this improved Ku-band device to generate gigawatt-class Ku-band microwave with low guiding magnetic field.

  11. Linking oil production to surface subsidence from satellite radar interferometry

    Science.gov (United States)

    Xu, Haibin; Dvorkin, Jack; Nur, Amos

    Land subsidence over the Belridge and Lost Hills oil fields, Southern California, was measured using spaceborne interferometric synthetic aperture radar (InSAR). During the 105-day period between 11/5/95 and 2/17/96, the subsidence in the center of the Lost Hills field reached 15 cm. We assume that this surface subsidence resulted from the vertical shrinkage of the reservoir, which in turn was due to oil production and the resulting pore pressure drop. We model this mechanical effect using an elastic deformation theoretical solution with input constants taken from relevant experiments. The modeled surface deformation matches the InSAR measured values. This result indicates that it is possible, in principle, to monitor hydrocarbon production using satellite-based measurements of earth deformation.

  12. Earthquake Monitoring in Australia Using Satellite Radar Interferometry

    Institute of Scientific and Technical Information of China (English)

    Ge Lin-lin; E. Cheng; D. Polonska; C. Rizos; C. Collins; C. Smith

    2003-01-01

    Are there any earthquakes in Australia? Although most Australians are not as familiar with earthquakes as citizens in countries such as Japan, there are some quakes on the Australian continent every year. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been widely used in recent years for monitoring crustal deformation due to earthquakes, volcanoes, underground mining, oil extraction,and so on. Hence the follow-on question is, can repeat-pass satellite DInSAR be used in Australian regions to monitor earthquakes? Nine ERS-1 and ERS-2 radar images of the Burakin region in Western Australia were used to form the InSAR pairs.Twenty-two InSAR pairs were formed and were used to study the temporal decorrelation characteristics in the Burakin area. It was found that good coherence could be maintained all over the full scene for a pair spanning 211 d. The repeat cycles of RADARSAT and ERS (all C-band SAR missions) are 24 and 35 drespectively, Furthermore it is easier to maintain good coherence in L-band SAR images (e.g. the JERS-1 mission has a 44 d repeat cycle). Therefore the authors are confident that repeat-pass differential InSAR can be used to monitor ground deformation due to earthquakes in the Burakin region.

  13. Marine parameters from synergy of optical and radar satellite data

    Science.gov (United States)

    Lehner, S.; Hoja, D.; Schulz-Stellenfleth, J.

    In 2001 the European Space Agency ESA will launch the earth observation satellite ENVISAT. It will carry several instruments that provide new opportunities to measure oceanographic variables. Together, they represent the main measurement techniques of satellite oceanography, and complement each other in an ideal manner. These instruments are to be used in synergy to: Improve the analysis of measured wind and ocean wave fields, and thereby improve weather forecasting at weather centers; Determine the extent and variables of sea ice and develop a five-day sea ice prediction model, to support maritime shipping and offshore activities; Monitor and map sediment and suspended matter transport in coastal regions, especially in areas with large river estuaries, which greatly affects shipping lanes, harbors, and dredging activities; Monitor hydrobiological and bio-geochemical variables related to water quality in coastal regions and large inland waters, which affects ecology, coastal development, aquaculture, drinking water supplies, and tourism. To prepare the oceanographic community to make best use of the ENVISAT sensors in the pre-launch phase, existing algorithms to derive marine parameters are used and validated using data from the ERS SAR, the ERS RA, SeaWiFS and IRS MOS sensors now in operation. Derived products are used to address problems that can best be tackled using the synergy of radar and optical data, such as the effect of surface slicks on radar wind measurements, of sea state on ocean color, of wind and waves on the resuspension of suspended matter, and of wind and waves on sea ice variables.

  14. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  15. Development of a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Beeker, W.P.; Beeker, Willem; Noharet, Bertrand; Verpoorte, Jaco; Baggen, Rens

    Novel avionic communication systems are required for various purposes, for example to increase the flight safety and operational integrity as well as to enhance the quality of service to passengers on board. To serve these purposes, a key technology that is essential to be developed is an antenna

  16. Observing convection with satellite, radar, and lightning measurements

    Science.gov (United States)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  17. Ku-Band Interferometry.

    Science.gov (United States)

    mapping some discrete radio sources: the Crab Nebula , Cas A, and Cyg A. The system contains two 8 ft parabolic antennas and receives radiation at...degrees over a period of 2 hours. Consistent fringe components were obtained from the Crab Nebula with the baseline set at 8 m. (Author)

  18. Remote sensing satellite formation for bistatic synthetic aperture radar observation

    Science.gov (United States)

    D'Errico, Marco; Moccia, Antonio

    2001-12-01

    In recent years the Italian Space Agency has been proceeding to the definition and launch of small missions. In this ambit, the BISSAT mission was proposed and selected along with five other missions for a competitive Phase A study. BISSAT mission concept consists in flying a passive SAR on board a small satellite, which observes the area illuminated by an active SAR, operating on an already existing large platform. Several scientific applications of bistatic measurements can be envisaged: improvement of image classification and pattern recognition, derivation of medium-resolution digital elevation models, velocity measurements, measurements of sea-wave spectra. BISSAT payload is developed on the basis of the X-band SAR of the COSMO/SkyMed mission, while BISSAT bus is based on an upgrade of MITA. Orbit design has been performed, leading to the same orbit parameters apart from the ascending node right ascension (5.24 degree(s) shift) and the time of the passage on the ascending node (1.17s shift). A minimum distance at the passage of the orbit crossing point of about 42 km (5.7s) is computed. To maintain adequate swath overlap along the orbit, attitude maneuver or antenna electronic steering must be envisaged and traded-off taking into account radar performance and cost of hardware upgrade.

  19. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  20. A general interactive system for compositing digital radar and satellite data

    Science.gov (United States)

    Ghosh, K. K.; Chen, L. C.; Faghmous, M.; Heymsfield, G. M.

    1981-01-01

    Reynolds and Smith (1979) have considered the combined use of digital weather radar and satellite data in interactive systems for case study analysis and forecasting. Satellites view the top of clouds, whereas radar is capable of observing the detailed internal structure of clouds. The considered approach requires the use of a common coordinate system. In the present investigation, it was decided to use the satellite coordinate system as the base system in order to maintain the fullest resolution of the satellite data. The investigation is concerned with the development of a general interactive software system called RADPAK for remapping and analyzing conventional and Doppler radar data. RADPAK is implemented as a part of a minicomputer-based image processing system, called Atmospheric and Oceanographic Image Processing System. Attention is given to a general description of the RADPAK system, remapping methodology, and an example of satellite remapping.

  1. Advanced multi-frequency radar: Design, preliminary measurements and particle size distribution retrieval

    Science.gov (United States)

    Majurec, Ninoslav

    In the spring of 2001 the Microwave Remote Sensing Laboratory (MIRSL) at the University of Massachusetts began the development of an advanced Multi-Frequency Radar (AMFR) system for studying clouds and precipitation. This mobile radar was designed to consist of three polarimetric Doppler subsystems operating at Ku-band (13.4 GHz), Ka-band (35.6 GHz) and W-band (94.92 GHz). This combination of frequency bands allows a measurement of a wide range of atmospheric targets ranging from weakly reflecting clouds to strong precipitation. The antenna beamwidths at each frequency were intentionally matched, ensuring consistent sampling volume. Multi-frequency radar remote sensing techniques are not widely used because few multi-frequency radars are available to the science community. One exception is the 33 GHz/95 GHz UMass Cloud Profiling Radar System (CPRS), which AMFR is intended to replace. AMFR's multi-parameter capabilities are designed for characterizing the complex microphysics of layer clouds and precipitation processes in winter storms. AMFR will also play an important role in developing algorithms and validating measurements for an upcoming generation of space-borne radars. The frequency bands selected for AMFR match those of several sensors that have been deployed or are under development. These include the Japanese Aerospace Exploration Agencies (JAXA's) Tropical Rainfall Measuring Mission (TRMM) satellite Ku-band (13 GHz) radar, the CloudSat W-band (95 GHz) radar, and the Global Precipitation Mission (GPM) satellite radars at Ku-band and Ka-band. This dissertation describes the AMFR hardware design and development. Compared to CPRS, the addition of one extra frequency band (Ku) will extend AMFR's measurement capabilities towards the larger particle sizes (precipitation). AMFR's design is based around high-power klystron amplifiers. This ensures complete coherency (CPRS uses magnetrons and coherent-on-receive technique). The partial loss in sensitivity due to

  2. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia

    NARCIS (Netherlands)

    Sulistioadi, Y.B.; Tseng, K.H.; Shum, C.K.; Hidayat, Hidayat; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S.

    2015-01-01

    Remote sensing and satellite geodetic observations are capable of hydrologic monitoring of freshwater resources. Although satellite radar altimetry has been used in monitoring water level or discharge, its use is often limited to monitoring large rivers (>1 km) with longer interval periods (&g

  3. Focusing electrode and coaxial reflector used for reducing the guiding magnetic field of the Ku-band foilless transit-time oscillator.

    Science.gov (United States)

    Ling, Junpu; Zhang, Jiande; He, Juntao; Wang, Lei; Deng, Bingfang

    2014-08-01

    Based on the theoretical analysis of the intense relativistic electron beam propagation in the coaxial drift-tube, a focusing electrode and a coaxial reflector is proposed to lessen the demand of the coaxial Ku-band foilless transit-time oscillator (TTO) for the guiding magnetic field. Moreover, a Ku-band TTO with the focusing electrode and the coaxial reflector is designed and studied by particle in cell simulation. When the diode voltage is 390 kV, the beam current 7.8 kA, and the guiding magnetic field is only 0.3 T, the device can output 820 MW microwave pulse at 14.25 GHz by means of the simulation. However, for the device without them, the output power is only 320 MW. The primary experiments are also carried out. When the guiding magnetic field is 0.3 T, the output power of the device with the focusing electrode and the coaxial reflector is double that of the one without them. The simulation and experimental results prove that the focusing electrode and the coaxial reflector are effective on reducing the guiding magnetic field of the device.

  4. Satellite radar altimetry for monitoring small river and lakes in Indonesia

    Directory of Open Access Journals (Sweden)

    Y. B. Sulistioadi

    2014-03-01

    Full Text Available Remote sensing and satellite geodetic observations are capable for hydrologic monitoring of freshwater resources. For the case of satellite radar altimetry, limited temporal resolutions (e.g., satellite revisit period prohibit the use of this method for a short ( To address this scientific challenge, this study tries to monitor small (40–200 m width and medium-sized (200–800 m width rivers and lakes using satellite altimetry through identification and choice of the over-water radar waveforms corresponding to the appropriately waveform-retracked water level. This study addresses the humid tropics of Southeast Asia, specifically in Indonesia, where similar studies do not yet exist and makes use Level 2 radar altimeter measurements generated by European Space Agency's (ESA's Envisat (Environmental Satellite mission. This experiment proves that satellite altimetry provides a good alternative, or the only means in some regions, to measure the water level of medium-sized river (200–800 m width and small lake (extent 2 in Southeast Asia humid tropic with reasonable accuracy. In addition, the procedure to choose retracked Envisat altimetry water level heights via identification or selection of standard waveform shapes for inland water is recommended and should be a standard measure especially over small rivers and lakes. This study also found that Ice-1 is not necessarily the best retracker as reported by previous studies, among the four standard waveform retracking algorithms for Envisat radar altimetry observing inland water bodies.

  5. Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar

    OpenAIRE

    Samsonov, Sergey V.; Lantz, Trevor C.; Kokelj, Steven V; Zhang, Yu

    2016-01-01

    Advancements in radar technology are increasing our ability to detect Earth surface deformation in permafrost environments. In this paper we use satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) to describe the growth of a large, relatively young pingo in the Tuktoyaktuk Coastlands. High-resolution RADARSAT-2 imagery (2011–2014) analyzed with the Multidimensional Small Baseline Subset (MSBAS) DInSAR revealed a maximum 2.7 cm yr−1 of domed uplift locate...

  6. Detecting weather radar clutter using satellite-based nowcasting products

    DEFF Research Database (Denmark)

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    for the detecting and removal of clutter. Naturally, the improved spatio-temporal resolution of the Meteosat Second Generation sensors, coupled with its increased number of spectral bands, is expected to yield even better detection accuracies. Weather radar data from three C-band Doppler weather radars...... Application Facility' of EUMETSAT and is based on multispectral images from the SEVIRI sensor of the Meteosat-8 platform. Of special interest is the 'Precipitating Clouds' product, which uses the spectral information coupled with surface temperatures from Numerical Weather Predictions to assign probabilities...... by the resolution of the radar data. Subsequently, a supervised classifier was developed based on training data selected by a weather radar expert. Results of classification of data from several different meteorological events are shown. Cases of widespread sea clutter caused by anomalous propagation are especially...

  7. Simulation of Ku-band magnetically insulated transmission line oscillator%Ku波段磁绝缘线振荡器的数值模拟

    Institute of Scientific and Technical Information of China (English)

    文杰; 田扬超; 范植开; 陈代兵; 王冬; 秦奋

    2011-01-01

    A Ku-band magnetically insulated transmission line oscillator(MILO) is put forward with the theoretical analysis according to dispersion characteristics of slow wave structure. Compared with common MILOs, the Ku-band MILO designed has a choke cavity whose outer radius is increased to avoid the breakdown between cathode and anode. The resonant frequency of 13. 536 GHz and loaded quality factor of 43 are obtained through numerical calculation of the open cavity model of MILO. Then the structure parameters are further optimized and the impact of diode voltage on output power and efficiency is investigated with 2. 5 dimensional particle-in-cell simulation. High power microwave is generated from the optimized Ku-band MILO with the average output power of 3. 69 GW, central frequency of 13. 62 GHz and efficiency of 12. 6% , when the beam voltage is 600 kV and current is 47. 4 kA.%根据现有的慢波结构色散特性的理论分析,提出了一种Ku波段的磁绝缘线振荡器(MILO).与常见MILO的慢波结构不同,该MILO的慢波结构通过增大扼流腔的外半径来实现扼流作用,以防止阴阳极击穿.利用3维电磁场模拟软件对Ku波段MILO的开放腔模型进行了分析,得到其谐振频率为13.536GHz以及有载品质因数为43.同时利用2.5维全电磁粒子模拟软件对其进行数值模拟,进一步优化了MILO结构,研究了输出微波的功率效率与输入电压的关系,得到的最优工作电压为600 kV.在外加电压600 kV、束流47.4 kA的情况下,模拟得到的平均功率为3.69 GW,中心频率为13.62 GHz,功率转换效率为12.6%.

  8. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  9. Design of an Oscillator for Satellite Reception

    NARCIS (Netherlands)

    Leong, F.H.E.H.C.

    2007-01-01

    This thesis presents research on an LC-oscillator for Ku-band (10.7-12.7GHz) satellite reception. The zero-IF receiver architecture, proposed in the joint project involving the University of Twente and NXP Research, requires a 11.7GHz quadrature oscillator that achieves a phase noise of -85dBc/Hz@10

  10. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  11. Ku波段高效率脉冲行波管的研制%The Development and Manufacture for Ku-Band High Efficiency Pulse TWT

    Institute of Scientific and Technical Information of China (English)

    陈彩云; 李晓峰; 张超

    2012-01-01

    The Ku-band high efficiency pulse TWT(Travel Wave Tube)had been manufactured and its design,CAD simulation and test results were also presented. On the basic of CAD software the election gun, magnetic focus system,helical slow wave circuit beam wave intersection and electrion beam collector,of which this TWT consists, have been optimazed that the pulse TWT is continually improved in the period manufacture processing. The manufectured travel wave tubes meet the technical specifications for their proper use in the developing rada system. The high efficiency, high output are realized in this TWT, that the pulse output power is more than 2. 2 kW and officieney oves 30% at the condition of the same driven power and 2 GHz frequency range of Ku-band.%简要介绍了Ku波段高效率脉冲行渡管的设计、CAD计算和测试结果.通过对电子枪、聚焦系统、慢波电路、电子注和慢波线高频场大信号互作用的计算、收集极的设计,获得了符合新雷达系统技术指标要求的整管.实测结果为:在Ku波段2 GHz频带范围内,等激励、脉冲输出功率大于2.2 kW、效率大于30%.

  12. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

    Science.gov (United States)

    2014-09-30

    radars to monitor the melting and freezing cycles of the Arctic Ocean north of 65o. Satellite data collections will support in-situ buoy clusters and... ice -type, and lead expansion/contraction with temporal resolutions from hours to days. Ultimately provide a routine Arctic coverage and generate...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation. b) Develop a Neural Network algorithm for ice -type

  13. Observing hourly changes in a glacier's surface with Terrestrial Radar Interferometry

    Science.gov (United States)

    Voytenko, D.; Dixon, T. H.; Osmanoglu, B.; Werner, C. L.; Howat, I. M.

    2012-12-01

    Capturing rapid changes in the surface of a glacier requires frequent observations. Terrestrial Radar Interferometry (TRI) is a new technique that relies on a portable, ground-based radar to image the terminal zones of glaciers up to 10 km from the calving front. TRI offers denser spatial sampling than GPS and higher temporal sampling than satellite SAR, making it an excellent tool to monitor fast-moving glaciers. This study focuses on developing methods to generate robust topographic and deformation maps with TRI. Breidamerkurjokull is a fast-moving glacier in southeastern Iceland with summer velocities as high as 4 m/d at the calving front. The glacier terminates at, and continuously calves icebergs into, a tidally-influenced lagoon. To better understand its dynamics, we image the glacier with the GAMMA Portable Radar Interferometer (GPRI). The GPRI is a Ku-band real-aperture radar with one transmitting and two receiving antennas. The configuration of the receiving antennas allows estimates of glacier topography with each subsequent image acquisition along with a deformation map, since the baseline between the antennas is known and fixed. We will present results that show the temporal evolution of the glacier's surface over a period of approximately one week, including volumetric ice change estimates for the imaged area.

  14. Simulation of Space-borne Radar Observation from High Resolution Cloud Model - for GPM Dual frequency Precipitation Radar -

    Science.gov (United States)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2011-12-01

    A comprehensive space-borne radar simulator has been developed to support active microwave sensor satellite missions. The two major objectives of this study are: 1) to develop a radar simulator optimized for the Dual-frequency Precipitation Radar (KuPR and KaPR) on the Global Precipitation Measurement Mission satellite (GPM-DPR) and 2) to generate the synthetic test datasets for DPR algorithm development. This simulator consists of two modules: a DPR scanning configuration module and a forward module that generates atmospheric and surface radar observations. To generate realistic DPR test data, the scanning configuration module specifies the technical characteristics of DPR sensor and emulates the scanning geometry of the DPR with a inner swath of about 120 km, which contains matched-beam data from both frequencies, and an outer swath from 120 to 245 km over which only Ku-band data will be acquired. The second module is a forward model used to compute radar observables (reflectivity, attenuation and polarimetric variables) from input model variables including temperature, pressure and water content (rain water, cloud water, cloud ice, snow, graupel and water vapor) over the radar resolution volume. Presently, the input data to the simulator come from the Goddard Cumulus Ensemble (GCE) and Weather Research and Forecast (WRF) models where a constant mass density is assumed for each species with a particle size distribution given by an exponential distribution with fixed intercept parameter (N0) and a slope parameter (Λ) determined from the equivalent water content. Although the model data do not presently contain mixed phase hydrometeors, the Yokoyama-Tanaka melting model is used along with the Bruggeman effective dielectric constant to replace rain and snow particles, where both are present, with mixed phase particles while preserving the snow/water fraction. For testing one of the DPR retrieval algorithms, the Surface Reference Technique (SRT), the simulator uses

  15. Flood Monitoring and Hydrologic Studies Using Retracked Satellite Radar Altimetry

    Science.gov (United States)

    Zhang, M.; Shum, C.; Lee, H.; Alsdorf, D.; Schwartz, F.

    2008-12-01

    Nadir, pulse-limited radar altimetry measurements have been used to monitor large surface-water bodies. In spite of progress, there is a need for a robust and automated procedure, which allows classification and stage measurements in small water bodies, which lying along the orbital path, using multiple radar altimeter measurements. Here we used an algorithm, which is mainly based on radar scatter waveform response and statistical analysis of mean and standard deviation of the resulting water level change to classify surface- waters from other land covers. We tested the algorithm using 10-Hz retracked radar altimetry measurements from TOPEX over regions including the Amazon River basin, the Prairie Pothole Region in North America, and south-western Taiwan. The estimated water-level stages are compared with data from available stage measurements, and altimetry data available from public data centers. We also applied the algorithm to study the 1997 hundred-year Red River flood, and the June 2008 fifty-year flood in the Upper Midwest of the United States. For the1997 flood, it is found that the flooded regions detected by altimetry include the Red River Basin in North Dakota and Minnesota, the Missouri River Basin in North Dakota and South Dakota, the Minnesota River Basin and the Mississippi River Basin in Minnesota and Iowa. The extent of the flood agrees with the USGS record. The observed water height in Grand Forks reaches 6 meters above the normal. The ENVISAT altimetry is shown to be able to track the ebb and recede of the 2008 Iowa City flood. The results of this study could be applied to provide improved accuracy and potentially automated classification of nadir radar altimetry observed small inland water body measurements for hydrologic studies and for flood monitoring.

  16. Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling

    NARCIS (Netherlands)

    Auriac, A.; Spaans, K.H.; Sigmundsson, F.; Hooper, A.; Schmidt, P.; Lund, B.

    2013-01-01

    A broad uplift occurs in Iceland in response to the retreat of ice caps, which began circa 1890. Until now, this deformation signal has been measured primarily using GPS at points some distance away from the ice caps. Here, for the first time we use satellite radar interferometry (interferometric sy

  17. Mapping Offshore Winds Around Iceland Using Satellite Synthetic Aperture Radar and Mesoscale Model Simulations

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Nawri, Nikolai

    2015-01-01

    The offshore wind climate in Iceland is examined based on satellite synthetic aperture radar (SAR), coastal meteorological station measurements, and results from two atmospheric model data sets, HARMONIE and NORA10. The offshore winds in Iceland are highly influenced by the rugged coastline. Lee...

  18. The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets

    DEFF Research Database (Denmark)

    Ekholm, Simon; Bamber, J.L.; Krabill, W.B.

    2002-01-01

    -correlated noise can be effectively removed by the so-called relocation error correction method. The adjustment, however, produces a different spatial sampling of the data, which introduces a non-negligible slope related bias to the computation of digital elevation models. In this paper we incorporate high......Satellite radar altimetry is the most important data source for ice sheet elevation modeling but it is well established that the accuracy of such data from satellite borne radar altimeters degrade seriously with increasing surface slope and level of roughness. A significant fraction of the slope...... as a linear function of surface slope. This linear correspondence is in turn tested as a model for adjusting the satellite altimetry data for the observed slope correlated bias. The adjustment is shown to have a significant effect in terms of reducing the bias, thus improving the modeling accuracy of the data....

  19. Phase calibration of the EISCAT Svalbard Radar interferometer using optical satellite signatures

    Directory of Open Access Journals (Sweden)

    J. M. Sullivan

    2006-09-01

    Full Text Available The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.

  20. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.;

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study...... is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements...

  1. Simulation of the satellite radar altimeter sea ice thickness retrieval uncertainty

    Directory of Open Access Journals (Sweden)

    R. T. Tonboe

    2009-07-01

    Full Text Available Although it is well known that radar waves penetrate into snow and sea ice, the exact mechanisms for radar-altimeter scattering and its link to the depth of the effective scattering surface from sea ice are still unknown. Previously proposed mechanisms linked the snow ice interface, i.e. the dominating scattering horizon, directly with the depth of the effective scattering surface. However, simulations using a multilayer radar scattering model show that the effective scattering surface is affected by snow-cover and ice properties. With the coming Cryosat-2 (planned launch 2009 satellite radar altimeter it is proposed that sea ice thickness can be derived by measuring its freeboard. In this study we evaluate the radar altimeter sea ice thickness retrieval uncertainty in terms of floe buoyancy, radar penetration and ice type distribution using both a scattering model and ''Archimedes' principle''. The effect of the snow cover on the floe buoyancy and the radar penetration and on the ice cover spatial and temporal variability is assessed from field campaign measurements in the Arctic and Antarctic. In addition to these well known uncertainties we use high resolution RADARSAT SAR data to simulate errors due to the variability of the effective scattering surface as a result of the sub-footprint spatial backscatter and elevation distribution sometimes called preferential sampling. In particular in areas where ridges represent a significant part of the ice volume (e.g. the Lincoln Sea the simulated altimeter thickness estimate is lower than the real average footprint thickness. This means that the errors are large, yet manageable if the relevant quantities are known a priori. A discussion of the radar altimeter ice thickness retrieval uncertainties concludes the paper.

  2. Simulation of the satellite radar altimeter sea ice thickness retrieval uncertainty

    Science.gov (United States)

    Tonboe, R. T.; Pedersen, L. T.; Haas, C.

    2009-07-01

    Although it is well known that radar waves penetrate into snow and sea ice, the exact mechanisms for radar-altimeter scattering and its link to the depth of the effective scattering surface from sea ice are still unknown. Previously proposed mechanisms linked the snow ice interface, i.e. the dominating scattering horizon, directly with the depth of the effective scattering surface. However, simulations using a multilayer radar scattering model show that the effective scattering surface is affected by snow-cover and ice properties. With the coming Cryosat-2 (planned launch 2009) satellite radar altimeter it is proposed that sea ice thickness can be derived by measuring its freeboard. In this study we evaluate the radar altimeter sea ice thickness retrieval uncertainty in terms of floe buoyancy, radar penetration and ice type distribution using both a scattering model and ''Archimedes' principle''. The effect of the snow cover on the floe buoyancy and the radar penetration and on the ice cover spatial and temporal variability is assessed from field campaign measurements in the Arctic and Antarctic. In addition to these well known uncertainties we use high resolution RADARSAT SAR data to simulate errors due to the variability of the effective scattering surface as a result of the sub-footprint spatial backscatter and elevation distribution sometimes called preferential sampling. In particular in areas where ridges represent a significant part of the ice volume (e.g. the Lincoln Sea) the simulated altimeter thickness estimate is lower than the real average footprint thickness. This means that the errors are large, yet manageable if the relevant quantities are known a priori. A discussion of the radar altimeter ice thickness retrieval uncertainties concludes the paper.

  3. Satellite Formation Design for Space Based Radar Applications

    Science.gov (United States)

    2007-07-30

    Practical Guidance Methodology for Relative Motion of LEO Spacecraft Based on the Clohessy-Wiltshire Equations,” AAS Paper 04-252, AAS/AIAA Space...Non- Circular Reference Orbit," AAS Paper 01-222, AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, CA, Feb 11-16, 2001. 11. D. Brouwer ...Small Eccentricities or Inclinations in the Brouwer Theory of the Artificial Satellite,” The Astronomical Journal, Vol. 68, October 1963, pp. 555

  4. Atmospheric refraction corrections of radiowave propagation for airborne and satellite_borne radars

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atmospheric refraction corrections of radiowave propagation for airborne and satellite_borne radars for the spherically stratified (horizontally homogeneous) atmosphere (including lower atmosphere and ionosphere) are discussed. First, the critical apparent depression angle for radar and the perigee of ray are found using the refractive index profile close to the lowest point of the ray as the refractive index profile of spherically stratified atmosphere, and strict expressions of line_of_sight distance for radar that take account of refraction are presented. Then, to which condition the atmospheric refraction to be corrected belongs is determined, and the positioning corrections for all the twelve atmospheric refractive conditions are made using ray_tracing method. At last, the velocity_measuring corrections are made.

  5. A Ku-band wide-tuning-range high-output-power VCO in InGaP/GaAs HBT technology

    Science.gov (United States)

    Jincan, Zhang; Yuming, Zhang; Hongliang, Lü; Yimen, Zhang; Bo, Liu; Leiming, Zhang; Fei, Xiang

    2015-06-01

    A fully integrated Ku-band voltage controlled oscillator (VCO) is presented in an InGaP/GaAs heterojunction bipolar transistor (HBT) technology. To achieve the wide tuning range (TR), the VCO employs a Colpitts configuration, and the VCO simultaneously achieves high output power. The implemented VCO demonstrates an oscillation frequency range from 12.82 to 14.97 GHz, a frequency TR of 15.47%, an output power from 0.31 to 6.46 dBm, and a phase noise of -94.9 dBc/Hz at 1 MHz offset from 13.9 GHz center frequency. The VCO consumes 52.75 mW from 5 V supply and occupies an area of 0.81 × 0.78 mm2. Finally, the figures-of-merit for VCOs is discussed. Project supported by the National Basic Research Program of China (No. 2010CBxxxx05), the Advance Research Project of China (No. 51308xxxx06), the Advance Research Foundation of China (No. 9140A08xxxx11DZ111), and Doctoral Scientific Research Foundation of Henan University of Science and Technology (No. 400613480011), and the Foundation of He'nan Educational Commettee (No. 15A510001).

  6. MONITORING OF THE UNDERMINED TERRITORIES OF KARAGANDA COAL BASIN ON THE BASIS OF SATELLITE RADAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    S. B. Ozhigina

    2016-06-01

    Full Text Available In the Karaganda coal basin, mines are located in close proximity to each other and to the city of Karaganda and ongoing mining operations are accompanied by a dangerous process of settling the earth's surface and monitoring are essential for the region's econ-omy. Underground mining leads to the formation of voids in the rock mass, which cause displacement of the earth surface. This paper demonstrates an innovative use of the integrated approach for monitoring on the example of Karaganda coal basin, which includes estimation of the rock mass displacement using leveling profile lines and satellite radar interferometry. It is proved that satellite radar interferometry provides reliable results of surface subsidence measurements in mining areas and can be used for con-sidered sort of monitoring.

  7. Monitoring of the Undermined Territories of Karaganda Coal Basin on the Basis of Satellite Radar Interferometry

    Science.gov (United States)

    Ozhigina, S. B.; Mozer, D. V.; Ozhigin, D. S.; Ozhigin, S. G.; Bessimbayeva, O. G.; Khmyrova, E. N.

    2016-06-01

    In the Karaganda coal basin, mines are located in close proximity to each other and to the city of Karaganda and ongoing mining operations are accompanied by a dangerous process of settling the earth's surface and monitoring are essential for the region's econ-omy. Underground mining leads to the formation of voids in the rock mass, which cause displacement of the earth surface. This paper demonstrates an innovative use of the integrated approach for monitoring on the example of Karaganda coal basin, which includes estimation of the rock mass displacement using leveling profile lines and satellite radar interferometry. It is proved that satellite radar interferometry provides reliable results of surface subsidence measurements in mining areas and can be used for con-sidered sort of monitoring.

  8. A satellite-borne radar wind sensor (RAWS)

    Science.gov (United States)

    Moore, Richard K.; Stuart, Michael; Propp, Timothy

    1993-01-01

    Modeling global atmospheric circulations and forecasting the weather would improve if worldwide information on winds aloft were available. Accurate prediction of weather is important to agriculture, shipping, air traffic, and many other fields. Global system models of climate are of great importance. Current global atmospheric models use pressure measurements and thermodynamic properties to calculate the effects of wind for use in Numerical Weather Prediction (NWP) models. Inputs to the NWP models are temperature, pressure and wind velocities at different heights. Clearly direct wind measurements could significantly improve the NWP model performance. The RAdar Wind Sounder (RAWS) program at the University of Kansas is a study of the feasibility and the trade-offs in the design of a space-based radar system to measure wind vectors. This can be done by measuring the Doppler shift of cloud and rain returns from three or more points and calculating the components of the wind vector. The RAWS study to date uses the candidate system selected after preliminary study of frequencies and sensitivities. Two frequencies chosen, 10 and 35 GHz, allow higher sensitivity for clouds and more penetration for rain. The past year was devoted to modeling the signal-to-noise ratio (SNR) achievable for the two frequencies. The determination of SNR versus cloud penetration depth used a cloud backscattering and attenuation model in the appropriate radar equation. Calculations assumed reasonable losses in reception and transmission, in addition to the atmospheric attenuation. We discovered that ice clouds provide a higher SNR than previously calculated, but some water clouds give lower SNRs than we calculated before. One of the primary issues in the SNR calculation was the choice of the drop size distribution. Although Xin used several distributions (e.g., log normal, Khrigian and Mazin), this year we used the Deirmendjian cloud model. SNR versus cloud penetration plots were generated to

  9. Near-Real-Time, Global Radar Data at the Alaska Satellite Facility DAAC from NASA's SMAP Satellite

    Science.gov (United States)

    Arko, S. A.; Allen, A. R.; Dixon, I. R.

    2014-12-01

    The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) is supporting NASA's SMAP (Soil Moisture Active Passive) satellite mission, which launches in January 2015. SMAP will measure global soil moisture and its freeze-thaw state every 3 days using an L-band synthetic aperture radar (SAR) and radiometer. ASF, along with the National Snow and Ice Data Center DAAC and NASA's Earth Science Data and Information System (ESDIS), is identifying and developing tools and technologies to facilitate use of global, near-real-time data by the SMAP user community. ASF will host the SMAP Level 1 radar data and make them available for download through ASF's data discovery interface, Vertex, and the ASF Application Programming Interface. Vertex allows a user to search, visualize and download SAR data, browse images and relevant metadata, and will offer the complete SMAP L1 radar archive to the public. The entire SMAP archive consisting of level 1-4 data can be accessed via Reverb, the NASA EOSDIS metadata and service discovery tool. In anticipation of the SMAP launch and data release, ASF has developed and released a new website (https://www.asf.alaska.edu/smap/) and a suite of web resources, including interactive media, technical information, a product guide, related publications, and tools for working with the HDF5 data format. The ASF SMAP team is exploring OPeNDAP and the Jet Propulsion Laboratory's Webification technologies for enhancing in-browser data visualization and analysis. These technologies, and tools developed with them, represent opportunities for exposing this valuable dataset to areas with limited bandwidth or understanding of radar data. This presentation will highlight the enabling technologies and techniques ASF is employing to bring these data to new scientific and applications users and respond to ever-changing user needs.

