WorldWideScience

Sample records for satellite instrument calibration

  1. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  2. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    Science.gov (United States)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  3. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    Science.gov (United States)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments - Solar Ultra Violet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  4. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    Science.gov (United States)

    Tadikonda, S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todrita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar back-ground-sevents impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  5. Post-launch calibration and testing of space weather instruments on GOES-R satellite

    Science.gov (United States)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-05-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments -- Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  6. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview

    Science.gov (United States)

    Munro, Rosemary; Lang, Rüdiger; Klaes, Dieter; Poli, Gabriele; Retscher, Christian; Lindstrot, Rasmus; Huckle, Roger; Lacan, Antoine; Grzegorski, Michael; Holdak, Andriy; Kokhanovsky, Alexander; Livschitz, Jakob; Eisinger, Michael

    2016-03-01

    The Global Ozone Monitoring Experiment-2 (GOME-2) flies on the Metop series of satellites, the space component of the EUMETSAT Polar System. In this paper we will provide an overview of the instrument design, the on-ground calibration and characterization activities, in-flight calibration, and level 0 to 1 data processing. The current status of the level 1 data is presented and points of specific relevance to users are highlighted. Long-term level 1 data consistency is also discussed and plans for future work are outlined. The information contained in this paper summarizes a large number of technical reports and related documents containing information that is not currently available in the published literature. These reports and documents are however made available on the EUMETSAT web pages and readers requiring more details than can be provided in this overview paper will find appropriate references at relevant points in the text.

  7. Application of the Langley plot method to the calibration of the solar backscattered ultraviolet instrument on the Nimbus 7 satellite

    Science.gov (United States)

    Bhartia, P. K.; Taylor, S.; Mcpeters, R. D.; Wellemeyer, C.

    1995-01-01

    The concept of the well-known Langley plot technique, used for the calibration of ground-based instruments, has been generalized for application to satellite instruments. In polar regions, near summer solstice, the solar backscattered ultraviolet (SBUV) instrument on the Nimbus 7 satellite samples the same ozone field at widely different solar zenith angles. These measurements are compared to assess the long-term drift in the instrument calibration. Although the technique provides only a relative wavelength-to-wavelength calibration, it can be combined with existing techniques to determine the drift of the instrument at any wavelength. Using this technique, we have generated a 12-year data set of ozone vertical profiles from SBUV with an estimated accuracy of +/- 5% at 1 mbar and +/- 2% at 10 mbar (95% confidence) over 12 years. Since the method is insensitive to true changes in the atmospheric ozone profile, it can also be used to compare the calibrations of similar SBUV instruments launched without temporal overlap.

  8. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  9. Use of multiple in situ instruments and remote sensed satellite data for calibration tests at Solfatara (Campi Flegrei volcanic area)

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria; Doumaz, Fawzi; Andres Diaz, Jorge

    2017-04-01

    Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of a volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees) for their specific risk. For such reason unmanned aircraft systems (UAS) mounting a variety of multigas sensors instruments (such as miniature mass spectrometer) or single specie sensors (such as electrochemical and IR sensors) allow a safe monitoring of volcanic activities. With this technology, it is possible to perform monitoring measurements of volcanic activity without risking the lives of scientists and personnel performing analysis during the field campaigns in areas of high volcanic activity and supporting the calibration and validation of satellite data measurements. These systems allowed the acquisition of real-time information such as temperature, pressure, relative humidity, SO2, H2S, CO2 contained in degassing plume and fumaroles, with GPS geolocation. The acquired data are both stored in the sensor and transmitted to a computer for real time viewing information. Information in the form of 3D concentration maps can be returned. The equipment used during the campaigns at Solfatara Volcano (in 2014, 2015 and 2016) was miniaturized instruments allowed measurements conducted either by flying drones over the fumarolic sites and by hand carrying into the fumaroles. We present the results of the field campaign held in different years at the Solfatara of Pozzuoli, near Naples, concerning measurements

  10. Satellite oceanography - The instruments

    Science.gov (United States)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  11. Overview of intercalibration of satellite instruments

    Science.gov (United States)

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms

  12. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  13. Calibration of the COBE FIRAS instrument

    Science.gov (United States)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Mather, J. C.; Massa, D. L.; Meyer, S. S.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite was designed to accurately measure the spectrum of the cosmic microwave background radiation (CMBR) in the frequency range 1-95/cm with an angular resolution of 7 deg. We describe the calibration of this instrument, including the method of obtaining calibration data, reduction of data, the instrument model, fitting the model to the calibration data, and application of the resulting model solution to sky observations. The instrument model fits well for calibration data that resemble sky condition. The method of propagating detector noise through the calibration process to yield a covariance matrix of the calibrated sky data is described. The final uncertainties are variable both in frequency and position, but for a typical calibrated sky 2.6 deg square pixel and 0.7/cm spectral element the random detector noise limit is of order of a few times 10(exp -7) ergs/sq cm/s/sr cm for 2-20/cm, and the difference between the sky and the best-fit cosmic blackbody can be measured with a gain uncertainty of less than 3%.

  14. Calibration of shaft alignment instruments

    Science.gov (United States)

    Hemming, Bjorn

    1998-09-01

    Correct shaft alignment is vital for most rotating machines. Several shaft alignment instruments, ranging form dial indicator based to laser based, are commercially available. At VTT Manufacturing Technology a device for calibration of shaft alignment instruments was developed during 1997. A feature of the developed device is the similarity to the typical use of shaft alignment instruments i.e. the rotation of two shafts during the calibration. The benefit of the rotation is that all errors of the shaft alignment instrument, for example the deformations of the suspension bars, are included. However, the rotation increases significantly the uncertainty of calibration because of errors in the suspension of the shafts in the developed device for calibration of shaft alignment instruments. Without rotation the uncertainty of calibration is 0.001 mm for the parallel offset scale and 0,003 mm/m for the angular scale. With rotation the uncertainty of calibration is 0.002 mm for the scale and 0.004 mm/m for the angular scale.

  15. ALTEA: The instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Zaconte, V. [INFN and University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy)], E-mail: livio.narici@roma2.infn.it; Belli, F.; Bidoli, V.; Casolino, M.; Di Fino, L.; Narici, L.; Picozza, P.; Rinaldi, A. [INFN and University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sannita, W.G. [DISM, University of Genova, Genova (Italy); Department of Psychiatry, SUNY, Stoony Brook, NY (United States); Finetti, N.; Nurzia, G.; Rantucci, E.; Scrimaglio, R.; Segreto, E. [Department of Physics, University and INFN, L' Aquila (Italy); Schardt, D. [GSI/Biophysik, Darmstadt (Germany)

    2008-05-15

    The ALTEA program is an international and multi-disciplinary project aimed at studying particle radiation in space environment and its effects on astronauts' brain functions, as the anomalous perception of light flashes first reported during Apollo missions. The ALTEA space facility includes a 6-silicon telescopes particle detector, and is onboard the International Space Station (ISS) since July 2006. In this paper, the detector calibration at the heavy-ion synchrotron SIS18 at GSI Darmstadt will be presented and compared to the Geant 3 Monte Carlo simulation. Finally, the results of a neural network analysis that was used for ion discrimination on fragmentation data will also be presented.

  16. Satellite Instrument Calibration for Measuring Global Climate Change. Report of a Workshop at the University of Maryland Inn and Conference Center, College Park, MD. , November 12-14, 2002

    Science.gov (United States)

    Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.

    2004-01-01

    Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.

  17. Satellite Instrument Calibration for Measuring Global Climate Change. Report of a Workshop at the University of Maryland Inn and Conference Center, College Park, MD. , November 12-14, 2002

    Science.gov (United States)

    Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.

    2004-01-01

    Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.

  18. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    Science.gov (United States)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  19. ECC Ozonesonde Calibration and Observations: Satellite Validation

    Science.gov (United States)

    Schmidlin, Francis J.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    The reliability of the Electrochemical Concentration Cell (ECC) ozonesonde depends on the care exercised in preparing the instrument for use. Although the ECC can be quickly prepared and flown, generally within less then one day if necessary, it is best to prepare the instrument at least one week prior to use, and as our tests have confirmed even 2-3 weeks prior to use may actually be better. There are a number of factors that must be considered when preparing an ECC. These basically are the pump efficiency, volumetric flow rate, temperature of the air entering the pump, and the background current. Also of importance is the concentration of the potassium iodide solution. Tests conducted at Wallops Island (38 N) has enabled us to identify potential problem areas and ways to avoid them. The calibration and pre-flight preparation methods will be discussed. The method of calibrating the ECC also is used at Ascension Island (8 S) and Natal, Brazil (5 S). Comparisons between vertical profiles of the ECC instrument and satellites will be reviewed as well as comparison with ground based instruments, such as, the Dobson Spectrophotometer and hand held Microtops photometers.

  20. Calibrating coastal GNSS-R instrumentation

    Science.gov (United States)

    Löfgren, Johan; Haas, Rüdiger; Hobiger, Thomas

    2015-04-01

    Since 2011, a GNSS-R (Global Navigation Satellite System - Reflectometry) instrument for local sea level observations is operated at the Onsala Space Observatory (Löfgren et al., 2011). The Onsala Space Observatory is the Swedish geodetic fundamental station, located at the Swedish West Coast, and contributes to the Global Geodetic Observing System (GGOS) by a variety of geodetic and geophysical observations. The Onsala GNSS-R instrumentation consists of two GNSS antennas that are mounted back-to-back on a bar at the coastline extending over the open sea in southward direction. One of the antennas is upward oriented and receives the direct satellite signals, while the other antenna is downward oriented and receives the satellite signals that reflect off the sea surface. The antennas are connected to a commercial GNSS receiver each and data are recorded with sampling rate of up to 20 Hz. Satellite signals of several GNSS are received and are analysed with various different analysis strategies to provide sea level results with different temporal resolution and precision (Larson et al., 2013; Löfgren and Haas, 2014). Since the instrumentation uses GNSS signals, it is possible to derive both local sea level, i.e. relative to the coast, and absolute sea level, i.e. relative to the geocentre as realised by the GNSS. The bar carrying the two antennas can be placed in 10 different vertical positions covering a height difference of 2.5 m between the highest and lowest position. We present results from a calibration campaign of the Onsala GNSS-R instrumentation performed in 2014. During this several weeks long campaign the antennas were placed at different vertical positions for several days at each position. The recorded data are analysed with the different analysis strategies, and the results are compared to the results derived from the co-located tide gauge equipment. References - Löfgren J, Haas R, Scherneck H-G (2011). Three months of local sea-level derived from

  1. Prelaunch calibration of the HIRDLS instrument

    Science.gov (United States)

    Barnett, John J.; Darbyshire, A. G.; Hepplewhite, Christopher L.; Palmer, Christopher W.; Row, F.; Venters, P.; Watkins, R. E.; Whitney, John G.; Gille, John C.; Johnson, Brian R.

    1998-11-01

    The High Resolution Dynamics Limb Sounder (HIRDLS) instrument is being built jointly by the UK and USA, and is scheduled for launch on the NASA EOS Chem satellite in 2002. HIRDLS will measure the concentration of trace species and aerosol, and temperature and pressure variations in the Earth's atmosphere between about 8 and 100 km altitude. It is an infrared limb emission sounder, and a primary aim is that it should measure to much finder spatial resolution than has previously been achieved, with simultaneous 1 km vertical and 500 km horizontal resolutions, globally, every 12 hours. Achieving these objectives will depend upon very precise pre-launch calibration. This will be undertaken at Oxford University in a test laboratory that is currently being constructed specifically for the task. The instrument will be surrounded by cryogenically cooled walls, and mounted together with the test equipment on an optical table contained in a vacuum chamber. The table will be mounted independently of the chamber, on an inertial mass supported on pneumatic isolators. Test equipment is being manufactured to measure (1) the radiometric response (with an absolute accuracy equivalent to 70 mK) using full aperture black body targets, (2) the spectral response of each of the filter channels using a grating monochromator, (3) the spatial response of the instrument field of view, including low level out-of-field contributions, to 10 (mu) rad accuracy using a monochromator. The methods and equipment used are described together with the principal requirements.

  2. Multi-Instrument Inter-Calibration (MIIC System

    Directory of Open Access Journals (Sweden)

    Chris Currey

    2016-11-01

    Full Text Available In order to have confidence in the long-term records of atmospheric and surface properties derived from satellite measurements it is important to know the stability and accuracy of the actual radiance or reflectance measurements. Climate quality measurements require accurate calibration of space-borne instruments. Inter-calibration is the process that ties the calibration of a target instrument to a more accurate, preferably SI-traceable, reference instrument by matching measurements in time, space, wavelength, and view angles. A major challenge for any inter-calibration study is to find and acquire matched samples from within the large data volumes distributed across Earth science data centers. Typically less than 0.1% of the instrument data are required for inter-calibration analysis. Software tools and networking middleware are necessary for intelligent selection and retrieval of matched samples from multiple instruments on separate spacecraft.  This paper discusses the Multi-Instrument Inter-Calibration (MIIC system, a web-based software framework used by the Climate Absolute Radiance and Refractivity Observatory (CLARREO Pathfinder mission to simplify the data management mechanics of inter-calibration. MIIC provides three main services: (1 inter-calibration event prediction; (2 data acquisition; and (3 data analysis. The combination of event prediction and powerful server-side functions reduces the data volume required for inter-calibration studies by several orders of magnitude, dramatically reducing network bandwidth and disk storage needs. MIIC provides generic retrospective analysis services capable of sifting through large data volumes of existing instrument data. The MIIC tiered design deployed at large institutional data centers can help international organizations, such as Global Space Based Inter-Calibration System (GSICS, more efficiently acquire matched data from multiple data centers. In this paper we describe the MIIC

  3. Instrument Calibration and Certification Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. Wesley [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-31

    The Amptec 640SL-2 is a 4-wire Kelvin failsafe resistance meter, designed to reliably use very low-test currents for its resistance measurements. The 640SL-1 is a 2-wire version, designed to support customers using the Reynolds Industries type 311 connector. For both versions, a passive (analog) dual function DC Milliameter/Voltmeter allows the user to verify the actual 640SL output current level and the open circuit voltage on the test leads. This procedure includes tests of essential performance parameters. Any malfunction noticed during calibration, whether specifically tested for or not, shall be corrected before calibration continues or is completed.

  4. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    Science.gov (United States)

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  5. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...... on a seven-year ERS-1 and a four-year ERS-2 time series, the long term stability is found to be sufficient to allow a single calibration covering the entire mission period. A descending and an ascending orbit tandem pair of the ESA calibration site on Flevoland, suitable for calibration of ERS SAR processors...

  6. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  7. Satellite imager calibration and validation

    CSIR Research Space (South Africa)

    Vhengani, L

    2010-10-01

    Full Text Available The success or failure of any earth observation mission depends on the quality of its data. Data quality is assessed by determining the radiometric, spatial, spectral and geometric fidelity of the satellite sensor. The process is termed calval...

  8. NASA AURA HIRDLS instrument calibration facility

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Watkins, Robert E. J.; Row, Frederick; Wolfenden, Roger; Djotni, Karim; Oduleye, Olusoji O.; Whitney, John G.; Walton, Trevor W.; Arter, Philip I.

    2003-11-01

    A state-of-the-art calibration facility was designed and built for the calibration of the HIRDLS instrument at the University of Oxford, England. This paper describes the main features of the facility, the driving requirements and a summary of the performance that was achieved during the calibration. Specific technical requirements and a summary of the performance that was achieved during the calibration. Specific technical requirements and other constaints determined the design solutions that were adopted and the implementation methodology. The main features of the facility included a high performance clean room, vacuum chamber with thermal environmental control as well as the calibration sources. Particular attention was paid to maintenance of cleanliness (molecular and particulate), ESD control, mechanical isolation and high reliability. Schedule constraints required that all the calibration sources were integrated into the facility so that the number of re-press and warm up cycles was minimized and so that all the equipment could be operated at the same time.

  9. HIRDLS instrument radiometric calibration black body targets

    Science.gov (United States)

    Hepplewhite, Christopher L.; Watkins, Robert E. J.; Row, Frederick; Barnett, John J.; Peters, Daniel M.; Palmer, Christopher W. P.; Wolfenden, Roger; Djotni, Karim; Arter, Philip I.

    2003-11-01

    The pre-launch calibration of the HIRDLS instrument took place in a dedicated facility at the University of Oxford. One aspect of this calibration was the determination of the response of the instrument to black body radiation. This was achieved with the use of purpose built full aperture black body targets which were mounted in the vacuum chamber together with all of the calibration equipment. Special attention was placed on the absolute knowledge of the emission from these targets. This was done through a combination of thermometric sensor calibration traceable to the International Temperature Standard (ITS-90), surface emission measurements, cavity design and modeling and controlling the stray light sources in the vacuum chamber. This paper describes the design requirements, implementation and performance achieved.

  10. MAGNETIC GRADIOMETRY: Instrumentation, Calibration and Applications

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia

    is to be used in the forthcoming satellites CHAMP and SAC-C. Linearity, thermal, radiation, dynamic and calibration tests are carried out to qualify the magnetometer in order to ensure state-of-the-art performance with subnanotesla precision. The overall calibration of the gradiometer yields an omnidirectional...... absolute accuracy of 93pT/m.The scalar calibration of a vector magnetometer is explained thoroughly. The novel method is simple and it represents the most robust and unique way to estimate the characterizing 9 parameters of a vector magnetometer. Its power relies on the linearization of the parametrization...... and offers the possibility of separating the geomagnetic field sources.By using tensor algebra the spherical harmonic expansion of the magnetic field in a curl free region and its associated gradient tensor are derived. This differential tensor quantity is then expressed by spherical coordinates...

  11. Calibration facility for environment dosimetry instruments

    Energy Technology Data Exchange (ETDEWEB)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin [Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului St, Magurele, Jud Ilfov, P.O.B. MG-6, RO-077125 (Romania)

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  12. Calibration facility for environment dosimetry instruments

    Science.gov (United States)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-01

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (˜10-9 - 10-8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  13. On-orbit instrument calibration of CALET

    Science.gov (United States)

    Javaid, Amir; Calet Collaboration

    2015-04-01

    The CALorimetric Electron Telescope (CALET) is a high-energy cosmic ray experiment which will be placed on the International Space Station in 2015. Primary goals of CALET are measurement of cosmic ray electron spectra from 1 GeV to 20 TeV, gamma rays from 10 GeV to 10 TeV, and protons and nuclei from 10 GeV up to 1000 TeV. The detector consists of three main components: a Charge Detector (CHD), Imaging Calorimeter (IMC), and Total Absorption Calorimeter (TASC). As CALET is going to work in the ISS orbit space environment, it needs to be calibrated while it is in orbit. Penetrating non-showering protons and helium nuclei are prime candidates for instrument calibration, as they provide a known energy signal for calibrating the detector response. In the present paper, we discuss estimation of CALET's detector efficiency to protons and helium nuclei. Included is a discussion of different galactic cosmic ray and trapped proton models used for flux calculation and simulations performed for detector geometric area and trigger rate calculation. This paper also discusses the importance of the albedo proton flux for the CALET detector calibration. This research was supported by NASA at Louisiana State University under Grant Number NNX11AE01G.

  14. Ozone measurement systems: associated instrumentation and calibration

    Directory of Open Access Journals (Sweden)

    J. Bellido

    2006-01-01

    Full Text Available The harmful effects produced by ozone have lead to a vast regulation to define and establish the quality goals of ambient air, based on common methods and criteria. The surveillance nets of atmospheric pollution are worldwide extended systems and the applied technology for the ozone measurement is nowadays quite standardized. The aim of this paper is to give a general view of the most common systems used in the ozone measurement in ambient air from a practical point of view. The used instrumentation and the usual calibration methods will be described.

  15. Portable calibration instrument of hemodialysis unit

    Science.gov (United States)

    Jin, Liang-bing; Li, Dong-sheng; Chen, Ai-jun

    2013-01-01

    For the purpose of meeting the rapid development of blood purification in China, improve the level of blood purification treatment, and get rid of the plight of the foreign technology monopolization to promise patients' medical safety, a parameter-calibrator for the hemodialysis unit, which can detect simultaneously multi-parameter, is designed. The instrument includes a loop, which connects to the hemodialysis unit. Sensors are in the loop in series, so that the dialysis can flow through this loop and the sensors can acquisitive data of various parameters. In order to facilitate detection and carrying, the integrated circuit part modularly based on the ultralow-power microcontrollers,TI MSP430 is designed. High-performance and small-packaged components are used to establish a modular, high-precision, multi-functional, portable system. The functions and the key technical indexes of the instrument have reached the level of products abroad.

  16. Calibration of the spectrometer aboard the INTEGRAL satellite

    Science.gov (United States)

    Schanne, Stephane; Cordier, Bertrand; Gros, Maurice; Attie, David; von Ballmoos, Peter; Bouchet, Laurent; Carli, Raffaelo; Connell, Paul; Diehl, Roland; Jean, Pierre; Kiener, Juergen; von Kienlin, Andreas; Knoedlseder, Juergen; Laurent, Phillipe; Lichti, Giselher G.; Mandrou, Pierre; Paul, Jaques; Paul, Philippe; Roques, Jean-Pierre; Sanchez, Filomeno; Schoenfelder, Volker; Shrader, Chris; Skinner, Gerald K.; Strong, Andrew W.; Sturner, Steven J.; Tatischeff, Vincent; Teegarden, Bonnard J.; Vedrenne, Gilbert; Weidenspointner, Georg; Wunderer, Cornelia B.

    2003-03-01

    SPI, the Spectrometer on board the ESA INTEGRAL satellite, to be launched in October 2002, will study the gamma-ray sky in the 20 keV to 8 MeV energy band with a spectral resolution of 2 keV for photons of 1 MeV, thanks to its 19 germanium detectors spanning an active area of 500 cm2. A coded mask imaging technique provides a 2° angular resolution. The 16° field of view is defined by an active BGO veto shield, furthermore used for background rejection. In April 2001 the flight model of SPI underwent a one-month calibration campaign at CEA in Bruyères le Châtel using low intensity radioactive sources and the CEA accelerator for homogeneity measurements and high intensity radioactive sources for imaging performance measurements. After integration of all scientific payloads (the spectrometer SPI, the imager IBIS and the monitors JEM-X and OMC) on the INTEGRAL satellite, a cross-calibration campaign has been performed at the ESA center in Noordwijk. A set of sources has been placed in the field of view of the different instruments in order to compare their performances and determine their mutual influence. We report on the scientific goals of this calibration activity, and present the measurements performed as well as some preliminary results.

  17. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  18. Geodetic Mobil Solar Spectrometer for JASON Altimeter Satellite Calibration

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Geiger, A.; Kahle, H.-G.; Becker-Ross, H.; Florek, S.; Okruss, M.

    Atmospheric water vapor is a crucial factor in achieving highest accuracies for space geodetic measurements. Water vapor causes a delay of the propagation time of the altimeter satellite signal, which propagates into errors for the determination of surface heights. Knowledge of the precipitable water vapor (PW) enables a tropospheric correction of the satellite signal. Therefore, different remote sensing techniques have been pursued to measure the PW continuously. The prototype Geodetic Mobil Solar Spectrometer (GEMOSS) was developed at the Geodesy and Geodynamics Laboratory (GGL, ETH Zurich) in cooperation with the Institute of Spectrochemistry and Applied Spectroscopy (ISAS) (Berlin, Germany). A new optical approach allows the simultaneous measurement of numerous single absorption lines of water vapor in the wide range between 728 nm and 915 nm. The large number of available absorption lines increases the accuracy of the absolute PW retrievals considerably. GEMOSS has been deployed during two campaigns in Greece in the framework of the EU-project GAVDOS, which deals with the calibration of the altimeter satellite JASON. During the overfly of JASON, the ground-based determination of PW enables the correction of the satellite measurements due to tropospheric water vapor. Comparisons with radiometer and radiosondes data allow to assess the accuracy and reliability of GEMOSS. The instrumental advancement of GEMOSS is presented together with the results of the campaigns carried out.

  19. Sensor Calibration in Support for NOAA's Satellite Mission

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Sensor calibration, including its definition, purpose, traceability options, methodology, complexity, and importance, is examined in this paper in the context of supporting NOAA's satellite mission. Common understanding of sensor calibration is essential for the effective communication among sensor vendors,calibration scientists, satellite operators, program managers, and remote sensing data users, who must cooperate to ensure that a nation's strategic investment in a sophisticated operational environmental satellite system serves the nation's interest and enhances the human lives around the world. Examples of calibration activities at NOAA/NESDIS/ORA are selected to further illustrate these concepts and to demonstrate the lessons learned from the past experience.

  20. Preparation of a new autonomous instrumented radiometric calibration site: Gobabeb, Namib Desert

    Science.gov (United States)

    Greenwell, Claire; Bialek, Agnieszka; Marks, Amelia; Woolliams, Emma; Berthelot, Béatrice; Meygret, Aimé; Marcq, Sébastien; Bouvet, Marc; Fox, Nigel

    2015-10-01

    A new permanently instrumented radiometric calibration site for high/medium resolution imaging satellite sensors is currently under development, focussing on the visible and near infra-red parts of the spectrum. The site will become a European contribution to the Committee on Earth Observation Satellites (CEOS) initiative RadCalNet (Radiometric Calibration Network). The exact location of the permanent monitoring instrumentation will be defined following the initial site characterisation. The new ESA/CNES RadCalNet site will have a robust uncertainty budget and its data fully SI traceable through detailed characterisation and calibration by NPL of the instruments and artefacts to be used on the site. This includes a CIMEL sun photometer (the permanent instrumentation) an ASD FieldSpec spectroradiometer, Gonio Radiometric Spectrometer System (GRASS), and reference reflectance standards.

  1. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  2. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  3. Calibration of space instruments at the Metrology Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.; Kolbe, M.; Paustian, W.; Reichel, T.; Richter, M.; Thornagel, R.; Ulm, G. [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany)

    2016-07-27

    PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, and detectors is continued.

  4. Internal Calibration of HJ-1-C Satellite SAR System

    Directory of Open Access Journals (Sweden)

    Yang Zhen

    2014-06-01

    Full Text Available The HJ-1-C satellite is a Synthetic Aperture Radar (SAR satellite of a small constellation for environmental and disaster monitoring. At present, it is in orbit and working well. The SAR system uses a mesh reflector antenna and centralized power amplifier, and has an internal calibration function in orbit. This study introduces the internal calibration modes and signal paths. The design and realization of the internal calibrator are discussed in detail. Finally, the internal calibration data acquired in orbit are also analyzed.

