WorldWideScience

Sample records for satellite instruments numerical

  1. A new numerical technique to design satellite energetic electron detectors

    CERN Document Server

    Tuszewski, M G; Ingraham, J C

    2002-01-01

    Energetic charged particles trapped in the magnetosphere are routinely detected by satellite instruments. However, it is generally difficult to extract quantitative energy and angular information from such measurements because the interaction of energetic electrons with matter is rather complex. Beam calibrations and Monte-Carlo (MC) simulations are often used to evaluate a flight instrument once it is built. However, rules of thumb and past experience are common tools to design the instrument in the first place. Hence, we have developed a simple numerical procedure, based on analytical probabilities, suitable for instrumental design and evaluation. In addition to the geometrical response, the contributions of surface backscattering, edge penetration, and bremsstrahlung radiation are estimated. The new results are benchmarked against MC calculations for a simple test case. Complicated effects, such as the contribution of the satellite to the instrumental response, can be estimated with the new formalism.

  2. Overview of intercalibration of satellite instruments

    Science.gov (United States)

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms

  3. Satellite instrument provides nighttime sensing capability

    Science.gov (United States)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  4. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  5. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  6. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  7. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  8. Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments

    Science.gov (United States)

    Preusse, Peter; Eckermann, Stephen D.; Offermann, Dirk; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    Gravity wave temperature fluctuations acquired by the CRISTA instrument are compared to previous estimates of zonal-mean gravity wave temperature variance inferred from the LIMS, MLS and GPS/MET satellite instruments during northern winter. Careful attention is paid to the range of vertical wavelengths resolved by each instrument. Good agreement between CRISTA data and previously published results from LIMS, MLS and GPS/MET are found. Key latitudinal features in these variances are consistent with previous findings from ground-based measurements and some simple models. We conclude that all four satellite instruments provide reliable global data on zonal-mean gravity wave temperature fluctuations throughout the middle atmosphere.

  9. Satellite-instrument system engineering best practices and lessons

    Science.gov (United States)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  10. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  11. Results of the first tests of the SIDRA satellite-borne instrument breadboard model

    International Nuclear Information System (INIS)

    Dudnik, O.V.; Kurbatov, E.V.; Avilov, A.M.; Titov, K.G.; Prieto, M; Sanchez, S.; Spassky, A.V.; Sylwester, J.; Gburek, S.; Podgorski, P.

    2013-01-01

    In this work, the results of the calibration of the solid-state detectors and electronic channels of the SIDRA satellite borne energetic charged particle spectrometer-telescope breadboard model are presented. The block schemes and experimental equipment used to conduct the thermal vacuum and electromagnetic compatibility tests of the assemblies and modules of the compact satellite equipment are described. The results of the measured thermal conditions of operation of the signal analog and digital processing critical modules of the SIDRA instrument prototype are discussed. Finally, the levels of conducted interference generated by the instrument model in the primary vehicle-borne power circuits are presented.

  12. Numerical experiment with modelled return echo of a satellite

    Indian Academy of Sciences (India)

    Abstract. We have simulated the return echo of a satellite altimeter from a rough ocean surface using an analytical formula and have studied its sensitivity with respect to various oceanic and altimeter parameters. Our numerical expcriment shows that for normally observed significant wave heights (SWFI) the effect of ...

  13. Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments

    Science.gov (United States)

    van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.

    2018-02-01

    A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.

  14. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  15. The geostationary Earth radiation budget (GERB) instrument on EUMETSAT's MSG satellite

    Science.gov (United States)

    Sandford, M. C. W.; Allan, P. M.; Caldwell, M. E.; Delderfield, J.; Oliver, M. B.; Sawyer, E.; Harries, J. E.; Ashmall, J.; Brindley, H.; Kellock, S.; Mossavati, R.; Wrigley, R.; Llewellyn-Jones, D.; Blake, O.; Butcher, G.; Cole, R.; Nelms, N.; DeWitte, S.; Gloesener, P.; Fabbrizzi, F.

    2003-12-01

    Geostationary Earth radiation budget (GERB) is an Announcement of Opportunity Instrument for EUMETSAT's Meteosat Second Generation (MSG) satellite. GERB will make accurate measurements of the Earth Radiation Budget from geostationary orbit, provide an absolute reference calibration for LEO Earth radiation budget instruments and allow studies of the energetics of atmospheric processes. By operating from geostationary orbit, measurements may be made many times a day, thereby providing essentially perfect diurnal sampling of the radiation balance between reflected and emitted radiance for that area of the globe within the field of view. GERB will thus complement other instruments which operate in low orbit and give complete global coverage, but with poor and biased time resolution. GERB measures infrared radiation in two wavelength bands: 0.32-4.0 and 0.32- 30 μm, with a pixel element size of 44 km at sub-satellite point. This paper gives an overview of the project and concentrates on the design and development of the instrument and ground testing and calibration, and lessons learnt from a short time scale low-budget project. The instrument was delivered for integration on the MSG platform in April 1999 ready for the proposed launch in October 2000, which has now been delayed probably to early 2002. The ground segment is being undertaken by RAL and RMIB and produces near real-time data for meteorological applications in conjunction with the main MSG imager—SEVERI. Climate research and other applications which are being developed under a EU Framework IV pilot project will be served by fully processed data. Because of the relevance of the observations to climate change, it is planned to maintain an operating instrument in orbit for at least 3.5 years. Two further GERB instruments are being built for subsequent launches of MSG.

  16. The Vector Electric Field Instrument on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  17. Using multi-disciplinary optimization and numerical simulation on the transiting exoplanet survey satellite

    Science.gov (United States)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.

  18. Flute-like musical instruments: A toy model investigated through numerical continuation

    Science.gov (United States)

    Terrien, Soizic; Vergez, Christophe; Fabre, Benoît

    2013-07-01

    Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modelled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modelled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasiperiodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.

  19. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  20. "Using Satellite Remote Sensing to Derive Numeric Criteria in Coastal and Inland Waters of the United States"

    Science.gov (United States)

    Crawford, T. N.; Schaeffer, B. A.

    2016-12-01

    Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.

  1. The High Visible Resolution (HVR) instrument of the spot ground observation satellite

    Science.gov (United States)

    Otrio, G.

    1980-01-01

    Two identical high resolution cameras, capable of attaining a track width of 116 km in an almost vertical line of sight from the two 60 km images of each instrument, will be carried on the initial mission of the space observation of Earth satellite (SPOT). Specifications for the instrument, including the telescope and CCD devices are summarized. The present status of development is described including the optical characteristics, structure and thermal control, detector assembly, electronic equipment, and calibration. SPOT mission objectives include the developments relating to soil use, the exploration of EART Earth resources, the discrimination of plant species, and cartography.

  2. Functional capabilities of the breadboard model of SIDRA satellite-borne instrument

    International Nuclear Information System (INIS)

    Dudnik, O.V.; Kurbatov, E.V.; Titov, K.G.; Prieto, M.; Sanchez, S.; Sylwester, J.; Gburek, S.; Podgorski, P.

    2013-01-01

    This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA.

  3. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini-satellite

  4. Joint Center for Satellite Data Assimilation Overview and Research Activities

    Science.gov (United States)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  5. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  6. Regional water resources management in the Andean region with numerical models and satellite remote sensing

    NARCIS (Netherlands)

    Menenti, M.; Mulders, C.W.B.

    1999-01-01

    This report describes the development and adaptation of distributed numerical simulation models of hydrological processes in complex watersheds typical of the Andean region. These distributed models take advantage of the synoptic capabilities of sensors on-board satellites and GIS procedures have

  7. Static Load Test on Instrumented Pile - Field Data and Numerical Simulations

    Science.gov (United States)

    Krasiński, Adam; Wiszniewski, Mateusz

    2017-09-01

    Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.

  8. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  9. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  10. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    International Nuclear Information System (INIS)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-01

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  11. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-15

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  12. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  13. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    Science.gov (United States)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  14. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  15. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  16. Static Load Test on Instrumented Pile – Field Data and Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Krasiński Adam

    2017-09-01

    Full Text Available Static load tests on foundation piles are generally carried out in order to determine load – the displacement characteristic of the pile head. For standard (basic engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28–30 November 2016.

  17. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    Science.gov (United States)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit

  18. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  19. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  20. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding

    Science.gov (United States)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.

    2017-12-01

    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  1. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  2. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  3. Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions

    OpenAIRE

    Karkar , Sami; Vergez , Christophe; Cochelin , Bruno

    2012-01-01

    International audience; We propose a new approach based on numerical continuation and bifurcation analysis for the study of physical models of instruments that produce self- sustained oscillation. Numerical continuation consists in following how a given solution of a set of equations is modified when one (or several) parameter of these equations are allowed to vary. Several physical models (clarinet, saxophone, and violin) are formulated as nonlinear dynamical systems, whose periodic solution...

  4. Technology evolution of the Tropomi instrument

    NARCIS (Netherlands)

    Vries, J. de; Hoogeveen, R.; Voors, R.; Kleipool, Q.; Veefkind, P.; Aben, I.; Snel, R.; Valk, N.C.J. van der; Visser, H.; Otter, G.C.J.

    2012-01-01

    TROPOMI is the sun backscatter trace gas instrument on ESA's Sentinel-5 precursor satellite. TROPOMI builds upon a rich heritage from similar instruments, the main ones being SCIAMACHY on ESA's ENVISAT and OMI on NASA's AURA satellite. This paper explains how the technology from the heritage

  5. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-12-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  6. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  7. New satellite altimetry products for coastal oceans

    Science.gov (United States)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  8. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  9. Observational Cosmology with the Planck satellite: extraction of the astrophysical signal from raw data of HFI instrument and study of the impact of cosmic rays

    International Nuclear Information System (INIS)

    Girard, D.

    2010-01-01

    Cosmology is a very old science. It's goal is to describe the Universe at large scales. The standard model of cosmology is an inflation-CDM Big-Bang model. It is based on General Relativity. The cosmic microwave background is one of the three pillars of this model, with the expansion of the Universe and the primordial nucleosynthesis. It is the oldest detectable radiation in the Universe. The study of its temperature and polarisation anisotropies allow us to access direct information about the content and the geometry of the primordial Universe. The Planck satellite, launched on May 14 of 2009, represents the third generation of satellite missions which study the cosmic microwave background. The exceptional sensitivity of its instruments, High Frequency Instrument and Low Frequency Instrument, will allow us to constrain very strongly the cosmological models describing the early Universe, particularly the inflationary period, and to measure the cosmological parameters which describe the evolution of the Universe with an accuracy down to the percent. To reach these ambitious scientific objectives, each systematic instrumental effect has to be severely controlled and corrected by the data analysis. The effect of cosmic rays interacting with the bolometers of HFI, which is one of the most important effects, and which differs significatively from predictions, is corrected during the time ordered data analysis. The detailed understanding of this phenomenon and its modeling are necessary to correct it and to reach an optimal effective sensitivity. They will permit to take this effect into account in the conception of the future instruments detectors. This thesis proposes a first part focused on cosmology, a second part describing the Planck satellite, the HFI instrument and particularly its detectors and a third part dedicated to the HFI instrument data analysis. I concentrate on time ordered data analysis and on the corrections of instrumental systematic effects. Then I

  10. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  11. Landsat—Earth observation satellites

    Science.gov (United States)

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  12. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    Science.gov (United States)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  13. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Science.gov (United States)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C.

    2009-08-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  14. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Directory of Open Access Journals (Sweden)

    L. Fita

    2009-08-01

    Full Text Available The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA. An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity

  15. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Energy Technology Data Exchange (ETDEWEB)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C. [Univ. de les Illes Balears, Palma de Mallorca (Spain). Grup de Meteorologia

    2009-07-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  16. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    Science.gov (United States)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  17. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  18. Contribution to the study of solar prominences from observations performed on the LPSP instrument aboard the OSO-8 satellite

    International Nuclear Information System (INIS)

    Vial, Jean-Claude

    1981-01-01

    Notably by reprinting various documents and articles, this research reports works undertaken from the design of an experiment performed with the LPSP instrument aboard the OSO-8 satellite, to its data processing and interpretation. This experiment aimed at the study of the chromosphere fine structure by means of simultaneous high resolution observations of the L α, L β, Mg II, Ca II, H and K lines. The first part presents the on-board LPSP instrument. The second part reports observations of active and quiescent solar prominences. The third part reports the transfer calculation for five resonance lines (H Lα, Mg II H and K, Ca II H and K), and the comparison with observations performed on OSO-8

  19. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    Directory of Open Access Journals (Sweden)

    P. Forkman

    2012-11-01

    Full Text Available Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E are presented. The dataset covers the period 2002–2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2, MLS on Aura (v3-3, MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200 and SMR on Odin (v225 and v021 is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55–100 km altitude range. During 2004–2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200 is good in the altitude range 55–70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002–2004, CO from MIPAS (12 + 13 is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  20. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    Science.gov (United States)

    Forkman, P.; Christensen, O. M.; Eriksson, P.; Urban, J.; Funke, B.

    2012-11-01

    Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200) and SMR on Odin (v225 and v021) is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55-100 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200) is good in the altitude range 55-70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2004, CO from MIPAS (12 + 13) is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  1. Evaluating Cloud and Precipitation Processes in Numerical Models using Current and Potential Future Satellite Missions

    Science.gov (United States)

    van den Heever, S. C.; Tao, W. K.; Skofronick Jackson, G.; Tanelli, S.; L'Ecuyer, T. S.; Petersen, W. A.; Kummerow, C. D.

    2015-12-01

    Cloud, aerosol and precipitation processes play a fundamental role in the water and energy cycle. It is critical to accurately represent these microphysical processes in numerical models if we are to better predict cloud and precipitation properties on weather through climate timescales. Much has been learned about cloud properties and precipitation characteristics from NASA satellite missions such as TRMM, CloudSat, and more recently GPM. Furthermore, data from these missions have been successfully utilized in evaluating the microphysical schemes in cloud-resolving models (CRMs) and global models. However, there are still many uncertainties associated with these microphysics schemes. These uncertainties can be attributed, at least in part, to the fact that microphysical processes cannot be directly observed or measured, but instead have to be inferred from those cloud properties that can be measured. Evaluation of microphysical parameterizations are becoming increasingly important as enhanced computational capabilities are facilitating the use of more sophisticated schemes in CRMs, and as future global models are being run on what has traditionally been regarded as cloud-resolving scales using CRM microphysical schemes. In this talk we will demonstrate how TRMM, CloudSat and GPM data have been used to evaluate different aspects of current CRM microphysical schemes, providing examples of where these approaches have been successful. We will also highlight CRM microphysical processes that have not been well evaluated and suggest approaches for addressing such issues. Finally, we will introduce a potential NASA satellite mission, the Cloud and Precipitation Processes Mission (CAPPM), which would facilitate the development and evaluation of different microphysical-dynamical feedbacks in numerical models.

  2. The Use Of Satellite Remote Sensing And Helicopter Tem Data For The Identification And Characterization Of Contaminated Landfill Sites

    DEFF Research Database (Denmark)

    Viezzoli, Andrea; Edsen, Anders; Auken, Esben

    , satellite remote sensing has been successfully used to identify numerous candidate sites that are most likely to host waste materials. This result was the basis for further monitoring activities based on the use of an helicopter transient electromagnetic (TEM) system, to be carried out at end of April 2009...... and remote sensing methods represents a useful instrument for environmental management....

  3. Results of measurements of a proton spectrum in the energy range more then 1 TeV at satellites by the SOKOL instrument

    International Nuclear Information System (INIS)

    Grigor'ev, N.L.

    1989-01-01

    Proton spectra measured by SOKOL instrument at KOSMOS-1543 and KOSMOS-1713 satellites and published by the auther and independently by experiment preparation group are presented. Methods of experimental data application and their substantiation degree that caused differences in spectra and conclusions are analysed. 10 refs.; 7 figs.; 6 tabs

  4. Satellite recovery - Attitude dynamics of the targets

    Science.gov (United States)

    Cochran, J. E., Jr.; Lahr, B. S.

    1986-01-01

    The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.

  5. Highly Enhanced Risk Management Emergency Satellite

    DEFF Research Database (Denmark)

    Dalmeir, Michael; Gataullin, Yunir; Indrajit, Agung

    HERMES (Highly Enhanced Risk Management Emergency Satellite) is potential European satellite mission for global flood management, being implemented by Technical University Munich and European Space Agency. With its main instrument - a reliable and precise Synthetic Aperture Radar (SAR) antenna...

  6. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height ¡_ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 ¡_ 2.1 km usually lying within ¡_10¢X latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  7. Theoretical algorithms for satellite-derived sea surface temperatures

    Science.gov (United States)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  8. Space instrumentation: physics and astronomy in harmony?

    International Nuclear Information System (INIS)

    Aderin, M

    2008-01-01

    Surrey Satellite Technology Limited was formed as a company in 1985 and has been involved in 23 small satellite missions, making it the most successful and experienced small satellite supplier in the world. The challenge of getting a satellite into space takes a dedicated multidisciplinary team of physicists and engineers working together to achieve a common goal. In this paper the author will look at the breakdown of the teams for a number of space projects including NigeriaSAT1; one of the satellites that make up the Disaster Monitoring Constellation (DMC), which produces high quality commercial images for monitoring agriculture and the environment as well as dedicating a proportion of it's time to disaster monitoring. Commercial projects like this will be contrasted to instruments such as the Integral Field Unit (IFU) for the NIRSpec instrument on the James Webb Space Telescope (JWST is the replacement for the Hubble Space telescope). Although both projects have been running through commercial contracts at SSTL, how does the final goal of the instrument influence the synergy between the physics and the engineering needed to make it, and what, if any, economic differences are seen?

  9. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  10. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  11. Enhanced ionosphere-magnetosphere data from the DMSP satellites

    International Nuclear Information System (INIS)

    Rich, F.J.; Hardy, D.A.; Gussenhoven, M.S.

    1985-01-01

    The satellites of the Defense Meteorological Satellite Program (DMSP) represent a series of low-altitude (835 km) polar-orbiting satellites. Their primary objective is related to the observation of the tropospheric weather with a high-resolution white light and infrared imaging system. It is also possible to make images of auroras. On a daily basis, information about auroras is used to assist various communication systems which are affected by the ionospheric disturbances associated with auroras. In the past few years, there have been several improvements in the ionospheric monitoring instrumentation. Since the high-latitude ionosphere is connected to the magnetosphere, the DMSP data are used to monitor magnetospheric processes. The instrumentation of the DMSP satellites is discussed, taking into account the data provided by them. 7 references

  12. Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics

    Science.gov (United States)

    Gutnik, Sergey A.; Sarychev, Vasily A.

    2018-02-01

    The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orientations of the satellite in the orbital coordinate system with given damping torque and given principal central moments of inertia were used. The conditions of the equilibria existence depending on three damping parameters were obtained from the analysis of the real roots of the algebraic equations spanned by the constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria and the transition decay processes of the spatial oscillations of the satellite at different damping parameters have also been obtained.

  13. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    Science.gov (United States)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  14. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  15. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  16. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Krishnamurti, T. N.; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state

  17. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  18. STUDY OF POLLUTANT DISTRIBUTION IN BENOA BAY USING NUMERICAL SIMULATION AND SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    Komang Ardana

    2012-11-01

    Full Text Available Euthrofication that caused by nitrate and phosphate contamination and also sedimentation process is the mainproblem that took place in Benoa Bay Territorial water. The distribution of phosphate pollutant in Benoa bay territorialwater was modeled by numeric of Princeton Ocean model (POM. The input of this pollutant model were a tidal currentpattern, M2 tidal current residue, biological factor, physic and chemistry, that influenced pollutant concentration.Meanwhile, the sedimentation concentration was mapped with ALOS AVNIR-2 sensor image satellite and this image wasanalysed with statistic method (Linear Regression.The result of phosphate modeling concentration was 0.1 mg/1 to 0.0022 mg/1, where the concentration wascategorized very hazardous to the territorial water environment. Because the phosphate concentration in a pollutantresources was beyond the standard level of environmental quality, that was 0.015 mg/1 for fishery cultivation and alsotourism activity (Bali Governor Regulation No.8th 2007. While, the direction of the distribution was affected by currentpattern of movement, that was when the ebb level of high water moving into the bay and when the ebb to high tidemoving out of the bay.The result of statistic approaches with ALOS of AVNIR-2 censor can be used for mapping sedimentationdistribution advantages in Benoa Bay. The values were: R2 Band 1 is 0.3839, Band 2 is 0.6123 and Band 3 is 0.5468. Inthis methodology, the correlation was not significant, due to, the quantity of in-situ data was small and the time researchwas not at the same time with satellite data.

  19. Using Instrument Simulators and a Satellite Database to Evaluate Microphysical Assumptions in High-Resolution Simulations of Hurricane Rita

    Science.gov (United States)

    Hristova-Veleva, S. M.; Chao, Y.; Chau, A. H.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Martin, J. M.; Poulsen, W. L.; Rodriguez, E.; Stiles, B. W.; Turk, J.; Vu, Q.

    2009-12-01

    Improving forecasting of hurricane intensity remains a significant challenge for the research and operational communities. Many factors determine a tropical cyclone’s intensity. Ultimately, though, intensity is dependent on the magnitude and distribution of the latent heating that accompanies the hydrometeor production during the convective process. Hence, the microphysical processes and their representation in hurricane models are of crucial importance for accurately simulating hurricane intensity and evolution. The accurate modeling of the microphysical processes becomes increasingly important when running high-resolution models that should properly reflect the convective processes in the hurricane eyewall. There are many microphysical parameterizations available today. However, evaluating their performance and selecting the most representative ones remains a challenge. Several field campaigns were focused on collecting in situ microphysical observations to help distinguish between different modeling approaches and improve on the most promising ones. However, these point measurements cannot adequately reflect the space and time correlations characteristic of the convective processes. An alternative approach to evaluating microphysical assumptions is to use multi-parameter remote sensing observations of the 3D storm structure and evolution. In doing so, we could compare modeled to retrieved geophysical parameters. The satellite retrievals, however, carry their own uncertainty. To increase the fidelity of the microphysical evaluation results, we can use instrument simulators to produce satellite observables from the model fields and compare to the observed. This presentation will illustrate how instrument simulators can be used to discriminate between different microphysical assumptions. We will compare and contrast the members of high-resolution ensemble WRF model simulations of Hurricane Rita (2005), each member reflecting different microphysical assumptions

  20. Enhancement of numeric cognition in children with low achievement in mathematic after a non-instrumental musical training.

    Science.gov (United States)

    Ribeiro, Fabiana Silva; Santos, Flávia H

    2017-03-01

    Studies suggest that musical training enhances spatial-temporal reasoning and leads to greater learning of mathematical concepts. The aim of this prospective study was to verify the efficacy of a Non-Instrumental Musical Training (NIMT) on the Numerical Cognition systems in children with low achievement in math. For this purpose, we examined, with a cluster analysis, whether children with low scores on Numerical Cognition would be grouped in the same cluster at pre and post-NIMT. Participants were primary school children divided into two groups according to their scores on an Arithmetic test. Results with a specialized battery of Numerical Cognition revealed improvements for Cluster 2 (children with low achievement in math) especially for number production capacity compared to normative data. Besides, the number of children with low scores in Numerical Cognition decreased at post-NIMT. These findings suggest that NIMT enhances Numerical Cognition and seems to be a useful tool for rehabilitation of children with low achievement in math. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2013-04-01

    Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and

  2. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    Directory of Open Access Journals (Sweden)

    A. Hilboll

    2013-04-01

    Full Text Available Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term dataset of tropospheric pollution. However, the observations differ in spatial resolution, local time of measurement, viewing geometry, and other details. All these factors can severely impact the retrieved NO2 columns. In this study, we present three ways to account for instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving the individual instruments' spatial resolutions. For combining measurements from GOME and SCIAMACHY into one consistent time series, we develop a method to explicitly account for the instruments' difference in ground pixel size (40 × 320 km2 vs. 30 × 60 km2. This is especially important when analysing NO2 changes over small, localised sources like, e.g. megacities. The method is based on spatial averaging of the measured earthshine spectra and extraction of a spatial pattern of the resolution effect. Furthermore, two empirical corrections, which summarise all instrumental differences by including instrument-dependent offsets in a fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series, and to an extended dataset comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution. Compared to previous studies, the longer study period leads to significantly reduced uncertainties. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over east-central China tripling from 1996 to 2011. All parts of the developed world

  3. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  4. Scripting Module for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Paget, Jim; Coggi, John; Stodden, David

    2008-01-01

    This add-on module to the SOAP software can perform changes to simulation objects based on the occurrence of specific conditions. This allows the software to encompass simulation response of scheduled or physical events. Users can manipulate objects in the simulation environment under programmatic control. Inputs to the scripting module are Actions, Conditions, and the Script. Actions are arbitrary modifications to constructs such as Platform Objects (i.e. satellites), Sensor Objects (representing instruments or communication links), or Analysis Objects (user-defined logical or numeric variables). Examples of actions include changes to a satellite orbit ( v), changing a sensor-pointing direction, and the manipulation of a numerical expression. Conditions represent the circumstances under which Actions are performed and can be couched in If-Then-Else logic, like performing v at specific times or adding to the spacecraft power only when it is being illuminated by the Sun. The SOAP script represents the entire set of conditions being considered over a specific time interval. The output of the scripting module is a series of events, which are changes to objects at specific times. As the SOAP simulation clock runs forward, the scheduled events are performed. If the user sets the clock back in time, the events within that interval are automatically undone. This script offers an interface for defining scripts where the user does not have to remember the vocabulary of various keywords. Actions can be captured by employing the same user interface that is used to define the objects themselves. Conditions can be set to invoke Actions by selecting them from pull-down lists. Users define the script by selecting from the pool of defined conditions. Many space systems have to react to arbitrary events that can occur from scheduling or from the environment. For example, an instrument may cease to draw power when the area that it is tasked to observe is not in view. The contingency

  5. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  6. DARE: a dedicated aerosols retrieval instrument

    NARCIS (Netherlands)

    Court, A.J.; Smorenburg, K.; Courrèges-Lacoste, G.B.; Visser, H.; Leeuw, G. de; Decae, R.

    2004-01-01

    Satellite remote sensing of aerosols is a largely unresolved problem. A dedicated instrument aimed at aerosols would be able to reduce the large uncertainties connected to this kind of remote sensing. TNO is performing a study of a space based instrument for aerosol measurements, together with the

  7. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  8. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  9. Assessing Probabilistic Reasoning in Verbal-Numerical and Graphical-Pictorial Formats: An Evaluation of the Psychometric Properties of an Instrument

    Science.gov (United States)

    Agus, Mirian; Penna, Maria Pietronilla; Peró-Cebollero, Maribel; Guàrdia-Olmos, Joan

    2016-01-01

    Research on the graphical facilitation of probabilistic reasoning has been characterised by the effort expended to identify valid assessment tools. The authors developed an assessment instrument to compare reasoning performances when problems were presented in verbal-numerical and graphical-pictorial formats. A sample of undergraduate psychology…

  10. A probabilistic analysis of the implications of instrument failures on ESA's Swarm mission for its individual satellite orbit deployments

    Science.gov (United States)

    Jackson, Andrew

    2015-07-01

    On launch, one of Swarm's absolute scalar magnetometers (ASMs) failed to function, leaving an asymmetrical arrangement of redundant spares on different spacecrafts. A decision was required concerning the deployment of individual satellites into the low-orbit pair or the higher "lonely" orbit. I analyse the probabilities for successful operation of two of the science components of the Swarm mission in terms of a classical probabilistic failure analysis, with a view to concluding a favourable assignment for the satellite with the single working ASM. I concentrate on the following two science aspects: the east-west gradiometer aspect of the lower pair of satellites and the constellation aspect, which requires a working ASM in each of the two orbital planes. I use the so-called "expert solicitation" probabilities for instrument failure solicited from Mission Advisory Group (MAG) members. My conclusion from the analysis is that it is better to have redundancy of ASMs in the lonely satellite orbit. Although the opposite scenario, having redundancy (and thus four ASMs) in the lower orbit, increases the chance of a working gradiometer late in the mission; it does so at the expense of a likely constellation. Although the results are presented based on actual MAG members' probabilities, the results are rather generic, excepting the case when the probability of individual ASM failure is very small; in this case, any arrangement will ensure a successful mission since there is essentially no failure expected at all. Since the very design of the lower pair is to enable common mode rejection of external signals, it is likely that its work can be successfully achieved during the first 5 years of the mission.