  10. Observing and Modelling the HighWater Level from Satellite Radar Altimetry During Tropical Cyclones

    DEFF Research Database (Denmark)

    Deng, Xiaoli; Gharineiat, Zahra; Andersen, Ole Baltazar

    2016-01-01

    This paper investigates the capability of observing tropical cyclones using satellite radar altimetry. Two representative cyclones Yasi (February 2011) and Larry (March 2006) in the northeast Australian coastal area are selected based also on available tide gauge sea level measurements. It is shown...... levels predicted by the model taken into account of both altimetry and tide-gauge data agree well with those observed at Townsville during cyclone Larry....

  11. The Omninet mobile satellite system

    Science.gov (United States)

    Salmasi, A.; Curry, W.

    Mobile Satellite System (MSS) design offering relatively low cost voice, data, and position location services to nonmetropolitan areas of North America is proposed. The system provides spectrally efficient multiple access and modulation techniques, and flexible user interconnection to public and private switched networks. Separate UHF and L-band satellites employing two 9.1 m unfurlable antennas each, achieve a 6048 channel capacity and utilize spot beams. Mobile terminals have modular design and employ 5 dBi omnidirectional antennas. Gateway stations (with two 5 m Ku-band antennas) and base stations (with a single 1.8 m Ku-band antenna) transmit terrestrial traffic to the satellite, where traffic is then transponded via an L-band or UHF downlink to mobile users. The Network Management Center uses two 5-m antennas and incorporates the Integrated-Adaptive Mobile Access Protocol to assure demand assignment of satellite capacity. Preliminary implementation of this low-risk system involves a mobile alphanumeric data service employing receive-only terminals at Ku-band projected for 1987, and plans for the launching of L-band receive-only packages as early as 1988.

  12. Ku-band Wideband Low Phase Noise Radar Frequency Synthesizer%Ku波段宽带低噪声雷达频率源的研制

    Institute of Scientific and Technical Information of China (English)

    魏春林; 刘光祜

    2008-01-01

    介绍一种低相噪、低杂散、宽带的雷达频率合成器方案的设计和实现,该方案采用超低相噪模拟锁相环芯片,并采用双环环内下混频结构,通过对环路滤波器的精心设计,大幅度改善相位噪声和杂散性能.给出设计过程及测试结果.实验证明该方案是成功的,达到的主要技术指标为:输出频率12.8~14.8 GHz,相位噪声-90 dec/Hz@1 kHz,杂散-55 dBc,步进间隔50 MHz.

  13. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  14. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  15. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  16. An overview of neural network applications for soil moisture retrieval from radar satellite sensors

    Science.gov (United States)

    Santi, E.; Paloscia, S.; Pettinato, S.

    2014-10-01

    Frequent and spatially distributed measurements of soil moisture (SMC), at different spatial scales, are advisable for all applications related to the environmental disciplines, such as climatology, meteorology, hydrology and agriculture. Satellite sensors operating in the low part of microwave spectrum are very suitable for this purpose, and their signals can be directly related to the moisture content of the observed surfaces, provided that all the contributions from soil and vegetation to the measured signal are properly accounted for. Among the algorithms used for the retrieval of SMC from both active (i.e. Synthetic Aperture Radar, SAR or real aperture radars) and passive (radiometers) microwave sensors, the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at different spatial resolutions, varying from hundreds of meters to tens of kilometers. These algorithms, which use the ANN techniques for inverting theoretical and semi-empirical models, such as Advanced Integral Equation (AIEM), Oh models, and Radiative transfer Theory (RTT), have been adapted to the C-band acquisitions from SAR (Envisat/ASAR) and real aperture radar (ASCAT) and to the X-band SAR acquisitions of Cosmo-SkyMed and TerraSAR-X. Moreover, a specific ANN algorithm has also been implemented for the L-band active and passive acquisitions of the incoming SMAP mission. The latter satellite will carry onboard simultaneously one radar and one radiometer operating at the same frequency, but with different spatial resolutions (3 and 40 km, respectively). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites located worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these

  17. High-precision measurement of satellite velocity using the EISCAT radar

    Directory of Open Access Journals (Sweden)

    T. Nygrén

    2012-10-01

    Full Text Available This paper presents a method of measuring the velocity of a hard target using radar pulses reflected from the target flying through the radar beam. The method has two stages. First, the Doppler shifts of the echo pulses are calculated at a high accuracy with an algorithm which largely improves the accuracy given by the Fourier transform. The algorithm also calculates the standard deviations of the Doppler frequencies with Monte Carlo simulation. The second step is to fit the results from a sequence of radar pulses to a velocity model allowing linear variation of the second time derivative of target range. The achieved accuracies are demonstrated using radio pulses reflected by a satellite passing through the beam of the EISCAT UHF radar working at 930-MHz frequency. At high SNR levels, the standard deviations of the frequency from a single pulse reach typically down to 0.2 Hz. The best standard deviations of velocity fit are below 5 mm s−1 while those of the second time derivative of range are below 1 cm s−2.

  18. Simulation on change of generic satellite radar cross section via artificially created plasma sprays

    Science.gov (United States)

    Chung, Shen Shou Max; Chuang, Yu-Chou

    2016-06-01

    Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P  =  0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X-Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect.

  19. Development of Radar-Satellite Blended QPF (Quantitative Precipitation Forecast) Technique for heavy rainfall

    Science.gov (United States)

    Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon

    2016-04-01

    Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by

  20. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    DEFF Research Database (Denmark)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia

    2015-01-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes...... of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial...... along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter...

  1. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    DEFF Research Database (Denmark)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia;

    2015-01-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes...... of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial...... along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter...

  2. A review of satellite radar altimetry applied to coastal ocean studies

    Science.gov (United States)

    Vignudelli, Stefano

    2016-07-01

    Satellite radar altimetry is today considered a mature technique in open ocean. The data stream from the various satellite missions are routinely used for a number of applications. In the last decade, significant research has been carried out into overcoming the problems to extend the capabilities of radar altimeters to the coastal zone, with the aim to integrate the altimeter-derived measurements of sea level, wind speed and significant wave height into coastal ocean observing systems. More/better (and new) datasets are being produced. Moreover, the advent of new satellite missions, both nadir-viewing (e.g., Sentinel-3) and wide-swath (e.g. SWOT), should globally improve both quantity and quality of coastal altimetry data. In this talk, after a brief review of the challenges in coastal altimetry and description of the new products, we showcase some application examples how the new products can be exploited, and we discuss directions for a global coastal altimetry dataset as an asset for long term monitoring of sea level and sea state in the coastal ocean.

  3. CFOSAT: a new Chinese-French satellite for joint observations of ocean wind vector and directional spectra of ocean waves

    Science.gov (United States)

    Hauser, D.; Tison, C.; Amiot, T.; Delaye, L.; Mouche, A.; Guitton, G.; Aouf, L.; Castillan, P.

    2016-05-01

    CFOSAT (the China France Oceanography Satellite) is a joint mission from the Chinese and French Space Agencies, devoted to the observation ocean surface wind and waves so as to improve wind and wave forecast for marine meteorology, ocean dynamics modeling and prediction, climate variability knowledge, fundamental knowledge of surface processes. Currently under Phase D (manufacturing phase), the launch is now planned for mid-2018 the later. The CFOSAT will carry two payloads, both Ku-Band radar: the wave scatterometer (SWIM) and the wind scatterometer (SCAT). Both instruments are based on new concepts with respect to existing satellite-borne wind and wave sensors. Indeed, one of the originalities of CFOSAT is that it will provide simultaneously and in the same zone, the directional spectra of ocean waves and the wind vector. The concept used to measure the directional spectra of ocean waves has never been used from space until now: it is based on a near-nadir incidence pointing, rotating fan-beam radar, used in a real-aperture mode. In this paper we present the CFOSAT mission, its objectives and main characteristics. We then focus on the SWIM instrument, the expected geophysical products and performances. Finally, we present ongoing studies based on existing satellite data of directional spectra of ocean waves (Sentinel-1, ..) and carried out in preparation to CAL/VAL activities and to future data exploitation.

  4. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    Science.gov (United States)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  5. Offshore wind resource mapping for Europe by Synthetic Aperture Radar (SAR) satellite data

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete

    2015-01-01

    For the New European Wind Atlas (NEWA) project with 8 participating countries during5 years (March 2015 – March 2020) we will develop a new wind atlas covering most of the European countries as well as most of the offshore areas in Europe. For the offshore atlas we will rely on a combination...... of satellite remote sensing observations and atmospheric modelling. The satellite data include Synthetic Aperture Radar (SAR) from the European Space Agency from Envisat and the Copernicus mission Sentinel-1. SAR has the advantage of high spatial resolution such that we can cover near-coastal areas where many...... wind farms are planned. In the Danish RUNE project near-shore offshore winds are investigate from SAR, atmospheric modelling and ground-based remote sensing lidar. In the European Space Agency project ResGrow SAR wind resource maps at various locations in the European Seas are used to estimate the wind...

  6. Radar scattering of linear dunes and mega-yardangs: Application to Titan

    Science.gov (United States)

    Paillou, Philippe; Seignovert, Benoît; Radebaugh, Jani; Wall, Stephen

    2016-05-01

    The Ku-band (13.8 GHz - 2.2 cm) RADAR instrument onboard the Cassini-Huygens spacecraft has revealed the richness of the surface of Titan, as numerous seas, lakes, rivers, cryo-volcanic flows and vast dune fields have been discovered. Linear dunes are a major geomorphological feature present on Titan, covering up to 17% of its surface, mainly in equatorial regions. However, the resolution of the RADAR instrument is not good enough to allow a detailed study of the morphology of these features. In addition, other linear wind-related landforms, such as mega-yardangs (linear wind-abraded ridges formed in cohesive rocks), are likely to present a comparable radar signature that could be confused with the one of dunes. We conducted a comparative study of the radar radiometry of both linear dunes and mega-yardangs, based on representative terrestrial analogues: the linear dunes located in the Great Sand Sea in western Egypt and in the Namib Desert in Namibia, and the mega-yardangs observed in the Lut Desert in eastern Iran and in the Borkou Desert in northern Chad. We analysed the radar scattering of both terrestrial linear dunes and mega-yardangs, using high-resolution radar images acquired by the X-band (9.6 GHz - 3.1 cm) sensor of the TerraSAR-X satellite. Variations seen in the radar response of dunes are the result of a contrast between the dune and interdune scattering, while for mega-yardangs these variations are the result of a contrast between ridges and erosion valleys. We tested a simple surface scattering model, with parameters derived from the local topography and surface roughness estimates, to accurately reproduce the radar signal variations for both landforms. It appears that we can discriminate between two types of dunes - bare interdunes as in Egypt and sand-covered interdunes as in Namibia, and between two types of mega-yardangs - young yardangs as in Iran and older ones as in Chad. We applied our understanding of the radar scattering to the analysis of

  7. On safe ground? Analysis of European urban geohazards using satellite radar interferometry

    Science.gov (United States)

    Capes, Renalt; Teeuw, Richard

    2017-06-01

    Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.

  8. Current status of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the new version of GPM standard products

    Science.gov (United States)

    Furukawa, K.; Nio, T.; Konishi, T.; Masaki, T.; Kubota, T.; Oki, R.; Iguchi, T.

    2016-10-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR keeps its performances on orbit after launch. DPR products were released to the public on Sep. 2, 2014. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. JAXA have started to provide new version (Version 4) of GPM standard products on March 3, 2016. Various improvements of the DPR algorithm were implemented in the Version 4 product. Moreover, the latent heat product based on the Spectral Latent Heating (SLH) algorithm is available since Version 4 product. Current orbital operation status of the GPM/DPR and highlights of the Version 4 product are reported.

  9. Assimilation of radar precipitation and satellite data into a NWP model using a physical initialisation scheme

    Science.gov (United States)

    Milan, M.; Schüttemeyer, D.; Venema, V.; Simmer, C.

    2009-04-01

    We implemented a PI (Physical Initialization) method in the non hydrostatic limited-area model COSMO (version 4.2) of the DWD (German Meteorological Service). The goal is the improvement of quantitative rain nowcasting with a high resolution NWP model. Input radar data is a DWD product: the national radar composite for 16 radars with a spatial resolution of one kilometer and a time resolution of 5 minutes. The conversion from reflectivity to rain rate is already made by DWD. This data is interpolated on the LM grid ( 2.8 × 2.8 km resolution) in order to calculate the analysed precipitation rate which depends on the observed precipitation and the model precipitation. The PIB (Physical Initialization Bonn) takes as input the radar based precipitation product and a cloud top height field retrieved from satellite observations, in our case we are using the SAFNWC products generated from Meteosat Second Generation data by DWD. During the assimilation window PIB adjusts the vertical wind, humidity, cloud water and cloud ice in order to force the model state towards the measurements. The most distinctive feature of the algorithm is the adjustment of the vertical wind profile in the framework of a simple precipitation scheme. The PIB assumes that the rain rate is proportional to the vertical humidity flux at cloud base and the vertical wind is adapted according to the conversion efficiency of saturated water vapor into rain water at the cloud base. This parameter is dynamically adjusted by the comparison between the model precipitation and the radar precipitation. The model is tested in convective cases over Germany, an identical twin experiment is used in order to demonstrate the consistency of PIB with the physics of the NWP model. In the tests which we have already performed this method has improved the forecast of the precipitation patterns, as well as the dynamics of the events. These improvements are found both during the assimilation window and for the first hours

  10. Propagation considerations in the American Mobile Satellite system design

    Science.gov (United States)

    Kittiver, Charles; Sigler, Charles E., Jr.

    1993-01-01

    An overview of the American Mobile Satellite Corporation (AMSC) mobile satellite services (MSS) system with special emphasis given to the propagation issues that were considered in the design is presented. The aspects of the voice codec design that effect system performance in a shadowed environment are discussed. The strategies for overcoming Ku-Band rain fades in the uplink and downlink paths of the gateway station are presented. A land mobile propagation study that has both measurement and simulation activities is described.

  11. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  12. Estimates of forest height in the Amazon basin using radar altimeter data of SARIN mode onboard Cryosat-2

    Science.gov (United States)

    Yang, L.; Sun, G.; Liu, Q.

    2013-12-01

    Forest height is an important parameter for global carbon cycle studies. New technologies are required since the end of the operation ofGeoscience Laser Altimeter System (GLAS) onboard The Ice, Cloud, and land Elevation Satellite (IceSat) in 2009. CryoSat-2 is a European Space Agencyenvironmental research satellite which was launched in April 2010.The SIRAL (SAR Interferometer Radar Altimeter) on board CryoSat-2 provides three operational modes for different observational requirements. Before the launch of Icesat2 around July 2016, CryoSat data represents a unique source of information on regional-to-global scale forest canopy height.We propose to use radar altimetry waveforms from the synthetic aperture/interferometric (SARin) mode to estimate canopy height in the Amazon basin. To understand the relation between canopy structure and the SIRAL waveform in Ku band, a 3D model was developed and implemented based on a Lidar model by introducingthe scattering items from crown, trunk and ground surface at Ku band. The vertical distribution of tree crown volume within a SIRAL footprint was calculated from its 3-D stand model by summing the volumes of all tree crown cells at the same height from the ground. The preliminary comparisons between simulated and measured SIRAL waveforms show that the model captures the major characteristics of the SIRAL signature. Cryosat waveform data of SARin mode and from June, 2011 to June, 2012 (cycle 04) is used to retrieve canopy height at Amazon basin under Cryosat groundtrack. The canopy height is derived by extracting the key points of vegetation and ground returns after noise estimation. Because of lack of field tree height measurement in 2012 at Amazon, we validated the results using the field measurements at four areas (the km 67 camp, the km 77 camp, Ruropolis, the Taoajos river) of Tapajos National Forest, Brazil in November 1999, and compared the results with the canopy height estimation from previous studies using Laser

  13. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  14. Satellite optical and radar data used to track wetland forest impact and short-term recovery from Hurricane Katrina

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, A.; Middleton, B.; Lu, Zhiming

    2009-01-01

    Satellite Landsat Thematic Mapper (TM) and RADARSAT-1 (radar) satellite image data collected before and after the landfall of Hurricane Katrina in the Pearl River Wildlife Management Area on the Louisiana-Mississippi border, USA, were applied to the study of forested wetland impact and recovery. We documented the overall similarity in the radar and optical satellite mapping of impact and recovery patterns and highlighted some unique differences that could be used to provide consistent and relevant ecological monitoring. Satellite optical data transformed to a canopy foliage index (CFI) indicated a dramatic decrease in canopy cover immediately after the storm, which then recovered rapidly in the Taxodium distichum (baldcypress) and Nyssa aquatica (water tupelo) forest. Although CFI levels in early October indicated rapid foliage recovery, the abnormally high radar responses associated with the cypress forest suggested a persistent poststorm difference in canopy structure. Impact and recovery mapping results showed that even though cypress forests experienced very high wind speeds, damage was largely limited to foliage loss. Bottomland hardwoods, experiencing progressively lower wind speeds further inland, suffered impacts ranging from increased occurrences of downed trees in the south to partial foliage loss in the north. In addition, bottomland hardwood impact and recovery patterns suggested that impact severity was associated with a difference in stand structure possibly related to environmental conditions that were not revealed in the prehurricane 25-m optical and radar image analyses. ?? 2009 The Society of Wetland Scientists.

  15. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  16. Le «puzzle» de la banquise arctique vue par le radar du satellite ERS-1

    Directory of Open Access Journals (Sweden)

    Claude KERGOMARD

    1994-03-01

    Full Text Available Le radar à synthèse d'ouverture (SAR à bord du satellite européen ERS-1 est le premier outil de télédétection permettant d’analyser simultanément la distribution des types de glaces de mer dans l’Arctique en relation avec leur dynamique.

  17. Satellite Observations of Spatial and Interannual Variability of Lightning and Radar Reflectivity

    Science.gov (United States)

    Durden, S. L.; Meagher, J. P.; Haddad, Z. S.

    2004-01-01

    The authors use satellite data to examine the relationship between lightning and upper-level radar reflectivity. They find correlations between average flash rates and upper-level reflectivities over both land and ocean, although both flash rates and reflectivities are much lower over ocean than land. Analysis of the data using Empirical Orthogonal Functions (EOFs) shows similar EOFs for averaged lightning and reflectivity. In contrast, the EOFs of the anomalies of lightning and reflectivity have different spatial patterns; however, both have principal component time series that are correlated with the Southern Oscillation Index and, hence, El Nino. Differences in behavior of the lightning and reflectivity anomaly EOFs and principal components suggest that El Nino plays a smaller role in lightning anomaly than precipitation anomaly.

  18. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data.

    Science.gov (United States)

    Del Negro, Ciro; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-10-30

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 - December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption.

  19. Evidence of hydrocarbon pollution in soil exploiting satellite optical and radar images

    Science.gov (United States)

    Monsivais-Huertero, A.; Galvan-Pineda, J.; Espinosa-Hernandez, A.; Jimenez-Escalona, J. C.; Ramos-Rodriguez, J. M.

    2013-05-01

    Oil spills are one of the most important sources of hydrocarbon pollution in soils of areas near centers of extraction, storage or transportation of petroleum products. These spills or leaks can occur arising from deficient maintenance of facilities or accidents. The effects of these spills can spread for kilometers affecting large areas. This has a strong impact on the local ecosystem disturbing the flora and fauna. In costal tourist areas, this type of contaminants represents significant health risks for visitors and therefore, economic losses for the place. For this reason, it is very important to know and identify the areas affected by this type of pollution in order to create action plans for remediation of the ecosystem. Due to the large land extensions that can cover such disasters, satellite images become a valuable tool because of their large spatial coverage. Nowadays, different satellite techniques have been developed to recognize land affected by the presence of hydrocarbons. In the optical spectrum, optical sensing imagery (e.g. Landsat, SPOT, MODIS, etc.) has been widely used. However, these techniques have the intrinsic limitation in scenes with vegetation cover. In contrast, techniques exploiting radar images are still rare. The type of signal that is detected by the radar provides information even in areas with vegetation cover. The radar signal interacts with the vegetation and soil collecting information about the dielectric properties of the soil. This study identifies zones of contaminated soil by using the synergy of optical and radar images. This site of study is located in Paraiso, Tabasco, in Southern Mexico (18°27'N 93°32'W). The region is composed of coastal and tropical forest ecosystems and includes the Port Dos Bocas. The Port Dos Bocas has its points of extractions 130m away from the coast. The annual activities report 10 millions of tons of hydrocarbons transported using around 5500 ships. The methodology presented in this paper

  20. Persistent scatterers detection on synthetic aperture radar images acquired by Sentinel-1 satellite

    Science.gov (United States)

    Dǎnişor, Cosmin; Popescu, Anca; Datcu, Mihai

    2016-12-01

    Persistent Scatterers Interferometry (PS-InSAR) has become a popular method in remote sensing because of its capability to measure terrain deformations with very high accuracy. It relies on multiple Synthetic Aperture Radar (SAR) acquisitions, to monitor points with stable proprieties over time, called Persistent Scatterers (PS)[1]. These points are unaffected by temporal decorrelation, therefore by analyzing their interferometric phase variation we can estimate the scene's deformation rates within a given time interval. In this work, we apply two incoherent detection algorithms to identify Persistent Scatterers candidates in the city of Focșani, Romania. The first method studies the variation of targets' intensities along the SAR acquisitions and the second method analyzes the spectral proprieties of the scatterers. The algorithms were implemented on a dataset containing 11 complex images of the region covering Buzău, Brăila and Focșani cities. Images were acquired by Sentinel-1 satellite in a time span of 5 months, from October 2014 to February 2015. The processing chain follows the requirements imposed by the new C-band SAR images delivered by the Sentinel-1 satellite (launched in April 2014) imaging in Interferometric Wide (IW) mode. Considering the particularities of the TOPS (Terrain Observation with Progressive Scans in Azimuth) imaging mode[2], special requirements had to be considered for pre-processing steps. The PS detection algorithms were implemented in Gamma RS program, a software which contains various function packages dedicated to SAR images focalization, analysis and processing.

  1. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring

    Directory of Open Access Journals (Sweden)

    Pauline Dusseux

    2014-06-01

    Full Text Available The aim of this study was to assess the ability of optical images, SAR (Synthetic Aperture Radar images and the combination of both types of data to discriminate between grasslands and crops in agricultural areas where cloud cover is very high most of the time, which restricts the use of visible and near-infrared satellite data. We compared the performances of variables extracted from four optical and five SAR satellite images with high/very high spatial resolutions acquired during the growing season. A vegetation index, namely the NDVI (Normalized Difference Vegetation Index, and two biophysical variables, the LAI (Leaf Area Index and the fCOVER (fraction of Vegetation Cover were computed using optical time series and polarization (HH, VV, HV, VH. The polarization ratio and polarimetric decomposition (Freeman–Durden and Cloude–Pottier were calculated using SAR time series. Then, variables derived from optical, SAR and both types of remotely-sensed data were successively classified using the Support Vector Machine (SVM technique. The results show that the classification accuracy of SAR variables is higher than those using optical data (0.98 compared to 0.81. They also highlight that the combination of optical and SAR time series data is of prime interest to discriminate grasslands from crops, allowing an improved classification accuracy.

  2. A new strategic sampling for offshore wind assessment using radar satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, P.; Lafrance, G.; Bernier, M.; Lafrance, J. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada); Choisnard, J. [Hydro-Quebec, Varennes, PQ (Canada)

    2007-07-01

    Synthetic Aperture Radar (SAR) satellite images have been used for offshore wind assessment. Several offshore wind farms are in operation or under construction in northern Europe. The European target for 2030 is 300 GW, of which half is intended for onshore and half for offshore development. Offshore projects in the east coast United States, the Gulf of Mexico and west coast of Canada are in the planning stage. Information obtained from SAR can be used to supplement current mapping methods of offshore wind energy resources. SAR is a useful tool to localize wind pattern over water surfaces. Other sources of offshore wind observations include meteorological stations such as buoys and masts; remote sensing instruments onboard satellites such as scatterometers (QuikSCAT, ASCAT) or passive microwave radiometers; and numerical weather prediction models. The synergy between scatterometers and SAR was discussed. The SAR system has been used for microscale resolution wind mapping in the Gaspe Peninsula. Strategic sampling zones were chosen in proximity to the QuikSCAT grid. It was concluded that 270 and 570 SAR images are needed to calculate average wind speed (U) and mean power output of a 3 MW wind turbine (P) over the Gaspe Peninsula region, respectively. It was concluded that microscale regional wind mapping can be produced at a lower cost with strategic sampling compared to random sampling. refs., tabs., figs.

  3. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  4. The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.

    1998-01-01

    The 336 days of the geodetic phase of ERS-1 provides dense coverage, by satellite radar altimetry, of the whole of the Greenland ice sheet. These data have been used to produce a digital elevation model of the ice sheet. The errors present in the altimeter data were investigated via a comparison...... with airborne laser altimeter data an absolute accuracy typically in the range 2-10 cm +/- 10 cm. Comparison of differences between the radar and laser derived elevations, showed a correlation with surface slope. The difference between the two data sets ranged from 84 cm +/- 79 cm for slopes below 0.1 degrees...

  5. Impact of tropospheric scintillation in the Ku/K bands on the communications between two LEO satellites in a radio occultation geometry

    DEFF Research Database (Denmark)

    Martini, Enrica; Freni, A.; Facheris, L.

    2006-01-01

    A theoretical analysis of the impact of clear-air tropospheric scintillation on a radio occultation link between two low Earth orbit satellites in K- and Ku-bands is presented, with particular reference to differential approaches for the measure of the total content of water vapor. The troposphere...

  6. Simulation of Ship-Track versus Satellite-Sensor Differences in Oceanic Precipitation Using an Island-Based Radar

    Directory of Open Access Journals (Sweden)

    Jörg Burdanowitz

    2017-06-01

    Full Text Available The point-to-area problem strongly complicates the validation of satellite-based precipitation estimates, using surface-based point measurements. We simulate the limited spatial representation of light-to-moderate oceanic precipitation rates along ship tracks with respect to areal passive microwave satellite estimates using data from a subtropical island-based radar. The radar data serves to estimate the discrepancy between point-like and areal precipitation measurements. From the spatial discrepancy, two statistical adjustments are derived so that along-track precipitation ship data better represent areal precipitation estimates from satellite sensors. The first statistical adjustment uses the average duration of a precipitation event as seen along a ship track, and the second adjustment uses the median-normalized along-track precipitation rate. Both statistical adjustments combined reduce the root mean squared error by 0.24 mm h − 1 (55% compared to the unadjusted average track of 60 radar pixels in length corresponding to a typical ship speed of 24–34 km h − 1 depending on track orientation. Beyond along-track averaging, the statistical adjustments represent an important step towards a more accurate validation of precipitation derived from passive microwave satellite sensors using point-like along-track surface precipitation reference data.

  7. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  8. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing

    Science.gov (United States)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.

    2014-12-01

    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  9. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  10. Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry

    Science.gov (United States)

    Fricker, Helen Amanda; Padman, Laurie

    2012-02-01

    We use data acquired between 1978 and 2008 by four satellite radar altimeter missions (Seasat, ERS-1, ERS-2 and Envisat) to determine multidecadal elevation change rates (dhi/dt) for six major Antarctic Peninsula (AP) ice shelves. In areas covered by the Seasat orbit (to 72.16°S), regional-averaged 30-year trends were negative (surface lowering), with rates between -0.03 and -0.16 m a-1. Surface lowering preceded the start of near-continuous radar altimeter operations that began with ERS-1 in 1992. The average rate of lowering for the first 14 years of the period was typically smaller than the 30-year average; the exception was the southern Wilkins Ice Shelf, which experienced negligible lowering between 2000 and 2008, when a series of large calving events began. Analyses of the continuous ERS/Envisat time series (to 81.5°) for 1992-2008 reveal a period of strong negative dhi/dt on most ice shelves between 1992 and 1995. Based on prior studies of regional atmospheric and oceanic conditions, we hypothesize that the observed elevation changes on Larsen C Ice Shelf are driven primarily by firn compaction while the western AP ice shelves are responding to changes in both surface mass balance and basal melt rates. Our time series also show that large changes in dhi/dt can occur on interannual time scales, reinforcing the importance of long time series altimetry to separate long-term trends associated with climate change from interannual to interdecadal natural variability.

  11. Synoptic Analysis of Heavy Rainfall and Flood Observed in Izmir on 20 May 2015 Using Radar and Satellite Images

    Science.gov (United States)

    Avsar, Ercument

    2016-07-01

    In this study, a meteorological analysis is conducted on the sudden and heavy rainfall that occurred in Izmir on May 20, 2015. The barotropic model that is observed in upper carts is shown in detail. We can access the data of and analyze the type, severity and amount of many meteorological parameters using the meteorological radars that form a remote sensing system. The one field that uses the radars most intensively is rainfall. Images from the satellite and radar systems are used in the meteorological analysis of the heavy rainfall that occurred in Izmir on 20 May 2015, and the development of the system that led to this rainfall is shown. In this study, data received from Bornova Automatic Meteorological Observation Station (OMGI), which is under the management of Meteorology General Directorate (MGM), Izmir 2. Regional Directorate; satellite images; Radar PPI (Plan Position Indicator) and Radar MAX (Maximum Display) images are evaluated. In addition, synoptic situation, outputs of numerical estimation models, indices calculated from Skew T Log-P diagram are shown. All these results are mapped and analyzed. At the end of these analyses, it is found that this sudden rainfall had developed according to the frontal system motion. A barotropic model occurred on the day of the rainfall over the Aegean Region. As a result of the rainfall that happened in Izmir at 12.00 UTC (Universal Coordinated Time), the May month rainfall record for the last 64 years is achieved with a rainfall amount of 67.7 mm per meter square. Keywords: Izmir, barotropic model, heavy rainfall, radar, synoptic analysis

  12. Room Temperature Thin Film Ba(x)Sr(1-x)TiO3 Ku-Band Coupled MicrostripPhase Shifters: Effects of Film Thickness, Doping, Annealing and Substrate Choice

    Science.gov (United States)

    VanKeuls, F. W.; Mueller, C. H.; Miranda, F. A.; Romanofsky, R. R.; Canedy, C. L.; Aggarwal, S.; Venkatesan, T.; Ramesh, R.; Horwitz, S.; Chang, W.

    1999-01-01

    We report on measurements taken on over twenty Ku-band coupled microstrip phase shifters (CMPS) using thin ferroelectric films of Ba(x)Sr(1-x)TiO3. This CMPS design is a recent innovation designed to take advantage of the high tunability and tolerate the high dielectric constant of ferroelectric films at Ku- and K-band frequencies. These devices are envisioned as a component in low-cost steerable beam phased area antennas, Comparisons are made between devices with differing film thickness, annealed vs unannealed, Mn-doped vs. undoped, and also substrates of LaAlO3 and MgO. A comparison between the CMPS structure and a CPW phase shifter was also made oil the same ferroelectric film.

  13. Evaluating Frontal Precipitation with a Spectral Microphysics Mesoscale Model and a Satellite Simulator as Compared to Radar and Radiometer Observations

    Science.gov (United States)

    Han, M.; Braun, S. A.; Matsui, T.; Iguchi, T.; Williams, C. R.

    2013-12-01

    The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) onboard NASA Aqua satellite and a ground-based precipitation profiling radar sampled a frontal precipitation event in the US west coast on 30 to 31 December 2005. Simulations with bulk microphysics schemes in the Weather Research and Forecast (WRF) model have been evaluated with those remote sensing data. In the current study, we continue similar work to evaluate a spectral bin microphysics (SBM) scheme, HUCM, in the WRF model. The Goddard-Satellite Data Simulation Unit (G-SDSU) is used to simulate quantities observed by the radar and radiometer. With advanced representation of cloud and precipitation microphysics processes, the HUCM scheme predicts distributions of 7 hydrometeor species as storms evolve. In this study, the simulation with HUCM well captured the structure of the precipitation and its microphysics characteristics. In addition, it improved total precipitation ice mass simulation and corrected, to a certain extent, the large low bias of ice scattering signature in the bulk scheme simulations. However, the radar reflectivity simulations with the HUCM scheme were not improved as compared to the bulk schemes. We conducted investigations to understand how microphysical processes and properties, such as snow break up parameter and particle fall velocities would influence precipitation size distribution and spectrum of water paths, and further modify radar and/or radiometer simulations. Influence by ice nuclei is going to be examined as well.

  14. Dual Ka-band radar field campaign for GPM/DPR algorithm development

    Science.gov (United States)

    Nakagawa, K.; Nishikawa, M.; Nakamura, K.; Komachi, K.; Hanado, H.; Kawamura, S.; Sugitani, S.; Minda, H.; Shimizu, S.; Oki, R.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission to TRMM (Tropical Rainfall Measuring Mission) and a GPM core satellite will carry dual frequency precipitation radar (DPR) and a GPM Microwave Imager on board. The DPR, which is being developed by National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA), consists of two radars; Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The DPR is expected to advance precipitation science by expanding the coverage of observations to higher latitudes than those of the TRMM/PR, measuring snow and light rain by the KaPR, and providing drop size distribution information based on the differential attenuation of echoes at two frequencies. In order to secure the quality of precipitation estimates, ground validation (GV) of satellite data and retrieval algorithms is essential. Since end-to-end comparisons between instantaneous precipitation data observed by satellite and ground-based instruments is not enough to improve the algorithms. The error of various physical parameters in the precipitation retrieval algorithms (e.g. attenuation factor, drop size distribution, terminal velocity, density of the snow particles, etc.) will be estimated by the comparison with the ground-based observation data. A dual Ka-band radar system is developed by the JAXA for the GPM/DPR algorithm development. The dual Ka-radar system which consists of two identical Ka-band radars can measure both the specific attenuation and the equivalent radar reflectivity at Ka-band. Those parameters are important particularly for snow measurement. Using the dual Ka-radar system along with other instruments, such as a polarimetric precipitation radar, a wind-profiler radar, ground-based precipitation measurement systems, the uncertainties of the parameters in the DPR algorithm can be reduced. The verification of improvement of rain retrieval with the DPR algorithm is

  15. Tracking Low Earth Orbit Small Debris with GPS Satellites as Bistatic Radar

    Science.gov (United States)

    Mahmud, M.; Qaisar, S.; Benson, C.