  5. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  6. Inter-calibration and validation of observations from SAPHIR and ATMS instruments

    Science.gov (United States)

    Moradi, I.; Ferraro, R. R.

    2015-12-01

    We present the results of evaluating observations from microwave instruments aboard the Suomi National Polar-orbiting Partnership (NPP, ATMS instrument) and Megha-Tropiques (SAPHIR instrument) satellites. The study includes inter-comparison and inter-calibration of observations of similar channels from the two instruments, evaluation of the satellite data using high-quality radiosonde data from Atmospheric Radiation Measurement Program and GPS Radio Occultaion Observations from COSMIC mission, as well as geolocation error correction. The results of this study are valuable for generating climate data records from these instruments as well as for extending current climate data records from similar instruments such as AMSU-B and MHS to the ATMS and SAPHIR instruments. Reference: Moradi et al., Intercalibration and Validation of Observations From ATMS and SAPHIR Microwave Sounders. IEEE Transactions on Geoscience and Remote Sensing. 01/2015; DOI: 10.1109/TGRS.2015.2427165

  7. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  8. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a four-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark.Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements...... with measurement uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  9. Geometric Calibration and Accuracy Verification of the GF-3 Satellite.

    Science.gov (United States)

    Zhao, Ruishan; Zhang, Guo; Deng, Mingjun; Xu, Kai; Guo, Fengcheng

    2017-08-29

    The GF-3 satellite is the first multi-polarization synthetic aperture radar (SAR) imaging satellite in China, which operates in the C band with a resolution of 1 m. Although the SAR satellite system was geometrically calibrated during the in-orbit commissioning phase, there are still some system errors that affect its geometric positioning accuracy. In this study, these errors are classified into three categories: fixed system error, time-varying system error, and random error. Using a multimode hybrid geometric calibration of spaceborne SAR, and considering the atmospheric propagation delay, all system errors can be effectively corrected through high-precision ground control points and global atmospheric reference data. The geometric calibration experiments and accuracy evaluation for the GF-3 satellite are performed using ground control data from several regions. The experimental results show that the residual system errors of the GF-3 SAR satellite have been effectively eliminated, and the geometric positioning accuracy can be better than 3 m.

  10. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  11. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  12. Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the moon

    Science.gov (United States)

    Stone, T.C.

    2008-01-01

    With the increased emphasis on monitoring the Earth's climate from space, more stringent calibration requirements are being placed on the data products from remote sensing satellite instruments. Among these are stability over decade-length time scales and consistency across sensors and platforms. For radiometer instruments in the solar reflectance wavelength range (visible to shortwave infrared), maintaining calibration on orbit is difficult due to the lack of absolute radiometric standards suitable for flight use. The Moon presents a luminous source that can be viewed by all instruments in Earth orbit. Considered as a solar diffuser, the lunar surface is exceedingly stable. The chief difficulty with using the Moon is the strong variations in the Moon's brightness with illumination and viewing geometry. This mandates the use of a photometric model to compare lunar observations, either over time by the same instrument or between instruments. The U.S. Geological Survey in Flagstaff, Arizona, under NASA sponsorship, has developed a model for the lunar spectral irradiance that explicitly accounts for the effects of phase, the lunar librations, and the lunar surface reflectance properties. The model predicts variations in the Moon's brightness with precision ???1% over a continuous phase range from eclipse to the quarter lunar phases. Given a time series of Moon observations taken by an instrument, the geometric prediction capability of the lunar irradiance model enables sensor calibration stability with sub-percent per year precision. Cross-calibration of instruments with similar passbands can be achieved with precision comparable to the model precision. Although the Moon observations used for intercomparison can be widely separated in phase angle and/or time, SeaWiFS and MODIS have acquired lunar views closely spaced in time. These data provide an example to assess inter-calibration biases between these two instruments.

  13. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  14. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  15. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  16. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  17. Iqaluit Calibration/Validation Supersite for Meteorological Satellites

    Science.gov (United States)

    Mariani, Z.; Dehghan, A.; Gascon, G.; Joe, P.; Strawbridge, K.; Burrows, W.; Melo, S.

    2016-08-01

    It is foreseen that the changing climate in the Arctic will result in increased activities, such as marine navigation, resource exploitation, aviation, fishing, and recreation, requiring reliable and relevant weather information. However, processes governing weather systems in the Arctic are not well understood. There is a recognized lack of meteorological observations to characterize the atmosphere and the cryosphere for operational forecasting and to support process studies, satellite and model calibration/validation (cal/val), and for verification. Environment and Climate Change Canada (ECCC) is enhancing the observing capacity of selected sites, including Iqaluit (64oN, 69oW), which is uniquely situated in close proximity to frequent overpasses by polar-orbiting satellites such as ADM-Aeolus, A-Train, GPM, and EarthCARE. Iqaluit's suite of instruments will provide near-real time observations of altitude resolved wind speed and direction, aerosol size and shape, cloud intensity and height, sensible heat flux, turbulence, fog, and precipitation amount/type. Initial results demonstrate their ability to detect fog, blowing snow and very light precipitation (diamond dust).

  18. Planck 2015 results: VIII. High Frequency Instrument data processing: Calibration and maps

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI...... mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using...... models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system...

  19. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  20. MAGNETIC GRADIOMETRY: Instrumentation, Calibration and Applications

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia

    The description of the single axis magnetic gradiometer based on two Compensation Detector Coil (CDC) fluxgate ringcore sensors separated 20cm introduces the subject of magnetic gradiometry. Despite its good properties and high precision of less than 1nT, the calibration procedures...... are not straightforward. Firstly, the monoaxial character does not provide the vectorial information on the magnetic field. Secondly, one of the sensors measures the ambient magnetic field and this is used to compensate the field in both sensors. Several methods have been developed for its characterization...... and the calibration of the gradient measurement is achieved by the use of a magnetic dipole pattern of strength 2mAm2. In a coil facility, the gradient can be determined with an RMS value of 0.3nT/m.The ultra high sensitivity magnetic triaxial gradiometer has been constructed by employing another approach. Two...

  1. IOT Overview: Calibrations of the VLTI Instruments (MIDI and AMBER)

    Science.gov (United States)

    Morel, S.; Rantakyrö, F.; Rivinius, T.; Stefl, S.; Hummel, C.; Brillant, S.; Schöller, M.; Percheron, I.; Wittkowski, M.; Richichi, A.; Ballester, P.

    We present here a short review of the calibration processes that are currently applied to the instruments AMBER and MIDI of the VLTI (Very Large Telescope Interferometer) at Paranal. We first introduce the general principles to calibrate the raw data (the "visibilities") that have been measured by long-baseline optical interferometry. Then, we focus on the specific case of the scientific operation of the VLTI instruments. We explain the criteria that have been used to select calibrator stars for the observations with the VLTI instruments, as well as the routine internal calibration techniques. Among these techniques, the "P2VM" (Pixel-to-Visibility Matrix) in the case of AMBER is explained. Also, the daily monitoring of AMBER and MIDI, that has recently been implemented, is shortly introduced.

  2. Evaluation of multivariate calibration models transferred between spectroscopic instruments

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae; Hansen, Per W.; Skov, Thomas

    2016-01-01

    In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions for the ......In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions...... for the same samples using the transferred model. However, sometimes the success of a model transfer is evaluated by comparing the transferred model predictions with the reference values. This is not optimal, as uncertainties in the reference method will impact the evaluation. This paper proposes a new method...... for calibration model transfer evaluation. The new method is based on comparing predictions from different instruments, rather than comparing predictions and reference values. A total of 75 flour samples were available for the study. All samples were measured on ten near infrared (NIR) instruments from two...

  3. Fluorescence calibration method for single-particle aerosol fluorescence instruments

    Science.gov (United States)

    Shipley Robinson, Ellis; Gao, Ru-Shan; Schwarz, Joshua P.; Fahey, David W.; Perring, Anne E.

    2017-05-01

    Real-time, single-particle fluorescence instruments used to detect atmospheric bioaerosol particles are increasingly common, yet no standard fluorescence calibration method exists for this technique. This gap limits the utility of these instruments as quantitative tools and complicates comparisons between different measurement campaigns. To address this need, we have developed a method to produce size-selected particles with a known mass of fluorophore, which we use to calibrate the fluorescence detection of a Wideband Integrated Bioaerosol Sensor (WIBS-4A). We use mixed tryptophan-ammonium sulfate particles to calibrate one detector (FL1; excitation = 280 nm, emission = 310-400 nm) and pure quinine particles to calibrate the other (FL2; excitation = 280 nm, emission = 420-650 nm). The relationship between fluorescence and mass for the mixed tryptophan-ammonium sulfate particles is linear, while that for the pure quinine particles is nonlinear, likely indicating that not all of the quinine mass contributes to the observed fluorescence. Nonetheless, both materials produce a repeatable response between observed fluorescence and particle mass. This procedure allows users to set the detector gains to achieve a known absolute response, calculate the limits of detection for a given instrument, improve the repeatability of the instrumental setup, and facilitate intercomparisons between different instruments. We recommend calibration of single-particle fluorescence instruments using these methods.

  4. The introduction to GNOS instrument for FY-3 satellite

    Science.gov (United States)

    Du, Qifei

    2016-07-01

    Global Navigation Satellite System (GNSS) Radio occultation (RO) has become a major atmospheric and ionospheric remote sensing technique and been widely used for numerical weather prediction and global climate monitoring applications. The first GNSS Occultation Sounder (GNOS) developed and manufactured by National Space Science Center (NSSC), Chinese Academy of Science is a RO payload, which has been onboard Fengyun-3 C (FY-3C) satellite and been launched on September 23, 2013. FY-3 series satellites are the Chinese second generation polar-orbiting meteorological satellites with sun-synchronous orbits. During RO events, the GNOS instruments measure the phase delay caused by the Earth's atmospheric and ionospheric refraction between the GNSS satellites and FY-3 satellites, as the relative position between the GNSS satellites and the FY-3 satellites varying, vertical profiles of RO observations (i.e. phase and amplitude) will be obtained, which can be used to derived the atmospheric and ionospheric physical properties such as press, temperature, humidity and ionospheric electron density. In my presentation, we present the characteristics of GNOS instruments for FY-3 series satellites and the result by the instrument in orbit. Firstly, we present the characteristics of GNOS instrument for FY-3C satellite and its precision of atmosphere occultation data. Additionally, we introduce the characteristics of GNOS instrument for FY-3D satellite which will be launched in 2016. Finally, we show the next generation GNOS instrument and its characteristics for the following FY-3 satellites.

  5. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    Science.gov (United States)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  6. An Overview of the Joint Polar Satellite System (JPSS Science Data Product Calibration and Validation

    Directory of Open Access Journals (Sweden)

    Lihang Zhou

    2016-02-01

    Full Text Available The Joint Polar Satellite System (JPSS will launch its first JPSS-1 satellite in early 2017. The JPSS-1 and follow-on satellites will carry aboard an array of instruments including the Visible Infrared Imaging Radiometer Suite (VIIRS, the Cross-track Infrared Sounder (CrIS, the Advanced Technology Microwave Sounder (ATMS, and the Ozone Mapping and Profiler Suite (OMPS. These instruments are similar to the instruments currently operating on the Suomi National Polar-orbiting Partnership (S-NPP satellite. In preparation for the JPSS-1 launch, the JPSS program at the Center for Satellite Applications and Research (JSTAR Calibration/Validation (Cal/Val teams, have laid out the Cal/Val plans to oversee JPSS-1 science products’ algorithm development efforts, verification and characterization of these algorithms during the pre-launch period, calibration and validation of the products during post-launch, and long-term science maintenance (LTSM. In addition, the team has developed the necessary schedules, deliverables and infrastructure for routing JPSS-1 science product algorithms for operational implementation. This paper presents an overview of these efforts. In addition, this paper will provide insight into the processes of both adapting S-NPP science products for JPSS-1 and performing upgrades for enterprise solutions, and will discuss Cal/Val processes and quality assurance procedures.

  7. Time transfer by laser link (T2L2): characterization and calibration of the flight instrument

    Science.gov (United States)

    Samain, E.; Vrancken, P.; Guillemot, P.; Fridelance, P.; Exertier, P.

    2014-10-01

    The T2L2 project (time transfer by laser link) allows for the synchronization of remote ultra-stable clocks over intercontinental distances (Fridelance et al 1997 Exp. Astron. 7, Samain and Fridelance 1998 Metrologia 35 151-9). The principle is derived from satellite laser ranging technology with dedicated space equipment designed to record arrival times of laser pulses at the satellite. The space segment has been launched in June 2008 as a passenger experiment on the ocean altimetry satellite Jason 2. T2L2 had been specified to yield a time stability of better than 1 ps over 1000 s integration time and an accuracy of better than 100 ps. This level of performance requires a rigorous data processing which can be performed only with a comprehensive calibration model of the whole instrumentation. For this purpose, several experimental measurements have been performed before and during the integration phase of the T2L2 space instrument. This instrument model is one of the cornerstones of the data reduction process which is carried out to translate the raw information to a usable picosecond time transfer. After providing a global synopsis of the T2L2 space instrument, the paper gives a description of the experimental setup for the instrument characterization. It then details the different contributions within the calibration model and concludes with an applied example of a space to ground time transfer.

  8. Cross calibration of IRS-P4 OCM satellite sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    The cross calibration of ocean color satellite sensor, IRS-P4 OCM using the radiative transfer code, with SeaWiFS as a reference are presented here. Since the bands of IRS-P4 OCM are identical to those of SeaWiFS and SeaWiFS has been continuously...

  9. Calibration strategies for the LAD instrument on-board LOFT

    CERN Document Server

    Pacciani, Luigi; Argan, Andrea; Barret, Didier; Bozzo, Enrico; Feroci, Marco; Fraser, George W; Herder, Jan-Willem den; Pohl, Martin; Schmid, Christian; Tenzer, Chris; Vacchi, Andrea; Walton, Dave; Zampa, Gianluigi; Zane, Silvia

    2012-01-01

    The Scientific objectives of the LOFT mission, e.g., the study of the Neutron Star equation of state and of the Strong Gravity, require accurate energy, time and flux calibration for the 500k channels of the SDD detectors, as well as the knowledge of the detector dead-time and of the detector response with respect to the incident angle of the photons. We report here the evaluations made to asses the calibration issues for the LAD instrument. The strategies for both ground and on-board calibrations, including astrophysical observations, show that the goals are achievable within the current technologies.

  10. Characterisation of pulsed Carbon fiber illuminators for FIR instrument calibration

    CERN Document Server

    Henrot-Versillé, S; Couchot, F

    2007-01-01

    We manufactured pulsed illuminators emitting in the far infrared for the Planck-HFI bolometric instrument ground calibrations. Specific measurements have been conducted on these light sources, based on Carbon fibers, to understand and predict their properties. We present a modelisation of the temperature dependence of the thermal conductivity and the calorific capacitance of the fibers. A comparison between simulations and bolometer data is given, that shows the coherence of our model. Their small time constants, their stability and their emission spectrum pointing in the submm range make these illuminators a very usefull tool for calibrating FIR instruments.

  11. Calibration and Verification of Remote Sensing Instruments and Observations

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2014-06-01

    Full Text Available Satellite instruments are nowadays a very important source of information. The physical quantities (essential variables derived from satellites are utilized in a wide field of applications, in particular in atmospheric physics and geoscience. In contrast to ground measurements the physical quantities are not directly measured, but have to be retrieved from satellite observations. Satellites observe hereby the reflection or emission of radiation by the Earth's surface or atmosphere, which enables the retrieval of respective physical quantities (essential variables. The physical basis for the retrieval is the interaction of the radiation with the Earth’s atmosphere and surface. This interaction is defined by radiative transfer, which favors the use of radiances and their respective units within retrieval methods. [...

  12. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  13. Calibration of high resolution remote sensing instruments in the visible and near infrared

    Science.gov (United States)

    Schüller, L.; Fischer, J.; Armbruster, W.; Bartsch, B.

    1997-05-01

    Measurements of the reflected solar radiation with high spectral resolution airborne instruments are usually used to develop new remote sensing techniques. The observed spectral features in the signals provide the possibility to define useful band settings for future satellite instruments. A precise wavelength and radiometric calibration is a prerequisite for such tasks. In this paper, a calibration procedure for the airborne spectrometer OVID is presented. The Optical Visible and near Infrared Detector consists of two similar detector systems, (600 - 1100 nm = VIS and 900 - 1700 nm = NIR). The spectral resolution is ~1.7 nm for the VIS-system and ~6 nm for the IR-system. This instrument is applied for the retrieval of water vapour content, aerosol and cloud properties. Besides the spectral and intensity calibration, also corrections for the dark current signals and for defective pixels have been performed. An indirect verification of the calibration procedure by the comparison of OVID measurements in cloudy and cloud free atmospheres with radiative transfer simulations is discussed in this paper. The used radiation transfer model MOMO is based on the matrix operator method.

  14. Vacuum facility for calibration of space instrumentation in cleanroom

    Science.gov (United States)

    Pelizzo, M. G.; Zuppella, P.; Polito, V.; Corso, A. J.; Zuccon, S.; Nicolosi, P.

    2012-09-01

    Calibration of optical systems is a fundamental step in the development of a space instrumentation. We have built a new cleanroom environment, divided in different areas characterized by a different level of contamination control. A vacuum chamber (a tube of 80 cm diameter, and 2 m length), able to accommodate optical components as well as whole instruments, is interfaced with a ISO6 area, allowing the handling of the instrumentation in a clean environment. The vacuum system is dimensioned to reach 10-7 mbar pressure in the chamber. Inside, a two axis platform allows the rotation of the instrument with respect to the incident collimating beam, in order to test the response of the instrument to light coming from different points of the field of view. A monochromator coupled with different sources provides radiation in the 40-350 nm spectral range, while a parabolic mirror is used as a collimator. As source, different spectral lamps can be used to generate emission lines, while a Xe lamp can be used to have continuum spectrum. An high brilliant hollow cathode lamp has been fabricated by the group to generate extreme ultraviolet radiation. Different calibrated detectors and other completing optical components are available.

  15. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that a complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.

  16. Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bock, J.J.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leahy, J.P.; Lellouch, E.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Watson, R.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    This paper describes the processing applied to the Planck High Frequency Instrument (HFI) cleaned, time-ordered information to produce photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the 2.5 year full mission include almost five independent full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system and permits an independent measurement of the amplitude of the CMB solar dipole (3364.5 +/- 0.8 \\mu K) which is 1\\sigma\\ higher than the WMAP measurement wit...

  17. Imager-to-radiometer inflight cross calibration: RSP radiometric comparison with airborne and satellite sensors

    Directory of Open Access Journals (Sweden)

    J. McCorkel

    2015-10-01

    Full Text Available This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP that takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI. First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  18. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    Science.gov (United States)

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val. PMID:28198389

  19. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    Science.gov (United States)

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-02-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  20. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar.

    Science.gov (United States)

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O'Dowd, Colin

    2017-02-15

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  1. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  2. Copernicus Sentinel-1 Satellite And C-SAR Instrument

    Science.gov (United States)

    Panetti, Aniceto; Rostan, Friedhelm; L'Abbate, Michelangelo; Bruno, Claudio; Bauleo, Antonio; Catalano, Toni; Cotogni, Marco; Galvagni, Luigi; Pietropaolo, Andrea; Taini, Giacomo; Venditti, Paolo; Huchler, Markus; Torres, Ramon; Lokaas, Svein; Bibby, David

    2013-12-01

    The Copernicus Sentinel-1 Earth Radar Observatory, a mission funded by the European Union and developed by ESA, is a constellation of two C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational applications such as mapping of global landmasses, coastal zones and monitoring of shipping routes. The Sentinel-1 satellites are built by an industrial consortium led by Thales Alenia Space Italia as Prime Contractor and with Astrium GmbH as SAR Instrument Contractor. The paper describes the general satellite architecture, the spacecraft subsystems, AIT flow and the satellite key performances. It provides also an overview on the C-SAR Instrument, its development status and pre- launch SAR performance prediction.

  3. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    Science.gov (United States)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is

  4. Calibration of the C1XS instrument on Chandrayaan-1

    Energy Technology Data Exchange (ETDEWEB)

    Narendranath, S., E-mail: kcshyama@isac.gov.i [Space Astronomy Group, ISRO Satellite Centre, Bangalore 560017 (India); University of Calicut (India); Sreekumar, P. [Space Astronomy Group, ISRO Satellite Centre, Bangalore 560017 (India); Maddison, B.J.; Howe, C.J.; Kellett, B.J.; Wallner, M. [STFC, Rutherford Appleton Laboratory, Chilton (United Kingdom); Erd, C. [Advanced Studies and Technology Preparation Division, ESA, ESTEC, Noordwijk (Netherlands); Weider, S.Z. [School of Earth and Planetary Sciences, Birbeck College (United Kingdom)

    2010-09-21

    The Chandrayaan-1 X-ray spectrometer (C1XS) experiment on the Chandrayaan-1 mission was designed to carry out spectroscopic observations in the 1-10 keV range for deriving lunar chemistry. We present results from the ground calibration of the Swept Charge Devices (SCDs) on C1XS at the RESIK X-ray beam facility at Rutherford Appleton Laboratory, Chilton, UK. The spectral redistribution function of the SCDs are determined in the energy range from 2.3-8 keV using discrete line energies from a monochromatic X-ray beam. The detection efficiency of the SCDs are determined relative to a reference Si-PIN detector. The Si-PIN detector itself has been calibrated at the beamlines of the synchrotron facility at PTB/BESSY II. A non-Gaussian response matrix which includes probability for partial absorption events in the SCD is constructed using instrument parameters obtained from ground calibration. The calibration spectra from the {sup 55}Fe radioactive isotopes obtained from C1XS while in the lunar orbit, are used to validate the response matrix derived on ground.

  5. SMOS Instrument Performance and Calibration after 3 Years in Orbit

    Science.gov (United States)

    Martin-Neira, Manuel; Corbella, Ignasi; Torres, Francesc; Kainulainen, Juha; Oliva, Roger; Closa, Josep; Cabot, François; Castro, Rita; Barbosa, Jose; Gutierrez, Antonio; Anterrieu, Eric; Tenerelli, Joe; Martin-Porqueras, Fernando; Buenadicha, Guillermo; Delwart, Steven; Crapolicchio, Raffaele; Suess, Martin

    2013-04-01

    ESA's Soil Moisture and Ocean Salinity (SMOS) mission has been in orbit for already over 3 years which has allowed the calibration and data processing team consolidating both the calibration strategy and the Level-1 processor which transforms the raw visibility samples into polarimetric brightness temperature images. The payload on board SMOS, MIRAS, is quite unique in that it is the first microwave radiometer in space ever capable to generate wide field of view images at every snapshot measurement. This means that most of the calibration as well as image processing techniques are being developed for the first time with little heritage from any previous space mission. Issues intrinsically attached to its wide field of view such as spatial ripples across the snapshot images are particular to MIRAS and to no other earlier radiometer. Even the fundamental theory behind the instrument was put at test, first on ground inside an electromagnetic compatibility chamber, and now in orbit when imaging the Cosmic Microwave Background Radiation of the cold sky. A groundbreaking effort is being carried out by the SMOS project team to understand and master all calibration and image reconstruction issues of this novel microwave interferometer payload. MIRAS in-orbit performance is driven by the amplitude of spatial ripples across the image and orbital and seasonal radiometer stability. Spatial ripples are unique to interferometric radiometers and are produced by (a) a limited knowledge of the antenna patterns and, in general, of the model of the instrument, (b) some fundamental limitations related to the inverse problem of image reconstruction in undetermined conditions and (c) subtle data processing inconsistencies which are discovered and corrected. To reduce the spatial ripples sea surface salinity retrievals are performed by first removing the brightness temperature spatial errors using a uniform region of the Pacific Ocean. However soil moisture retrievals cannot benefit of

  6. CMB polarimetry with BICEP: instrument characterization, calibration, and performance

    CERN Document Server

    Takahashi, Yuki D; Battle, John O; Bierman, Evan M; Bock, James J; Chiang, H Cynthia; Dowell, C Darren; Hivon, Eric F; Holzapfel, William L; Hristov, Viktor V; Jones, William C; Kaufman, J P; Keating, Brian G; Kovac, John M; Kuo, Chao-Lin; Lange, Andrew E; Leitch, Erik M; Mason, Peter V; Matsumura, Tomotake; Nguyen, Hien T; Ponthieu, Nicolas; Rocha, Graca M; Yoon, Ki Won; Ade, P; Duband, L

    2008-01-01

    BICEP is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature on the polarization of the cosmic microwave background (CMB) at degree angular scales. Currently in its third year of operation at the South Pole, BICEP is measuring the CMB polarization with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the first two years of the experiment is reviewed.

  7. Laser remote sensing calibration of ocean color satellite data

    Directory of Open Access Journals (Sweden)

    N. V. Kolodnikova

    2006-06-01

    Full Text Available world ocean: in fact, those processes dramatically affect the climatic equilibrium of our planet. For this reason, many advanced active and passive remote sensors have been used to study phytoplankton dynamics, since such phenomena are thought to be responsible for the sequestration of atmospheric carbon dioxide, one of the most important greenhouse gases. In this paper, one laser system and three satellite radiometers routinely used for the study of the phytoplankton dynamics will be briefly reviewed. Satellite sensors have been preferred to airborne sensors because, to our knowledge, ocean color airborne radiometers have not been operated in Antarctica, at least not throughout the whole lapse of time examined in this study. Particular focus was on the laser system (ELF and on a specific satellite radiometer (SeaWiFS. ELF is based on the laser-induced fluorescence of phytoplankton pigments and was conceived for the Italian expeditions to Antarctica. The goal of SeaWiFS is to provide the Earth science community with quantitative data on the global ocean bio-optical properties. Such satellite radiometer has been calibrated with in situ data mainly acquired in non polar regions. This is why a comparison between ELF and SeaWiFS measurements of chlorophyll-a surface concentrations in the Southern Ocean during the austral summer 1997-1998 was believed to be significant. Our results indicate that SeaWiFS overestimates high concentrations and underestimates low concentrations. In order to correct this behavior, the chlorophyll- a bio-optical algorithm of SeaWiFS has been recalibrated according to the measurements of ELF, thus providing a new estimation of the primary production in the Southern Ocean.