  11. Study of Ozone Layer Variability near St. Petersburg on the Basis of SBUV Satellite Measurements and Numerical Simulation (2000-2014)

    Science.gov (United States)

    Virolainen, Y. A.; Timofeyev, Y. M.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.

    2017-12-01

    A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0-25 and 25-60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0-25 and 25-60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (-2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.

  12. L-shell bifurcation of electron outer belt at the recovery phase of geomagnetic storm as observed by STEP-F and SphinX instruments onboard the CORONAS-Photon satellite

    Science.gov (United States)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Podgorski, Piotr

    2016-07-01

    Radiation belts and sporadically arising volumes comprising enhanced charged particle fluxes in the Earth's magnetosphere are typically studied by space-borne telescopes, semiconductor, scintillation, gaseous and other types of detectors. Ambient and internal electron bremsstrahlung in hard X-ray arises as a result of interaction of precipitating particles with the atmosphere (balloon experiments) and with the satellite's housings and instrument boxes (orbital experiments). Theses emissions provide a number of new information on the physics of radiation belts. The energies of primary electrons and their spectra responsible for measured X-ray emissions remain usually unknown. Combined measurements of particle fluxes, and their bremsstrahlung by individual satellite instruments placed next to each other provide insight to respective processes. The satellite telescope of electrons and protons STEP-F and the solar X-ray spectrophotometer SphinX were placed in close proximity to each other aboard CORONAS-Photon, the low, circular and highly inclined orbit satellite. Based on joint analysis of the data we detected new features in the high energy particle distributions of the Earth's magnetosphere during deep minimum of solar activity [1-3]. In this research the bifurcation of Van Allen outer electron radiation belt during the weak geomagnetic storm and during passage of interplanetary shock are discussed. Outer belt bifurcation and growth of electron fluxes in a wide energy range were recorded by both instruments during the recovery phase of May 8, 2009 substorm. STEP-F recorded also barely perceptible outer belt splitting on August 5, 2009, after arrival of interplanetary shock to the Earth's magnetosphere bowshock. The STEP-F and SphinX data are compared with the space weather indexes, and with relativistic electron fluxes observed at geostationary orbit. We discuss possible mechanism of the phenomena consisting in the splitting of drift shells because of Earth

  13. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  14. Numerical orbit generators of artificial earth satellites

    Science.gov (United States)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  15. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    Science.gov (United States)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  16. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  17. Development of the Electron Drift Instrument (EDI) for Cluster

    Science.gov (United States)

    Quinn, Jack; Christensen, John L. (Technical Monitor)

    2001-01-01

    The Electron Drift Instrument (EDI) is a new technique for measuring electric fields in space by detecting the effect on weak beams of test electrons. This U.S. portions of the technique, flight hardware, and flight software were developed for the Cluster mission under this contract. Dr. Goetz Paschmann of the Max Planck Institute in Garching, Germany, was the Principle Investigator for Cluster EDI. Hardware for Cluster was developed in the U.S. at the University of New Hampshire, Lockheed Palo Alto Research Laboratory, and University of California, San Diego. The Cluster satellites carrying the original EDI instruments were lost in the catastrophic launch failure of first flight of the Arianne-V rocket in 1996. Following that loss, NASA and ESA approved a rebuild of the Cluster mission, for which all four satellites were successfully launched in the Summer of 2000. Limited operations of EDI were also obtained on the Equator-S satellite, which was launched in December, 1997. A satellite failure caused a loss of the Equator-S mission after only 5 months, but these operations were extremely valuable in learning about the characteristics and operations of the complex EDI instrument. The Cluster mission, satellites, and instruments underwent an extensive on-orbit commissioning phase in the Fall of 2000, carrying over through January 2001. During this period all elements of the instruments were checked and careful measurements of inter-experiments interferences were made. EDI is currently working exceptionally well in orbit. Initial results verify that all aspects of the instrument are working as planned, and returning highly valuable scientific information. The first two papers describing EDI on-orbit results have been submitted for publication in April, 2001. The principles of the EDI technique, and its implementation on Cluster are described in two papers by Paschmann et al., attached as Appendices A and B. The EDI presentation at the formal Cluster Commissioning

  18. The Nimbus satellites - Pioneering earth observers

    Science.gov (United States)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  19. From SPOT 5 to Pleiades HR: evolution of the instrumental specifications

    Science.gov (United States)

    Rosak, A.; Latry, C.; Pascal, V.; Laubier, D.

    2017-11-01

    Image quality specifications should aimed to fulfil high resolution mission requirements of remote sensing satellites with a minimum cost. The most important trade-off to be taken into account is between Modulation Transfer Function, radiometric noise and sampling scheme. This compromise is the main driver during design optimisation and requirement definition in order to achieve good performances and to minimise the mission cost. For the SPOT 5 satellite, a new compromise had been chosen. The supermode principle of imagery (sampling at 2.5 meter with a pixel size of 5 meter) imp roves the resolution by a factor of four compared with the SPOT 4 satellite (10 meter resolution). This paper presents the image quality specifications of the HRG-SPOT 5 instrument. We introduce all the efforts made on the instrument to achieve good image quality and low radiometric noise, then we compare the results with the SPOT 4 instrument's performances to highlight the improvements achieved. Then, the in-orbit performance will be described. Finally, we will present the new goals of image quality specifications for the new Pleiades-HR satellite for earth observation (0.7 meter resolution) and the instrument concept.

  20. Control and acquisition system of a space instrument for cosmic ray measurement

    Science.gov (United States)

    Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.

    2000-04-01

    The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.

  1. Electrophotometric observations of artificial satellites

    International Nuclear Information System (INIS)

    Vovchyk, Yeva; Blagodyr, Yaroslav; Kraynyuk, Gennadiy; Bilinsky, Andriy; Lohvynenko, Alexander; Klym, Bogdan; Pochapsky, Yevhen

    2004-01-01

    Problems associated with polarimetric observations of low Earth orbit artificial satellites as important solar system objects are discussed. The instrumentation (the optical and mechanical parts, the control and drive electronics, and the application software) for performing such observations is also described

  2. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  3. Advanced Deployable Structural Systems for Small Satellites

    Science.gov (United States)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  4. Minding the gaps: new insights into R&D management and operational transitions of NOAA satellite products

    Science.gov (United States)

    Colton, Marie C.; Powell, Alfred M.; Jordan, Gretchen; Mote, Jonathon; Hage, Jerald; Frank, Donald

    2004-10-01

    The NESDIS Center for Satellite Applications and Research (STAR), formerly ORA, Office of Research and Applications, consists of three research and applications divisions that encompass satellite meteorology, oceanography, climatology, and cooperative research with academic institutions. With such a wide background of talent, and a charter to develop operational algorithms and applications, STAR scientists develop satellite-derived land, ice, ocean, and atmospheric environmental data products in support of all of NOAA"s mission goals. In addition, in close association with the Joint Center for Satellite Data Assimilation, STAR scientists actively work with the numerical modeling communities of NOAA, NASA, and DOD to support the development of new methods for assimilation of satellite data. In this new era of observations from many new satellite instruments, STAR aims to effectively integrate these data into multi-platform data products for utilization by the forecast and applications communities. Much of our work is conducted in close partnerships with other agencies, academic institutes, and industry. In order to support the nearly 400 current satellite-derived products for various users on a routine basis from our sister operations office, and to evolve to future systems requires an ongoing strategic planning approach that maps research and development activities from NOAA goals to user requirements. Since R&D accomplishments are not necessarily amenable to precise schedules, appropriate motivators and measures of scientific progress must be developed to assure that the product development cycle remains aligned with the other engineering segments of a satellite program. This article presents the status and results of this comprehensive effort to chart a course from the present set of operational satellites to the future.

  5. The artificial satellite observation chronograph controlled by single chip microcomputer.

    Science.gov (United States)

    Pan, Guangrong; Tan, Jufan; Ding, Yuanjun

    1991-06-01

    The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.

  6. Strumenti d’osservazione per il telerilevamento da satellite

    Directory of Open Access Journals (Sweden)

    Giorgio Perrotta

    2009-03-01

    Full Text Available Earth observation instruments for satellite remote sensingThis article features a brief description of the instrumentation  families commonly used during Earth Observation activities. The optical exploration of our planet, already anticipated more than 50 years ago at the beginning of the exploration era with the first analogic photographic instrumentation, is now complemented by sophisticated instruments that work under the domain of radio  waves in order to produce informations useful fo a wide variety of applications.

  7. Challenges in Visualizing Satellite Level 2 Atmospheric Data with GIS approach

    Science.gov (United States)

    Wei, J. C.; Yang, W.; Zhao, P.; Pham, L.; Meyer, D. J.

    2017-12-01

    Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. One way to help users better understand the satellite data is to provide data along with `Images', including accurate pixel coverage area delineation, and science team recommended quality screening for individual geophysical parameters. However, there are challenges of visualizing remote sensed non-gridded products: (1) different geodetics of space-borne instruments (2) data often arranged in "along-track" and "across-track" axes (3) spatially and temporally continuous data chunked into granule files: data for a portion (or all) of a satellite orbit (4) no general rule of resampling or interpolations to a grid (5) geophysical retrieval only based on pixel center location without shape information. In this presentation, we will unravel a new Goddard Earth Sciences Data and Information Services Center (GES DISC) Level 2 (L2) visualization on-demand service. The service's front end provides various visualization and data accessing capabilities, such as overlay and swipe of multiply variables and subset and download of data in different formats. The backend of the service consists of Open Geospatial Consortium (OGC) standard-compliant Web Mapping Service (WMS) and Web Coverage Service. The infrastructure allows inclusion of outside data sources served in OGC compliant protocols and allows other interoperable clients, such as ArcGIS clients, to connect to our L2 WCS/WMS.

  8. Challenges in Obtaining and Visualizing Satellite Level 2 Data in GIS

    Science.gov (United States)

    Wei, Jennifer C.; Yang, Wenli; Zhao, Peisheng; Pham, Long; Meyer, David J.

    2017-01-01

    Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. One way to help users better understand the satellite data is to provide data along with Images, including accurate pixel coverage area delineation, and science team recommended quality screening for individual geophysical parameters. However, there are challenges of visualizing remote sensed non-gridded products: (1) different geodetics of space-borne instruments (2) data often arranged in a long-track� and a cross-track� axes (3) spatially and temporally continuous data chunked into granule files: data for a portion (or all) of a satellite orbit (4) no general rule of resampling or interpolations to a grid (5) geophysical retrieval only based on pixel center location without shape information. In this presentation, we will unravel a new Goddard Earth Sciences Data and Information Services Center (GES DISC) Level 2 (L2) visualization on-demand service. The service's front end provides various visualization and data accessing capabilities, such as overlay and swipe of multiply variables and subset and download of data in different formats. The backend of the service consists of Open Geospatial Consortium (OGC) standard-compliant Web Mapping Service (WMS) and Web Coverage Service. The infrastructure allows inclusion of outside data sources served in OGC compliant protocols and allows other interoperable clients, such as ArcGIS clients, to connect to our L2 WCS/WMS.

  9. Scientific analysis of satellite ranging data

    Science.gov (United States)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  10. Nanosar-case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.; Sundaramoorthy, P.; Gill, E.; Meijer, R.J.; Verhoeven, C.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite's payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially

  11. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  12. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  13. Search for Dark Matter Satellites Using the FERMI-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /DESY; Albert, A.; /Ohio State U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bottacini, E.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Brandt, T.J.; /IRAP, Toulouse /Toulouse III U.; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Burnett, T.H.; /Washington U., Seattle; Caliandro, G.A.; /ICE, Bellaterra; Cameron, R.A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /ASDC, Frascati /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari /INFN, Perugia /Perugia U. /Bari U. /INFN, Bari /Bari U. /INFN, Bari /Bologna Observ. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2012-08-16

    Numerical simulations based on the {Lambda}CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the {gamma}-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard {gamma}-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on {gamma}-ray spectra consistent with WIMP annihilation through the b{bar b} channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b{bar b} channel.

  14. Search for Dark Matter Satellites Using the Fermi-Lat

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    Numerical simulations based on the ACDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the bb(sup raised bar) channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 Ge V WIMP annihilating through the bb(sup raised bar) channel.

  15. Artificial Satellites and How to Observe Them

    CERN Document Server

    Schmude, Jr , Richard

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what it is they are observing. This is the basis for the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Every amateur astronomer sees "stars" that aren't natural objects steadily slide across the background of the sky. Artificial satellites can be seen on any night, and some are as bright as the planets. But can you identify which satellite or spent launch vehicle casing you are seeing? Do you know how to image it? Artificial Satellites and How to Observe Them describes all of the different satellites that can be observed, including communication, scientific, spy satellites, and of course, the International Space Station. Richard Schmude describes how to recognize them and even how to predict their orbits. The book tells how to observe artificial satellites with the unaided eye, binoculars and with telesc...

  16. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    Science.gov (United States)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent

  17. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  18. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  19. Satellite monitoring of black bear.

    Science.gov (United States)

    Craighead, J. J.; Craighead, F. C., Jr.; Varney, J. R.; Cote, C. E.

    1971-01-01

    Description of a feasibility experiment recently performed to test the use of a satellite system for telemetering environmental and physiological data from the winter den of a 'hibernating' black bear, Ursus americanus. The instrumentation procedure and evaluations of the equipment performance and sensory data obtained are discussed in detail.

  20. A Comparison of MICROTOPS II and OMI Satellite Ozone Measurements in Novi Sad from 2007 to 2015

    Science.gov (United States)

    Podrascanin, Z.; Balog, I.; Jankovic, A.; Mijatovic, Z.; Nadj, Z.

    2017-12-01

    In this paper, we present consecutive daily measurements of the total ozone column (TOC) using MICROTOPS II in Novi Sad, the Republic of Serbia (45.3 N, 19.8 E and the altitude of 84 m) from 2007 to 2015. The MICROTOPS II data set was compared to the ozone monitoring instrument (OMI) satellite data, since there was no nearby comparative long-time series available for the Dobson or Brewer instrument. The data quality control of the measured MICROTOPS II TOC data was carried out before the comparison with the satellite data. The MICROTOPS II was calibrated at the manufacturer's facilities and only TOC values drawn from the 305.5/312.5 nm wavelength combination were compared with the satellite data. The mean bias deviation between MICROTOPS II and OMI satellite data sets was obtained to be less than 2%, and the mean absolute deviation was in the range of 5%. The difference in the mean seasonal TOC values in summer and autumn was less than 0.5%, while in winter and spring this difference reached 2.8%. A possible calibration of MICROTOPS II instrument with the satellite data is presented, where the calibration coefficients for all channels were calculated for every satellite and MICROTPS II data pair during one year. Then, the average value of all the calculated coefficients was used for instrument calibration. The presented calibration improves the MICROTOPS II instrument stability and enables the usage of all the wavelength combinations.

  1. Design and implementation of a radiation hardened silicon on sapphire (SOS) embedded signal conditioning unit controller (SCUC) for the RAPID instrument on the Cluster satellites

    International Nuclear Information System (INIS)

    Ersland, L.

    1992-07-01

    The Cluster mission consistens of four spacecrafts equipped with instruments capable of making comprehensive measurements of plasma particles and electromagnetic fields. The RAPID (Research with Adaptive Particle Imaging Detectors) spectrometer is one of many instruments on board the Cluster satellites. It is designed for fast analysis of energetic electrons and ions with a complete coverage of the unit sphere in phase space. This thesis describes the development and testing of an embedded controller for the Spectroscopic Camera for Electrons, Neutral and Ion Compositions (SCENIC), which is a part of the RAPID instrument. The design is implemented in two different CMOS circuit technologies, namely Actel's Field Programmable Gate Arrays and GEC Plessey's CMOS Silicon On Sapphire (SOS) gate array. The prototypes of the SOS gate array have been verified and characterized. This includes measurements of DC and AC parameters under different conditions, including total dose of gamma irradiation. 42 refs., 92 figs., 44 tabs

  2. Structural assurance testing for post-shipping satellite inspection

    Science.gov (United States)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2012-04-01

    Current satellite transportation sensors can provide a binary indication of the acceleration or shock that a satellite has experienced during the shipping process but do little to identify if significant structural change has occurred in the satellite and where it may be located. When a sensor indicates that the satellite has experienced shock during transit, an extensive testing process begins to evaluate the satellite functionality. If errors occur during the functional checkout, extensive physical inspection of the structure follows. In this work an alternate method for inspecting satellites for structural defects after shipping is presented. Electro- Mechanical Impedance measurements are used as an indication of the structural state. In partnership with the Air Force Research Laboratory University Nanosatellite Program, Cornell's CUSat mass model was instrumented with piezoelectric transducers and tested under several structural damage scenarios. A method for detecting and locating changes in the structure using EMI data is presented.

  3. Software-type Wave-Particle Interaction Analyzer on board the Arase satellite

    Science.gov (United States)

    Katoh, Yuto; Kojima, Hirotsugu; Hikishima, Mitsuru; Takashima, Takeshi; Asamura, Kazushi; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Ozaki, Mitsunori; Yagitani, Satoshi; Yokota, Shoichiro; Matsuda, Shoya; Kitahara, Masahiro; Shinohara, Iku

    2018-01-01

    We describe the principles of the Wave-Particle Interaction Analyzer (WPIA) and the implementation of the Software-type WPIA (S-WPIA) on the Arase satellite. The WPIA is a new type of instrument for the direct and quantitative measurement of wave-particle interactions. The S-WPIA is installed on the Arase satellite as a software function running on the mission data processor. The S-WPIA on board the Arase satellite uses an electromagnetic field waveform that is measured by the waveform capture receiver of the plasma wave experiment (PWE), and the velocity vectors of electrons detected by the medium-energy particle experiment-electron analyzer (MEP-e), the high-energy electron experiment (HEP), and the extremely high-energy electron experiment (XEP). The prime objective of the S-WPIA is to measure the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for the S-WPIA to synchronize instruments to a relative time accuracy better than the time period of the plasma wave oscillations. Since the typical frequency of chorus emissions in the inner magnetosphere is a few kHz, a relative time accuracy of better than 10 μs is required in order to measure the relative phase angle between the wave and velocity vectors. In the Arase satellite, a dedicated system has been developed to realize the time resolution required for inter-instrument communication. Here, both the time index distributed over all instruments through the satellite system and an S-WPIA clock signal are used, that are distributed from the PWE to the MEP-e, HEP, and XEP through a direct line, for the synchronization of instruments within a relative time accuracy of a few μs. We also estimate the number of particles required to obtain statistically significant results with the S-WPIA and the expected accumulation time by referring to the specifications of the MEP-e and assuming a count rate for each detector.

  4. First results of Chinese particle instruments in the Double Star Program

    Directory of Open Access Journals (Sweden)

    J. B. Cao

    2005-11-01

    Full Text Available Double Star Program (DSP aims to investigate the trigger mechanism and physical models of geomagnetic storms and substorms. The DSP involves two satellites: the equatorial satellite of DSP (TC-1 in China and the polar satellite of DSP (TC-2 in China. On board the two satellites of TC-1 and TC-2, there are four kinds of particle instruments developed by the Center for Space Science and Applied Research (CSSAR, namely: the High Energy Electron Detector (HEED, TC-1, 2, the High Energy Proton Detector (HEPD, TC-1, 2, the High Energy Heavy Ion Detector (HID, TC-1, 2 and the Low Energy Ion Detector (LEID, TC-2. HEED, HEPD and HID were developed and calibrated in China. The LEID was developed in China and calibrated in France. This paper introduces the scientific objectives and characteristics of each instrument, their status and some preliminary results.

  5. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  6. The ultraviolet telescope on the Astron satellite

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1987-01-01

    On 23 March 1983 in the USSR, the Astron astrophysical satellite, with the largest ultraviolet telescope (the UVT) in the world (main mirror diameter 80 cm) and a set of X-ray instruments on board was placed in a high-apogee orbit. The design of the ultraviolet telescope and the results of some of the observations carried out with it are described here. The X-ray instruments are discussed in a separate article. The ultraviolet telescope on the Astron astrophysical satellite is a result of the joint efforts of scientists and engineers at the Crimean Astrophysical Observatory (Academy of Sciences of the USSR), the Byurakan Astrophysical Observatory (Academy of Sciences of the Armenian USSR), and several industrial enterprises in our country. The Laboratoire d'Astronomie Spatiale (CNRS, Marseille, France) played a large role in building the spectrometer for the UVT

  7. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    Science.gov (United States)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  8. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    Science.gov (United States)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  9. New GOES satellite synchronized time code generation

    Science.gov (United States)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  10. Instruments for Water Quality Monitoring

    Science.gov (United States)

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  11. Vision though afocal instruments: generalized magnification and eye-instrument interaction

    Science.gov (United States)

    Harris, William F.; Evans, Tanya

    2018-04-01

    In Gaussian optics all observers experience the same magnification, the instrument's angular magnification, when viewing distant objects though a telescope or other afocal instruments. However, analysis in linear optics shows that this is not necessarily so in the presence of astigmatism. Because astigmatism may distort and rotate images it is appropriate to work with generalized angular magnification represented by a 2 × 2 matrix. An expression is derived for the generalized magnification for an arbitrary eye looking through an arbitrary afocal instrument. With afocal instruments containing astigmatic refracting elements not all eyes experience the same generalized magnification; there is interaction between eye and instrument. Eye-instrument interaction may change as the instrument is rotated about its longitudinal axis, there being no interaction in particular orientations. A simple numerical example is given. For sake of completeness, expressions for generalized magnification are also presented in the case of instruments that are not afocal and objects that are not distant.

  12. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  13. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  14. Small-Body Extensions for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Stodden, David; Coggi, John

    2008-01-01

    An extension to the SOAP software allows users to work with tri-axial ellipsoid-based representations of planetary bodies, primarily for working with small, natural satellites, asteroids, and comets. SOAP is a widely used tool for the visualization and analysis of space missions. The small body extension provides the same visualization and analysis constructs for use with small bodies. These constructs allow the user to characterize satellite path and instrument cover information for small bodies in both 3D display and numerical output formats. Tri-axial ellipsoids are geometric shapes the diameters of which are different in each of three principal x, y, and z dimensions. This construct provides a better approximation than using spheres or oblate spheroids (ellipsoids comprising two common equatorial diameters as a distinct polar diameter). However, the tri-axial ellipsoid is considerably more difficult to work with from a modeling perspective. In addition, the SOAP small-body extensions allow the user to actually employ a plate model for highly irregular surfaces. Both tri-axial ellipsoids and plate models can be assigned to coordinate frames, thus allowing for the modeling of arbitrary changes to body orientation. A variety of features have been extended to support tri-axial ellipsoids, including the computation and display of the spacecraft sub-orbital point, ground trace, instrument footprints, and swathes. Displays of 3D instrument volumes can be shown interacting with the ellipsoids. Longitude/latitude grids, contour plots, and texture maps can be displayed on the ellipsoids using a variety of projections. The distance along an arbitrary line of sight can be computed between the spacecraft and the ellipsoid, and the coordinates of that intersection can be plotted as a function of time. The small-body extension supports the same visual and analytical constructs that are supported for spheres and oblate spheroids in SOAP making the implementation of the more

  15. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    Science.gov (United States)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  16. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  17. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  18. Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    A. M. Toihir

    2015-09-01

    Full Text Available This paper presents comparison results of the total column ozone (TCO data product over 13 southern tropical and subtropical sites recorded from the Infrared Atmospheric Sounder Interferometer (IASI onboard the EUMETSAT (European organization for the exploitation of METeorological SATellite MetOp (Meteorological Operational satellite program satellite. TCO monthly averages obtained from IASI between June 2008 and December 2012 are compared with collocated TCO measurements from the Ozone Monitoring Instrument (OMI on the OMI/Aura satellite and the Dobson and SAOZ (Système d'Analyse par Observation Zénithale ground-based instruments. The results show that IASI displays a positive bias with an average less than 2 % with respect to OMI and Dobson observations, but exhibits a negative bias compared to SAOZ over Bauru with a bias around 2.63 %. There is a good agreement between IASI and the other instruments, especially from 15° S southward where a correlation coefficient higher than 0.87 is found. IASI exhibits a seasonal dependence, with an upward trend in autumn and a downward trend during spring, especially before September 2010. After September 2010, the autumn seasonal bias is considerably reduced due to changes made to the retrieval algorithm of the IASI level 2 (L2 product. The L2 product released after August (L2 O3 version 5 (v5 matches TCO from the other instruments better compared to version 4 (v4, which was released between June 2008 and August 2010. IASI bias error recorded from September 2010 is estimated to be at 1.5 % with respect to OMI and less than ±1 % with respect to the other ground-based instruments. Thus, the improvement made by O3 L2 version 5 (v5 product compared with version 4 (v4, allows IASI TCO products to be used with confidence to study the distribution and interannual variability of total ozone in the southern tropics and subtropics.

  19. SPICE Module for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Coggi, John; Carnright, Robert; Hildebrand, Claude

    2008-01-01

    A SPICE module for the Satellite Orbit Analysis Program (SOAP) precisely represents complex motion and maneuvers in an interactive, 3D animated environment with support for user-defined quantitative outputs. (SPICE stands for Spacecraft, Planet, Instrument, Camera-matrix, and Events). This module enables the SOAP software to exploit NASA mission ephemeris represented in the JPL Ancillary Information Facility (NAIF) SPICE formats. Ephemeris types supported include position, velocity, and orientation for spacecraft and planetary bodies including the Sun, planets, natural satellites, comets, and asteroids. Entire missions can now be imported into SOAP for 3D visualization, playback, and analysis. The SOAP analysis and display features can now leverage detailed mission files to offer the analyst both a numerically correct and aesthetically pleasing combination of results that can be varied to study many hypothetical scenarios. The software provides a modeling and simulation environment that can encompass a broad variety of problems using orbital prediction. For example, ground coverage analysis, communications analysis, power and thermal analysis, and 3D visualization that provide the user with insight into complex geometric relations are included. The SOAP SPICE module allows distributed science and engineering teams to share common mission models of known pedigree, which greatly reduces duplication of effort and the potential for error. The use of the software spans all phases of the space system lifecycle, from the study of future concepts to operations and anomaly analysis. It allows SOAP software to correctly position and orient all of the principal bodies of the Solar System within a single simulation session along with multiple spacecraft trajectories and the orientation of mission payloads. In addition to the 3D visualization, the user can define numeric variables and x-y plots to quantitatively assess metrics of interest.

  20. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  1. Numerical modelling of elastic space tethers

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.

    2012-01-01

    In this paper the importance of the ill-posedness of the classical, non-dissipative massive tether model on an orbiting tether system is studied numerically. The computations document that via the regularisation of bending resistance a more reliable numerical integrator can be produced. Furthermo....... It is also shown that on the slow manifold the dynamics of the satellites are well-approximated by the finite dimensional slack-spring model....

  2. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEO-CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O 2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  3. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  4. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  5. Management Approach for Earth Venture Instrument

    Science.gov (United States)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  6. Sentinel-2: next generation satellites for optical land observation from space

    Science.gov (United States)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  7. Design requirements for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2013-01-01

    The Stratospheric Wind Interferometer for Transport studies (SWIFT) instrument is a proposed limb-viewing satellite instrument that employs the method of Doppler Michelson interferometry to measure stratospheric wind velocities and ozone densities in the altitude range of 15–45 km. The values of the main instrument parameters including filter system parameters and Michelson interferometer parameters are derived using simulations and analyses. The system design requirements for the instrument and spacecraft are presented and discussed. Some of the retrieval-imposed design requirements are also discussed. Critical design issues are identified. The design optimization process is described. The sensitivity of wind measurements to instrument characteristics is investigated including the impact on critical design issues. Using sensitivity analyses, the instrument parameters were iteratively optimized in order to meet the science objectives. It is shown that wind measurements are sensitive to the thermal sensitivity of the instrument components, especially the narrow filter and the Michelson interferometer. The optimized values of the main system parameters including Michelson interferometer optical path difference, instrument visibility, instrument responsivity and knowledge of spacecraft velocity are reported. This work also shows that the filter thermal drift and the Michelson thermal drift are two main technical risks. (paper)

  8. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  9. Microwave and theoretical studies for Cosmic Background Explorer satellite

    International Nuclear Information System (INIS)

    Wilkinson, D.T.