    2016-09-01

    Space debris is a growing problem and collisions are potentially lethal to satellites. Trajectories for small objects are predicted based on infrequent measurements, and the scale and therefore cost of maneuver required to avoid collisions is a function of trajectory accuracy. Frequent and precise observations will improve trajectory accuracy. In this paper, we extend on aspects of the feasibility of tracking space debris in Low Earth Orbit using emissions from GNSS satellites as bistatic radar illuminators. The wavelengths of GNSS signals are of order 20 cm and our primary focus is to track debris smaller than this, thereby maintaining phase stability of the scattered signals, enabling very long coherent processing intervals. However, the signals scattered by debris will be very weak at a terrestrial receiver, requiring the computationally expensive integration of a large number of signals, over an extended duration and with a large phased array. Detection of such weak signals in the presence of relatively strong direct-arrival signals requires extremely high cross-correlation protection. We show that sufficient cross-correlation protection can be obtained due to the large and varying Doppler shift, and also illustrate a novel processing approach utilizing downshifting of the collected signal to audio frequency. This technique dramatically reduces the cost and complexity of updating debris trajectories. The processing cost of preserving an uncertainty volume of many hundreds of meters around the predicted debris track is very modest, and searching within that uncertainty volume is undertaken at audio sampling rates. Moreover, we explore techniques that further lower the already modest cost of the non-linear search within the preserved uncertainty volume. We conclude with an outline of a system using these techniques that could provide centimetre level tracking of large quantities of small orbital objects at a modest cost.

  16. Fifteen Years of Synthetic Aperture Radar Calibration Using Trihedral Reflectors at the Alaska Satellite Facility

    Science.gov (United States)

    Albright, W.; Atwood, D.; Lawlor, O. S.; Utley, P.; Slater, C.

    2006-12-01

    For the past 15 years, the Alaska Satellite Facility (ASF) has provided calibration support for singly polarized SAR datasets in C-band (ERS-1, ERS-2, and RADARSAT-1 and L-Band (JERS-1. Passive point targets like trihedral corner reflectors offer a reliable and well established means to perform radiometric, geometric, and impulse response measurements for SAR calibration. Routine support of an array of corner reflectors in interior Alaska has permitted ASF an opportunity to monitor satellite health, calibrate SAR processors, and experiment with new reflector designs. Corner reflectors offer the advantages of low maintenance and low cost compared to active devices such as transponders. In order to maintain radar cross section, as the microwave wavelength get longer, so too does the size of the reflector. Increased size means decreased portability, exacerbating the difficulty of providing calibration support in remote locations. In response, ASF is developing low cost, light weight corner reflectors that can be deployed with minimal effort and no maintenance. These efforts will help to extend our present calibration efforts to more remote locations. But more importantly, these designs are expected to play an important role in Permanent Scatterer InSAR (PS-InSAR) methodology. The use of corner reflector arrays in support PS-InSAR may provide new means for monitoring terrain displacements in regions of heavy vegetation. This paper presents some long term measurements from ASF's array of corner reflectors, outlines improvements performed on trihedral corner reflectors, and describes current efforts at ASF to support the next generation of SAR missions and techniques.

  17. Forecast of wheat yield throughout the agricultural season using optical and radar satellite images

    Science.gov (United States)

    Fieuzal, R.; Baup, F.

    2017-07-01

    The aim of this study is to estimate the capabilities of forecasting the yield of wheat using an artificial neural network combined with multi-temporal satellite data acquired at high spatial resolution throughout the agricultural season in the optical and/or microwave domains. Reflectance (acquired by Formosat-2, and Spot 4-5 in the green, red, and near infrared wavelength) and multi-configuration backscattering coefficients (acquired by TerraSAR-X and Radarsat-2 in the X- and C-bands, at co- (abbreviated HH and VV) and cross-polarization states (abbreviated HV and VH)) constitute the input variable of the artificial neural networks, which are trained and validated on the successively acquired images, providing yield forecast in near real-time conditions. The study is based on data collected over 32 fields of wheat distributed over a study area located in southwestern France, near Toulouse. Among the tested sensor configurations, several satellite data appear useful for the yield forecasting throughout the agricultural season (showing coefficient of determination (R2) larger than 0.60 and a root mean square error (RMSE) lower than 9.1 quintals by hectare (q ha-1)): CVH, CHV, or the combined used of XHH and CHH, CHH and CHV, or green reflectance and CHH. Nevertheless, the best accurate forecast (R2 = 0.76 and RMSE = 7.0 q ha-1) is obtained longtime before the harvest (on day 98, during the elongation of stems) using the combination of co- and cross-polarized backscattering coefficients acquired in the C-band (CVV and CVH). These results highlight the high interest of using synthetic aperture radar (SAR) data instead of optical ones to early forecast the yield before the harvest of wheat.

  18. Interpretation of Radar Data from the Icy Galilean Satellites and Triton

    Science.gov (United States)

    Gurrola, Eric Michael

    1995-01-01

    We extend Eshleman's (Science 234, 1986, 587-590) analysis of an icy buried crater model and show that it can explain anomalous 3.5 and 13 cm-lambda radar echoes from the icy Galilean satellites- -radar albedos sigma~ 0.7 -2.6, circular and linear polarization ratios mu C~1.5 and mu L~0.5, and Doppler spectra with cosmTheta scattering law exponents m~1 -2. The model hypothesizes that radio waves are totally internally reflected N times from the walls of buried craters --tens of meters in radii with a water-ice overburden of permittivity varepsilon_1~3.2 varepsilon_0 that is larger than the permittivity varepsilon_2 of the material (probably porous ice) below the crater walls--and are brought to a focus, appearing to come from annular "glory halos" inside the craters, which break up into several coherent glints, each of azimuthal extent H, filling the halo to fraction F. We use geometrical and wave optics to include effects not accounted for by Eshleman, including: the ice overburden, arbitrary crater position, and crater shadowing. The values N = 3 and varepsilon_2/varepsilon _1 = 0.63 give mu_ {C} = 1.6, muL = 0.4, m = 1.9, and spectra that agree well with the general trends in the observations. With FH/ lambda = 10, the areal densities of buried craters on the three satellites required to fit the observed radar albedos are, 0.38, 0.21, and 0.10 for Europa, Ganymede, and Callisto. We determine that Triton's N_2 atmosphere's surface pressure is 1.4 +/- 0.1 Pa and "equivalent isothermal temperature" is 42 +/- 4 K using least squares inversion of the 3.6 and 13 cm-lambda Voyager 2 radio occultation phase data with an exponential model of the atmospheric contribution to the phase (1.7 rad at 3.6 cm-lambda in lower 60 km) and a polynomial model of the nonlinear phase drift (1 rad per 100 km altitude) of the Voyager ultrastable oscillator (USO). Assuming vapor pressure equilibrium between the N_2 gas and ice, the surface temperature is 37.5 +/- 0.5 K, which, together

  19. The 2015 Gorkha earthquake investigated from radar satellites: Slip and stress modeling along the MHT

    Directory of Open Access Journals (Sweden)

    Faqi eDiao

    2015-10-01

    Full Text Available The active collision at the Himalayas combines crustal shortening and thickening, associated with the development of hazardous seismogenic faults. The 2015 Kathmandu earthquake largely affected Kathmandu city and partially ruptured a previously identified seismic gap. With a magnitude of Mw 7.8 as determined by the GEOFON seismic network, the 25 April 2015 earthquake displays uplift of the Kathmandu basin constrained by interferometrically processed ALOS-2, RADARSAT-2 and Sentinel-1 satellite radar data. An area of about 7,000 km² in the basin showed ground uplift locally exceeding 2 m, and a similarly large area (approx. 9000 km2 showed subsidence in the north, both of which could be simulated with a fault that is localized beneath the Kathmandu basin at a shallow depth of 5-15 km. Coulomb stress calculations reveal that the same fault adjacent to the Kathmandu basin experienced stress increase, similar as at sub-parallel faults of the thin skinned nappes, exactly at the location where the largest aftershock occurred (Mw 7.3 on 12. May, 2015. Therefore this study provides insights into the shortening and uplift tectonics of the Himalayas and shows the stress redistribution associated with the earthquake.

  20. The 2015 Gorkha earthquake investigated from radar satellites: slip and stress modeling along the MHT

    Science.gov (United States)

    Diao, Faqi; Walter, Thomas R.; Motagh, Mahdi; Prats, Pau; Wang, Rongjiang; Samsonov, Sergey

    2016-04-01

    The active collision at the Himalayas combines crustal shortening and thickening, associated with the development of hazardous seismogenic faults. The 2015 Gorkha earthquake largely affected Kathmandu city and partially ruptured a previously identified seismic gap. With a magnitude of Mw 7.8 as determined by the GEOFON seismic network, the 25 April 2015 earthquake displays uplift of the Kathmandu basin constrained by interferometrically processed ALOS-2, RADARSAT-2, and Sentinel-1 satellite radar data. An area of about 7000 km2 in the basin showed ground uplift locally exceeding 2 m, and a similarly large area (~9000 km2) showed subsidence in the north, both of which could be simulated with a fault that is localized beneath the Kathmandu basin at a shallow depth of 5-15 km. Coulomb stress calculations reveal that those areas that are laterally extending the active fault zone experienced stress increase, exactly at the location where the largest aftershock occurred (Mw 7.3 on 12. May, 2015). The subparallel faults of the thin-skinned system, in turn, experienced clear stress decrease at locations above (or below) the active fault. Therefore, this study provides insights into the shortening and uplift tectonics of the Himalayas and shows the stress redistribution associated with the earthquake.

  1. Steady state deformation of the Coso Range, east central California, inferred from satellite radar interferometry

    Science.gov (United States)

    Wicks, C.W.; Thatcher, W.; Monastero, F.C.; Hasting, M.A.

    2001-01-01

    Observations of deformation from 1992 to 1997 in the southern Coso Range using satellite radar interferometry show deformation rates of up to 35 mm yr-1 in an area ???10 km by 15 km. The deformation is most likely the result of subsidence in an area around the Coso geothermal field. The deformation signal has a short-wavelength component, related to production in the field, and a long-wavelength component, deforming at a constant rate, that may represent a source of deformation deeper than the geothermal reservoir. We have modeled the long-wavelength component of deformation and inferred a deformation source at ???4 km depth. The source depth is near the brittle-ductile transition depth (inferred from seismicity) and ???1.5 km above the top of the rhyolite magma body that was a source for the most recent volcanic eruption in the Coso volcanic field [Manley and Bacon, 2000]. From this evidence and results of other studies in the Coso Range, we interpret the source to be a leaking deep reservoir of magmatic fluids derived from a crystallizing rhyolite magma body.

  2. Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry

    Science.gov (United States)

    Lee, Lyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos

    2011-01-01

    The Congo Basin is the world's third largest in size (approximately 3.7 million km^2), and second only to the Amazon River in discharge (approximately 40,200 cms annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3 degree x 3 degree regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 km^3, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research also highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.

  3. River monitoring from satellite radar altimetry in the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-03-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.

  4. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data

    Science.gov (United States)

    Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-01-01

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569

  5. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry

    Science.gov (United States)

    Wright, Tim; Parsons, Barry; Fielding, Eric

    In recent years, interseismic crustal velocities and strains have been determined for a number of tectonically active areas through repeated measurements using the Global Positioning System. The terrain in such areas is often remote and difficult, and the density of GPS measurements relatively sparse. In principle, satellite radar interferometry can be used to make millimetric-precision measurements of surface displacement over large surface areas. In practice, the small crustal deformation signal is dominated over short time intervals by errors due to atmospheric, topographic and orbital effects. Here we show that these effects can be over-come by stacking multiple interferograms, after screening for atmospheric anomalies, effectively creating a new interferogram that covers a longer time interval. In this way, we have isolated a 70 km wide region of crustal deformation across the eastern end of the North Anatolian Fault, Turkey. The distribution of deformation is consistent with slip of 17-32 mm/yr below 5-33 km on the extension of the surface fault at depth. If the GPS determined slip rate of 24±1 mm/yr is accepted, the locking depth is constrained to 18±6 km.

  6. Nordic Snow Radar Experiment

    Science.gov (United States)

    Lemmetyinen, Juha; Kontu, Anna; Pulliainen, Jouni; Vehviläinen, Juho; Rautiainen, Kimmo; Wiesmann, Andreas; Mätzler, Christian; Werner, Charles; Rott, Helmut; Nagler, Thomas; Schneebeli, Martin; Proksch, Martin; Schüttemeyer, Dirk; Kern, Michael; Davidson, Malcolm W. J.

    2016-09-01

    The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankylä, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

  7. Hail detection algorithm for the Global Precipitation Measuring mission core satellite sensors

    Science.gov (United States)

    Mroz, Kamil; Battaglia, Alessandro; Lang, Timothy J.; Tanelli, Simone; Cecil, Daniel J.; Tridon, Frederic

    2017-04-01

    By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission core satellite's suite of sensors and by the ground-based S-band Next-Generation Radar (NEXRAD) network over continental US, proxies for the identification of hail are developed based on the GPM core satellite observables. The full capabilities of the GPM observatory are tested by analyzing more than twenty observables and adopting the hydrometeor classification based on ground-based polarimetric measurements as truth. The proxies have been tested using the Critical Success Index (CSI) as a verification measure. The hail detection algorithm based on the mean Ku reflectivity in the mixed-phase layer performs the best, out of all considered proxies (CSI of 45%). Outside the Dual frequency Precipitation Radar (DPR) swath, the Polarization Corrected Temperature at 18.7 GHz shows the greatest potential for hail detection among all GMI channels (CSI of 26% at a threshold value of 261 K). When dual variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka-bands outperforms all the other proxies, with a CSI of 49%. The best-performing radar-radiometer algorithm is based on the mixed-phase reflectivity at Ku-band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.

  8. Fusion of airborne radar and FLIR sensors for runway incursion detection

    Science.gov (United States)

    White, Joseph H.; Haidt, James G.; Britt, Charles L.; Archer, Cynthia; Neece, Robert T.

    2009-08-01

    Forward looking infrared and Radar (X-band or Ku-band) sensors are potential components in external hazard monitoring systems for general aviation aircraft. We are investigating the capability of these sensors to provide hazard information to the pilot when normal visibility is reduced by meteorological conditions. Fusing detection results from FLIR and Radar sensors can improve hazard detection performance. We have developed a demonstration fusion system for the detection of runway incursions. In this paper, we present our fusion system, along with detection results from data recorded on approach to a landing during clear daylight, overcast daylight, and clear night conditions.

  9. Analysis of phase noise and cnr degradation of externally generated lo signal in lnb for ku-band dvb-s systems by heterodyning two lasers

    NARCIS (Netherlands)

    Khan, M.R.H.; Burla, M.; Roeloffzen, C.G.H.; Marpaung, D.A.I.; Etten, van W.

    2009-01-01

    We investigate the externally generation of an LO signal by optical heterodyning, which is then distributed to each of the mixers at every antenna element of a phased array antenna used for standard DVB-S (digital Video Broadcasting-Satellite) reception system. The system1 is presented in Figure 1.

  10. Current status of Dual Ka-band radar field campaign in Japan for GPM/DPR mission

    Science.gov (United States)

    Kaneko, Yuki; Nakagawa, Katsuhiro; Nishikawa, Masanori; Nakamura, Kenji; Fujiyoshi, Yasushi; Hanado, Hiroshi; Minda, Haruya; Yamamoto, Kazuhide; Oki, Riko; Furukawa, Kinji

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission to TRMM (Tropical Rainfall Measuring Mission) and a GPM core satellite will carry dual frequency precipitation radar (DPR) and a GPM Microwave Imager on board. The DPR, which is being developed by National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA), consists of two radars; Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The DPR is expected to advance precipitation science by expanding the coverage of observations to higher latitudes than those of the TRMM/PR, measuring snow and light rain by the KaPR, and providing drop size distribution information based on the differential attenuation of echoes at two frequencies. In order to secure the quality of precipitation estimates, ground validation (GV) of satellite data and retrieval algorithms is essential. Since end-to-end comparisons between instantaneous precipitation data observed by satellite and ground-based instruments is not enough to improve the algorithms. The error of various physical parameters in the precipitation retrieval algorithms (e.g. attenuation factor, drop size distribution, terminal velocity, density of the snow particles, etc.) will be estimated by the comparison with the ground-based observation data. A dual Ka-band radar system is developed by the JAXA for the GPM/DPR algorithm development. The dual Ka-radar system which consists of two identical Ka-band radars can measure both the specific attenuation and the equivalent radar reflectivity at Ka-band. Those parameters are important particularly for snow measurement. Using the dual Ka-radar system along with other instruments, such as a polarimetric precipitation radar, a wind-profiler radar, ground-based precipitation measurement systems, the uncertainties of the parameters in the DPR algorithm can be reduced. The verification of improvement of rain retrieval with the DPR algorithm is

  11. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Science.gov (United States)

    Milani, L.; Porcù, F.; Casella, D.; Dietrich, S.; Panegrossi, G.; Petracca, M.; Sanò, P.

    2015-01-01

    Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR) on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles) providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of instantaneous values. The

  12. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Directory of Open Access Journals (Sweden)

    L. Milani

    2015-01-01

    Full Text Available Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of

  13. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    Science.gov (United States)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  14. Gap Filling of the CALYPSO HF Radar Sea Surface Current Data through Past Measurements and Satellite Wind Observations

    Directory of Open Access Journals (Sweden)

    Adam Gauci

    2016-01-01

    Full Text Available High frequency (HF radar installations are becoming essential components of operational real-time marine monitoring systems. The underlying technology is being further enhanced to fully exploit the potential of mapping sea surface currents and wave fields over wide areas with high spatial and temporal resolution, even in adverse meteo-marine conditions. Data applications are opening to many different sectors, reaching out beyond research and monitoring, targeting downstream services in support to key national and regional stakeholders. In the CALYPSO project, the HF radar system composed of CODAR SeaSonde stations installed in the Malta Channel is specifically serving to assist in the response against marine oil spills and to support search and rescue at sea. One key drawback concerns the sporadic inconsistency in the spatial coverage of radar data which is dictated by the sea state as well as by interference from unknown sources that may be competing with transmissions in the same frequency band. This work investigates the use of Machine Learning techniques to fill in missing data in a high resolution grid. Past radar data and wind vectors obtained from satellites are used to predict missing information and provide a more consistent dataset.

  15. DVB-RCS return link radio resource management for broadband satellite systems using fade mitigation techniques at ka band

    OpenAIRE

    2008-01-01

    Current Broadband Satellite systems supporting DVB-RCS at Ku band have static physical layer in order not to complicate their implementation. However at Ka band frequencies and above an adaptive physical layer wherein the physical layer parameters are dynamically modified on a per user basis is necessary to counteract atmospheric attenuation. Satellite Radio Resource Management (RRM) at the Medium Access Control (MAC) layer has become an important issue given the emphasis placed on Quality...

  16. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    Science.gov (United States)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  17. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2006-01-01

    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  18. Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm

    Directory of Open Access Journals (Sweden)

    M. Förster

    Full Text Available During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event and the occurrence of a stable auroral red (SAR arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700-870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; Magnetospheric physics (plasmasphere.

  19. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images

    Science.gov (United States)

    Pleskachevsky, A. L.; Rosenthal, W.; Lehner, S.

    2016-09-01

    The German Bight of the North Sea is the area with highly variable sea state conditions, intensive ship traffic and with a high density of offshore installations, e.g. wind farms in use and under construction. Ship navigation and the docking on offshore constructions is impeded by significant wave heights HS > 1.3 m. For these reasons, improvements are required in recognition and forecasting of sea state HS in the range 0-3 m. Thus, this necessitates the development of new methods to determine the distribution of meteo-marine parameters from remote sensing data with an accuracy of decimetres for HS. The operationalization of these methods then allows the robust automatic processing in near real time (NRT) to support forecast agencies by providing validations for model results. A new empirical algorithm XWAVE_C (C = coastal) for estimation of significant wave height from X-band satellite-borne Synthetic Aperture Radar (SAR) data has been developed, adopted for coastal applications using TerraSAR-X (TS-X) and Tandem-X (TD-X) satellites in the German Bight and implemented into the Sea Sate Processor (SSP) for fully automatic processing for NRT services. The algorithm is based on the spectral analysis of subscenes and the model function uses integrated image spectra parameters as well as local wind information from the analyzed subscene. The algorithm is able to recognize and remove the influence of non-sea state produced signals in the Wadden Sea areas such as dry sandbars as well as nonlinear SAR image distortions produced by e.g. short wind waves and breaking waves. Also parameters of very short waves, which are not visible in SAR images and produce only unsystematic clutter, can be accurately estimated. The SSP includes XWAVE_C, a pre-filtering procedure for removing artefacts such as ships, seamarks, buoys, offshore constructions and slicks, and an additional procedure performing a check of results based on the statistics of the whole scene. The SSP allows an

  20. Satellite radar altimetry over ice. Volume 1: Processing and corrections of Seasat data over Greenland

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.

    1990-01-01

    The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.

  1. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2012-07-01

    Full Text Available Floodplain lakes and peatlands in the middle Mahakam lowland area are considered as ecologically important wetland in East Kalimantan, Indonesia. However, due to a lack of data, the hydrological functioning of the region is still poorly understood. Among remote sensing techniques that can increase data availability, radar is well-suitable for the identification, mapping, and measurement of tropical wetlands, for its cloud unimpeded sensing and night and day operation. Here we aim to extract flood extent and flood occurrence information from a series of radar images of the middle Mahakam lowland area. We explore the use of Phased Array L-band Synthetic Aperture Radar (PALSAR imagery for observing flood inundation dynamics by incorporating field water level measurements. Water level measurements were carried out along the river, in lakes and in peatlands, using pressure transducers. For validation of the open water flood occurrence map, bathymetry measurements were carried out in the main lakes. A series of PALSAR images covering the middle and lower Mahakam area in the years 2007 through 2010 were collected. A fully inundated region can be easily recognized on radar images from a dark signature. Open water flood occurrence was mapped using a threshold value taken from radar backscatter of the permanently inundated river and lakes areas. Radar backscatter intensity analysis of the vegetated floodplain area revealed consistently high backscatter values, indicating flood inundation under forest canopy. We used those values as the threshold for flood occurrence mapping in the vegetated area.

  2. Extremely high frequency (EHF) satellite communications (SATCOM) technology-transmitters and receivers

    Science.gov (United States)

    Raue, Jorg E.

    1983-10-01

    During the past three years, interest in satellite communications in the frequency bands above Ku-band has expanded dramatically. As a result, a number of key technology developments, targeted to meet specific next generation spaceborne needs, were undertaken. The state-of-the-art in solid state power transmitters and low noise receivers, including critical passive component technology, is presented. This includes filters as well as a series of rugged high performance ferrite components such as isolators, circulators and latching switches.

  3. Radar micro-Doppler simulations of classification capability with frequency

    Science.gov (United States)

    Tahmoush, David; Silvious, Jerry

    2012-06-01

    Classifying human signatures using radar requires a detailed understanding of the RF scattering phenomenology associated with humans as well as their motion. We model humans engaged in the activity of walking and analyze the separability of different body parts with frequency as well as lookdown angle. This work seeks to estimate the ability to classify the micro-Doppler signals generated by human motion, and especially arm motion, as a function of the radar frequency and other parameters. The simulations imply that for classification using arm motion, frequencies at Ku-band or higher are probably required, and that lookdown angle has a significant effect on the classification capability of the radar. Additionally, the sensitivity of the system required to isolate the motion of different body parts is estimated.

  4. Comparing helicopter-borne profiling radar with airborne laser scanner data for forest structure estimation.

    Science.gov (United States)

    Piermattei, Livia; Hollaus, Markus; Pfeifer, Norbert; Chen, Yuwei; Karjalainen, Mika; Hakala, Teemu; Hyyppä, Juha; Wagner, Wolfgang

    2017-04-01

    Forests are complex ecosystems that show substantial variation with respect to climate, management regime, stand history, disturbance, and needs of local communities. The dynamic processes of growth and disturbance are reflected in the structural components of forests that include the canopy vertical structure and geometry (e.g. size, height, and form), tree position and species diversity. Current remote-sensing systems to measure forest structural attributes include passive optical sensors and active sensors. The technological capabilities of active remote sensing like the ability to penetrate the vegetation and provide information about its vertical structure has promoted an extensive use of LiDAR (Light Detection And Ranging) and radar (RAdio Detection And Ranging) system over the last 20 years. LiDAR measurements from aircraft (airborne laser scanning, ALS) currently represents the primary data source for three-dimensional information on forest vertical structure. Contrary, despite the potential of radar remote sensing, their use is not yet established in forest monitoring. In order to better understand the interaction of pulsed radar with the forest canopy, and to increase the feasibility of this system, the Finnish Geospatial Research Institute has developed a helicopter-borne profiling radar system, called TomoRadar. TomoRadar is capable of recording a canopy-penetrating profile of forests. To georeference the radar measurements the system was equipped with a global navigation satellite system and an inertial measurement unit with a centimeter level accuracy of the flight trajectory. The TomoRadar operates at Ku-band, (wave lengths λ 1.5cm) with two separated parabolic antennas providing co- and cross-polarization modes. The purpose of this work is to investigate the capability of the TomoRadar system, for estimating the forest vertical profile, terrain topography and tree height. We analysed 600 m TomoRadar crosspolarized (i.e. horizontal - vertical

  5. Waveform analysis of airborne synthetic aperture radar altimeter over Arctic sea ice

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2013-03-01

    Full Text Available Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat was launched in 2010 carrying a Ku-band Radar Altimeter (SIRAL designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types has been analyzed. A set of parameters has been defined to characterize the difference in strength and width of the returned power waveforms. With a Bayesian based method it is possible to classify about 80% of the waveforms by three parameters: maximum of the returned power echo, the trailing edge width and pulse peakiness. Furthermore, the radar power echo maximum can be used to minimize the rate of false detection of leads compared to the widely used Pulse Peakiness parameter. The possibility to distinguish between different ice types and open water allows to improve the freeboard retrieval and the conversion into sea ice thickness where surface type dependent values for the sea ice density and snow load can be used.

  6. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  7. Nanosar-case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.; Sundaramoorthy, P.; Gill, E.; Meijer, R.J.; Verhoeven, C.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite's payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially

  8. Nanosar-case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.; Sundaramoorthy, P.; Gill, E.; Meijer, R.J.; Verhoeven, C.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite's payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially ruli

  9. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick

    2015-04-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  10. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  11. Formation flying orbit design for the distributed synthetic aperture radar satellite

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; ZHOU Yinqing; LI Chunsheng

    2004-01-01

    Formation flying orbit design is one of the key technologies for system design and performance analysis of the distributed SAR satellites. The approximately analytic solution of the passive stable formation flying orbit elements is explored based on the expansion form of Kepler's equation. A new method of orbital parameters design for three-dimensional formation flying SAR satellites is presented, and the precision of the orbital elements is analyzed. Formation flying orbit elements are calculated for the L-Band distributed SAR satellites using the formulas deduced in this paper. The accuracy of the orbital elements is validated by the computer simulation results presented in this paper.

  12. Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops

    Directory of Open Access Journals (Sweden)

    R. Fieuzal

    2011-04-01

    Full Text Available The objective of this study is to get a better understanding of radar signal over irrigated wheat fields and to assess the potentialities of radar observations for the monitoring of soil moisture. Emphasis is put on the use of high spatial and temporal resolution satellite data (Envisat/ASAR and Formosat-2. Time series of images were collected over the Yaqui irrigated area (Mexico throughout one agricultural season from December 2007 to May 2008, together with measurements of soil and vegetation characteristics and agricultural practices. The comprehensive analysis of these data indicates that the sensitivity of the radar signal to vegetation is masked by the variability of soil conditions. On-going irrigated areas can be detected all over the wheat growing season. The empirical algorithm developed for the retrieval of topsoil moisture from Envisat/ASAR images takes advantage of the Formosat-2 instrument capabilities to monitor the seasonality of wheat canopies. This monitoring is performed using dense time series of images acquired by Formosat-2 to set up the SAFY vegetation model. Topsoil moisture estimates are not reliable at the timing of plant emergence and during plant senescence. Estimates are accurate from tillering to grain filling stages with an absolute error about 9% (0.09 m3 m−3, 35% in relative value. This result is attractive since topsoil moisture is estimated at a high spatial resolution (i.e. over subfields of about 5 ha for a large range of biomass water content (from 5 and 65 t ha−1 independently from the viewing angle of ASAR acquisition (incidence angles IS1 to IS6.

  13. Application of Multifractal Analysis to Segmentation of Water Bodies in Optical and Synthetic Aperture Radar Satellite Images

    CERN Document Server

    Martin, Victor Manuel San

    2016-01-01

    A method for segmenting water bodies in optical and synthetic aperture radar (SAR) satellite images is proposed. It makes use of the textural features of the different regions in the image for segmentation. The method consists in a multiscale analysis of the images, which allows us to study the images regularity both, locally and globally. As results of the analysis, coarse multifractal spectra of studied images and a group of images that associates each position (pixel) with its corresponding value of local regularity (or singularity) spectrum are obtained. Thresholds are then applied to the multifractal spectra of the images for the classification. These thresholds are selected after studying the characteristics of the spectra under the assumption that water bodies have larger local regularity than other soil types. Classifications obtained by the multifractal method are compared quantitatively with those obtained by neural networks trained to classify the pixels of the images in covered against uncovered b...

  14. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    Science.gov (United States)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  15. Ground settlement of Chek Lap Kok Airport, Hong Kong,detected by satellite synthetic aperture radar interferometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Satellite synthetic aperture radar (SAR) interferometry is used to investigate the slowly accumulating ground settlement at the new Chek Lap Kok Airport in Hong Kong. Most of the land occupied by the airport was reclaimed from the sea and therefore certain ground settlement in the area has been expected. A pair of ERS-2 SAR images spanning nearly a year is used in the study. The high spatial resolution (20 m× 20 m) ground settlement map derived indicates that the settlement that occurred in the area over the time period is as large as 50 mm. The SAR measurement results agree with the levelling measurements at some benchmarks in the area to well within 1 cm(rms error),and the overall correlation between the two types of results is 0.89. The paper presents some brief background of interferometric SAR, and outlines the data processing methods and results.

  16. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    Science.gov (United States)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  17. Caractérisation spatiale de l’aléa inondation à partir d’images satellites RADAR

    Directory of Open Access Journals (Sweden)

    Renaud Hostache

    2007-07-01

    Full Text Available Dans le cadre de la gestion du risque d’inondation, la caractérisation spatiale de l’aléa est une problématique récurrente pour laquelle les techniques de télédétection, en particulier satellitales, peuvent s’avérer très utiles. L’objectif général de notre étude est d’évaluer les apports de l’utilisation de ces données et, en particulier, de développer des méthodes de valorisation des images satellites RADAR d’inondations pour la caractérisation spatiale de l’aléa. A terme, notre étude vise l’aide à la modélisation hydraulique par évaluation de hauteurs et de volumes d’eau. La méthode que nous proposons s’articule en trois étapes principales : 1 cartographie de l’extension des eaux à partir d’images RADAR et extraction des limites informatives, 2 estimation primaire de niveaux d’eau par croisement entre les limites informatives et un MNT, 3 réduction des incertitudes d’estimation des niveaux d’eau par introduction de concepts de cohérence hydraulique.

  18. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    Science.gov (United States)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  19. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

    Science.gov (United States)

    2013-09-30

    of glaciers and the speed of motion. h) Monitoring of the Northwest Passage. APPROACH 2013 MIZ Pilot Program: Starting in June to end of...Flux Buoy (AOFB), and CRREL Ice Mass Balance (IMB) buoy so comparisons of the in-situ data can be calculated with the SAR data. By tracking the...programming the satellite collections for the dynamic and sometimes erratic movements of the buoy was not trivial and required tasking the satellite

  20. Optical and Radar Satellite Remote Sensing for Large Area Analysis of Landslide Activity in Southern Kyrgyzstan, Central Asia

    Science.gov (United States)

    Roessner, S.; Behling, R.; Teshebaeva, K. O.; Motagh, M.; Wetzel, H. U.

    2014-12-01

    The presented work has been investigating the potential of optical and radar satellite remote sensing for the spatio-temporal analysis of landslide activity at a regional scale along the eastern rim of the Fergana Basin representing the area of highest landslide activity in Kyrgyzstan. For this purpose a multi-temporal satellite remote sensing database has been established for a 12.000 km2 study area in Southern Kyrgyzstan containing a multitude of optical data acquired during the last 28 years as well as TerraSAR-X and ALOS-PALSAR acquired since 2007. The optical data have been mainly used for creating a multi-temporal inventory of backdated landslide activity. For this purpose an automated approach for object-oriented multi-temporal landslide detection has been developed which is based on the analysis of temporal NDVI-trajectories complemented by relief information to separate landslide-related surface changes from other land cover changes. Applying the approach to the whole study area using temporal high resolution RapidEye time series data has resulted in the automated detection of 612 landslide objects covering a total area of approx. 7.3 km². Currently, the approach is extended to the whole multi-sensor time-series database for systematic analysis of longer-term landslide occurrence at a regional scale. Radar remote sensing has been focussing on SAR Interferometry (InSAR) to detect landslide related surface deformation. InSAR data were processed by repeat-pass interferometry using the DORIS and SARScape software. To better assess ground deformation related to individual landslide objects, InSAR time-series analysis has been applied using the Small Baseline Subset (SBAS) method. Analysis of the results in combination with optical data and DEM information has revealed that most of the derived deformations are caused by slow movements in areas of already existing landslides indicating the reactivation of older slope failures. This way, InSAR analysis can

  1. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    Science.gov (United States)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  2. Nexrad-In-Space - A Geostationary Satellite Doppler Weather Radar for Hurricane Studies

    Science.gov (United States)

    Im, E.; Chandrasekar, V.; Chen, S. S.; Holland, G. J.; Kakar, R.; Lewis, W. E.; Marks, F. D.; Smith, E. A.; Tanelli, S.; Tripoli, G. J.