  8. Spectrometric methods used in the calibration of radiodiagnostic measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, W. [Rijksuniversiteit Utrecht (Netherlands)

    1995-12-01

    Recently a set of parameters for checking the quality of radiation for use in diagnostic radiology was established at the calibration facility of Nederlands Meetinstituut (NMI). The establishment of the radiation quality required re-evaluation of the correction factors for the primary air-kerma standards. Free-air ionisation chambers require several correction factors to measure air-kerma according to its definition. These correction factors were calculated for the NMi free-air chamber by Monte Carlo simulations for monoenergetic photons in the energy range from 10 keV to 320 keV. The actual correction factors follow from weighting these mono-energetic correction factors with the air-kerma spectrum of the photon beam. This paper describes the determination of the photon spectra of the X-ray qualities used for the calibration of dosimetric instruments used in radiodiagnostics. The detector used for these measurements is a planar HPGe-detector, placed in the direct beam of the X-ray machine. To convert the measured pulse height spectrum to the actual photon spectrum corrections must be made for fluorescent photon escape, single and multiple compton scattering inside the detector, and detector efficiency. From the calculated photon spectra a number of parameters of the X-ray beam can be calculated. The calculated first and second half value layer in aluminum and copper are compared with the measured values of these parameters to validate the method of spectrum reconstruction. Moreover the spectrum measurements offer the possibility to calibrate the X-ray generator in terms of maximum high voltage. The maximum photon energy in the spectrum is used as a standard for calibration of kVp-meters.

  9. Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    CERN Document Server

    Villa, F; Sandri, M; Meinhold, P; Poutanen, T; Battaglia, P; Franceschet, C; Hughes, N; Laaninen, M; Lapolla, P; Bersanelli, M; Butler, R C; Cuttaia, F; D'Arcangelo, O; Frailis, M; Franceschi, E; Galeotta, S; Gregorio, A; Leonardi, R; Lowe, S R; Mandolesi, N; Maris, M; Mendes, L; Mennella, A; Morgante, G; Stringhetti, L; Tomasi, M; Valenziano, L; Zacchei, A; Zonca, A; Aja, B; Artal, E; Balasini, M; Bernardino, T; Blackhurst, E; Boschini, L; Cappellini, B; Cavaliere, F; Colin, A; Colombo, F; Davis, R J; De La Fuente, L; Edgeley, J; Gaier, T; Galtress, A; Hoyland, R; Jukkala, P; Kettle, D; Kilpia, V-H; Lawrence, C R; Lawson, D; Leahy, J P; Leutenegger, P; Levin, S; Maino, D; Malaspina, M; Mediavilla, A; Miccolis, M; Pagan, L; Pascual, J P; Pasian, F; Pecora, M; Pospieszalski, M; Roddis, N; Salmon, M J; Seiffert, M; Silvestri, R; Simonetto, A; Sjoman, P; Sozzi, C; Tuovinen, J; Varis, J; Wilkinson, A; Winder, F

    2010-01-01

    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential i...

  10. Application of new techniques in the calibration of the TROPOMI-SWIR instrument (Conference Presentation)

    Science.gov (United States)

    Tol, Paul; van Hees, Richard; van Kempen, Tim; Krijger, Matthijs; Cadot, Sidney; Aben, Ilse; Ludewig, Antje; Dingjan, Jos; Persijn, Stefan; Hoogeveen, Ruud

    2016-10-01

    The Tropospheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite is an Earth-observing spectrometer with bands in the ultraviolet, visible, near infrared and short-wave infrared (SWIR). It provides daily global coverage of atmospheric trace gases relevant for tropospheric air quality and climate research. Three new techniques will be presented that are unique for the TROPOMI-SWIR spectrometer. The retrieval of methane and CO columns from the data of the SWIR band requires for each detector pixel an accurate instrument spectral response function (ISRF), i.e. the normalized signal as a function of wavelength. A new determination method for Earth-observing instruments has been used in the on-ground calibration, based on measurements with a SWIR optical parametric oscillator (OPO) that was scanned over the whole TROPOMI-SWIR spectral range. The calibration algorithm derives the ISRF without needing the absolute wavelength during the measurement. The same OPO has also been used to determine the two-dimensional stray-light distribution for each SWIR pixel with a dynamic range of 7 orders. This was achieved by combining measurements at several exposure times and taking saturation into account. The correction algorithm and data are designed to remove the mean stray-light distribution and a reflection that moves relative to the direct image, within the strict constraints of the available time for the L01b processing. A third new technique is an alternative calibration of the SWIR absolute radiance and irradiance using a black body at the temperature of melting silver. Unlike a standard FEL lamp, this source does not have to be calibrated itself, because the temperature is very stable and well known. Measurement methods, data analyses, correction algorithms and limitations of the new techniques will be presented.

  11. The calibration of the DSCOVR EPIC multiple visible channel instrument using MODIS and VIIRS as a reference

    Science.gov (United States)

    Haney, Conor; Doelling, David; Minnis, Patrick; Bhatt, Rajendra; Scarino, Benjamin; Gopalan, Arun

    2016-09-01

    The Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, is a satellite positioned near the Lagrange-1 (L1) point, carrying several instruments that monitor space weather, and Earth-view sensors designed for climate studies. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR continuously views the sun illuminated portion of the Earth with spectral coverage in the UV, VIS, and NIR bands. Although the EPIC instrument does not have any onboard calibration abilities, its constant view of the sunlit Earth disk provides a unique opportunity for simultaneous viewing with several other satellite instruments. This arrangement allows the EPIC sensor to be intercalibrated using other well-characterized satellite instrument reference standards. Two such instruments with onboard calibration are MODIS, flown on Aqua and Terra, and VIIRS, onboard Suomi-NPP. The MODIS and VIIRS reference calibrations will be transferred to the EPIC instrument using both all-sky ocean and deep convective clouds (DCC) ray-matched EPIC and MODIS/VIIRS radiance pairs. An automated navigation correction routine was developed to more accurately align the EPIC and MODIS/VIIRS granules. The automated navigation correction routine dramatically reduced the uncertainty of the resulting calibration gain based on the EPIC and MODIS/VIIRS radiance pairs. The SCIAMACHY-based spectral band adjustment factors (SBAF) applied to the MODIS/ VIIRS radiances were found to successfully adjust the reference radiances to the spectral response of the specific EPIC channel for over-lapping spectral channels. The SBAF was also found to be effective for the non overlapping EPIC channel 10. Lastly, both ray-matching techniques found no discernable trends for EPIC channel 7 over the year of publically released EPIC data.

  12. TROPOMI: Solar backscatter satellite instrument for air quality and climate

    NARCIS (Netherlands)

    Vries, J.de; Laan, E.C.; Hoogeveen, R.W.M.; Jongma, R.T.; Aben, U.; Visser, H.; Boslooper, E.C.; Saari, H.; Dobber, M.; Veefkind, P.; Kleipool, Q.; Levelt, P.F.

    2007-01-01

    TROPOMI is a nadir-viewing grating-based imaging spectrograph in the line of OMI and SCIAMACHY. TROPOMI is part of the ESA Candidate Core Explorer Mission proposal TRAQ and also of the CAMEO satellite proposed for the US NRC decadal study. A TROPOMI-like instrument is part of the ESA/EU Sentinel 4&5

  13. In-flight calibration of the Herschel-SPIRE instrument

    CERN Document Server

    Swinyard, B M; Baluteau, J-P; Aussel, H; Barlow, M J; Bendo, G J; Benielli, D; Bock, J; Brisbin, D; Conley, A; Conversi, L; Dowell, A; Dowell, D; Ferlet, M; Fulton, T; Glenn, J; Glauser, A; Griffin, D; Griffin, M; Guest, S; Imhof, P; Isaak, K; Jones, S; King, K; Leeks, S; Levenson, L; Lim, T L; Lu, N; Makiwa, G; Naylor, D; Nguyen, H; Oliver, S; Panuzzo, P; Papageorgiou, A; Pearson, C; Pohlen, M; Polehampton, E; Pouliquen, D; Rigopoulou, D; Ronayette, S; Roussel, H; Rykala, A; Savini, G; Schulz, B; Schwartz, A; Shupe, D; Sibthorpe, B; Sidher, S; Smith, A J; Spencer, L; Trichas, M; Triou, H; Valtchanov, I; Wesson, R; Woodcraft, A; Xu, C K; Zemcov, M; Zhang, L

    2010-01-01

    SPIRE, the Spectral and Photometric Imaging Receiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 {\\mu}m, and an imaging Fourier transform spectrometer (FTS) covering 194-671 {\\mu}m (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the "standard" pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectromet...

  14. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments

    Science.gov (United States)

    Teillet, P.M.; Barsi, J.A.; Chander, G.; Thome, K.J.

    2007-01-01

    This paper provides a comprehensive list of prime candidate terrestrial targets for consideration as benchmark sites for the post-launch radiometric calibration of space-based instruments. The key characteristics of suitable sites are outlined primarily with respect to selection criteria, spatial uniformity, and temporal stability. The establishment and utilization of such benchmark sites is considered an important element of the radiometric traceability of satellite image data products for use in the accurate monitoring of environmental change.

  15. Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps

    Science.gov (United States)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Lellouch, E.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of TCMB = 2.7255 ± 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 ± 1.5 μK), which is approximatively 1σ higher than the WMAP measurement with a direction that is consistent between the two experiments. We describe the pipeline used to produce the maps ofintensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.

  16. The fixed-bias Langmuir probe on the Communication/Navigation Outage Forecast System satellite: calibration and validation.

    Science.gov (United States)

    Klenzing, J; Rowland, D

    2012-11-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the C/NOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on C/NOFS.

  17. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    Science.gov (United States)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  18. Lessons Learned from GOSAT; Instrument Design, Calibration, Operation, Data Processing, and International Collaboration

    Science.gov (United States)

    Kuze, A.; Suto, H.; Shiomi, K.; Nakajima, M.

    2012-12-01

    Advantage of satellite observation is its ability to monitor long term and global distribution with a single instrument. Ozone observation from space has been successful for long term monitoring purposes. Monitoring gradual increase and distribution of greenhouse gases in the troposphere with sub-percent accuracy has become a challenging subject. Interference of cloud and aerosol in radiative transfer has to be corrected for troposphere measurement. Accurate O2-A band measurement can retrieve surface pressure and aerosol distribution property. We have selected a Fourier Transform spectrometer (FTS) to achieve high throughput and wide spectral coverage with uniform spectral resolution. On the other hand, it is difficult to modulate short wave such as 0.76μm and avoid micro vibration interference. Prelaunch, we took special care to select optical components of excellent surface quality and isolate vibration. Design parameters such as IFOV, spectral resolution, observation interval within limited satellite resources must be carefully optimized. Greenhouse gases Observing SATellite (GOSAT) has been providing global high spectral resolution data for almost 4 years. Instrument performance, radiometric calibration, radiative transfer calculation and laboratory spectroscopy are all important. The first step was to reduce bias of column-averaged dry air mole fractions (the Level 2 product) of CO2 and CH4 (XCO2 and XCH4) and validate using well calibrated data such as TCCON. After 2 years of operation, latitudinal distribution of zonal mean and seasonal variation at these sites can be measured with better than 2ppm accuracy. However, validations are limited to ideal conditions. Next step is to evaluate consistency of measured values from long periods since launch, different surface types, and various input radiance with different instrument gain. For long term radiometric calibration, we have uses vicarious, onboard solar diffuser, and lunar calibration data. Over the ocean

  19. An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration

    Directory of Open Access Journals (Sweden)

    Michal Heliasz

    2011-08-01

    Full Text Available We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  20. An optical sensor network for vegetation phenology monitoring and satellite data calibration.

    Science.gov (United States)

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  1. Calibration of LSST Instrumental and Atmospheric Photometric Passbands

    Energy Technology Data Exchange (ETDEWEB)

    Burke, David L.; /SLAC; Axelrod, T.; /Arizona U., Astron. Dept. - Steward Observ.; Barrau, Aurelien; Baumont, Sylvain; /LPSC, Grenoble; Blondin, Stephane; /Marseille, CPPM; Claver, Chuck; /NOAO, Tucson; Gorecki, Alexia; /LPSC, Grenoble; Ivezic, Zeljko; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Krabbendam, Victor; Liang, Ming; Saha, Abhijit; /NOAO, Tucson; Smith, Allyn; /Austin Peay State U.; Smith, R.Chris; /Cerro-Tololo InterAmerican Obs.; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-07-06

    The Large Synoptic Survey Telescope (LSST) will continuously image the entire sky visible from Cerro Pachon in northern Chile every 3-4 nights throughout the year. The LSST will provide data for a broad range of science investigations that require better than 1% photometric precision across the sky (repeatability and uniformity) and a similar accuracy of measured broadband color. The fast and persistent cadence of the LSST survey will significantly improve the temporal sampling rate with which celestial events and motions are tracked. To achieve these goals, and to optimally utilize the observing calendar, it will be necessary to obtain excellent photometric calibration of data taken over a wide range of observing conditions - even those not normally considered 'photometric'. To achieve this it will be necessary to routinely and accurately measure the full optical passband that includes the atmosphere as well as the instrumental telescope and camera system. The LSST mountain facility will include a new monochromatic dome illumination projector system to measure the detailed wavelength dependence of the instrumental passband for each channel in the system. The facility will also include an auxiliary spectroscopic telescope dedicated to measurement of atmospheric transparency at all locations in the sky during LSST observing. In this paper, we describe these systems and present laboratory and observational data that illustrate their performance.

  2. Planck pre-launch status: High Frequency Instrument polarization calibration

    CERN Document Server

    Rosset, C; Ponthieu, N; Ade, P; Catalano, A; Conversi, L; Couchot, F; Crill, B P; Désert, F -X; Ganga, K; Giard, M; Giraud-Héraud, Y; Haïssinski, J; Henrot-Versillé, S; Holmes, W; Jones, W C; Lamarre, J -M; Lange, A; Leroy, C; Macías-Pérez, J; Maffei, B; de Marcillac, P; Miville-Deschênes, M -A; Montier, L; Noviello, F; Pajot, F; Perdereau, O; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Puget, J -L; Ristorcelli, I; Savini, G; Sudiwala, R; Veneziani, M; Yvon, D

    2010-01-01

    The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization ($\\Delta P/T_{\\tiny cmb} \\sim 4\\cdot 10^{-6}$) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the Cosmic Microwave Background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the $E$-mode spectrum (up to $\\ell \\sim 1500$) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of...

  3. VNIR, MWIR, and LWIR source assemblies for optical quality testing and spectro-radiometric calibration of earth observation satellites

    Science.gov (United States)

    Compain, Eric; Maquet, Philippe; Leblay, Pierrick; Gavaud, Eric; Marque, Julien; Glastre, Wilfried; Cortese, Maxime; Sugranes, Pierre; Gaillac, Stephanie; Potheau, Hervé

    2015-09-01

    This document presents several original OGSEs, Optical Ground Support Equipment, specifically designed and realized for the optical testing and calibration of earth observation satellites operating in a large spectral band from 0.4μm to 14.7μm. This work has been mainly supported by recent development dedicated to MTG, Meteosat Third Generation, the ESA next generation of meteorological satellites. The improved measurement capabilities of this new satellite generation has generated new challenging requirements for the associated optical test equipments. These improvements, based on design and component innovation will be illustrated for the MOTA, the GICS and the DEA OGSEs. MOTA and GICS are dedicated to the AIT, Assembly Integration and Test, of FCI, the Flexible Combined Imager of the imaging satellite MTG-I. DEA OGSE is dedicated to the AIT of the DEA, Detection Electronics Assembly, which is part of IRS instrument, an IR sounder part of MTG-S satellite. From an architectural point of view, the presented original designs enable to run many optical tests with a single system thanks to a limited configuration effort. Main measurement capabilities are optical quality testing (MTF based mainly on KEF measurement), Line of Sight (LoS) stability measurement, straylight analyses, VNIR-MWIR-LWIR focal plane array co-registration, and broadband large dynamic spectro-radiometric calibration. Depending on the AIT phase of the satellite, these source assemblies are operated at atmospheric pressure or under secondary vacuum. In operation, they are associated with an opto-mechanical projection system that enables to conjugate the image of the source assembly with the focal plane of the satellite instruments. These conjugation systems are usually based on high resolution, broadband collimator, and are optionally mounted on hexapod to address the entire field of instruments.

  4. Instruments for calibration and monitoring of the LHCb Muon Detector

    CERN Document Server

    Deplano, C; Lai, A

    2006-01-01

    The subject of this Ph. D. thesis is the study and the development of the instruments needed to monitor and calibrate the Muon Detector of the LHCb (Large Hadron Collider beauty) experiment. LHCb is currently under installation at the CERN Large Hadron Collider (LHC) and will start to take data during 2007. The experiment will study B mesons decays to achieve a profound understanding of favour physics in the Standard Model framework and to search signs of new physics beyond. Muons can be found in the final states of many B-decays which are sensitive to CP violation. The Muon Detector has the crucial role to identify the muon particles generated by the b-hadron decays through a measurement of their transverse momentum, already at the first trigger level (Level-0). A 95% effciency in events selection is required for the Muon Trigger, which operates at the Level-0. 1380 detectors are used to equip the whole Muon System and the corresponding 122,112 readout channels must be time aligned and monitored with a resol...

  5. Vicarious Calibration Based Cross Calibration of Solar Reflective Channels of Radiometers Onboard Remote Sensing Satellite and Evaluation of Cross Calibration Accuracy through Band-to-Band Data Comparisons

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-04-01

    Full Text Available Accuracy evaluation of cross calibration through band-to-band data comparison for visible and near infrared radiometers which onboard earth observation satellites is conducted. The conventional cross calibration for visible to near infrared radiometers onboard earth observation satellites is conducted through comparisons of band-to-band data of which spectral response functions are overlapped mostly. There are the following major error sources due to observation time difference, spectral response function difference in conjunction of surface reflectance and atmospheric optical depth, observation area difference. These error sources are assessed with dataset acquired through ground measurements of surface reflectance and optical depth. Then the accuracy of the conventional cross calibration is evaluated with vicarious calibration data. The results show that cross calibration accuracy can be done more precisely if the influences due to the aforementioned three major error sources are taken into account.

  6. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration, particulate measurement. 92.117 Section 92.117 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... orifice, a bellmouth nozzle, or a laminar flow element or an NIST traceable flow calibration device...

  7. Resent Progress in Research on Calibration Instrument for Radioactive Aerosol Monitor

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; CHEN; Yong-yong; WU; Chang-ping; XING; Yu; MENG; Jun; YANG; Qiao-ling

    2013-01-01

    Radioactive aerosol monitors are widely used in monitoring the radioactivity concentration of the artificial nuclides in gaseous effluents from the nuclear facilities.An on-developing calibration instrument for radioactive aerosol monitors consists of an α and β aerosol generating unit,aerosol transferring unit,measurement unit of radioactivity concentration of aerosol for instruments calibrated and the waste gas

  8. Satellite-instrument system engineering best practices and lessons

    Science.gov (United States)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  9. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype

    Science.gov (United States)

    Dudnik, O. V.; Prieto, M.; Kurbatov, E. V.; Sanchez, S.; Timakova, T. G.; Spassky, A. V.; Dubina, V. N.; Parra, P.

    2013-01-01

    The design concept and first set of results are presented for electronic modules of a laboratory prototype of the small-size satellite instrument SIDRA intended for measurements of charged particle fluxes in outer space. The working prototype consists of a detector assembly based on high-purity silicon and fast scintillation detectors, modules of analogue and digital processing, and a secondary power supply module. The first results are discussed of a Monte-Carlo simulation of the instrument with the use of the GEANT4 toolkit and of measurements of the main parameters of charge-sensitive pre-amplifiers, shapers, and peak detectors. Results of calibration measurements with the use of radioactive sources and beams of accelerated charged particles are presented.

  10. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification

    Science.gov (United States)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.

    2014-12-01

    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q

  11. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling

    Indian Academy of Sciences (India)

    G Sasibhushana Rao

    2007-10-01

    The positional accuracy of the Global Positioning System (GPS)is limited due to several error sources.The major error is ionosphere.By augmenting the GPS,the Category I (CAT I)Precision Approach (PA)requirements can be achieved.The Space-Based Augmentation System (SBAS)in India is known as GPS Aided Geo Augmented Navigation (GAGAN).One of the prominent errors in GAGAN that limits the positional accuracy is instrumental biases.Calibration of these biases is particularly important in achieving the CAT I PA landings.In this paper,a new algorithm is proposed to estimate the instrumental biases by modelling the TEC using 4th order polynomial.The algorithm uses values corresponding to a single station for one month period and the results confirm the validity of the algorithm.The experimental results indicate that the estimation precision of the satellite-plus-receiver instrumental bias is of the order of ± 0.17 nsec.The observed mean bias error is of the order − 3.638 nsec and − 4.71 nsec for satellite 1 and 31 respectively.It is found that results are consistent over the period.

  12. Theoretical model atmosphere spectra used for the calibration of infrared instruments

    CERN Document Server

    Decin, L

    2007-01-01

    One of the key ingredients in establishing the relation between input signal and output flux from a spectrometer is accurate determination of the spectrophotometric calibration. In the case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the accuracy of the set of reference SEDs that the spectrophotometric calibration is built on. In this paper, we deal with the spectrophotometric calibration of infrared (IR) spectrometers onboard satellites in the 2 to 200 micron range. We aim at comparing the different reference SEDs used for the IR spectrophotometric calibration. The emphasis is on the reference SEDs of stellar standards with spectral type later than A0, with special focus on the theoretical model atmosphere spectra. Using the MARCS model atmosphere code, spectral reference SEDs were constructed for a set of IR stellar standards (A dwarfs, solar analogs, G9-M0 giants). A detailed error analysis was performed to estimate proper uncertainties...

  13. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    Science.gov (United States)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  14. Calibration of Instruments for Measuring Wind Velocity and Direction

    Science.gov (United States)

    Vogler, Raymond D.; Pilny, Miroslav J.

    1950-01-01

    Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,

  15. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    Science.gov (United States)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  16. Can satellite-derived water surface changes be used to calibrate a hydrodynamic model?

    Science.gov (United States)

    Revilla-Romero, Beatriz; Beck, Hylke; Salamon, Peter; Burek, Peter; de Roo, Ad; Thielen, Jutta

    2015-04-01

    The limited availability of recent ground observational data is one of the main challenges for validation of hydrodynamic models. This is especially relevant for real-time global applications such as flood forecasting models. In this study, we aim to use remotely-sensed data from the Global Flood Detection System (GFDS) as a proxy of river discharge time series and test its value through calibration of the hydrological model LISFLOOD. This was carried out for the time period 1998-2010 at 40 sites in Africa, Europe, North America and South America by calibrating the parameters that control the flow routing and groundwater processes. We compared the performance of the calibrated simulated discharge time series that used satellite-derived data with the ground discharge time series. Furthermore, we compared it with the independent calibrated run that used ground data and also, to the non-calibrated simulated discharge time series. The non-calibrated set up used a set of parameters which values were predefined by expert-knowledge. This is currently being used by the LISFLOOD set up model embedded in the pre-operational Global Flood Awareness System (GloFAS). The results of this study showed that the satellite surface water changes from the Global Flood Detection System can be used as a proxy of river discharge data, through the demonstration of its added value for model calibration and validation. Using satellite-derived data, the skill scores obtained by the calibrated simulated model discharge improved when comparing to non-calibrated simulated time series. Calibration, post-processing and data assimilation strategies of satellite data as a proxy for streamflow data within the global hydrological model are outlined and discussed.

  17. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    Science.gov (United States)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  18. On-line calibration of process instrumentation channels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    An on-line instrumentation monitoring system was developed and validated for use in nuclear power plants. This system continuously monitors the calibration status of instrument channels and determines whether or not they require manual calibrations. This is accomplished by comparing the output of each instrument channel to an estimate of the process it is monitoring. If the deviation of the instrument channel from the process estimate is greater than an allowable limit, then the instrument is said to be {open_quotes}out of calibration{close_quotes} and manual adjustments are made to correct the calibration. The success of the on-line monitoring system depends on the accuracy of the process estimation. The system described in this paper incorporates both simple intercomparison techniques as well as analytical approaches in the form of data-driven empirical modeling to estimate the process. On-line testing of the calibration of process instrumentation channels will reduce the number of manual calibrations currently performed, thereby reducing both costs to utilities and radiation exposure to plant personnel.

  19. First results about on-ground calibration of the Silicon Tracker for the AGILE satellite

    CERN Document Server

    Cattaneo, P W; Boffelli, F; Bulgarelli, A; Buonomo, B; Chen, A W; D'Ammando, F; Froysland, T; Fuschino, F; Galli, M; Gianotti, F; Giuliani, A; Longo, F; Marisaldi, M; Mazzitelli, G; Pellizzoni, A; Prest, M; Pucella, G; Quintieri, L; Rappoldi, A; Tavani, M; Trifoglio, M; Trois, A; Valente, P; Vallazza, E; Vercellone, S; Zambra, A; Barbiellini, G; Caraveo, P; Cocco, V; Costa, E; De Paris, G; Del Monte, E; Di Cocco, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Mastropietro, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Pilia, M; Porrovecchio, G; Rapisarda, M; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Vittorini, V; Zanello, D; Colafrancesco, S; Giommi, P; Pittori, C; Santolamazza, P; Verrecchia, F; Salotti, L

    2011-01-01

    The AGILE scientific instrument has been calibrated with a tagged $\\gamma$-ray beam at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali di Frascati (LNF). The goal of the calibration was the measure of the Point Spread Function (PSF) as a function of the photon energy and incident angle and the validation of the Monte Carlo (MC) simulation of the silicon tracker operation. The calibration setup is described and some preliminary results are presented.

  20. Satellite-Mounted Light Sources as Photometric Calibration Standards

    CERN Document Server

    Albert, Justin; Battat, James; Dupuis, Grace; Fransham, Kyle; Koopmans, Kristin; Jarrett, Michael

    2009-01-01

    A significant and growing portion of systematic error on a number of fundamental parameters in astrophysics and cosmology is due to uncertainties from absolute photometric and flux standards. A path toward achieving major reduction in such uncertainties may be provided by satellite-mounted light sources, resulting in improvement in the ability to precisely characterize atmospheric extinction, and thus helping to usher in the coming generation of precision results in astronomy. Toward this end, we have performed a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite, using a portable network of cameras and photodiodes, to precisely measure atmospheric extinction.

  1. Application of six sigma and AHP in analysis of variable lead time calibration process instrumentation

    Science.gov (United States)

    Rimantho, Dino; Rahman, Tomy Abdul; Cahyadi, Bambang; Tina Hernawati, S.