    1983-07-01

    The Cosmic Background Explorer (COBE) satellite, its instruments, and its scientific mission are discussed. The COBE radiometer is considered, and measurement of galactic radio emission with masers is reviewed. Extragalactic radiation and zodiacal dust are mentioned briefly

  10. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    Science.gov (United States)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  11. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  12. Instrument-induced spatial crosstalk deconvolution algorithm

    Science.gov (United States)

    Wright, Valerie G.; Evans, Nathan L., Jr.

    1986-01-01

    An algorithm has been developed which reduces the effects of (deconvolves) instrument-induced spatial crosstalk in satellite image data by several orders of magnitude where highly precise radiometry is required. The algorithm is based upon radiance transfer ratios which are defined as the fractional bilateral exchange of energy betwen pixels A and B.

  13. The possible direct use of satellite radiance measurements by the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    1993-03-01

    The Atmospheric Radiation Measurement (ARM) Program is a major research program initiated by the Department of Energy to improve our understanding of radiative and cloud processes critical to predicting the Earth's climate and its changes. Central to this concept is the use of four to six intensively instrumented sites for long-term study and characterization of the processes of interest. The instrumentation suites will include ground-based, high-accuracy radiometers for measuring the short and longwave surface flux, as well as an extensive set of ground-and air-based instrumentation for characterizing the intervening atmospheric column. Satellite-based measurements are expected to play a very important role in providing top-of-the-atmosphere measurements. In this study, we examine the possibility of comparing ARM outputs directly with satellite measurements, thereby ensuring the independence of these two important data sets. Thus we focused on what do satellites really measure and how well do they measure it. On what can we do about the general lack of adequate visible channel calibration. On what is the best way for ARM to obtain near-real-time access to this unprocessed data. And on what is the optimum way for ARM to make use of satellite data

  14. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  15. Dynamical history of coplanar two-satellite systems

    International Nuclear Information System (INIS)

    Ruskol, E.L.; Nikolajeva, E.V.; Syzdykov, A.S.

    1975-01-01

    One of the possible early states of the Earth-Moon system was a system of several large satellites around the Earth. The dynamical evolution of coplanar three-body systems is studied; a planet (Earth) and two massive satellites (proto-moons) with geocentric orbits of slightly different radii. Such configurations may arise in multiple satellite systems receding from a planet due to tidal friction. The numerical integration of the equations of motion shows that initially circular Keplerian orbits are soon transformed into disturbed elliptic orbits which are intersecting. The life-time of such a coplanar system between two probable physical collisions of satellites is roughly from one day to one year for satellite systems with radii less than 20 R(Earth), and may reach 100 yr for three-dimensional systems. This time-scale is short in comparison with the duration of the removal of satellites due to tides raised on the planet, which is estimated as 10 6 -10 8 yr for the same orbital dimensions. Therefore, the life-time of a system of several proto-moons is mainly determined by their tidal interactions with the Earth. For conditions which we have considered, the most probable result of the evolution was coalescence of satellites as the consequence of the collisions. (Auth.)

  16. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  17. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    Science.gov (United States)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  18. Planning and Scheduling for Fleets of Earth Observing Satellites

    Science.gov (United States)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  19. A Study on the Tracking and Position Predictions of Artificial Satellite (II

    Directory of Open Access Journals (Sweden)

    Pil-Ho Park

    1991-06-01

    Full Text Available We developed a software system called IODS (ISSA Orbit Determination System, which can predict the orbit of arbitrary artificial satellite using the numerical method. For evaluating the orbit prediction accuracy of IODS, the orbital data predicted for the meteorological satellite NOAA-11 and the stationary satellite INTELSAT-V are intercompared with those tracked at the Central Bureau of Meteorology and the Kum-San Satellites Communication Station. And the Perturbation affecting the orbit of these artificial satellites are quantitatively analyzed. The orbital variation and the eclipse phenomina due to the earth shadow are analyzed for a hypothetical geostationary satellite called KORSAT-1 which is assumed to be located in longitude 110°E.

  20. A general theory for the Uranian satellites

    Science.gov (United States)

    Laskar, J.

    1986-01-01

    A general analytical theory of the five main satellites of Uranus, including the secular and short period terms hereafter denoted by GUST, is presented. A comparison is made with an internal numerical integration with nominal masses of Veillet (1983). The precision of the theory goes from about 10 km for Miranda to 100 km for Oberon. The short period terms in the motions of Titania and Oberon are larger than 500 km. They should make possible the determination of the masses of the outer satellites through the optical data of Voyager encounter.

  1. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets

  2. Numerical simulation of "an American haboob"

    Science.gov (United States)

    Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.

    2014-04-01

    A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg m-3, but

  3. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  4. Geomagnetic field models for satellite angular motion studies

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.

    2018-03-01

    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  5. Applications of Satellite Observations of Tropospheric Composition

    Science.gov (United States)

    Monks, Paul S.; Beirle, Steffen

    A striking feature of the field of tropospheric composition is the sheer number of chemical species that have been detected and measured with satellite instruments. The measurements have found application both in atmospheric chemistry itself, providing evidence, for example, of unexpected cryochemistry in the Arctic regions, and also in environmental monitoring with, for example, the observed growth in NO2 emissions over eastern Asia. Chapter 8 gives an overview of the utility of satellite observations for measuring tropospheric composition, dealing with each of the many compounds seen in detail. A comprehensive compound by compound table of the many studies performed is a most useful feature.

  6. Global observations of BrO in the troposphere using GOME-2 satellite data

    Science.gov (United States)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Xin, Y.; Isabelle, D.; Richter, A.; Mathias, B.; Quentin, E.; Johnston, P. V.; Kreher, K.; Martine, D.

    2010-12-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and correlative data including ground-based BrO vertical columns and total BrO columns derived from SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables to separate the stratospheric and tropospheric fractions of the measured total BrO columns and allows studying the BrO plumes in polar region in more detail. While several satellite BrO plumes can largely be explained by an influence of stratospheric descending air, we show that numerous tropospheric BrO hotspots are associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this finding is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. Outside the polar region, evidences are provided for a global tropospheric BrO background with columns of 1-3 x 1013 molec/cm2.

  7. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    Science.gov (United States)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  8. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  9. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  10. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  11. Some emergency instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, P H

    1986-10-01

    The widespread release of activity and the resultant spread of contamination after the Chernobyl accident resulted in requests to NRPB to provide instruments for, and expertise in, the measurement of radiation. The most common request was for advice on the usefulness of existing instruments, but Board staff were also involved in their adaptation or in the development of new instruments specially to meet the circumstances of the accident. The accident occurred on 26 April. On 1 May, NRPB was involved at Heathrow Airport in the monitoring of the British students who had returned from Kiev and Minsk. The main purpose was to reassure the students by checking that their persons and belongings did not have significant surface contamination. Additional measurements were also made of iodine activity in thyroid using hand-held detectors or a mobile body monitor. This operation was arranged with the Foreign and Commonwealth Office, which had also received numerous requests for instruments from embassies and consulates in countries close to the scene of the accident. There was concern for the well-being of staff and other United Kingdom nationals who resided in or intended to visit the most affected countries. The board supplied suitable instruments, and the FCO distributed them to embassies. The frequency of environmental monitoring was increased from 29 April in anticipation of contamination and appropriate Board instrumentation was deployed. After the Chernobyl cloud arrived in the UK on 2 May, there were numerous requests from local government, public authorities, private companies and members of the public for information and advice on monitoring equipment and procedures. Some of these requirements could be met with existing equipment but members of the public were usually advised not to proceed. At a later stage, the contamination of foodstuffs and livestock required the development of an instrument capable of detecting low levels of {sup 137}Cs and {sup 134}Cs in food

  12. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  13. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  14. Use of artificial satellite photometry in scientific research

    International Nuclear Information System (INIS)

    Mioc, V.

    1978-10-01

    The results obtainable from photometric observations of artificial Earth satellites are presented. Some observation methods are described. Different formulae for atmospheric density determination from photometric data are shown. A numerical application for the rocket 1965-11 D is made. (author)

  15. Handbook of satellite orbits from Kepler to GPS

    CERN Document Server

    Capderou, Michel

    2014-01-01

    Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those...

  16. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  17. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  18. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    Science.gov (United States)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  19. Satellite Cells and the Muscle Stem Cell Niche

    Science.gov (United States)

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  20. Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites

    Directory of Open Access Journals (Sweden)

    Vivian M. Gomes

    2012-01-01

    Full Text Available This paper considers the problem of out of plane orbital maneuvers for station keeping of satellites. The main idea is to consider that a satellite is in an orbit around the Earth and that it has its orbit is disturbed by one or more forces. Then, it is necessary to perform a small amplitude orbital correction to return the satellite to its original orbit, to keep it performing its mission. A low thrust propulsion is used to complete this task. It is important to search for solutions that minimize the fuel consumption to increase the lifetime of the satellite. To solve this problem a hybrid optimal control approach is used. The accuracy of the satisfaction of the constraints is considered, in order to try to decrease the fuel expenditure by taking advantage of this freedom. This type of problem presents numerical difficulties and it is necessary to adjust parameters, as well as details of the algorithm, to get convergence. In this versions of the algorithm that works well for planar maneuvers are usually not adequate for the out of plane orbital corrections. In order to illustrate the method, some numerical results are presented.

  1. Calculation of precision satellite orbits with nonsingular elements /VOP formulation/

    Science.gov (United States)

    Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.

    1974-01-01

    Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.

  2. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    Science.gov (United States)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  3. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  4. Near-Infrared Mapping Spectrometer for investigation of Jupiter and its satellites

    International Nuclear Information System (INIS)

    Aptaker, I.M.

    1988-01-01

    The Near-Infrared-Mapping Spectrometer (NIMS) is one of the science instruments in the Galileo mission, which will explore Jupiter and its satellites in the mid-1990's. The NIMS experiment will map geological units on the surfaces of the Jovian satellites and characterize their mineral content; and, for the atmosphere of Jupiter, investigate cloud properties and the spatial and temporal variability of molecular abundances. The optics are gold-coated reflective and consist of a telescope and a grating spectrometer. The balance of the instrument includes a 17-detector (silicon and indium antimonide) focal plane array, a tuning fork chopper, microprocessor-controlled electronics, and a passive radiative cooler. A wobbling secondary mirror in the telescope provides 20 pixels in one dimension of spatial scanning in a pushbroom mode with 0.5 mr x 0.5 mr instantaneous field of view. The spectral range is 0.7-5.2 microns; resolution is 0.025 micron. NIMS is the first infrared experiment to combine both spatial and spectral mapping capability in one instrument

  5. Orbits of the inner satellites of Neptune

    Science.gov (United States)

    Brozovic, Marina; Showalter, Mark R.; Jacobson, Robert Arthur; French, Robert S.; de Pater, Imke; Lissauer, Jack

    2018-04-01

    We report on the numerically integrated orbits of seven inner satellites of Neptune, including S/2004 N1, the last moon of Neptune to be discovered by the Hubble Space Telescope (HST). The dataset includes Voyager imaging data as well as the HST and Earth-based astrometric data. The observations span time period from 1989 to 2016. Our orbital model accounts for the equatorial bulge of Neptune, perturbations from the Sun and the planets, and perturbations from Triton. The initial orbital integration assumed that the satellites are massless, but the residuals improved significantly as the masses adjusted toward values that implied that the density of the satellites is in the realm of 1 g/cm3. We will discuss how the integrated orbits compare to the precessing ellipses fits, mean orbital elements, current orbital uncertainties, and the need for future observations.

  6. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  7. Studying the Formation, Evolution, and Habitability of the Galilean Satellites

    Science.gov (United States)

    McGrath, M.; Waite, J. H. Jr.; Brockwell, T.; McKinnon, W.; Wyrick, D.; Mousis, O.; Magee, B.

    2013-01-01

    Highly sensitive, high-mass resolution mass spectrometry is an important in situ tool for the study of solar system bodies. In this talk we detail the science objectives, develop the rationale for the measurement requirements, and describe potential instrument/mission methodologies for studying the formation, evolution, and habitability of the Galilean satellites. We emphasize our studies of Ganymede and Europa as described in our instrument proposals for the recently selected JUICE mission and the proposed Europa Clipper mission.

  8. Satellite orbits in Levi-Civita space

    Science.gov (United States)

    Humi, Mayer

    2018-03-01

    In this paper we consider satellite orbits in central force field with quadratic drag using two formalisms. The first using polar coordinates in which the satellite angular momentum plays a dominant role. The second is in Levi-Civita coordinates in which the energy plays a central role. We then merge these two formalisms by introducing polar coordinates in Levi-Civita space and derive a new equation for satellite orbits which unifies these two paradigms. In this equation energy and angular momentum appear on equal footing and thus characterize the orbit by its two invariants. Using this formalism we show that equatorial orbits around oblate spheroids can be expressed analytically in terms of Elliptic functions. In the second part of the paper we derive in Levi-Civita coordinates a linearized equation for the relative motion of two spacecrafts whose trajectories are in the same plane. We carry out also a numerical verification of these equations.

  9. The Smithsonian Earth Physics Satellite (SEPS) definition study, volumes 1 through 4

    Science.gov (United States)

    1971-01-01

    A limited Phase B study was undertaken to determine the merit and feasibility of launching a proposed earth physics satellite with Apollo-type hardware. The study revealed that it would be feasible to launch this satellite using a S-IB stage, a S-IVB with restart capability, an instrument unit, a SLA for the satellite shroud, and a nose cone (AS-204 configuration). A definition of the proposed satellite is provided, which is specifically designed to satisfy the fundamental requirement of providing an orbiting benchmark of maximum accuracy. The satellite is a completely passive, solid 3628-kg sphere of 38.1-cm radius and very high mass-to-area ratio (7980 kg sq mi). In the suggested orbit of 55 degrees inclination, 3720 km altitude, and low eccentricity, the orbital lifetime is extremely long, so many decades of operation can be expected.

  10. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  11. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    Science.gov (United States)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  12. Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track

    Science.gov (United States)

    Aulicino, G.; Cotroneo, Y.; Ruiz, S.; Sánchez Román, A.; Pascual, A.; Fusco, G.; Tintoré, J.; Budillon, G.

    2018-03-01

    The Algerian Basin is a key component of the general circulation in the Western Mediterranean Sea. The presence of both fresh Atlantic water and more saline Mediterranean water gives the basin an intense inflow/outflow regime and complex circulation patterns. Energetic mesoscale structures that evolve from meanders of the Algerian Current into isolated cyclonic and anticyclonic eddies dominate the area, with marked repercussions on biological activity. Despite its remarkable importance, this region and its variability are still poorly known and basin-wide knowledge of its meso- and submesoscale features is still incomplete. Studying such complex processes requires a synergistic approach that involves integrated observing systems. In recent years, several studies have demonstrated the advantages of combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimetry. In this context, we present results of an observational program conducted in the Algerian Basin during fall 2014 and 2015 that aimed to advance our knowledge of its main features. The study was carried out through analysis of high resolution glider observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) chokepoint, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. Results show that glider-derived dynamic height and SARAL/AltiKa absolute dynamic topography have similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Even though larger discrepancies are observed near the Balearic and Algerian coasts, correlation coefficients between glider and satellite observations seem mostly to be affected by reduced synopticity between the measurements. Glider observations acquired during the four surveys reveal the presence of several water masses of Atlantic and Mediterranean origin (i.e., AW and LIW at different modification levels) with marked seasonal variability.

  13. A statistical approach to instrument calibration

    Science.gov (United States)

    Robert R. Ziemer; David Strauss

    1978-01-01

    Summary - It has been found that two instruments will yield different numerical values when used to measure identical points. A statistical approach is presented that can be used to approximate the error associated with the calibration of instruments. Included are standard statistical tests that can be used to determine if a number of successive calibrations of the...

  14. A Conceptual Design for a Small Deployer Satellite

    Science.gov (United States)

    Zumbo, S.

    2002-01-01

    industrial partners, has started the development of a space mission, named DeSat, focused on a new highly innovative micro satellite bus for LEO, entirely designed by an integrated team of students and researchers. The first mission is scheduled to fly at the end of 2003 on a converted Russian ICBM. The paper is intended to present the main features of DeSat mission, its goals and the activities that have been done by students and researchers to achieve the micro satellite platform design. The principal payload of the entire system is represented by a recirculating ball screw boom whose mass reaches one third of the total mass budget. The goal of the mission is to demonstrate the validity of its design also for space applications, which may range from precise off platform positioning of devices and instruments to GPS interferometry, sensor measurements and robotics. The satellite geometry, when the boom is in deployed configuration, is so stretched that the name "deployable satellite" has come out naturally. The large deployment mechanism, compared to the small bus, has influenced the design of every satellite subsystem leading to innovative solutions in terms of design, materials, equipment and instruments.

  15. Life near the Roche limit - Behavior of ejecta from satellites close to planets

    Science.gov (United States)

    Dobrovolskis, A. R.; Burns, J. A.

    1980-01-01

    A study of the dynamics of nearby debris from impact craters was made to explain the distinctive features seen on Phobos, Deimis, and Amalthea. The planetary tides and satellite rotation were considered, and the usual pseudo-energy (Jacobi) integral was numerically calculated in the framework of a restricted body problem where satellites are modelled as triaxial ellipsoids rather than point masses. Iso-contours of this integral show that Deimos and Amalthea are entirely closed by Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presently, the surface of Phobos overflows its Roche lobe, except for regions within a few km of the sub-Mars and anti-Mars points. The behavior of crater ejecta from the satellites of Mars were also examined by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane.

  16. Online Resource for Earth-Observing Satellite Sensor Calibration

    Science.gov (United States)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  17. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument

    Science.gov (United States)

    Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-11-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.

  18. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  19. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    Science.gov (United States)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  20. Testing Lorentz invariance of dark matter with satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Dario [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Nusser, Adi [Physics Department and the Asher Space Science Institute—Technion, Haifa 32000 (Israel); Blas, Diego; Sibiryakov, Sergey, E-mail: d.bettoni@thphys.uni-heidelberg.de, E-mail: adi@physics.technion.ac.il, E-mail: diego.blas@cern.ch, E-mail: sergey.sibiryakov@cern.ch [Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2017-05-01

    We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.

  1. Orbital and Collisional Evolution of the Irregular Satellites

    Science.gov (United States)

    Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F.

    2003-07-01

    The irregular moons of the Jovian planets are a puzzling part of the solar system inventory. Unlike regular satellites, the irregular moons revolve around planets at large distances in tilted and eccentric orbits. Their origin, which is intimately linked with the origin of the planets themselves, is yet to be explained. Here we report a study of the orbital and collisional evolution of the irregular satellites from times after their formation to the present epoch. The purpose of this study is to find out the features of the observed irregular moons that can be attributed to this evolution and separate them from signatures of the formation process. We numerically integrated ~60,000 test satellite orbits to map orbital locations that are stable on long time intervals. We found that the orbits highly inclined to the ecliptic are unstable due to the effect of the Kozai resonance, which radially stretches them so that satellites either escape from the Hill sphere, collide with massive inner moons, or impact the parent planet. We also found that prograde satellite orbits with large semimajor axes are unstable due to the effect of the evection resonance, which locks the orbit's apocenter to the apparent motion of the Sun around the parent planet. In such a resonance, the effect of solar tides on a resonant moon accumulates at each apocenter passage of the moon, which causes a radially outward drift of its orbital apocenter; once close to the Hill sphere, the moon escapes. By contrast, retrograde moons with large orbital semimajor axes are long-lived. We have developed an analytic model of the distant satellite orbits and used it to explain the results of our numerical experiments. In particular, we analytically studied the effect of the Kozai resonance. We numerically integrated the orbits of the 50 irregular moons (known by 2002 August 16) for 108 yr. All orbits were stable on this time interval and did not show any macroscopic variations that would indicate

  2. L’ITSS “Majorana-Giorgi” di Genova in orbita con i sistemi di navigazione via satellite

    Directory of Open Access Journals (Sweden)

    Primo Bartoli

    2015-03-01

    GNSS satellites (GPS, GLONASS or Galileo, based on a commercial multi-constellation receiver and on a software program developed in National Instruments LabVIEW, with the dual aim to explore the techniques of satellite navigation and to provide an attractive teaching aid for universities and secondary level technical institutes.

  3. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  4. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  5. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  6. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  7. Ocean tides for satellite geodesy

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  8. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  9. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument

    Science.gov (United States)

    DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.

    2017-12-01

    Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.

  10. Observing System Simulation Experiment (OSSE) for a future Doppler Wind Lidar satellite in Japan:

    Science.gov (United States)

    Baron, Philippe; Ishii, Shoken; Okamoto, Kozo

    2017-04-01

    A feasibility study of tropospheric wind measurements by a coherent Doppler lidar aboard a super-low-altitude satellite is being conducted in Japan. We consider a coherent lidar with a laser light source at 2.05 μm whose characteristics correspond to an existing ground-based instrument (power=3.75 W, PRF=30 Hz and pulse width=200 ns). An Observing System Simulation Experiment (OSSE) has been implemented based on the Sensitivity Observing System experiment (SOSE) developed at the Japanese Meteorological-Research-Institute using the Japan Meteorological Agency global Numerical Weather Prediction model. The measurement simulator uses wind, aerosol and cloud 3-d global fields from the OSSE speudo-truth and the aerosol model MASINGAR. In this presentation, we will first discuss the measurement performances. Considering measurement horizontal resolutions of 100 km along the orbit track, we found that below 3 km, the median horizontal wind error is between 0.8-1 m/s for a vertical resolution of 0.5 km, and that near 50% of the data are valid measurements. Decreasing the vertical resolution to 1 km allows us to maintain similar performances up to 8 km almost over most latitudes. Above, the performances significantly fall down but a relatively good percentage of valid measurements (20-40%) are still found near the tropics where cirrus clouds frequently occur. The potential of the instrument to improve weather prediction models will be discussed using the OSSE results obtained for both polar and low inclination orbit satellites. The first results show positive improvements of short-term forecasts (Meteor. Soc. Japan, 2016 P. Baron et al., "Feasibility study for future space-borne coherent Doppler wind lidar, Part 2: Measurement simulation algorithms and retrieval error characterization", submitted to J. Meteor. Soc. Japan, 2016.

  11. Spacecraft anomalies on the CRRES satellite correlated with the environment and insulator samples

    International Nuclear Information System (INIS)

    Violet, M.D.; Frederickson, A.R.

    1993-01-01

    The CRRES satellite has been extensively surveyed for the occurrence of onboard anomalies. CRRES system and instrument responses which were not programmed or commanded are classified as anomalies. The history of anomalies is correlated with the history of plasmas, high energy particles, and electromagnetic fields as measured on CRRES. The anomalies for each instrument on CRRES are compared with those from other instruments. The 674 anomalies, as a group, correlate well with high levels of high energy electron flux and poorly with every other environmental parameter

  12. The NASA CYGNSS Small Satellite Constellation

    Science.gov (United States)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  13. Current Status of the Validation of the Atmospheric Chemistry Instruments on Envisat

    Science.gov (United States)

    Lecomte, P.; Koopman, R.; Zehner, C.; Laur, H.; Attema, E.; Wursteisen, P.; Snoeij, P.

    2003-04-01

    . As a first step the intention is to arrive at a first quality assessment of the data products for near-real time distribution. This core validation was performed during the commissioning and validation phase of Envisat. The results of this exercise have been presented at the Envisat Validation Workshop. It was already anticipated early in the program that more work needed to be done after this workshop on all Envisat data products both for near-real time and for off-line distribution. The algorithms designed to derive estimates of the atmospheric constitutes need to be verified. For this a large number of correlative observations under a wide range of conditions are needed to arrive at a representative and statistically significant data quality assessment, and to provide insight into sources of error both in the Envisat data and the correlative data sets. In order to achieve this within the tight time schedule the best use must be made of the available resources. For the Atmospheric Chemistry Instruments on Envisat it has therefore been decided to plan a joint geophysical validation programme that is not instrument specific but serves all three instruments. For the co-ordination of the activities the Atmospheric Chemistry Validation Team was formed (ACVT). The ACVT methods can roughly be categorised into different approaches and consistent with these the group is divided into different subgroups on · balloon and aircraft campaigns · ground-based measurements · model assimilation and satellite intercomparison The data coming from the various validation campaigns are stored within a central data storage facility established at the Norwegian Institute for Air Research (NILU) in Norway. NILU provides access to correlative measurements from sensors on-board satellites, aircraft, balloons and ships, as well as from ground-based instruments and numerical models, such as that of the ECMWF. Particular emphasis has been put on the quality control of such data. Users are

  14. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  15. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  16. Characterizing SPDY over High Latency Satellite Channels

    Directory of Open Access Journals (Sweden)

    Luca Caviglione

    2014-12-01

    Full Text Available The increasing complexity ofWeb contents and the growing diffusion of mobile terminals, which use wireless and satellite links to get access to the Internet, impose the adoption of more specialized protocols. In particular, we focus on SPDY, a novel protocol introduced by Google to optimize the retrieval of complex webpages, to manage large Round Trip Times and high packet losses channels. In this perspective, the paper characterizes SPDY over high latency satellite links, especially with the goal of understanding whether it could be an efficient solution to cope with performance degradations typically affecting Web 2.0 services. To this aim, we implemented an experimental set-up, composed of an ad-hoc proxy, a wireless link emulator, and an instrumented Web browser. The results clearly indicate that SPDY can enhance the performances in terms of loading times, and reduce the traffic fragmentation. Moreover, owing to its connection multiplexing architecture, SPDY can also mitigate the transport layer complexity, which is critical when in presence of Performance Enhancing Proxies usually deployed to isolate satellite trunks.

  17. NOAA: Primary GOES-R instrument cleared for installation onto spacecraft

    Science.gov (United States)

    NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS National primary instrument for scanning Earth's weather, oceans, and environment and is a significant improvement changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to

  18. Retrofitting a fine-pointing system to satellite optics

    Energy Technology Data Exchange (ETDEWEB)

    Woods, R.O.

    1994-12-31

    This paper describe a system that was added to an existing satellite-borne telescope design for the purpose of compensating the boresight errors that had been observed in earlier flights of similar instruments. Those errors had been found to be caused by thermal distortion of the spaceframe. This retrofit design was subject to severe volume restrictions because it was fitted into an already tightly-packaged instrument envelope. It was found practical to improve the basic design by converting a redundant structure into a statically-determinate one. It was also possible to use portions of the mechanical actuation system to facilitate the position encoding needed for computer interfacing.

  19. High-energy electron experiments (HEP) aboard the ERG (Arase) satellite

    Science.gov (United States)

    Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi

    2018-05-01

    This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.

  20. Nonlinear bias analysis and correction of microwave temperature sounder observations for FY-3C meteorological satellite

    Science.gov (United States)

    Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin

    2018-01-01

    The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.

  1. Instrument performance and simulation verification of the POLAR detector

    Science.gov (United States)

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rybka, D.; Sun, J. C.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wang, Y. H.; Wen, X.; Wu, B. B.; Wu, X.; Xiao, H. L.; Xiong, S. L.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zhao, Y.

    2017-11-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.

  2. The utility of satellite observations for constraining fine-scale and transient methane sources

    Science.gov (United States)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  3. The ASTRO-H (Hitomi) X-Ray Astronomy Satellite

    Science.gov (United States)

    Takahashi, Tadayuki; Kokubun, Motohide; Mitsuda, Kazuhisa; Kelley, Richard; Ohashi, Takaya; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; hide

    2016-01-01

    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E greater than 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.

  4. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    Science.gov (United States)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an

  5. Small astronomy satellite-A, Uhuru data analysis

    Science.gov (United States)

    Koch, D.

    1974-01-01

    Objectives were to conduct observations with the first satellite entirely devoted to X-ray astronomy and to analyze the results obtained. A catalog of X-ray sources was generated, and results of discoveries and further detailed observations of sources were presented in scientific journals and meetings. A list of how objectives were met, a brief description of the instrument, significant results, the X-ray catalog, and a complete bibliography of results are included.