    2007-12-01

    The Nexrad-In-Space (NIS) is a revolutionary atmospheric radar observation concept from the geostationary orbiting platform. It was developed over the last 4 years under the auspices of NASA's Earth Science Instrument Incubator Program (IIP). The NIS radar would provide Ka-band (35 GHz) reflectivity and line-of-sight Doppler velocity profiles over a circular Earth region of approximately 5200 km in diameter with a 12-km horizontal resolution, and a minimum detectable signal of 5 dBZ. The NIS radar achieves its superb sampling capabilities by use of a 35-m diameter, deployable antenna made from lightweight membrane material. The antenna has two transmit-receive array pairs that create a dual-beam, spiral-feed combined profile image of both reflectivity and Doppler velocity approximately every 60 minutes. This sampling time can be shortened even further by increasing the number of transmit-receive array pairs. It is generally recognized that the processes important in governing hurricane intensity and structure span a wide range of spatial and temporal scales. The environmental forcing considerations require a large domain. The vortex response to the environmental forcing ultimately involves convection on small horizontal scales in the eyewall and rainband regions. Resolving this environment-vortex-convection feedback in a numerical model requires observations on the space and time scales necessary to unambiguously define these structures within and surrounding the tropical cyclone. Because the time and space scales of these processes are small, continuous 3-dimensional independent observations of the 3-dimensional wind and precipitation structures will be needed to initialize numerical models critical for this purpose. The proposed NIS Doppler radar would be the first instrument capable of accomplishing this feat at time scales less than hours, and would create the opportunity for hurricane science to enter a new era of understanding and improved prediction. This

  3. Cross-validation Methodology between Ground and GPM Satellite-based Radar Rainfall Product over Dallas-Fort Worth (DFW) Metroplex

    Science.gov (United States)

    Chen, H.; Chandrasekar, V.; Biswas, S.

    2015-12-01

    Over the past two decades, a large number of rainfall products have been developed based on satellite, radar, and/or rain gauge observations. However, to produce optimal rainfall estimation for a given region is still challenging due to the space time variability of rainfall at many scales and the spatial and temporal sampling difference of different rainfall instruments. In order to produce high-resolution rainfall products for urban flash flood applications and improve the weather sensing capability in urban environment, the center for Collaborative Adaptive Sensing of the Atmosphere (CASA), in collaboration with National Weather Service (NWS) and North Central Texas Council of Governments (NCTCOG), has developed an urban radar remote sensing network in DFW Metroplex. DFW is the largest inland metropolitan area in the U.S., that experiences a wide range of natural weather hazards such as flash flood and hailstorms. The DFW urban remote sensing network, centered by the deployment of eight dual-polarization X-band radars and a NWS WSR-88DP radar, is expected to provide impacts-based warning and forecasts for benefit of the public safety and economy. High-resolution quantitative precipitation estimation (QPE) is one of the major goals of the development of this urban test bed. In addition to ground radar-based rainfall estimation, satellite-based rainfall products for this area are also of interest for this study. Typical example is the rainfall rate product produced by the Dual-frequency Precipitation Radar (DPR) onboard Global Precipitation Measurement (GPM) Core Observatory satellite. Therefore, cross-comparison between ground and space-based rainfall estimation is critical to building an optimal regional rainfall system, which can take advantages of the sampling differences of different sensors. This paper presents the real-time high-resolution QPE system developed for DFW urban radar network, which is based upon the combination of S-band WSR-88DP and X

  4. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations

    Science.gov (United States)

    Bedka, Kristopher M.; Dworak, Richard; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.

  5. A Predistortion Linearizer for Ku-band Traveling Wave Tube Amplifier%一种适用于Ku波段行波管放大器的预失真线性化器

    Institute of Scientific and Technical Information of China (English)

    刘洁; 胡波雄; 王刚; 苏小保

    2014-01-01

    随着通信技术的发展,功率放大器线性度要求日益提高。该文提出一种两支路预失真电路,在单支路预失真电路基础上加入可调衰减器和非线性发生器级联成的辅助支路,改善了单个非线性发生器增益曲线斜率不足的问题,并在ADS中代入行波管模型仿真分析。在此基础上,加工Ku波段实际预失真电路并与行波管联合实验,线性化后的行波管放大器三阶载波交调比在输入功率回退3 dB时达到12.92 dB,回退6 dB时达到22.8 dB,线性度有了明显的改善。%With the development of communication technology, the requirements of power amplifier linearity are increasing. This paper presents a kind of two-branch predistortion circuit which contains the main branch and the auxiliary branch. The main branch is a diode based nonlinear generator and the auxiliary branch consists of variable attenuator and nonlinear generator. Compared with single nonlinear generator, this two-branch predistortion circuit increases the slope of amplitude characteristic. The ADS co-simulation of Traveling Wave Tube Amplifier (TWTA) and new predistorion circuit show the improvement of linearity. Based on the analysis and simulation, a Ku-band practically predistortion cuicuit is designed and tested with the TWTA. The results of experiments show that, the Carrier to Intermodulation (C/IM3) at TWTA Input Power Back Off (IPBO) of 3 dB can reach 12.92 dB, C/IM3 at TWTA IPBO of 6 dB can reach 22.8 dB. With the linearizer, the linearity of TWTA is clearly improved.

  6. NanoSAR – Case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.S.; Sundaramoorthy, P.P.; Gill, E.K.A.; Meijer, R.J.; Verhoeven, C.J.M.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite’s payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially

  7. Great Lakes Ice Cover Classification and Mapping Using Satellite Synthetic Aperture Radar (SAR) Data

    Science.gov (United States)

    Nghiem, S.; Leshkevich, G.; Kwok, R.

    1998-01-01

    Owing to the size and extent of the Great Lakes and the variety of ice types features found there, the timely and objective qualities inherent in computer processing of satellite data make it well suited for monitoring and mapping ice cover.

  8. New signatures of underground nuclear tests revealed by satellite radar interferometry

    Science.gov (United States)

    Vincent, P.; Larsen, S.; Galloway, D.; Laczniak, R.J.; Walter, W.R.; Foxall, W.; Zucca, J.J.

    2003-01-01

    New observations of surface displacement caused by past underground nuclear tests at the Nevada Test Site (NTS) are presented using interferometric synthetic aperture radar (InSAR). The InSAR data reveal both coseismic and postseismic subsidence signals that extend one kilometer or more across regardless of whether or not a surface crater was formed from each test. While surface craters and other coseismic surface effects (ground cracks, etc.) may be detectable using high resolution optical or other remote sensing techniques, these broader, more subtle subsidence signals (one to several centimeters distributed over an area 1-2 kilometers across) are not detectable using other methods [Barker et al., 1998]. A time series of interferograms reveal that the postseismic signals develop and persist for months to years after the tests and that different rates and styles of deformation occur depending on the geologic and hydrologic setting and conditions of the local test area.

  9. Satellite radar altimetry over ice. Volume 2: Users' guide for Greenland elevation data from Seasat

    Science.gov (United States)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described. It is intended to be a user's guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating smaller-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  10. Satellite radar altimetry over ice. Volume 4: Users' guide for Antarctica elevation data from Seasat

    Science.gov (United States)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described. This is a user guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  11. S-band synthetic aperture radar on-board NISAR satellite

    Science.gov (United States)

    Misra, Tapan; Bhan, Rakesh; Putrevu, Deepak; Mehrotra, Priyanka; Chakrabarty, Soumyabrata

    2016-05-01

    provide single, dual, compact and quasi-quad polarization imaging modes. Centre frequency for S-band SAR is 3200MHz with highest bandwidth of 75MHz. S-Band SAR utilizes 24 transmit receive modules (T/R Modules) to illuminate >240kms swath during transmit event and digital beam forming (DBF) on receive to reduce data rate by combining 24 receive channels and enhance SNR of the system. This paper provides details of S-band SAR system design, configuration and realization which is a challenging task since both L-band and S-band radars need to operate at same PRF and clock reference during simultaneous imaging operation. Further to this, SweepSAR technique demands PRF dithering (changing) to avoid dead gaps in the swath due to receive echo conflicting with transmit event.

  12. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014

    Science.gov (United States)

    Armitage, Thomas W. K.; Bacon, Sheldon; Ridout, Andy L.; Thomas, Sam F.; Aksenov, Yevgeny; Wingham, Duncan J.

    2016-06-01

    Arctic sea surface height (SSH) is poorly observed by radar altimeters due to the poor coverage of the polar oceans provided by conventional altimeter missions and because large areas are perpetually covered by sea ice, requiring specialized data processing. We utilize SSH estimates from both the ice-covered and ice-free ocean to present monthly estimates of Arctic Dynamic Ocean Topography (DOT) from radar altimetry south of 81.5°N and combine this with GRACE ocean mass to estimate steric height. Our SSH and steric height estimates show good agreement with tide gauge records and geopotential height derived from Ice-Tethered Profilers. The large seasonal cycle of Arctic SSH (amplitude ˜5 cm) is dominated by seasonal steric height variation associated with seasonal freshwater fluxes, and peaks in October-November. Overall, the annual mean steric height increased by 2.2 ± 1.4 cm between 2003 and 2012 before falling to circa 2003 levels between 2012 and 2014 due to large reductions on the Siberian shelf seas. The total secular change in SSH between 2003 and 2014 is then dominated by a 2.1 ± 0.7 cm increase in ocean mass. We estimate that by 2010, the Beaufort Gyre had accumulated 4600 km3 of freshwater relative to the 2003-2006 mean. Doming of Arctic DOT in the Beaufort Sea is revealed by Empirical Orthogonal Function analysis to be concurrent with regional reductions in the Siberian Arctic. We estimate that the Siberian shelf seas lost ˜180 km3 of freshwater between 2003 and 2014, associated with an increase in annual mean salinity of 0.15 psu yr-1. Finally, ocean storage flux estimates from altimetry agree well with high-resolution model results, demonstrating the potential for altimetry to elucidate the Arctic hydrological cycle.

  13. Military Hydrology. Report 8. Feasibility of Utilizing Satellite and Radar Data in Hydrologic Forecasting.

    Science.gov (United States)

    1985-09-01

    Keown , Chief, ECG, under the general super- vision of Dr. Lewis E. Link, Chief, ESD, and Dr. John Harrison, Chief, EL. During the preparation of this... Martin , D. W., Stout, J., and Sikdar, 1). N. 1976. "Rainfall Estimation from Geo- synchronous Satellite Imagery During Daylight Hours," NOAA...Technical Report ERL 356-WMPO 7, US Department of Commerce. Griffith, C. G., Woodley, W. L., Grube, P. G., Martin , D. W., Stout, J., and Sikdar. D. N. 1978

  14. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synthetic Aperture Radar (SAR)-derived high resolution wind products are calculated from high resolution SAR images of normalized radar cross section (NRCS) of the...

  15. Digital Meteorological Radar Data Compared with Digital Infrared Data from a Geostationary Meteorological Satellite.

    Science.gov (United States)

    1979-05-01

    datai uwere tab~ulaited for compariso;cn with the infrared satellite data) j 20 CIIA1iLTR Ml GEOSTAT] ONAPY ME LW)L- C , TIL LF K Meteorolccj isa I sate...8217):U S f 3 ’ 1 t ’ Iv . e , :]~L ’ bI 1 T-4 THY:-, L,’AClvT!P 3 AND IMVIC]l C t101 KRV~;It Tb 3 ( ji~u>:2;cat L ii 2 ’GD ~Of the L~r [2 u : ~~ I~ rtu ~j

  16. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  17. Estimation of an eartquake focal mechanism from a satellite radar interferogram:Application to the December 4, 1992 Landers aftershock

    Science.gov (United States)

    Feigl, Kurt L.; Sergent, Arnaud; Jacq, Dominique

    1995-05-01

    Interferometric fringes generated by the phase difference between a pair of synthetic-aperture radar images acquired by the ERS-1 satellite were used to estimate the focal mechanism of a small, shallow thrust earthquake. The inversion procedure is an iterative, linerarized least-squares algorithm based on a standard elastic dislocation formulation for coseismic displacements. The preferred estimate is a thrust focal mechanism with its hypocenter at (N34.35 deg +/- 0.4 km, W 116.91 deg +/- 0.2 km, 2.6 +/- 0.3 km depth) on a plane dipping southward beneath the San Bernardino Mountains, with a moment magnitude of 5.4. The strike, dip and rake are N106 deg E +/- 7 deg, 28 deg +/- 4 deg, and 93 deg +/- 4deg, respectively on a fault 3.1 +/- 0.5 km wide and 2.9 +/- 0.4 km long. The precision of these estimates is competitive with seismological determinations.

  18. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans

    Institute of Scientific and Technical Information of China (English)

    HWANG; CheinWay

    2010-01-01

    The quality of satellite radar altimetric data is very important in studies of geodesy,geophysics,and oceanography.Over coastal oceans,altimeter waveforms are contaminated by the terrain and physical environments so that the accuracy of altimeter data is lower than that over open oceans.Here we develop a new multi-subwaveform parametric retracker(MSPR) to improve the quality of altimeter data for the recovery of gravity anomaly in coastal oceans.The least squares collocation method is used to recover the residual gravity anomaly over the coastal water from altimetric data.The waveform data records from Geosat/GM around Taiwan Island are practically retracked with MSPR.When compared with the Taiwan geoid height,the results retracked by MSPR are more accurate than those retracked by the well-known β-5-parmeter method and from the geophysical data records(GDRs).The gravity anomalies over Taiwan coastal waters are calculated from the retracked altimeter data with the least squares collocation.When we compared gravity anomalies computed using altimeter GDRs with the ship-borne gravity data over Taiwan coastal ocean,we found that the results from retracked data are more accurate than those from GDRs.

  19. 一种新型Ku波段车载卫星通信地球站%A New Version of Ku-band Vehicle-borne Satellite Communication Earth Station

    Institute of Scientific and Technical Information of China (English)

    李文明

    2000-01-01

    介绍一种最新研制的Ku波段车载卫星通信站系统,侧重于上行功率控制、车载天线、伺服跟踪、集中监控等有关技术特征的描述.同时给出了系统主要配置和性能指标.

  20. Improving Quantitative Precipitation Estimation via Data Fusion of High-Resolution Ground-based Radar Network and CMORPH Satellite-based Product

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.

    2015-12-01

    A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each

  1. Rapid damage mapping for the 2015 M7.8 Gorkha earthquake using synthetic aperture radar data from COSMO-SkyMed and ALOS-2 satellites

    Science.gov (United States)

    Yun, Sang-Ho; Hudnut, Kenneth W.; Owen, Susan; Webb, Frank; Simons, Mark; Sacco, Patrizia; Gurrola, Eric; Manipon, Gerald; Liang, Cunren; Fielding, Eric; Milillo, Pietro; Hua, Hook; Coletta, Alessandro

    2015-01-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake caused more than 8000 fatalities and widespread building damage in central Nepal. The Italian Space Agency’s COSMO–SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area four days after the earthquake and the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite-2 SAR satellite for larger area nine days after the mainshock. We used these radar observations and rapidly produced damage proxy maps (DPMs) derived from temporal changes in Interferometric SAR coherence. Our DPMs were qualitatively validated through comparison with independent damage analyses by the National Geospatial-Intelligence Agency and the United Nations Institute for Training and Research’s United Nations Operational Satellite Applications Programme, and based on our own visual inspection of DigitalGlobe’s WorldView optical pre- versus postevent imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.

  2. Transmitter microdischarges in communications and broadcast Satellites

    Science.gov (United States)

    Briskman, Robert D.; Kaliski, Michael A. R.

    2016-09-01

    Most commercial communications and broadcast satellites operating at microwave radio frequencies use traveling wave tube amplifiers (TWTAs) as high power transmitters. Since TWTAs work at high voltages, it is not uncommon to experience micro-discharges, especially early in life. This observation led to the introduction of an autonomous restart function in the companion high voltage power supply (the electronic power conditioner or EPC) of the TWTA as a safety feature. A microdischarge with enough energy above a threshold would lead to a momentary removal of high voltages, followed by an automatic restart, which is usually sufficient to allow the microdischarge event to clear with minimal loss of RF transmission. In most cases the energy involved in the microdischarge is low enough that the removal of high voltages is not required and the event may go undetected. However, an unusual signature was first noted in early 1997 on a Ku-band satellite transmitter, where the characteristics of the microdischarge event were such that the control anode voltage dropped below nominal and typically recovered over a 20 min period. Such microdischarge events became known as the "20 min Effect" which has since been observed over subsequent years on other Ku-band TWTAs, as well as on Ka-band and S-band satellite TWTA transmitters in numerous satellites. This paper summarizes the in-orbit data on such microdischarges as well as the believed cause. In addition, the paper includes results from three S-band TWTAs which have operated on life test for many years. Due to ease of their monitoring instrumentation as contrast to monitoring microdischarges on orbiting operational satellites via telemetry, new data have been accumulated on this effect. The data substantiate the previous findings that microdischarges do not significantly affect satellite operation or their transmissions nor diminish the TWTAs performance, including long lifetime.

  3. A figure of merit for competing communications satellite designs

    Science.gov (United States)

    Lovell, R. R.; Fordyce, S. W.

    1983-01-01

    Trends in launch schedules, weights, power, and space segment costs per transponder year for Intelsats and North American domsats (domestic communications satellites) are discussed. The Intelsat system currently services 25,000 point to point telephone links at any one moment, and a $3 billion order has been placed for Intelsat VIs, which feature 36,000 telephone circuits each. The Intelsat VI spacecraft will weigh 1670 kg in orbit, a continuance of the trend to heavier satellites, while the domsats will stay at 650 kg due to launch vehicle limitations. Direct television broadcast satellites are being designed for receive only (R/O) earth stations, with each satellite capable of servicing 50,000 individual ground stations. Competition is growing for C and Ku band satellite transponders for DBS, with costs $350,000 each. No standardized design has yet emerged.

  4. Long Term Monitoring of Ground Motions in Upper Silesia Coal Basin (USCB) Using Satellite Radar Interferometry

    Science.gov (United States)

    Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew

    2016-08-01

    Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.

  5. Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change

    Science.gov (United States)

    Arnold, D. W. D.; Biggs, J.; Wadge, G.; Ebmeier, S. K.; Odbert, H. M.; Poland, Michael P.

    2016-01-01

    Frequent high-resolution measurements of topography at active volcanoes can provide important information for assessing the distribution and rate of emplacement of volcanic deposits and their influence on hazard. At dome-building volcanoes, monitoring techniques such as LiDAR and photogrammetry often provide a limited view of the area affected by the eruption. Here, we show the ability of satellite radar observations to image the lava dome and pyroclastic density current deposits that resulted from 15 years of eruptive activity at Soufrière Hills Volcano, Montserrat, from 1995 to 2010. We present the first geodetic measurements of the complete subaerial deposition field on Montserrat, including the lava dome. Synthetic aperture radar observations from the Advanced Land Observation Satellite (ALOS) and TanDEM-X mission are used to map the distribution and magnitude of elevation changes. We estimate a net dense-rock equivalent volume increase of 108 ± 15M m3 of the lava dome and 300 ± 220M m3 of talus and subaerial pyroclastic density current deposits. We also show variations in deposit distribution during different phases of the eruption, with greatest on-land deposition to the south and west, from 1995 to 2005, and the thickest deposits to the west and north after 2005. We conclude by assessing the potential of using radar-derived topographic measurements as a tool for monitoring and hazard assessment during eruptions at dome-building volcanoes.

  6. Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

    Directory of Open Access Journals (Sweden)

    Kuan-Ting Liu

    2016-04-01

    Full Text Available Water level (WL and water volume (WV of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2 and Landsat-5/-7/-8 Thematic Mapper (TM/Enhanced Thematic Mapper plus (ETM+/Operational  Land Imager (OLI optical remote sensing (RS imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE is at 2–5 m level. The estimated WV variations derived from combined RA

  7. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  8. High-Resolution Mapping of Sea Ice, Icebergs and Growlers in Kongsfjorden, Svalbard, using Ground Based Radar, Satellite, and UAV

    Science.gov (United States)

    Lauknes, T. R.; Rouyet, L.; Solbø, S. A.; Sivertsen, A.; Storvold, R.; Akbari, V.; Negrel, J.; Gerland, S.

    2016-12-01

    The dynamics of sea ­ice has a well­ recognized role in the climate system and its extent and evolution is impacted by the global warming. In addition, calving of icebergs and growlers at the tidewater glacier fronts is a component of the mass loss in polar regions. Understanding of calving and ice ­ocean interaction, in particular at tidewater glacier front remains elusive, and a problematic uncertainty in climate change projections. Studying the distribution, volumetry and motion of sea ­ice, icebergs and growlers is thus essential to understand their interactions with the environment in order to be able to predict at short­term their drifts, e.g. to mitigate the risk for shipping, and at longer term the multiple relations with climate changes. Here, we present the results from an arctic fieldwork campaign conducted in Kongsfjorden, Svalbard in April 2016, where we used different remote sensing instruments to observe dynamics of sea ice, icebergs, and growlers. We used a terrestrial radar system, imaging the study area every second minute during the observation period. At the front of the Kronebreen glacier, calving events can be detected and the drift of the generated icebergs and growlers tracked with unprecedented spatial and temporal resolution. During the field campaign, we collected four Radarsat-2 quad-pol images, that will be used to classify the different types of sea ice. In addition, we used small unmanned aircraft (UAS) instrumented with high resolution cameras capturing HD video and still pictures. This allows to map and measure the size of icebergs and ice floes. Such information is essential to validate sensitivity and detection limits from the ground and satellite based measurements.

  9. Developing an Ice Volume Estimate of Jarvis Glacier, Alaska, using Ground-Penetrating Radar and High Resolution Satellite Imagery

    Science.gov (United States)

    Wu, N. L.; Campbell, S. W.; Douglas, T. A.; Osterberg, E. C.

    2013-12-01

    Jarvis Glacier is an important water source for Fort Greely and Delta Junction, Alaska. Yet with warming summer temperatures caused by climate change, the glacier is melting rapidly. Growing concern of a dwindling water supply has caused significant research efforts towards determining future water resources from spring melt and glacier runoff which feeds the community on a yearly basis. The main objective of this project was to determine the total volume of the Jarvis Glacier. In April 2012, a centerline profile of the Jarvis Glacier and 15 km of 100 MHz ground-penetrating radar (GPR) profiles were collected in cross sections to provide ice depth measurements. These depth measurements were combined with an interpreted glacier boundary (depth = 0 m) from recently collected high resolution WorldView satellite imagery to estimate total ice volume. Ice volume was calculated at 0.62 km3 over a surface area of 8.82 km2. However, it is likely that more glacier-ice exists within Jarvis Glacier watershed considering the value calculated with GPR profiles accounts for only the glacier ice within the valley and not for the valley side wall ice. The GLIMS glacier area database suggests that the valley accounts for approximately 50% of the total ice covered watershed. Hence, we are currently working to improve total ice volume estimates which incorporate the surrounding valley walls. Results from this project will be used in conjunction with climate change estimates and hydrological properties downstream of the glacier to estimate future water resources available to Fort Greely and Delta Junction.

  10. Simultaneous Antarctic Gravity Wave Observations in PMCs from the AIM Satellite and PMSE Observations from PANSY Radar

    Science.gov (United States)

    Buzanowicz, M. E.; Yue, J.; Russell, J. M., III; Sato, K.; Kohma, M.; Nakamura, T.

    2015-12-01

    Polar mesospheric clouds (PMCs) are high-altitude ice clouds that form in the cold summer mesopause region due to adiabatic cooling caused by an upwelling induced by the global meridional circulation, which is driven by gravity wave dissipation and forcing. Polar mesospheric summer echoes (PMSEs) are strong coherent echoes also observed in the polar summer mesosphere and are considered to be related to ionization and the small-scale structure associated with PMCs, with their origins thought to be strongly related. The peak PMSE height can be located slightly below the summer mesopause temperature minimum but above the PMC altitude. Upward propagating atmospheric gravity waves (AGWs) are usually considered to be the cause of the wave patterns seen in PMCs. Monitoring PMCs and PMSEs will provide important tools in detecting climate change in the upper atmosphere and a better understanding of the earth-climate system. The science goal I plan to accomplish is to investigate the possibility of a connection between gravity wave perturbation characteristics in PMCs from the AIM (Aeronomy of Ice in the Mesosphere) satellite and PMSE structures observed by PANSY (program of the Antarctic Syowa MST/IS radar). Data from the CIPS instrument onboard AIM, PANSY, and AIRS (Atmospheric Infrared Sounder) will be used. AIM provides a two-dimensional horizontal view of the atmosphere dynamics embedded in PMCs, while PANSY provides a vertical view of PMSEs and gravity waves with high temporal resolution. The combination of AIM and PANSY will provide a three-dimensional view of the atmosphere, AGWs, PMCs and PMSEs. AIRS provides information about AGWs in the stratosphere. Wave analysis of the Fast Fourier Transform or a wavelet analysis will be used to complete the science goal. AIRS will be used to examine how lower atmosphere meteorology may impact the PMC and PMSE structures.

  11. Communication Satellite Payload Special Check out Equipment (SCOE) for Satellite Testing

    Science.gov (United States)

    Subhani, Noman

    2016-07-01

    This paper presents Payload Special Check out Equipment (SCOE) for the test and measurement of communication satellite Payload at subsystem and system level. The main emphasis of this paper is to demonstrate the principle test equipment, instruments and the payload test matrix for an automatic test control. Electrical Ground Support Equipment (EGSE)/ Special Check out Equipment (SCOE) requirements, functions and architecture for C-band and Ku-band payloads are presented in details along with their interface with satellite during different phases of satellite testing. It provides test setup, in a single rack cabinet that can easily be moved from payload assembly and integration environment to thermal vacuum chamber all the way to launch site (for pre-launch test and verification).

  12. Low-noise amplifiers for satellite communications

    Science.gov (United States)

    Whelehan, J.

    1984-02-01

    It is pointed out that over the past several years significant advances have been made in the overall capability of both microwave and mm-wave receivers. This is particularly apparent in the telecom market. Integral parts of advanced receiver technology are low-noise receivers. The advances currently being achieved in low-noise technology are partly based on developments in GaAs semiconductor technology. The development of high-cutoff-frequency beam lead mixer diodes has led to the development of mm-wave low-noise mixers with excellent low-noise capability. The advanced techniques are now being employed in field-deployable systems. Low noise is an important factor in satellite communications applications. Attention is given to C-band fixed satellite service, C-band parametric amplifiers, C-band FET, and X band, the Ku band, and the 30/20 GHz band.

  13. Engineering implementation of satellite calibration for radar%雷达卫星标校的工程实现研究

    Institute of Scientific and Technical Information of China (English)

    郭佳意; 钮俊清

    2014-01-01

    为确保雷达系统的测量精度,给出了一种用于标校雷达动态跟踪过程中系统误差的工程实现方法--卫星标校法。该方法通过观测卫星轨迹,将量测值与真实星历值比对,通过最优化解法标定雷达的系统误差。考虑雷达结构特点导致的误差和大气折射误差修正后的残余误差,建立了卫星标校的系统误差模型。最后,采用实测数据验证了该误差模型的可行性与可靠性。该方法在标校过程中不受人为、天气等因素影响,可以适应雷达的动态技术状态。%To guarantee the measurement precision of radar system, this paper presents an engineering implementation method, named satellite calibration, used for calibrating the system error in the course of radar dynamic tracking. This method contrasts the measurement value to the real ephemeris value by observing the satellite track, and calibrate the radar’s system errors by using the optimal solution. Considering that the errors caused by the features of radar configuration and the residual errors after correction of atmosphere refraction errors, the author sets up a system error model for satellite calibration, and finally proves the feasibility and reliability of this proposed error model using the test data. As this method is not affected by some factitious and weather factors, it can be also adapted to radar’s dynamic technical state.

  14. Freeze/thaw conditions at periglacial landforms in Kapp Linné, Svalbard, investigated using field observations, in situ, and radar satellite monitoring

    Science.gov (United States)

    Eckerstorfer, M.; Malnes, E.; Christiansen, H. H.

    2017-09-01

    In periglacial landscapes, snow dynamics and microtopography have profound implications of freeze-thaw conditions and thermal regime of the ground. We mapped periglacial landforms at Kapp Linné, central Svalbard, where we chose six widespread landforms (solifluction sheet, nivation hollow, palsa and peat in beach ridge depressions, raised marine beach ridge, and exposed bedrock ridge) as study sites. At these six landforms, we studied ground thermal conditions, freeze-thaw cycles, and snow dynamics using a combination of in situ monitoring and C-band radar satellite data in the period 2005-2012. Based on these physical parameters, the six studied landforms can be classified into raised, dry landforms with minor ground ice content and a thin, discontinuous snow cover and into wet landforms with high ice content located in the topographical depressions in-between with medium to thick snow cover. This results in a differential snow-melting period inferred from the C-band radar satellite data, causing the interseasonal and interlandform variability in the onset of ground surface thawing once the ground becomes snow free. Therefore, variability also exists in the period of thawed ground surface conditions. However, the length of the season with thawed ground surface conditions does not determine the mean annual ground surface temperature, it only correlates well with the active layer depths. From the C-band radar satellite data series, measured relative backscatter trends hint toward a decrease in snow cover through time and a more frequent presence of ice layers from mid-winter rain on snow events at Kapp Linné, Svalbard.

  15. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    Science.gov (United States)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A. S.

    2013-12-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately.

  16. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    OpenAIRE

    Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J.W.; Hocking, W.; Murayama, Y.; Igarashi, K

    2005-01-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opp...

  17. Satellite Altimetry for Rivers : Review and Perspectives

    Science.gov (United States)

    Calmant, S.

    2013-05-01

    Pioneer works using satellite altimetry over rivers started two decades ago. Next decade, we should have SWOT, the first mission to monitor all the water bodies on Earth larger than (250 m x 250 m). Over these three decades, radar altimetry for hydrology will have evolved significantly. In the past decade, ESA's ENVISAT has turned to be the most useful altimetry mission for hydrology. The major improvement brought by ENVISAT has been to propose various estimates of the radar "range" (the distance between the sensor and reflecting surface) in the raw data distributed. Owing to this choice in ranges, typical rms error for series computed with the ice-1 algorithm for the ENVISAT or Jason-2 data is in the range of 20-40 cm, which is a factor 2 to 4 better than it was previously with the standard -ocean- tracking algorithm, with the T/P mission for instance. Before ENVISAT, it has long been considered that altimetry could work only over wide rivers or large lakes. When the contrast in backscatter between the river surface and the surrounding ground was favorable, valuable time series have been recovered over reaches as narrow as a few tens of meters. All the past missions, including ENVISAT, were working in the Ku band in Low Resolution mode (LR), in opposite to the delay Doppler (DD), SAR, mode, which should be the most common technology in the near-future missions. SAR mode is currently tested with Cryosat-2, launched in2010. With AltiKa, to be launched in February this year, a new band will be tested, the Ka band. In 2014, ESA should launch Sentinel-3A, the first of a series of four SAR satellites. Thus, in the middle of the decade, we should have the most favorable situation ever encountered, with 2 to 3 SAR altimeters (Sentinel-3A from 2014, Sentinel-3B from 2016, Jason-CS from 2017), and in LR mode (Jason 2 & 3 and AltiKa). Next decade, SWOT will embark a Ka band wide swath (120 km) interferometric altimeter. It will cover the Earth continents twice every 22 days

  18. Merapi 2010 eruption-Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting

    Science.gov (United States)

    Pallister, John S.; Schneider, David J.; Griswold, Julia P.; Keeler, Ronald H.; Burton, William C.; Noyles, Christopher; Newhall, Christopher G.; Ratdomopurbo, Antonius

    2013-07-01

    Despite dense cloud cover, satellite-borne commercial Synthetic Aperture Radar (SAR) enabled frequent monitoring of Merapi volcano's 2010 eruption. Near-real-time interpretation of images derived from the amplitude of the SAR signals and timely delivery of these interpretations to those responsible for warnings, allowed satellite remote sensing for the first time to play an equal role with in situ seismic, geodetic and gas monitoring in guiding life-saving decisions during a major volcanic crisis. Our remotely sensed data provide an observational chronology for the main phase of the 2010 eruption, which lasted 12 days (26 October-7 November, 2010). Unlike the prolonged low-rate and relatively low explosivity dome-forming and collapse eruptions of recent decades at Merapi, the eruption began with an explosive eruption that produced a new summit crater on 26 October and was accompanied by an ash column and pyroclastic flows that extended 8 km down the flanks. This initial explosive event was followed by smaller explosive eruptions on 29 October-1 November, then by a period of rapid dome growth on 1-4 November, which produced a summit lava dome with a volume of ~ 5 × 106 m3. A paroxysmal VEI 4 magmatic eruption (with ash column to 17 km altitude) destroyed this dome, greatly enlarged the new summit crater and produced extensive pyroclastic flows (to ~ 16 km radial distance in the Gendol drainage) and surges during the night of 4-5 November. The paroxysmal eruption was followed by a period of jetting of gas and tephra and by a second short period (12 h) of rapid dome growth on 6 November. The eruption ended with low-level ash and steam emissions that buried the 6 November dome with tephra and continued at low levels until seismicity decreased to background levels by about 23 November. Our near-real-time commercial SAR documented the explosive events on 26 October and 4-5 November and high rates of dome growth (> 25 m3 s- 1). An event tree analysis for the previous

  19. A practical algorithm for the retrieval of floe size distribution of Arctic sea ice from high-resolution satellite Synthetic Aperture Radar imagery

    Directory of Open Access Journals (Sweden)

    Byongjun Hwang

    2017-07-01

    Full Text Available In this study, we present an algorithm for summer sea ice conditions that semi-automatically produces the floe size distribution of Arctic sea ice from high-resolution satellite Synthetic Aperture Radar data. Currently, floe size distribution data from satellite images are very rare in the literature, mainly due to the lack of a reliable algorithm to produce such data. Here, we developed the algorithm by combining various image analysis methods, including Kernel Graph Cuts, distance transformation and watershed transformation, and a rule-based boundary revalidation. The developed algorithm has been validated against the ground truth that was extracted manually with the aid of 1-m resolution visible satellite data. Comprehensive validation analysis has shown both perspectives and limitations. The algorithm tends to fail to detect small floes (mostly less than 100 m in mean caliper diameter compared to ground truth, which is mainly due to limitations in water-ice segmentation. Some variability in the power law exponent of floe size distribution is observed due to the effects of control parameters in the process of de-noising, Kernel Graph Cuts segmentation, thresholds for boundary revalidation and image resolution. Nonetheless, the algorithm, for floes larger than 100 m, has shown a reasonable agreement with ground truth under various selections of these control parameters. Considering that the coverage and spatial resolution of satellite Synthetic Aperture Radar data have increased significantly in recent years, the developed algorithm opens a new possibility to produce large volumes of floe size distribution data, which is essential for improving our understanding and prediction of the Arctic sea ice cover

  20. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    Science.gov (United States)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  1. SYSTEM MODELLING OF DTH BROADCASTING AT KA BAND MULTIBEAM SATELLITE SYSTEM OVER INDIA

    Directory of Open Access Journals (Sweden)

    Swastik Sahoo

    2015-12-01

    Full Text Available A major application of satellite is broadcasting and in India this is done at Ku band. But with the increase of demand of number of channels Ku band is getting saturated. So, to satisfy this requirement an approach is to go to higher frequency band, i.e. Ka band. As India is allocated with seven fixed GEO locations, so the purpose is to calculate what is the suitable satellite position for India at Ka band, what is the best EIRP available at that position and what will be the smallest ground antenna diameter and satellite antenna diameter at Ka band. Broadcasting is done at 20GHz Ka band downlink frequency. At this frequency, as the signal will face lots of impairments during propagation, so the attenuation caused by variety of factors are discussed here. To overcome the attenuation maximum EIRP is given. The link equation is taken as a reference to calculate quality of the signal, G/T ratio and EIRP of the satellite. The extreme west region of India is being taken as earth station and after some brief calculations all the results are discussed. Out of seven allocated GEO locations, 74⁰E gives best output in terms of minimum loss & small antenna diameters.