    2017-02-01

    Calibration of instrumentation equipment in the pharmaceutical industry is an important activity to determine the true value of a measurement. Preliminary studies indicated that occur lead-time calibration resulted in disruption of production and laboratory activities. This study aimed to analyze the causes of lead-time calibration. Several methods used in this study such as, Six Sigma in order to determine the capability process of the calibration instrumentation of equipment. Furthermore, the method of brainstorming, Pareto diagrams, and Fishbone diagrams were used to identify and analyze the problems. Then, the method of Hierarchy Analytical Process (AHP) was used to create a hierarchical structure and prioritize problems. The results showed that the value of DPMO around 40769.23 which was equivalent to the level of sigma in calibration equipment approximately 3,24σ. This indicated the need for improvements in the calibration process. Furthermore, the determination of problem-solving strategies Lead Time Calibration such as, shortens the schedule preventive maintenance, increase the number of instrument Calibrators, and train personnel. Test results on the consistency of the whole matrix of pairwise comparisons and consistency test showed the value of hierarchy the CR below 0.1.

  2. A virtual instrument to standardise the calibration of atomic force microscope cantilevers

    CERN Document Server

    Sader, John E; Gibson, Christopher T; Haviland, David B; Higgins, Michael J; Kilpatrick, Jason I; Lu, Jianing; Mulvaney, Paul; Shearer, Cameron J; Slattery, Ashley D; Thorén, Per-Anders; Tran, Jim; Zhang, Heyou; Zhang, Hongrui; Zheng, Tian

    2016-01-01

    Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This is performed without reference to a global standard, which hinders robust comparison of force measurements reported by different laboratories. In this article, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others - standardising AFM force measurements - and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibratio...

  3. Building 772 - CERN’s new calibration facility for radiation protection instruments is ready to go

    CERN Multimedia

    2014-01-01

    Building 772 is becoming the new home of CERN’s calibration facility for radiation protection instrumentation. The new laboratory in Prévessin will be a state-of-the-art calibration facility and the first of its kind in both France and Switzerland, offering a wide range of possibilities with respect to radiation fields and instrumentation.   New four-axis calibration bench for radiation protection instruments.   Civil engineering work started in November 2013 in Prévessin and Building 772 is now finished and ready for inauguration. CERN’s calibration facility was previously located in Building 172 in Meyrin. Although still very accurate, the technology used was becoming obsolete and needed replacement. “Having considered different options, the decision was taken to build a new facility fully designed and conceived to meet all international safety and technical requirements of such a laboratory,” says Pie...

  4. Radiometric Cross-Calibration of the Chilean Satellite FASat-C Using RapidEye and EO-1 Hyperion Data and a Simultaneous Nadir Overpass Approach

    Directory of Open Access Journals (Sweden)

    Carolina Barrientos

    2016-07-01

    Full Text Available The absolute radiometric calibration of a satellite sensor is the critical factor that ensures the usefulness of the acquired data for quantitative applications on remote sensing. This work presents the results of the first cross-calibration of the sensor on board the Sistema Satelital de Observación de la Tierra (SSOT Chilean satellite or Air Force Satellite FASat-C. RapidEye-MSI was chosen as the reference sensor, and a simultaneous Nadir Overpass Approach (SNO was applied. The biases caused by differences in the spectral responses of both instruments were compensated through an adjustment factor derived from EO-1 Hyperion data. Through this method, the variations affecting the radiometric response of New AstroSat Optical Modular Instrument (NAOMI-1, have been corrected based on collections over the Frenchman Flat calibration site. The results of a preliminary evaluation of the pre-flight and updated coefficients have shown a significant improvement in the accuracy of at-sensor radiances and TOA reflectances: an average agreement of 2.63% (RMSE was achieved for the multispectral bands of both instruments. This research will provide a basis for the continuity of calibration and validation tasks of future Chilean space missions.

  5. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    Science.gov (United States)

    Xiao, Hong; Peng, Wen-Xi; Wang, Huan-Yu; Cui, Xing-Zhu; Guo, Dong-Ya

    2015-10-01

    The X-ray spectrometer is one of the satellite payloads on the Chang'E-2 satellite. The soft X-ray detector is one of the devices on the X-ray spectrometer, designed to detect the major rock-forming elements within the 0.5-10 keV range on the lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak 55Fe source. Temperature and time effects are found not to give a large error. The total uncertainty of calibration is estimated to be within 5% after correction. Supported by National Science Foundation of Ministry of Education

  6. Calibration of the Soft X-ray Telescopes (SXT) Onboard the ASTRO-H Satellite

    Science.gov (United States)

    Soong, Yang; Okajima, Takashi; Serlemitsos, Peter J.

    2013-01-01

    ASTRO-H is an astrophysics satellite dedicated for non-dispersive X-ray spectroscopic study on selective celestial X-ray sources. Among the onboard instruments there are four Wolter-I X-ray mirrors of their reflectors' figure in conical approximation. Two of the four are soft X-ray mirrors, of which the energy range is from a few hundred eV to 15 keV. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The mirrors were in quadrant configuration with photons being reflected consecutively in the primary and secondary stage before landing on the focal plane of 5.6 m away from the interface between the two stages. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 m, 229 m, and 305 m of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 m nominal and surface gold layer of 0.2 m. Improvements on angular response over its predecessors, e.g. Astro-E1/Suzaku mirrors, come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. Each soft x-ray telescope (SXT), FM1 or FM2, were integrated from four independent quadrants of mirrors. The stray-light baffles, in quadrant configuration, were mounted onto the integrated mirror. Thermal control units were attached to the perimeter of the integrated mirror to keep the mirror within operating temperature in space. The completed instrument went through a series of optical alignment, thus made the quadrant images confocal and their optical axes in parallel to achieve highest throughput possible. Environmental tests were carried out, and optical quality of the telescopes has been confirmed. The optical and x-ray calibrations also include

  7. S-NPP VIIRS instrument telemetry and calibration data trend study

    Science.gov (United States)

    Sun, ZiPing; De Luccia, Frank J.; Cardema, Jason C.; Moy, Gabriel

    2015-09-01

    The Suomi National Polar Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) employs a large number of temperature and voltage sensors (telemetry points) to monitor instrument health and performance. We have collected data and built tools to study telemetry and calibration parameters trends. The telemetry points are organized into groups based on locations and functionalities. Examples of the groups are: telescope motor, focal plane array (FPA), scan cavity bulkhead, radiators, solar diffuser and Solar Diffuser Stability Monitor (SDSM). We have performed daily monitoring and long-term trending studies. Daily monitoring processes are automated with alarms built into the software to indicate if pre-defined limits are exceeded. Long-term trending studies focus on instrument performance and sensitivities of Sensor Data Record (SDR) products and calibration look-up tables (LUTs) to instrument temperature and voltage variations. VIIRS uses a DC Restore (DCR) process to periodically correct the analog offsets of each detector of each spectral band to ensure that the FPA output signals are always within the dynamic range of the Analog to Digital Converter (ADC). The offset values are updated based on observations of the On-Board Calibrator Blackbody source. We have performed a long-term trend study of DCR offsets and calibration parameters to explore connections of the DCR offsets with onboard calibrators. The study also shows how the instrument and calibration parameters respond to the VIIRS Petulant Mode, spacecraft (SC) anomalies and flight software (FSW) updates. We have also shown that trending studies of telemetry and calibration parameters may help to improve the instrument calibration processes and SDR Quality Flags.

  8. Earth observation sensor calibration using a global instrumented and automated network of test sites (GIANTS)

    Science.gov (United States)

    Teillet, Phil M.; Thome, Kurtis J.; Fox, Nigel P.; Morisette, Jeffrey T.

    2001-12-01

    Calibration is critical for useful long-term data records, as well as independent data quality control. However, in the context of Earth observation sensors, post-launch calibration and the associated quality assurance perspective are far from operational. This paper explores the possibility of establishing a global instrumented and automated network of test sites (GIANTS) for post-launch radiometric calibration of Earth observation sensors. It is proposed that a small number of well-instrumented benchmark test sites and data sets for calibration be supported. A core set of sensors, measurements, and protocols would be standardized across all participating test sites and the measurement data sets would undergo identical processing at a central secretariat. The network would provide calibration information to supplement or substitute for on-board calibration, would reduce the effort required by individual agencies, and would provide consistency for cross-platform studies. Central to the GIANTS concept is the use of automation, communication, coordination, visibility, and education, all of which can be facilitated by greater use of advanced in-situ sensor and telecommunication technologies. The goal is to help ensure that the resources devoted to remote sensing calibration benefit the intended user community and facilitate the development of new calibration methodologies (research and development) and future specialists (education and training).

  9. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    Science.gov (United States)

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  10. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  11. Inter-laboratory project q calibration of SANS instruments using silver behenate

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, Abarrul; Gunawan; Edy Giri, Putra [Indonesia National Nuclear Energy Agency (BATAN) (Indonesia); Suzuki, Jun-ichi [Japan Atomic Energy Research Inst., Tokyo (Japan); Knott, Robert [Australian Nuclear Science and Technology Organisation (ANSTO) (Australia)

    2000-10-01

    The inter-laboratory project for q-calibration of SANS (small angle neutron scattering) using silver behenate was carried out among Indonesia National Nuclear Energy Agency (BATAN), Japan Atomic Energy Research Institute (JAERI) and Australian Nuclear Science and Technology Organization (ANSTO). The standard sample of silver behenate, [CH{sub 3}(CH{sub 2}){sub 20}COOAg](AgBE), has been assessed as an international standard for the calibration of both x-ray and neutron scattering instruments. The results indicate excellent agreement for q calibration obtained among the three laboratories, BATAN, JAERI and ANSTO. (Y. Kazumata)

  12. Calibration standards and field instruments for the precision measurement of insolation

    Science.gov (United States)

    Reid, M. S.; Berdahl, C. M.

    1978-01-01

    The paper describes the development of an absolute calibration standard for irradiance measurements. This field instrument, designated the Kendall Radiometer System Mark 3, is identical to the PACRAD (Primary Absolute Cavity Radiometer) except for a modification to ensure all weather operation. Two Mark 3 radiometers have been in operation at the JPL's Goldstone Deep Space Communications Complex for over two years and are continuing to provide data which are within plus or minus 1% of the absolute value. A calibration stability analysis is presented for the two instruments.

  13. Updated Global Data from the Guvi Instrument: New Products, Updated Calibration, and a New Web Interface

    Science.gov (United States)

    Schaefer, R. K.; Paxton, L. J.; Romeo, G.; Wolven, B. C.; Zhang, Y.; Comberiate, J.

    2014-12-01

    With it's high inclination orbit, GUVI provides global coverage of the ionosphere/thermosphere system, revisiting each polar region 15 times a day. The GUVI instrument has long been a resource for the ITM community with a panoply of data products available from the GUVI website (http://guvi.jhuapl.edu). GUVI is in a high inclination orbit and so provides coverage of both hemispheres. With the release last year of the data products from the DMSO/SSUSI instrument, particularly more detailed auroral zone products (Q, E0, Hemispheric Power, discrete auroral arcs, proton precipitation regions), new equatorial ionospheric products (3D electron densities, bubbles), a whole new set of UV data products has become available. SSUSI are available from http://ssusi.jhuapl.edu. To leverage the experience and knowledge gained from running all of these instruments we have adapted the SSUSI products so they can be made from GUVI telemetry. There are now updated versions of GUVI legacy products as well as brand new products. In addition, better on-orbit calibration techniques developed for SSUSI have now been applied to the GUVI instrument calibration - there is now a common set of software for calibrating both instruments. With a common data format, calibration, and product definition, the data from all SSUSI and GUVI instruments can now be easily combined to get multiple instruments to cover the hemispheres to do a variety of global studies. In addition, the GUVI spectrographic mode data provides great detail about spectrographic features (e.g. O/N2 ratios, NO band emission) that are important for understanding dynamical processes in the thermosphere. A new version of the GUVI website (with the same interface as the SSUSI website) has been launched from guvi.jhuapl.edu to showcase the legacy products made with the new calibration and also highlight the newly developed products for the GUVI imaging and spectrographic modes.

  14. [In-Flight Radiometric Calibration for ZY-3 Satellite Multispectral Sensor by Modified Reflectance-Based Method].

    Science.gov (United States)

    Han, Jie; Xie, Yong; Gu, Xing-fa; Yu, Tao; Liu, Qi-yue; Gao, Rong-jun

    2015-03-01

    Through integrating multi-spectral sensor characteristics of ZY-3 satellite, a modified reflectance-based method is proposed and used to achieve ZY-3 satellite multispectral sensor in-flight radiometric calibration. This method chooses level 1A image as data source and establishes geometric model to get an accurate observation geometric parameters at calibration site according to the information provided in image auxiliary documentation, which can reduce the influences on the calibration accuracy from image resampling and observation geometry errors. We use two-point and multi-points methods to calculate the absolute radiometric calibration coefficients of ZY-3 satellite multispectral sensor based on the large campaign at Dongying city, Shan Dong province. Compared with ZY-3 official calibration coefficients, multi-points method has higher accuracy than two-point method. Through analyzing the dispersion between each calibration point and the fitting line, we find that the residual error of water calibration site is larger than others, which of green band is approximately 67.39%. Treating water calibration site as an error, we filter it out using 95.4% confidence level as standard and recalculate the calibration coefficients with multi-points method. The final calibration coefficients show that the relative differences of the first three bands are less than 2% and the last band is less than 5%, which manifests that the proposed radiometric calibration method can obtain accurate and reliable calibration coefficients and is useful for other similar satellites in future.

  15. A new automatic system for angular measurement and calibration in radiometric instruments.

    Science.gov (United States)

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  16. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    Directory of Open Access Journals (Sweden)

    Jose Manuel Andujar Marquez

    2010-04-01

    Full Text Available This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  17. Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors

    Institute of Scientific and Technical Information of China (English)

    WANG Buhong; WANG Yongliang; CHEN Hui; GUO Ying

    2004-01-01

    Array calibration with angularly dependent gain and phase uncertainties has long been a difficult problem. Although many array calibration methods have been reported extensively in the literature, they almost all assumed an angularly independent model for array uncertainties. Few calibration methods have been developed for the angularly dependent array uncertainties. A novel and efficient auto-calibration method for angularly dependent gain and phase uncertainties is proposed in this paper, which is called ISM (Instrumental Sensors Method). With the help of a few well-calibrated instrumental sensors, the ISM is able to achieve favorable and unambiguous direction-of-arrivals (DOAs) estimate and the corresponding angularly dependent gain and phase estimate simultaneously, even in the case of multiple non-disjoint sources. Since the mutual coupling and sensor position errors can all be described as angularly dependent gain/phase uncertainties, the ISM proposed still works in the presence of a combination of all these array perturbations. The ISM can be applied to arbitrary array geometries including linear arrays. The ISM is computationally efficient and requires only one-dimensional search, with no high-dimensional nonlinear search and convergence burden involved. Besides, no small error assumption is made, which is always an essential prerequisite for many existing array calibration techniques. The estimation performance of the ISM is analyzed theoretically and simulation results are provided to demonstrate the effectiveness and behavior of the proposed ISM.

  18. 16 CFR 1209.8 - Procedure for calibration of radiation instrumentation.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Procedure for calibration of radiation instrumentation. 1209.8 Section 1209.8 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.8 Procedure...

  19. Calibrating the human instrument: understanding the interviewing experience of novice qualitative researchers

    National Research Council Canada - National Science Library

    Peredaryenko, Margarita S; Krauss, Steven Eric

    2013-01-01

    ... researchers perceived themselves as the research instrument in the process of their first qualitative interviewing experiences. The findings from interviews with four such novices were that their initial calibration gravitated towards one of two states - being "researcher-centered" or "informant-centered." Their proximity to either of these ...

  20. 1 {\\Omega}-10 k{\\Omega} high precision transportable setup to calibrate multifunction electrical instruments

    CERN Document Server

    Capra, P P

    2015-01-01

    A temperature controlled 1 {\\Omega}-10 k{\\Omega} standard Resistors transportable setup was developed at National Institute of Metrological Research, (INRIM) for the calibration and adjustment of multifunction electrical instruments. The two Standards consist respectively of two 10 {\\Omega} and 100 k{\\Omega} parallel connected resistors nets inserted in a temperature controlled aluminium box. Novelty of the realization is the oil insertion of the 1 {\\Omega} net with its internal connectors lowering the thermo-electromotive forces (emfs) effects. Short and mid-term stabilities of the setup Standards resulted on the order and in some cases better than other top level 1 {\\Omega} and 10 k{\\Omega} commercial Standards. The transport effect turning off the setup temperature control did not cause appreciable measurement deviations on the two Standards. The Standards uncertainties meet those requested by DMMs and MFCs manufacturers to calibrate and adjust these instruments. A test to adjust a multifunction calibrator...

  1. Constraining Direction-Dependent Instrumental Polarisation: A New Technique for Polarisation Angle Calibration

    CERN Document Server

    Farnes, J S

    2014-01-01

    Direction-dependent instrumental polarisation introduces wide-field polarimetric aberrations and limits the dynamic range of low-frequency interferometric images. We therefore provide a detailed two-dimensional analysis of the Giant Metrewave Radio Telescope (GMRT) primary beam in full-Stokes at 325 MHz and 610 MHz. We find that the directional dependence is essentially independent of the feed and is dominated by the curvature of the dishes reflecting mesh. The developed beam models are used to reduce wide-field instrumental polarisation in 610 MHz observations by subtracting the expected response from the $uv$-data itself. Furthermore, a new technique for polarisation angle calibration is presented that allows for calibration using an unpolarised source and therefore can be implemented at arbitrarily low observational frequencies. This technique has the advantage that it calibrates the polarisation angle independently of ionospheric Faraday rotation and source variability. It also removes the need for known ...

  2. A calibrated, high-resolution goes satellite solar insolation product for a climatology of Florida evapotranspiration

    Science.gov (United States)

    Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.

    2009-01-01

    Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.

  3. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    Science.gov (United States)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  4. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    CERN Document Server

    Xiao, Hong; Wang, Huanyu; Cui, Xingzhu; Guo, Dongya

    2015-01-01

    X-ray spectrometer is one of the satellite payloads on Chang'E-2 satellite. The soft X-ray detector is one of the device on X-ray spectrometer which is designed to detect the major rock-forming elements within 0.5-10keV range on lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak Fe55 source, while temperature and time effect is considered not take big error. The total uncertainty is estimated to be within 5% after correction.

  5. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration; particulate, methanol, and formaldehyde measurement. 86.1320-90 Section 86.1320-90 Protection of... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to...

  6. High accuracy calibration of a dynamic vapor sorption instrument and determination of the equilibrium humidities using single salts

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Svensson, Staffan

    2016-01-01

    We present a procedure for accurately calibrating a dynamic vapor sorption (DVS) instrument using single salts. The procedure accounts for and tailors distinct calibration tests according to the fundamental properties of each salt. Especially relevant properties influencing the calibration...... are the heat of solution, heat of condensation, and the kinetics connected to the salt phase transition, as these influence the microclimate surrounding the salts during calibration. All these issues were dealt with to obtain precise calibration results. The DVS instrument comprises two control modes...

  7. Calibration of Numerical Model for Shoreline Change Prediction Using Satellite Imagery Data

    Directory of Open Access Journals (Sweden)

    Sigit Sutikno

    2015-12-01

    Full Text Available This paper presents a method for calibration of numerical model for shoreline change prediction using satellite imagery data in muddy beach. Tanjung Motong beach, a muddy beach that is suffered high abrasion in Rangsang Island, Riau province, Indonesia was picked as study area. The primary numerical modeling tool used in this research was GENESIS (GENEralized Model for Simulating Shoreline change, which has been successfully applied in many case studies of shoreline change phenomena on a sandy beach.The model was calibrated using two extracted coastlines satellite imagery data, such as Landsat-5 TM and Landsat-8 OLI/TIRS. The extracted coastline data were analyzed by using DSAS (Digital Shoreline Analysis System tool to get the rate of shoreline change from 1990 to 2014. The main purpose of the calibration process was to find out the appropriate value for K 1 and K coefficients so that the predicted shoreline change had an acceptable correlation with the output of the satellite data processing. The result of this research showed that the shoreline change prediction had a good correlation with the historical evidence data in Tanjung Motong coast. It means that the GENESIS tool is not only applicable for shoreline prediction in sandy beach but also in muddy beach.

  8. Instrument evaluation, calibration, and installation for the heater experiments at Stripa

    Energy Technology Data Exchange (ETDEWEB)

    Schrauf, T.; Pratt, H.; Simonson, E.; Hustrulid, W.; Nelson, P.; DuBois, A.; Binnall, E.; Haught, R.

    1979-12-01

    Borehole instrumentation for the measurement of temperature, displacement, and stress was evaluated, modified, calibrated, and installed in an underground site at Stripa, Sweden where experiments are currently underway to investigate the suitability of granite as a storage medium for nuclear waste. Three arrays of borehole instrumentation measure the thermomechanical effects caused by electrical heaters which simulate the thermal output of canisters of radioactive waste. Because most rock mechanics investigations are carried out at modest temperatures, a sustained operating temperature as high as 200/sup 0/C was an unusual and most important criterion governing the instrumentation program. Extensive laboratory experiments were conducted to determine the effect of high temperature on instrument behavior and also to develop calibration and data-reduction procedures. The rod extensometers were tested for anchor creep, the selection of a suitable high-temperature pressurizing fluid, and the thermal stability of the grout. Four temperature corrections are incorporated into the data reduction of the USBM borehole deformation measurement: the bridge voltage offset correction, the change in calibration factor induced by temperature, and the thermal expansion of the gage and of the rock. The vibrating wire gages were calibrated in the laboratory by loading gages installed in a granite block at pressures up to 13 MPa and at temperatures ranging from 20/sup 0/ to 200/sup 0/C. Both the slope and offset of the response equation are corrected for temperature effects. Most thermocouples were calibrated in an oven at the field site. Thermocouples were emplaced with individual gages and into holes backfilled with sand or grout.

  9. Calibration and validation of 6 DOFs instrumented spatial linkage for biomechanical applications. A practical approach.

    Science.gov (United States)

    Sholukha, Victor; Salvia, Patrick; Hilal, Isam; Feipel, Véronique; Rooze, Marcel; Jan, Serge Van Sint

    2004-04-01

    A method for both calibration and validation of a 6 DOF electrogoniometer is presented. A 6 Revolute Instrumented Spatial Linkage (6R-ISL) and a three-dimensional digitizer (3DD) were used simultaneously to collect both static and continuous poses of unconstrained or constrained motions. Validation occurred using a calibrated ball-and-socket joint. A parametrical model of the 6R-ISL (i.e. Virtual Goniometer or VG) was designed using a standard multibody system geometry. Two approaches were used to adjust the VG parameters: a parametrical adjustment of the VG linkage geometry, and a functional adjustment of the potentiometer calibration curves (angle-voltage) in a predefined range of motion. After calibration, 6R-ISL accuracy was better than 1 mm and 1 degrees for translation and orientation, respectively. The functional method presented in this paper can be suggested as a practical approach, which allows on-line checking and calibration of 6R-ISL within the specific range of interest of a particular anatomical joint. In addition, improving the potentiometer calibration curves was less time consuming than the parametrical adjustment.

  10. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line.

  11. A method for automating calibration and records management for instrumentation and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr. [Atlan-Tech, Inc., Roswell, GA (United States)

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  12. Influence of Loading Rate on the Calibration of Instrumented Charpy Strikers

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.; McColskey, D.; McCowan, C.

    2009-01-15

    One of the key factors for obtaining reliable instrumented Charpy results is the calibration of the instrumented striker. The conventional approach for establishing an analytical relationship between strain gage output and force applied to the transducer is the static calibration, which is preferably performed with the striker installed in the pendulum assembly. However, the response of an instrumented striker under static force application may sometimes differ significantly from its dynamic performance during an actual Charpy test. This is typically reflected in a large difference between absorbed energy returned by the pendulum encoder (KV) and calculated under the instrumented force/displacement test record (Wt). Such difference can be either minimized by optimizing the striker design or analytically removed by adjusting forces and displacements until KV = Wt (the so-called 'Dynamic Force Adjustment'). This study investigates the influence of increasing force application rates on the force/voltage characteristics of two instrumented strikers, one at NIST in Boulder, CO and one at SCK-CEN in Mol, Belgium.

  13. Extensions of Kalman recursive estimation theory to retrospective updating and interpolation with applications to instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Glassey, C.R.; Choy, Y.C.

    1977-09-01

    The problem of estimation of a physical quantity from a set of measurements is considered. We extend Kalman recursive estimation procedure in two ways. First, we explore how to use the latest observation to retrospectively update estimates of past system states. Second, we show how to apply the retrospective update idea to get interpolation estimates between the epochs of observations. We also show application of these ideas for instrument calibration in nuclear accountability systems.

  14. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    Science.gov (United States)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  15. Fifteen Years of Synthetic Aperture Radar Calibration Using Trihedral Reflectors at the Alaska Satellite Facility

    Science.gov (United States)

    Albright, W.; Atwood, D.; Lawlor, O. S.; Utley, P.; Slater, C.

    2006-12-01

    For the past 15 years, the Alaska Satellite Facility (ASF) has provided calibration support for singly polarized SAR datasets in C-band (ERS-1, ERS-2, and RADARSAT-1 and L-Band (JERS-1. Passive point targets like trihedral corner reflectors offer a reliable and well established means to perform radiometric, geometric, and impulse response measurements for SAR calibration. Routine support of an array of corner reflectors in interior Alaska has permitted ASF an opportunity to monitor satellite health, calibrate SAR processors, and experiment with new reflector designs. Corner reflectors offer the advantages of low maintenance and low cost compared to active devices such as transponders. In order to maintain radar cross section, as the microwave wavelength get longer, so too does the size of the reflector. Increased size means decreased portability, exacerbating the difficulty of providing calibration support in remote locations. In response, ASF is developing low cost, light weight corner reflectors that can be deployed with minimal effort and no maintenance. These efforts will help to extend our present calibration efforts to more remote locations. But more importantly, these designs are expected to play an important role in Permanent Scatterer InSAR (PS-InSAR) methodology. The use of corner reflector arrays in support PS-InSAR may provide new means for monitoring terrain displacements in regions of heavy vegetation. This paper presents some long term measurements from ASF's array of corner reflectors, outlines improvements performed on trihedral corner reflectors, and describes current efforts at ASF to support the next generation of SAR missions and techniques.

  16. MicroCameras and Photometers (MCP) instrument on board TARANIS satellite: scientific objectives, design, characterization results and products

    Science.gov (United States)

    Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Cansot, E.; Offroy, M.; Ravel, K.; Gaillac, S.; Sato, M.; Blanc, E.