  6. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  7. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    International Nuclear Information System (INIS)

    Motta, G B; Carvalho, M V; Zanardi, M C

    2013-01-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection – SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites

  8. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    We propose a series of ultraviolet spectral observations of solid surfaces of selected solar system objects, specifically the Galilean satellites of Jupiter, several atmosphereless satellites of Saturn, and the asteroids, 5 Astraea, 18 Melpomene, 532 Herculina, 68 Leto, 31 Euphmsyne, 80 Sappho, 3 Juno, and 39 Laetitia. Historically such spectral observations have allowed for the Identification of spectrally active solid state materials on planetary surfaces. Furthermore, because the rotational properties are known for all the objects proposed for study, this technique will provide a longitude map of such materials on the objects' surfaces. The study of asteroid surface mineralogy is an important method of constraining solar system formation models. The asteroid spectra we have previously acquired with IUE have created unique subdivisions within the existent asteroid types. The new spectra will provide more sophisticated mineralogical characterizations of asteroid surface materials. Our other accomplishments with IUE include mapping of the distribution of condensed S02 on Io, identification of a longitudinal asymmetry on Europa associated with magnetospheric particle bombardment of the surface, and establishing the ultraviolet geometric albedo variation as a function of longitude for all the Galilean satellites. Because Io is the most volcanically active body In the solar system, and short tern variations in selected regions of the Jovian magnetosphere are known to occur, it is important to periodically check for temporal variations in the spectra of the Galilean satellites that may be due to variations n Io tectonic/volcanic activity, or magnetosphere changes. These proposed UV observations are critical to the design and operation of several instruments on Project Galileo, NASA's Jupiter Orbiter and Probe Mission. Spectra of Iapetus, Rhea and Dione have been acquired during the previous year; however, only at orbital locations near elongation. In addition, the dark

  9. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  10. Integrated Stewardship of NASA Satellite and Field Campaign Data

    Science.gov (United States)

    Hausman, J.; Tsontos, V. M.; Hardman, S. H.

    2016-02-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is NASA's archive, steward and distributor for physical oceanographic satellite data. Those data are typically organized along the lines of single parameters, such as Sea Surface Temperature, Ocean Winds, Salinity, etc. However there is a need supplement satellite data with in situ and various other remote sensing data to provide higher spatial and temporal sampling and information on physical processes that the satellites are not capable of measuring. This presentation will discuss how PO.DAAC is creating a stewardship and distribution plan that will accommodate satellite, in situ and other remote sensing data that can be used to solve a more integrated approach to data access and utilization along thematic lines in support of science and applications, specifically those posed by Salinity Processes in the Upper Ocean Regional Study (SPURS) and Oceans Melting Greenland (OMG) projects. SPURS used shipboard data, moorings and in situ instruments to investigate changes in salinity and how that information can be used in explaining the water cycle. OMG is studying ice melt in Greenland and how it contributes to changes in sea level through shipboard measurements, airborne and a variety of in situ instruments. PO.DAAC plans on adapting to stewarding and distributing these varieties of data through applications of file format and metadata standards (so data are discoverable and interoperable), extend the internal data system (to allow for better archiving, collection generation and querying of in situ and airborne data) and integration into tools (visualization and data access). We are also working on Virtual Collections with ESDWG, which could provide access to relevant data across DAACs/Agencies along thematic lines. These improvements will improve long-term data management and make it easier for users of various background, regardless if remote sensing or in situ, to discover and use the data.

  11. Leonardo-BRDF: A New Generation Satellite Constellation

    Science.gov (United States)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in

  12. Consensus of satellite cluster flight using an energy-matching optimal control method

    Science.gov (United States)

    Luo, Jianjun; Zhou, Liang; Zhang, Bo

    2017-11-01

    This paper presents an optimal control method for consensus of satellite cluster flight under a kind of energy matching condition. Firstly, the relation between energy matching and satellite periodically bounded relative motion is analyzed, and the satellite energy matching principle is applied to configure the initial conditions. Then, period-delayed errors are adopted as state variables to establish the period-delayed errors dynamics models of a single satellite and the cluster. Next a novel satellite cluster feedback control protocol with coupling gain is designed, so that the satellite cluster periodically bounded relative motion consensus problem (period-delayed errors state consensus problem) is transformed to the stability of a set of matrices with the same low dimension. Based on the consensus region theory in the research of multi-agent system consensus issues, the coupling gain can be obtained to satisfy the requirement of consensus region and decouple the satellite cluster information topology and the feedback control gain matrix, which can be determined by Linear quadratic regulator (LQR) optimal method. This method can realize the consensus of satellite cluster period-delayed errors, leading to the consistency of semi-major axes (SMA) and the energy-matching of satellite cluster. Then satellites can emerge the global coordinative cluster behavior. Finally the feasibility and effectiveness of the present energy-matching optimal consensus for satellite cluster flight is verified through numerical simulations.

  13. Standard NIM instrumentation system

    International Nuclear Information System (INIS)

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice

  14. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    Science.gov (United States)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  15. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, Thomas J. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched on January 26, 1983. During its 300-day mission, IRAS surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and data reduction.

  16. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  17. Taiwan's second remote sensing satellite

    Science.gov (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  18. Easy-to-Build Satellite Beacon Receiver for Propagation Experimentation at Millimeter Bands

    Directory of Open Access Journals (Sweden)

    F. Machado

    2014-04-01

    Full Text Available This paper describes the design and development of a digital satellite beacon receiver for propagation experimentation. Satellite beacons are frequently available for pointing large antennas, but such signals can be used for measuring rain attenuation and other phenomena as, for example, tropospheric scintillation. A fairly inexpensive beacon receiver has been built using off-the-shelf parts. This instrument is not at all bulky making it suitable for easy transportation. This article analyzes the receiver specifications, describes in detail its structure and presents some operational test results.

  19. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H.; Mozurkewich, D.; Armstrong, J.; Restaino, S.; Hindsley, R.

    2011-09-01

    Geostationary satellites are generally too small to image at high resolution with conventional single-dish telescopes. Obtaining many resolution elements across a typical geostationary satellite body requires a single-dish telescope with a diameter of 10’s of m or more, with a good adaptive optics system. An alternative is to use an optical/infrared interferometer consisting of multiple smaller telescopes in an array configuration. In this paper and companion papers1, 2 we discuss the performance of a common-mount 30-element interferometer. The instrument design is presented by Mozurkewich et al.,1 and imaging performance is presented by Schmitt et al.2 In this paper we discuss signal-to-noise ratio for both fringe-tracking and imaging. We conclude that the common-mount interferometer is sufficiently sensitive to track fringes on the majority of geostationary satellites. We also find that high-fidelity images can be obtained after a short integration time of a few minutes to a few tens of minutes.

  20. Applying satellite technology to energy and mineral exploration

    Science.gov (United States)

    Carter, William D.; Rowan, Lawrence C.

    1978-01-01

    IGCP Project 143 ("Remote Sensing and Mineral Exploration"), is a worldwide research project designed to make satellite data an operational geological tool along with the geologic pick, hand lens, topographic map, aerial photo and geophysical instruments and data that comprise the exploration package. While remote sensing data will not replace field exploration and mapping, careful study of such data prior to field work should make the effort more efficient.

  1. Auto Mission Planning System Design for Imaging Satellites and Its Applications in Environmental Field

    Directory of Open Access Journals (Sweden)

    He Yongming

    2016-10-01

    Full Text Available Satellite hardware has reached a level of development that enables imaging satellites to realize applications in the area of meteorology and environmental monitoring. As the requirements in terms of feasibility and the actual profit achieved by satellite applications increase, we need to comprehensively consider the actual status, constraints, unpredictable information, and complicated requirements. The management of this complex information and the allocation of satellite resources to realize image acquisition have become essential for enhancing the efficiency of satellite instrumentation. In view of this, we designed a satellite auto mission planning system, which includes two sub-systems: the imaging satellite itself and the ground base, and these systems would then collaborate to process complicated missions: the satellite mainly focuses on mission planning and functions according to actual parameters, whereas the ground base provides auxiliary information, management, and control. Based on the requirements analysis, we have devised the application scenarios, main module, and key techniques. Comparison of the simulation results of the system, confirmed the feasibility and optimization efficiency of the system framework, which also stimulates new thinking for the method of monitoring environment and design of mission planning systems.

  2. Satellite observations of ozone and nitrogen dioxide : from retrievals to emission estimates

    NARCIS (Netherlands)

    Mijling, B.

    2012-01-01

    In the last decades, measurements of atmospheric composition from satellites have become very important for scientific research as well as applications for monitoring and forecasting the state of the atmosphere. Instruments such as GOME-2, and OMI look at backscattered sunlight in nadir view,

  3. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  4. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  5. Validation of double Langmuir probe in-orbit performance onboard a nano-satellite

    Science.gov (United States)

    Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu

    2018-03-01

    Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.

  6. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  7. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification

    Science.gov (United States)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.

    2014-12-01

    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q

  8. The formation of Pluto's low-mass satellites

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)

    2014-01-01

    Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk of debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 10{sup 19} g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R ≲ 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ ≲ 10{sup –10}. These objects should have semimajor axes outside the current orbit of Hydra.

  9. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    Science.gov (United States)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  10. Radiation properties of moving constellations of (nano) satellites: A complexity study

    NARCIS (Netherlands)

    Bruinsma, Wessel P.; Hes, Robin P.; Bosma, Sjoerd; Lager, Ioan E.; Bentum, Marinus Jan

    2016-01-01

    The (computational) complexity involved by beamforming in moving constellations of (nano) satellites is investigated by means of illustrative numerical experiments. While the number of radiators in such three-dimensional (3D) array antennas is not large, evaluating their radiation patterns entails

  11. Investigation of the feasibility of an analytical method of accounting for the effects of atmospheric drag on satellite motion

    Science.gov (United States)

    Bozeman, Robert E.

    1987-01-01

    An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.

  12. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    Directory of Open Access Journals (Sweden)

    N. Theys

    2013-06-01

    Full Text Available Sulphur dioxide (SO2 fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile, Nyamulagira (DR Congo and Nabro (Eritrea. High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A and thermal infrared (IASI/MetOp-A spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case. Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  13. The precision of today's satellite laser ranging systems

    Science.gov (United States)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-06-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  14. The growing impact of satellite data in daily life

    Science.gov (United States)

    Stramondo, Salvatore

    2015-04-01

    Satellite images have a growing role in our daily life. Weather previsions, telecommunications, environmental planning, disaster mitigation and monitoring: these are only some of the fieldworks where space remote sensing data, and related processing techniques, provide extremely useful information to policy/decision makers, scientists, or to the "simple" citizen. The demonstration of the level of attention provided by the International Community to the impact of new technologies and satellite Earth Observation, in particular, onto everyday life is testified by the recent and forthcoming project calls. Horizon 2020, for instance, identified "Societal challenges" and "Science with and for Society" among the main pillars. In sub-themes we may read references to the "Environment", "Secure societies", "Climate changes", and many others, most of which soliciting the use of remote sensing technologies. In such scenario the scientists should be conscious about the capabilities and the implications in applying new technologies. Recent examples might be explanatory. Satellite data properly managed can be used to measure millimetric and/or centimetric movements of buildings and infrastructures. It has been demonstrated how long term monitoring of urban areas detecting pre-collapse deformations might provide useful hints to prevent such dramatic events. Or, in different frameworks, satellite data can be an advanced instrument for intelligence and military purposes. With such premises, ethic issues assume a key role to properly address the use of satellite technologies.

  15. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    Science.gov (United States)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  16. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    International Nuclear Information System (INIS)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-01-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ 0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated. (research papers)

  17. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    Science.gov (United States)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-07-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.

  18. Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the CERN PS and the LHC Accelerators

    CERN Document Server

    Steinhagen, R J; Belleman, J; Bohl, T; Damerau, H

    2012-01-01

    While most LHC detectors and instrumentation systems are optimised for a nominal bunch spacing of 25 ns, the LHC RF cavities themselves operate at the 10th harmonic of the maximum bunch frequency. Due to the beam production scheme and transfers in the injector chain, part of the nominally ‘empty’ RF buckets may contain particles, referred to as ghost or satellite bunches. These populations must be accurately quantified for high-precision experiments, luminosity calibration and control of parasitic particle encounters at the four LHC interaction points. This contribution summarises the wall-current-monitor based ghost and satellite bunch measurements in CERN’s PS and LHC accelerators. Instrumentation set-up, post-processing and achieved performance are discussed.

  19. Variational and symplectic integrators for satellite relative orbit propagation including drag

    Science.gov (United States)

    Palacios, Leonel; Gurfil, Pini

    2018-04-01

    Orbit propagation algorithms for satellite relative motion relying on Runge-Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge-Kutta-based integrators, even in the presence of atmospheric drag.

  20. 6/4 GHz band small capacity omni-use terminal satellite system

    Science.gov (United States)

    Masamura, T.; Inoue, T.

    1983-03-01

    This paper presents system outline and multiple access techniques for a domestic satellite communication system accommodating numerous small earth stations. Two kinds of earth stations are employed in this system, a small earth terminal (SET) and a master earth station (MES). There are 48 both way satellite channels using a 6/4 GHz band transponder whose e.i.r.p is about 62 dBm. The TDM (Time Division Multiplex) method is employed in the MES to SET link, and the SSMA (Spread Spectrum Multiple Access) method is used in the SET to MES link.

  1. A numerical study of self-sustained oscillations in wind instruments

    Science.gov (United States)

    Rendon, Pablo L.; Velasco-Segura, Roberto

    2017-11-01

    The study of sustained notes in wind musical instruments in realistic conditions requires consideration of both excitation and propagation mechanisms, and the manner in which these two interact. Further, to model adequately acoustic propagation inside the instrument, a variety of competing effects must be taken into account, such as nonlinearity, thermoviscous attenuation and radiation at the open end. Physical solutions also involve some degree of feedback at the excitation end, and here we propose the simplest boundary conditions possible at this end, given by a simple harmonic oscillator with fixed stiffness. By feeding single-frequency acoustic waves into the system we are able to study the formation of self-sustained oscillations, which are stationary states associated with resonance frequencies, and also to observe transitory states. Visualizations are presented of waves traveling in both directions. As expected, resonance frequencies are dependent on the stiffness parameter, and this dependence is examined. The full-wave simulation is performed in the time domain over a 2D spatial domain assuming axial symmetry, and it is based on a previously validated open source code, using a finite volume method (FiVoNAGI) implemented in a GPU [Velasco-Segura & Rendn, 2015]. The authors acknowledge the financial support of DGAPA-UNAM through project PAPIIT IG100717.

  2. On the use of Satellite Remote Sensing and GIS to detect NO2 in the Troposphere

    DEFF Research Database (Denmark)

    Nielsen, Søren Zebitz

    2012-01-01

    This thesis studies the spatio-temporal patterns and trends in NO2 air pollution over Denmark using the satellite remote sensing product OMNO2e retrieved from the OMI instrument on the NASA AURA satellite. These data are related to in situ measurements of NO2 made at four rural and four urban...... measured in Denmark. Trends in the data are assessed and declining trends are seen over several European cities, whereas no significant trends are found in the Danish area. The mean distribution of NO2 from the satellite data is also used to evaluate the NOx emission inventory....

  3. Assimilation of GMS-5 satellite winds using nudging method with MM5

    Science.gov (United States)

    Gao, Shanhong; Wu, Zengmao; Yang, Bo

    2006-09-01

    With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.

  4. Satellite-borne study of seismic phenomena by low frequency magnetic field observations

    Science.gov (United States)

    Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Prattes, Gustav; Eichelberger, Hans-Ulrich; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong

    2015-04-01

    A combined scalar-vector magnetic field experiment will be flown on the upcoming CSES mission (China Seismo-Electromagnetic Satellite). Magnetic field data from DC to 30 Hz will be measured with an accuracy of about 10 pT. A fluxgate instrument will provide the 3 magnetic field components and a new type of an optically pumped magnetometer [see Pollinger, 2010] will measure the magnitude of the ambient magnetic field. The satellite will operate in a Sun synchronous polar orbit at an altitude of about 500 km and with an inclination of 97°. We present a model of magnetic field fluctuations in the upper ionosphere based on previous satellite observations and on a model of the lithospheric-atmospheric-ionospheric coupling. Pollinger et al., CDSM-a new scalar magnetometer, EGU General Assembly 2010

  5. Using Satellite Remote Sensing and Modelling for Insights into N02 Air Pollution and NO2 Emissions

    Science.gov (United States)

    Lamsal, L. N.; Martin, R. V.; Krotkov, N. A.; Bucsela, E. J.; Celarier, E. A.; vanDonkelaar, A.; Parrish, D.

    2012-01-01

    Nitrogen oxides (NO(x)) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO2 in the boundary layer. We infer ground-level NO2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NO(x) emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO2 measurements from OMI to estimate "top-down" surface NO(x) emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO2 column observations from OMI and the relationship between NO2 columns and NO(x) emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO(x) emissions. The emission updates offer an improved estimate of NO(x) that are critical to our understanding of air quality, acid deposition, and climate change.

  6. Influence of turbidity and clouds on satellite total ozone data over Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J.L. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain); Anton, M. [Granada Univ. (Spain). Dept. de Fisica Aplicada; Loyola, D. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Hernandez, E. [Madrid Univ. Complutense (Spain). Dept. Fisica de la Tierra II

    2010-07-01

    This article focuses on the comparison of the total ozone column data from three satellite instruments; Total Ozone Mapping Spectrometers (TOMS) on board the Earth Probe (EP), Ozone Monitoring Instrument (OMI) on board AURA and Global Ozone Monitoring Experiment (GOME) on board ERS/2, with ground-based measurement recorded by a well calibrated Brewer spectrophotometer located in Madrid during the period 1996-2008. A cluster classification based on solar radiation (global, direct and diffuse), cloudiness and aerosol index allow selecting hazy, cloudy, very cloudy and clear days. Thus, the differences between Brewer and satellite total ozone data for each cluster have been analyzed. The accuracy of EP-TOMS total ozone data is affected by moderate cloudiness, showing a mean absolute bias error (MABE) of 2.0%. In addition, the turbidity also has a significant influence on EP-TOMS total ozone data with a MABE {proportional_to}1.6%. Those data are in contrast with clear days with MABE {proportional_to}1.2%. The total ozone data derived from the OMI instrument show clear bias at clear and hazy days with small uncertainties ({proportional_to}0.8%). Finally, the total ozone observations obtained with the GOME instrument show a very smooth dependence with respect to clouds and turbidity, showing a robust retrieval algorithm over these conditions. (orig.)

  7. Satellite based Ocean Forecasting, the SOFT project

    Science.gov (United States)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  8. SACRA - global data sets of satellite-derived crop calendars for agricultural simulations: an estimation of a high-resolution crop calendar using satellite-sensed NDVI

    Science.gov (United States)

    Kotsuki, S.; Tanaka, K.

    2015-01-01

    To date, many studies have performed numerical estimations of food production and agricultural water demand to understand the present and future supply-demand relationship. A crop calendar (CC) is an essential input datum to estimate food production and agricultural water demand accurately with the numerical estimations. CC defines the date or month when farmers plant and harvest in cropland. This study aims to develop a new global data set of a satellite-derived crop calendar for agricultural simulations (SACRA) and reveal advantages and disadvantages of the satellite-derived CC compared to other global products. We estimate global CC at a spatial resolution of 5 min (≈10 km) using the satellite-sensed NDVI data, which corresponds well to vegetation growth and death on the land surface. We first demonstrate that SACRA shows similar spatial pattern in planting date compared to a census-based product. Moreover, SACRA reflects a variety of CC in the same administrative unit, since it uses high-resolution satellite data. However, a disadvantage is that the mixture of several crops in a grid is not considered in SACRA. We also address that the cultivation period of SACRA clearly corresponds to the time series of NDVI. Therefore, accuracy of SACRA depends on the accuracy of NDVI used for the CC estimation. Although SACRA shows different CC from a census-based product in some regions, multiple usages of the two products are useful to take into consideration the uncertainty of the CC. An advantage of SACRA compared to the census-based products is that SACRA provides not only planting/harvesting dates but also a peak date from the time series of NDVI data.

  9. The multispectral instrument of the Sentinel2 program

    Science.gov (United States)

    Cazaubiel, V.; Chorvalli, Vincent; Miesch, Christophe

    2017-11-01

    The Sentinel-2 program will provide a permanent record of comprehensive data to help inform the agricul-tural sector (utilisation, coverage), forestry industry (population, damage, forest fires), disaster control (management, early warning) and humanitarian relief programmes. Sentinel-2 will also be able to observe natural disasters such as floods, volcanic eruptions, subsidence and landslides. In the Sentinel-2 mission programme, Astrium in Friedrichshafen is responsible for the satellite's system design and platform, as well as for satellite integration and testing. Astrium Toulouse will supply the Multi-Spectral imaging Instrument (MSI), and Astrium Spain will be in charge of the satellite's structure and will produce its thermal equipment and cable harness. The industrial core team also comprises Jena Optronik (Germany), Boostec (France), Sener and GMV (Spain). Sentinel-2 is intended to image the Earth's landmasses from its orbit for at least 7.25 years. In addition, its onboardresources will be designed so that the mission can be prolonged by an extra five years. From 2012 onwards, the 1.1-metric-ton satellite will circle the Earth in a sun-synchronous, polar orbit at an altitude of 786kilometres, fully covering the planet's landmasses in just ten days. The multi-spectral instrument (MSI) will generate optical images in 13 spectral channels in the visible and shortwave infrared range down to a resolution of 10 metres with an image width of 290 kilometres. The instrument is composed of two main parts: • The telescope assembly , combining in one instrument both VNIR and SWIR channels, is mounted on the upper plate of the Bus • The Video and Compression Electronic Units mounted inside the Bus. This telescope is based on a Three Mirror Anastigmat optical concept. This three mirror optical combination is corrected from spherical aberration, coma and astigmatism. It provides a large field of view with very good optical quality. The telescope mirrors and

  10. Global change. Taking stock of a catastrophe. The use of satellite data for environmental protection and in developing countries

    International Nuclear Information System (INIS)

    Anon.

    1993-10-01

    The individual contributions deal primarily with the development of the climate; they want to render environmental processes transparent. Satellite data play an important part in forecasts of climate development: only satellites permit to realize the global dimension of climate. The numerous illustrations in the form of satellite images are to aid thinking in global dimensions. The use of environment satellites is a step beyond climate research. Further contributions discuss the uses of environment satellites during nature disasters, for the detection of environmental polluters and for the analysis of forest die-back in industrialized countries or rainforest clearfelling in the Amazon region. (KW) [de

  11. A Fiducial Reference Stie for Satellite Altimetry in Crete, Greece

    Science.gov (United States)

    Mertikas, Stelios; Donlon, Craig; Mavrocordatos, Constantin; Bojkov, Bojan; Femenias, Pierre; Parrinello, Tommaso; Picot, Nicolas; Desjonqueres, Jean-Damien; Andersen, Ole Baltazar

    2016-08-01

    With the advent of diverse satellite altimeters and variant measuring techniques, it has become mature in the scientific community, that an absolute reference Cal/Val site is regularly maintained to define, monitor, control the responses of any altimetric system.This work sets the ground for the establishment of a Fiducial Reference Site for ESA satellite altimetry in Gavdos and West Crete, Greece. It will consistently and reliably determine (a) absolute altimeter biases and their drifts; (b) relative bias among diverse missions; but also (c) continuously and independently connect different missions, on a common and reliable reference and also to SI-traceable measurements. Results from this fiducial reference site will be based on historic Cal/Val site measurement records, and will be the yardstick for building up capacity for monitoring climate change. This will be achieved by defining and assessing any satellite altimeter measurements to known, controlled and absolute reference signals with different techniques, processes and instrumentation.

  12. Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations

    Science.gov (United States)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Mommert, M.; Szakáts, R.; Müller, T.; Kiss, L. L.

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  13. Properties of the Irregular Satellite System around Uranus Inferred from K2 , Herschel , and Spitzer Observations

    Energy Technology Data Exchange (ETDEWEB)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Szakáts, R.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Mommert, M. [Department of Physics and Astronomy, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011 (United States); Müller, T., E-mail: farkas.aniko@csfk.mta.hu [Max-Plank-Institut für extraterrestrsiche Pyhsik, Garching (Germany)

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel /PACS and Spitzer /MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  14. Collage of Saturn's smaller satellites

    Science.gov (United States)

    1981-01-01

    This family portrait shows the smaller satellites of Saturn as viewed by Voyager 2 during its swing through the Saturnian system. The following chart corresponds to this composite photograph (distance from the planet increases from left to right) and lists names, standard numerical designations and approximate dimensions (radii where indicated) in kilometers: 1980S26Outer F-ringshepherd120 X 100 1980S1Leadingco-orbital220 X 160 1980S25TrailingTethys trojanradii: 25 1980S28Outer Ashepherdradii: 20 1980S27Inner F-ringco-orbital145 X 70 1980S3TrailingTethys trojan140 X 100 1980S13LeadingTethys trojanradii: 30 1980S6LeadingDione trojanradii: 30 These images have been scaled to show the satellites in true relative sizes. This set of small objects ranges in size from small asteroidal scales to nearly the size of Saturn's moon Mimas. They are probably fragments of somewhat larger bodies broken up during the bombardment period that followed accretion of the Saturnian system. Scientists believe they may be mostly icy bodies with a mixture of meteorite rock. They are somewhat less reflective than the larger satellites, suggesting that thermal evolution of the larger moons 'cleaned up' their icy surfaces. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  15. Numerical simulations of the metallicity distribution in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Ripamonti, E.; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.

    2006-01-01

    Abstract: Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf

  16. Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using instrumentation data and numerical modeling

    Directory of Open Access Journals (Sweden)

    Mohammad Rashidi

    2017-08-01

    Full Text Available In this study, the behavior of Gavoshan dam was evaluated during construction and the first impounding. A two-dimensional (2D numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis. These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model. Following that, by comparing the results of the numerical analysis with the measured values, it is indicated that there is a proper consistency between these two values. Moreover, it was observed that the dam performance was suitable regarding the induced pore water pressure, the pore water pressure ratio ru, settlement, induced stresses, arching degree, and hydraulic fracturing probability during the construction and initial impounding periods. The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction. In the following 6 years after construction (initial impounding and exploitation period, the accumulative settlement of the dam was 270 cm. It is clear that 88% of the total settlement of the dam took place during dam construction. The reason is that the clay core was smashed in the wet side, i.e. the optimum moisture content. Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding, the maximum amount of curving ratio in the upstream was 0.81, and the minimum (critical amount in the downstream was 0.52. It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.

  17. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    Science.gov (United States)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  18. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    Science.gov (United States)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  19. How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N.

    2017-12-01

    Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr-1 uncertainty (0.00008 W m-2 nm-1 yr-1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly

  20. A satellite constellation optimization for a regional GNSS remote sensing mission

    Science.gov (United States)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  1. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  2. Intercomparison of numerical simulations, satellite altimetry and glider observations in the Algerian Basin during fall 2014 and 2015: focus on a SARAL/AltiKa track

    Science.gov (United States)

    Aulicino, Giuseppe; Cotroneo, Yuri; Ruiz, Simon; Sanchez Roman, Antonio; Pascual, Ananda; Fusco, Giannetta; Tintoré, Joaquin; Budillon, Giorgio

    2017-04-01

    The Algerian Basin is a key-place for the study of the general circulation of the Western Mediterranean Sea and its role in reaction to climate change. The presence of both fresh Atlantic waters and more saline resident Mediterranean ones characterizes the basin with an intense inflow/outflow regime and complex circulation patterns. Very energetic mesoscale structures, that evolve from meander of the Algerian Current to isolated cyclonic and anti-cyclonic eddies, dominate the area with marked repercussions on the biological activity. Despite their remarkable importance, this region and its variability are still poorly known and basin-wide high resolution knowledge of its mesoscale and sub-mesoscale features is still incomplete. The monitoring of such complex processes requires a synergic approach that involves integrated observing systems. In recent years, several studies proved the advantages of the combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimeters. In this context, we present the first results of a new integrated oceanographic observing system built up in the Algerian Basin during fall 2014 and 2015, aiming at advancing our knowledge on its main features. The study was realized through the analysis of glider high resolutions three-dimensional observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) monitoring line, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. The achieved results confirm that glider derived dynamic height and SARAL/AltiKa absolute dynamic topography present similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Generally, the maximum discrepancies are located nearby the Balearic Islands and the Algerian Coast, but it is important to remark that the correlation coefficients seem to mostly depend on the synopticity between in situ and satellite measurements. Still, this study confirm that

  3. Propagation Characteristics of Electromagnetic Waves Recorded by the Four CLUSTER Satellites

    International Nuclear Information System (INIS)

    Parrot, M.; Santolik, O.; Cornilleau-Wehrlin, N.; Maksimovic, M.; Harvey, Ch.