  2. Water stress detection in the Amazon using radar

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  3. Integrating geologic and satellite radar data for mapping dome-and-basin patterns in the In Ouzzal Terrane, Western Hoggar, Algeria

    Science.gov (United States)

    Deroin, Jean-Paul; Djemai, Safouane; Bendaoud, Abderrahmane; Brahmi, Boualem; Ouzegane, Khadidja; Kienast, Jean-Robert

    2014-11-01

    The In Ouzzal Terrane (IOT) located in the north-western part of the Tuareg Shield forms an elongated N-S trending block, more than 400 km long and 80 km wide. It involves an Archaean crust remobilized during a very high-temperature metamorphic event related to the Palaeoproterozoic orogeny. The IOT largely crops out in the rocky and sandy desert of Western Hoggar. It corresponds mainly to a flat area with some reliefs composed of Late Panafrican granites, dyke networks or Cambrian volcanic rocks. These flat areas are generally covered by thin sand veneers. They are favorable for discriminating bedrock geological units using imaging radar, backscattering measurements, and field checking, because the stony desert is particularly sensitive to the radar parameters such as wavelength or polarization. The main radar data used are those obtained with the ALOS-PALSAR sensor (L-band), in ScanSAR mode (large swath) and Fine Beam modes. The PALSAR sensor has been also compared to ENVISAT-ASAR and to optical imagery. Detailed mapping of some key areas indicates extensive Archaean dome-and-basin patterns. In certain parts, the supracrustal synforms and orthogneiss domes exhibit linear or circular features corresponding to shear zones or rolling structures, respectively. The geological mapping of these dome-and-basin structures, and more generally of the Archaean and Proterozoic lithological units, is more accurate with the SAR imagery, particularly when using the L-band, than with the optical imagery. A quantitative approach is carried out in order to estimate the backscatter properties of the main rock types. Due to the large variety of configurations, radar satellite imagery such as ALOS PALSAR represents a key tool for geological mapping in arid region at different scales from the largest (e.g., 1:500,000) to the smallest (e.g., 1:50,000).

  4. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    DEFF Research Database (Denmark)

    Kern, S.; Khvorostovsky, K.; Skourup, H.

    2015-01-01

    sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer (AMSR-E) and the Warren climatology (Warren et al., 1999). We compare the different data sets in spatiotemporal scales where satellite radar altimetry yields meaningful results. An inter-comparison of the snow...

  5. Ground-Truthing a Next Generation Snow Radar

    Science.gov (United States)

    Yan, S.; Brozena, J. M.; Gogineni, P. S.; Abelev, A.; Gardner, J. M.; Ball, D.; Liang, R.; Newman, T.

    2016-12-01

    During the early spring of 2016 the Naval Research Laboratory (NRL) performed a test of a next generation airborne snow radar over ground truth data collected on several areas of fast ice near Barrow, AK. The radar was developed by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas, and includes several improvements compared to their previous snow radar. The new unit combines the earlier Ku-band and snow radars into a single unit with an operating frequency spanning the entire 2-18 GHz, an enormous bandwidth which provides the possibility of snow depth measurements with 1.5 cm range resolution. Additionally, the radar transmits on dual polarizations (H and V), and receives the signal through two orthogonally polarized Vivaldi arrays, each with 128 phase centers. The 8 sets of along-track phase centers are combined in hardware to improve SNR and narrow the beamwidth in the along-track, resulting in 8 cross-track effective phase centers which are separately digitized to allow for beam sharpening and forming in post-processing. Tilting the receive arrays 30 degrees from the horizontal also allows the formation of SAR images and the potential for estimating snow-water equivalent (SWE). Ground truth data (snow depth, density, salinity and SWE) were collected over several 60 m wide swaths that were subsequently overflown with the snow radar mounted on a Twin Otter. The radar could be operated in nadir (by beam steering the receive antennas to point beneath the aircraft) or side-looking modes. Results from the comparisons will be shown.

  6. GOLD MINERAL PROSPECTING USING PHASED ARRAY TYPE L-BAND SYNTHETIC APERTURE RADAR (PALSAR SATELLITE REMOTE SENSING DATA, CENTRAL GOLD BELT, MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2016-06-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  7. Terrestrial Radar Interferometer Observations of a Rapid Landslide Over Vegetated Terrain

    Science.gov (United States)

    Werner, C. L.; Caduff, R.; Strozzi, T.; Wegmüller, U.

    2013-12-01

    In the Spring of 2013 a landslide in the Hintergraben region of canton Obwalden in Switzerland showed a rapid increase in velocity. Hintergraben, at an elevation of about 900 meters is characterized by meadow and some trees. A region approximately 200 meters wide and 500 meters long was affected. Starting in February, the velocity increased to 30 cm/day by 1-May and continued to accelerate by deceleration to 8 cm/day by 27-May. We report on observations of this landslide using the Gamma Portable Radar Interferometer (GPRI). The GPRI is an FM-CW radar operating at 17.2 GHz (Ku-Band) with an operational range up to 10 km. Range resolution is 90 cm along the LOS. The instrument operates in real-aperture mode with 0.4 degree wide fan-beam giving an azimuth resolution better than 7 meters at 1 kilometer range. During data acquisition, the radar performed an azimuth scan of the scene at a rate of 5 degrees/sec. The radar is phase coherent and capable of acquiring data suitable for differential interferometry with a precision for measuring changes in the LOS distance > 0.1 mm. Limiting factors in the accuracy of LOS motion are interferometric phase coherence and variations in delay due to water vapor. The GPRI was deployed to map ground motion for 2 campaigns on 6 May and 26-27 May 2013. The radar position over 3.5 km from the landslide on the opposite side of Lake Sarnen. Due to rapid temporal decorrelation at Ku-Band data, acquisitions were made at 1 minute intervals. The GPRI deformation maps cover almost the entire region of the active landslide during both observation periods of 6 hours on 6 May and 9 hours on 26-27 May. Measured peak velocities were 35 and 8 cm/day respectively. Point-wise verification of the radar observations was carried out using a Leica TCR803 total station with an estimated accuracy of 1/2 mm at 3.5 km distance. A set of optical corner cubes and radar reflectors were set up in the region of the landslide on 26-May. The radar deformation

  8. Motion error correction approach for high-resolution synthetic aperture radar imaging

    Science.gov (United States)

    Jia, Gaowei; Chang, Wenge; Li, Xiangyang

    2014-01-01

    An innovative data-based motion compensation approach is proposed for the high-resolution synthetic aperture radar (SAR). The main idea is to extract the displacements in line-of-sight direction and the range-dependent phase errors from raw data, based on an instantaneous Doppler rate estimate. The approach is implemented by a two-step process: (1) the correction of excessive range cell migration; (2) the compensation of range-dependent phase errors. Experimental results show that the proposed method is capable of producing high-resolution SAR imagery with a spatial resolution of 0.17×0.2 m2 (range×azimuth) in Ku band.

  9. Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 1. Programmatics and small-scale fluctuations

    Science.gov (United States)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-11-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50

  10. Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation

    Science.gov (United States)

    Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.

    2005-01-01

    We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.

  11. Airborne Field Campaign Results of Ka-band Precipitation Measuring Radar in China%我国Ka频段降水测量雷达机载校飞试验结果

    Institute of Scientific and Technical Information of China (English)

    商建; 郭杨; 吴琼; 杨虎; 尹红刚

    2011-01-01

    2010年6-10月在天津与江苏地区开展了国内首次Ku/Ka频段星载降水测量雷达机载校飞试验.此次校飞试验获得了宝贵的机载雷达观测数据和地面、海面同步观测数据,目前已开展了外定标、数据对比与衰减订正等工作.该文给出了天津校飞试验中Ka频段降水测量雷达实测结果,对Ka频段降水测量雷达资料与天津地区S波段地基多普勒雷达资料进行了详细的对比分析,有利于更好地了解Ka频段降水测量雷达仪器本身的性能及其探测降水的能力;利用由GPS探空资料、地基多通道微波辐射计观测亮温结合微波辐射传输模式得到的雷达路径积分衰减量,对Ka频段降水测量雷达进行了衰减订正,为继续开展降水反演工作奠定了基础.%Spaceborne precipitation measuring radar can measure precipitation quantitatively, observe the vertical distribution and provide three dimensional precipitation structures. Spaceborne precipitation measuring radar is an important instrument on FY-3 meteorological satellite constellation. As a possible future member of the Global Precipitation Measurement(GPM) , this satellite will carry dual-frequency precipitation radar operating at Ku and Ka bands to provide scientific data for dual-frequency retrieval algorithm. Its two prototype devices, Ku-band and Ka-band radars have already been developed under the support of National Defense Science and Industry Bureau. Field campaign of Ku/Ka-band airborne precipitation measuring radar is carried out by National Satellite Meteorological Center of China Meteorological Administration combining several groups from June to October in 2010 in Tianjin and Jiangsu, called BH-RM 2010 and JS-RM 2010, respectively. This is the first time that China carries out airborne precipitation measuring radar field campaign. The purposes of this field campaign are to validate the correctness of internal and external calibration scheme under airborne

  12. The shrinking rainforest, and the need for accurate data a satellite radar approach to quantifying Indonesia's palm oil obsession

    Science.gov (United States)

    Trischan, John

    Rapid deforestation has been occurring in Southeast Asia for majority of the last quarter century. This is due in large by the expansion of oil palm plantations. These plantations fill the need globally for the palm oil they provide. On the other hand, they are removing some of the last remaining primary rainforests on the planet. The issue concerning the ongoing demise of rainforests in the region involves the availability of data in order to monitor the expansion of palm, at the cost of rainforest. Providing a simplified approach to mapping oil palm plantations in hopes of spreading palm analysis regionally in an effort to obtain a better grasp on the land use dynamics. Using spatial filtering techniques, the complexity of radar data are simplified in order to use for palm detection.

  13. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The high permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.

  14. Flood-threat zoning map of the urban area of Chocó (Quibdó. A study based on interpreting radar, satellite and aerial photograph images

    Directory of Open Access Journals (Sweden)

    Zamir Maturana Córdoba

    2010-04-01

    Full Text Available A zoning map of areas which flood due to the Atrato River and its tributaries (the Cabí, Caraño and Yesca over-flowing in the urban area of Chocó (Quibdo was drawn up to be used by aid authorities and Quibdó city as a planning and control tool. This research relied on CIAF (Centro Interamericano de Fotointerpretación support and assessment. This entity is a subsidiary institution of the Instituto Geográfico Agustín Codazzi which provided their installations and the required geographical material. This research was initially based on interpreting radar (INTERA, satellite (LANDSAT and aerial photographic images; this was verified by field verification of the in-terpreted data. Other variables such as climatic, geological, temperature, topographic conditions, historic and hydrological series and facts regarding the region were studied as additional information required for drawing conclusions. Aerial photographs provided the most reliable images due to their scales, quantity and quality and the date of when they were taken. Radar images (INTERA were also important when visually analysing a sector’s topography as they were produced by an active microwave sensor (totally eliminating climatic obstacles. On the contrary, satellite images did not have great relevance due to the amount of clouds hampering any kind of analysis. Complementing these results, a calibration curve for analysing this section’s maximum flow values was based on historical series data regarding the Atrato River’s flows and maximum levels recorded at the Quibdo hydrographical station and the river-bed’s cross-section. Implications that the river would overflow or has over-flowed were statistically estimated on these results, thereby setting the limits (supported by cartographic data for the corresponding areas at risk of flooding. A map marking areas at risk of flooding in the urban zone of Quibdó was then designed and a document prepared concluding that

  15. Radar Observations of Snowpack Changes from the Second Cold Land Processes Experiment

    Science.gov (United States)

    Cline, D.; Yueh, S.; Elder, K.

    2007-12-01

    To support the NASA Snow and Cold Land Processes (SCLP) and the ESA Cold Regions High-Resolution Hydrologic Observatory (CoRe-H2O) missions and advance observation of the global water cycle, NASA is supporting the second Cold Land Processes Experiment (CLPX-II). The experiment is being conducted in two parts over two winter seasons (Colorado 2006-2007, and Alaska 2007-2008). The focus of CLPX-II is on testing and development of advanced snow measurement using high-frequency radar through repeat observations of changing snow conditions using airborne and spaceborne radars and intensive in situ measurements. During 2006-2007 three field campaigns were conducted in a 90-km x 9-km study area in north-central Colorado. The campaigns were carried out in December, January and February to observe significant changes in snowpack characteristics. In each campaign, the Jet Propulsion Laboratory's conically scanning Ku- band polarimetric scatterometer (POLSCAT) was flown on a Twin Otter aircraft to collect radar data over the study area. Multiple complete images of the entire study area were acquired during each campaign, enabling examination of short-term changes in radar response as well as long-term changes between campaigns. In each campaign, intensive in situ observations of snow depth, water equivalent, stratigraphy, and grain size were made in each of 16 target sites. All of the target sites shared similar backgrounds (flat terrain with a ground cover of grasses and sedges) but exhibited a wide range of snowpack characteristics. Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described. The data showed response of the Ku-band radar echoes to snowpack changes for various types of background vegetation. There was about 0.4 dB increase in backscatter for every 1 cm SWE accumulation for sage brush and pasture fields. The data also showed the impact of freeze/thaw cycles, which appeared to create depth hoar and ice lenses with large

  16. The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata. Part I: Doppler radar and satellite observations

    Indian Academy of Sciences (India)

    P Mukhopadhyay; M Mahakur; H A K Singh

    2009-10-01

    The weather systems that predominantly affect the eastern and northeastern parts of India during the pre-monsoon summer months (March,April and May)are severe thunderstorms,known as Nor ’westers.The storms derive their names from the fact that they frequently strike cities and towns in the southern part of West Bengal in the afternoon from the north-west direction while traveling far from its place of genesis over the Bihar plateau.The storms are devastating in nature particularly due to strong (gusty)winds,heavy rains and hails associated with it.Although these storms are well known for its power of causing damages,studies on them are relatively few due to their small size and sparse network of observations.To address this important issue,the evolution of two Nor ’westers of 12 March and 22 May 2003 over Kolkata is studied in detail in this paper using hourly Doppler weather radar (DWR)observations and high resolution Meteosat-5 imageries.In addition,supporting meteorological reports are used to find the large scale conditions that influence the moisture convergence and vertical wind shear.The genesis of both the storms is found to be over Bihar –Jharkhand region and beyond the range of the DWR.The satellite observations are found to be useful in identifying the location and initiation of the storms.The movements of the storms are captured by the DWR estimated vertical cross-section of reflectivities.The Doppler estimate shows that the 12 March storm had a vertical extent of about 10 –12 km at the time of maturity and that of 22 May reaching up to 18 km signifying deep convection associated with these events.The genesis, maturity and dissipation are well brought out by the hourly DWR and satellite imageries.The DWR observations suggest that the systems move at a speed of 20 –25 m/s.The DWR estimated precipitation shows a detailed spatial distribution around Kolkata with several localized zones of heavy rain and this is found to be well supported by

  17. Anomalous transient uplift observed at the Lop Nor, China nuclear test site using satellite radar interferometry time-series analysis

    Science.gov (United States)

    Vincent, P.; Buckley, S. M.; Yang, D.; Carle, S. F.

    2011-12-01

    Anomalous uplift is observed at the Lop Nor, China nuclear test site using ERS satellite SAR data. Using an InSAR time-series analysis method, we show that an increase in absolute uplift with time is observed between 1997 and 1999. The signal is collocated with past underground nuclear tests. Due to the collocation in space with past underground tests we postulate a nuclear test-related hydrothermal source for the uplift signal. A possible mechanism is presented that can account for the observed transient uplift and is consistent with documented thermal regimes associated with underground nuclear tests conducted at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site).

  18. Improvement of Ka-band satellite link availability for real-time IP-based video contribution

    Directory of Open Access Journals (Sweden)

    G. Berretta

    2017-09-01

    Full Text Available New High Throughput Satellite (HTS systems allow high throughput IP uplinks/contribution at Ka-band frequencies for relatively lower costs when compared to broadcasting satellite uplinks at Ku band. This technology offers an advantage for live video contribution from remote areas, where the terrestrial infrastructure may not be adequate. On the other hand, the Ka-band is more subject to impairments due to rain or bad weather. This paper addresses the target system specification and provides an optimized approach for the transmission of IP-based video flows through HTS commercial services operating at Ka-band frequencies. In particular, the focus of this study is on the service requirements and the propagation analysis that provide a reference architecture to improve the overall link availability. The approach proposed herein leads to the introduction of a new concept of live service contribution using pairs of small satellite antennas and cheap satellite terminals.

  19. The 2007-8 volcanic eruption on Jebel at Tair island (Red Sea) observed by satellite radar and optical images

    KAUST Repository

    Xu, Wenbin

    2014-01-31

    We use high-resolution optical images and Interferometric Synthetic Aperture Radar (InSAR) data to study the September 2007-January 2008 Jebel at Tair eruption. Comparison of pre- and post-eruption optical images reveals several fresh ground fissures, a new scoria cone near the summit, and that 5.9 ± 0.1 km2 of new lava covered about half of the island. Decorrelation in the InSAR images indicates that lava flowed both to the western and to the northeastern part of the island after the start of the eruption, while later lavas were mainly deposited near the summit and onto the north flank of the volcano. From the InSAR data, we also estimate that the average thickness of the lava flows is 3.8 m, resulting in a bulk volume of around 2.2 × 107 m3. We observe no volcano-wide pre- or post-eruption uplift, which suggests that the magma source may be deep. The co-eruption interferograms, on the other hand, reveal local and rather complex deformation. We use these observations to constrain a tensile dislocation model that represents the dike intrusion that fed the eruption. The model results show that the orientation of the dike is perpendicular to the Red Sea rift, implying that the local stresses within the volcanic edifice are decoupled from the regional stress field. © 2014 Springer-Verlag Berlin Heidelberg.

  20. NOTE: Preliminary Measurements of the Cryogenic Dielectric Properties of Water-Ammonia Ices: Implications for Radar Observations of Icy Satellites

    Science.gov (United States)

    Lorenz, Ralph D.

    1998-12-01

    I report preliminary measurements of the complex permittivity of frozen aqueous ammonia solutions at liquid nitrogen temperatures, representative of those in the saturnian system. The real part of the dielectric constant of 30% ammonia ice is around 4.5 at near-DC frequencies and at ∼1 MHz, compared with around 3.1 for pure water ice. The loss tangents of ammonia-rich ices seem somewhat (∼50%) higher than those for water ice, for which the few low-temperature experiments to date indicate values comparable with predictions by Thompson and Squyres (1990,Icarus86, 336-354) and Maetzler (1998, inSolar System Ices(B. Schmitt, C. DeBergh, and M. Festou, Eds.), pp. 241-257, Kluwer Academic, Dordrecht), but considerably higher than models by Chybaet al. (1998,Icarus, in press). Ammonia-rich ice may reconcile the radar and optical appearance of Titan's surface: the detectability of water-ammonia ice on Titan by the Cassini mission and the implications for Titan's origin and evolution are discussed.

  1. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  2. Radar scattering of linear dunes and mega-yardangs: Application to Titan

    CERN Document Server

    Paillou, Philippe; Radebaugh, Jani; Wall, Stephen

    2015-01-01

    The Ku-band (13.8 GHz - 2.2 cm) RADAR instrument onboard the Cassini-Huygens spacecraft has revealed the richness of the surface of Titan, as numerous seas, lakes, rivers, cryo-volcanic flows and vast dune fields have been discovered. Linear dunes are a major geomorphological feature present on Titan, covering up to 17% of its surface, mainly in equatorial regions. However, the resolution of the RADAR instrument is not good enough to allow a detailed study of the morphology of these features. In addition, other linear wind-related landforms, such as mega-yardangs (linear wind-abraded ridges formed in cohesive rocks), are likely to present a comparable radar signature that could be confused with the one of dunes. We conducted a comparative study of the radar radiometry of both linear dunes and mega-yardangs, based on representative terrestrial analogues: the linear dunes located in the Great Sand Sea in western Egypt and in the Namib Desert in Namibia, and the mega-yardangs observed in the Lut Desert in easter...

  3. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    Science.gov (United States)

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for Arctic with increasing stressors related to climate and land use change.

  4. Comparison of Two Methods for Estimating the Sampling-Related Uncertainty of Satellite Rainfall Averages Based on a Large Radar Data Set

    Science.gov (United States)

    Lau, William K. M. (Technical Monitor); Bell, Thomas L.; Steiner, Matthias; Zhang, Yu; Wood, Eric F.

    2002-01-01

    The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multi-year radar data set covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100 km, 200 km, and 500 km space domains, 1 day, 5 day, and 30 day rainfall accumulations, and regular sampling time intervals of 1 h, 3 h, 6 h, 8 h, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and non-parametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.

  5. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    consisting of six Ku band transparent transponders. Once the platform is flight proven, SSTL will be able to offer it to commercial and institutional operators when there is an urgent need for capacity for example to introduce new services, for gap fillers, for frequency filing missions and for technology demonstration missions. The paper describes in detail: - the need for such a rapid-response system targeted at telecommunications and navigation missions, - SSTL's approach to the design, integration and test activities, - typical payload configurations that GMP could accommodate, - the low-cost launch opportunities and operational concept.

  6. Investigation of the Qadimah Fault in Western Saudi Arabia using Satellite Radar Interferometry and Geomorphology Analysis Techniques

    KAUST Repository

    Smith, Robert

    2012-07-01

    The Qadimah Fault has been mapped as a normal fault running through the middle of a planned $50 billion city. For this reason, there is an urgent need to evaluate the seismic hazard that the fault poses to the new development. Although several geophysical studies have supported the existence of a fault, the driving mechanism remains unclear. While a fault controlled by gravity gliding of the overburden on a mobile salt layer is unlikely to be of concern to the city, one caused by the continued extension of a normal rotational fault due to Red Sea rifting could result in a major earthquake. A number of geomorphology and geodetic techniques were used to better understand the fault. An analysis of topographic data revealed a sharp discontinuity in slope aspect and hanging wall tilting which strongly supports the existence of a normal fault. A GPS survey of an emergent reef platform which revealed a tilted coral surface also indicates that deformation has occurred in the region. An interferometric synthetic aperture radar investigation has also been performed to establish whether active deformation is occurring on the fault. Ground movements that could be consistent with inter-seismic strain accumulation have been observed, although the analysis is restricted by the limited data available. However, a simple fault model suggests that the deformation is unlikely due to continued crustal stretching. This, in addition to the lack of footwall uplift in the topography data, suggests that the fault is more likely controlled by a shallow salt layer. However, more work will need to be done in the future to confirm these findings.

  7. Wave activity (planetary, tidal throughout the middle atmosphere (20-100km over the CUJO network: Satellite (TOMS and Medium Frequency (MF radar observations

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2005-02-01

    Full Text Available Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT is studied using combinations of ground-based (GB and satellite instruments (2000-2002. The relatively new MFR (medium frequency radar at Platteville (40° N, 105° W has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity comprises systems at London (43° N, 81° W, Platteville (40° N, 105° W, Saskatoon (52° N, 107° W, Wakkanai (45° N, 142° E and Yamagawa (31° N, 131° E. It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14° at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP TOMS (Total Ozone Mapping Spectrometer and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability.

    Climatologies of ozone and winds/tides involving frequency versus time (wavelet contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km heights. Both direct planetary wave (PW propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric

  8. Fusion of Satellite Multispectral Images Based on Ground-Penetrating Radar (GPR Data for the Investigation of Buried Concealed Archaeological Remains

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-06-01

    Full Text Available The paper investigates the superficial layers of an archaeological landscape based on the integration of various remote sensing techniques. It is well known in the literature that shallow depths may be rich in archeological remains, which generate different signal responses depending on the applied technique. In this study three main technologies are examined, namely ground-penetrating radar (GPR, ground spectroscopy, and multispectral satellite imagery. The study aims to propose a methodology to enhance optical remote sensing satellite images, intended for archaeological research, based on the integration of ground based and satellite datasets. For this task, a regression model between the ground spectroradiometer and GPR is established which is then projected to a high resolution sub-meter optical image. The overall methodology consists of nine steps. Beyond the acquirement of the in-situ measurements and their calibration (Steps 1–3, various regression models are examined for more than 70 different vegetation indices (Steps 4–5. The specific data analysis indicated that the red-edge position (REP hyperspectral index was the most appropriate for developing a local fusion model between ground spectroscopy data and GPR datasets (Step 6, providing comparable results with the in situ GPR measurements (Step 7. Other vegetation indices, such as the normalized difference vegetation index (NDVI, have also been examined, providing significant correlation between the two datasets (R = 0.50. The model is then projected to a high-resolution image over the area of interest (Step 8. The proposed methodology was evaluated with a series of field data collected from the Vésztő-Mágor Tell in the eastern part of Hungary. The results were compared with in situ magnetic gradiometry measurements, indicating common interpretation results. The results were also compatible with the preliminary archaeological investigations of the area (Step 9. The overall

  9. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    Science.gov (United States)

    Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.

    2005-02-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (43° N, 81° W), Platteville (40° N, 105° W), Saskatoon (52° N, 107° W), Wakkanai (45° N, 142° E) and Yamagawa (31° N, 131° E). It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their

  10. The 2009 Magmatic Intrusion and Faulting in Harrat Al-Shaqah (Lunayyir), western Saudi Arabia, Observed by Satellite Radar Interferometry (InSAR) (Invited)

    Science.gov (United States)

    Jonsson, S.; Lu, Z.; El-Hadidy, S.; Zahran, H.

    2009-12-01

    One of the volcanic provinces in western Saudi Arabia, Harrat Al-Shaqah (also known as Harrat Lunayyir), suffered from numerous small to moderate-size earthquakes in May-July 2009. The most intensive activity occurred on 17-19 May when six magnitude 4.6-5.7 earthquakes occurred. Following the events the Saudi Civil Protection Agency evacuated the area and relocated over 20000 people to the neighboring cities of Yanbu and Medina. The activity continued throughout June with several magnitude 4-5 earthquakes but then quieted down in July. Following the activity in mid-May we sent a request for emergency satellite radar data acquisitions to the European Space Agency and later activated an International Charter to guarantee satellite data collection of the area. We have analyzed a number of satellite radar interferograms (InSAR) of the activity and the results are outstanding, owing to the stable surface conditions of this near vegetation-free region. Interferograms spanning the activity in mid-May exhibit strong deformation that extends across a large 40 km x 40 km area, showing over a meter of WSW-ENE extension. In addition, the data show clear signs of surface faulting and graben-like subsidence in the middle of the deformed area with the graben subsidence exceeding 50 cm. The deformation appears to be caused by a near-vertical dike intrusion with a WNW-ESE orientation, parallel to the Red Sea rift, and the intruded volume is of the order of 0.1 cubic km. The dike caused faulting on graben-forming normal faults. The shallowest part of the dike appears to have reached within only 2-3 km of the surface, right below where the graben is the narrowest and under an area with a number of cinder cones from previous volcanic events. The dike appears to have continued to grow after the initial strong phase of activity in mid-May, as a deformation interferogram spanning the time period from the end of may until early July shows similar deformation pattern, although with a much

  11. Anti-Satellite Weapons, Countermeasures, and Arms Control

    Science.gov (United States)

    2007-11-02

    From Kosmos 1500 38 3-3. Imagery Obtained by Synthetic-Aperture Satellite Radar 40 Chapter 3 MILSATs, ASATs, and National Security THE ROLE AND...satellite capabil- ities, such as resolution. For example, Soviet oceanographic radar satellites of the Kosmos - 1500 class can obtain radar imagery with...surveillance satellite ( Kosmos 1500) equipped with a side-looking radar and in the same year placed two satellites (Venera 15 and Venera 16) equipped

  12. The Cloud Radar System

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  13. Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River

    Science.gov (United States)

    Biancamaria, S.; Frappart, F.; Leleu, A.-S.; Marieu, V.; Blumstein, D.; Desjonquères, Jean-Damien; Boy, F.; Sottolichio, A.; Valle-Levinson, A.

    2017-01-01

    For at least 20 years, nadir altimetry satellite missions have been successfully used to first monitor the surface elevation of oceans and, shortly after, of large rivers and lakes. For the last 5-10 years, few studies have demonstrated the possibility to also observe smaller water bodies than previously thought feasible (river smaller than 500 m wide and lake below 10 km2). The present study aims at quantifying the nadir altimetry performance over a medium river (200 m or lower wide) with a pluvio-nival regime in a temperate climate (the Garonne River, France). Three altimetry missions have been considered: ENVISAT (from 2002 to 2010), Jason-2 (from 2008 to 2014) and SARAL (from 2013 to 2014). Compared to nearby in situ gages, ENVISAT and Jason-2 observations over the lower Garonne River mainstream (110 km upstream of the estuary) have the smallest errors, with water elevation anomalies root mean square errors (RMSE) around 50 cm and 20 cm, respectively. The few ENVISAT upstream measurements have RMSE ranging from 80 cm to 160 cm. Over the estuary, ENVISAT and SARAL water elevation anomalies RMSE are around 30 cm and 10 cm, respectively. The most recent altimetry mission, SARAL, does not provide river elevation measurements for most satellite overflights of the river mainstream. The altimeter remains "locked" on the top of surrounding hilly areas and does not observe the steep-sided river valley, which could be 50-100 m lower. This phenomenon is also observed, for fewer dates, on Jason-2 and ENVISAT measurements. In these cases, the measurement is not "erroneous", it just does not correspond to water elevation of the river that is covered by the satellite. ENVISAT is less prone to get 'locked' on the top of the topography due to some differences in the instrument measurement parameters, trading lower accuracy for more useful measurements. Such problems are specific to continental surfaces (or near the coasts), but are not observed over the open oceans, which are

  14. Ku波段旋转扫描扇形波束散射计地面扩展目标在轨定标%Calibration of the Ku-band Rotating Fan-beam Scatterometer Using Land Extended-area Targets

    Institute of Scientific and Technical Information of China (English)

    朱金台; 董晓龙; 林文明; 朱迪

    2013-01-01

    Rotating Fan-beam SCATterometer (RFSCAT) is a new radar scatterometer system for ocean surface vector wind measurement. Compared with other available scatterometers, RFSCAT can provide more combination of azimuth and incidence angles for a single surface resolution cell. To achieve the required wind vector accuracy, radar scatterometry measurement of backscattering coefficient ( )s must be calibrated within a few tenths of a 0 decibel. In this paper, the method for external calibration of RFSCAT is proposed, based on the system parameters of the scatterometer onboard the Chinese French Oceanography SATellite (CFOSAT), and is verified by simulations. Then QuikSCAT L2A data and SIR of several large homogenous areas are analyzed to check the stability and azimuthal dependence of thes over these areas. A new calibration mask is generated and will be 0 used as a reference for the calibration of RFSCAT.%  旋转扫描扇形波束散射计(Rotating Fan-beam SCATterometer, RFSCAT)是一种新体制的海洋风场测量雷达散射计。RFSCAT对同一观测面元能够提供更多的方位角和入射角观测组合,改善海面风矢量场的反演精度。为了达到设计的风场反演精度,系统要求定标精度为0.5 dB。该文基于中法海洋卫星(Chinese French Oceanography SATellite, CFOSAT)雷达散射计的系统参数,考虑了在轨测量的主要误差源,分析了地面扩展目标在轨外定标的特点,给出了可行的RFSCAT在轨外定标方法,并利用仿真数据对该方法进行验证。利用QuikSCAT散射计的L2A 数据和图像重构(SIR)数据,针对地球表面归一化雷达后向散射系数0()s稳定的区域,给出了定标地图,为RFSCAT在轨定标提供参考。

  15. Low Profile and Low Cost Antenna Technology for Satellite TV Reception on Sports Utility Vehicles (SUV) for the US Market

    Science.gov (United States)

    Vazquez, F. Javier; Pearson, Robert A.; Driscoll, Barry G.