    2015-12-01

    TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched from late 2017 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose of this poster is to present the MicroCameras and Photometers (MCP) scientific objectives and the sensor design, to show the performances of this instrument using the recent characterization, and at last to promote its products. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. The calibration results will be detailed. Simulation results of the differentiation method will be shown. Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. It is a key instrument because of its on-board detection of the TLEs which can trigger the whole payload. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The calibration results will also be detailed. The on-board TLE detection algorithm remote-controlled parameters will be tuned before launch using the electronic board and simulated or real events waveforms. Automatic classification tools are now tested to produce for the Scientific Mission Center some lists of elves, sprites or lightning without TLE following the recent work of Offroy et al. [2015] using ISUAL spectrophotometer data.

  17. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  18. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  19. Telescope Spectrophotometric and Absolute Flux Calibration, and National Security Applications, Using a Tunable Laser on a Satellite

    CERN Document Server

    Albert, J; Rhodes, J; Albert, Justin; Burgett, William; Rhodes, Jason

    2006-01-01

    We propose a tunable laser-based satellite-mounted spectrophotometric and absolute flux calibration system, to be utilized by ground- and space-based telescopes. As uncertainties on the photometry, due to imperfect knowledge of both telescope optics and the atmosphere, will in the near future begin to dominate the uncertainties on fundamental cosmological parameters such as Omega_Lambda and w in measurements from SNIa, weak gravitational lensing, and baryon oscillations, a method for reducing such uncertainties is needed. We propose to improve spectrophotometric calibration, currently obtained using standard stars, by placing a tunable laser and a wide-angle light source on a satellite by early next decade (perhaps included in the upgrade to the GPS satellite network) to improve absolute flux calibration to 0.1% and relative spectrophotometric calibration to better than 0.001% across the visible and near-infrared spectrum. As well as fundamental astrophysical applications, the system proposed here potentially...

  20. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-05

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  1. An efficient stable optical polariser module for calibration of the S4UVN earth observation satellite

    Science.gov (United States)

    Rolt, Stephen; Calcines, Ariadna; Lomanowski, Bartosz; Bramall, David; Shaw, Benjamin

    2016-07-01

    We describe here an optical polariser module intended to deliver well characterised polarised light to an imaging spectrometer instrument. The instrument in question is the Sentinel-4/UVN Earth observation imaging spectrometer due to be deployed in 2019 in a geostationary orbit. The polariser module described here will be used in the ground based calibration campaign for this instrument. One critical task of the calibration campaign will be the highly accurate characterisation of the polarisation sensitivity of instrument. The polariser module provides a constant, uniform source of linearly polarised light whose direction can be adjusted without changing the output level or uniformity of the illumination. A critical requirement of the polariser module is that the illumination is uniform across the exit pupil. Unfortunately, a conventional Glan-Taylor arrangement cannot provide this uniformity due to the strong variation in transmission at a refractive surface for angles close to the critical angle. Therefore a modified prism arrangement is proposed and this is described in detail. Detailed tolerance modelling and straylight modelling is also reported here.

  2. Calibration of the Distributed Hydrological Model mHM using Satellite derived Land Surface Temperature

    Science.gov (United States)

    Zink, M.; Samaniego, L. E.; Cuntz, M.

    2012-12-01

    A combined investigation of the water and energy balance in hydrologic models can lead to a more accurate estimation of hydrological fluxes and state variables, such as evapotranspiration and soil moisture. Hydrologic models are usually calibrated against discharge measurements, and thus are only trained on information of few points within a catchment. This procedure does not take into account any spatio-temporal variability of fluxes or state variables. Satellite data are a useful source of information to account for this spatial distributions. The objective of this study is to calibrate the distributed hydrological model mHM with satellite derived Land Surface Temperature (LST) fields provided by the Land Surface Analysis - Satellite Application Facility (LSA-SAF). LST is preferred to other satellite products such as soil moisture or evapotranspiration due to its higher precision. LST is obtained by solving the energy balance by assuming that the soil heat flux and the storage term are negligible on a daily time step. The evapotranspiration is determined by closing the water balance in mHM. The net radiation is calculated by using the incoming short- and longwave radiation, albedo and emissivity data provided by LSA-SAF. The Multiscale Parameter Regionalization technique (MPR, Samaniego et al. 2010) is used to determine the aerodynamic resistance among other parameters. The optimization is performed within the time period 2008-2010 using three objective functions that consider 1) only discharge, 2) only LST, and 3) a combination of both. The proposed method is applied to seven major German river basins: Danube, Ems, Main, Mulde, Neckar, Saale, and Weser. The annual coefficient of correlation between LSA-SAF incoming shortwave radiation and 28 meteorological stations operated by the German Weather Service (DWD) is 0.94 (RMSE = 29 W m-2) in 2009. LSA-SAF incoming longwave radiation could be further evaluated at two eddy covariance stations with a very similar

  3. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    Science.gov (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-04-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  4. CERES Top-of-Atmosphere Earth Radiation Budget Climate Data Record: Accounting for in-Orbit Changes in Instrument Calibration

    Directory of Open Access Journals (Sweden)

    Norman G. Loeb

    2016-02-01

    Full Text Available The Clouds and the Earth’s Radiant Energy System (CERES project provides observations of Earth’s radiation budget using measurements from CERES instruments onboard the Terra, Aqua and Suomi National Polar-orbiting Partnership (S-NPP satellites. As the objective is to create a long-term climate data record, it is necessary to periodically reprocess the data in order to incorporate the latest calibration changes and algorithm improvements. Here, we focus on the improvements and validation of CERES Terra and Aqua radiances in Edition 4, which are used to generate higher-level climate data products. Onboard sources indicate that the total (TOT channel response to longwave (LW radiation has increased relative to the start of the missions by 0.4% to 1%. In the shortwave (SW, the sensor response change ranges from −0.4% to 0.6%. To account for in-orbit changes in SW spectral response function (SRF, direct nadir radiance comparisons between instrument pairs on the same satellite are made and an improved wavelength dependent degradation model is used to adjust the SRF of the instrument operating in a rotating azimuth plane scan mode. After applying SRF corrections independently to CERES Terra and Aqua, monthly variations amongst these instruments are highly correlated and the standard deviation in the difference of monthly anomalies is 0.2 Wm−2 for ocean and 0.3 Wm−2 for land/desert. Additionally, trends in CERES Terra and Aqua monthly anomalies are consistent to 0.21 Wm−2 per decade for ocean and 0.31 Wm−2 per decade for land/desert. In the LW, adjustments to the TOT channel SRF are made to ensure that removal of the contribution from the SW portion of the TOT channel with SW channel radiance measurements during daytime is consistent throughout the mission. Accordingly, anomalies in day–night LW difference in Edition 4 are more consistent compared to Edition 3, particularly for the Aqua land/desert case.

  5. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration; particulate, methanol and formaldehyde measurement. 86.120-94 Section 86.120-94 Protection of... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  6. Inter-instrument calibration using magnetic field data from Flux Gate Magnetometer (FGM) and Electron Drift Instrument (EDI) onboard Cluster

    Science.gov (United States)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2013-07-01

    We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  7. Absolute calibration and beam reconstruction of MITO (a ground-based instrument in the millimetric region)

    CERN Document Server

    Savini, G; Battistelli, E S; De Petris, M; Lamagna, L; Luzzi, G; Palladino, E

    2003-01-01

    An efficient sky data reconstruction derives from a precise characterization of the observing instrument. Here we describe the reconstruction of performances of a single-pixel 4-band photometer installed at MITO (Millimeter and Infrared Testagrigia Observatory) focal plane. The strategy of differential sky observations at millimeter wavelengths, by scanning the field of view at constant elevation wobbling the subreflector, induces a good knowledge of beam profile and beam-throw amplitude, allowing efficient data recovery. The problems that arise estimating the detectors throughput by drift scanning on planets are shown. Atmospheric transmission, monitored by skydip technique, is considered for deriving final responsivities for the 4 channels using planets as primary calibrators.

  8. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    Science.gov (United States)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  9. Phase calibration of the EISCAT Svalbard Radar interferometer using optical satellite signatures

    Directory of Open Access Journals (Sweden)

    J. M. Sullivan

    2006-09-01

    Full Text Available The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.

  10. Standardisation of a Vapour Generator for Calibration of Environmental Monitoring Instruments

    Directory of Open Access Journals (Sweden)

    Parul Rana

    2003-10-01

    Full Text Available Very low vapour pressure of 2,4,6 trinitrotoulene (TNT yields extremely low vapour concentrations at different flow rates in the air, yet considerable quantity of vapours and TNTdust during handling may be present at the workplace environment which is harmful to the health of the personnel working there. The explosive vapours, such as TNT,  2,6-dinitrotoluene (DNT, etc., though harmful to the health of the personnel, are not covered either in the emission standards or in the ambient air quality standards. Presently, no instrument is available for air monitoring of TNT vapours. These vapours need to be collected on-site to estimate TNT concentration. Realising the need for real-time air monitoring of TNT, efforts have been made to understand and device an instrument for on-site determination of TNT vapours parts per billiion (ppb range. Low-level TNT vapours and TNT buried in the soil in military operations are required to be detected. The instruments for this require careful calibration to yield accurate and reliable results. Hence, an effort has been made to develop a trace-level ppb vapour generator. The vapour generator of a spiral glass column of length 170 cm and inner diameter 4 mm 2 0.5 mm has been used. An activated charcoal glass tube has been used for sampling TNT vapours. The adsorbed TNT vapours were desorbed and analysed using high performance liquid chromatography. Thesolid support used has been studied. These vapours generated at different flow rates have been evaluated. The calibrated instrument can be used for in situ and on-site analysis of samples of TNT and also for samples collected.

  11. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    Science.gov (United States)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; hide

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  12. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    Science.gov (United States)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  13. Flux Calibration of Broadband Far Infrared and Submillimetre Photometric Instruments: Theory and Application to Herschel-SPIRE

    CERN Document Server

    Griffin, M J; Schulz, B; Amaral-Rogers, A; Bendo, G; Bock, J; Conley, A; Dowell, C D; Ferlet, M; Glenn, J; Lim, T; Pearson, C; Pohlen, M; Sibthorpe, B; Spencer, L; Swinyard, B; Valtchanov, I

    2013-01-01

    Photometric instruments operating at far infrared to millimetre wavelengths often have broad spectral passbands (central wavelength/bandwidth ~ 3 or less), especially those operating in space. A broad passband can result in significant variation of the beam profile and aperture efficiency across the passband, effects which thus far have not generally been taken into account in the flux calibration of such instruments. With absolute calibration uncertainties associated with the brightness of primary calibration standards now in the region of 5% or less, variation of the beam properties across the passband can be a significant contributor to the overall calibration accuracy for extended emission. We present a calibration framework which takes such variations into account for both antenna-coupled and absorber-coupled focal plane architectures. The scheme covers point source and extended source cases, and also the intermediate case of a semi-extended source profile. We apply the new method to the Herschel-SPIRE s...

  14. Evaluation applications of instrument calibration research findings in psychology for very small samples

    Science.gov (United States)

    Fisher, W. P., Jr.; Petry, P.

    2016-11-01

    Many published research studies document item calibration invariance across samples using Rasch's probabilistic models for measurement. A new approach to outcomes evaluation for very small samples was employed for two workshop series focused on stress reduction and joyful living conducted for health system employees and caregivers since 2012. Rasch-calibrated self-report instruments measuring depression, anxiety and stress, and the joyful living effects of mindfulness behaviors were identified in peer-reviewed journal articles. Items from one instrument were modified for use with a US population, other items were simplified, and some new items were written. Participants provided ratings of their depression, anxiety and stress, and the effects of their mindfulness behaviors before and after each workshop series. The numbers of participants providing both pre- and post-workshop data were low (16 and 14). Analysis of these small data sets produce results showing that, with some exceptions, the item hierarchies defining the constructs retained the same invariant profiles they had exhibited in the published research (correlations (not disattenuated) range from 0.85 to 0.96). In addition, comparisons of the pre- and post-workshop measures for the three constructs showed substantively and statistically significant changes. Implications for program evaluation comparisons, quality improvement efforts, and the organization of communications concerning outcomes in clinical fields are explored.

  15. Soot Reference Materials for instrument calibration and intercomparisons: a workshop summary with recommendations

    Directory of Open Access Journals (Sweden)

    D. Baumgardner

    2012-03-01

    Full Text Available Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot.

    The current state of availability and practicability of soot standard reference materials (SRMs was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of single-particle sootphotometer (SP2 users identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop produced recommendations for the development of new SRMs that would be suitable for the different soot measurement methods.

  16. Ozone Profile Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV-VIS

    NARCIS (Netherlands)

    Van Peet, J.C.A.; Van der A, R.J.; Tuinder, O.N.E.; Wolfram, E.; Salvador, J.; Levelt, P.F.; Kelder, H.M.

    2014-01-01

    For the retrieval of the vertical distribution of ozone in the atmosphere the Ozone ProfilE Retrieval Algorithm (OPERA) has been further developed. The new version (1.26) of OPERA is capable of retrieving ozone profiles from UV–VIS observations of most nadir-looking satellite instruments like GOME,

  17. The Calibration and Characterization of Earth Remote Sensing and Environmental Monitoring Instruments. Chapter 10

    Science.gov (United States)

    Butler, James J.; Johnson, B. Carol; Barnes, Robert A.

    2005-01-01

    The use of remote sensing instruments on orbiting satellite platforms in the study of Earth Science and environmental monitoring was officially inaugurated with the April 1, 1960 launch of the Television Infrared Observation Satellite (TIROS) [1]. The first TIROS accommodated two television cameras and operated for only 78 days. However, the TIROS program, in providing in excess of 22,000 pictures of the Earth, achieved its primary goal of providing Earth images from a satellite platform to aid in identifying and monitoring meteorological processes. This marked the beginning of what is now over four decades of Earth observations from satellite platforms. reflected and emitted radiation from the Earth using instruments on satellite platforms. These measurements are input to climate models, and the model results are analyzed in an effort to detect short and long-term changes and trends in the Earth's climate and environment, to identify the cause of those changes, and to predict or influence future changes. Examples of short-term climate change events include the periodic appearance of the El Nino-Southern Oscillation (ENSO) in the tropical Pacific Ocean [2] and the spectacular eruption of Mount Pinatubo on the Philippine island of Luzon in 1991. Examples of long term climate change events, which are more subtle to detect, include the destruction of coral reefs, the disappearance of glaciers, and global warming. Climatic variability can be both large and small scale and can be caused by natural or anthropogenic processes. The periodic El Nino event is an example of a natural process which induces significant climatic variability over a wide range of the Earth. A classic example of a large scale anthropogenic influence on climate is the well-documented rapid increase of atmospheric carbon dioxide occurring since the beginning of the Industrial Revolution [3]. An example of the study of a small-scale anthropogenic influence in climate variability is the Atlanta Land

  18. A Fully Bayesian Method for Jointly Fitting Instrumental Calibration and X-Ray Spectral Models

    Science.gov (United States)

    Xu, Jin; van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Connors, Alanna; Drake, Jeremy; Meng, Xiao-Li; Ratzlaff, Pete; Yu, Yaming

    2014-10-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is "pragmatic" in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  19. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jin; Yu, Yaming [Department of Statistics, University of California, Irvine, Irvine, CA 92697-1250 (United States); Van Dyk, David A. [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 2AZ (United Kingdom); Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Connors, Alanna; Meng, Xiao-Li, E-mail: jinx@uci.edu, E-mail: yamingy@ics.uci.edu, E-mail: dvandyk@imperial.ac.uk, E-mail: vkashyap@cfa.harvard.edu, E-mail: asiemiginowska@cfa.harvard.edu, E-mail: jdrake@cfa.harvard.edu, E-mail: pratzlaff@cfa.harvard.edu, E-mail: meng@stat.harvard.edu [Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, MA 02138 (United States)

    2014-10-20

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  20. Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations

    Directory of Open Access Journals (Sweden)

    D. Baumgardner

    2012-08-01

    Full Text Available Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure the properties of soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot.

    The current state of availability and practicability of soot standard reference materials (SRMs was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of soot SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of users of the single-particle soot-photometer (SP2, an instrument using laser-induced incandescence, identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop, and subsequent, interactive discussions, produced a number of recommendations for the development of new SRMs, and their implementation, that would be suitable for the different soot measurement methods.

  1. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    Science.gov (United States)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits

  2. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    mostly of 3rd-order astigmatism and coma. This is because the elliptical tertiary mirror of the AOS is used off of its ideal foci locations without the compensating wavefront effects of the JWST primary and secondary mirrors. Therefore, the PSFs created are highly asymmetric with relatively complex structure and the centroid and encircled energy analyses traditionally used to locate images are not sufficient for ensuring the AOS to ISIM alignment. A novel approach combining phase retrieval and spatial metrology was developed to both locate the images with respect to the AOS and provide calibration information for eventual AOS to ISIM alignment verification. During final JWST OTE and ISIM (OTIS) testing, only a single thru-focus image will be collected by the instruments. Therefore, tools and processes were developed to perform single-image phase retrieval on these highly aberrated images such that any single image of the ASPA source can provide calibrated knowledge of the instruments' position relative to the AOS. This paper discusses the results of the methodology, hardware, and calibration performed to ensure that the AOS and ISIM are aligned within their respective tolerances at JWST OTIS testing.

  3. Instrumental and Calibration Advancements for the Dark Ages Radio Explorer (DARE)

    Science.gov (United States)

    Monsalve, Raul A.; Burns, Jack O.; Bradley, Richard F.; Tauscher, Keith; Nhan, Bang; Bowman, Judd D.; Purcell, William R.; Newell, David; Draper, David

    2017-01-01

    The Dark Ages Radio Explorer (DARE) is a space mission concept proposed to NASA to measure with high precision the monopole component of the redshifted 21-cm signal from neutral hydrogen originated during cosmic dawn at redshifts 35 > z > 11. For the 21-cm line, these high redshifts correspond to the frequency range 40-120 MHz. Through its spectral features, this signal will provide a wealth of information about the large-scale physics of the first stars, galaxies and black holes. The signal is expected to have an absolute amplitude below 200 mK, which is five orders of magnitude smaller than the diffuse foregrounds dominated by Galactic synchrotron radiation. In order to avoid the impact of the Earth’s ionosphere, which corrupts low-frequency radio waves through refraction, absorption, and emission, this measurement is conducted from orbit above the far side of the Moon. This location is ideal because it enables the Moon to shield the spacecraft from Solar radiation and terrestrial radio-frequency interference. The DARE instrument is designed around a dual-polarization, widefield, wideband, biconical antenna, which provides full-Stokes capabilities in order to measure and remove the low-level polarized component of the foregrounds. The spacecraft is rotated about its boresight axis at 1 RPM to modulate the foregrounds and separate them from the spatially uniform cosmological signal. The instrument requires exquisite calibration to reach a sensitivity of a few mK in the presence of strong foregrounds. For this purpose, the frequency-dependent antenna beam is characterized to 20 ppm. This is accomplished through a combination of electromagnetic simulations, anechoic chamber measurements, and on-orbit mapping using a calibrated high-power ground-based source. The DARE front-end receiver is characterized on the ground in terms of its input impedance, gain, noise properties, and stability. Its performance is verified when operating on-orbit at a fixed temperature

  4. Calibration for CHAMP Accelerometer Data Based on Crossover Points of the Satellite

    Institute of Scientific and Technical Information of China (English)

    XU Tianhe; YANG Yuanxi

    2005-01-01

    The German CHAlleging Minisatellite Payload (CHAMP) was launched in July 2000. It is the first satellite that provides us with position and accelerometer measurements, with which the gravity field model can be determined. One of the most popular methods for geopotential recovery using the position and accelerometer measurements of CHAMP is the energy conservation method. The main aim of this paper is to determine the scale and bias parameters of CHAMP accelerometer data using the energy conservation method. The basic principle and mathematical model using the crossover points of CHAMP orbit to calibrate the accelerometer data are given based on the energy balance method. The rigorous integral formula as well as its discrete form of the observational equation is presented. This method can be used to estimate only one of the scale and bias parameters or both of them. In order to control the influence of outliers, the robust estimator for the calibration parameters is given. The results of the numerical computations and comparisons using the CHAMP accelerometer data show the validity of the method.

  5. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite

    Science.gov (United States)

    Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo

    2017-02-01

    The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.

  6. Jefferson Lab Hall A Beamline Instrumentation and Calibration for GMP experiment

    Science.gov (United States)

    Gautam, Thir Narayan

    2015-10-01

    The nucleon electromagnetic form factors characterize the distributions of electric charge and magnetization current inside the nucleon and thus reflect the internal structure determined by Quantum Chromodynamics. The GMp experiment is a first experiment run in Hall A at Jefferson Lab after the upgrade to double the beam energy with the goal to precisely measure electron-proton elastic cross section in the Q2 range of 7 to 17 GeV2 with an accuracy of better than 2%; several time better than existing data at the highest Q2. In order to achieve this accuracy, a determination of the accumulated beam charge of better than 0.5% is required. The new 12 GeV beamline was commissioned during the spring of 2015, with the main instrumentation consisting of beam charge and position monitors. In this talk, the procedures and the results of the calibrations of these beamline components will be presented.

  7. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    Science.gov (United States)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  8. Cosmic rays tracks in the PICsIT instrument onboard the INTEGRAL satellite

    Energy Technology Data Exchange (ETDEWEB)

    Labanti, C. [IASF - CNR/INAF Istituto di Astrofisica Spaziale e Fisica cosmica, sezione di Bologna, Via Gobetti 101, 40129 Bologna (Italy); Marisaldi, M. [IASF - CNR/INAF Istituto di Astrofisica Spaziale e Fisica cosmica, sezione di Bologna, Via Gobetti 101, 40129 Bologna (Italy); Segreto, A. [IASF - CNR/INAF Istituto di Astrofisica Spaziale e Fisica cosmica, sezione di Palermo, Via U. La Malfa 153, 90146 Palermo (Italy)

    2006-01-15

    The PICsIT (PIxelated CsI Telescope) instrument is the high energy plane of the IBIS imager onboard the INTEGRAL satellite, launched on October 2002 and currently fully operative. PICsIT consists of a 64x64 detectors array, each composed of a CsI(Tl) scintillating crystal with p-i-n photodiode readout. Since its first in-orbit activation, several count rate spikes have been detected. The tracks in the detector corresponding to those spikes clearly indicate that their origin is the interaction of cosmic rays with the detector or the satellite structure. Several extended elliptical tracks have been detected, indicating the presence of electromagnetic and hadronic showers initiated by primary cosmic rays interacting with the satellite structure. The tracks morphology and statistics is presented. There is strong evidence that tracks events are due to phosphorescence states excited in the CsI(Tl) crystals by a high energy deposit. Since events due to cosmic rays tracks account for a significant fraction of the instrument background, their rejection is important to improve the instrument sensitivity. Tracks rejection is especially important in those instruments, based on large quantities of alkali halide scintillators, designed to trigger on count rate increases, such as gamma-ray burst monitors. In the PICsIT detector operated in photon-by-photon mode, tracks events rejection can be easily accomplished thanks to the tracks peculiar geometrical and timing characteristics.

  9. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration

    NARCIS (Netherlands)

    Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.A.

    2013-01-01

    In this study, streamflow (Qs) and satellite-based actual evapotranspiration (ETa) are used in a multi-variable calibration framework to reproduce the catchment water balance. The application is for the HBV rainfall–runoff model at daily time-step for the Karkheh River Basin (51,000 km2) in Iran. Mo

  10. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative equi

  11. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  12. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  13. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  14. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products

    Directory of Open Access Journals (Sweden)

    P. López López

    2017-06-01

    Full Text Available A considerable number of river basins around the world lack sufficient ground observations of hydro-meteorological data for effective water resources assessment and management. Several approaches can be developed to increase the quality and availability of data in these poorly gauged or ungauged river basins; among them, the use of Earth observations products has recently become promising. Earth observations of various environmental variables can be used potentially to increase knowledge about the hydrological processes in the basin and to improve streamflow model estimates, via assimilation or calibration. The present study aims to calibrate the large-scale hydrological model PCRaster GLOBal Water Balance (PCR-GLOBWB using satellite-based products of evapotranspiration and soil moisture for the Moroccan Oum er Rbia River basin. Daily simulations at a spatial resolution of 5  ×  5 arcmin are performed with varying parameters values for the 32-year period 1979–2010. Five different calibration scenarios are inter-compared: (i reference scenario using the hydrological model with the standard parameterization, (ii calibration using in situ-observed discharge time series, (iii calibration using the Global Land Evaporation Amsterdam Model (GLEAM actual evapotranspiration time series, (iv calibration using ESA Climate Change Initiative (CCI surface soil moisture time series and (v step-wise calibration using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series. The impact on discharge estimates of precipitation in comparison with model parameters calibration is investigated using three global precipitation products, including ERA-Interim (EI, WATCH Forcing methodology applied to ERA-Interim reanalysis data (WFDEI and Multi-Source Weighted-Ensemble Precipitation data by merging gauge, satellite and reanalysis data (MSWEP. Results show that GLEAM evapotranspiration and ESA CCI soil moisture may be used for model

  15. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products

    Science.gov (United States)

    López López, Patricia; Sutanudjaja, Edwin H.; Schellekens, Jaap; Sterk, Geert; Bierkens, Marc F. P.

    2017-06-01

    A considerable number of river basins around the world lack sufficient ground observations of hydro-meteorological data for effective water resources assessment and management. Several approaches can be developed to increase the quality and availability of data in these poorly gauged or ungauged river basins; among them, the use of Earth observations products has recently become promising. Earth observations of various environmental variables can be used potentially to increase knowledge about the hydrological processes in the basin and to improve streamflow model estimates, via assimilation or calibration. The present study aims to calibrate the large-scale hydrological model PCRaster GLOBal Water Balance (PCR-GLOBWB) using satellite-based products of evapotranspiration and soil moisture for the Moroccan Oum er Rbia River basin. Daily simulations at a spatial resolution of 5 × 5 arcmin are performed with varying parameters values for the 32-year period 1979-2010. Five different calibration scenarios are inter-compared: (i) reference scenario using the hydrological model with the standard parameterization, (ii) calibration using in situ-observed discharge time series, (iii) calibration using the Global Land Evaporation Amsterdam Model (GLEAM) actual evapotranspiration time series, (iv) calibration using ESA Climate Change Initiative (CCI) surface soil moisture time series and (v) step-wise calibration using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series. The impact on discharge estimates of precipitation in comparison with model parameters calibration is investigated using three global precipitation products, including ERA-Interim (EI), WATCH Forcing methodology applied to ERA-Interim reanalysis data (WFDEI) and Multi-Source Weighted-Ensemble Precipitation data by merging gauge, satellite and reanalysis data (MSWEP). Results show that GLEAM evapotranspiration and ESA CCI soil moisture may be used for model calibration resulting in

  16. Post calibration of the two-dimensional electron cyclotron emission imaging instrument with electron temperature characteristics of the magnetohydrodynamic instabilities.