    2001-01-01

    This paper will describe the methods we use to determine the propagation characteristics of electromagnetic waves observed by the four CLUSTER satellites. The data is recorded aboard CLUSTER by the STAFF (Spatio-Temporal Analysis of Field Fluctuations) spectrum analyser. This instrument has several modes of operation, and can provide the spectral matrix of three magnetic and two electric components. This spectral matrix is processed by a dedicated software (PRASSADCO: Propagation Analysis of STAFF-SA Data with Coherency Tests) in order to determine the wave normal directions with respect to the DC magnetic field. PRASSADCO also provides a number of alternative methods to estimate wave polarisation and propagation parameters, such as the Poynting vector, and the refractive index. It is therefore possible to detect the source extension of various electromagnetic waves using the 4 satellites. Results of this data processing will be shown here for one event observed by one satellite. (author)

  4. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    Science.gov (United States)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite

  5. TransCom satellite intercomparison experiment: construction of a bias corrected atmospheric CO2 climatology

    NARCIS (Netherlands)

    Saito, R.; Houweling, S.; Patra, P. K.; Belikov, D.; Lokupitiya, R.; Niwa, Y.; Chevallier, F.; Saeki, T.; Maksyutov, S.

    2011-01-01

    A model-based three-dimensional (3-D) climatology of atmospheric CO2 concentrations has been constructed for the analysis of satellite observations, as a priori information in retrieval calculations, and for preliminary evaluation of remote sensing products. The locations of ground-based instruments

  6. New Methods for Air Quality Model Evaluation with Satellite Data

    Science.gov (United States)

    Holloway, T.; Harkey, M.

    2015-12-01

    Despite major advances in the ability of satellites to detect gases and aerosols in the atmosphere, there remains significant, untapped potential to apply space-based data to air quality regulatory applications. Here, we showcase research findings geared toward increasing the relevance of satellite data to support operational air quality management, focused on model evaluation. Particular emphasis is given to nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument aboard the NASA Aura satellite, and evaluation of simulations from the EPA Community Multiscale Air Quality (CMAQ) model. This work is part of the NASA Air Quality Applied Sciences Team (AQAST), and is motivated by ongoing dialog with state and federal air quality management agencies. We present the response of satellite-derived NO2 to meteorological conditions, satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, and the ability of models to capture these sensitivities over the continental U.S. In the case of NO2-weather sensitivities, we find boundary layer height, wind speed, temperature, and relative humidity to be the most important variables in determining near-surface NO2 variability. CMAQ agreed with relationships observed in satellite data, as well as in ground-based data, over most regions. However, we find that the southwest U.S. is a problem area for CMAQ, where modeled NO2 responses to insolation, boundary layer height, and other variables are at odds with the observations. Our analyses utilize a software developed by our team, the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS): a free, open-source program designed to make satellite-derived air quality data more usable. WHIPS interpolates level 2 satellite retrievals onto a user-defined fixed grid, in effect creating custom-gridded level 3 satellite product. Currently, WHIPS can process the following data products: OMI NO2 (NASA retrieval); OMI NO2 (KNMI retrieval); OMI

  7. Evolutionary programming for neutron instrument optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, Phillip M. [Hahn-Meitner Institut, Glienicker Strasse 100, D-14109 Berlin (Germany)]. E-mail: phillip.bentley@hmi.de; Pappas, Catherine [Hahn-Meitner Institut, Glienicker Strasse 100, D-14109 Berlin (Germany); Habicht, Klaus [Hahn-Meitner Institut, Glienicker Strasse 100, D-14109 Berlin (Germany); Lelievre-Berna, Eddy [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)

    2006-11-15

    Virtual instruments based on Monte-Carlo techniques are now integral part of novel instrumentation development and the existing codes (McSTAS and Vitess) are extensively used to define and optimise novel instrumental concepts. Neutron spectrometers, however, involve a large number of parameters and their optimisation is often a complex and tedious procedure. Artificial intelligence algorithms are proving increasingly useful in such situations. Here, we present an automatic, reliable and scalable numerical optimisation concept based on the canonical genetic algorithm (GA). The algorithm was used to optimise the 3D magnetic field profile of the NSE spectrometer SPAN, at the HMI. We discuss the potential of the GA which combined with the existing Monte-Carlo codes (Vitess, McSTAS, etc.) leads to a very powerful tool for automated global optimisation of a general neutron scattering instrument, avoiding local optimum configurations.

  8. Evolutionary programming for neutron instrument optimisation

    International Nuclear Information System (INIS)

    Bentley, Phillip M.; Pappas, Catherine; Habicht, Klaus; Lelievre-Berna, Eddy

    2006-01-01

    Virtual instruments based on Monte-Carlo techniques are now integral part of novel instrumentation development and the existing codes (McSTAS and Vitess) are extensively used to define and optimise novel instrumental concepts. Neutron spectrometers, however, involve a large number of parameters and their optimisation is often a complex and tedious procedure. Artificial intelligence algorithms are proving increasingly useful in such situations. Here, we present an automatic, reliable and scalable numerical optimisation concept based on the canonical genetic algorithm (GA). The algorithm was used to optimise the 3D magnetic field profile of the NSE spectrometer SPAN, at the HMI. We discuss the potential of the GA which combined with the existing Monte-Carlo codes (Vitess, McSTAS, etc.) leads to a very powerful tool for automated global optimisation of a general neutron scattering instrument, avoiding local optimum configurations

  9. Passive correlation ranging of a geostationary satellite using DVB-S payload signals.

    Science.gov (United States)

    Shakun, Leonid; Shulga, Alexandr; Sybiryakova, Yevgeniya; Bushuev, Felix; Kaliuzhnyi, Mykola; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Balagura, Oleg

    2016-07-01

    Mukacheve-Mykolaiv. The standard deviations do not exceed 10 ns for the both pairs and the average values are equal +10 ns and -106 ns respectively for Kharkiv-Mykolaiv and Mukacheve-Mykolaiv. We discuss the residuals between the observed TDOA and estimates of the TDOA that are calculated by fitted models of satellite motion: the SGP4/SDP4 model and the model based on the numerical integration of the equations of motion taking into account the geopotential, and the perturbation from the Moon and the Sun. We note that residuals from the model SGP4/SDP4 have periodic deviations due to the inaccuracy of the SGP4/SDP4 model. As a result, estimation of the standard deviation of the satellite position is about 60 m for the epoch of the SGP4/SDP4 orbit elements. The residuals for the numerical model in the interval of one day do not show low-frequency deviation. In this case, the estimate of the standard deviation of the satellite position is about 12 m for the epoch of the numerical orbit elements. Keywords. DVB-S, geostationary satellite, orbit determination, passive ranging.

  10. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  11. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  12. QSAT: The Satellite for Polar Plasma Observation

    Science.gov (United States)

    Tsuruda, Yoshihiro; Fujimoto, Akiko; Kurahara, Naomi; Hanada, Toshiya; Yumoto, Kiyohumi; Cho, Mengu

    2009-04-01

    This paper introduces QSAT, the satellite for polar plasma observation. The QSAT project began in 2006 as an initiative by graduate students of Kyushu University, and has the potential to contribute greatly to IHY (International Heliophysical Year) by showing to the world the beauty, importance, and relevance of space science. The primary objectives of the QSAT mission are (1) to investigate plasma physics in the Earth’s aurora zone in order to better understand spacecraft charging, and (2) to conduct a comparison of the field-aligned current observed in orbit with ground-based observations. The QSAT project can provide education and research opportunities for students in an activity combining space sciences and satellite engineering. The QSAT satellite is designed to be launched in a piggyback fashion with the Japanese launch vehicle H-IIA. The spacecraft bus is being developed at the Department of Aeronautics and Astronautics of Kyushu University with collaboration of Fukuoka Institute of Technology. Regarding the payload instruments, the Space Environment Research Center of Kyushu University is developing the magnetometers, whereas the Laboratory of Spacecraft Environment Interaction Engineering of Kyushu Institute of Technology is developing the plasma probes. We aim to be ready for launch in 2009 or later.

  13. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  14. A Comprehensive Plan for the Long-Term Calibration and Validation of Oceanic Biogeochemical Satellite Data

    Science.gov (United States)

    Hooker, Stanford B.; McClain, Charles R.; Mannino, Antonio

    2007-01-01

    The primary objective of this planning document is to establish a long-term capability and validating oceanic biogeochemical satellite data. It is a pragmatic solution to a practical problem based primarily o the lessons learned from prior satellite missions. All of the plan's elements are seen to be interdependent, so a horizontal organizational scheme is anticipated wherein the overall leadership comes from the NASA Ocean Biology and Biogeochemistry (OBB) Program Manager and the entire enterprise is split into two components of equal sature: calibration and validation plus satellite data processing. The detailed elements of the activity are based on the basic tasks of the two main components plus the current objectives of the Carbon Cycle and Ecosystems Roadmap. The former is distinguished by an internal core set of responsibilities and the latter is facilitated through an external connecting-core ring of competed or contracted activities. The core elements for the calibration and validation component include a) publish protocols and performance metrics; b) verify uncertainty budgets; c) manage the development and evaluation of instrumentation; and d) coordinate international partnerships. The core elements for the satellite data processing component are e) process and reprocess multisensor data; f) acquire, distribute, and archive data products; and g) implement new data products. Both components have shared responsibilities for initializing and temporally monitoring satellite calibration. Connecting-core elements include (but are not restricted to) atmospheric correction and characterization, standards and traceability, instrument and analysis round robins, field campaigns and vicarious calibration sites, in situ database, bio-optical algorithm (and product) validation, satellite characterization and vicarious calibration, and image processing software. The plan also includes an accountability process, creating a Calibration and Validation Team (to help manage

  15. Precise Determination of the Baseline Between the TerraSAR-X and TanDEM-X Satellites

    Science.gov (United States)

    Koenig, Rolf; Rothacher, Markus; Michalak, Grzegorz; Moon, Yongjin

    TerraSAR-X, launched on June 15, 2007, and TanDEM-X, to be launched in September 2009, both carry the Tracking, Occultation and Ranging (TOR) category A payload instrument package. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), for precise orbit determination and atmospheric sounding and a Laser retro-reflector (LRR) serving as target for the global Satellite Laser Ranging (SLR) ground station network. The TOR is supplied by the GeoForschungsZentrum Potsdam (GFZ) Germany, and the Center for Space Research (CSR), Austin, Texas. The objective of the German/US collaboration is twofold: provision of atmospheric profiles for use in numerical weather predictions and climate studies from the occultation data and precision SAR data processing based on precise orbits and atmospheric products. For the scientific objectives of the TanDEM- X mission, i.e., bi-static SAR together with TerraSAR-X, the dual-frequency GPS receiver is of vital importance for the millimeter level determination of the baseline or distance between the two spacecrafts. The paper discusses the feasibility of generating millimeter baselines by the example of GRACE, where for validation the distance between the two GRACE satellites is directly available from the micrometer-level intersatellite link measurements. The distance of the GRACE satellites is some 200 km, the distance of the TerraSAR-X/TanDEM-X formation will be some 200 meters. Therefore the proposed approach is then subject to a simulation of the foreseen TerraSAR-X/TanDEM-X formation. The effect of varying space environmental conditions, of possible phase center variations, multi path, and of varying center of mass of the spacecrafts are evaluated and discussed.

  16. Effective cloud fractions from the Ozone Monitoring Instrument: theoretical framework and validation

    NARCIS (Netherlands)

    Stammes, P.; Sneep, M.; Haan, de J.F.; Veefkind, J.P.; Wang, P.; Levelt, P.F.

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's EOS-Aura satellite is measuring ozone, NO2, and other trace gases with daily global coverage. To correct these trace gas retrievals for the presence of clouds, there are two OMI cloud products, based on different physical processes,

  17. Experimental design and quality assurance: in situ fluorescence instrumentation

    Science.gov (United States)

    Conmy, Robyn N.; Del Castillo, Carlos E.; Downing, Bryan D.; Chen, Robert F.

    2014-01-01

    Both instrument design and capabilities of fluorescence spectroscopy have greatly advanced over the last several decades. Advancements include solid-state excitation sources, integration of fiber optic technology, highly sensitive multichannel detectors, rapid-scan monochromators, sensitive spectral correction techniques, and improve data manipulation software (Christian et al., 1981, Lochmuller and Saavedra, 1986; Cabniss and Shuman, 1987; Lakowicz, 2006; Hudson et al., 2007). The cumulative effect of these improvements have pushed the limits and expanded the application of fluorescence techniques to numerous scientific research fields. One of the more powerful advancements is the ability to obtain in situ fluorescence measurements of natural waters (Moore, 1994). The development of submersible fluorescence instruments has been made possible by component miniaturization and power reduction including advances in light sources technologies (light-emitting diodes, xenon lamps, ultraviolet [UV] lasers) and the compatible integration of new optical instruments with various sampling platforms (Twardowski et at., 2005 and references therein). The development of robust field sensors skirt the need for cumbersome and or time-consuming filtration techniques, the potential artifacts associated with sample storage, and coarse sampling designs by increasing spatiotemporal resolution (Chen, 1999; Robinson and Glenn, 1999). The ability to obtain rapid, high-quality, highly sensitive measurements over steep gradients has revolutionized investigations of dissolved organic matter (DOM) optical properties, thereby enabling researchers to address novel biogeochemical questions regarding colored or chromophoric DOM (CDOM). This chapter is dedicated to the origin, design, calibration, and use of in situ field fluorometers. It will serve as a review of considerations to be accounted for during the operation of fluorescence field sensors and call attention to areas of concern when making

  18. Investigation of snow cover dust pollution by contact and satellite observations

    Science.gov (United States)

    Raputa, Vladimir F.; Yaroslavtseva, Tatyana V.

    2015-11-01

    The problems of reconstructing the snow cover pollution fields from dusting, point, linear and area sources according to ground and satellite observations are considered. Using reconstruction models, the methods of the combined analysis of the characteristic images of snow cover pollution haloes in the vicinity of sources of dust and contact data observations have been developed. On the basis of the numerical data analysis of ground monitoring and satellite imagery, the stable quantitative regularities between the fields of dust fallouts and the intensity of a change of tones of gray in the radial directions relative to the main sources are identified.

  19. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    Science.gov (United States)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  20. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  1. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  2. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  3. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  4. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  5. CRITICAL ANALYSIS OF THEIR RISK FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    CARUNTU GENU ALEXANDRU

    2013-12-01

    Full Text Available In the last decade, accounting for financial instruments has experienced a revolution, following the publication of accounting rules on recognition and measurement of these instruments saddle. Need to develop standards for financial instruments appeared on the background of explosion using derivatives and the markets in which they are traded, and as a result of numerous financial scandals that rocked developed countries in the last decade. These were based, among other causes, improper use of derivatives and hiding their disastrous effects of poor management by keeping them off balance and failure to provide related information in the notes of the financial statements.

  6. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015)

    OpenAIRE

    Honda, Takumi; Miyoshi, Takemasa; Lien, Guo-Yuan; Nishizawa, Seiya; Yoshida, Ryuji; Adachi, Sachiho A.; Terasaki, Koji; Okamoto, Kozo; Tomita, Hirofumi; Bessho, Kotaro

    2018-01-01

    Japan’s new geostationary satellite Himawari-8, the first of a series of the third-generation geostationary meteorological satellites includingGOES-16, has been operational since July 2015. Himawari-8 produces highresolution observations with 16 frequency bands every 10 min for full disk, and every 2.5 min for local regions. This study aims to assimilate all-sky every-10-min infrared (IR) radiances from Himawari-8 with a regional numerical weather prediction model and to investigate its impac...

  7. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  8. An optical sensor network for vegetation phenology monitoring and satellite data calibration

    DEFF Research Database (Denmark)

    Eklundh, L.; Jin, H.; Schubert, P.

    2011-01-01

    -board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations......We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located...... and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity....

  9. Instrument for observing transient cosmic gamma-ray sources for the ISEE-C Heliocentric spacecraft

    International Nuclear Information System (INIS)

    Evans, W.D.; Aiello, W.P.; Klebesadel, R.W.

    1977-12-01

    Satellite instrumentation that would serve as one element of a three-satellite network to provide precise directional information for the recently discovered cosmic gamma-ray bursts is described. The proposed network would be capable of determining source locations with uncertainties of less than one arc minute, sufficient for a meaningful optical and radio search. The association of the gamma bursts with a known type of astrophysical object provides the most direct method for establishing source distances and thus defining the overall energetics of the emission process

  10. Habitats used by black and surf scoters in eastern North America as determined by satellite radio telemetry

    Science.gov (United States)

    Perry, M.C.; Kidwell, D.M.; Wells-Berlin, A. M.; Lohnes, E.J.R.; Olsen, Glenn H.; Osenton, P.C.

    2005-01-01

    Satellite radio telemetry was used to determine the movements and habitats of black scoters (Melanitta nigra) and surf scoters (Melanitta perspicillata) in eastern North America. A total of 21 surf scoters were instrumented during five years (2001-05) and 32 black scoters were instrumented during three years (2002-04) with implanted PTT 100 satellite transmitters (39 g) with external antenna. Nesting habitat of black scoters was more open than surf scoters (44% vs. 11%), whereas nesting habitat for surf scoters was located in more forested areas (66% vs. 20%). Locations of black scoters in breeding areas on average were at significantly higher latitude and lower elevations than sites used by surf scoters. Satellite telemetry determined that James Bay was the major molting area for male black and surf scoters, although some males molted along the coast of Labrador-Newfoundland. Black scoters instrumented on the Restigouche River, which is a major staging area, were widely distributed along the Atlantic Coast from Cape Cod to Georgia during winter. Major wintering areas for black scoters were Cape Cod (Martha's Vineyard and Nantucket Island), Long Island, and New Jersey. In these northern marine wintering areas, black scoters were located farther from shore (4.2 km) and in deeper water (8.3 m) than black scoters in more southern estuarine areas, where distance from shore was 3.1 km and water depth was 5.2 m. Surf scoters instrumented in Chesapeake Bay in late winter showed a strong tendency to return to the Bay the following winter after they had migrated to and from breeding areas. In Chesapeake Bay, black scoters and surf scoters were located mostly in mesohaline areas that had similar water depths (5.1 m vs. 7.5 m) and distances from shore (3.0 km vs. 2.9 km). Distance from shore and depth of water increased over time during the winter for both species. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on

  11. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  12. Description and performance of the OGSE for VNIR absolute spectroradiometric calibration of MTG-I satellites

    Science.gov (United States)

    Glastre, W.; Marque, J.; Compain, E.; Deep, A.; Durand, Y.; Aminou, D. M. A.

    2017-09-01

    The Meteosat Third Generation (MTG) Programme is being realised through the well-established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit. This will be achieved through a series of 6 satellites named MTG-I and MTG-S to bring to the meteorological community continuous high spatial, spectral and temporal resolution observations and geophysical parameters of the Earth based on sensors from the geo-stationary orbit. In particular, the imagery mission MTG-I will bring an improved continuation of the MSG satellites series with the Flexible Combined Imager (FCI) a broad spectral range (from UV to LWIR) with better spatial and spectral resolutions. The FCI will be able to take high spatial resolution pictures of the Earth within 8 VNIR and 8 IR channels. As one of the mission of this instrument is to provide a quantitative analysis of atmosphere compounds, the absolute observed radiance needs to be known with a specified accuracy for VNIR as low as to 5% at k=3 over its full dynamic. While the FCI is regularly recalibrated every 6 month at equinoxes, it is however requiring initial ground calibration for the beginning of its mission. The Multi Optical Test Assembly (MOTA) is one of the Optical Ground Support Equipment (OGSE) dedicated to various missions necessary for the integration of the FCI . This equipment, provided by Bertin Technologies, will be delivered to TAS-F by the end of 2016. One of its mission, is the on-ground absolute calibration of VNIR channels. In order to handle this, the MOTA will be placed in front of the FCI under representative vacuum conditions and will be able to project a perfectly known, calibrated radiance level within the full dynamic of FCI instrument. The main difficulty is the very demanding calibration level with

  13. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    Science.gov (United States)

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081

  14. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  15. Environmental Satellite Models for a Macroeconomic Model

    International Nuclear Information System (INIS)

    Moeller, F.; Grinderslev, D.; Werner, M.

    2003-01-01

    To support national environmental policy, it is desirable to forecast and analyse environmental indicators consistently with economic variables. However, environmental indicators are physical measures linked to physical activities that are not specified in economic models. One way to deal with this is to develop environmental satellite models linked to economic models. The system of models presented gives a frame of reference where emissions of greenhouse gases, acid gases, and leaching of nutrients to the aquatic environment are analysed in line with - and consistently with - macroeconomic variables. This paper gives an overview of the data and the satellite models. Finally, the results of applying the model system to calculate the impacts on emissions and the economy are reviewed in a few illustrative examples. The models have been developed for Denmark; however, most of the environmental data used are from the CORINAIR system implemented in numerous countries

  16. A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation

    Science.gov (United States)

    Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef

    2016-08-01

    Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging

  17. Numerical modeling and remote sensing of global water management systems: Applications for land surface modeling, satellite missions, and sustainable water resources

    Science.gov (United States)

    Solander, Kurt C.

    The ability to accurately quantify water storages and fluxes in water management systems through observations or models is of increasing importance due to the expected impacts from climate change and population growth worldwide. Here, I describe three innovative techniques developed to better understand this problem. First, a model was created to represent reservoir storage and outflow with the objective of integration into a Land Surface Model (LSM) to simulate the impacts of reservoir management on the climate system. Given this goal, storage capacity represented the lone model input required that is not already available to an LSM user. Model parameterization was linked to air temperature to allow future simulations to adapt to a changing climate, making it the first such model to mimic the potential response of a reservoir operator to climate change. Second, spatial and temporal error properties of future NASA Surface Water and Ocean Topography (SWOT) satellite reservoir operations were quantified. This work invoked the use of the SWOTsim instrument simulator, which was run over a number of synthetic and actual reservoirs so the resulting error properties could be extrapolated to the global scale. The results provide eventual users of SWOT data with a blueprint of expected reservoir error properties so such characteristics can be determined a priori for a reservoir given knowledge about its topology and anticipated repeat orbit pass over its location. Finally, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission was used in conjunction with in-situ water use records to evaluate sustainable water use at the two-digit HUC basin scale over the contiguous United States. Results indicate that the least sustainable water management region is centered in the southwest, where consumptive water use exceeded water availability by over 100% on average for some of these basins. This work represents the first attempt at evaluating sustainable

  18. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    Science.gov (United States)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  19. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  20. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  1. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Science.gov (United States)

    Kuhlmann, G.; Hartl, A.; Cheung, H. M.; Lam, Y. F.; Wenig, M. O.

    2014-02-01

    The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2) onto a longitude-latitude grid (level 3). The algorithm is designed for the Ozone Monitoring Instrument (OMI) and can easily be employed for similar instruments - for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI). Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly developed gridding

  2. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2014-02-01

    Full Text Available The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2 onto a longitude–latitude grid (level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can easily be employed for similar instruments – for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly

  3. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    Science.gov (United States)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  4. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument

    NARCIS (Netherlands)

    Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, Kai; Levelt, P.F.

    2007-01-01

    We report the first daily observations of sulfur dioxide (SO2) emissions from copper smelters by a satellite-borne sensor - the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura spacecraft. Emissions from two Peruvian smelters (La Oroya and Ilo) were detected in up to 80% of OMI overpasses

  5. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  6. Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Pena Diaz, Alfredo; Badger, Merete

    2014-01-01

    The QuikSCAT mission provided valuable daily information on global ocean wind speed and direction from July 1999 until November 2009 for various applications including numerical weather prediction, ocean and atmospheric modelling. One new and important application for wind vector satellite data i...

  7. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions

    International Nuclear Information System (INIS)

    Dos Santos, Josué C; Zanardi, Maria Cecília; Matos, Nicholas

    2013-01-01

    This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion

  8. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  9. An Interactive Multi-instrument Database of Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Sadykov, Viacheslav M; Kosovichev, Alexander G; Oria, Vincent; Nita, Gelu M [Center for Computational Heliophysics, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2017-07-01

    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ -rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/). The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability of observations by a particular set of instruments. Currently, the data from three primary flare lists ( Geostationary Operational Environmental Satellites , RHESSI , and HEK) and a variety of other event catalogs ( Hinode , Fermi GBM, Konus- W IND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs ( IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.

  10. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Directory of Open Access Journals (Sweden)

    M. Ern

    2018-04-01

    Full Text Available Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs and chemistry climate models (CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE. GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER. Typical distributions (zonal averages and global maps of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  11. Instrumentation between science, state and industry

    CERN Document Server

    Shinn, Terry

    2001-01-01

    these. In this book, we appropriate their conception of research-technology, and ex­ tend it to many other phenomena which are less stable and less localized in time and space than the Zeeman/Cotton situation. In the following pages, we use the concept for instances where research activities are orientated primarily toward technologies which facilitate both the production of scientific knowledge and the production of other goods. In particular, we use the tenn for instances where instruments and meth­ ods· traverse numerous geographic and institutional boundaries; that is, fields dis­ tinctly different and distant from the instruments' and methods' initial focus. We suggest that instruments such as the ultra-centrifuge, and the trajectories of the men who devise such artefacts, diverge in an interesting way from other fonns of artefacts and careers in science, metrology and engineering with which students of science and technology are more familiar. The instrument systems developed by re­ search-technolo...

  12. Satellite Contamination and Materials Outgassing Knowledge base

    Science.gov (United States)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  13. Using GPS RO L1 data for calibration of the atmospheric path delay model for data reduction of the satellite altimetery observations.

    Science.gov (United States)

    Petrov, L.

    2017-12-01

    Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.

  14. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  15. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  16. Inter-satellite calibration of FengYun 3 medium energy electron fluxes with POES electron measurements

    Science.gov (United States)

    Zhang, Yang; Ni, Binbin; Xiang, Zheng; Zhang, Xianguo; Zhang, Xiaoxin; Gu, Xudong; Fu, Song; Cao, Xing; Zou, Zhengyang

    2018-05-01

    We perform an L-shell dependent inter-satellite calibration of FengYun 3 medium energy electron measurements with POES measurements based on rough orbital conjunctions within 5 min × 0.1 L × 0.5 MLT. By comparing electron flux data between the U.S. Polar Orbiting Environmental Satellites (POES) and Chinese sun-synchronous satellites including FY-3B and FY-3C for a whole year of 2014, we attempt to remove less reliable data and evaluate systematic uncertainties associated with the FY-3B and FY-3C datasets, expecting to quantify the inter-satellite calibration factors for the 150-350 keV energy channel at L = 2-7. Compared to the POES data, the FY-3B and FY-3C data generally exhibit a similar trend of electron flux variations but more or less underestimate them within a factor of 5 for the medium electron energy 150-350 keV channel. Good consistency in the flux conjunctions after the inter-calibration procedures gives us certain confidence to generalize our method to calibrate electron flux measurements from various satellite instruments.

  17. Assesment of a soil moisture retrieval with numerical weather prediction model temperature

    Science.gov (United States)

    The effect of using a Numerical Weather Prediction (NWP) soil temperature product instead of estimates provided by concurrent 37 GHz data on satellite-based passive microwave retrieval of soil moisture retrieval was evaluated. This was prompted by the change in system configuration of preceding mult...

  18. Ambiguity resolution for satellite Doppler positioning systems

    Science.gov (United States)

    Argentiero, P.; Marini, J.

    1979-01-01

    The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.