    2003-07-01

    A low profile scanning antenna for reception of satellite TV has been developed for the US market compatible with existing DBS Ku band satellite infrastructure. This antenna technology does not require active RF components and it is inherently low cost (in the order of a few hundred dollars even in moderate production volumes). The antenna is able to scan a circularly polarised beam in the range 20 to 69 degrees, covering three DBS satellites in the US including some margin for vehicle tilt. An antenna demonstrator of 115 mm height, including the radome and tracking electronics has been built and measured. Live tests were performed in the US during 2002 to determine realistic link margins and antenna specifications. A product development is currently being undertaken to turn the demonstrator unit into a product for the US market by the end of 2003.

  16. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    Science.gov (United States)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2015-01-01

    We assess different methods and input parameters, namely snow depth, snow density and ice density, used in freeboard-to-thickness conversion of Arctic sea ice. This conversion is an important part of sea ice thickness retrieval from spaceborne altimetry. A data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and co-locate observations of total (sea ice + snow) and sea ice freeboard from the Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) airborne campaigns, of sea ice draft from moored and submarine upward looking sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer (AMSR-E) and the Warren climatology (Warren et al., 1999). We compare the different data sets in spatiotemporal scales where satellite radar altimetry yields meaningful results. An inter-comparison of the snow depth data sets emphasizes the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. We test different freeboard-to-thickness and freeboard-to-draft conversion approaches. The mean observed ULS sea ice draft agrees with the mean sea ice draft derived from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the approaches are able to reproduce the seasonal cycle in sea ice draft observed by moored ULS. A sensitivity analysis of the freeboard-to-thickness conversion suggests that sea ice density is as important as snow depth.

  17. Wave Activity (Planetary, Tidal) throughout the Middle Atmoshere (25-100 km) over the CUJO Network: Satellite and Medium Frequency (MF) Radar Observations

    Science.gov (United States)

    Manson, A.; Meek, C.; Chshyolkova, T.; Avery, S.; Thorsen, D.; MacDougall, J.; Hocking, W.; Murayama, Y.; Igarashi, K.

    Planetary and tidal wave activity in the mesosphere-lower thermosphere (MLT), and assessment of wave activity sources in the lower atmosphere, are studied using combinations of ground based (GB) and satellite instruments (2000-2002). CUJO (Canada U.S. Japan Opportunity) comprises MF radar (MFR) systems at London (43°N, 81°W), Platteville (40°N, 105°W), Saskatoon (52°N, 107°W), Wakkanai (45°N, 142°E) and Yamagawa (31°N, 131°E). It offers a significant mid-latitude 7,000 km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. CUJO provides winds and tides 70-100km. Satellite data include the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provides a measure of tropopause-lower stratospheric planetary wave activity as well as ozone variability. The so-called UKMO data (an assimilation system) are used for correlative purposes with the TOMS data. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40°N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, non-linear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS and UKMO data to demonstrate the differences between lower atmospheric and MLT wave motions and their directions of propagation.

  18. A wave energy resource assessment in the China's seas based on multi-satellite merged radar altimeter data

    Institute of Scientific and Technical Information of China (English)

    WAN Yong; ZHANG Jie; MENG Junmin; WANG Jing

    2015-01-01

    Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altim-eter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the to-tal wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 kW/m. The wave energy in the China’s seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤Hs≤4 m, 4 s≤Te≤10 s whereHs is a significant wave height andTe is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors (WECs). The practical application value of the wave energy is higher

  19. Spaceborne Radar Study

    Science.gov (United States)

    1974-06-28

    via either the oomm beam or the omnichannel . Satellite instrumentation data are sent to the ground station following every radar signal transmission...If comm beam contact is lost, the instrumentation data are sent via the omnichannel transmitter on command of the ground station. There are six ways

  20. Integration of satellite radar interferometry into a GLOF early warning system: a pilot study from the Andes of Peru

    Science.gov (United States)

    Strozzi, Tazio; Wiesmann, Andreas; Caduff, Rafael; Frey, Holger; Huggel, Christian; Kääb, Andreas; Cochachin, Alejo

    2015-04-01

    Glacier lake outburst floods (GLOF) have killed thousands of people in the Andes of Peru and in many other high-mountain regions of the world. The last years have seen progress in the integrative assessment of related hazards, through combined focus on the glacier lake, its dam properties, and processes in the lake surrounding, including the position and fluctuations of the glacier tongue and potential displacements and thermal conditions of adjacent slopes. Only a transient perspective on these factors allows anticipating potential future developments. For a very limited number of cases worldwide, where GLOF hazards and risks have been recognized, early warning systems (EWS) have been developed and implemented. Lake 513 in the Cordillera Blanca of Peru is one of those. Structural GLOF mitigation measures (tunnels to lower the lake level) have been undertaken in the 1990s and could successfully reduce, but not fully prevent, impacts of a GLOF such as that of April 2010 triggered by a rock/ice avalanche from Mount Hualcán. The EWS was implemented during recent years and disposes of automatic cameras, geophones, river run-off measurements, a meteorological station, and real-time communication with the municipality of Carhuaz and the communities in the catchment. An EWS is by definition limited in its concept and Earth Observation (EO) data offer a promising possibility to complement the assessment of the current hazard. In particular, the monitoring and early detection of slope instabilities in ice, rock and sediments that could impact the lake and trigger a GLOF is still a major challenge. Therefore, the potential of optical and SAR satellite data is currently tested for integration into the EWS within the project S:GLA:MO (Slope stability and Glacier LAke MOnitoring) project, funded by the European Space Agency (ESA) in collaboration with the GLACIARES project supported by the Swiss Agency for Development and Cooperation. EO data (optical and SAR) are considered

  1. Chosen results of field tests of synthetic aperture radar system installed on board UAV

    Science.gov (United States)

    Kaniewski, Piotr; Komorniczak, Wojciech; Lesnik, Czeslaw; Cyrek, Jacek; Serafin, Piotr; Labowski, Michal; Wajszczyk, Bronislaw

    2017-04-01

    The paper presents a synthetic information on a UAV-based radar terrain imaging system, its purpose, structure and working principle as well as terrain images obtained from flight experiments. A SAR technology demonstrator has been built as a result of a research project conducted by the Military University of Technology and WB Electronics S.A. under the name WATSAR. The developed system allows to obtain high resolution radar images, both in on-line and off-line modes, independently of the light conditions over the observed area. The software developed for the system allows to determine geographic coordinates of the imaged objects with high accuracy. Four LFM-CW radar sensors were built during the project: two for S band and two for Ku band, working with different signal bandwidths. Acquired signals were processed with the TDC algorithm, which allowed for a number of analyses in order to evaluate the performance of the system. The impact of the navigational corrections on a SAR image quality was assessed as well. The research methodology of the in-flight experiments of the system is presented in the paper. The projects results show that the developed system may be implemented as an aid to tactical C4ISR systems.

  2. Real Aperture Radar interferometry as a tool for buildings vibration monitoring: Limits and potentials from an experimental study

    Science.gov (United States)

    Luzi, Guido; Monserrat, Oriol; Crosetto, Michele

    2012-06-01

    In the last decade several researchers have dealt with the potential of radar interferometry as a remote sensing tool able to provide measurements of vibrations of large structures. More recently the technique has been consolidated thanks to the recent introduction on the market of specifically devoted radar instruments. Exploiting the interferometric capability of coherent radar, successful monitoring of bridges, towers and wind turbine powers has been achieved. This technique allowed looking at the frequency behaviour of civil structures and estimating their amplitude of displacement in the order of fraction of millimetres. The activity here described reports the results of an experimental investigation aimed at evaluating the effectiveness of a coherent Real-Aperture-Radar sensor to estimate the vibration of buildings in an urban environment, through an ambient vibration testing, where the expected amplitude vibration spans within a few to some tens of microns. Critical aspects affecting the retrieval of this information are here discussed, on the basis of some experimental data collected in the last year with a microwave interferometer working at Ku band and available on the market. Preliminary results are shown and suggestions related to the measurement procedures are discussed.

  3. Multi-level magmatic system of El Hierro Island (Canary Islands) constrained by multi-satellite radar interferometry measurements during the 2011-2012 eruption

    Science.gov (United States)

    Gonzalez, P. J.; Samsonov, S. V.; Pepe, S.; Tiampo, K. F.; Tizzani, P.; Fernandez, J.; Sansosti, E.

    2012-12-01

    Starting from July 2011, anomalous seismicity was observed at El Hierro Island (Canary Islands, Spain). During the following three months, seismic activity increased both in number of events and in magnitude, while expanding over a large area. In early October 2011 the process led to a submarine eruption, with some uncertainty about the location and timing of vent(s) opening. The site of the eruption was ~10 km from the initial and main earthquake loci, indicative of significant lateral migration. Here, we conduct a multi-frequency, multi-sensor interferometric analysis of space-borne radar images acquired using three different satellites (Radarsat-2, ASAR-ENVISAT and COSMO-SkyMed). Radar interferometry is used to measure the deformation that occurred from December 2009 to July 2012. InSAR data fully captures both the pre-, co- and post-eruptive phases. Subsequently, elastic modeling of the ground deformation is employed to constrain the dynamics associated with the magmatic and eruptive activity. This study represents one of the first geodetically-constrained active magmatic plumbing system model for any of the Canary Islands volcanoes, and one of the few examples of geodetic measurement of submarine volcanic activity to date. It reveals a complex magmatic system with multiple levels of stagnation, a deeper central system (~8.5 km depth) and a shallower magma reservoir at the flank of the southern rift (~4 km depth). Before eruption, magma propagated ~5 km downrift towards the eruption fissure. From mid-November 2011 to early January 2012 the system was continuously recharged from source(s) deeper than 10 km, which contributed to a relatively atypical long duration for a basaltic eruption (~5 months). The submarine eruption finished on early March 2012. However, on June 24, 2012 the seismic activity resumed and intense ground deformation has been recorded. The anomalous seismicity continued for a month depicting a clear, but different migration path with respect

  4. A Study of Air/Space-borne Dual-Wavelength Radar for Estimation of Rain Profiles

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this study, a framework is given by which air/space-borne dual-wavelength radar data can be used to estimate the characteristic parameters of hydrometeors. The focus of the study is on the Global Precipitation Measurement (GPM) precipitation radar, a dual-wavelength radar that will operate in the Ku (13.6 GHz) and Ka (35 GHz) bands. A key aspect of the retrievals is the relationship between the differential frequency ratio (DFR) and the median volume diameter, Do, and its dependence on the phase state of the hydrometeors. It is shown that parametric plots of Do and particle concentration in the plane of the DFR and the radar reflectivity factor in the Ku band can be used to reduce the ambiguities in deriving Do from DFR. A self-consistent iterative algorithm, which does not require the use of an independent pathattenuation constraint, is examined by applying it to the apparent radar reflectivity profiles simulated from a drop size distribution (DSD) model. For light to moderate rain, the self-consistent rain profiling approach converges to the correct solution only if the same shape factor of the Gamma distributions is used both to generate and retrieve the rain profiles. On the other hand, if the shape factors differ, the iteration generally converges but not to the correct solution. To further examine the dual-wavelength techniques, the selfconsistent iterative algorithm, along with forward and backward rain profiling algorithms, are applied to measurements taken from the 2nd generation Precipitation Radar (PR-2) built by the Jet Propulsion Laboratory. Consistent with the model results, it is found that the estimated rain profiles are sensitive to the shape factor of the size distribution when the iterative, self-consistent approach is used but relatively insensitive to this parameter when the forward- and backward-constrained approaches are used.

  5. Satellite Constellation for Ocean Wind and Stress

    Science.gov (United States)

    Liu, W.; Xie, X.

    2009-12-01

    A scatterometer sends microwave pulses to the earth's surface and measure the power backscattered from the surface roughness. The roughness is believed to be in equilibrium with the stress (turbulent transport of momentum). The backscatter depends not only on the magnitude of the stress but also the stress direction relative to the direction of the radar beam. Measuring both stress magnitude and direction is the major unique capability of the scatterometer. Although stress drives ocean circulation, we do not have any large-scale stress measurement except from the scatterometer; our concept of stress distribution is largely derived from our knowledge on wind. Stress is closely related to wind. The geophysical product of the scatterometer is the equivalent neutral wind. It is a fictitious quantity, which has an unambiguous relation with surface stress by definition, while the relation between actual wind and surface stress depends on atmospheric vertical density stratification. Over most of the ocean, the atmosphere is near neutral and the current is much smaller than wind and it is generally assumed that the equivalent neutral wind is the actual wind. QuikSCAT, a Ku-band scatterometer, was launched in 1999. The scientific contributions to natural disaster, energy, weather, climate, water, ecosystem, and agriculture from one decade of QuikSCAT measurements will be presented. A C-band scatterometer, ASCAT, was launched by European Space Agency in 2006. Ku-band scatterometers, similar in design with QuikSCAT, will be launched by India and China in 2010 and 2011. One polar orbiting scatterometer could only sample the earth at most two times a day. If the future scatterometers will produce similarly high quality data, the future constellation of scatterometers, with different overhead crossing time, will meet the six hourly revisit frequency required by the operational weather forecast community and the inertial frequency required by research oceanographers. The coverage

  6. Feasibility of sea ice typing with synthetic aperture radar (SAR): Merging of Landsat thematic mapper and ERS 1 SAR satellite imagery

    Science.gov (United States)

    Steffen, Konrad; Heinrichs, John

    1994-01-01

    Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.

  7. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    Science.gov (United States)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles 60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on upwind (windward) face of the tilting wave. Retrieval of Bragg roughness properties shows that omni-directional saturation spectra at ~1000 rad/m are 2-3 times higher (0.01 at 10 m/s wind speed) than the spectra obtained from optical measurements of regular sea surface without wave breaking. This suggests that observed difference can arise

  8. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    Science.gov (United States)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  9. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  10. Study on the impact of sudden stratosphere warming in the upper mesosphere-lower thermosphere regions using satellite and HF radar - [Article

    CSIR Research Space (South Africa)

    Mbatha, N

    2010-01-01

    Full Text Available The occurrence of sudden stratospheric warming (SSW) excites disturbances in the mesosphere-lower thermospheric (MLT) wind and temperature. Here, researchers have examined the high frequency (HF) radar wind data from the South African National...

  11. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    collocated measurement of biomass and soil moisture ground truth in order to better characterize the instrument sensitivity to geophysical parameters. The instrument will be improved in the meanwhile including the optimization of data processing and the better integration of external data (GPS commercial receiver, Attitude) into the receiver. M.Martin-Neira. A Passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J., 17:331-355, 1993 Hauser, D.; Caudal, G.; Le Gac, C.; Valentin, R.; Delaye, L.; Tison, C., "KuROS: A new airborne Ku-band Doppler radar for observation of the ocean surface," Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International , vol., no., pp.282,285, 13-18 July 2014 Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N., "Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation," Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of , vol.7, no.5, pp.1522,1532, May 2014

  12. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  13. Development of Non-metal Material Query System for Satellite-borne Radar Based on .NET Framework%基于.NET框架的星载雷达非金属材料查询系统开发

    Institute of Scientific and Technical Information of China (English)

    程丹; 欧屹

    2011-01-01

    Based on .NET framework,the non-metal material query system for satellite-borne radar was developed in the environment of Visual Studio 2005.The web pages were written by ASP.NET while the database was developed using Oracle9i.This system realizes query of non-metal material data for satellite-borne radar in enterprise LAN.It can also carry out data maintenance via administrator account.This system effectively realizes knowledge sharing,and also provides a good cooperative working environment for the enterprise.%基于.NET框架,在Visual Studio 2005环境中开发了星载雷达非金属材料查询系统,前台Web页面和后台数据库分别采用ASP.NET和Oracle9i进行开发。该系统能够在企业局域网范围内实现对星载雷达非金属材料相关信息的查询,且通过登录管理员帐户,可以实现对材料信息的数据维护。该系统有效实现了知识共享,为企业提供了理想的协同工作环境。

  14. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  15. Performance estimation and design of group demodulator for satellite FDMA/TDM transmission

    Science.gov (United States)

    Loo, Chun; Umehira, Masahiro

    The authors describe a Monte Carlo simulation of QPSK (quadrature phase shift keying) and offset QPSK group modems which take into account the effect of the nonlinearity of each ground terminal HPA. The effect of uplink fading due to rain, as encountered in satellite links operated in the Ka and Ku bands, is included. Results show that a normalized channel spacing with respect to a symbol rate of 2.5 or greater is required to reduce the effect of adjacent channel interference. At this spacing the performance of the modem will still incur a Eb/N0 (energy per bit/noise density) degradation of about 1.0 dB. In addition, design criteria for major components such as digital subfilter, rate conversion filter, carrier recovery circuits, and quantization are given.

  16. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  17. Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data

    Science.gov (United States)

    Le, Mouelic S.; Paillou, P.; Janssen, M.A.; Barnes, J.W.; Rodriguez, S.; Sotin, Christophe; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Crapeau, M.; Encrenaz, P.J.; Jaumann, R.; Geudtner, D.; Paganelli, F.; Soderblom, L.; Tobie, G.; Wall, S.

    2008-01-01

    Only a few impact craters have been unambiguously detected on Titan by the Cassini-Huygens mission. Among these, Sinlap is the only one that has been observed both by the RADAR and VIMS instruments. This paper describes observations at centimeter and infrared wavelengths which provide complementary information about the composition, topography, and surface roughness. Several units appear in VIMS false color composites of band ratios in the Sinlap area, suggesting compositional heterogeneities. A bright pixel possibly related to a central peak does not show significant spectral variations, indicating either that the impact site was vertically homogeneous, or that this area has been recovered by homogeneous deposits. Both VIMS ratio images and dielectric constant measurements suggest the presence of an area enriched in water ice around the main ejecta blanket. Since the Ku-band SAR may see subsurface structures at the meter scale, the difference between infrared and SAR observations can be explained by the presence of a thin layer transparent to the radar. An analogy with terrestrial craters in Libya supports this interpretation. Finally, a tentative model describes the geological history of this area prior, during, and after the impact. It involves mainly the creation of ballistic ejecta and an expanding plume of vapor triggered by the impact, followed by the redeposition of icy spherules recondensed from this vapor plume blown downwind. Subsequent evolution is then driven by erosional processes and aeolian deposition. Copyright 2008 by the American Geophysical Union.

  18. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  19. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  20. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  1. Compression of a Radar Track of a Near Earth Satellite into an Earth Centered Inertial State Vector Using Least Squares Differential Correction

    Science.gov (United States)

    1994-03-01

    Principia . This method required three observations (angles only since radars did not exist in 1705) and consisted of a graphical approach using successive... Mathematica was used extensively in deriving the Taylor Series equations for the equations of state and the state transition matrix. 3.8 Summary. The

  2. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  3. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...

  4. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  5. Highly Enhanced Risk Management Emergency Satellite

    DEFF Research Database (Denmark)

    Dalmeir, Michael; Gataullin, Yunir; Indrajit, Agung

    HERMES (Highly Enhanced Risk Management Emergency Satellite) is potential European satellite mission for global flood management, being implemented by Technical University Munich and European Space Agency. With its main instrument - a reliable and precise Synthetic Aperture Radar (SAR) antenna...

  6. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  7. ALTAIR Radar Plasma Drifts and in situ Electric and Magnetic Field Measurements on Two Sounding Rockets and the C/NOFS Satellite in the Low Latitude Ionosphere at Sunset

    Science.gov (United States)

    Kudeki, Erhan; Pfaff, Robert; Rowland, Douglas; Klenzing, Jeffrey; Freudenreich, Henry

    2016-07-01

    We present ALTAIR incoherent scatter radar plasma drifts and in situ electric field, magnetic field, and plasma density measurements made simultaneously with probes on two sounding rockets and the C/NOFS satellite in the low latitude ionosphere in the vicinity of Kwajalein Atoll. The coincident data were gathered during sunset conditions prior to a spread-F event during the NASA EVEX Campaign. The sounding rocket apogees were 180 km and 330 km, while the C/NOFS altitude in this region was ~ 390 km. Electric field data from all three platforms display upwards vertical plasma drifts, while the zonal drifts change direction as a function of altitude and/or local time. The variable drifts provide evidence of a dynamic plasma environment which may contribute to the unstable conditions necessary for spread-F instabilities to form.

  8. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) mosaic for the Kahiltna terrane, Alaska, 2007-2010

    Science.gov (United States)

    Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.

    2015-01-01

    The U.S. Geological Survey (USGS) has initiated a multi-disciplinary study investigating the applicability of remote sensing technologies for geologic mapping and identification of prospective areas for base and precious metal deposits in remote parts of Alaska. The Kahiltna terrane in southwestern Alaska was selected for investigation because of its known mineral deposits and potential for additional mineral resources. An assortment of technologies is being investigated to aid in remote analysis of terrain, and includes imaging spectroscopy (hyperspectral remote sensing), high spatial resolution electro-optical imagery, and Synthetic Aperture Radar (SAR). However, there are significant challenges to applying imaging spectroscopy and electro-optical imagery technologies in this area because of the low solar angle for parts of the year, seasonal periods of darkness and snow cover, and the frequently cloudy weather that characterizes Alaska. Synthetic Aperture Radar (SAR) was selected because this technology does not rely on solar illumination and has all-weather capability.

  9. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... forwarding and receiving communications signals via a system of satellites or reselling satellite... specialized telecommunications services, such as satellite tracking, communications telemetry, and radar... of Subjects in 47 CFR Parts 2 and 25 Frequency allocations, Satellites. Federal Communications...

  10. Exploring inner structure of Titan's dunes from Cassini Radar observations

    Science.gov (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  11. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  12. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  13. Integrated Monitoring of the Soya Warm Current Using HF Ocean Radars, Satellite Altimeters, Coastal Tide Gauges, and a Bottom-Mounted ADCP

    Science.gov (United States)

    Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.

    2007-12-01

    The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  14. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    Science.gov (United States)

    Goldhirsh, J.

    1982-01-01

    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  15. Study on the impact of sudden stratosphere warming in the upper mesosphere-lower thermosphere regions using satellite and HF radar measurements [Conference paper

    CSIR Research Space (South Africa)

    Mbatha, N

    2009-07-01

    Full Text Available successive positions in increments of 3.25˚, giving an azimuth extent of ~52˚ boxshadowdwn The meteor trail echoes occur predominantly in and below the lower E region (~95 km) [Hussey et al.,2000], thus acquisition of the winds in meteor region... is accomplished by using data from the first several range gates of the radar boxshadowdwn The backscatter at this distance is primarily due to meteors, and thus a nominal height of 90-95 km is assumed SAIP conference 2009 [UKZN] 10/28/2009 boxshadowdwn...

  16. Satellite observation of winter season subsurface liquid melt water retention on the Greenland ice sheet using spectroradiometer and scatterometer data

    Science.gov (United States)

    Miller, J. Z.; Forster, R. R.; Long, D. G.; Brewer, S.

    2013-12-01

    The recently discovered perennial firn aquifer (PFA) represents a new glacier facie and a previously undefined liquid water storage mechanism on the Greenland ice sheet (GrIS). The current hypothesis suggests that at least two geophysical processes control the formation of the PFA: 1) high melt rates that saturate snow and firn layers with liquid water during the melt season, and 2) high snow accumulation rates that subsequently insulate this saturated layer allowing it to be retained in liquid form during the winter season. The PFA is potentially an important component in ice sheet mass and energy budget calculations, however, large-scale observations linking surface melt, subsurface liquid melt water retention, and the PFA currently do not exist. Satellite-borne spectroradiometers and scatterometers are frequently used to detect the presence of liquid water content over the GrIS. The sensor's penetration depth is dependent on the frequency (which determines wavelength) and time-varying geophysical properties (which determine absorption and scattering characteristics). At shorter spectral wavelengths, penetration depths are limited at the interface between the ice sheet surface and the atmosphere. Spectroradiometer-derived retrievals of liquid water content represent an integrated response on the order of a few millimeters. At longer microwave wavelengths (C- and Ku-band), penetration depths are increased. Scatterometer-derived retrievals of liquid water content represent an integrated response on the order of a few centimeters to several meters. We combine spectroradiometer data acquired from the Moderate Resolution Imaging Spectroradiometer aboard Terra and Aqua (MODIS) and C- and Ku-band scatterometer data acquired from MetOP-A (ASCAT) and OceanSAT-2 (OSCAT) to investigate the spatiotemporal variability of subsurface liquid water content on the GrIS. Penetration depth differences are exploited to distinguish between the detection of liquid water content

  17. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    Science.gov (United States)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  18. Comprehensive Radar Observations of Clouds and Precipitation over the Tibetan Plateau and Preliminary Analysis of Cloud Properties

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Intensive fi eld experiment is an important approach to obtain microphysical information about clouds and precipitation. From 1 July to 31 August 2014, the third Tibetan Plateau Atmospheric Science Experiment was carried out and comprehensive measurements of water vapor, clouds, and precipitation were conducted at Naqu. The most advanced radars in China, such as Ka-band millimeter-wave cloud radar, Ku-band micro-rain radar, C-band continuous-wave radar and lidar, and microwave radiometer and disdrometer were deployed to observe high spatial-temporal vertical structures of clouds and precipitation. The C-band dual-linear polarization radar was coordinated with the China new generation weather radar to constitute a dual-Doppler radar system for the measurements of three-dimensional wind fi elds within convective precipitations and the structure and evolution of hydrometeors related to precipitation process. Based on the radar measurements in this experiment, the diurnal variations of several important cloud properties were analyzed, including cloud top and base, cloud depth, cloud cover, number of cloud layers, and their vertical structures during summertime over Naqu. The features of refl ectivity, velocity, and depolarization ratio for diff erent types of clouds observed by cloud radar are discussed. The results indicate that the cloud properties were successfully measured by using various radars in this fi eld experiment. During the summertime over Naqu, most of the clouds were located above 6 km and below 4 km above ground level. Statistical analysis shows that total amounts of clouds, the top of high-level clouds, and cloud depth, all demonstrated a distinct diurnal variation. Few clouds formed at 1000 LST (local standard time), whereas large amounts of clouds formed at 2000 LST. Newly formed cumulus and stratus clouds were often found at 3-km height, where there existed signifi cant updrafts. Deep convection reached up to 16.5 km (21 km above the mean sea level

  19. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  20. Satellite remote sensing of landscape freeze/thaw state dynamics for complex Topography and Fire Disturbance Areas Using multi-sensor radar and SRTM digital elevation models

    Science.gov (United States)

    Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James

    2003-01-01

    We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.

  1. Satellite remote sensing of landscape freeze/thaw state dynamics for complex Topography and Fire Disturbance Areas Using multi-sensor radar and SRTM digital elevation models

    Science.gov (United States)

    Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James

    2003-01-01

    We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.

  2. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    Science.gov (United States)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  3. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  4. Tropical convective systems life cycle characteristics from geostationary satellite and precipitating estimates derived from TRMM and ground weather radar observations for the West African and South American regions

    Science.gov (United States)

    Fiolleau, T.; Roca, R.; Angelis, F. C.; Viltard, N.

    2012-12-01

    In the tropics most of the rainfall comes in the form of individual storm events embedded in the synoptic circulations (e.g., monsoons). Understanding the rainfall and its variability hence requires to document these highly contributing tropical convective systems (MCS). Our knowledge of the MCS life cycle, from a physical point of view mainly arises from individual observational campaigns heavily based on ground radar observations. While this large part of observations enabled the creation of conceptual models of MCS life cycle, it nevertheless does not reach any statistically significant integrated perspective yet. To overcome this limitation, a composite technique, that will serve as a Day-1 algorithm for the Megha-Tropiques mission, is considered in this study. this method is based on a collocation in space and time of the level-2 rainfall estimates (BRAIN) derived from the TMI radiometer onboard TRMM with the cloud systems identified by a new MCS tracking algorithm called TOOCAN and based on a 3-dimensional segmentation (image + time) of the geostationary IR imagery. To complete this study, a similar method is also developed collocating the cloud systems with the precipitating features derived from the ground weather radar which has been deployed during the CHUVA campaign over several Brazilian regions from 2010 up to now. A comparison of the MCSs life cycle is then performed for the 2010-2012 summer seasons over the West African, and South American regions. On the whole region of study, the results show that the temporal evolution of the cold cloud shield associated to MCSs describes a symmetry between the growth and the decay phases. It is also shown that the parameters of the conceptual model of MCSs are strongly correlated, reducing thereby the problem to a single degree of freedom. At the system scale, over both land and oceanic regions, rainfall is described by an increase at the beginning (the first third) of the life cycle and then smoothly decreases

  5. A Parallel, High-Fidelity Radar Model

    Science.gov (United States)

    Horsley, M.; Fasenfest, B.

    2010-09-01

    Accurate modeling of Space Surveillance sensors is necessary for a variety of applications. Accurate models can be used to perform trade studies on sensor designs, locations, and scheduling. In addition, they can be used to predict system-level performance of the Space Surveillance Network to a collision or satellite break-up event. A high fidelity physics-based radar simulator has been developed for Space Surveillance applications. This simulator is designed in a modular fashion, where each module describes a particular physical process or radar function (radio wave propagation & scattering, waveform generation, noise sources, etc.) involved in simulating the radar and its environment. For each of these modules, multiple versions are available in order to meet the end-users needs and requirements. For instance, the radar simulator supports different atmospheric models in order to facilitate different methods of simulating refraction of the radar beam. The radar model also has the capability to use highly accurate radar cross sections generated by the method of moments, accelerated by the fast multipole method. To accelerate this computationally expensive model, it is parallelized using MPI. As a testing framework for the radar model, it is incorporated into the Testbed Environment for Space Situational Awareness (TESSA). TESSA is based on a flexible, scalable architecture, designed to exploit high-performance computing resources and allow physics-based simulation of the SSA enterprise. In addition to the radar models, TESSA includes hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, optical brightness calculations, optical system models, object detection algorithms, orbit determination algorithms, simulation analysis and visualization tools. Within this framework, observations and tracks generated by the new radar model are compared to results from a phenomenological radar model. In particular, the new model will be

  6. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  7. Lunar Radar Cross Section at Low Frequency

    Science.gov (United States)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  8. Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network

    Indian Academy of Sciences (India)

    Manas Mukul; Vinee Srivastava; Malay Mukul

    2015-08-01

    The Shuttle Radar Topography Mission (SRTM) carried out in February 2000 has provided near global topographic data that has been widely used in many fields of earth sciences. The mission goal of an absolute vertical accuracy within 16 m (with 90% confidence)/RMSE ∼10 m was achieved based on ground validation of SRTM data through various studies using global positioning system (GPS). We present a new and independent assessment of the vertical accuracy of both the X- and C-band SRTM datasets using data from the International GNSS Service (IGS) network of high-precision static GPS stations. These stations exist worldwide, have better spatial distribution than previous studies, have a vertical accuracy of 6 mm and constitute the most accurate ground control points (GCPs) possible on earth; these stations are used as fiducial stations to define the International Terrestrial Reference Frame (ITRF). Globally, for outlier-filtered data (135 X-band stations and 290 C-band stations), the error or difference between IGS and SRTM heights exhibits a non-normal distribution with a mean and standard error of 8.2 ± 0.7 and 6.9 ± 0.5 m for X- and C-band data, respectively. Continent-wise, Africa, Australia and North America comply with the SRTM mission absolute vertical accuracy of 16 m (with 90% confidence)/RMSE ∼10 m. However, Asia, Europe and South America have vertical errors higher than the SRTM mission goal. At stations where both the X- and C-band SRTM data were present, the root mean square error (RMSE) of both the X- and C-bands was identical at 11.5 m, indicating similar quality of both the X- and C-band SRTM data.

  9. Radar detection

    CERN Document Server

    DiFranco, Julius

    2004-01-01

    This book presents a comprehensive tutorial exposition of radar detection using the methods and techniques of mathematical statistics. The material presented is as current and useful to today's engineers as when the book was first published by Prentice-Hall in 1968 and then republished by Artech House in 1980. The book is divided into six parts.

  10. Limitations of Radar Coordinates

    OpenAIRE

    Bini, Donato; Lusanna, Luca; Mashhoon, Bahram

    2004-01-01

    The construction of a radar coordinate system about the world line of an observer is discussed. Radar coordinates for a hyperbolic observer as well as a uniformly rotating observer are described in detail. The utility of the notion of radar distance and the admissibility of radar coordinates are investigated. Our results provide a critical assessment of the physical significance of radar coordinates.

  11. Bathymetry and Composition of Titan's Hydrocarbon Seas from the Cassini RADAR Altimeter

    Science.gov (United States)

    Mastrogiuseppe, Marco; Hayes, Alex; Poggiali, Valerio; Lunine, Jonathan; Seu, Roberto; Hofgartner, Jason; Le Gall, Alice; Lorenz, Ralph

    2016-04-01

    The Cassini RADAR's altimetry mode has been successfully used for probing the depth and composition of Titan's hydrocarbons seas. In May 2013, during the spacecraft's T91 flyby of Titan, the instrument demonstrated its capabilities as a radar sounder, presenting a unique opportunity to constraint the depth and composition of Titan's second largest sea, Ligeia Mare. Later, observations of Kraken Mare and Punga Mare were planned and executed in August 2014 (T104) and January 2015 (T108), respectively. While most of the seafloor was not detected at Kraken, suggesting the sea was either too deep or too absorptive in these areas to observe a return from the seafloor, shallow areas near Moray Sinus did show subsurface reflections. At Punga Mare, a clear detection of the subsurface was observed with a maximum depth of 120 m along the radar altimetry transect. Herein we present a re-analysis of altimetry data acquired over Ligeia Mare and, earlier in the Cassini mission (in December 2008 during T49), over the southern Ontario Lacus. Depths measurements and liquid composition are obtained using a novel technique which makes use of radar simulations and Monte Carlo-based inversions. Simulation is based on a two-layer model, where the surface is represented by a specular reflection and the seafloor is modeled using a facet-based synthetic surface, including thermal noise, speckle effects, analog to digital conversion (ADC), block adaptive quantization (BAQ), and allows for possible receiver saturation. This new analysis provides an update to the Ku-band attenuation (the Cassini RADAR operates at a wavelength of 2 cm) and results in a new estimate for loss tangent and composition. We found a value of specific attenuation of the liquid equal to 0.14±0.02 dB/m and 0.2±0.1 dB/m, which is equivalent to a loss tangent of 4.4±0.9x10^-5 and 7±3x10^-5 for Ligeia Mare and Ontario Lacus, respectively. Assuming that Titan's liquid bodies are composed by a ternary mixture of methane

  12. Research at the Stanford Center for Radar Astronomy

    Science.gov (United States)

    1972-01-01

    The research is reported in the applications of radar and radio techniques to the study of the solar system, and to space programs. Experiments reported include: bistatic-radar on Apollo missions, development of an unmanned geophysical observatory in the Antartic, Bragg scattering probes of sea states, characteristics of dense solar wind disturbances, and satellite communications for Alaska.