    Science.gov (United States)

    Choi, M J; Park, H K; Yun, G S; Nam, Y B; Choe, G H; Lee, W; Jardin, S

    2016-01-01

    The electron cyclotron emission imaging (ECEI) instrument is widely used to study the local electron temperature (Te) fluctuations by measuring the ECE intensity IECE ∝ Te in tokamak plasmas. The ECEI measurement is often processed in a normalized fluctuation quantity against the time averaged value due to complication in absolute calibration. In this paper, the ECEI channels are relatively calibrated using the flat Te assumption of the sawtooth crash or the tearing mode island and a proper extrapolation. The 2-D relatively calibrated electron temperature (Te,rel) images are reconstructed and the displacement amplitude of the magnetohydrodynamic modes can be measured for the accurate quantitative growth analysis.

  17. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination

    NARCIS (Netherlands)

    Nadarajah, N.; Teunissen, P.J.G.; Raziq, N.

    2013-01-01

    The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium

  18. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination

    NARCIS (Netherlands)

    Nadarajah, N.; Teunissen, P.J.G.; Raziq, N.

    2013-01-01

    The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium Ea

  19. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    Science.gov (United States)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  20. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data.

    Science.gov (United States)

    Nesarikar, Vishwas V; Patel, Chandrakant; Early, William; Vatsaraj, Nipa; Sprockel, Omar; Jerzweski, Robert

    2012-10-15

    and calibrated using a subset of placebo run data obtained on WP120. The roll force values were calculated using vendor supplied equation. The nip angle was expressed as a function of gap and RFU. The nip angle, gap and RFU were used in a new roll force equation to estimate normal stress P2 at the center of the ribbon. Using ratios P1/P2 and P3/P2 from the calibration data set, P1 and P2 were estimated. The ribbon width over which P1, P2, and P3 are effective was determined by minimizing sum square error between the model predicted vs. experimental ribbon densities of the calibration set. The model predicted ribbon densities of the placebo runs compared well with the experimental data. The placebo model also predicted with reasonable accuracy the ribbon densities of active A, B, and C blends prepared at various combinations of process parameters. The placebo model was then used to calculate scale up parameters from WP120 to WP200 roller compactor. While WP120 has a single screw speed, WP200 is equipped with a twin feed screw system. A limited number of roller compaction runs on WP200 was used as a calibration set to determine normal stress profile across ribbon width. The nip angle equation derived from instrumented roll data collected on WP120 was applied to estimate nip angles on WP200 at various processing conditions. The roll force values calculated from vendor supplied equation and the nip angle values were used in roll force equation to estimate normal stress P2 at the tip of the feed screws. Based on feed screw design, it was assumed that the normal stress at the center of the ribbon was equal to those calculated at the tip of the feed screws. The ratio of normal stress at the edge of the ribbon Pe to the normal stress P2 at the feed screw tip was optimized to minimize sum square error between model predicted vs. experimental ribbon densities of the calibration set. The model predicted ribbon densities of the batches prepared on WP200 compared well with the

  1. Design, Building and Testing of a Sun Calibration Mechanism for the MSI-VNS Instrument on EarthCARE

    Science.gov (United States)

    Tabak, Erik; de Goeij, Bryan; van Riel, Luud; Meijer, Ellart; van der Knaap, Frits; Doornink, Jan; de Graaf, Harm-Jan

    2013-09-01

    TNO has developed a mechanism to perform sun and dark calibration as a module of the Visible-NIR-SWIR Optical Unit (VNS) in the context of the ESA EarthCARE mission. This paper will address the conceptual and detailed design and modelling approach of the mechanism. Finally the production and testing of the Life Test Model (LTM) will be presented.The rotating part of the mechanism (calibration carousel) is the supporting structure of the instrument calibration diffusers. By rotating the carousel either the instrument nominal, sun calibration or dark calibration/safe modes can be selected. The calibration carousel is suspended in (a.o.) hard preloaded angular contact bearings and driven by a Phytron stepper motor. FE Modelling has been used to derive the bearing- and motor forces and accelerations. These analysis results were used as input to the CABARET analyses performed by ESTL (UK). Using the analysis results the bearing stress, stiffness, gapping and friction torque were predicted.A flight representative Life Test Model (LTM) has been manufactured assembled and was successfully subjected to ground cycles testing, vibration-, thermal vacuum- and life cycle testing.

  2. Addressing the Photometric Calibration Challenge: Explicit Determination of the Instrumental Response and Atmospheric Response Functions, and Tying it All Together.

    Science.gov (United States)

    Stubbs, C. W.; Tonry, J. L.

    2016-05-01

    Photometric calibration is currently the dominant source of systematic uncertainty in exploiting type Ia supernovae to determine the nature of the dark energy. We review our ongoing program to address this calibration challenge by performing measurements of both the instrumental response function and the optical transmission function of the atmosphere. A key aspect of this approach is to complement standard star observations by using NIST-calibrated photodiodes as a metrology foundation for optical flux measurements. We present our first attempt to assess photometric consistency between synthetic photometry and observations, by comparing predictions based on a NIST-diode-based determination of the PanSTARRS-1 instrumental response and empirical atmospheric transmission measurements, with fluxes we obtained from observing spectrophotometric standards.

  3. Addressing the Photometric Calibration Challenge: Explicit Determination of the Instrumental Response and Atmospheric Response Functions, and Tying it All Together

    CERN Document Server

    Stubbs, Christopher W

    2012-01-01

    Photometric calibration is currently the dominant source of systematic uncertainty in exploiting type Ia supernovae to determine the nature of the dark energy. We review our ongoing program to address this calibration challenge by performing measurements of both the instrumental response function and the optical transmission function of the atmosphere. A key aspect of this approach is to complement standard star observations by using NIST-calibrated photodiodes as a metrology foundation for optical flux measurements. We present our first attempt to assess photometric consistency between synthetic photometry and observations, by comparing predictions based on a NIST-diode-based determination of the PanSTARRS-1 instrumental response and empirical atmospheric transmission measurements, with fluxes we obtained from observing spectrophotometric standards.

  4. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  5. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  6. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    Science.gov (United States)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  7. Comparison of horizontal winds from the LIMS satellite instrument with rocket measurements

    Science.gov (United States)

    Smith, A. K.; Bailey, P. L.

    1985-01-01

    Statistical results are given for a comparison between horizontal geostrophic winds computed from satellite height data and all available in situ rocket wind soundings during a 7-month period. The satellite data are the daily mapped fields from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument, which extend from 100 to 0.1 mbar. Results indicate that in both the tropics and the extratropical Northern Hemisphere, the average zonal and meridional wind speeds agree to within 2-4 m/s throughout the stratosphere. The rms differences are much larger, with values of 5-10 m/s in the lower stratosphere, increasing to 20-40 m/s in the lower mesosphere. Time series show that LIMS and rocketsonde zonal wind speeds show coherent variations with temporal periods of 1-2 weeks and more, and both exhibit irregular variations on time scales of less than one week.

  8. Calibration method for the pulmonary function measuring instrument%肺功能仪校准方法

    Institute of Scientific and Technical Information of China (English)

    马建民; 罗峥

    2013-01-01

    The social significance and the clinical diagnosis parameters from calibration or measurement for the pulmonary function measuring instrument are introduced. Main contents of calibration speciifcation for the pulmonary function measuring instrument are analyzed. Combined with specification, calibration method of the vital capacity, forced vital capacity, peak expiratory flow, maximum minute ventilation and gas analyzer are detailed, then point out what should be paid attention to in calibration for the pulmonary function measuring instrument.%简要阐述了肺功能仪校准的社会意义,介绍了肺功能测量的临床诊断参数,分析了肺功能仪校准规范的主要内容,并结合规范详细说明了肺活量、用力肺活量、呼气峰值流量、最大分钟通气量、气体分析器的校准方法,提出了肺功能仪校准应注意的问题。

  9. Solar disc radius determined from observations made during eclipses with bolometric and photometric instruments on board the PICARD satellite

    Science.gov (United States)

    Thuillier, G.; Zhu, P.; Shapiro, A. I.; Sofia, S.; Tagirov, R.; van Ruymbeke, M.; Perrin, J.-M.; Sukhodolov, T.; Schmutz, W.

    2017-07-01

    Context. Despite the importance of having an accurate measurement of the solar disc radius, there are large uncertainties of its value due to the use of different measurement techniques and instrument calibration. An item of particular importance is to establish whether the value of the solar disc radius correlates with the solar activity level. Aims: The main goal of this work is to measure the solar disc radius in the near-UV, visible, and near-IR regions of the solar spectrum. Methods: Three instruments on board the PICARD spacecraft, namely the Bolometric Oscillations Sensor (BOS), the PREcision MOnitoring Sensor (PREMOS), and a solar sensor (SES), are used to derive the solar disc radius using the light curves produced when the Sun is occulted by the Moon. Nine eclipses, from 2010 to 2013, resulted in 17 occultations as viewed from the moving satellite. The calculation of the solar disc radius uses a simulation of the light curve taking into account the center-to-limb variation provided by the Non-local thermodynamic Equilibrium Spectral SYnthesis (NESSY) code. Results: We derive individual values for the solar disc radius for each viewed eclipse. Tests for a systematic variation of the radius with the progression of the solar cycle yield no significant results during the three years of measurements within the uncertainty of our measurements. Therefore, we derive a more precise radius value by averaging these values. At one astronomical unit, we obtain 959.79 arcseconds (arcsec) from the bolometric experiment; from PREMOS measurements, we obtain 959.78 arcsec at 782 nm and 959.76 arcsec at 535 nm. We found 960.07 arcsec at 210 nm, which is a higher value than the other determinations given the photons at this wavelength originate from the upper photosphere and lower chromosphere. We also give a detailed comparison of our results with those previously published using measurements from space-based and ground-based instruments using the Moon angular radius

  10. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products

    Science.gov (United States)

    Crisp, David; Pollock, Harold R.; Rosenberg, Robert; Chapsky, Lars; Lee, Richard A. M.; Oyafuso, Fabiano A.; Frankenberg, Christian; O'Dell, Christopher W.; Bruegge, Carol J.; Doran, Gary B.; Eldering, Annmarie; Fisher, Brendan M.; Fu, Dejian; Gunson, Michael R.; Mandrake, Lukas; Osterman, Gregory B.; Schwandner, Florian M.; Sun, Kang; Taylor, Tommy E.; Wennberg, Paul O.; Wunch, Debra

    2017-01-01

    The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O2) A-band at 0.765 microns and the carbon dioxide (CO2) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO2 dry-air mole fraction, XCO2. Variations of XCO2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO2. This is a particularly challenging remote-sensing observation because all but the largest emission sources and natural absorbers produce only small ( 17 000), dynamic range (˜ 104), and sensitivity (continuum signal-to-noise ratio > 400). The OCO-2 instrument performance was extensively characterized and calibrated prior to launch. In general, the instrument has performed as expected during its first 18 months in orbit. However, ongoing calibration and science analysis activities have revealed a number of subtle radiometric and spectroscopic challenges that affect the yield and quality of the OCO-2 data products. These issues include increased numbers of bad pixels, transient artifacts introduced by cosmic rays, radiance discontinuities for spatially non-uniform scenes, a misunderstanding of the instrument polarization orientation, and time-dependent changes in the throughput of the oxygen A-band channel. Here, we describe the OCO-2 instrument, its data products, and its on-orbit performance. We then summarize calibration challenges encountered during its first 18 months in orbit and the methods used to mitigate their impact on the calibrated radiance spectra distributed to the science community.

  11. GEOS-2 refraction program summary document. [ionospheric and tropospheric propagation errors in satellite tracking instruments

    Science.gov (United States)

    Mallinckrodt, A. J.

    1977-01-01

    Data from an extensive array of collocated instrumentation at the Wallops Island test facility were intercompared in order to (1) determine the practical achievable accuracy limitations of various tropospheric and ionospheric correction techniques; (2) examine the theoretical bases and derivation of improved refraction correction techniques; and (3) estimate internal systematic and random error levels of the various tracking stations. The GEOS 2 satellite was used as the target vehicle. Data were obtained regarding the ionospheric and tropospheric propagation errors, the theoretical and data analysis of which was documented in some 30 separate reports over the last 6 years. An overview of project results is presented.

  12. Mathematical calibration of Ge detectors, and the instruments that use them

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, F.L.; Young, B. [Canberra Industries, Meriden, CT (United States)

    1997-11-01

    Efficiency calibrations for Ge detectors are typically done with the use of multiple energy calibrations sources which are added to a bulk matrix intended to simulate the measurement sample, and then deposited in the sample container. This is rather easy for common laboratory samples. Bu, even there, for many environmental samples, waste assay samples, and operational health physics samples, accurate calibrations are difficult. For these situations, various mathematical corrections or direct calibration techniques are used at Canberra. EML has pioneered the use of mathematical calibrations following source-based detector characterization measurements for in situ measurements of environmental fallout. Canberra has expanded this by the use of MCNP for the source measurements required in EML. For other calibration situations, MCNP was used directly, as the primary calibration method. This is demonstrated to be at least as accurate as source based measurements, and probably better. Recently, a new method [ISOCS] has been developed and is nearing completion. This promises to be an easy to use calibration software that can be used by the customer for in situ gamma spectroscopy to accurately measure many large sized samples, such as boxes, drums, pipes, or to calibrate small laboratory-type samples. 8 refs., 8 figs., 5 tabs.

  13. BeiDou Inter-Satellite-Type Bias Evaluation and Calibration for Mixed Receiver Attitude Determination

    Directory of Open Access Journals (Sweden)

    Noor Raziq

    2013-07-01

    Full Text Available The Chinese BeiDou system (BDS, having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS. It consists of Geostationary Earth Orbit (GEO satellites, Inclined Geosynchronous Satellite Orbit (IGSO satellites and Medium Earth Orbit (MEO satellites. This paper investigates the receiver-dependent bias between these satellite types, for which we coined the name “inter-satellite-type bias” (ISTB, and its impact on mixed receiver attitude determination. Assuming different receiver types may have different delays/biases for different satellite types, we model the differential ISTBs among three BeiDou satellite types and investigate their existence and their impact on mixed receiver attitude determination. Our analyses using the real data sets from Curtin’s GNSS array consisting of different types of BeiDou enabled receivers and series of zero-baseline experiments with BeiDou-enabled receivers reveal the existence of non-zero ISTBs between different BeiDou satellite types. We then analyse the impact of these biases on BeiDou-only attitude determination using the constrained (C-LAMBDA method, which exploits the knowledge of baseline length. Results demonstrate that these biases could seriously affect the integer ambiguity resolution for attitude determination using mixed receiver types and that a priori correction of these biases will dramatically improve the success rate.

  14. GPS Survey of the salar de Uyuni, Bolivia, for Satellite Altimeter Calibration

    Science.gov (United States)

    Borsa, A. A.; Fricker, H. A.; Bills, B. G.; Carabajal, C. C.; Quinn, K.; Minster, J. B.; Schutz, B.

    2002-12-01

    The salar de Uyuni, a 100km x 100km salt flat in the Andean Altiplano of southern Bolivia, is the largest dry lake on Earth. The size, high albedo and remarkable flatness of the salar make it an ideal reference surface for satellite-based altimeters - in particular, the Geoscience Laser Altimeter System (GLAS) to be flown on the Ice, Cloud and Land Elevation Satellite (ICESat) - especially with regard to range measurements and waveform analysis of return signals. A simple reference surface such as the salar can be mapped by ground-based surveying, although the sheer size of the area requires adaptations to standard survey techniques. We describe a survey of the salar de Uyuni carried out with car-mounted kinematic GPS over a seven-day period in September 2002. We divided the salar surface into a number of survey grids that were driven in multiple directions to yield redundant measurements and corresponding error statistics at grid crossover points. Adjacent grids were overlapped so we could also determine errors between grids and over multi-day time periods. In addition, we set up five fixed GPS sites on the salar to serve as local survey control in post-processing. These fixed sites will be used to map ionospheric effects and interpolate them to the roving GPS receivers. If successful, this will allow reprocessing of GPS solutions using L1 data only, with a corresponding reduction in noise compared to solutions using the standard ionosphere-free LC combination. We present our surveyed topography of the eastern half of the salar de Uyuni, comparing it to previously-published elevation measurements and to the best geoid model available for the region. We show the close relationship between the topography of the salar and the shape of the geoid, a result we had expected since the salar is flooded each austral summer to an almost uniform depth. We also demonstrate knowledge of the surface height of the salar to within the measurement error specified for the GLAS

  15. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry, First results

    DEFF Research Database (Denmark)

    Andersen, O.B.; Krogh, P.E.; Michailovsky, C.

    2008-01-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terre......Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration...... and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital...... change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented....

  16. Structural safety evaluation of Karun III Dam and calibration of its finite element model using instrumentation and site observation

    Directory of Open Access Journals (Sweden)

    H. Mirzabozorg

    2014-06-01

    Full Text Available In the present paper, a comprehensive finite element model of Karun III double curvature arch dam is calibrated based on the micro geodesies measurements and instrumentation. Thermal properties of concrete are obtained by transient thermal analysis and the results are compared with those obtained from thermometers. Thermal analysis features include air temperature, water layers temperatures, and the solar radiation on the exposed faces. Structural calibration features include thermal distribution within the dam body, dam self-weight, hydrostatic pressure, and silt load applied on the model of dam–reservoir–foundation system. Finite element model calibration provides updated information related to the current dam status and can be used for further safety evaluations.

  17. Post calibration of the two-dimensional electron cyclotron emission imaging instrument with electron temperature characteristics of the magnetohydrodynamic instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. J., E-mail: mjchoi@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Park, H. K. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Yun, G. S.; Nam, Y. B.; Choe, G. H. [Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Lee, W. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Jardin, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-01-15

    The electron cyclotron emission imaging (ECEI) instrument is widely used to study the local electron temperature (T{sub e}) fluctuations by measuring the ECE intensity I{sub ECE} ∝ T{sub e} in tokamak plasmas. The ECEI measurement is often processed in a normalized fluctuation quantity against the time averaged value due to complication in absolute calibration. In this paper, the ECEI channels are relatively calibrated using the flat T{sub e} assumption of the sawtooth crash or the tearing mode island and a proper extrapolation. The 2-D relatively calibrated electron temperature (T{sub e,rel}) images are reconstructed and the displacement amplitude of the magnetohydrodynamic modes can be measured for the accurate quantitative growth analysis.

  18. Micro-Arcsec mission: implications of the monitoring, diagnostic and calibration of the instrument response in the data reduction chain. .

    Science.gov (United States)

    Busonero, D.; Gai, M.

    The goals of 21st century high angular precision experiments rely on the limiting performance associated to the selected instrumental configuration and observational strategy. Both global and narrow angle micro-arcsec space astrometry require that the instrument contributions to the overall error budget has to be less than the desired micro-arcsec level precision. Appropriate modelling of the astrometric response is required for optimal definition of the data reduction and calibration algorithms, in order to ensure high sensitivity to the astrophysical source parameters and in general high accuracy. We will refer to the framework of the SIM-Lite and the Gaia mission, the most challenging space missions of the next decade in the narrow angle and global astrometry field, respectively. We will focus our dissertation on the Gaia data reduction issues and instrument calibration implications. We describe selected topics in the framework of the Astrometric Instrument Modelling for the Gaia mission, evidencing their role in the data reduction chain and we give a brief overview of the Astrometric Instrument Model Data Analysis Software System, a Java-based pipeline under development by our team.

  19. Instrument Description: The Total Solar Irradiance Monitor on the FY-3C Satellite, an Instrument with a Pointing System

    Science.gov (United States)

    Wang, Hongrui; Wang, Yupeng; Ye, Xin; Yang, Dongjun; Wang, Kai; Li, Huiduan; Fang, Wei

    2017-01-01

    The Total Solar Irradiance Monitor (TSIM) onboard the nadir Feng Yun-3C (FY-3C) satellite provides measurements of the total solar irradiance with accurate solar tracking and sound thermal stability of its heat sink. TSIM/FY-3C mainly consists of the pointing system, the radiometer package, the thermal control system, and the electronics. Accurate solar tracking is achieved by the pointing system, which greatly improves the science data quality when compared with the previous TSIM/FY-3A and TSIM/FY-3B. The total solar irradiance (TSI) is recorded by TSIM/FY-3C about 26 times each day, using a two-channel radiometer package. One channel is used to perform routine observation, and the other channel is used to monitor the degradation of the cavity detector in the routine channel. From the results of the ground test, the incoming irradiance is measured by the routine channel (AR1) with a relative uncertainty of 592 ppm. A general description of the TSIM, including the instrument modules, uncertainty evaluation, and its operation, is given in this article.

  20. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height _ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 _ 2.1 km usually lying within _ latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  1. Evaluation of Instrument Landing System DDM (Difference in Depth of Modulation) Calibration Accuracies.

    Science.gov (United States)

    1983-12-01

    provided invaluable help in the development and completion of this thesis project. Sincere appreciation is expressed to Mr. William E. Herod , Chief of...0.01728 :I ; Fig. IV-13. Calibration Hierarchy & Accuracies. IV-18 L Ley ’ ! It is clear that if the calibration accuracies of figure IV-13 can be

  2. Calibration of ground-based Lidar instrument WLS7-318

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. Calibration of ground-based Lidar instrument WLS866-12

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  4. Calibration of ground-based lidar instrument WLS7-218

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. Calibration of ground-based lidar instrument WLS7-99

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  6. Calibration of ground-based Lidar instrument WLS7-283

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  7. Calibration of ground-based Lidar instrument WLS7-37

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  8. Calibration of ground-based Lidar instrument WLS7-341

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  9. Calibration of ground-based lidar instrument WLS7-219

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  10. Calibration of ground-based Lidar instrument WLS866-1

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  11. Calibration of ground-based Lidar instrument WLS7-327

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  12. Calibration of ground-based Lidar instrument WLS866-13

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  13. Calibration of ground-based Lidar instrument WLS7-218

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  14. Calibration of ground-based lidar instrument WLS7-213

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  15. Calibration of ground-based Lidar instrument WLS7-73

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  16. Calibration of ground-based Lidar instrument WLS7-222

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  17. Calibration of ground-based Lidar instrument WLS866-8

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  18. Calibration of ground-based Lidar instrument WLS7-226

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  19. Calibration of ground-based Lidar instrument WLS7-34

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  20. Calibration of ground-based Lidar instrument WLS7-369

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  1. Calibration of ground-based Lidar instrument WLS7-150

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Calibration of ground-based Lidar instrument WLS866-5

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. Calibration of ground-based lidar instrument WLS7-151

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  4. Calibration of ground-based Lidar instrument WLS7-264

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. Calibration of ground-based lidar instrument WLS7-221

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  6. Calibration of ground-based Lidar instrument WLS7-91

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  7. Calibration of ground-based Lidar instrument WLS7-66

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  8. Calibration of ground-based Lidar instrument WLS7-284

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  9. Calibration of ground-based lidar instrument WLS7-202

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  10. Calibration of ground-based Lidar instrument WLS7-150

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  11. Calibration of ground-based lidar instrument WLS7-204

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  12. Calibration between color camera and 3D LIDAR instruments with a polygonal planar board.

    Science.gov (United States)

    Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae

    2014-03-17

    Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results.

  13. Calibration of ground-based Lidar instrument WLS866-4

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  14. Calibration of ground-based Lidar instrument WLS7-343

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  15. Calibration of ground-based Lidar instrument WLS7-377

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  16. Calibration of ground-based Lidar instrument WLS7-219

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  17. Calibration of ground-based lidar instrument WLS7-202

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  18. Calibration of ground-based Lidar instrument WLS866-3

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  19. Calibration of ground-based Lidar instrument WLS866-9

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  20. Calibration of ground-based lidar instrument WLS7-203

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  1. Calibration of ground-based lidar instrument WLS7-222

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Calibration of ground-based Lidar instrument WLS7-9

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. Calibration of ground-based lidar instrument WLS7-204

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertaint......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  4. Calibration of ground-based Lidar instrument WLS7-269

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertain......This report presents the result of the lidar calibration performed for the given WLS7 Windcube at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, E. J.

    2011-12-01

    surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 2011. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  6. High accuracy calibration of a dynamic vapor sorption instrument and determination of the equilibrium humidities using single salts

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Svensson, Staffan

    2016-01-01

    We present a procedure for accurately calibrating a dynamic vapor sorption (DVS) instrument using single salts. The procedure accounts for and tailors distinct calibration tests according to the fundamental properties of each salt. Especially relevant properties influencing the calibration......) enables five discrete sorption isotherm measurements within the range of 11%–93%RH. The equilibrium RH of the solution for LiCl, MgCl2, Mg(NO3)2, NaCl, and KNO3 was determined with a standard deviation of 0.06%-0.15% (0.45% for KNO3) RH. By comparing the measured calibration values with the well...... to generate and measure the relative humidity (RH). Both control modes were separately examined and combined to overcome the shortcomings of each of the two control modes and thereby obtain the most accurate results. Repeated calibration testing with the single salts (LiCl, MgCl2, Mg(NO3)2, NaCl, and KNO3...

  7. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration.

    Science.gov (United States)

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-07-30

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite's on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%.

  8. Calibration of speleothem δ18O records against hydroclimate instrumental records in Central Brazil

    Science.gov (United States)

    Moquet, J. S.; Cruz, F. W.; Novello, V. F.; Stríkis, N. M.; Deininger, M.; Karmann, I.; Santos, R. Ventura; Millo, C.; Apaestegui, J.; Guyot, J.-L.; Siffedine, A.; Vuille, M.; Cheng, H.; Edwards, R. L.; Santini, W.