  19. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  20. On Variability in Satellite Terrestrial Chlorophyll Fluorescence Measurements: Relationships with Phenology and Ecosystem-Atmosphere Carbon Exchange, Vegetation Structure, Clouds, and Sun-Satellite Geometry

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Guanter, L.; Zhang, Y.; Vasilkov, A. P.; Schaefer, K. M.; Huemmrich, K. F.; Middleton, E.; Koehler, P.; Jung, M.; Tucker, C. J.; Lyapustin, A.; Wang, Y.; Frankenberg, C.; Berry, J. A.; Koster, R. D.; Reichle, R. H.; Lee, J. E.; Kawa, S. R.; Collatz, G. J.; Walker, G. K.; Van der Tol, C.

    2014-12-01

    Over the past several years, there have been several breakthroughs in our ability to detect the very small fluorescence emitted by chlorophyll in vegetation globally from space. There are now multiple instruments in space capable of measuring this signal at varying temporal and spatial resolutions. We will review the state-of-the-art with respect to these relatively new satellite measurements and ongoing studies that examine the relationships with photosynthesis. Now that we have a data record spanning more than seven years, we can examine variations due to seasonal carbon uptake, interannual variability, land-use changes, and water and temperature stress. In addition, we examine how clouds and satellite viewing geometry impact the signal. We compare and contrast these variations with those from popular vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), related to the potential photosynthesis as well as with measurements from flux tower gas exchange measurements and other model-based estimates of Global Primary Productivity (GPP). Vegetation fluorescence can be simulated in global vegetation models as well as with 1D canopy radiative transport models. We will describe how the satellite fluorescence data are being used to evaluate and potentially improve these models.

  1. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  2. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  3. Observational cosmology with the Planck satellite: study of some systematic effects of the HFI instrument and of the ionisation of the Universe

    International Nuclear Information System (INIS)

    Sanselme, Lilian

    2013-01-01

    The Planck satellite was designed to perform the ultimate measurement of the primary fluctuations of the cosmic microwave background (CMB), and to improve on the existing polarization constraints. In this framework, the first part of this thesis focusses on the data processing of Planck's high frequency instrument. In particular, the statistical properties of the noise have been tested. This has allowed us to identify systematic effects in the noise estimator, among which some have been corrected. The selection of the data to be projected on the maps, along with its quality validation, are then presented. Comparing this selection to a case where the criteria are much more severe, we conclude that any residual imperfections in the selected data are negligible. We also show that the data validated for scientific use meet the requirements of gaussianity and stationarity: instrumental effects will not influence cosmological conclusions. The second part of this document deals with the scientific interpretation of these data. The concordance model is presented along with the main 2013 results released by the Planck collaboration. Finally, the third part is dedicated to two phenomenological studies of the ionization of the Universe. First, the influence of dark matter annihilation on the CMB spectrum is investigated: we develop a method to measure the impact of uncertainties in the thermodynamical processes at play and conclude that the parameters associated to dark matter annihilation are not strongly dependent on the underlying hypotheses used to model the energy deposition in the plasma. Second, the epoch of reionization and its role on the CMB spectrum is presented, along with an analysis of the parametrization of the ionization fraction. We show the reliability of different algorithms in the case where the ionization fraction is piecewise-constant, i.e. even in the presence of strong discontinuities. (author)

  4. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2001-09-01

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  5. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  6. A mathematical model for describing the mechanical behaviour of root canal instruments.

    Science.gov (United States)

    Zhang, E W; Cheung, G S P; Zheng, Y F

    2011-01-01

    The purpose of this study was to establish a general mathematical model for describing the mechanical behaviour of root canal instruments by combining a theoretical analytical approach with a numerical finite-element method. Mathematical formulas representing the longitudinal (taper, helical angle and pitch) and cross-sectional configurations and area, the bending and torsional inertia, the curvature of the boundary point and the (geometry of) loading condition were derived. Torsional and bending stresses and the resultant deformation were expressed mathematically as a function of these geometric parameters, modulus of elasticity of the material and the applied load. As illustrations, three brands of NiTi endodontic files of different cross-sectional configurations (ProTaper, Hero 642, and Mani NRT) were analysed under pure torsion and pure bending situation by entering the model into a finite-element analysis package (ANSYS). Numerical results confirmed that mathematical models were a feasible method to analyse the mechanical properties and predict the stress and deformation for root canal instruments during root canal preparation. Mathematical and numerical model can be a suitable way to examine mechanical behaviours as a criterion of the instrument design and to predict the stress and strain experienced by the endodontic instruments during root canal preparation. © 2010 International Endodontic Journal.

  7. Four identical satellites investigating the Earth's turbulent relationship with the Sun

    Science.gov (United States)

    1996-05-01

    ", explains Rudolf Schmidt, Cluster Project Scientist at ESA. With its four satellites and the ultrasensitive measuring instruments on board, Cluster offers unprecedented facilities for finding answers to these questions. Unlike all the previous probes that have travelled through the magnetosphere individually or two at a time at most, Cluster will take simultaneous measurements from four points in space. It will therefore deliver information on the three- dimensional structures of the phenomena it records and separate data on changes in them over time. Scientists are therefore expecting to obtain an infinitely more detailed description of the system of gases, currents and fields in perpetual motion making up the Earth's electromagnetic environment. The satellites will be on a 125 000 km x 25 000 km orbit, flying in tetrahedral formation, the distances between them varying from 200 to 20 000 kilometres. Four identical scientific jewels Each of the spacecraft is cylindrical in shape, 2.9 metres in diameter and 1.3 metres in height, with a mass of 1.2 tonnes of which 54% is accounted for by propellant, most of which will be consumed in hoisting the craft up to its working orbit. During the mission the satellites will be spin-stabilised, at 15 rpm. Under the effect of this movement, four 50 m wire booms carrying electrical field instruments will be deployed transversely, along with two 5 m booms carrying magnetic sensors. Each of the craft will be a high-performance laboratory flying eleven instruments to measure electromagnetic fields, radio waves and noise, electrons and ionised atoms in the medium. Waves emitted by the magnetosphere at frequencies between 10 and 400 kilohertz will be recorded and analysed. Electric and magnetic fields will be measured to within a few microvolts per metre and 0.25 nanoteslas (one millionth of the magnetic field detected by a compass on the Earth's surface). Electrons with energies of up to 400 kiloelectronvolts and ions up to 1500

  8. Stability of a dual-spin satellite with two dampers

    Science.gov (United States)

    Alfriend, K. T.; Hubert, C. H.

    1974-01-01

    The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.

  9. Radiometric Cross-Calibration of the Chilean Satellite FASat-C Using RapidEye and EO-1 Hyperion Data and a Simultaneous Nadir Overpass Approach

    Directory of Open Access Journals (Sweden)

    Carolina Barrientos

    2016-07-01

    Full Text Available The absolute radiometric calibration of a satellite sensor is the critical factor that ensures the usefulness of the acquired data for quantitative applications on remote sensing. This work presents the results of the first cross-calibration of the sensor on board the Sistema Satelital de Observación de la Tierra (SSOT Chilean satellite or Air Force Satellite FASat-C. RapidEye-MSI was chosen as the reference sensor, and a simultaneous Nadir Overpass Approach (SNO was applied. The biases caused by differences in the spectral responses of both instruments were compensated through an adjustment factor derived from EO-1 Hyperion data. Through this method, the variations affecting the radiometric response of New AstroSat Optical Modular Instrument (NAOMI-1, have been corrected based on collections over the Frenchman Flat calibration site. The results of a preliminary evaluation of the pre-flight and updated coefficients have shown a significant improvement in the accuracy of at-sensor radiances and TOA reflectances: an average agreement of 2.63% (RMSE was achieved for the multispectral bands of both instruments. This research will provide a basis for the continuity of calibration and validation tasks of future Chilean space missions.

  10. Analysis of 3-dimensional Hydro-dynamical Model Simulation in the Gulf of Kutch, India and Its Comparison with Satellite Data

    Digital Repository Service at National Institute of Oceanography (India)

    Osawa, T.; Zhao, C.; Kunte, P.D.; Ae, L.S.; Hara, M.; Moriyama, T.

    temperature, relative humidity and cloud fraction are obtained from Da Silva et al. (1994) climatic data sets from 1984-1991. Figure 2b shows the air temperature and the relative humidity above sea surface, and we can see that the temperature changes from 22... to monitor the variation of environment in the enclosed Gulf. Satellite data could provide cloud fraction from NOAA/AVHRR or other meteorological satellites. Making full use of satellite observations and combining with numerical model simulation will give...

  11. Multi-Instrument Investigation of Ionospheric Flow Channels and Their Impact on the Ionosphere and Thermosphere during Geomagnetic Storms

    Science.gov (United States)

    2017-12-29

    AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to

  12. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  13. Thermal architecture design tests for the Planck/HFI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Piat, M.; Leriche, B.; Torre, J.-P.; Lamarre, J.-M.; Benoit, A.; Crussaire, J.-P

    2000-04-07

    The ESA satellite project Planck is designed to survey the sky at sub-millimetre and millimetre wavelengths in a drift scan mode. The High-Frequency Instrument (HFI) will use 48 bolometers cooled to 100 mK by a dilution cooler. In this paper, we describe how the scan strategy leads to requirements on the 0.1 K stage temperature stability and how a combination of a passive and an active system can be used to approach this specification.

  14. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  15. Estimations of natural variability between satellite measurements of trace species concentrations

    Science.gov (United States)

    Sheese, P.; Walker, K. A.; Boone, C. D.; Degenstein, D. A.; Kolonjari, F.; Plummer, D. A.; von Clarmann, T.

    2017-12-01

    In order to validate satellite measurements of atmospheric states, it is necessary to understand the range of random and systematic errors inherent in the measurements. On occasions where the measurements do not agree within those errors, a common "go-to" explanation is that the unexplained difference can be chalked up to "natural variability". However, the expected natural variability is often left ambiguous and rarely quantified. This study will look to quantify the expected natural variability of both O3 and NO2 between two satellite instruments: ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and OSIRIS (Optical Spectrograph and Infrared Imaging System). By sampling the CMAM30 (30-year specified dynamics simulation of the Canadian Middle Atmosphere Model) climate chemistry model throughout the upper troposphere and stratosphere at times and geolocations of coincident ACE-FTS and OSIRIS measurements at varying coincidence criteria, height-dependent expected values of O3 and NO2 variability will be estimated and reported on. The results could also be used to better optimize the coincidence criteria used in satellite measurement validation studies.

  16. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  17. Artificial intelligence in a mission operations and satellite test environment

    Science.gov (United States)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  18. True Colour Classification of Natural Waters with Medium-Spectral Resolution Satellites: SeaWiFS, MODIS, MERIS and OLCI

    Directory of Open Access Journals (Sweden)

    Hendrik J. van der Woerd

    2015-10-01

    Full Text Available The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10 of narrow (≈10 nm bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α. Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.

  19. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  20. Touchless attitude correction for satellite with constant magnetic moment

    Science.gov (United States)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  1. About mechanisms of tetonic activity of the satellites

    Science.gov (United States)

    Barkin, Yu. V.

    2003-04-01

    analytical formulae. Obtained theoretical evaluations of the force and power characteristics are in good agreement with observational date and in particular they explain some from the well known problems of planetology. The following phenomena obtain an explanation: 1. Higher endogenous activity of Io; 2. Europe crack systems; 3. high endogenous activity of Ganimede, Titan, Miranda, Enceladus, Ariel. Well known relations of tectonic activity between satellites: Ariel and Umbriel, Reiha and Diona, Titania and Oberon have been explained in terms of numerical values of force and energy characteristics. Conclusion about high endogenous activity of Titan also presents important interest. The work was accepted and financed by RFBR grant N 02-05-64176 and by grant SAB2000-0235 of Ministry of Education of Spain (Secretaria de Estado de Educacion y Universidades).

  2. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  3. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  4. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Science.gov (United States)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658" target="_blank">https://doi.org/10.1594/PANGAEA.879658.

  5. Sac-D Aquarius a Satellite for Ocean, Climate and Environment. One Year of Data

    Science.gov (United States)

    Torrusio, S.; Lagerloef, G.; Rabolli, M.; LeVine, D.

    2012-07-01

    The SAC-D/Aquarius satellite was launched in June 10, 2011. It's a joint mission between Argentina (through CONAE) and US (NASA). This satellite is a true Observatory with a suite of sensors for Earth Observation, its weight is 1400 kg, sun-synchronous orbit at 657 km (6 pm ascendant node), revisit of seven days. Other space agencies have contributed with instruments and support (facilities and ground segment), as CNES, CSI, ASI and AEB/INPE. The primary objective is to monitor global variations in ocean surface salinity (SSS) in order to improve the knowledge about ocean circulation, water cycle and climate. The SSS is performed with Aquarius instrument (NASA). Other oceanic and atmospheric parameters are measured with a MWR, from CONAE, in K and Ka band, as wind speed, rain rate, sea ice, water vapour and liquid water in clouds. The thermal camera (NIRST) estimates sea surface temperature and detect high temperature events (fires and volcanic eruptions). The High Sensitivity Camera (HSC) generates night images (very useful for fishery activity monitoring in the sea, studying of electrical storms, polar auroras and urban application). The DCS (Data Collection System, from CONAE) can receive meteorological and environmental data from ground platforms and distribute among users. The TDP (Technological Demonstration Package, from CONAE) measures different parameters of satellite position and velocity. Other two important instruments are ROSA (from Italy) and CARMEN 1 (from France). The first is an atmospheric sounder, it allows elaborating atmospheric profiles of temperature, pressure and humidity, and the second has detectors for studies of space debris and the effects of radiation on electronic devices. This work provides a review of the first year of data, including the status of calibration and validation, other finding and at the same time we want to present the progress in the active educational and outreach program including the information of SAC-D Aquarius

  6. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  7. Numerical Simulation and Forecast of Equatorial Spread F Under Realistic Postsunset Conditions

    Science.gov (United States)

    2012-01-30

    VEFI instrument consists of an electric field meter, a fluxgate magnetometer , an optical lightning detector, and a fixed-bias Langmuir probe. Among... magnetometer measurements) and (IVM) ion density measurements with the respective orbital information tabulated below (geographic and magnetic coordinates...currents are also necessary to account for spaceborne magnetometer measurements, such as those produced routinely by the CHAMP satellite during ESF

  8. The CFRP primary structure of the MIRI instrument onboard the James Webb Space Telescope

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J

    2004-01-01

    The design of the Primary Structure of the Mid Infra-Red Instrument (MIRI) onboard the NASA/ESA James Webb Space Telescope will be presented. The main design driver is the energy flow from the 35 K "hot" satellite interface to the 7 K "cold" MIRI interface. Carbon fibre reinforced plastic (CFRP...

  9. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  10. An Experiment in Radiation Measurement Using the Depron Instrument

    Science.gov (United States)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  11. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NARCIS (Netherlands)

    Fioletov, V.; McLinden, C.A.; Kharol, S.K.; Krotkov, N.A.; Li, C.; Joiner, J.; Moran, M.D.; Vet, R.; Visschedijk, A.J.H.; Denier Van Der Gon, H.A.C.

    2017-01-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify

  12. Data Collection Satellite Application in Precision Agriculture

    Science.gov (United States)

    Durào, O.

    2002-01-01

    Agricultural Instrumentation Research Center, Brazilian Agricultural Research Corporation; Space Programs Brazil launched in 1993 its first satellite partially built and entirely designed, integrated, tested and operated in the country. It was the SCD-1 satellite, a small (115 kg. and an octagonal prism with 80 cm. height and an external diameter of 100 cm.) with a payload transponder that receives data from ground platforms spread all over the country (including its sea shore). These data are then retransmitted to a receiving station at every satellite pass. Data collected and received are processed at Data Collection Mission Center for distribution via internet at most 30 min after the satellite pass. The ground platforms are called PCD's and differ in the parameters measured according to its purpose and location. Thus, they are able to measure temperature, rain level, wind direction, solar radiation, carbon monoxide as well as many others, beyond its own location. SCD- 1 had a nominal designed life of one year, but is still functioning. It is a LEO satellite with inclination of 25°. In 1998, the country launched SCD-2, with the same purpose, but in phase with SCD-1 . Other differences were a higher index of Brazilian made components and an active attitude control subsystem for the spin rate provided by the magnetic torque coils (these in accordance with a development strategy previously planned). In 1999 the country launched in cooperation with China a remote sensing satellite (mass of 1.4 ton.) called CBERS-1. This satellite is sun synchronous (98° inclination) and also carries a transponder for data collection/transmission as a secondary payload. Thus, the country has now three satellites with data collection/transmission capabilities, two in low inclination phased orbits and one in polar orbit, providing a nice coverage both geographical and temporal not only to its territory but also to other regions of the world.. At first there were not too many PCD

  13. Instrument workstation for the EGSE of the Near Infrared Spectro-Photometer instrument (NISP) of the EUCLID mission

    Science.gov (United States)

    Trifoglio, M.; Gianotti, F.; Conforti, V.; Franceschi, E.; Stephen, J. B.; Bulgarelli, A.; Fioretti, V.; Maiorano, E.; Nicastro, L.; Valenziano, L.; Zoli, A.; Auricchio, N.; Balestra, A.; Bonino, D.; Bonoli, C.; Bortoletto, F.; Capobianco, V.; Chiarusi, T.; Corcione, L.; Debei, S.; De Rosa, A.; Dusini, S.; Fornari, F.; Giacomini, F.; Guizzo, G. P.; Ligori, S.; Margiotta, A.; Mauri, N.; Medinaceli, E.; Morgante, G.; Patrizii, L.; Sirignano, C.; Sirri, G.; Sortino, F.; Stanco, L.; Tenti, M.

    2016-07-01

    The NISP instrument on board the Euclid ESA mission will be developed and tested at different levels of integration using various test equipment which shall be designed and procured through a collaborative and coordinated effort. The NISP Instrument Workstation (NI-IWS) will be part of the EGSE configuration that will support the NISP AIV/AIT activities from the NISP Warm Electronics level up to the launch of Euclid. One workstation is required for the NISP EQM/AVM, and a second one for the NISP FM. Each workstation will follow the respective NISP model after delivery to ESA for Payload and Satellite AIV/AIT and launch. At these levels the NI-IWS shall be configured as part of the Payload EGSE, the System EGSE, and the Launch EGSE, respectively. After launch, the NI-IWS will be also re-used in the Euclid Ground Segment in order to support the Commissioning and Performance Verification (CPV) phase, and for troubleshooting purposes during the operational phase. The NI-IWS is mainly aimed at the local storage in a suitable format of the NISP instrument data and metadata, at local retrieval, processing and display of the stored data for on-line instrument assessment, and at the remote retrieval of the stored data for off-line analysis on other computers. We describe the design of the IWS software that will create a suitable interface to the external systems in each of the various configurations envisaged at the different levels, and provide the capabilities required to monitor and verify the instrument functionalities and performance throughout all phases of the NISP lifetime.

  14. Total dose tests for the PROMICS-3 instrument

    International Nuclear Information System (INIS)

    Verkasalo, R.

    1991-01-01

    The sensitivity of some analog and digital integrated circuits (IC's) to ionizing radiation was tested in order to evaluate their potential usefulness especially in the PROMICS-3 instrument. The PROMICS-3 is a plasma instrument to be flown on the Russian Interball satellites. The radiation tolerance requirement of the auroral Interball satellite is about 45 krad/year inside a shielding of 4 mm Aluminium. The IC's tested were: AD571 A/D- converter, ADDAC80 D/A-converter, LF442A and PM108A operational amplifiers, MPREF0l voltage reference, STC SPXO 6 MHZ oscillator,4N55 optocoupler, MC5lC98 and CY7C164 16k*4 static CMOS RAM. Co-60 was used as the irradiation source. The test methods and results are described in the paper. The RAM-circuits failed between 10 and 20 krad. D/A- and A/D-converters degraded only slightly after 100 krad, but one of the A/D-converters failed functionally at 190 krad. The LF442A began to degrade in the test connection at 100 krad, and PM108A at 30 krad. The output voltage of the voltage reference MPREF01 increased about 20 mV after 100 krad. No change was observed in the output frequency of the STC SPXD oscillator even after 300 krad. The current tansfer ratio of the 4N55 decreased continuously to about 75 % of the initial value after 100 krad

  15. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  16. Radiation environment measurements with the cosmic ray experiments on-board the KITSAT-1 and PoSAT-1 micro-satellites

    International Nuclear Information System (INIS)

    Underwood, C.I.; Brock, D.J.; Williams, P.S.; Kim, S.; Dilao, R.; Santos, P.R.; Brito, M.C.; Dyer, C.S.; Sims, A.J.

    1994-01-01

    The success of the Cosmic Radiation Environment and Dosimetry (CREDO) experiment carried on-board the UoSAT-3 micro-satellite (launched in 1990) has lead to the development of a new instrument called the Cosmic-Ray Experiment (CRE) which has flown on-board the KITSAT-1 and PoSAT-1 micro-satellites, launched in 1992 and 1993 respectively. The results from both CRE instruments show excellent agreement with those of CREDO for the galactic cosmic-ray environment. However, there are some differences in the CRE and CREDO response to the trapped proton environment of the South Atlantic Anomaly which can be explained by the differences in the detector response time. The fit between the flight results and predictions from the standard models is generally good, but some differences are noted. The CRE and CREDO instruments should provide continuous coverage of the near-Earth radiation environment across a complete solar cycle. This is important in view of the dynamic nature of the radiation environment - as amply demonstrated by the results from the CRRES spacecraft

  17. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  18. A small satellite design for deep space network testing and training

    Science.gov (United States)

    Mcwilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-01-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  19. A small satellite design for deep space network testing and training

    Science.gov (United States)

    McWilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-05-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  20. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    measurement for large structure with similar dimension with large deployable reflector to confirm the validity of the network design and instrumentation. In this report, the overview of this R&D project and the results of feasibility study of network design based on simulations on vision metrology and beam pattern compensation of antenna with very large reflector in orbit is discussed. The feasibility of assumed network design for vision metrology and satisfaction of accuracy requirements are discussed. The feasibility of beam pattern compensation by using accurately measured reflector shape is confirmed with antenna pattern simulation for deformed parabola reflector. If reflector surface of communication satellite can be measured routinely in orbit, the antenna pattern can be compensated and maintain the high performance every moment.

  1. A case study of GWE satellite data impact on GLA assimilation analyses of two ocean cyclones

    Science.gov (United States)

    Gallimore, R. G.; Johnson, D. R.

    1986-01-01

    The effects of the Global Weather Experiment (GWE) data obtained on January 18-20, 1979 on Goddard Laboratory for Atmospheres assimilation analyses of simultaneous cyclones in the western Pacific and Atlantic oceans are examined. The ability of satellite data within assimilation models to determine the baroclinic structures of developing extratropical cyclones is evaluated. The impact of the satellite data on the amplitude and phase of the temperature structure within the storm domain, potential energy, and baroclinic growth rate is studied. The GWE data are compared with Data Systems Test results. It is noted that it is necessary to characterize satellite effects on the baroclinic structure of cyclone waves which degrade numerical weather predictions of cyclogenesis.

  2. Operational Satellite-based Surface Oil Analyses (Invited)

    Science.gov (United States)

    Streett, D.; Warren, C.

    2010-12-01

    During the Deepwater Horizon spill, NOAA imagery analysts in the Satellite Analysis Branch (SAB) issued more than 300 near-real-time satellite-based oil spill analyses. These analyses were used by the oil spill response community for planning, issuing surface oil trajectories and tasking assets (e.g., oil containment booms, skimmers, overflights). SAB analysts used both Synthetic Aperture Radar (SAR) and high resolution visible/near IR multispectral satellite imagery as well as a variety of ancillary datasets. Satellite imagery used included ENVISAT ASAR (ESA), TerraSAR-X (DLR), Cosmo-Skymed (ASI), ALOS (JAXA), Radarsat (MDA), ENVISAT MERIS (ESA), SPOT (SPOT Image Corp.), Aster (NASA), MODIS (NASA), and AVHRR (NOAA). Ancillary datasets included ocean current information, wind information, location of natural oil seeps and a variety of in situ oil observations. The analyses were available as jpegs, pdfs, shapefiles and through Google, KML files and also available on a variety of websites including Geoplatform and ERMA. From the very first analysis issued just 5 hours after the rig sank through the final analysis issued in August, the complete archive is still publicly available on the NOAA/NESDIS website http://www.ssd.noaa.gov/PS/MPS/deepwater.html SAB personnel also served as the Deepwater Horizon International Disaster Charter Project Manager (at the official request of the USGS). The Project Manager’s primary responsibility was to acquire and oversee the processing and dissemination of satellite data generously donated by numerous private companies and nations in support of the oil spill response including some of the imagery described above. SAB has begun to address a number of goals that will improve our routine oil spill response as well as help assure that we are ready for the next spill of national significance. We hope to (1) secure a steady, abundant and timely stream of suitable satellite imagery even in the absence of large-scale emergencies such as

  3. The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting

    Science.gov (United States)

    Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas

    2016-04-01

    As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared

  4. Nuovi strumenti di telerilevamento da satellite nel controllo del territorio

    OpenAIRE

    Michele Dussi

    2008-01-01

    New satellite remote sensing instruments for land managementCOSMO-Skymed remote sensing images, as well as other SAR (Synthetic Aperture Radar) missions, have their specific features, partly similar to optical system products.Pre-processing activities, allow the user to exploit the systems capabilites fairly easily after a focused training. SAR imaging's applications range from mission-critical applications (i.e. civil and military security applications) to simple user-driven ones (i.e. quali...

  5. Integration of artificial intelligence and numerical optimization techniques for the design of complex aerospace systems

    International Nuclear Information System (INIS)

    Tong, S.S.; Powell, D.; Goel, S.

    1992-02-01

    A new software system called Engineous combines artificial intelligence and numerical methods for the design and optimization of complex aerospace systems. Engineous combines the advanced computational techniques of genetic algorithms, expert systems, and object-oriented programming with the conventional methods of numerical optimization and simulated annealing to create a design optimization environment that can be applied to computational models in various disciplines. Engineous has produced designs with higher predicted performance gains that current manual design processes - on average a 10-to-1 reduction of turnaround time - and has yielded new insights into product design. It has been applied to the aerodynamic preliminary design of an aircraft engine turbine, concurrent aerodynamic and mechanical preliminary design of an aircraft engine turbine blade and disk, a space superconductor generator, a satellite power converter, and a nuclear-powered satellite reactor and shield. 23 refs

  6. The Orbital Dynamics of Synchronous Satellites: Irregular Motions in the 2 : 1 Resonance

    Directory of Open Access Journals (Sweden)

    Jarbas Cordeiro Sampaio

    2012-01-01

    Full Text Available The orbital dynamics of synchronous satellites is studied. The 2 : 1 resonance is considered; in other words, the satellite completes two revolutions while the Earth completes one. In the development of the geopotential, the zonal harmonics J20 and J40 and the tesseral harmonics J22 and J42 are considered. The order of the dynamical system is reduced through successive Mathieu transformations, and the final system is solved by numerical integration. The Lyapunov exponents are used as tool to analyze the chaotic orbits.

  7. Maritime NOx Emissions Over Chinese Seas Derived From Satellite Observations

    Science.gov (United States)

    Ding, J.; van der A, R. J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P. F.

    2018-02-01

    By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping emissions has regional variations, but all regions show lower emissions during winter. Simulations by an atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic Identification System of ships.

  8. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  9. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  10. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  11. Current Trends and Challenges in Satellite Laser Ranging

    Science.gov (United States)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and

  12. NASA's Newest SeaWinds Instrument Breezes Into Operation

    Science.gov (United States)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international

  13. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    This chapter reports on a beam-plasma interaction experiment conducted in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the JIKIKEN satellite. Topics considered include instrumentation, wave excitation, and the charging of the satellite. Various types of wave emission are detected by low frequency and high frequency wave detectors. Waves near upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is observed outside the plasmapause. The main objectives of the Controlled Beam Experiment (CBE) are to control the satellite potential by an electron beam emission, and to study the wave excitation (linear and non-linear wave phenomena due to the beam-plasma interaction). It is concluded that waves excited in the beamplasma interaction are strongly dependent on plasma and other parameters in the magnetosphere so that it will provide important knowledge of the magnetosphere plasma processes

  14. Comparison of Satellite Surveying to Traditional Surveying Methods for the Resources Industry

    Science.gov (United States)

    Osborne, B. P.; Osborne, V. J.; Kruger, M. L.