  13. Radar Images of the Earth and the World Wide Web

    Science.gov (United States)

    Chapman, B.; Freeman, A.

    1995-01-01

    A perspective of NASA's Jet Propulsion Laboratory as a center of planetary exploration, and its involvement in studying the earth from space is given. Remote sensing, radar maps, land topography, snow cover properties, vegetation type, biomass content, moisture levels, and ocean data are items discussed related to earth orbiting satellite imaging radar. World Wide Web viewing of this content is discussed.

  14. Coseismic and post-seismic deformation fields mapped using satellite radar interferometry and fault slip inversion of the 2015 Mw8.3 Illapel earthquake, Chile

    Science.gov (United States)

    Chunyan, Qu; Ronghu, Zuo; XinJian, Shan; Guohong, Zhang; Yingfeng, Zhang; Xiaogang, Song; Yunhua, Liu; Guifang, Zhang

    2017-02-01

    We analyzed Sentinel-1A (S1A)/IW satellite descending data from multiple acquisitions to map coseismic and post-seismic deformation fields and invert the fault slip and afterslip models associated with the seismic moment magnitude (Mw)8.3 earthquake that occurred at Illapel, Chile, on September 16th, 2015. We generated one coseismic and four post-seismic interferograms to analyze temporal and spatial variations in the deformation field after the mainshock; we found that the coseismic deformation field has a semicircular shape and covers a 300-km long and 190-km wide area. The maximum displacement reaches ca. 1.33 m in the LOS subsidence direction, while post-seismic deformation derived from four interferograms with different time intervals is mainly distributed within a long narrow area approximately 65 km wide. Maximum displacement is ca. 8 cm, including two regions of line of sight (LOS) uplift and sinking. Major regions of deformation exhibit opposite directions to the mainshock just after the event, before reverting to consistency. We inverted the coseismic fault slip and afterslip models based on a shallow-dip single fault plane in a homogeneous elastic half space. Our inversion suggests that coseismic slip is mainly concentrated in a shallow region to the northwest of the source, and that rupture length along strike is close to 340 km, with a maximum slip of about 8.16 m to the trench. The estimated moment is 3.126 × 1021 N m (Mw8.27), and the maximum rupture depth is 50 km. Inverted residual slip also shows just one region of slip in the shallow subsurface, which is shifted slightly to the south. In the early stage of deformation, the residual is along the down-dip direction, with a maximum value of ca. 32 cm, before turning into the up-dip direction, with a maximum value of ca. 23 cm. Finally, we present a preliminary analysis of these complex changes in space and time.

  15. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  16. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  17. External calibration technique of millimeter-wave cloud radar

    Science.gov (United States)

    Wen, Tao; Zhao, Zeng-Liang; Yao, Zhi-Gang; Han, Zhi-Gang; Guo, Lin-Da

    2016-10-01

    The millimeter-wave cloud radar can provide a large number of fine and reliable information for the inversion of cloud macro and micro parameters. A key link of using the millimeter-wave cloud radar to detect the cloud is that the radar must be calibrated. Due to the precision components and severe environment of millimeter-wave cloud radar, subtle changes may take place in the operation process of cloud radar, unless the cloud radar is calibrated regularly. Although the calibration system inside the cloud radar can track and monitor the main working parameters and correct the detection results, it fails to consider the characteristics of the antenna and the mutual influence among different components of cloud radar. Therefore, the external calibration for cloud radar system is very important. Combined with the actual situation of cloud radar under domestic onboard platform, this paper builds a complete external calibration technique process of cloud radar based on the calm sea, providing the theoretical support for the external calibration experiments of the airborne and even satellite-borne millimeter-wave cloud radar developed by our country.

  18. Validation of GPM Ka-Radar Algorithm Using a Ground-based Ka-Radar System

    Science.gov (United States)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiro; Furukawa, Kinji; Suzuki, Kenji

    2016-04-01

    GPM led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration of US (NASA) aims to observe global precipitation. The core satellite is equipped with a microwave radiometer (GMI) and a dual-frequency radar (DPR) which is the first spaceborne Ku/Ka-band dual-wavelength radar dedicated for precipitation measurement. In the DPR algorithm, measured radar reflectivity is converted to effective radar reflectivity by estimating the rain attenuation. Here, the scattering/attenuation characteristics of Ka-band radiowaves are crucial, particularly for wet snow. A melting layer observation using a dual Ka-band radar system developed by JAXA was conducted along the slope of Mt. Zao in Yamagata Prefecture, Japan. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars were observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) were obtained. The experiments were conducted for two winter seasons. During the data analyses, it was found that k estimate easily fluctuates because the estimate is based on double difference calculation. With much temporal and spatial averaging, k-Ze relationship was obtained for melting layers. One of the results is that the height of the peak of k seems slightly higher than that of Ze. The results are compared with in-situ precipitation particle measurements.

  19. Assimilation of radar altimetry to a routing model of the Brahmaputra River

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Milzow, Christian; Bauer-Gottwein, Peter

    2013-01-01

    predictions at daily or even subdaily temporal resolutions. One way to exploit satellite radar altimetry is therefore to combine the data with hydrological models in a data assimilation framework. In this study, radar altimetry data from six ENVISAT virtual stations were assimilated to a routing model...... quantities of interest. This is the case for satellite-based radar altimetry. River-level variations can be tracked using radar altimetry at a temporal resolution between 10 and 35 days, depending on the satellite, but hydrologists are typically interested in river flows rather than levels and require...

  20. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...

  1. HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin

    2011-01-01

    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at

  2. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    OpenAIRE

    Wen-Qin Wang; Huaizong Shao

    2014-01-01

    Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar ...

  3. Orbit Determination Using a Decametric Line-of-Sight Radar

    Science.gov (United States)

    Frazer, G.; Meehan, D.; Rutten, M.; Gordon, N.

    2013-09-01

    The paper investigates the effectiveness of a ground-based bistatic decametric line-of-sight radar for orbit determination of low Earth orbit satellites. Radar observations of the Hubble Space Telescope are used to demonstrate our approach. We present methods for initial orbit determination and for the case of improving an a-priori established orbit descriptor. We discuss the suitability of this class of radar for wide-field space situational awareness and consider a SSA architecture that uses this class of radar to cue high-accuracy narrow field-of-view optical sensors as part of a wide-field high-accuracy system for SSA.

  4. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...

  5. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...

  6. Oceanography from satellites

    Science.gov (United States)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  7. Offshore Wind Potential in South India from Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Bingöl, Ferhat; Badger, Merete

    The offshore wind energy potential for pre-feasibility in South India in the area from 77° to 80° Eastern longitude and 7° to 10° Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes...

  8. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2006-01-01

    Only book on Permanent Scatterer technique of radar interferometryExplains the Permanent Scatterer technique in detail, possible pitfalls, and details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS techniqueThe use of Permanent Scatterer allows very precise measurements of the displacement of hundreds of points per square kilometerDescribes the only technique currently able to perform displacement measurements in the past, utilizing the ERS satellite data archive using data acquired from 1992-prese

  9. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  10. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  11. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  12. Personal and thin-route communications via K-band satellite transponders

    Science.gov (United States)

    Fang, Russell J. F.

    The concept of a fully meshed network of briefcase-sized terminals is presented for personal and thin-route communications over Ku-band satellite transponders. In this concept, undesirable double-hop delays are avoided for voice communications. The bandwidth and power resources of the transponder are efficiently shared by users in a simple demand-assigned manner via code-division multiple access (CDMA). Voice, data, and facsimile are statistically multiplexed at each terminal. In order to minimize terminal costs, frequency-precorrected and level-preadjusted continuous-wave tones are sent from the central network control station in each beam so that the terminals in each downlink beam can use these pilots as references for antenna acquisition and tracking, as reliable frequency sources, and as indicators of signal fade for uplink power control (ULPC). The potential CDMA near-far problem due to uplink fades is mitigated by using ULPC. Quasi-burst mode transmission is used to minimize the potential of clock and pseudorandom number code synchronization.

  13. Airborne Radar Interferometric Repeat-Pass Processing

    Science.gov (United States)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  14. Ocean surveillance satellites

    Science.gov (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  15. Global Ka Band Broadband Satellite Services Overview (1)%全球Ka波段宽带卫星业务的现状和发展(一)

    Institute of Scientific and Technical Information of China (English)

    陈强; 赵庆锁; 李涛

    2014-01-01

    本文简要回顾了全球卫星通信从C/Ku波段到Ka波段,从话音、广播电视到互联网应用的轨迹;对目前Ka波段HTS卫星网络的架构、地面系统情况以及采用的新技术进行了概述;列出了目前全球Ka波段在轨HTS卫星、建造的HTS卫星的容量、运营公司、使用的地面系统等;介绍了美国Ka波段宽带卫星业务的发展情况。%This article is retrospected the trajectory of global satellite telecommunication industry from C/Ku band to Ka band and from Voice/TV to Internet. The article is listed in HTS satellites which are in orbit and in construction, the capacity , the operators and the ground system. The Ka band broadband satellite business in USA is also introduced.

  16. Global Ka Band Broadband Satellite Services Overview (2)%全球Ka波段宽带卫星业务的现状和发展(二)

    Institute of Scientific and Technical Information of China (English)

    陈强; 赵庆锁; 李涛

    2014-01-01

    本文简要回顾了全球卫星通信从C/Ku波段到Ka波段,从话音、广播电视到互联网应用的轨迹;对目前Ka波段HTS卫星网络的架构、地面系统情况以及采用的新技术进行了概述;并列出了目前全球Ka波段在轨HTS卫星、建造的HTS卫星的容量、运营公司、使用的地面系统等;并介绍了美国Ka波段宽带卫星业务的发展情况。%This article is retrospected the trajectory of global satellite telecommunication industry from C/Ku band to Ka band and from Voice/TV to Internet. The article is listed in HTS satellites which are in orbit and in construction, the capacity , the operators and the ground system. The Ka band broadband satellite business in USA is also introduced.

  17. Review of the Airborne Ku and Ka-band Satellite Communication System%机载Ku、Ka频段卫星通信系统综述

    Institute of Scientific and Technical Information of China (English)

    艾文光; 赵大勇; 邓军

    2011-01-01

    叙述了Ku频段和Ka频段机载卫星通信系统的国内外发展现状,列举了几个典型的卫星通信系统技术指标,并简述了研制机载卫星通信系统应注意的事项和技术途径,其中包括选择天线系统形式,合理分配系统指标,消除多普勒效应的影响等。%This paper reviews the Ku-band and Ka-band airborne satellite communication system both at home and abroad,cites a few typical satellite communication system specifications,and outlines matters that deserve our attention and some technical approaches in the development of airborne satellite communications systems,including choosing the form of antenna system,reasonably allocating system indicators,and eliminating the impact of the Doppler effect.

  18. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  19. Passive MIMO Radar Detection

    Science.gov (United States)

    2013-09-01

    cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 CORA COvert RAdar...PaRaDe), developed by the Insti- tute of Electronic Systems at the Warsaw University of Technology [59, 60]; COvert RAdar ( CORA ), developed by the German

  20. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  1. Digital LPI Radar Detector

    OpenAIRE

    Ong, Peng Ghee; Teng, Haw Kiad

    2001-01-01

    Approved for public release; distribution is unlimited The function of a Low Probability ofIntercept (LPI) radar is to prevent its interception by an Electronic Support (ES) receiver. This objective is generally achieved through the use of a radar waveform that is mismatched to those waveforms for which an ES receiver is tuned. This allows the radar to achieve a processing gain, with respect to the ES receiver, that is equal to the time-bandwidth product ofthe radar waveform. This...

  2. Network radar countermeasure systems integrating radar and radar countermeasures

    CERN Document Server

    Jiang, Qiuxi

    2016-01-01

    This is the very first book to present the network radar countermeasure system. It explains in detail the systematic concept of combining radar and radar countermeasures from the perspective of the information acquisition of target location, the optimization of the reconnaissance and detection, the integrated attack of the signals and facilities, and technological and legal developments concerning the networked system. It achieves the integration of the initiative and passivity, detection and jamming. The book explains how the system locates targets, completes target identification, tracks targets and compiles the data.

  3. Deep Stochastic Radar Models

    OpenAIRE

    Wheeler, Tim Allan; Holder, Martin; Winner, Hermann; Kochenderfer, Mykel

    2017-01-01

    Accurate simulation and validation of advanced driver assistance systems requires accurate sensor models. Modeling automotive radar is complicated by effects such as multipath reflections, interference, reflective surfaces, discrete cells, and attenuation. Detailed radar simulations based on physical principles exist but are computationally intractable for realistic automotive scenes. This paper describes a methodology for the construction of stochastic automotive radar models based on deep l...

  4. Radar: Human Safety Net

    Science.gov (United States)

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  5. Radar and wind turbines; Radar en windturbines

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, H.

    2010-03-15

    In the last years the developments of wind parks were hampered because of their possible effect on the radar for observation of air traffic. Work is currently being done on a new assessment model for wind turbines under the auspices of the steering group National Security for the military radar systems. Air traffic control Netherlands (LVNL) will look at the options for civil radars to join in. [Dutch] In de afgelopen jaren zijn windparkontwikkelingen onder meer belemmerd vanwege mogelijke effecten op radar voor de waarneming van luchtverkeer. Onder auspicien van de stuurgroep Nationale Veiligheid voor de militaire radarsystemen op land wordt gewerkt aan een nieuw beoordelingsmodel voor windturbines. De Luchtverkeersleiding Nederland (LVNL) zal bezien in hoeverre de civiele radars hierbij kunnen aansluiten.

  6. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...... been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally...... suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...

  7. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    OpenAIRE

    Garthwaite, Matthew C.

    2017-01-01

    Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR) techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS) means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR) satellites. Therefore, either a corner reflector design tailored to ...

  8. Power amplifiers for the S-, C-, X- and Ku-bands an EDA perspective

    CERN Document Server

    Božanić, Mladen

    2016-01-01

    This book provides a detailed review of power amplifiers, including classes and topologies rarely covered in books, and supplies sufficient information to allow the reader to design an entire amplifier system, and not just the power amplification stage. A central aim is to furnish readers with ideas on how to simplify the design process for a preferred power amplifier stage by introducing software-based routines in a programming language of their choice. The book is in two parts, the first focusing on power amplifier theory and the second on EDA concepts. Readers will gain enough knowledge of RF and microwave transmission theory, principles of active and passive device design and manufacturing, and power amplifier design concepts to allow them to quickly create their own programs, which will help to accelerate the transceiver design process. All circuit designers facing the challenge of designing an RF or microwave power amplifier for frequencies from 2 to 18 GHz will find this book to be a valuable asset.

  9. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  10. WIDE BAND DUAL FREQUENCY CIRCULAR SLOT ANTEENA WITH RECTANGULAR STUB AT X AND KU BAND

    Directory of Open Access Journals (Sweden)

    R. Sanyal

    2013-03-01

    Full Text Available The paper presents design and study of the performance of simple circular slot antenna, fed by microstrip line. The dual frequency response having center frequency of 10.58 GHz is observed by using 0.2m.m wide rectangular stub connected with microstrip line. The effect of bandwidth enhancement studies on the return loss performance (-10db by changing the substrate thickness and substrate material is also being carried out.

  11. Earth-To-Space Improved Model for Rain Attenuation Prediction at Ku-Band

    Directory of Open Access Journals (Sweden)

    Mandeep S.J. Singh

    2006-01-01

    Full Text Available A model for predicting rain attenuation on earth-to-space was developed by using the measurement data obtained from tropical and equatorial region. The proposed rain attenuation model uses the complete rainfall rate cumulative distribution as input data. It was shown that significant improvements in terms of prediction error over existing attenuation model obtained.

  12. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.

  13. A Ku-Band Novel Micromachined Bandpass Filter with Two Transmission Zeros

    CERN Document Server

    Yong, Zhang; Yuanwei, Yu; Chen, Chen; Xing, Jia Shi

    2007-01-01

    This paper presents a micromachined bandpass filter with miniature size that has relatively outstanding performance. A silicon-based eight-order microstrip bandpass filter is fabricated and measured. A novel design method of the interdigital filter that can create two transmission zeros is described. The location of the transmission zeros can be shifted arbitrarily in the stopband. By adjusting the zero location properly, the filter provides much better skirt rejection and lower insertion loss than a conventional microstrip interdigital filter. To reduce the chip size, through-silicon-substrate-via-hole is used. Good experimental results are obtained.

  14. Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control

    NARCIS (Netherlands)

    Burla, M.; Marpaung, D.A.I.; Zhuang, L.; Leinse, A.; Hoekman, M.; Heideman, R.G.; Roeloffzen, C.G.H.

    2013-01-01

    We present the first demonstration of a broadband and continuously tunable integrated optical beamforming network (IOBFN) capable of providing continuously tunable true-time-delay up to 236 ps over the entire DVB-S band (10.7–12.75 GHz), realized with a CMOS compatible process. The tunable delays ar

  15. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  16. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  17. Radar-based remote sensing monitoring of roads

    OpenAIRE

    Crosetto, Michele; Monserrat, Oriol; Luzi, Guido; Cuevas-González, María; Devanthéry, Núria

    2014-01-01

    This paper provides a brief description of two powerful radar-based remote sensing techniques to monitor the deformations of roads, their associated infrastructures and, more in general, their surroundings. The first technique is the satellite radar interferometric technique. In this work a specific technique, named Persistent Scatterer Interferometry (PSI), is considered. This technique has wide-area coverage capability (e.g. covering thousands of square kilometres at the time) and,at the...

  18. Uncertainty Estimation of Global Precipitation Measurement through Objective Validation Strategy

    Science.gov (United States)

    KIM, H.; Utsumi, N.; Seto, S.; Oki, T.

    2014-12-01

    Since Tropical Rainfall Measuring Mission (TRMM) has been launched in 1997 as the first satellite mission dedicated to measuring precipitation, the spatiotemporal gaps of precipitation observation have been filled significantly. On February 27th, 2014, Dual-frequency Precipitation Radar (DPR) satellite has been launched as a core observatory of Global Precipitation Measurement (GPM), an international multi-satellite mission aiming to provide the global three hourly map of rainfall and snowfall. In addition to Ku-band, Ka-band radar is newly equipped, and their combination is expected to introduce higher precision than the precipitation measurement of TRMM/PR. In this study, the GPM level-2 orbit products are evaluated comparing to various precipitation observations which include TRMM/PR, in-situ data, and ground radar. In the preliminary validation over intercross orbits of DPR and TRMM, Ku-band measurements in both satellites shows very close spatial pattern and intensity, and the DPR is capable to capture broader range of precipitation intensity than of the TRMM. Furthermore, we suggest a validation strategy based on 'objective classification' of background atmospheric mechanisms. The Japanese 55-year Reanalysis (JRA-55) and auxiliary datasets (e.g., tropical cyclone best track) is used to objectively determine the types of precipitation. Uncertainty of abovementioned precipitation products is quantified as their relative differences and characterized for different precipitation mechanism. Also, it is discussed how the uncertainty affects the synthesis of TRMM and GPM for a long-term satellite precipitation observation records which is internally consistent.

  19. Multidimensional radar picture

    Science.gov (United States)

    Waz, Mariusz

    2010-05-01

    In marine navigation systems, the three-dimensional (3D) visualization is often and often used. Echosonders and sonars working in hydroacustic systems can present pictures in three dimensions. Currently, vector maps also offer 3D presentation. This presentation is used in aviation and underwater navigation. In the nearest future three-dimensional presentation may be obligatory presentation in displays of navigation systems. A part of these systems work with radar and communicates with it transmitting data in a digital form. 3D presentation of radar picture require a new technology to develop. In the first step it is necessary to compile digital form of radar signal. The modern navigation radar do not present data in three-dimensional form. Progress in technology of digital signal processing make it possible to create multidimensional radar pictures. For instance, the RSC (Radar Scan Converter) - digital radar picture recording and transforming tool can be used to create new picture online. Using RSC and techniques of modern computer graphics multidimensional radar pictures can be generated. The radar pictures mentioned should be readable for ECDIS. The paper presents a method for generating multidimensional radar picture from original signal coming from radar receiver.

  20. Gridded 5-day mean sea surface height anomaly and significant wave height from Jason-1 and OSTM/Jason-2 satellites (NODC Accession 0065055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the gridded 5-day mean sea surface height anomaly (SSHA) and Ku Band significant wave height (SWH-KU) observed from Jason-1 and OSTM/Jason-2...

  1. Spaceborne Radar for Mapping Forest and Land Use Changes

    DEFF Research Database (Denmark)

    Joshi, Neha Pankaj

    of forest monitoring enable the development of policies and measures to alter current trends in global forest and biodiversity loss. This thesis investigates the use of long wavelength (~23 cm, L-band) spaceborne radar, which has all-weather and canopy-penetration capabilities, acquired by the Advanced Land...... Observing Satellite (ALOS) for forest monitoring. Using a combination of local expert knowledge, plot inventories, and data from lidar and optical sensors, it aims to understand (1) whether forest disturbance dynamics may be detected with radar, and (2) what physical and macroecological properties influence...... the radar backscatter and forest AGV/AGB relation. The papers in the thesis show that radar is able to pick up forest disturbances to larger extent than traditional optical-based detection approaches, the radar to AGV/AGB relation is strongly driven by spatial scale of assessments and age- and management...

  2. UAS Satellite Earth Station Emission Limits for Terrestrial System Interference Protection

    Science.gov (United States)

    Kerczewski, Robert J.; Bishop, William D.

    2017-01-01

    Unmanned aircraft systems (UAS) will have a major impact on future aviation. Medium and large UA operating at altitudes above 3000 feet will require access to non-segregated, that is, controlled airspace. In order for unmanned aircraft to be integrated into the airspace and operate with other commercial aircraft, a very reliable command and control (C2, a. k. a. control and non-payload communications, (CNPC)) link is required. For operations covering large distances or over remote locations, a beyond-line-of-sight (BLOS) CNPC link would need to be implemented through satellite. Significant progress has taken place on several fronts to advance the integration of UAS into controlled airspace, including the recent completion of Minimum Operational Performance Standards (MOPS) for terrestrial line-of-sight (LOS) UAS command and control (C2) links. The development of MOPS for beyond line-of-sight C2 satellite communication links is underway. Meanwhile the allocation of spectrum for UAS C2 by the International Telecommunications Union Radiocommunication Sector (ITU-R) has also progressed. Spectrum for LOS C2 was allocated at the 2012 World Radiocommunication Conference (WRC-12), and for BLOS C2 an allocation was made at WRC-15, under WRC-15 Resolution 155. Resolution 155, however, does not come into effect until several other actions have been completed. One of these required actions is the identification of a power flux density (pfd) limit on the emissions of UAS Ku-Band satellite communications transmitters reaching the ground. The pfd limit is intended to protect terrestrial systems from harmful interference. WRC-19 is expected to finalize the pfd limit. In preparation for WRC-19, analyses of the required pfd limit are on-going, and supporting activities such as propagation modeling are also planned. This paper provides the status of these activities.

  3. Intelsat's next generation satellite for the Americas

    Science.gov (United States)

    Virdee, L.; Jansson, G.; Kis, R.; Goodwin, P.; Temporelli, P.

    2001-03-01

    In order to meet the growing demand for high performance C- and Ku-Band services in the Americas, INTELSAT contracted with Astrium in February 2000 to procure a high capacity communications spacecraft for its 310°E operational location. The spacecraft platform is based on Astrium's next generation platform, the Eurostar 3000. Several new technologies such as integrated Data Handling System, Plasma Propulsion System, etc. are integral features of this platform. The communication payload comprises 36 C-Band and 20 high power Ku-Band transponders. The beam coverages are tailored for the 310°E orbital location and are implemented using a hybrid shaped antenna design approach, where multiple C-Band coverages are generated from a single shaped reflector utilizing a pair of Tx/Rx feed horns for each coverage. The Ku-Band coverages are generated by the classical dual Gregorian shaped reflector antenna design approach. With a total dry mass on the order of 2650 kg and a separated launch mass of 5400 kg, the spacecraft is compatible with most of the available launch vehicles providing mission life of greater than 13 years. The paper will provide technical details of the spacecraft.

  4. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  5. Polar Remote Sensing by CryoSat-type Radar Altimetry

    DEFF Research Database (Denmark)

    Stenseng, Lars

    observations, but the thickness and thereby the mass of the sea-ice is subject to large uncertainties. Satellite observations of the icecaps are also affected by errors in the margin zones, where the largest changes takes place. The development of a new type of radar altimeter, named the SAR altimeter....... Furthermore, a method has been developed to separate radar signals returned by ice floes from radar signals returned from the sea between the ice floes. When heights measured over ice floes and heights measured over ocean can be separated, the height by which the ice floe is above the sea surface can...

  6. A Beam Tracking Algorithm Based on Satellite Beacon Signals for Phased Array in Mobile Satellite Communications%一种基于信标的移动卫通相控阵波束跟踪算法

    Institute of Scientific and Technical Information of China (English)

    陈鹏; 张慧

    2012-01-01

    In this paper a beam tracking algorithm based on satellite beacon signals is proposed and realized. The method is suitable for all kinds of phased array type mobile satellite communication antennas. It overcomes the difficulty of detecting the extremely weak satellite beacon signals and then the tracking performance is greatly improved. The highlight of the algorithm is the beam tracking process can be run without the help of gyroscopes and thus improves the survivability in the extreme environments. The algorithm was implemented and verified in a Ku band phased array mobile satellite antenna.%提出并实现了一种利用卫星信标信号来实施基于相控阵天线的波束跟踪算法。该方法适用于采用相控阵天线技术的各种卫星“动中通”天线,克服了卫星信标信号强度弱,检测困难的弱点,提高了跟踪信噪比,同时采用了软件无线电方式解调可以提供最大的灵活性。跟踪算法的最大优点是没有任何陀螺仪的辅助,极大地提高了天线在各种极端运动环境下的适应能力。算法最终在自行研制的Ku波段相控阵移动卫星天线系统上获得验证。

  7. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  8. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  9. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  10. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  11. Radar illusion via metamaterials

    Science.gov (United States)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  12. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  13. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  14. Aspects of Radar Polarimetry

    OpenAIRE

    Lüneburg, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  15. Space Radar Image of Central Sumatra, Indonesia

    Science.gov (United States)

    1994-01-01

    This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  16. Space Radar Image of Central Sumatra, Indonesia

    Science.gov (United States)

    1994-01-01

    This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  17. Micropower impulse radar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  18. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  19. Operational reservoir inflow forecasting with radar altimetry: The Zambezi case study

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Bauer-Gottwein, Peter

    2014-01-01

    cannot be measured from space, radar altimetry can track surface water level variations at crossing locations between the satellite ground track and the river system called virtual stations (VS). Use of radar altimetry versus traditional monitoring in operational settings is complicated by the low...... temporal resolution of the data (between 10 and 35 days revisit time at a VS depending on the satellite) as well as the fact that the location of the measurements is not necessarily at the point of interest. However, combining radar altimetry from multiple VS with hydrological models can help overcome...

  20. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  1. PENGGUNAAN SECONDARY SURVEILLANCE RADAR UNTUK PENENTUAN POSISI PESAWAT UDARA

    Directory of Open Access Journals (Sweden)

    Akhmad Hafidz Irfandi

    2015-02-01

    Full Text Available Republik Indonesia merupakan negara kepulauan terbesar di dunia yang memiliki lebih dari 17.000 pulau dengan pertumbuhan demografi yang sangat pesat, hal ini menjadikan Indonesia sebagai negara berpenduduk terbesar ke-empat di dunia. Pesawat udara merupakan alat transportasi yang paling efektif dalam mendukung mobilitas penduduk.Navigasi atau pandu arah adalah penentuan kedudukan (position dan arah perjalanan baik di medan sebenarnya atau di peta. Navigasi ini dilakukan pada pesawat udara yang dipandu dari darat melalui sinyal yang dipancarkan oleh instrumen terpasang pada menara (ground base maupun sinyal dari satelit (satellite base.Dalam navigasi ada beberapa macam radar yang umum digunakan yaitu Primary Surveillance Radar (PSR dan Secondary Surveillance Radar (SSR.Kedua jenis radar baik PSR maupun SSR mempunyai cara kerja berbeda. Pada PSR sifatnya aktif dan pesawat yang ditargetkan sifatnya pasif.Karena PSR hanya menerima pantulan gelombang radio dari refleksi pesawat tersebut (echo.Sedangkan pesawat itu sendiri tidak ikut aktif dengan pancaran sinyal radar di bawah. Pada SSR, baik radar maupun pesawat kedua-duanya aktif. Hal ini dapat dilakukan karena pesawat terbang telah dilengkapi dengan transponder. Pesawat-pesawat yang tidak dilengkapi transponder tidak akan dapat dilihat pada radar scope seperti identifikasi pesawat, ketinggiannya, dan lain-lain.SSR merupakan peralatan untuk mendeteksi dan mengetahui posisi dan data target yang ada di sekelilingnya secara aktif, dimana pesawat ikut aktif jika menerima pancaran sinyal Radio Frequency (RF radar sekunder. Pancaran radar ini berupa pulsa-pulsa mode, pesawat yang dipasangi transponder, akan menerima pulsa-pulsa tersebut dan akan menjawab berupa pulsa-pulsa code ke sistem penerima radar.

  2. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  3. Localization of an air target by means of GNSS-based multistatic radar

    Science.gov (United States)

    Akhmedov, Daulet Sh.; Raskaliyev, Almat S.

    2016-08-01

    The possibility of utilizing transmitters of opportunity for target detection, tracking and positioning is of great interest to the radar community. In particular the optional use of Global Navigation Satellite System (GNSS) has lately triggered scientific research that has purpose to take advantage of this source of signal generation for passive radar. Number of studies have been conducted previously on development of GNSS-based bistatic and multistatic radars for detection and range estimation to the object located in the close atmosphere. To further enrich research in this area, we present a novel method for coordinate determination of the air target by means of the GNSS-based multistatic radar.

  4. Ambiguity Function and Resolution Characteristic Analysis of DVB-S Signal for Passive Radar

    Directory of Open Access Journals (Sweden)

    Jin Wei

    2012-12-01

    Full Text Available This paper gives the performance research on the ambiguity function and resolution of passive radar based on DVB-S (Digital Video Broadcasting-Satellite signal. The radar system structure and signal model of DVB-S signal are firstly studied, then the ambiguity function of DVB-S signal is analyzed. At last, it has been obtained how the bistatic radar position impacts the resolution. Theoretical analyses and computer simulation show that DVB-S signal is applicable as an illuminator for passive radar.

  5. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    Science.gov (United States)

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and

  6. Resolving SSM/I-Ship Radar Rainfall Discrepancies from AIP-3

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The third algorithm intercomparison project (AIP-3) involved rain estimates from more than 50satellite rainfall algorithms and ground radar measurements within the Intensive Flux Array (IFA) over the equatorial western Pacific warm pool region during the Tropical Ocean Global Atmosphere coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Early results indicated that there was a systematic bias between rainrates from satellite passive microwave and ground radar measurements. The mean rainrate from radar measurements is about 50% underestimated compared to that from passive microwave-based retrieval algorithms. This paper is designed to analyze rain patterns from the Florida State University rain retrieval algorithm and radar measurements to understand physically the rain discrepancies. Results show that there is a clear range-dependent bias associated with the radar measurements.However, this range-dependent systematical bias is almost eliminated with the corrected radar rainrates.Results suggest that the effects from radar attenuation correction, calibration and beam filling are the major sources of rain discrepancies. This study demonstrates that rain retrievals based on satellite measurements from passive microwave radiometers such as the Special Sensor of Microwave Imager (SSM/I)are reliable, while rain estimates from ground radar measurements are correctable.

  7. Application of Near-Space Passive Radar for Homeland Security

    Science.gov (United States)

    Wang, Wenqin

    2007-03-01

    To protect the homeland from terrorist attacks employing explosive devices, revolutionary advances across a wide range of technologies are required. Inspired by recent advances in near-space (defined as the region between 20 km and 100 km), this paper proposes a new passive radar system using opportunistic transmitter as an illuminator and near-space platform as a receiver. This concept differs substantially from current radars. This system can be operated as a passive bistatic or multistatic radar and hence largely immune to jamming. By placing the receiver in near-space platforms, many functions that are currently performed with satellites or airplanes could be performed much more cheaply and with much greater operational utility. These advantages make near-space passive attractive for a variety of applications, many of which fit well with the needs of homeland security. This paper details the role of near-space passive radar as sensor system that can support homeland security applications. The strengths and weakness of near-space passive radar, compared to current spaceborne and airborne radars, are detailed. The signal models and processing algorithms for near-space passive radar are provided. It is shown that the use of cost effective near-space platforms can provide the solutions that were previously thought to be out of reach to remote sensing and government customers.

  8. A decade of ERS satellite orbits and altimetry

    NARCIS (Netherlands)

    Scharroo, R.

    2002-01-01

    The First European Remote Sensing Satellite, ERS-1, was launched in July 1991, fol- lowed by ERS-2 in April 1995. Both satellites carry a radar altimeter to serve oper- ational applications and scientific research in the fields of geodesy, oceanography, glaciology and meteorology. Together, the sate

  9. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    The aim of the paper is to present offshore wind farm wake observed from satellite Synthetic Aperture Radar (SAR) wind fields from RADARSAT-1/-2 and Envisat and to compare these wakes qualitatively to wind farm wake model results. From some satellite SAR wind maps very long wakes are observed. Th...