    2016-04-01

    δ18O in speleothems is a powerful proxy for reconstruction of precipitation patterns in tropical and sub-tropical regions. The aim of this study is to calibrate the δ18O record of speleothems against historical precipitation and river discharge data in central Brazil, a region directly influenced by the Southern Atlantic Convergence Zone (SACZ), a major feature of the South American Monsoon System (SAMS). The present work is based on a sub-annual resolution speleothem record covering the last 141 years (the period between the years 1870 and 2011) from a cave in central Brazil. The comparison of this record with instrumental hydroclimate records since 1921 allows defining a strong relationship between precipitation variability and stable oxygen isotope ratios from speleothems. The results from a monitoring program of climatic parameters and isotopic composition of rainfall and cave seepage waters performed in the same cave, show that the rain δ18O variability is dominated by the amount effect in this region, while δ18O drip water remains almost constant over the monitored period (1.5 years). The δ18O of modern calcite, on the other hand, shows clear seasonal variations, with more negative values observed during the rainy season, which implies that other factors also influence the isotopic composition of carbonate. However, the relationship between δ18O of carbonate deposits and rainwater is supported by the results from the comparison between speleothem δ18O records and historical hydroclimate records. A significant correlation between speleothem δ18O and monsoon rainfall variability is observed on sub-decadal time scales, especially for the monsoon period (DJFM and NDJFM), once the rainfall record have been smoothed with a 7-9 years running mean. This study confirms that speleothem δ18O is directly associated with monsoon rainfall variability in central Brazil. The relationship between speleothem δ18O records and hydroclimatic historical records allows

  9. Calibration and Industrial Application of Instrument for Surface Mapping based on AFM

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Kofod, Niels; De Chiffre, Leonardo

    2002-01-01

    The paper describes the calibration and application of an integrated system for topographic characterisation of fine surfaces on large workpieces. The system, consisting of an atomic force microscope mounted on a coordinate measuring machine, was especially designed for surface mapping, i.......e., measurement and tiling of adjacent areas. A calibration procedure was proposed involving a glass artefact featuring chromium lines with different pitch distances, giving the possibility to identify the exact position of single surface areas. The calibrated system was used to surface map a hip joint prosthesis...

  10. A new calibration system for lightweight, compact and mobile Cavity-Enhanced Differential Optical Absorption Spectroscopy instruments

    Science.gov (United States)

    Zielcke, Johannes; Horbanski, Martin; Pöhler, Denis; Frieß, Udo; Platt, Ulrich

    2013-04-01

    Absorption Spectroscopy has been employed for several decades now to study the earth's atmosphere. While the focus has been on remote sensing for a long time, lately there has been a renewed interest in in-situ methods, as point measurements allow an easier interpretation for highly inhomogeneous distributions of gases of interest compared to the integration approach of most remote sensing methods. One comparatively new method offering both advantages of in-situ measurements as well as being contactless is open-path Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS). Broadband open-path CE-DOAS instruments have been used for ten years now, and in the meantime allow the measurement of numerous atmospheric trace gases (e.g. NO2, NO3, IO, CHOCHO, HCHO). While those instruments were bulky and not very mobile at first, recent developments resulted in relatively lightweight (< 30 kg) instruments with a relatively low power consumption allowing mobile open-path measurements at remote field locations. An important operational issue has been the path length calibration in the field, necessary for the determination of the concentration of measured gases. Until now, often calibration gases were used with different scattering properties than air or known concentrations. However this methods has several major shortcomings, being rather inconvenient and cumbersome in the field with the need for compressed gas cylinders, as well as time consuming, preventing a quick check of the state of the instrument in the field after changing measurement locations. Here we present a new wavelength-resolved method for broadband CE-DOAS path length calibration. A small, custom made ring-down system is employed with a pulsed LED as light source. The wavelength is then resolved by tilting a narrow band interference filter. The system not only allows quick, automated path length calibrations without physical interaction on the instrument, but also saves weight, space and the

  11. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    Science.gov (United States)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; Akin, D. J.; Allard, B. A.; Miles, J. W.; Rairden, R.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Wolfson, C. J.; Elmore, D. F.; Norton, A. A..; Tomczyk, S.

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  12. Pomino: An Improved Satellite NO2 Product for the Ozone Monitoring Instrument

    Science.gov (United States)

    Lin, J.; Martin, R.; Boersma, K. F.; Sneep, M.; Stammes, P.; Spurr, R. J. D.; Wang, P.; Van Roozendael, M.; Clemer, K.; Irie, H.

    2014-12-01

    Tropospheric NO2 columns retrieved from satellite instruments are useful to infer NOx pollution, NOx emissions and atmospheric chemistry. Current satellite products are subject to limitations in assumptions of aerosol optical effects, surface reflectance anisotropy, vertical profiles of NO2, and/or cloud optical properties. Here we develop an improved Peking University Ozone Monitoring Instrument NO2 product (POMINO) for China, complementing the popular DONIMO v2 product. POMINO explicitly accounts for aerosol optical effects, angular dependence of surface reflectance, and dynamically varying atmospheric profiles of air pressure, air temperature and NO2 at a high horizontal resolution (50 km). Prior to the NO2 retrieval, we retrieve cloud top pressure and cloud fraction using consistent assumptions about the states of the atmosphere and surface. For our NO2 and cloud retrievals, we adopt from KNMI (via www.temis.nl) the SCDs of tropospheric NO2 (DOMINO v2) and O2-O2 dimer (OMCLDO2 v1.1.1.3), the TOA reflectance, and some other ancillary information. We develop the AMFv6 code for radiative transfer calculation, based on LIDORT v3.6. Radiative transfer is calculated explicitly for each satellite pixel with no need to use a look-up table. The calculation of AMFv6 is parallelized and is sufficiently fast so that one day of retrieval with global coverage would only take about three hours using 16 CPU cores. POMINO is consistent with MAX-DOAS NO2 data in China, with a R2of 0.96 as compared to the value at 0.72 for DOMINO v2. The improved consistency is related to explicit pixel-by-pixel radiative transfer calculation (instead of using a look-up table), consistent treatments of all parameters in retrieving clouds and NO2, explicit consideration of aerosol optical effects (rather than adjusting 'effective' clouds to implicitly account for aerosols), and consideration of surface reflectance anisotropy. Additional analyses are being conducted on the daily, seasonal and

  13. Onboard Blackbody Calibrator Component Development for IR Remote Sensing Instrumentation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We plan to develop a blackbody coated with Carbon nanotube materials that will able to operate in the temperature ranges need to calibrate a thermal infrared sensor...

  14. Outcome-Based Comparison of Percutaneous Procedures for Urinary Lithiasis with Calibre of Instrumentation less than 12Fr.

    Science.gov (United States)

    Wells, H; Rukin, N; Wright, A; Somani, B K

    2015-08-01

    Renal stone disease is becoming increasingly prevalent globally. With a rise in stone disease worldwide, there is also a relative increase in the rates of surgical intervention. Technological advances have allowed a move towards minimising the complications rates and length of stay with a reduction in invasiveness and size of instruments. A trend for minimising the percutaneous tract size has been noted in percutaneous nephrolithotomy (PCNL) for renal stones. The management has shifted from open surgery to standard PCNL, mini-PCNL and the latest ultra-mini and micro-PCNL techniques. There is a need to compare outcomes for the ever-advancing technologies, such as the smaller calibre of instruments, to assess risk-benefit in practice. This review looks at outcome-based comparison of percutaneous procedures for urinary lithiasis with instruments <12Fr in size.

  15. Calibration of HY-2A satellite significant wave heights within situ observation

    Institute of Scientific and Technical Information of China (English)

    PENG Hailong; LIN Mingsen

    2016-01-01

    Significant wave height (SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated againstin situ buoy data from the National Data Buoy Center (NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data againstin situ buoys was applied a more sophisticated statistical technique—the total least squares (TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.

  16. MERITXELL: The Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral-Instrument Description, Calibration and Performance.

    Science.gov (United States)

    Querol, Jorge; Tarongí, José Miguel; Forte, Giuseppe; Gómez, José Javier; Camps, Adriano

    2017-05-10

    MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration.

  17. MERITXELL: The Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral—Instrument Description, Calibration and Performance

    Science.gov (United States)

    Querol, Jorge; Tarongí, José Miguel; Forte, Giuseppe; Gómez, José Javier; Camps, Adriano

    2017-01-01

    MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration. PMID:28489056

  18. Calibration of Nu-Instruments Noblesse multicollector mass spectrometers for argon isotopic measurements using a newly developed reference gas

    Science.gov (United States)

    Coble, M.A.; Grove, M.; Calvert, A.T.

    2011-01-01

    The greatest challenge limiting 40Ar/39Ar multicollection measurements is the availability of appropriate standard gasses to intercalibrate detectors. In particular, use of zoom lens ion-optics to steer and focus ion beams into a fixed detector array (i.e., Nu Instruments Noblesse) makes intercalibration of multiple detectors challenging because different ion-optic tuning conditions are required for optimal peak shape and sensitivity at different mass stations. We have found that detector efficiency and mass discrimination are affected by changes in ion-optic tuning parameters. Reliance upon an atmospheric Ar standard to calibrate the Noblesse is problematic because there is no straightforward way to relate atmospheric 40Ar and 36Ar to measurements of 40Ar and 39Ar if they are measured on separate detectors. After exploring alternative calibration approaches, we have concluded that calibration of the Noblesse is best performed using exactly the same source, detector, and ion-optic tuning settings as those used in routine 40Ar/39Ar analysis. To accomplish this, we have developed synthetic reference gasses containing 40Ar, 39Ar and 38Ar produced by mixing gasses derived from neutron-irradiated sanidine with an enriched 38Ar spike. We present a new method for calibrating the Noblesse based on use of both atmospheric Ar and the synthetic reference gasses. By combining atmospheric Ar and synthetic reference gas in different ways, we can directly measure 40Ar/39Ar, 38Ar/39Ar, and 36Ar/39Ar correction factors over ratios that vary from 0.5 to 460. These correction factors are reproducible to better than ??0.5??? (2?? standard error) over intervals spanning ~24h but can vary systematically by ~4% over 2weeks of continuous use when electron multiplier settings are held constant. Monitoring this variation requires daily calibration of the instrument. Application of the calibration method to 40Ar/39Ar multicollection measurements of widely used sanidine reference materials

  19. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height ¡_ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 ¡_ 2.1 km usually lying within ¡_10¢X latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  20. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    Directory of Open Access Journals (Sweden)

    A. Hilboll

    2013-04-01

    Full Text Available Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term dataset of tropospheric pollution. However, the observations differ in spatial resolution, local time of measurement, viewing geometry, and other details. All these factors can severely impact the retrieved NO2 columns. In this study, we present three ways to account for instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving the individual instruments' spatial resolutions. For combining measurements from GOME and SCIAMACHY into one consistent time series, we develop a method to explicitly account for the instruments' difference in ground pixel size (40 × 320 km2 vs. 30 × 60 km2. This is especially important when analysing NO2 changes over small, localised sources like, e.g. megacities. The method is based on spatial averaging of the measured earthshine spectra and extraction of a spatial pattern of the resolution effect. Furthermore, two empirical corrections, which summarise all instrumental differences by including instrument-dependent offsets in a fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series, and to an extended dataset comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution. Compared to previous studies, the longer study period leads to significantly reduced uncertainties. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over east-central China tripling from 1996 to 2011. All parts of the developed world

  1. Microchannel Plates for the UVCS and SUMER Instruments on the SOHO Satellite

    Science.gov (United States)

    Siegmund, O. H. W.; Gummin, M. A.; Sasseen, T.; Jelinsky, P.; Gaines, G. A.; Hull, J.; Stock, J. M.; Edgar, M.; Welsh, B.; Jelinsky, S.; Vallerga, J.

    1995-01-01

    The microchannel plates for the detectors in the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) and UVCS (Ultraviolet Coronograph Spectrometer) instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in late 1995 are described. A low resistance Z stack of microchannel plates (MCP's) is employed in a detector format of 27 mm x 10 mm using a multilayer cross delay line anode (XDL) with 1024 x 360 digitized pixels. The MCP stacks provide gains of greater than 2 x 10(exp 7) with good pulse height distributions (as low as 25% FWHM) under uniform flood illumination. Background rates of approx. 0.6 event cm(exp -2) sec(exp -1) are obtained for this configuration. Local counting rates up to about 800 events/pixel/sec have been achieved with little drop of the MCP gain. MCP preconditioning results are discussed, showing that some MCP stacks fail to have gain decreases when subjected to a high flux UV scrub. Also, although the bare MCP quantum efficiencies are close to those expected (10%), we found that the long wavelength response of KBr photocathodes could be substantially enhanced by the MCP scrubbing process. Flat field images are characterized by a low level of MCP fixed pattern noise and are stable. Preliminary calibration results for the instruments are shown.

  2. Gemini Planet Imager Observational Calibrations VIII: Characterization and Role of Satellite Spots

    CERN Document Server

    Wang, Jason J; Graham, James R; Savransky, Dmitry; Ingraham, Patrick J; Ward-Duong, Kimberly; Patience, Jennifer; De Rosa, Robert J; Bulger, Joanna; Sivaramakrishnan, Anand; Perrin, Marshall D; Thomas, Sandrine J; Sadakuni, Naru; Greenbaum, Alexandra Z; Pueyo, Laurent; Marois, Christian; Oppenheimer, Ben R; Kalas, Paul; Cardwell, Andrew; Goodsell, Stephen; Hibon, Pascale; Rantakyrö, Fredrik T

    2014-01-01

    The Gemini Planet Imager (GPI) combines extreme adaptive optics, an integral field spectrograph, and a high performance coronagraph to directly image extrasolar planets in the near-infrared. Because the coronagraph blocks most of the light from the star, it prevents the properties of the host star from being measured directly. Instead, satellite spots, which are created by diffraction from a square grid in the pupil plane, can be used to locate the star and extract its spectrum. We describe the techniques implemented into the GPI Data Reduction Pipeline to measure the properties of the satellite spots and discuss the precision of the reconstructed astrometry and spectrophotometry of the occulted star. We find the astrometric precision of the satellite spots in an $H$-band datacube to be $0.05$ pixels and is best when individual satellite spots have a signal to noise ratio (SNR) of $> 20$. In regards to satellite spot spectrophotometry, we find that the total flux from the satellite spots is stable to $\\sim 7\\...

  3. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    Science.gov (United States)

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  4. Nickel replicas as calibration reference standards for industrial surface texture instruments

    DEFF Research Database (Denmark)

    Sammatini-Malberg, Maria-Pia

    The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale.......The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale....

  5. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  6. Borehole strainmeter measurements spanning the 2014, Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    Science.gov (United States)

    Langbein, John O.

    2015-01-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain fit from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although the borehole strainmeter accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  7. Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    Science.gov (United States)

    Langbein, John

    2015-10-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source, and the observed offsets ranged up to 400 parts per billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain field from the earthquake. Borehole strainmeters require in situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain tides predicted by a model. Although the borehole strainmeter accurately measures the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  8. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  9. Research on Calibration Transfer across Infrared Spectrometric Instruments for Fast Evaluation of Crude Oils

    Institute of Scientific and Technical Information of China (English)

    Li Jingyan; Chu Xiaoli; Tian Songbai

    2015-01-01

    The spectral analysis method is suitable for the process control and the process analysis such as the fast evalua-tion of crude oils. In this study, model transfer between the same type of spectrometer and different type of spectrometers was discussed respectively, and the results have shown that the transfer of calibration model can satisfy the demand of rapid analysis.

  10. Calibration and Industrial Application of Instrument for Surface Mapping based on AFM

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Kofod, Niels; De Chiffre, Leonardo

    2002-01-01

    The paper describes the calibration and application of an integrated system for topographic characterisation of fine surfaces on large workpieces. The system, consisting of an atomic force microscope mounted on a coordinate measuring machine, was especially designed for surface mapping, i.e., mea...

  11. Nickel replicas as calibration reference standards for industrial surface texture instruments

    DEFF Research Database (Denmark)

    Sammatini-Malberg, Maria-Pia

    The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale....

  12. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-15

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  13. Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time

    Science.gov (United States)

    Brogniez, Colette; Auriol, Frédérique; Deroo, Christine; Arola, Antti; Kujanpää, Jukka; Sauvage, Béatrice; Kalakoski, Niilo; Riku Aleksi Pitkänen, Mikko; Catalfamo, Maxime; Metzger, Jean-Marc; Tournois, Guy; Da Conceicao, Pierre

    2016-12-01

    Spectral solar UV radiation measurements are performed in France using three spectroradiometers located at very different sites. One is installed in Villeneuve d'Ascq, in the north of France (VDA). It is an urban site in a topographically flat region. Another instrument is installed in Observatoire de Haute-Provence, located in the southern French Alps (OHP). It is a rural mountainous site. The third instrument is installed in Saint-Denis, Réunion Island (SDR). It is a coastal urban site on a small mountainous island in the southern tropics. The three instruments are affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC) and carry out routine measurements to monitor the spectral solar UV radiation and enable derivation of UV index (UVI). The ground-based UVI values observed at solar noon are compared to similar quantities derived from the Ozone Monitoring Instrument (OMI, onboard the Aura satellite) and the second Global Ozone Monitoring Experiment (GOME-2, onboard the Metop-A satellite) measurements for validation of these satellite-based products. The present study concerns the period 2009-September 2012, date of the implementation of a new OMI processing tool. The new version (v1.3) introduces a correction for absorbing aerosols that were not considered in the old version (v1.2). Both versions of the OMI UVI products were available before September 2012 and are used to assess the improvement of the new processing tool. On average, estimates from satellite instruments always overestimate surface UVI at solar noon. Under cloudless conditions, the satellite-derived estimates of UVI compare satisfactorily with ground-based data: the median relative bias is less than 8 % at VDA and 4 % at SDR for both OMI v1.3 and GOME-2, and about 6 % for OMI v1.3 and 2 % for GOME-2 at OHP. The correlation between satellite-based and ground-based data is better at VDA and OHP (about 0.99) than at SDR (0.96) for both space-borne instruments. For all

  14. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  15. The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets

    DEFF Research Database (Denmark)

    Ekholm, Simon; Bamber, J.L.; Krabill, W.B.

    2002-01-01

    -correlated noise can be effectively removed by the so-called relocation error correction method. The adjustment, however, produces a different spatial sampling of the data, which introduces a non-negligible slope related bias to the computation of digital elevation models. In this paper we incorporate high......Satellite radar altimetry is the most important data source for ice sheet elevation modeling but it is well established that the accuracy of such data from satellite borne radar altimeters degrade seriously with increasing surface slope and level of roughness. A significant fraction of the slope...... as a linear function of surface slope. This linear correspondence is in turn tested as a model for adjusting the satellite altimetry data for the observed slope correlated bias. The adjustment is shown to have a significant effect in terms of reducing the bias, thus improving the modeling accuracy of the data....

  16. Instrument development and field application of the in situ pH Calibrator at the Ocean Observatory

    Science.gov (United States)

    Tan, C.; Ding, K.; Seyfried, W. E.

    2012-12-01

    A novel, self-calibrating instrument for in-situ measurement of pH in deep sea environments up to 4000 m has recently been developed. The device utilizes a compact fluid delivery system to perform measurement and two-point calibration of the solid state pH sensor array (Ir|IrOx| Ag|AgCl), which is sealed in a flow cell to enhance response time. The fluid delivery system is composed of a metering pump and valves, which periodically deliver seawater samples into the flow cell to perform measurements. Similarly, pH buffer solutions can be delivered into the flow cell to calibrate the electrodes under operational conditions. Sensor signals are acquired and processed by a high resolution (0.25 mV) datalogger circuit with a size of 114 mm×31 mm×25 mm. Eight input channels are available: two high impedance sensor input channels, two low impedance sensor input channel, two thermocouple input channels and two thermistor input channels. These eight channels provide adequate measurement flexibility to enhance applications in deep sea environments. The two high impedance channels of the datalogger are especially designed with the input impedance of 1016 Ω for YSZ (yittria-stabilized zirconia) ceramic electrodes characterized by the extremely low input bias current and high resistance. Field tests have been performed in 2008 by ROV at the depth up to 3200 m. Using the continuous power supply and TCP/IP network capability of the Monterey Accelerated Research System (MARS) ocean observatory, the so-called "pH Calibrator" has the capability of long term operation up to six months. In the observatory mode, the electronics are configured with DC-DC power converter modules and Ethernet to serial module to gain access to the science port of seafloor junction box. The pH Calibrator will be deployed at the ocean observatory in October and the in situ data will be on line on the internet. The pH Calibrator presents real time pH data at high pressures and variable temperatures, while

  17. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    Science.gov (United States)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  18. ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE FROM NDVI PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    U. Sakarya

    2016-06-01

    Full Text Available TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP Project and AKTAR (Smart Agriculture Feasibility Project. The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for

  19. A novel single-step, multipoint calibration method for instrumented Lab-on-Chip systems

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Patou, François; Zulfiqar, Azeem

    2014-01-01

    Despite recent and substantial advances in biosensing, information and communication, and Lab-on-Chip (LoC) technologies, the success of Point-of-Care (PoC) diagnostics and monitoring systems is still challenged by stringent requirements for robustness, cost-effectiveness, and system integration...... specifically addresses the important interfaces between a novel microfluidic unit to integrate the sensor array and a mobile-device hardware accessory. A multi-point calibration curve is obtained by generating a defined set of reference concentrations from a single input. By consecutively splitting the flow...... perpendicular to the diffusion interface only one mixing step is required for each of the generated calibration solutions. This results in a compact design with a very small footprint of the microfluidic layout....

  20. An improved NO2 retrieval for the GOME-2 satellite instrument

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2011-01-01

    Full Text Available Satellite observations of nitrogen dioxide (NO2 provide valuable information on both stratospheric and tropospheric composition. Nadir measurements from GOME, SCIAMACHY, OMI, and GOME-2 have been used in many studies on tropospheric NO2 burdens, the importance of different NOx emissions sources and their change over time. The observations made by the three GOME-2 instruments will extend the existing data set by more than a decade, and a high quality of the data as well as their good consistency with existing time series is of high importance. In this paper, an improved GOME-2 NO2 retrieval is described which reduces the scatter of the individual NO2 columns globally but in particular in the region of the Southern Atlantic Anomaly. This is achieved by using a larger fitting window including more spectral points, and by applying a two step spike removal algorithm in the fit. The new GOME-2 data set is shown to have good consistency with SCIAMACHY NO2 columns. Remaining small differences are shown to be linked to changes in the daily solar irradiance measurements used in both GOME-2 and SCIAMACHY retrievals. In the large retrieval window, a not previously identified spectral signature was found which is linked to deserts and other regions with bare soil. Inclusion of this empirically derived pseudo cross-section significantly improves the retrievals and potentially provides information on surface properties and desert aerosols. Using the new GOME-2 NO2 data set, a long-term average of tropospheric columns was computed and high-pass filtered. The resulting map shows evidence for pollution from several additional shipping lanes, not previously identified in satellite observations. This illustrates the excellent signal to noise ratio achievable with the improved GOME-2 retrievals.

  1. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    Science.gov (United States)

    Hilboll, A.; Richter, A.; Burrows, J. P.

    2012-12-01

    Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term data set of tropospheric pollution. However, the measurements differ in spatial resolution, local time of measurement, and measurement geometry. All these factors can severely impact the retrieved NO2 columns, which is why they need to be taken into account when analysing time series spanning more than one instrument. In this study, we present several ways to explicitly account for the instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving their high spatial resolution. Both a physical method, based on spatial averaging of the measured earthshine spectra and extraction of a resolution pattern, and statistical methods, including instrument-dependent offsets in the fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series and to an extended data set comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution and significantly reducing the uncertainties of the retrieved trend estimates compared to previous studies. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over East Central China triplicating from 1996 to 2011. All parts of the developed world, including Western Europe, the United States, and Japan, show significantly decreasing NO2 amounts in the same time period. On a megacity level, individual trends can be as large as +27 ± 3.7% yr-1 and +20 ± 1.9% yr-1 in Dhaka and Baghdad, respectively, while Los Angeles shows a very strong decrease

  2. CARTEL: A method to calibrate S-band ranges with geostationary satellites. Results of orbit determination

    Science.gov (United States)

    Guitart, A.; Mesnard, B.

    1986-05-01

    A satellite tracking campaign was organized, with 4 S-band stations, for 1 wk. The relative geometry of the network with respect to the satellites was an opportunity to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference to evaluate what can be achieved with one station with range and angular measurements, a typical configuration used for stationkeeping of geostationary satellites. Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. Precision of 10 m is achieved. However, an analysis of the influence of parameters in the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (e.g., polar motion). In a relative sense, the reference orbit allows estimation of systematic errors for other tracking antennas.

  3. Validation of the calibration of a laser-induced fluorescence instrument for the measurement of OH radicals in the atmosphere

    Directory of Open Access Journals (Sweden)

    W. J. Bloss

    2004-01-01

    Full Text Available An assessment of the accuracy of OH concentrations measured in a smog chamber by a calibrated laser-induced fluorescence (LIF instrument has been made, in the course of 9 experiments performed to study the photo-oxidation of benzene, toluene, 1,3,5-trimethylbenzene, para-xylene, ortho-cresol and ethene at the European Photoreactor facility (EUPHORE. The LIF system was calibrated via the water photolysis / ozone actinometry approach. OH concentrations were inferred from the instantaneous rate of removal of each hydrocarbon species (measured by FTIR or HPLC via the appropriate rate coefficient for their reaction with OH, and compared with those obtained from the LIF system. Good agreement between the two approaches was found for all species with the exception of 1,3,5-trimethylbenzene, for which OH concentrations inferred from hydrocarbon removal were a factor of 3 lower than those measured by the LIF system. From the remaining 8 experiments, an overall value of 1.15±0.13 (±1σ was obtained for [OH]LIF / [OH]Hydrocarbon Decay, compared with the estimated uncertainty in the accuracy of the water photolysis / ozone actinometry OH calibration technique of 26% (1σ.

  4. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  5. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  6. Calibration procedures for imaging spectrometers: improving data quality from satellite missions to UAV campaigns

    Science.gov (United States)

    Brachmann, Johannes F. S.; Baumgartner, Andreas; Lenhard, Karim

    2016-10-01

    The Calibration Home Base (CHB) at the Remote Sensing Technology Institute of the German Aerospace Center (DLR-IMF) is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric characterization is realized in the CHB in a precise and highly automated fashion. This allows performing a wide range of time consuming measurements in an efficient way. The implementation of ISO 9001 standards ensures a traceable quality of results. DLR-IMF will support the calibration and characterization campaign of the future German spaceborne hyperspectral imager EnMAP. In the context of this activity, a procedure for the correction of imaging artifacts, such as due to stray light, is currently being developed by DLR-IMF. Goal is the correction of in-band stray light as well as ghost images down to a level of a few digital numbers in the whole wavelength range 420-2450 nm. DLR-IMF owns a Norsk Elektro Optikks HySpex airborne imaging spectrometer system that has been thoroughly characterized. This system will be used to test stray light calibration procedures for EnMAP. Hyperspectral snapshot sensors offer the possibility to simultaneously acquire hyperspectral data in two dimensions. Recently, these rather new spectrometers have arisen much interest in the remote sensing community. Different designs are currently used for local area observation such as by use of small unmanned aerial vehicles (sUAV). In this context the CHB's measurement capabilities are currently extended such that a standard measurement procedure for these new sensors will be implemented.