    Modern ground-based survey methods involve detailed survey, which provides three-space co-ordinates for surveyed points, to a high level of accuracy. The instruments are operated by surveyors, who process the raw results to create survey location maps for the subject of the survey. Such surveys are conducted for a location or region and referenced to the earth global co- ordinate system with global positioning system (GPS) positioning. Due to this referencing the survey is only as accurate as the GPS reference system. Satellite survey remote sensing utilise satellite imagery which have been processed using commercial geographic information system software. Three-space co-ordinate maps are generated, with an accuracy determined by the datum position accuracy and optical resolution of the satellite platform.This paper presents a case study, which compares topographic surveying undertaken by traditional survey methods with satellite surveying, for the same location. The purpose of this study is to assess the viability of satellite remote sensing for surveying in the resources industry. The case study involves a topographic survey of a dune field for a prospective mining project area in Pakistan. This site has been surveyed using modern surveying techniques and the results are compared to a satellite survey performed on the same area.Analysis of the results from traditional survey and from the satellite survey involved a comparison of the derived spatial co- ordinates from each method. In addition, comparisons have been made of costs and turnaround time for both methods.The results of this application of remote sensing is of particular interest for survey in areas with remote and extreme environments, weather extremes, political unrest, poor travel links, which are commonly associated with mining projects. Such areas frequently suffer language barriers, poor onsite technical support and resources.

  15. The Relativistic Effect of the Deviation between the CMB Temperatures Obtained by the COBE Satellite

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-01-01

    Full Text Available The Far-Infrared Absolute Spectrophotometer (FIRAS on the COBE satellite, gives different temperatures of the Cosmic Microwave Background. This deviation has a theoretical explanation in the Doppler effect on the dipole (weak component of the radiation, the true microwave background of the Universe that moves at 365 km/sec, if the monopole (strong component of the radiation is due to the Earth. Owing to the Doppler effect, the dipole radiation temperature (determined by the 1st derivative of the monopole is lower than the monopole radiation temperature, with a value equal to the observed deviation. By this theory, the WMAP and PLANCK satellites, targeting the L2 point in the Sun-Earth-Moon system, should be insensitive to the monopole radiation. In contrast to the launched WMAP satellite, the PLANCK satellite will have on board absolute instruments which will not be able to detect the measured temperature of the Cosmic Microwave Background. That the monopole (strong component of the observed Cosmic Microwave Background is generated by the Earth is given a complete theoretical proof herein.

  16. The Dedicated Aerosol Retrieval Experiment (DARE): scientific requirements for a dedicated satellite instrument to measure atmospheric aerosols

    NARCIS (Netherlands)

    Decae, R.; Courrèges-Lacoste, G.B.; Leeuw, G. de

    2004-01-01

    DARE (Dedicated Aerosol Retrieval Experiment) is a study to design an instrument for accurate remote sensing of aerosol properties from space. DARE combines useful properties of several existing instruments like TOMS, GOME, ATSR and POLDER. It has a large wavelength range, 330 to 1000 nm, to

  17. Nuovi strumenti di Telerilevamento da satellite per il controllo del territorio

    Directory of Open Access Journals (Sweden)

    Michele Dussi

    2008-03-01

    Full Text Available New instruments for land management utilizing satellite remote sensingWe are at the beginning of a new Earth Observation age comprised of large amounts of data, high revisit times as well as high resolution images. All these characteristics were “dream-requirements” for E.O. operators in the past years. Today a new solution dubbed Cosmo-Skymed is being developed which will be operational in the coming months. Cosmo-Skymed is a dual-use end-to-end global data providing system. It makes use of an innovative constellation of 4 sun-synchronous satellites equipped with multimodal high-res synthetic aperture radar (SAR. It operates in X-band and is supported by a wide G/S infrastructure to meet high performance data acquisition and distribution service requirements. It is a made in Italy solution.

  18. Nuovi strumenti di Telerilevamento da satellite per il controllo del territorio

    Directory of Open Access Journals (Sweden)

    Michele Dussi

    2008-03-01

    Full Text Available New instruments for land management utilizing satellite remote sensing We are at the beginning of a new Earth Observation age comprised of large amounts of data, high revisit times as well as high resolution images. All these characteristics were “dream-requirements” for E.O. operators in the past years. Today a new solution dubbed Cosmo-Skymed is being developed which will be operational in the coming months. Cosmo-Skymed is a dual-use end-to-end global data providing system. It makes use of an innovative constellation of 4 sun-synchronous satellites equipped with multimodal high-res synthetic aperture radar (SAR. It operates in X-band and is supported by a wide G/S infrastructure to meet high performance data acquisition and distribution service requirements. It is a made in Italy solution.

  19. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  20. Instrument Performance and Simulation Verification of the POLAR Detector

    OpenAIRE

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.

    2017-01-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induce...

  1. Global High Resolution Sea Surface Flux Parameters From Multiple Satellites

    Science.gov (United States)

    Zhang, H.; Reynolds, R. W.; Shi, L.; Bates, J. J.

    2007-05-01

    Advances in understanding the coupled air-sea system and modeling of the ocean and atmosphere demand increasingly higher resolution data, such as air-sea fluxes of up to 3 hourly and every 50 km. These observational requirements can only be met by utilizing multiple satellite observations. Generation of such high resolution products from multiple-satellite and in-situ observations on an operational basis has been started at the U.S. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center. Here we describe a few products that are directly related to the computation of turbulent air-sea fluxes. Sea surface wind speed has been observed from in-situ instruments and multiple satellites, with long-term observations ranging from one satellite in the mid 1987 to six or more satellites since mid 2002. A blended product with a global 0.25° grid and four snapshots per day has been produced for July 1987 to present, using a near Gaussian 3-D (x, y, t) interpolation to minimize aliases. Wind direction has been observed from fewer satellites, thus for the blended high resolution vector winds and wind stresses, the directions are taken from the NCEP Re-analysis 2 (operationally run near real time) for climate consistency. The widely used Reynolds Optimum Interpolation SST analysis has been improved with higher resolutions (daily and 0.25°). The improvements use both infrared and microwave satellite data that are bias-corrected by in- situ observations for the period 1985 to present. The new versions provide very significant improvements in terms of resolving ocean features such as the meandering of the Gulf Stream, the Aghulas Current, the equatorial jets and other fronts. The Ta and Qa retrievals are based on measurements from the AMSU sounder onboard the NOAA satellites. Ta retrieval uses AMSU-A data, while Qa retrieval uses both AMSU-A and AMSU-B observations. The retrieval algorithms are developed using the neural network approach. Training

  2. Is There a Disk of Satellites around the Milky Way?

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Marinacci, Federico, E-mail: moupiya@psu.edu [Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2017-07-01

    The “disk of satellites” (DoS) around the Milky Way is a highly debated topic with conflicting interpretations of observations and their theoretical models. We perform a comprehensive analysis of all of the dwarfs detected in the Milky Way and find that the DoS structure depends strongly on the plane identification method and the sample size. In particular, we demonstrate that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of the angular momentum of the satellites. Moreover, we calculate the evolution of the 11 classical satellites with proper motion measurements and find that the thin DoS in which they currently reside is transient. Furthermore, we analyze two cosmological simulations using the same initial conditions of a Milky-Way-sized galaxy, an N -body run with dark matter only, and a hydrodynamic one with both baryonic and dark matter, and find that the hydrodynamic simulation produces a more anisotropic distribution of satellites than the N -body one. Our results suggest that an anisotropic distribution of satellites in galaxies can originate from baryonic processes in the hierarchical structure formation model, but the claimed highly flattened, coherently rotating DoS of the Milky Way may be biased by the small-number selection effect. These findings may help resolve the contradictory claims of DoS in galaxies and the discrepancy among numerical simulations.

  3. Is There a Disk of Satellites around the Milky Way?

    International Nuclear Information System (INIS)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico

    2017-01-01

    The “disk of satellites” (DoS) around the Milky Way is a highly debated topic with conflicting interpretations of observations and their theoretical models. We perform a comprehensive analysis of all of the dwarfs detected in the Milky Way and find that the DoS structure depends strongly on the plane identification method and the sample size. In particular, we demonstrate that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of the angular momentum of the satellites. Moreover, we calculate the evolution of the 11 classical satellites with proper motion measurements and find that the thin DoS in which they currently reside is transient. Furthermore, we analyze two cosmological simulations using the same initial conditions of a Milky-Way-sized galaxy, an N -body run with dark matter only, and a hydrodynamic one with both baryonic and dark matter, and find that the hydrodynamic simulation produces a more anisotropic distribution of satellites than the N -body one. Our results suggest that an anisotropic distribution of satellites in galaxies can originate from baryonic processes in the hierarchical structure formation model, but the claimed highly flattened, coherently rotating DoS of the Milky Way may be biased by the small-number selection effect. These findings may help resolve the contradictory claims of DoS in galaxies and the discrepancy among numerical simulations.

  4. Numerical simulation support to the ESA/THOR mission

    Science.gov (United States)

    Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.

    2016-12-01

    THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence

  5. Electrical, instrumentation, and control codes and standards

    International Nuclear Information System (INIS)

    Kranning, A.N.

    1978-01-01

    During recent years numerous documents in the form of codes and standards have been developed and published to provide design, fabrication and construction rules and criteria applicable to instrumentation, control and power distribution facilities for nuclear power plants. The contents of this LTR were prepared by NUS Corporation under Subcontract K5108 and provide a consolidated index and listing of the documents selected for their application to procurement of materials and design of modifications and new construction at the LOFT facility. These codes and standards should be applied together with the National Electrical Code, the ID Engineering Standards and LOFT Specifications to all LOFT instrument and electrical design activities

  6. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  7. Improved Radio Emissivities for Satellites of Saturn

    Science.gov (United States)

    Ries, Paul

    2010-10-01

    The size distribution of TNOs is one of the most important constraints on the history of the early solar system. However, while TNOs are most detectable in the visible and near-IR wavelengths, their albedos vary substantially, thus creating uncertainty in their sizes when determined from reflected light alone. One way of determining the size distribution for a large number of TNOs is to measure their thermal emission, such as has been done with Spitzer and Herschel. However, in just a few year's time, ALMA will be coming online, and will be able to detect thermal emission from even more TNOs. However, thermal emission from Solar System bodies in the millimeter and submillimeter, such as that which ALMA will detect, is not that of a pure blackbody. Pluto, the Gallillean satellites, and Vesta have all shown deviations from unity emissivity. However, the cause of this variation is not well understood. Here we re-analayze data from the Cassini RADAR instrument at 2.5 cm. Cassini RADAR measured the brightness temperature and emissivity of several of Saturn's icy satellites, at least one of which, Phoebe, is thought to be a captured TNO. Previous emissivity determinations relied on relatively simple thermal models. We recalculate emissivities using thermal models based on recent data obtained with the CIRS (infrared) instrument on Cassini which account for, among other things, diurnal effects and the rotation during the RADAR observations. For one important result, we demonstrate that deviation from unity emissivity on Iapetus is due solely to surface depth effects at long wavelengths when RADAR data at 2.5 cm is combined with data obtained at 3.3 mm on the Green Bank Telescope (GBT). This research is supported by a grant under the NRAO Student Observing Support program.

  8. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  9. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  10. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  11. DEPRON dosimeter for ``Lomonosov'' satellite

    Science.gov (United States)

    Brilkov, Ivan; Vedenkin, Nikolay; Panasyuk, Mikhail; Amelyushkin, Aleksandr; Petrov, Vasily; Nechayev, Oleg; Benghin, Victor

    It is commonly known, that cosmic radiation generates negative impact on the human body during space flight. The structure of the radiation fields in the near-Earth space was studied during intensive research of recent decades. Huge number of dosimetry studies was conducted on manned and unmanned space vehicles in order to solve the problem of radiation safety humans during space flights. It should be noted that most of the measurements was made onboard the spacecrafts, flying along the orbits with inclination of up to 51.6 degrees. Due to the prospect of manned missions at the orbits with larger inclination it seems advisable to conduct preliminary detailed dosimetry measurements at high-altitude orbit, for which the "Lomonosov" satellite provides good opportunities. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. Proposed in the late 70's this method is widely used onboard spacecraft, including full-time radiation monitoring onboard the ISS. Recently it has been improved, providing an opportunity to register not only the absorbed dose of charged particles radiation, but also range of their ionization losses. It allowed assessment of equivalent dose. Appropriate procedure based on using of a telescope consisting of two semiconductor detectors provided a basis of the developed unit. It should be noted that not only the charged particles contribute significantly in the equivalent dose, but also neutrons do. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. It was therefore decided to add thermal neutrons counter to the developed device in order to provide an opportunity of estimation of neutron flux variations along the satellite trajectory. A gas-discharge counter SI-13N, operated in a mode of corona discharge was chosen as a neutron detector. This method of neutron detection is well-proven and used many times in SINP MSU experiments. Thus, the

  12. Detecting failure events in buildings: a numerical and experimental analysis

    OpenAIRE

    Heckman, V. M.; Kohler, M. D.; Heaton, T. H.

    2010-01-01

    A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of wavef...

  13. A Demonstration of an Improved Filtering Technique for Analyzing Climate Records via Comparisons of Satellite MSU/AMSU Instrument Temperature Products from Three Research Groups

    Science.gov (United States)

    Swanson, R. E.

    2017-12-01

    Climate data records typically exhibit considerable variation over short time scales both from natural variability and from instrumentation issues. The use of linear least squares regression can provide overall trend information from noisy data, however assessing intermediate time periods can also provide useful information unavailable from basic trend calculations. Extracting the short term information in these data for assessing changes to climate or for comparison of data series from different sources requires the application of filters to separate short period variations from longer period trends. A common method used to smooth data is the moving average, which is a simple digital filter that can distort the resulting series due to the aliasing of the sampling period into the output series. We utilized Hamming filters to compare MSU/AMSU satellite time series developed by three research groups (UAH, RSS and NOAA STAR), the results published in January 2017 [http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-16-0121.1]. Since the last release date (July 2016) for the data analyzed in that paper, some of these groups have updated their analytical procedures and additional months of data are available to extend the series. An updated analysis of these data using the latest data releases available from each group is to be presented. Improved graphics will be employed to provide a clearer visualization of the differences between each group's results. As in the previous paper, the greatest difference between the UAH TMT series and those from the RSS and NOAA data appears during the early period of data from the MSU instruments before about 2003, as shown in the attached figure, and preliminary results indicate this pattern continues. Also to be presented are other findings regarding seasonal changes which were not included in the previous study.

  14. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  15. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  16. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    Science.gov (United States)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  17. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    enables the required optimal instrument resolution for precipitation events occurring within the troposphere, between 8 and 12 km altitude. Additionally, with an 18° instrument half-cone angle capability, both phased-array radars can provide a 300 km swath width at this altitude. This results in an optimal atmospheric layer coverage of 91% for latitudes above 50° N after 72 hr. A required total system power of 1021 W of the satellite will be sustained using 7.2 m2 of solar arrays, housed on the sunward side of the spacecraft. The mission has an expected total cost of an M-class mission for a nominal lifetime of 5 years. The PoPSat mission has been developed by 15 students of Team Blue supported by a group of experts at the Alpbach Summer School 2016, a ten-days design challenge organised by FFG and ESA and devoted to 'Satellite Observations of the Global Water Cycle'. PoPSat was selected by the jury to be further developed at the Post-Alpbach design challenge at the ESA Redu Centre for an additional four days, with 15 students out of all 4 teams from the Alpbach Summer School. Post-Alpbach Tutors: A. Hahne, J. Huesing, A. Ivanov, G. Kargl, H. Rott, J. Vennekens

  18. Research on Coal Exploration Technology Based on Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2016-01-01

    Full Text Available Coal is the main source of energy. In China and Vietnam, coal resources are very rich, but the exploration level is relatively low. This is mainly caused by the complicated geological structure, the low efficiency, the related damage, and other bad situations. To this end, we need to make use of some advanced technologies to guarantee the resource exploration is implemented smoothly and orderly. Numerous studies show that remote sensing technology is an effective way in coal exploration and measurement. In this paper, we try to measure the distribution and reserves of open-air coal area through satellite imagery. The satellite picture of open-air coal mining region in Quang Ninh Province of Vietnam was collected as the experimental data. Firstly, the ENVI software is used to eliminate satellite imagery spectral interference. Then, the image classification model is established by the improved ELM algorithm. Finally, the effectiveness of the improved ELM algorithm is verified by using MATLAB simulations. The results show that the accuracies of the testing set reach 96.5%. And it reaches 83% of the image discernment precision compared with the same image from Google.

  19. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  20. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  1. A numerical investigation on the eccentricity growth of GNSS disposal orbits

    Science.gov (United States)

    Alessi, E. M.; Deleflie, F.; Rosengren, A. J.; Rossi, A.; Valsecchi, G. B.; Daquin, J.; Merz, K.

    2016-05-01

    We present the results of an extensive numerical exploration performed on the eccentricity growth in MEO associated with two possible end-of-life disposal strategies for GNSS satellites. The study calls attention to the existence of values of initial inclination, longitude of ascending node, and argument of perigee that are more advantageous in terms of long-term stability of the orbit. The important role of the initial epoch and a corresponding periodicity are also shown. The present investigation is influential in view of recent analytical and numerical developments on the chaotic nature of the region due to lunisolar perturbations, but also for the upcoming Galileo and BeiDou constellations.

  2. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  3. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  4. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  5. CERCA's fuel elements instrumentation manufacturing

    International Nuclear Information System (INIS)

    Harbonnier, G.; Jarousse, C.; Pin, T.; Febvre, M.; Colomb, P.

    2005-01-01

    When research and test reactors wish to further understand the Fuel Elements behavior when operating as well as mastering their irradiation conditions, operators carry out neutron and thermo hydraulic analysis. For thermal calculation, the codes used have to be preliminary validated, at least in the range of the reactor safety operational limits. When some further investigations are requested either by safety authorities or for its own reactor needs, instrumented tools are the ultimate solution for providing representative measurements. Such measurements can be conducted for validating thermal calculation codes, at nominal operating condition as well as during transients ones, or for providing numerous and useful data in the frame of a new products qualification program. CERCA, with many years of experience for implanting thermocouples in various products design, states in this poster his manufacturing background on instrumented elements, plates or targets. (author)

  6. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  7. Fire Scars Area Estimation Using CHRIS PROBA Satellite Data

    Science.gov (United States)

    Filchev, Lachezar; Dimitrov, Petar

    2013-12-01

    The dawn of 21st century is marked by severe and unpredictable natural and man - made hazards and disasters linked as to climate change as to human impact on environment. To study their effects on natural landscapes and protected areas it is important to perform, in some restrict regime protected areas, a continuous monitoring. Earth observation by satellites is one of the most promising instruments for this as it has the necessary time, spatial, and spectral resolution for this as well as it provides for non-contact estimation of the overall condition of the environment. This study presents preliminary results of fire scars area estimation on the territory of Bistrishko Branishte UNESCO Man and Biosphere (MAB) reserve in Vitosha Mountain, Bulgaria using CHRIS/PROBA satellite data. During the summer and early autumn of 2012 CHRIS/PROBA instrument was tasked to perform a series of acquisitions with a view to study the vegetation structure. The study uses two CHRIS/PROBA scenes acquired subsequently on 22 June 2012 and on 28 September 2012. The wildfire, which effects are studied, took place during the first two weeks of July 2012. After it was settled the second acquisition of CHRIS/PROBA instrument made possible the analysis of the post fire situation. The methods used for the study are the standard methods for image change detection based on spectral data employed in ENVI software (Academic license). In order to perform the change detection, the CHRIS/PROBA source data was geometrically and atmospherically corrected as well as co-registered. The multi angle product of CHRIS/PROBA Mode 1, consisting of 5 images, was used to check to what extent the five viewing angles affect the area estimation of the fire scars in the mountainous area following same procedures. The results from the analysis shown that almost 60 hectares from the coniferous vegetation (dead and healthy tree stands) were devastated by the wildfire.

  8. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    Science.gov (United States)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  9. Can We Probe the Conductivity of the Lithosphere and Upper Mantle Using Satellite Tidal Magnetic Signals?

    Science.gov (United States)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.

    2015-01-01

    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  10. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    International Nuclear Information System (INIS)

    Abdelaziz, G; Guebsi, R; Flamant, C; Guessoum, N

    2017-01-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region. (paper)

  11. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  12. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Science.gov (United States)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  13. UV ionospheric remote sensing with the Polar BEAR satellite

    International Nuclear Information System (INIS)

    Delgreco, F.P.; Eastes, R.W.; Huffman, R.E.

    1989-01-01

    The Polar BEAR satellite carries the Auroral Ionospheric Remote Sensor (AIRS) instrument, which is designed to return four simultaneous images of atmospheric radiation at northern latitudes, has thus far yielded over 5000 images. Polar BEAR was in operation during March, 1987, when the preliminary K(p) reached a value of 9 over a six-hour period; at that time, AIRS was operating at the 1304 A atomic oxygen wavelength and recorded remarkable data, which are here presented. Due to the intense activity, the AIRS data were barely able to register the poleward edge of the aurora. 6 refs

  14. Lower stratospheric observations from aircraft and satellite during the 2015/2016 El Nino

    Science.gov (United States)

    Rosenlof, K. H.; Avery, M. A.; Davis, S. M.; Gao, R. S.; Thornberry, T. D.

    2016-12-01

    Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the lower stratosphere over the Pacific. These will be contrasted with ozone measurements taken during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, lower stratospheric water vapor and ozone measurements from the Microwave Limb Sounder satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone measurements are higher for the El Nino flights than during other missions previously sampled, while zonally averaged lower stratospheric water vapor and central Pacific ice path above the tropopause reached record highs. Implications and possible reasons for these anomalous observations will be discussed. Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the upper troposphere and lower stratosphere (UTLS) over the Pacific. These will be contrasted with ozone measurements made during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, UTLS water vapor and ozone measurements from the Microwave Limb Sounder (MLS) satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone

  15. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  16. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  17. Adaptive suppression of passive intermodulation in digital satellite transceivers

    Directory of Open Access Journals (Sweden)

    Lu TIAN

    2017-06-01

    Full Text Available For the performance issues of satellite transceivers suffering passive intermodulation interference, a novel and effective digital suppression algorithm is presented in this paper. In contrast to analog approaches, digital passive intermodulation (PIM suppression approaches can be easily reconfigured and therefore are highly attractive for future satellite communication systems. A simplified model of nonlinear distortion from passive microwave devices is established in consideration of the memory effect. The multiple high-order PIM products falling into the receiving band can be described as a bilinear predictor function. A suppression algorithm based on a bilinear polynomial decorrelated adaptive filter is proposed for baseband digital signal processing. In consideration of the time-varying characteristics of passive intermodulation, this algorithm can achieve the rapidness of online interference estimation and low complexity with less consumption of resources. Numerical simulation results show that the algorithm can effectively compensate the passive intermodulation interference, and achieve a high signal-to-interference ratio gain.

  18. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  19. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  20. CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES

    International Nuclear Information System (INIS)

    Yoon, Joo Heon; Johnston, Kathryn V.; Hogg, David W.

    2011-01-01

    Dynamically cold stellar streams are ideal probes of the gravitational field of the Milky Way. This paper re-examines the question of how such streams might be used to test for the presence of m issing satellites - the many thousands of dark-matter subhalos with masses 10 5 -10 7 M sun which are seen to orbit within Galactic-scale dark-matter halos in simulations of structure formation in ΛCDM cosmologies. Analytical estimates of the frequency and energy scales of stream encounters indicate that these missing satellites should have a negligible effect on hot debris structures, such as the tails from the Sagittarius dwarf galaxy. However, long cold streams, such as the structure known as GD1 or those from the globular cluster Palomar 5 (Pal 5), are expected to suffer many tens of direct impacts from missing satellites during their lifetimes. Numerical experiments confirm that these impacts create gaps in the debris' orbital energy distribution, which will evolve into degree- and sub-degree-scale fluctuations in surface density over the age of the debris. Maps of Pal 5's own stream contain surface density fluctuations on these scales. The presence and frequency of these inhomogeneities suggests the existence of a population of missing satellites in numbers predicted in the standard ΛCDM cosmologies.

  1. Deforestation fires versus understory fires in the Amazon Basin: What can we learn from satellite-based CO measurements?

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.

    2014-12-01

    Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.

  2. We are not the 99 percent: quantifying asphericity in the distribution of Local Group satellites

    Science.gov (United States)

    Forero-Romero, Jaime E.; Arias, Verónica

    2018-05-01

    We use simulations to build an analytic probability distribution for the asphericity in the satellite distribution around Local Group (LG) type galaxies in the Lambda Cold Dark Matter (LCDM) paradigm. We use this distribution to estimate the atypicality of the satellite distributions in the LG even when the underlying simulations do not have enough systems fully resembling the LG in terms of its typical masses, separation and kinematics. We demonstrate the method using three different simulations (Illustris-1, Illustris-1-Dark and ELVIS) and a number of satellites ranging from 11 to 15. Detailed results differ greatly among the simulations suggesting a strong influence of the typical DM halo mass, the number of satellites and the simulated baryonic effects. However, there are three common trends. First, at most 2% of the pairs are expected to have satellite distributions with the same asphericity as the LG; second, at most 80% of the pairs have a halo with a satellite distribution as aspherical as in M31; and third, at most 4% of the pairs have a halo with satellite distribution as planar as in the MW. These quantitative results place the LG at the level of a 3σ outlier in the LCDM paradigm. We suggest that understanding the reasons for this atypicality requires quantifying the asphericity probability distribution as a function of halo mass and large scale environment. The approach presented here can facilitate that kind of study and other comparisons between different numerical setups and choices to study satellites around LG pairs in simulations.

  3. Satellite Dynamic Damping via Active Force Control Augmentation

    Science.gov (United States)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  4. HIFI - a dedicated HIgh-FIeld diffraction and spectroscopy instrument

    International Nuclear Information System (INIS)

    Steffens, P.; Enderle, M.; Boehm, M.; Roux, S.

    2011-01-01

    The outstanding scientific impact of single-crystal neutron diffraction and spectroscopy in steady state vertical magnetic fields up to 15 T (17 T without dilution fringe) is reflected in numerous high-profile publications. Magnetic fields 30 T - 35 T in vertical geometry allow to address enigmatic questions without equivalence at lower fields. The constraints implied by such magnetic fields demand a specially designed dedicated instrument. Since the vertical field geometry is crucial for single-crystal diffraction as well as spectroscopy, the solid angle of scattered neutrons is restricted, and a high-flux reactor is best suited to host a corresponding instrument. We propose a world-wide unique versatile instrument for diffraction and spectroscopy in vertical steady fields of 30 T. (authors)

  5. Analysis of a spacecraft instrument ball bearing assembly lubricated by a perfluoroalkylether

    Science.gov (United States)

    Morales, W.; Jones, W. R., Jr.; Buckley, D. H.

    1986-01-01

    An analysis of a spacecraft instrument ball bearing assembly, subjected to a scanning life test, was performed to determine the possible case of rotational problems involving these units aboard several satellites. The analysis indicated an ineffective transfer of a fluorinated liquid lubricant from a phenolic retainer to the bearing balls. Part of the analysis led to a novel HPLC separation method employing a fluorinated mobile phase in conjunction with silica based size exclusion columns.

  6. Ice Sheet Change Detection by Satellite Image Differencing

    Science.gov (United States)

    Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.

    2010-01-01

    Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.

  7. Sentinel-5 instrument: status of design, performance, and development

    Science.gov (United States)

    Gühne, T.; Keim, C.; Bartsch, P.; Weiß, S.; Melf, M.; Seefelder, W.

    2017-09-01

    The Sentinel-5 instrument is currently under development by a consortium led by Airbus Defence and Space in the frame of the European Union Copernicus program. It is a customer furnished item to the MetOp Second Generation satellite platform, which will provide operational meteorological data for the coming decades. Mission objective of the Sentinel-5 is to monitor the composition of the Earth atmosphere for Copernicus Atmosphere Services by taking measurements of trace gases and aerosols impacting air quality and climate with high resolution and daily global coverage. Therefore the Sentinel-5 provides five dispersive spectrometers covering the UV-VIS (270…500 nm), NIR (685 …773 nm) and SWIR (1590…1675 and 2305…2385 nm) spectral bands with resolutions <=1nm. Spatially the Sentinel-5 provides a 108° field of view with a ground sampling of 7.5 x 7 km2 at Nadir. The development program is post PDR and the build-up of the industrial team is finalised. We report on the instrument architecture and design derived from the driving requirements, the predicted instrument performance, and the general status of the program.