  10. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  11. Space Radar Image of Star City, Russia

    Science.gov (United States)

    1994-01-01

    ), passing just east of Star City and flowing off the lower right edge of the image. The dark blue band of the Vorya River runs north-south in the upper right quadrant, east of Star City. SIR-C/X-SAR radar images are being compared with data from the Russian radar satellite Almaz to evaluate the usefulness of a permanent orbital radar platform in monitoring Earth s environment and ecology.

  12. A multi-source precipitation approach to fill gaps over a radar precipitation field

    Science.gov (United States)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  13. Analysis of long term trends of precipitation estimates acquired using radar network in Turkey

    Science.gov (United States)

    Tugrul Yilmaz, M.; Yucel, Ismail; Kamil Yilmaz, Koray

    2016-04-01

    Precipitation estimates, a vital input in many hydrological and agricultural studies, can be obtained using many different platforms (ground station-, radar-, model-, satellite-based). Satellite- and model-based estimates are spatially continuous datasets, however they lack the high resolution information many applications often require. Station-based values are actual precipitation observations, however they suffer from their nature that they are point data. These datasets may be interpolated however such end-products may have large errors over remote locations with different climate/topography/etc than the areas stations are installed. Radars have the particular advantage of having high spatial resolution information over land even though accuracy of radar-based precipitation estimates depends on the Z-R relationship, mountain blockage, target distance from the radar, spurious echoes resulting from anomalous propagation of the radar beam, bright band contamination and ground clutter. A viable method to obtain spatially and temporally high resolution consistent precipitation information is merging radar and station data to take advantage of each retrieval platform. An optimally merged product is particularly important in Turkey where complex topography exerts strong controls on the precipitation regime and in turn hampers observation efforts. There are currently 10 (additional 7 are planned) weather radars over Turkey obtaining precipitation information since 2007. This study aims to optimally merge radar precipitation data with station based observations to introduce a station-radar blended precipitation product. This study was supported by TUBITAK fund # 114Y676.

  14. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  15. Imaging Radar Polarimetry

    Science.gov (United States)

    vanZyl, J. J.; Zebker, H. A.

    1993-01-01

    In this paper, we review the state of the art in imaging radar polarimetry, examine current developments in sensor technology and implementation for recording polarimetric measurements, and describe techniques and areas of application for the new remote sensing data.

  16. Radar Landmass Simulation Computer Programming (Interim Report).

    Science.gov (United States)

    RADAR SCANNING, TERRAIN), (*NAVAL TRAINING, RADAR OPERATORS), (*FLIGHT SIMULATORS, TERRAIN AVOIDANCE), (* COMPUTER PROGRAMMING , INSTRUCTION MANUALS), PLAN POSITION INDICATORS, REAL TIME, DISPLAY SYSTEMS, RADAR IMAGES, SIMULATION

  17. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  18. ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [North Carolina State Univ., Raleigh, NC (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model output and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP

  19. Bistatic radar using a spaceborne illuminator

    Science.gov (United States)

    Whitewood, Aric Pierre

    A bistatic radar has a physically separated transmitter and receiver. This research pro gramme investigates a bistatic radar system which uses a spaceborne synthetic aperture radar transmitter on board the European Space Agency's Envisat satellite and a station ary, ground based receiver. The advantages of this variant of the bistatic configuration includes the passive and therefore covert nature of the receiver, its relatively low cost, in addition to the possibility of using a non-cooperative transmitter. The theory behind bistatic SAR systems is covered, including the specific case investi gated. The design, construction and testing of the bistatic receiver, which uses two separate channels, for the direct signal from the satellite (for synchronisation purposes) and the re flected signals from the imaged scene is also described. A SAR processing scheme using an adapted chirp scaling algorithm is presented and demonstrated through simulations to produce focused images for the scenario. The results of several bistatic imaging experiments are analysed through comparisons with theoretical impulse responses, and comparisons with satellite photographs, the corresponding monostatic image produced by Envisat, and the bistatic ambiguity function. It is demonstrated that focused images may be produced with such a system, although the performance achievable is dependent upon the imaging geometry. Different look direc tions of the receiver produce widely differing resolution values. The optimum choice of look direction must be weighed against possible direct signal interference in the reflected signal channel. Other effects, such as azimuth ambiguities caused by the sampling of the mov ing transmitter beam by the pulse repetition frequency may also have an effect, depending upon the combined transmit/receive beam pattern. Aspects of the system that could be investigated in the future are identified, for example the addition of an extra channel to the receiver in order to

  20. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.;

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atl...

  1. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  2. Accuracy analysis of the 2014-2015 Global Shuttle Radar Topography Mission (SRTM) 1 arc-sec C-Band height model using International Global Navigation Satellite System Service (IGS) Network

    Science.gov (United States)

    Mukul, Manas; Srivastava, Vinee; Mukul, Malay

    2016-07-01

    Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in Earth Sciences without an estimation of their accuracy and reliability even though large outliers exist in them. The global 1 arc-sec, 30 m resolution, SRTM C-Band (C-30) data collected in February 2000 has been recently released (2014-2015) outside North America. We present the first global assessment of the vertical accuracy of C-30 data using Ground Control Points (GCPs) from the International GNSS Service (IGS) Network of high-precision static fiducial stations that define the International Terrestrial Reference Frame (ITRF). Large outliers (height error ranging from -1285 to 2306 m) were present in the C-30 dataset and 14% of the data were removed to reduce the root mean square error (RMSE) of the dataset from ˜187 to 10.3 m which is close to the SRTM goal of an absolute vertical accuracy of RMSE ˜10 m. Globally, for outlier-filtered data from 287 GCPs, the error or difference between IGS and SRTM heights exhibited a non-normal distribution with a mean and standard error of 6.5 ± 0.5 m. Continent-wise, only Australia, North and South America complied with the SRTM goal. At stations where all the X- and C-Band SRTM data were present, the RMSE of the outlier-filtered C-30 data was 11.7 m. However, the RMSE of outlier-included dataset where C- and X-Band data were present was ˜233 m. The results suggest that the SRTM data must only be used after regional accuracy analysis and removal of outliers. If used raw, they may produce results that are statistically insignificant with RMSE in 100s of meters.

  3. Accuracy analysis of the 2014–2015 Global Shuttle Radar Topography Mission (SRTM) 1 arc-sec C-Band height model using International Global Navigation Satellite System Service (IGS) Network

    Indian Academy of Sciences (India)

    Manas Mukul; Vinee Srivastava; Malay Mukul

    2016-07-01

    Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in EarthSciences without an estimation of their accuracy and reliability even though large outliers exist in them.The global 1 arc-sec, 30 m resolution, SRTM C-Band (C-30) data collected in February 2000 has beenrecently released (2014–2015) outside North America. We present the first global assessment of thevertical accuracy of C-30 data using Ground Control Points (GCPs) from the International GNSS Service(IGS) Network of high-precision static fiducial stations that define the International Terrestrial ReferenceFrame (ITRF). Large outliers (height error ranging from –1285 to 2306 m) were present in the C-30dataset and 14% of the data were removed to reduce the root mean square error (RMSE) of the datasetfrom ∼187 to 10.3 m which is close to the SRTM goal of an absolute vertical accuracy of RMSE ∼10 m.Globally, for outlier-filtered data from 287 GCPs, the error or difference between IGS and SRTM heightsexhibited a non-normal distribution with a mean and standard error of 6.5 ± 0.5 m. Continent-wise,only Australia, North and South America complied with the SRTM goal. At stations where all the XandC-Band SRTM data were present, the RMSE of the outlier-filtered C-30 data was 11.7 m. However,the RMSE of outlier-included dataset where C- and X-Band data were present was ∼233 m. The resultssuggest that the SRTM data must only be used after regional accuracy analysis and removal of outliers.If used raw, they may produce results that are statistically insignificant with RMSE in 100s of meters.

  4. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  5. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  6. Geolocation of Source Interference from a Single Satellite with Multiple Antennas

    Science.gov (United States)

    2014-03-01

    Systems ............................................................................ 124 a. INMARSAT Global Xpress ...7 Figure 4. Ku Band Single Antenna Footprint (from [12]). ............................................. 8 Figure 5. INMARSAT Global Xpress ...this sort of antenna system. This image is from INMARSAT’s planned Global Xpress system. Shown is the expected coverage provided by three Global

  7. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  8. A barrier radar concept

    Science.gov (United States)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  9. Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data

    OpenAIRE

    Nam, Christine C. W.; Quaas, Johannes

    2015-01-01

    Observations from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat satellites are used to evaluate clouds and precipitation in the ECHAM5 general circulation model. Active lidar and radar instruments on board CALIPSO and CloudSat allow the vertical distribution of clouds and their optical properties to be studied on a global scale. To evaluate the clouds modeled by ECHAM5 with CALIPSO and CloudSat, the lidar and radar satellite simulators of the Cloud ...

  10. Airport Surveillance Radar : Model 8 -

    Data.gov (United States)

    Department of Transportation — The Airport Surveillance Radar Model 8 (ASR-8) is a short-range (60 nautical mile (nmi)), analog radar system used to detect and report the presence and location of...

  11. Airport Surveillance Radar : Model 7 -

    Data.gov (United States)

    Department of Transportation — The Airport Surveillance Radar Model 7 (ASR-7) is a short-range (60 nautical miles (nmi)) analog radar system used to detect and report the presence and location of...

  12. Radar for tracer particles

    CERN Document Server

    Ott, Felix; Huang, Kai

    2016-01-01

    We introduce a radar system capable of tracking a $5$mm spherical target continuously in three dimensions. The $10$GHz (X-band) radar system has a transmission power of $1$W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-Mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions, and discuss the capability of the radar system.

  13. Localizing Ground-Penetrating Radar

    Science.gov (United States)

    2014-11-01

    ing Ground-Penetrating Radar (LGPR) uses very high frequency (VHF) radar reflections of underground features to generate base- line maps and then...Innovative ground- penetrating radar that maps underground geological features provides autonomous vehicles with real-time localization. Localizing...NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Localizing Ground-Penetrating Radar 5a. CONTRACT NUMBER

  14. Mode S Baseline Radar Tracking.

    Science.gov (United States)

    1982-11-01

    range units and 20 azimuth units) overlaying the position of the beacon reports. In the cases analyzed where beacon reports were not radar reinforced ...82/53 j~ C ~ 7 C _ _ _ _ _ _ 4. Title end Su.btitle 5. Neget at. November 1982 MDDE S BASELINE RADAR TRACKIN4G 6. Poelin Orgeuianti.. Cede ACT-100...Ground Clutter 33 Mode S/ARTS III 100-Scan False Radar Track Summary 74 34 Percent Beacon Radar Reinforcement 77 vii INTRODUCTION PURPOSE. The purpose of

  15. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  16. Satellite microwave observations of a storm complex: A comparative analysis

    Science.gov (United States)

    Martin, D. W.

    1985-01-01

    The hypothesis that cold events correspond to a particular stage in a class of thunderstorms was tested. That class is a storms class which updrafts are: (1) strong, broad and moist, and (2) extend well above the freezing level. Condition (1) implies strong mesoscale forcing. Condition (2) implies a tall updraft or a relatively low freezing level. Such storms should have big, intense radar echoes and cold, fast-growing anvils. The thunderstorm events were analyzed by radar, rain gauge and GOES infrared observations. Radar was the starting point for detection and definition of the hypothesized thunderstorms. The radar signature is compared to the signature of the storm in rain gauge observations, satellite infrared images and satellite microwave images.

  17. Space Radar Image of Sudan Collision Zone

    Science.gov (United States)

    1994-01-01

    This is a radar image of a region in northern Sudan called the Keraf Suture that reveals newly discovered geologic features buried beneath layers of sand. This discovery is being used to guide field studies of the region and has opened up new perspectives on old problems, such as what controls the course of the Nile, a question that has perplexed geologists for centuries. The Nile is the yellowish/green line that runs from the top to the bottom of the image. A small town, Abu Dis, can be seen as the bright, white area on the east (right) bank of the Nile (about a third of the way down from the top) at the mouth of a dry stream valley or 'wadi' that drains into the river. Wadis flowing into the Nile from both east and west stand out as dark, reddish branch-like drainage patterns. The bright pink area on the west (left) side of the Nile is a region where rocks are exposed, but the area east (right) of the Nile is obscured by layers of sand, a few inches to several feet thick. Virtually everything visible on the right side of this radar image is invisible when standing on the ground or when viewing photographs or satellite images such as the United States' Landsat or the French SPOT satellite. A sharp, straight fault cuts diagonally across the image, to the right of the Nile river. The area between the fault and the Nile is part of the collision zone where the ancient continents of East and West Gondwana crashed into each other to form the supercontinent Greater Gondwana more than 600 million years ago. On this image, the Nile approaches but never crosses the fault, indicating that this fault seems to be controlling the course of the Nile in this part of Sudan. The image is centered at 19.5 degrees north latitude, 33.35 degrees east longitude, and shows an area approximately 18 km by 20 km (10 miles by 12 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: Red is L-band, vertically transmitted and vertically

  18. Noise Radar Technology Basics

    Science.gov (United States)

    2006-12-01

    poursuite, estimation Doppler, polarimétrie, interférométrie, sondage du sol ou profilage de la sous- surface , détection, imagerie SAR (radar à synthèse...mesure de distance et d’estimation Doppler. Deux récepteurs de traitement cohérent, soit le récepteur de corrélation et le récep- teur de traitement DSP... traitement spectral double) des échos radar sont décrits et une estimation de leur portée est présentée. Les capacités LPI (faible probabilité

  19. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  20. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed informa

  1. Radar Test Range Design Considerations.

    Science.gov (United States)

    1980-04-29

    radar cross section associated with dihedral and trihedral corner reflectors is highly dependent upon the squareness or alignment of the...slightly misaligned. We now show how the radar cross section for dihedral and trihedral corner reflectors depends upon their surface misalignment. All...coefficients, p and q, for the dihedral corner reflector , one must consider the radar cross section

  2. Status Of Imaging Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.

    1991-01-01

    Report pulls together information on imaging radar polarimetry from a variety of sources. Topics include theory, equipment, and experimental data. Reviews state of the art, examines current applicable developments in radar equipment, describes recording and processing of radar polarimetric measurements, and discusses interpretation and application of resulting polarimetric images.

  3. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  4. Coded continuous wave meteor radar

    OpenAIRE

    2015-01-01

    The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs); continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after ...

  5. Copernicus Sentinel-1 Satellite And C-SAR Instrument

    Science.gov (United States)

    Panetti, Aniceto; Rostan, Friedhelm; L'Abbate, Michelangelo; Bruno, Claudio; Bauleo, Antonio; Catalano, Toni; Cotogni, Marco; Galvagni, Luigi; Pietropaolo, Andrea; Taini, Giacomo; Venditti, Paolo; Huchler, Markus; Torres, Ramon; Lokaas, Svein; Bibby, David

    2013-12-01

    The Copernicus Sentinel-1 Earth Radar Observatory, a mission funded by the European Union and developed by ESA, is a constellation of two C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational applications such as mapping of global landmasses, coastal zones and monitoring of shipping routes. The Sentinel-1 satellites are built by an industrial consortium led by Thales Alenia Space Italia as Prime Contractor and with Astrium GmbH as SAR Instrument Contractor. The paper describes the general satellite architecture, the spacecraft subsystems, AIT flow and the satellite key performances. It provides also an overview on the C-SAR Instrument, its development status and pre- launch SAR performance prediction.

  6. Challenges for Greenland-wide mass balance from Cryosat-2 radar-altimetry

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Forsberg, René; Sørensen, Louise Sandberg

    be interpreted as actual surface elevation changes seen from the satellite radar altimetry (Nilsson et al., 2015).Here, we investigate how to correct the elevation change observed from the ESA Cryosat-2 radar altimetry mission to derive elevation change of the air/snow interface of the Greenland ice sheet......As the Greenland ice sheet warms, a change in the structure of the upper snow/firn occurs. This change further induces changes in the reflective properties of the firn seen from satellite radar altimetry. If not identified as changes in the reflective properties of the firn, these may....... The elevation change of this “real” physical surface is crucial, if the goal is to derive Greenland mass balance as done for LiDAR missions.The investigations look into waveform parameters to correct for the observed bias between Radar and LiDAR observations when using Croysat-2 level-2 data. Based...

  7. Optimized Radar Remote Sensing for Levee Health Monitoring

    Science.gov (United States)

    Jones, Cathleen E.

    2013-01-01

    Radar remote sensing offers great potential for high resolution monitoring of ground surface changes over large areas at one time to detect movement on and near levees and for location of seepage through levees. Our NASA-funded projects to monitor levees in the Sacramento Delta and the Mississippi River have developed and demonstrated methods to use radar remote sensing to measure quantities relevant to levee health and of great value to emergency response. The DHS-funded project will enable us is to define how to optimally monitor levees in this new way and set the stage for transition to using satellite SAR (synthetic aperture radar) imaging for better temporal and spatial coverage at lower cost to the end users.

  8. Algorithm for Fast Registration of Radar Images

    Directory of Open Access Journals (Sweden)

    Subrata Rakshit

    2002-07-01

    Full Text Available Radar imagery provides an all-weather and 24 h coverage, making it ideal for critical defence applications. In some applications, multiple images acquired of an area need to be registered for further processing. Such situations arise for battlefield surveillance based on satellite imagery. The registration has to be done between an earlier (reference image and a new (live image. For automated surveillance, registration is a prerequisite for change detection. Speed is essential due to large volumes of data involved and the need for quick responses. The registration transformation is quite simple, being mainly a global translation. (Scale and rotation corrections can be applied based on known camera parameters. The challenge lies in the fact that the radar images are not as feature-rich as optical images and the image content variation can be as high as 90 per cent. Even though the change on the ground may not be drastic, seasonal variations can significantly alter the radar signatures of ground, vegetation, and water bodies. This necessitates a novel approach different from the techniques developed for optical images. An algorithm has been developed that leads to fast registration of radar images, even in the presence of specular noise and significant scene content variation. The key features of this approach are adaptability to sensor/terrain types, ability to handle large content variations and false positive rejection. The present work shows that this algorithm allows for various cost-performance trade-offs, making it suitable for a wide variety of applications. The algorithm, in various cost-performance configurations, is tested on a set of ERS images. Results of such tests have been reported, indicating the performance of the algorithm for various cost-performance trade-offs.

  9. Radar imaging of solar system ices

    Science.gov (United States)

    Harcke, Leif J.

    We map the planet Mercury and Jupiter's moons Ganymede and Callisto using Earth-based radar telescopes and find that all of these have regions exhibiting high, depolarized radar backscatter and polarization inversion (m c > 1). Both characteristics suggest significant volume scattering from water ice or similar cold-trapped volatiles. Synthetic aperture radar mapping of Mercury's north and south polar regions at fine (6 km) resolution at 3.5 cm wavelength corroborates the results of previous 13 cm investigations of enhanced backscatter and polarization inversion (0.9 caused by simple double-bounce geometries, since the bright, reflective regions do not appear on the radar-facing wall but, instead, in shadowed regions not directly aligned with the radar look direction. Thermal models require the existence of such a layer to preserve ice deposits in craters at other than high polar latitudes. The additional attenuation (factor 1.64 +/- 15%) of the 3.5 cm wavelength data from these experiments over previous 13 cm radar observations is consistent with a range of layer thickness from 0 +/- 11 to 35 +/- 15 cm, depending on the assumed scattering law exponent n. Our 3.5 cm wavelength bistatic aperture synthesis observations of the two outermost Galilean satellites of Jupiter, Ganymede and Callisto, resolve the north-south ambiguity of previous images, and confirm the disk-integrated enhanced backscatter and polarization inversion noted in prior investigations. The direct imaging technique more clearly shows that higher backscatter are as are associated with the terrain that has undergone recent resurfacing, such as the sulci and the impact crater basins. The leading hemispheres of both moons have somewhat higher (20% +/- 5%) depolarized echoes than their trailing hemispheres, suggesting additional wavelength-scale structure in the regolith. Two improvements to existing delay-Doppler techniques enhance data reduction. First, correlation using subsets of the standard

  10. The Newcastle meteor radar

    Science.gov (United States)

    Keay, Colin

    1987-01-01

    A brief history and development of the Newcastle Meteor Radar system is given. Also described are its geographical coordinates and its method of operation. The initial objective when the project was commenced was to develop an entirely digital analyzer capable of recognizing meteor echo signals and recording as many of their parameters as possible. This objective was achieved.

  11. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate Messag

  12. Compressive CFAR Radar Processing

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Mess

  13. Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  14. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  15. Radar Observations of Asteroids

    Science.gov (United States)

    Ostro, S. J.

    2003-05-01

    During the past 25 years, radar investigations have provided otherwise unavailable information about the physical and dynamical properties of more than 200 asteroids. Measurements of the distribution of echo power in time delay and Doppler frequency provide two-dimensional images with spatial resolution as fine as a decameter. Sequences of delay-Doppler images can be used to produce geologically detailed three-dimensional models, to define the rotation state precisely, to constrain the internal density distribution, and to estimate the trajectory of the object's center of mass. Radar wavelengths (4 to 13 cm) and the observer's control of transmitted and received polarizations make the observations sensitive to near-surface bulk density and macroscopic structure. Since delay-Doppler positional measurements are orthogonal to optical angle measurements and typically have much finer fractional precision, they are powerful for refining orbits and prediction ephemerides. Radar astrometry can add decades or centuries to the interval over which an asteroid's close Earth approaches can accurately be predicted and can significantly refine collision probability estimates based on optical astrometry alone. In the highly unlikely case that a small body is on course for an Earth collision in this century, radar reconnaissance would almost immediately distinguish between an impact trajectory and a near miss and would dramatically reduce the difficulty and cost of any effort to prevent the collision. The sizes and rotation periods of radar-detected asteroids span more than four orders of magnitude. These observations have revealed both stony and metallic objects, elongated and nonconvex shapes as well as nearly featureless spheroids, small-scale morphology ranging from smoother than the lunar regolith to rougher than the rockiest terrain on Mars, craters and diverse linear structures, non-principal-axis spin states, contact binaries, and binary systems.

  16. Data analysis of the high frequency surface wave radar during typhoon Chan-hom

    Science.gov (United States)

    Li, Cheng; Wang, Hui; Gao, Jia; Li, Huan; Wang, Guosong; Pan, Song; Fan, Wenjing; Liu, Kexiu; Zhao, Chen; Qi, Anxiang

    2017-01-01

    Multi-frequency high frequency radar with small circular array was deployed in Zhujiajian and Shengshan to detect the winds, waves, and currents in the overlapping area operationally in 2007. No. 1509 typhoon Chan-hom landed in the coastal areas of Jujiajian, and then moved north by east, passing the radar detection area. This paper compared the radar observed data to anchored-buoy observed data and ASCAT satellite remote sensing large area wind data respectively. The results of comparison indicated that radar basically reflected the real distribution of wind and current of Zhoushan area during typhoon Chan-hom, showing the radar is qualified to detect the winds and currents under complex marine conditions.

  17. Relating surface backscatter response from TRMM precipitation radar to soil moisture: results over a semi-arid region

    Directory of Open Access Journals (Sweden)

    H. Stephen

    2010-02-01

    insights into Ku-band σ° dependence on soil water content in the arid regions.

  18. Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis

    Directory of Open Access Journals (Sweden)

    Qicong Peng

    2010-03-01

    Full Text Available Near-space, defined as the region between 20 km and 100 km, offers many new capabilities that are not accessible to low earth orbit (LEO satellites and airplanes, because it is above storm and not constrained by either the orbital mechanics of satellites or the high fuel consumption of airplanes. By placing radar transmitter/receiver in near-space platforms, many functions that are currently performed with satellites or airplanes could be performed in a cheaper way. Inspired by these advantages, this paper introduces several near-space vehicle-based radar configurations, such as near-space passive bistatic radar and high-resolution wide-swath (HRWS synthetic aperture radar (SAR. Their potential applications, technical challenges and possible solutions are investigated. It is shown that near-space is a satisfactory solution to some specific remote sensing applications. Firstly, near-space passive bistatic radar using opportunistic illuminators offers a solution to persistent regional remote sensing, which is particularly interest for protecting homeland security or monitoring regional environment. Secondly, near-space provides an optimal solution to relative HRWS SAR imaging. Moreover, as motion compensation is a common technical challenge for the described radars, an active transponder-based motion compensation is also described.

  19. Comparison of HRDI wind measurements with radar and rocket observations

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, M.D.; Skinner, W.R.; Marshall, A.R.; Hays, P.B.; Lieberman, R.S.; Gell, D.A.; Ortland, D.A.; Morton, Y.T.; Wu, D.L.; Franke, S.J.; Schmidlin, F.J.; Vincent, R.A.

    1993-06-18

    This paper reports wind measurements in the mesosphere and lower thermosphere made by the high resolution doppler imager (HRDI) on board the upper atmosphere research satellite (UARS). These measurements are correlated with ground based radar and rocket measurements. The HRDI makes measurements by observing doppler shifts in molecular oxygen lines. The intercomparison helps to validate the remote sensing results, helps to verify the on board calibration system, and also gives a common measurement which other measurements systems can be compared against.

  20. Fast algorithm for the exact determination of the mapped effective areas of trihedral radar reflectors

    Science.gov (United States)

    Keen, K. M.

    1983-11-01

    There is currently interest in the use of trihedral radar corner reflectors as ground targets for the calibration of synthetic aperture radars and scatterometers carried by remote sensing satellites. Keen (1983) has described a new technique for the evaluation of the scattering cross-sections of radar corner reflectors. This method, which uses computer evaluation, is briefly discussed. On the basis of new experience related to the employment of the scattering cross-section prediction method, a more efficient and exact way for carrying out the evaluation of mapped effective areas has been developed. The present investigation is concerned with this alternative technique.

  1. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  2. A Research on Errors in Two-way Satellite Time and Frequency Transfer

    Science.gov (United States)

    Wu, W. J.

    2013-07-01

    The two-way satellite time and frequency transfer (TWSTFT) is one of the most accurate means for remote clock comparison with an uncertainty in time of less than 1 ns and with a relative uncertainty in frequency of about 10^{-14} d^{-1}. The transmission paths of signals between two stations are almost symmetrical in the TWSTFT. In principal, most of all kinds of path delays are canceled out, which guarantees the high accuracy of TWSTFT. With the development of TWSTFT and the increase in the frequence of observations, it is showed that the diurnal variation of systematic errors is about 1˜3 ns in the TWSTFT. This problem has become a hot topic of research around the world. By using the data of Transfer Satellite Orbit Determination Net (TSODN) and international TWSTFT links, the systematic errors are studied in detail as follows: (1) The atmospheric effect. This includes ionospheric and tropospheric effects. The tropospheric effect is very small, and it can be ignored. The ionospheric error can be corrected by using the IGS ionosphere product. The variations of ionospheric effect are about 0˜0.05 ns and 0˜0.7 ns at KU band and C band, respectively, and have the diurnal variation characteristics. (2) The equipment time delay. The equipment delay is closely related with temperature, presenting a linear relation at the normal temperature. Its outdoor part indicates the characteristics of the diurnal variation with the environment temperature. The various kinds of effects related with the modem are studied. Some resolutions are proposed. (3) The satellite transponder effect. This effect is studied by using the data of international TWSTFT links. It is analyzed that different satellite transponders can highly increase the amplitude of the diurnal variation in one TWSTFT link. This is the major reason of the diurnal variation in the TWSTFT. The function fitting method is used to basically solve this problem. (4) The satellite motion effect. The geostationary

  3. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  4. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  5. An MSK Radar Waveform

    Science.gov (United States)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  6. Radar cross-sectional study using noise radar

    Science.gov (United States)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  7. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  8. Comparison of Phenomenology for Satellite Characterization

    Science.gov (United States)

    Richmond, D.; Spoto, G.

    2016-09-01

    Techniques for improved characterization of Satellites have been an area of research for several years. Many of these approaches show great promise and have been validated using models and simulations. In this paper, multiple phenomenologies that support satellite characterization will be discussed to include: optical, radar, signals, and Infra-Red. The paper will identify satellite characteristics that could be gleaned from the various data types. Algorithms that support extracting the information will be referenced. Unique collection conditions that enable a phenomenology to yield desired data will be discussed. This paper will discuss the impact of changes to satellite characterization data types over the life of an on-orbit asset. The benefits of such information will be discussed, to include re-acquiring objects after a maneuver.

  9. Netted LPI RADARs

    Science.gov (United States)

    2011-09-01

    easier and, since they cover most of the space around the antenna, can expose it easily at various bearings ). Typical sidelobe levels for conventional...modern radar systems results in an electro- magnetic environment where the receiver should expect very few pulses. Staggered PRF and frequency agility...detector, a logarithmic amplitude compressor , and a signal encoder. All subunits are digitally controlled by computer as to frequency, sweep rate, and

  10. Imaging synthetic aperture radar

    Science.gov (United States)

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  11. The Radar Roadmap

    Science.gov (United States)

    2013-01-01

    LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c...ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE...object bistatic radars. The former allows high resolution without the use of pulse compression techniques and the latter promises cheaper systems by

  12. Radar Investigations of Asteroids

    Science.gov (United States)

    Ostro, S.

    2004-05-01

    Radar investigations have provided otherwise unavailable information about the physical and dynamical properties of about 230 asteroids. Measurements of the distribution of echo power in time delay (range) and Doppler frequency (line-of-sight velocity) provide two-dimensional images with spatial resolution as fine as a decameter. Sequences of delay-Doppler images can be used to produce geologically detailed three-dimensional models, to define the rotation state precisely, to constrain the internal density distribution, and to estimate the trajectory of the object's center of mass. Radar wavelengths (4 to 13 cm) and the observer's control of transmitted and received polarizations make the observations sensitive to near-surface bulk density and macroscopic structure. Since delay-Doppler measurements are orthogonal to optical angle measurements and typically have much finer fractional precision, they are powerful for refining orbits and prediction ephemerides. Such astrometric measurements can add decades or centuries to the interval over which an asteroid's close Earth approaches can accurately be predicted and can significantly refine collision probability estimates based on optical astrometry alone. In the highly unlikely case that a small body is on course for an Earth collision in this century, radar reconnaissance would almost immediately distinguish between an impact trajectory and a near miss and would dramatically reduce the difficulty and cost of any effort to prevent the collision. The sizes and rotation periods of radar-detected asteroids span more than four orders of magnitude. The observations have revealed both stony and metallic objects, elongated and nonconvex shapes as well as nearly featureless spheroids, small-scale morphology ranging from smoother than the lunar regolith to rougher than the rockiest terrain on Mars, craters and diverse linear structures, non-principal-axis spin states, contact binaries, and binary systems.

  13. Radar measurement of ionospheric scintillation in the polar region

    Science.gov (United States)

    Knepp, Dennis L.

    2015-10-01

    This paper considers several estimators that use radar data to measure the S4 scintillation index that characterizes the severity of amplitude scintillation that may occur during RF propagation through ionospheric irregularities. S4 is defined to be the standard deviation of the fluctuations in received power normalized by division by the mean power. Estimates of S4 are based on radar returns obtained during track of targets which may themselves have intrinsic radar cross-section fluctuations. Key to this work is the consideration of thresholding, which is used in many radars to remove (from further processing) signals whose SNR is considered too low. We consider several estimators here. The "direct" estimator attempts to estimate S4 through the direct calculation of the mean and standard deviation of the SNR from a number of radar returns. The maximum likelihood (ML) estimator uses multiple hypothesis testing and the assumption of Nakagami-m statistics to estimate the scintillation index that best fits the radar returns from some number of pulses. The ML estimator has perfect knowledge of the number of radar returns that are below the threshold. The direct estimator is accurate for the case where there is no threshold and there are many returns or samples from which to estimate S4. However, the direct estimator is flawed (especially for strong scintillation) if deep fades that fall below the radar threshold are ignored. The modified ML estimator here is based on the ML technique but is useful if the count of missed returns is unavailable. We apply the modified ML estimator to several years of radar tracks of large calibration satellites to obtain the statistics of UHF scintillation as viewed from the early warning radar at Thule, Greenland. One-way S4 was measured from 5000 low Earth orbit tracks during the 3 year period after solar maximum in May 2000. The data are analyzed to quantify the exceedance or the level of scintillation experienced at various

  14. Radar clutter classification

    Science.gov (United States)

    Stehwien, Wolfgang

    1989-11-01

    The problem of classifying radar clutter as found on air traffic control radar systems is studied. An algorithm based on Bayes decision theory and the parametric maximum a posteriori probability classifier is developed to perform this classification automatically. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density. Separable clutter classes are most likely to arise from the analysis of the Doppler spectrum. Specifically, a feature set based on the complex reflection coefficients of the lattice prediction error filter is proposed. The classifier is tested using data recorded from L-band air traffic control radars. The Doppler spectra of these data are examined; the properties of the feature set computed using these data are studied in terms of both the marginal and multivariate statistics. Several strategies involving different numbers of features, class assignments, and data set pretesting according to Doppler frequency and signal to noise ratio were evaluated before settling on a workable algorithm. Final results are presented in terms of experimental misclassification rates and simulated and classified plane position indicator displays.

  15. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  16. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  17. 75 FR 71148 - Solicitation for a Cooperative Agreement-Production of Seven Live Satellite/Internet Broadcasts

    Science.gov (United States)

    2010-11-22

    ... producer must plan all other activities through telephone and various virtual online platforms (e.g., WebEx... downlink transponder time from Ku band; (3) purchase Internet streaming of 200 simultaneous feeds for each... broadcast, the awardee will test the Internet link and streaming. The test should verify connectivity to the...

  18. 76 FR 68505 - Solicitation for a Cooperative Agreement-Production of Five Live Satellite/Internet Broadcasts

    Science.gov (United States)

    2011-11-04

    ... through telephone and various virtual online platforms (e.g., WebEx, which NIC provides) and consult and... Ku band; (3) purchase Internet streaming of 200 simultaneous feeds for each program, and (4) be able... awardee will test the Internet link and streaming. The test should verify connectivity to the site, as...

  19. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  20. Application of Radar Data to Remote Sensing and Geographical Information Systems

    Science.gov (United States)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.