  8. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.

  9. Multi-Satellite Air Quality Sulfur Dioxide (SO2) Database Long-Term L4 Global V1 (MSAQSO2L4) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are a part of Multi-Decadal Sulfur Dioxide Climatology from Satellite Instrument (MEaSUREs-12-0022 project). The catalogue MSAQSO2L4 file contains the...

  10. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  11. Viking satellite program - preliminary results from the APL Magnetic Field Experiment

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Erlandson, R.E.; Gustafsson, G.; Acuna, M.H.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1986-01-01

    Sweden's Viking satellite, launched in February 1986, has been conducting plasma process observations in the earth magnetosphere and auroral regions; the U.S.-supplied APL Magnetic Field Experiment aboard Viking is used to determine field-aligned Birkeland current characteristics in previously unsampled regions of near-earth space. The Magnetic Field Experiment has an equivalent spatial resolution of 12 m in the auroral ionosphere when making measurements near apogee. The purposes of Viking's other instruments and their relationship to the Magnetic Field Experiment are discussed

  12. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective

    Directory of Open Access Journals (Sweden)

    Z. Li

    2009-07-01

    Full Text Available As a result of increasing attention paid to aerosols in climate studies, numerous global satellite aerosol products have been generated. Aerosol parameters and underlining physical processes are now incorporated in many general circulation models (GCMs in order to account for their direct and indirect effects on the earth's climate, through their interactions with the energy and water cycles. There exists, however, an outstanding problem that these satellite products have substantial discrepancies, that must be lowered substantially for narrowing the range of the estimates of aerosol's climate effects. In this paper, numerous key uncertain factors in the retrieval of aerosol optical depth (AOD are articulated for some widely used and relatively long satellite aerosol products including the AVHRR, TOMS, MODIS, MISR, and SeaWiFS. We systematically review the algorithms developed for these sensors in terms of four key elements that influence the quality of passive satellite aerosol retrieval: calibration, cloud screening, classification of aerosol types, and surface effects. To gain further insights into these uncertain factors, the NOAA AVHRR data are employed to conduct various tests, which help estimate the ranges of uncertainties incurred by each of the factors. At the end, recommendations are made to cope with these issues and to produce a consistent and unified aerosol database of high quality for both environment monitoring and climate studies.

  13. Columbia University OSO-8 instrument for stellar and solar X-ray spectroscopy and polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R S [Columbia Univ., New York (USA). Columbia Astrophysics Lab.

    1976-08-01

    A spectrometer and a polarimeter consisting of large-area panels of mosaic crystals have been constructed and prepared for use in the OSO-8 satellite. The instrumentation is planned for study of stellar and solar X-ray spectra between 1.8-8 keV and stellar X-ray polarization at 2.6 keV. Aspects of the design which enable the instrument to make measurements of the diverse range of stellar and solar phenomena are described. Some of the unique features, such as high sensitivity, high temporal resolution, and spectral range, are discussed. The applicability of the spectrometer and polarimeter to various current problems in X-ray astronomy is considered.

  14. SO2 over Central China: Measurements, Numerical Simulations and the Tropospheric Sulfur Budget

    Science.gov (United States)

    He, Hao; Li, Can; Loughner, Christopher P.; Li, Zhangqing; Krotkov, Nickolay A.; Yang, Kai; Wang, Lei; Zheng, Youfei; Bao, Xiangdong; Zhao, Guoqiang; hide

    2012-01-01

    SO2 in central China was measured in situ from an aircraft and remotely using the Ozone Monitoring Instrument (OMI) from the Aura satellite; results were used to develop a numerical tool for evaluating the tropospheric sulfur budget - sources, sinks, transformation and transport. In April 2008, measured ambient SO2 concentrations decreased from approx.7 ppbv near the surface to approx. 1 ppbv at 1800 m altitude (an effective scale height of approx.800 m), but distinct SO2 plumes were observed between 1800 and 4500 m, the aircraft's ceiling. These free tropospheric plumes play a major role in the export of SO2 and in the accuracy of OMI retrievals. The mean SO2 column contents from aircraft measurements (0.73 DU, Dobson Units) and operational OMI SO2 products (0.63+/-0.26 DU) were close. The OMI retrievals were well correlated with in situ measurements (r = 0.84), but showed low bias (slope = 0.54). A new OMI retrieval algorithm was tested and showed improved agreement and bias (r = 0.87, slope = 0.86). The Community Multiscale Air Quality (CMAQ) model was used to simulate sulfur chemistry, exhibiting reasonable agreement (r = 0.62, slope = 1.33) with in situ SO2 columns. The mean CMAQ SO2 loading over central and eastern China was 54 kT, approx.30% more than the estimate from OMI SO2 products, 42 kT. These numerical simulations, constrained by observations, indicate that ",50% (35 to 61 %) of the anthropogenic sulfur emissions were transported downwind, and the overall lifetime of tropospheric SO2 was 38+/-7 h.

  15. Ground-based and satellite optical investigation of the atmosphere and surface of Antarctica

    Science.gov (United States)

    Malinka, Aleksey; Blarel, Luc; Chaikovskaya, Ludmila; Chaikovsky, Anatoli; Denishchik-Nelubina, Natalia; Denisov, Sergei; Dick, Vladimir; Fedaranka, Anton; Goloub, Philippe; Katsev, Iosif; Korol, Michail; Lapyonok, Aleksandr; Podvin, Thierr; Prikhach, Alexander; Svidinsky, Vadim; Zege, Eleonora

    2018-04-01

    This presentation contains the results of the 10-year research of Belarusian Antarctic expeditions. The set of instruments consists of a lidar, an albedometer, and a scanning sky radiometer CIMEL. Besides, the data from satellite radiometer MODIS were used to characterize the snow cover. The works focus on the study of aerosol, cloud and snow characteristics in the Antarctic, and their links with the long range transport of atmospheric pollutants and climate changes.

  16. Dynamic sensor tasking and IMM EKF estimation for tracking impulsively maneuvering satellites

    Science.gov (United States)

    Lace, Arthur A.

    In order to efficiently maintain space situational awareness, care must be taken to optimally allocate expensive observation resources. In most situations the available sensors capable of tracking spacecraft have their time split between many different monitoring responsibilities. Tracking maneuvering spacecraft can be especially difficult as the schedule of maneuvers may not be known and will often throw off previous orbital models. Effectively solving this tasking problem is an ongoing focus of research in the area of space situational awareness. Most methods of automated tasking do not make use of interacting multiple model extended Kalman filter techniques to better track satellites during maneuvers. This paper proposes a modification to a Fisher information gain and estimated state covariance based sensor tasking method to take maneuver probability and multiple model dynamics into account. By incorporating the probabilistic maneuvering model, sensor tasking can be improved during satellite maneuvers using constrained resources. The proposed methods are verified through the use of numerical simulations with multiple maneuvering satellites and both orbital and ground-based sensors.

  17. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    International Nuclear Information System (INIS)

    Boresjoe Bronge, Laine

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given

  18. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe Bronge, Laine [SwedPower AB, Stockholm (Sweden)

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given.

  19. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 1999 on board the Terra satellite platform (a...

  20. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 2002 on board the Aqua satellite platform (a...

  1. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    Science.gov (United States)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  2. Practical design of magnetostatic structure using numerical simulation

    CERN Document Server

    Wang, Qiuliang

    2013-01-01

    Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...

  3. SuperAGILE onboard electronics and ground test instrumentation

    International Nuclear Information System (INIS)

    Pacciani, Luigi; Morelli, Ennio; Rubini, Alda; Mastropietro, Marcello; Porrovecchio, Geiland; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Lazzarotto, Francesco; Rapisarda, Massimo; Soffitta, Paolo

    2007-01-01

    In this paper we describe the electronics of the SuperAGILE X-ray imager on-board AGILE satellite and the instrumentation developed to test and improve the Front-End and digital electronics of the flight model of the imager. Although the working principle of the instrument is very well established, and the conceptual scheme simple, the budget and mechanical constraints of the AGILE small mission made necessary the introduction of new elements in SuperAGILE, regarding both the mechanics and the electronics. In fact the instrument is contained in a ∼44x44x16cm 3 volume, but the required performance is quite ambitious, leading us to equip a sensitive area of ∼1350cm 2 with 6144 Silicon μstrips detectors with a pitch of 121μm and a total length of ∼18.2cm. The result is a very light and power-cheap imager with a good sensitivity (∼15mCrab in 1 day in 15-45keV), high angular resolution (6arcmin) and gross spectral resolution. The test-equipment is versatile, and can be easily modified to test FEE based on self-triggered, data-driven and sparse-readout ASICs such as XA family chips

  4. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  5. Application of Unscented Kalman Filter in Satellite Orbit Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dongming; CAI Zhiwu

    2006-01-01

    A new estimate method is proposed, which takes advantage of the unscented transform method, thus the true mean and covariance are approximated more accurately. The new method can be applied to non-linear systems without the linearization process necessary for the EKF, and it does not demand a Gaussian distribution of noise and what's more, its ease of implementation and more accurate estimation features enables it to demonstrate its good performance in the experiment of satellite orbit simulation. Numerical experiments show that the application of the unscented Kalman filter is more effective than the EKF.

  6. Satellite Orbit Under Influence of a Drag - Analytical Approach

    Science.gov (United States)

    Martinović, M. M.; Šegan, S. D.

    2017-12-01

    The report studies some changes in orbital elements of the artificial satellites of Earth under influence of atmospheric drag. In order to develop possibilities of applying the results in many future cases, an analytical interpretation of the orbital element perturbations is given via useful, but very long expressions. The development is based on the TD88 air density model, recently upgraded with some additional terms. Some expressions and formulae were developed by the computer algebra system Mathematica and tested in some hypothetical cases. The results have good agreement with iterative (numerical) approach.

  7. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite

    Science.gov (United States)

    Miecznik, Grzegorz; Shafer, Jeff; Baugh, William M.; Bader, Brett; Karspeck, Milan; Pacifici, Fabio

    2017-05-01

    WorldView-3 (WV-3) is a DigitalGlobe commercial, high resolution, push-broom imaging satellite with three instruments: visible and near-infrared VNIR consisting of panchromatic (0.3m nadir GSD) plus multi-spectral (1.2m), short-wave infrared SWIR (3.7m), and multi-spectral CAVIS (30m). Nine VNIR bands, which are on one instrument, are nearly perfectly registered to each other, whereas eight SWIR bands, belonging to the second instrument, are misaligned with respect to VNIR and to each other. Geometric calibration and ortho-rectification results in a VNIR/SWIR alignment which is accurate to approximately 0.75 SWIR pixel at 3.7m GSD, whereas inter-SWIR, band to band registration is 0.3 SWIR pixel. Numerous high resolution, spectral applications, such as object classification and material identification, require more accurate registration, which can be achieved by utilizing image processing algorithms, for example Mutual Information (MI). Although MI-based co-registration algorithms are highly accurate, implementation details for automated processing can be challenging. One particular challenge is how to compute bin widths of intensity histograms, which are fundamental building blocks of MI. We solve this problem by making the bin widths proportional to instrument shot noise. Next, we show how to take advantage of multiple VNIR bands, and improve registration sensitivity to image alignment. To meet this goal, we employ Canonical Correlation Analysis, which maximizes VNIR/SWIR correlation through an optimal linear combination of VNIR bands. Finally we explore how to register images corresponding to different spatial resolutions. We show that MI computed at a low-resolution grid is more sensitive to alignment parameters than MI computed at a high-resolution grid. The proposed modifications allow us to improve VNIR/SWIR registration to better than ¼ of a SWIR pixel, as long as terrain elevation is properly accounted for, and clouds and water are masked out.

  8. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E; Papadopoulos, K [CRES (Greece); Borg, N van der [ECN, Petten (Netherlands); Petersen, S M [Risoe, Roskilde (Denmark); Seifert, H [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  9. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  10. Plasma waves and electrical discharges stimulated by beam operations on a high altitude satellite

    International Nuclear Information System (INIS)

    Koons, H.C.; Cohen, H.A.

    1982-01-01

    A satellite experiment was conducted to measure the characteristics of the spacecraft charging process near synchronous orbit. The payload included a particle beam system (both an electron gun and an ion gun) and a charging electrical effects analyzer consisting of a pulse shape analyzer, a VLF analyzer, and an RF analyzer. The characteristics of plasma waves and electrical discharges measured by these instruments during electron and ion beam operations are discussed

  11. Introduction to focused ion beams instrumentation, theory, techniques and practice

    CERN Document Server

    Giannuzzi, Lucille A

    2005-01-01

    The focused ion beam (FIB) instrument has experienced an intensive period of maturation since its inception. Numerous new techniques and applications have been brought to fruition, and over the past few years, the FIB has gained acceptance as more than just an expensive sample preparation tool. It has taken its place among the suite of other instruments commonly available in analytical and forensic laboratories, universities, geological, medical and biological research institutions, and manufacturing plants. Although the utility of the FIB is not limited to the preparation of specimens for subsequent analysis by other analytical techniques, it has revolutionized the area of TEM specimen preparation. The FIB has also been used to prepare samples for numerous other analytical techniques, and offers a wide range of other capabilities. While the mainstream of FIB usage remains within the semiconductor industry, FIB usage has expanded to applications in metallurgy, ceramics, composites, polymers, geology, art, bio...

  12. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  13. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  14. Instruments for measuring mental health recovery: a systematic review.

    Science.gov (United States)

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide. © 2013.

  15. Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015

    Directory of Open Access Journals (Sweden)

    L. A. Mingari

    2017-06-01

    Full Text Available On 13 June 2015, the London Volcanic Ash Advisory Centre (VAAC warned the Buenos Aires VAAC about a possible volcanic eruption from the Nevados Ojos del Salado volcano (6879 m, located in the Andes mountain range on the border between Chile and Argentina. A volcanic ash cloud was detected by the SEVIRI instrument on board the Meteosat Second Generation (MSG satellites from 14:00 UTC on 13 June. In this paper, we provide the first comprehensive description of this event through observations and numerical simulations. Our results support the hypothesis that the phenomenon was caused by wind remobilization of ancient pyroclastic deposits (ca. 4.5 ka Cerro Blanco eruption from the Bolsón de Fiambalá (Fiambalá Basin in northwestern Argentina. We have investigated the spatiotemporal distribution of aerosols and the emission process over complex terrain to gain insight into the key role played by the orography and the condition that triggered the long-range transport episode. Numerical simulations of windblown dust were performed using the ARW (Advanced Research WRF core of the WRF (Weather Research and Forecasting model (WRF-ARW and FALL3D modeling system with meteorological fields downscaled to a spatial resolution of 2 km in order to resolve the complex orography of the area. Results indicate that favorable conditions to generate dust uplifting occurred in northern Fiambalá Basin, where orographic effects caused strong surface winds. According to short-range numerical simulations, dust particles were confined to near-ground layers around the emission areas. In contrast, dust aerosols were injected up to 5–6 km high in central and southern regions of the Fiambalá Basin, where intense ascending airflows are driven by horizontal convergence. Long-range transport numerical simulations were also performed to model the dust cloud spreading over northern Argentina. Results of simulated vertical particle column mass were compared with the

  16. Radiation Budget Instrument (RBI) for JPSS-2

    Science.gov (United States)

    Georgieva, Elena; Priestley, Kory; Dunn, Barry; Cageao, Richard; Barki, Anum; Osmundsen, Jim; Turczynski, Craig; Abedin, Nurul

    2015-01-01

    Radiation Budget Instrument (RBI) will be one of five instruments flying aboard the JPSS-2 spacecraft, a polar-orbiting sun-synchronous satellite in Low Earth Orbit. RBI is a passive remote sensing instrument that will follow the successful legacy of the Clouds and Earth's Radiant Energy System (CERES) instruments to make measurement of Earth's short and longwave radiation budget. The goal of RBI is to provide an independent measurement of the broadband reflected solar radiance and Earth's emitted thermal radiance by using three spectral bands (Shortwave, Longwave, and Total) that will have the same overlapped point spread function (PSF) footprint on Earth. To ensure precise NIST-traceable calibration in space the RBI sensor is designed to use a visible calibration target (VCT), a solar calibration target (SCT), and an infrared calibration target (ICT) containing phase change cells (PCC) to enable on-board temperature calibration. The VCT is a thermally controlled integrating sphere with space grade Spectralon covering the inner surface. Two sides of the sphere will have fiber-coupled laser diodes in the UV to IR wavelength region. An electrical substitution radiometer on the integrating sphere will monitor the long term stability of the sources and the possible degradation of the Spectralon in space. In addition the radiometric calibration operations will use the Spectralon diffusers of the SCT to provide accurate measurements of Solar degradation. All those stable on-orbit references will ensure that calibration stability is maintained over the RBI sensor lifetime. For the preflight calibration the RBI will view five calibration sources - two integrating spheres and three CrIS (Cross-track Infrared Sounder ) -like blackbodies whose outputs will be validated with NIST calibration approach. Thermopile are the selected detectors for the RBI. The sensor has a requirement to perform lunar calibration in addition to solar calibration in space in a way similar to CERES

  17. Development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    Science.gov (United States)

    Lee, Sojin; Song, Chul-han; Park, Rae Seol; Park, Mi Eun; Han, Kyung man; Kim, Jhoon; Choi, Myungje; Ghim, Young Sung; Woo, Jung-Hun

    2016-04-01

    To improve short-term particulate matter (PM) forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD) data retrieved from a geostationary equatorial orbit (GEO) satellite sensor, GOCI (Geostationary Ocean Color Imager) which covers a part of Northeast Asia (113-146° E; 25-47° N), were used. Although GOCI can provide a higher number of AOD data in a semicontinuous manner than low Earth orbit (LEO) satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatiotemporal-kriging (STK) method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages in using the STK method in this study is that more observed AOD data can be used to prepare the best initial AOD fields compared with other methods that use single frame of observation data around the time of initialization. It is demonstrated in this study that the short-term PM forecast system developed with the application of the STK method can greatly improve PM10 predictions in the Seoul metropolitan area (SMA) when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ˜ 60 and ˜ 70{%}, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC (particle-into-liquid sampler coupled with ion chromatography) and low air-volume sample

  18. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  19. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    Science.gov (United States)

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  20. Instruments to assess stigmatization in dermatology.

    Science.gov (United States)

    Dimitrov, Dimitre; Szepietowski, Jacek C

    2017-11-03

    Stigmatization is the assignment of negative perceptions to an individual because of a perceived difference from the population at large. Skin conditions are frequently the reason of social rejection with a consequent negative influence on the personal and social life of patients. The aim of the current study was to review the available instruments that can be successfully utilized to measure the stigmatization level among dermatological patients. We performed our search on PubMed up to November 2016 and utilized combinations of key phrases containing such words as stigmatization, skin, dermatology, names of various skin conditions (psoriasis, vitiligo, acne, etc.), measurement. The search found a considerable number of articles - 548. After filtering them through a precise selection process, 58 articles remained. We concentrated only on the methodological aspects to assess stigmatization in various dermatoses. The review ascertained that there exist numerous instruments in the form of questionnaires. They were utilized in various researches in order to assess the stigmatization level in patients with skin problems. We divided them into two main groups: dermatology specific instruments (6 questionnaires) and dermatosis/disease specific ones (8 questionnaires). It is recommended to use dermatology-specific instruments to compare the stigmatization level in various skin conditions. They can be utilized as well as a first line tools to study the feeling of stigmatization in specific skin diseases; however, where it is possible, they should be supplemented with the disease-specific instrument for deeper analysis of both qualities of life and stigmatization.

  1. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  2. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Science.gov (United States)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  3. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    Science.gov (United States)

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  4. Marine parameters from synergy of optical and radar satellite data

    Science.gov (United States)

    Lehner, S.; Hoja, D.; Schulz-Stellenfleth, J.

    In 2001 the European Space Agency ESA will launch the earth observation satellite ENVISAT. It will carry several instruments that provide new opportunities to measure oceanographic variables. Together, they represent the main measurement techniques of satellite oceanography, and complement each other in an ideal manner. These instruments are to be used in synergy to: Improve the analysis of measured wind and ocean wave fields, and thereby improve weather forecasting at weather centers; Determine the extent and variables of sea ice and develop a five-day sea ice prediction model, to support maritime shipping and offshore activities; Monitor and map sediment and suspended matter transport in coastal regions, especially in areas with large river estuaries, which greatly affects shipping lanes, harbors, and dredging activities; Monitor hydrobiological and bio-geochemical variables related to water quality in coastal regions and large inland waters, which affects ecology, coastal development, aquaculture, drinking water supplies, and tourism. To prepare the oceanographic community to make best use of the ENVISAT sensors in the pre-launch phase, existing algorithms to derive marine parameters are used and validated using data from the ERS SAR, the ERS RA, SeaWiFS and IRS MOS sensors now in operation. Derived products are used to address problems that can best be tackled using the synergy of radar and optical data, such as the effect of surface slicks on radar wind measurements, of sea state on ocean color, of wind and waves on the resuspension of suspended matter, and of wind and waves on sea ice variables.

  5. How Satellites Have Contributed to Building a Weather Ready Nation

    Science.gov (United States)

    Lapenta, W.

    2017-12-01

    NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and

  6. Dissemination of satellite-based river discharge and flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  7. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  8. Transient response of level instruments in a research reactor

    International Nuclear Information System (INIS)

    Cheng, Lap Y.

    1989-01-01

    A numerical model has been developed to simulate the dynamics of water level instruments in a research nuclear reactor. A bubble device, with helium gas as the working fluid, is used to monitor liquid level by sensing the static head pressure due to the height of liquid in the reactor vessel. A finite-difference model is constructed to study the transient response of the water level instruments to pressure perturbations. The field equations which describe the hydraulics of the helium gas in the bubbler device are arranged in the form of a tridiagonal matrix and the field variables are solved at each time step by the Thomas algorithm. Simulation results indicate that the dynamic response of the helium gas depends mainly on the volume and the inertia of the gas in the level instrument tubings. The anomalies in the simulated level indication are attributed to the inherent lag in the level instrument due to the hydraulics of the system. 1 ref., 5 figs

  9. Conception d'instrument pour une mission d'observation haute resolution et grand champ

    Science.gov (United States)

    Fayret, Jean-Philippe; Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Devilliers, Christophe; Costes, Vincent

    2017-11-01

    The future Earth observation missions aim at delivering images with a high resolution and a large field of view. The PLEIADES mission, coming after the SPOT satellites, lead to enhance the resolution to submetric values with a swath over 20km. Panchromatic and multispectral images will be proposed. Starting with the mission requirements elaborated by the CNES, Alcatel Space Industries has conducted a study to identify the instrument concepts most suited to comply with these performance. In addition, to minimise the development costs, a mini satellite approach has been selected, leading to a compact concept for the instrument design. During the study, various detection techniques and the associated detectors have been investigated from classical pushbroom to supermode acquisition modes. For each of these options, different optical lay-outs were proposed and evaluated with respect to performance as well as interfaces requirements. Optical performance, mechanical design constraints and manufacturing processes were taken into account to assess the performances of the various solutions. Eventually the most promising concept was selected and a preliminary design study performed. This concept, based on a Korsch optical scheme associated with TDI detectors, complies with the mission requirements and allows for a wide number of possibilities of accommodation with a minisatellite class platform.

  10. PRELIMINARY RESULTS OF THE COMPARISON OF SATELLITE IMAGERS USING TUZ GÖLÜ AS A REFERENCE STANDARD

    Directory of Open Access Journals (Sweden)

    H. Özen

    2012-07-01

    Full Text Available Earth surfaces, such as deserts, salt lakes, and playas, have been widely used in the vicarious radiometric calibration of optical earth observation satellites. In 2009, the Infrared and Visible Optical Sensors (IVOS sub-group of the Committee of Earth Observation Satellites (CEOS Working Group on Calibration and Validation (WGCV designated eight LANDNET reference sites to focus international efforts, facilitate traceability and enable the establishment of measurement "best practices." With support from the European Space Agency (ESA, one of the LANDNET sites, the Tuz Gölü salt lake located in central Turkey, was selected to host a cross-comparison of measurement instrumentation and methodologies conducted by 11 different ground teams across the globe. This paper provides an overview of the preliminary results of the cross-comparison of the ground-based spectral measurements made during the CEOS Land Comparison 13-27 August, 2010 with the simultaneous satellite image data acquisitions of the same site.

  11. The American Satellite Company (ASC) satellite deployed from payload bay

    Science.gov (United States)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  12. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men

    NARCIS (Netherlands)

    Snijders, T.; Verdijk, L.B.; Smeets, J.S.J.; McKay, B.R.; Senden, J.M.G.; Hartgens, F.; Parise, G.; Greenhaff, P.; van Loon, L.J.C.

    2014-01-01

    Skeletal muscle satellite cells (SCs) have been shown to be instrumental in the muscle adaptive response to exercise. The present study determines age-related differences in SC content and activation status following a single bout of exercise. Ten young (22 +/- 1 years) and 10 elderly (73 +/- 1

  13. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    Science.gov (United States)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  14. The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI: design, execution, and early results

    Directory of Open Access Journals (Sweden)

    A. J. M. Piters

    2012-02-01

    Full Text Available From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI. The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands. Its main objectives were to determine the accuracy of state-of-the-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing, and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent

  15. GHRSST Level 2P Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  16. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  17. Ranging error analysis of single photon satellite laser altimetry under different terrain conditions

    Science.gov (United States)

    Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong

    2018-02-01

    Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.

  18. Operational use of open satellite data for marine water quality monitoring

    Science.gov (United States)

    Symeonidis, Panagiotis; Vakkas, Theodoros

    2017-09-01

    The purpose of this study was to develop an operational platform for marine water quality monitoring using near real time satellite data. The developed platform utilizes free and open satellite data available from different data sources like COPERNICUS, the European Earth Observation Initiative, or NASA, from different satellites and instruments. The quality of the marine environment is operationally evaluated using parameters like chlorophyll-a concentration, water color and Sea Surface Temperature (SST). For each parameter, there are more than one dataset available, from different data sources or satellites, to allow users to select the most appropriate dataset for their area or time of interest. The above datasets are automatically downloaded from the data provider's services and ingested to the central, spatial engine. The spatial data platform uses the Postgresql database with the PostGIS extension for spatial data storage and Geoserver for the provision of the spatial data services. The system provides daily, 10 days and monthly maps and time series of the above parameters. The information is provided using a web client which is based on the GET SDI PORTAL, an easy to use and feature rich geospatial visualization and analysis platform. The users can examine the temporal variation of the parameters using a simple time animation tool. In addition, with just one click on the map, the system provides an interactive time series chart for any of the parameters of the available datasets. The platform can be offered as Software as a Service (SaaS) to any area in the Mediterranean region.

  19. Final state predictions for J2 gravity perturbed motion of the Earth’s artificial satellites using Bispherical coordinates

    Directory of Open Access Journals (Sweden)

    M.A. Sharaf

    2013-06-01

    Full Text Available In this paper, initial value problem for dynamical astronomy will be established using Bispherical coordinates. A computational algorithm is developed for the final state predictions for J2 gravity perturbed motion of the Earth’s artificial satellites. This algorithm is important in targeting, rendezvous maneuvers as well for scientific researches. The applications of the algorithm are illustrated by numerical examples of some test orbits of different eccentricities. The numerical results are extremely accurate and efficient.

  20. Analysis and application of analog electronic circuits to biomedical instrumentation

    CERN Document Server

    Northrop, Robert B

    2003-01-01

    This book introduces the basic mathematical tools used to describe noise and its propagation through linear systems and provides a basic description of the improvement of signal-to-noise ratio by signal averaging and linear filtering. The text also demonstrates how op amps are the keystone of modern analog signal conditioning systems design, and illustrates their use in isolation and instrumentation amplifiers, active filters, and numerous biomedical instrumentation systems and subsystems. It examines the properties of the ideal op amp and applies this model to the analysis of various circuits