  7. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    Science.gov (United States)

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  8. THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Atwood, W. B.; Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Institut fuer Astro- und Teilchenphysik and Institut fuer Theoretische Physik, Leopold-Franzens-Universitaet Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E., E-mail: echarles@slac.stanford.edu, E-mail: luca.baldini@pi.infn.it, E-mail: rando@pd.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); and others

    2012-11-15

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy {gamma}-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  9. CARTEL: A method to calibrate S-band ranges with geostationary satellites

    Science.gov (United States)

    Guitart, A.; Mesnard, R.; Nouel, F.

    1986-12-01

    An intersite tracking campaign was organized, with 4 S-band stations, for a period of 1 wk to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference in order to evaluate what can be achieved with one single station with range and angular measurements (a typical configuration used for stationkeeping of geostationary satellites). Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure as forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. A precision of 10 m is achieved. However, an analysis of the influence of several parameters entering the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (polar motion for example). This reference orbit allows estimation of systematic errors for other tracking antennas.

  10. Ozone Profile Retrieval from Satellite Observation Using High Spectral Resolution Infrared Sounding Instrument

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a preliminary result on the retrieval of atmospheric ozone profiles using an im proved regression technique and utilizing the data from the Atmospheric InfraRed Sounder (AIRS), a hyper-spectral instrument expected to be flown on the EOS-AQUA platform in 2002. Simulated AIRS spectra were used to study the sensitivity of AIRS radiance on the tropospheric and stratospheric ozone changes, and to study the impact of various channel combinations on the ozone profile retrieval. Sensitivity study results indicate that the AIRS high resolution spectral channels between the wavenumber 650- 800 cm-1 provide very useful information to accurately retrieve tropospheric and stratospheric ozone pro files. Eigenvector decomposition of AIRS spectra indicate that no more than 100 eigenvectors are needed to retrieve very accurate ozone profiles. The accuracy of the retrieved atmospheric ozone profile from the pres ent technique and utilizing the AIRS data was compared with the accuracy obtained from current Advanced TIROS Operational Vertical Sounder (ATOVS) data aboard National Oceanic and Atmospheric Admini stration (NOAA) satellites. As expected, a comparison of retrieval results confirms that the ozone profile re trieved with the AIRS data is superior to that of ATOVS.

  11. An optical sensor network for vegetation phenology monitoring and satellite data calibration

    DEFF Research Database (Denmark)

    Eklundh, L.; Jin, H.; Schubert, P.

    2011-01-01

    in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation...

  12. Enhanced Identification of hydrologic models using streamflow and satellite water storage data: a multi-objective calibration approach

    Science.gov (United States)

    Yassin, F. A.; Razavi, S.; Sapriza, G.; Wheater, H. S.

    2015-12-01

    The conventional procedure for parameter identification of hydrological processes through conditioning only to streamflow data is challenging in physically based distributed hydrologic modelling. The challenge increases for modeling the landscapes where vertical processes dominate horizontal processes, leading to high uncertainties in modelled state variables, vertical fluxes and hence parameter estimates. Such behavior is common in modeling the prairie region of the Saskatchewan River Basin (SaskRB, our case study), Canada, where hydrologic connectivity and vertical fluxes are mainly controlled by surface and sub-surface water storage. To address this challenge, we developed a novel multi-criteria framework that utilizes total column water storage derived from the GRACE satellite, in addition to streamflows. We used a multi-objective optimization algorithm (Borg) and a recently-developed global sensitivity analysis approach (VARS) to effectively identify the model parameters and characterize their significance in model performance. We applied this framework in the calibration of a Land Surface Scheme-Hydrology model, MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) to a sub-watershed of SaskRB. Results showed that the developed framework is superior to the conventional approach of calibration to streamflows. The new framework allowed us to find optimal solutions that effectively constrain the posterior parameter space and are representative of storage and streamflow performance criteria, yielding more credible prediction with reduced uncertainty of modeled storage and evaporation.

  13. Verification for robustness to laser-induced damage for the Aladin instrument on the ADM-Aeolus satellite

    Science.gov (United States)

    Wernham, Denny; Ciapponi, Alessandra; Riede, Wolfgang; Allenspacher, Paul; Era, Fabio; D'Ottavi, Alessandro; Thibault, Dominique

    2016-12-01

    The Aladin instrument will fly on the European Space Agency's ADM Aeolus satellite. The instrument is a Doppler wind LIDAR, primarily designed to measure global wind profiles to improve the accuracy of numerical weather prediction models. At the heart of the instrument is a frequency stabilized 355nm laser which will emit approximately 100mJ of energy in the form of 20ns pulses with a fluence around 1Jcm-2. The pulse repetition frequency is 50Hz meaning that Aladin will eventually have to accumulate 5Gshots over its 3 years planned lifetime in orbit. Due to anomalies that have occurred on previous spaceborne lasers, as well as a number of failures that we have observed in previous tests, an extensive development and verification campaign was undertaken in order to ensure that the Aladin instrument is robust enough to survive the mission. In this paper, we shall report the logic and the results of this verification campaign.

  14. The System of the Calibration for Visibility Measurement Instrument Under the Atmospheric Aerosol Simulation Environment

    Directory of Open Access Journals (Sweden)

    Shu Zhifeng

    2016-01-01

    Full Text Available Visibility is one of the most important parameters for meteorological observation and numerical weather prediction (NWP.It is also an important factor in everyday life, mainly for surface and air traffic especially in the Aeronautical Meteorology. The visibility decides the taking off and landing of aircraft. If the airport visibility is lower than requirement for aircraft taking off stipulated by International Civil Aviation Administration, then the aircraft must be parked at the airport. So the accurate measurement of visibility is very important. Nowadays, many devices can be measured the visibility or meteorological optical range (MOR such as Scatterometers, Transmissometers and visibility lidar. But there is not effective way to verify the accuracy of these devices expect the artificial visual method. We have developed a visibility testing system that can be calibration and verification these devices. The system consists of laser transmitter, optical chopper, phase-locking amplifier, the moving optic receiving system, signal detection and data acquisition system, atmospheric aerosol simulation chamber. All of them were placed in the atmosphere aerosol simulation chamber with uniform aerosol concentration. The Continuous wave laser, wavelength 550nm, has been transmitted into the collimation system then the laser beam expanded into 40mm diameter for compressing the laser divergence angle before modulated by optical chopper. The expanding beam transmitting in the atmosphere aerosol cabin received by the optic receiving system moving in the 50m length precision guide with 100mm optical aperture. The data of laser signal has been acquired by phase-locking amplifier every 5 meter range. So the 10 data points can be detected in the 50 meters guide once. The slope of the fitting curve can be obtained by linear fitting these data using the least square method. The laser extinction coefficient was calculated from the slope using the Koschmieder

  15. Development of monoenergetic electron beam sources for radiation-instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Soares, C.G.; Dick, C.E.; Pruitt, J.S.; Sparrow, J.H.

    1985-05-15

    Accelerator-produced electron beams are being studied for use in obtaining the response of beta-particle dosimetry instrumentation as a function of electron energy. The NBS 4 MV Van de Graaff and 500 kV cascaded rectifier accelerators are being used to generate electron beams from 200 keV to 2.5 MeV. A device capable of scanning the electron beam in two dimensions over an area large enough to cover radiation-survey instruments uniformly is attached to the beam-handling system of each accelerator. The scanned beam exits from vacuum through a 16 cm/sup 2/ window consisting of either 25 ..mu..m Kapton (for energies below 500 keV) or 100 ..mu..m aluminum. The electron beams produced have been characterized in terms of (1) spatial distribution, (2) energy spectrum, and (3) absorbed dose to plastic. Spatial distributions were determined using film, while spectra were measured using a 5 mm-deep Si surface barrier detector. An extrapolation chamber is being used for beam standardization in terms of absorbed dose to plastic. (orig.).

  16. GPM, AMSR2 GCOMW1 Level 1C Common Calibrated Brightness Temperature VV02A

    Data.gov (United States)

    National Aeronautics and Space Administration — 1CAMSR2 contains common calibrated brightness temperature from the AMSR2 passive microwave instrument flown on the GCOMW1 satellite. This products contains 6 swaths....

  17. GPM, AMSR2 GCOMW1 Level 1C Common Calibrated Brightness Temperature VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 1CAMSR2 contains common calibrated brightness temperature from the AMSR2 passive microwave instrument flown on the GCOMW1 satellite. This products contains 6 swaths....

  18. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  19. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  20. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2010-03-01

    Full Text Available The Juvenile Salmon Acoustic Telemetry System (JSATS is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  1. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4

    Science.gov (United States)

    Wang, Mi; Cheng, Yufeng; Chang, Xueli; Jin, Shuying; Zhu, Ying

    2017-03-01

    The Chinese GaoFen4 (GF4) remote sensing satellite, launched at the end of December 2015, is China's first civilian high-resolution geostationary optical satellite and has the world's highest resolution from geostationary orbit. High accuracy geometric calibration is the key factor in the geometrical quality of satellite imagery. This paper proposes an on-orbit geometric calibration approach for the high-resolution geostationary optical satellite GF4 in which a stepwise calibration is performed, external parameters are estimated, and internal parameters are then estimated in a generalized camera frame determined by external parameters. First, the correlation of the imaging error sources and the rigorous imaging model of GF4 are introduced. Second, the geometric calibration model based on the two-dimensional detector directional angle and the parameters estimation method for the planar array camera are presented. LandSat 8 digital orthophoto maps (DOM) and GDEM2 digital elevation models (DEM) are used to validate the efficiency of the proposed method and to make a geometric quality assessment of GF4. The results indicate that changing imaging time and imaging area will dramatically affect the absolute positioning accuracy because of the change of the camera's installation angles caused by thermal environment changes around the satellite in a high orbit. After calibration, the internal distortion is well-compensated, and the positioning accuracy with relatively few ground control points (GCPs) is demonstrated to be better than 1.0 pixels for both the panchromatic and near-infrared sensor and the intermediate infrared sensor.

  2. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal.Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial experiences that describe significant advances in the instrumental science.The mission of the Instrumentation is

  3. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  4. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  5. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  6. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  7. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  8. Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster

    Science.gov (United States)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2014-01-01

    We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  9. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  10. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  11. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  12. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  13. Development of monoenergetic electron beam sources for radiation-instrument calibration

    Science.gov (United States)

    Soares, C. G.; Dick, C. E.; Pruitt, J. S.; Sparrow, J. H.

    1985-05-01

    Accelerator-produced electron beams are being studied for use in obtaining the response of beta-particle dosimetry instrumenta- tion as a function of electron energy. The NBS 4 MV Van de Graaff and 500 kV cascaded rectifier accelerators are being used to generate electron beams from 200 keV to 2.5 MeV. A device capable of scanning the electron beam in two dimensions over an area large enough to cover radiation-survey instruments uniformly is attached to the beam-handling system of each accelerator. The scanned beam exits from vacuum through a 16 cm 2 window consisting of either 25 μm Kapton (for energies below 500 keV) or 100 μm aluminum. The electron beams produced have been characterized in terms of (1) spatial distribution, (2) energy spectrum, and (3) absorbed dose to plastic. Spatial distributions were determined using film, while spectra were measured using a 5 mm-deep Si surface barrier detector. An extrapolation chamber is being used for beam standardization in terms of absorbed dose to plastic.

  14. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal.Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial experiences that describe significant advances in the instrumental science.The mission of the Instrumentation is to provide a platform for the researchers,academicians,

  15. Calibration of the fluxgate CSC vector magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Risbo, Torben; Primdahl, Fritz

    1995-01-01

    This report shows the results of the calibration of the flight and flight spare CSC magnetometers for the Ørsted satellite. The instrument shows an outstanding behavior as regards of both constant temperature and temperature dependance. Neither transverse effects nor non-linear terms have been fo...

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  17. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  18. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  19. Design, Calibration, and Expected On-Orbit Performance of the GOES-R MPS-LO Suprathermal Plasma Analyzer Instrument

    Science.gov (United States)

    Golightly, M. J.; McGarity, J. O.; Dichter, B. K.; Galica, G. E.

    2015-12-01

    The next generation U.S. geosynchronous weather satellite—GOES series R-U—will include for the first time a suprathermal plasma analyzer. The Magnetospheric Particle Sensor-Low (MPS-LO), an electrostatic analyzer utilizing triquadrispheric geometry (270° turn)deflection electrodes, will measure the flux of electrons and ions with energies between 30 eV - 30 keV in fifteen logarithmically-spaced differential energy channels and arrival direction in twelve angular bins. MPS-LO consists of two sensor heads mounted in a common electronics box. Each sensor head contains a set of deflection electrodes, microchannel plates, and segmented detector anodes. The common electronics box provides the power and I/O interface with a data processing unit, voltage supplies for all of the instrument's electronics, high voltage for the deflection electrodes, in-flight calibration pulsers, and the digital electronics to process signals from sensor heads' detector anodes. Great care was taken in the manufacture and mounting of the triquadrisphere deflection electrodes; each electrode was machined from a single piece of aluminum and specific electrode combinations were mounted with precision machined spacers and matched drilling. The precise fabrication and assembly resulted in near perfect spherical electric fields between the electrodes. The triquadrispheric electrode shape also prevents photons from reaching the detection elements-as a result, MPS-LO is solar blind. The combined field-of-view for the two sensor heads is 180° x 5°, with the larger angle in a plane perpendicular to the spacecraft's orbit and its central axis oriented anti-Earthward. An incident particle's arrival direction is determined in one of twelve 15° x 5° angular zones. A set of shielded anodes is used to measure the background caused by penetrating charged particles that reach the MCPs; this background data is used to correct the MPS-LO data. The instrument's energy resolution ΔE/E is 5.8%.

  20. Description and primary results of Total Solar Irradiance Monitor, a solar-pointing instrument on an Earth observing satellite

    Science.gov (United States)

    Wang, Hongrui; Fang, Wei; Li, Huiduan

    2015-04-01

    Solar driving mechanism for Earth climate has been a controversial problem for centuries. Long-time data of solar activity is required by the investigations of the solar driving mechanism, such as Total Solar Irradiance (TSI) record. Three Total Solar Irradiance Monitors (TSIM) have been developed by Changchun Institute of Optics, Fine Mechanics and Physics for China Meteorological Administration to maintain continuities of TSI data series which lasted for nearly 4 decades.The newest TSIM has recorded TSI daily with accurate solar pointing on the FY-3C meteorological satellite since Oct 2013. TSIM/FY-3C has a pointing system for automatic solar tracking, onboard the satellite designed mainly for Earth observing. Most payloads of FY-3C are developed for observation of land, ocean and atmosphere. Consequently, the FY-3C satellite is a nadir-pointing spacecraft with its z axis to be pointed at the center of the Earth. Previous TSIMs onboard the FY-3A and FY-3B satellites had no pointing system, solar observations were only performed when the sun swept through field-of-view of the instruments. And TSI measurements are influenced inevitably by the solar pointing errors. Corrections of the solar pointing errors were complex. The problem is now removed by TSIM/FY-3C.TSIM/FY-3C follows the sun accurately by itself using its pointing system based on scheme of visual servo control. The pointing system is consisted of a radiometer package, two motors for solar tracking, a sun sensor and etc. TSIM/FY-3C has made daily observations of TSI for more than one year, with nearly zero solar pointing errors. Short time-scale variations in TSI detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE.Instrument details, primary results of solar pointing control, solar observations and etc will be given in the presentation.

  1. Calibration of quasi-static aberrations in exoplanet direct imaging instruments with a Zernike phase mask sensor

    CERN Document Server

    N'Diaye, M; Fusco, T; Paul, B

    2013-01-01

    Context. Several exoplanet direct imaging instruments will soon be in operation. They use an extreme adaptive optics (XAO) system to correct the atmospheric turbulence and provide a highly-corrected beam to a near-infrared (IR) coronagraph for starlight suppression. The performance of the coronagraph is however limited by the non-common path aberrations (NCPA) due to the differential wavefront errors existing between the visible XAO sensing path and the near-IR science path, leading to residual speckles in the coronagraphic image. Aims. Several approaches have been developed in the past few years to accurately calibrate the NCPA, correct the quasi-static speckles and allow the observation of exoplanets at least 1e6 fainter than their host star. We here propose an approach based on the Zernike phase-contrast method for the measurements of the NCPA between the optical path seen by the visible XAO wavefront sensor and that seen by the near-IR coronagraph. Methods. This approach uses a focal plane phase mask of s...

  2. RadBall{sup TM} Technology Testing in the Savannah River Site's Health Physics Instrument Calibration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, Eduardo B; Foley, Trevor Q; Jannik, G Timothy; Harpring, Larry J; Gordon, John R; Blessing, Ronald; Coleman, J Rusty; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J, E-mail: Eduardo.Farfan@srnl.doe.go

    2010-11-01

    The UK's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{sup TM}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBall{sup TM} technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  3. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  4. Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons

    OpenAIRE

    Chan Miller, Christopher; Jacob, Daniel J.; González Abad, Gonzalo; Chance, Kelly

    2016-01-01

    The Pearl River delta (PRD) is a densely populated hub of industrial activity located in southern China. OMI (Ozone Monitoring Instrument) satellite observations reveal a large hotspot of glyoxal (CHOCHO) over the PRD that is almost twice as large as any other in Asia. Formaldehyde (HCHO) and NO2 observed by OMI are also high in the PRD but no more than in other urban/industrial areas of China. The CHOCHO hotspot over the PRD can be explained by industrial paint and solvent ...

  5. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  6. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP; Concepcao do Laboratorio de Calibracao de Instrumentos de Medicao de Radiacao Ionizante (LACIMRI) do CTMSP, Sao Paulo, SP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Raimundo Dias da; Kibrit, Eduardo, E-mail: raimundo@ctmsp.mar.mil.b, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2009-07-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  7. Project of an integrated calibration laboratory of instruments at IPEN; Projeto de um laboratorio integrado de calibracao de instrumentos no IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo Adolfo San Jose

    2009-07-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  8. Development of a novel sweeping Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    Science.gov (United States)

    Ranvier, Sylvain; De Keyser, Johan; Cardoen, Pepijn; Pieroux, Didier

    2014-05-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Belgian Institute for Space Aeronomy. PICASSO was initiated to join the QB50 project as scientific in-orbit demonstrator. The sweeping Langmuir probe (SLP) instrument is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e6/m³ at high latitude and high altitude up to 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1000 K and 3000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, and 5) ionospheric dynamics via coordinated observations with EISCAT's heating radar. To achieve the scientific objectives described above, the instrument includes four thin cylindrical probes whose electrical potential is swept in such a way that both plasma density and electron temperature can be derived. In addition, since at least two probes will be out of the spacecraft's wake at any given time, differential measurements can be performed to increase the accuracy. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive

  9. High precision tilt stage as a key element to a universal test mirror for characterization and calibration of slope measuring instruments.

    Science.gov (United States)

    Yashchuk, Valeriy V; Artemiev, Nikolay A; Centers, Gary; Chaubard, Arthur; Geckeler, Ralf D; Lacey, Ian; Marth, Harry; McKinney, Wayne R; Noll, Tino; Siewert, Frank; Winter, Mathias; Zeschke, Thomas

    2016-05-01

    The ultimate performance of surface slope metrology instrumentation, such as long trace profilers and auto-collimator based deflectometers, is limited by systematic errors that are increased when the entire angular range is used for metrology of significantly curved optics. At the ALS X-Ray Optics Laboratory, in collaboration with the HZB/BESSY-II and PTB (Germany) metrology teams, we are working on a calibration method for deflectometers, based on a concept of a universal test mirror (UTM) [V. V. Yashchuk et al., Proc. SPIE 6704, 67040A (2007)]. Potentially, the UTM method provides high performance calibration and accounts for peculiarities of the optics under test (e.g., slope distribution) and the experimental arrangement (e.g., the distance between the sensor and the optic under test). At the same time, the UTM calibration method is inherently universal, applicable to a variety of optics and experimental arrangements. In this work, we present the results of tests with a key component of the UTM system, a custom high precision tilt stage, which has been recently developed in collaboration with Physik Instrumente, GmbH. The tests have demonstrated high performance of the stage and its capability (after additional calibration) to provide angular calibration of surface slope measuring profilers over the entire instrumental dynamic range with absolute accuracy better than 30 nrad. The details of the stage design and tests are presented. We also discuss the foundation of the UTM method and calibration algorithm, as well as the possible design of a full scale UTM system.

  10. Gavdos/West Crete Cal-Val Site: Over a Decade Calibrations for Jason Series, SARAL/AltiKa, Cryosat-2, Sentinel-3 and Hy-2 Altimeter Satellites

    Science.gov (United States)

    Mertikas, Stelios; DonLon, Craig; Mavrochordatos, Constantin; Tziavos, Ilias; Galanakis, Demitris; Vergos, George; Baltazar Andersen, Ole; Tripolitsiotis, Achilles; Frantzis, Xenofon; Lin, Mingsen; Qiao, Fangli

    2016-08-01

    This work presents and compares the latest altimeter calibration results for Jason series, the SARAL/AltiKa the Chinese HY-2 missions and the ESA missions of CryoSat-2 and Sentinel-3, conducted at the Gavdos/Crete calibration/validation facilities. At first, the Jason altimeter calibration values will be given for the ascending Pass No.109 and the descending Pass No.18, based on the GDR-E (Jason-1), GDR-D (Jason- 2) and GDR-T (Jason-3) products. Secondly, these values will be cross-examined against the altimeter bias for the SARAL/AltiKa (GDR-T) satellite at Gavdos Cal/Val using its reference ascending orbit No. 571. The Chinese HY-2 satellite altimeter bias will be presented using the CRS1 permanent site in southwest Crete for the descending HY-2 Pass No. 280, at 20 Hz based on SGDR data products. Finally, values will be compared against the Sentinel-3 altimeter. Additionally, altimeter biases as determined by locally developed Mean Sea Surface models, will be presented and compared with the conventional sea-surface calibration methodology.

  11. Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Jinyang Du

    2014-09-01

    Full Text Available The development and continuity of consistent long-term data records from similar overlapping satellite observations is critical for global monitoring and environmental change assessments. We developed an empirical approach for inter-calibration of satellite microwave brightness temperature (Tb records over land from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E and Microwave Scanning Radiometer 2 (AMSR2 using overlapping Tb observations from the Microwave Radiation Imager (MWRI. Double Differencing (DD calculations revealed significant AMSR2 and MWRI biases relative to AMSR-E. Pixel-wise linear relationships were established from overlapping Tb records and used for calibrating MWRI and AMSR2 records to the AMSR-E baseline. The integrated multi-sensor Tb record was largely consistent over the major global vegetation and climate zones; sensor biases were generally well calibrated, though residual Tb differences inherent to different sensor configurations were still present. Daily surface air temperature estimates from the calibrated AMSR2 Tb inputs also showed favorable accuracy against independent measurements from 142 global weather stations (R2 ≥ 0.75, RMSE ≤ 3.64 °C, but with slightly lower accuracy than the AMSR-E baseline (R2 ≥ 0.78, RMSE ≤ 3.46 °C. The proposed method is promising for generating consistent, uninterrupted global land parameter records spanning the AMSR-E and continuing AMSR2 missions.

  12. Solar irradiance observed on the FY-3 satellites - instrument overview and primary observation results of in-orbit experiments

    Science.gov (United States)

    Wang, H.; Fang, W.; Li, H.

    2015-12-01

    Solar driving mechanism for Earth climate has been a controversial problem for centuries. Data of Solar Irradiance (SI) is required by the investigations of the solar driving mechanism, including Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI). SI observations with short term accuracy and long term precision are essential to separate solar forcing from human-induced factors. TSI and SSI have been measured on Chinese FY-3 satellites, including FY-3A, FY-3B and FY-3C. FY-3A satellite launched in May, 2008 is the first satellite. FY-3B satellite launched in November, 2010 is the second satellite and FY-3C satellite launched in September, 2013 is the third satellite. SSI has been measured by SBUS (Solar Backscatter Ultraviolet Sounder) in the ultraviolet spectrum in the FY-3 mission. When a solar diffuser plate is deployed to reflect the incoming sunlight, SI is measured at 12 discrete, 1.1 nm wide wavelength bands between 250 nm and 340 nm. The SSI measurements are performed using a double monochromator operated in a stepped wavelength scan mode. SBUS collects SSI weekly at 12 discrete wave-lengths near polar area. Moreover, SSI is measured by SBUS every month covering 160-400 nm continuous spectral region. SSI has been recorded in SBUS missions since the ascending phase of Solar Cycle 24. Approximately the same variation tendencies of SSI were detected by SBUS in specific spectrum compared with data from SOLSTICE/SORCE. TSI have been recorded by Total Solar Irradiance Monitors (TSIM) in FY-3 missions. The sun was measured by TSIM/FY-3A and TSIM/FY-3B in a scanning manner. TSI data quality is improved by TSIM/FY-3C which has a pointing system. TSIM/FY-3C measures the sun with nearly zero solar pointing errors. TSI variations detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE. The TSIM experiments have observed the sun for about 7 years. A slowly increasing TSI trend has been detected by TSIMs in the Solar Cycle 24. We present the

  13. Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons

    Science.gov (United States)

    Miller, Christopher Chan; Jacob, Daniel J.; González Abad, Gonzalo; Chance, Kelly

    2016-04-01

    The Pearl River delta (PRD) is a densely populated hub of industrial activity located in southern China. OMI (Ozone Monitoring Instrument) satellite observations reveal a large hotspot of glyoxal (CHOCHO) over the PRD that is almost twice as large as any other in Asia. Formaldehyde (HCHO) and NO2 observed by OMI are also high in the PRD but no more than in other urban/industrial areas of China. The CHOCHO hotspot over the PRD can be explained by industrial paint and solvent emissions of aromatic volatile organic compounds (VOCs), with toluene being a dominant contributor. By contrast, HCHO in the PRD originates mostly from VOCs emitted by combustion (principally vehicles). By applying a plume transport model to wind-segregated OMI data, we show that the CHOCHO and HCHO enhancements over the PRD observed by OMI are consistent with current VOC emission inventories. Prior work using CHOCHO retrievals from the SCIAMACHY satellite instrument suggested that emission inventories for aromatic VOCs in the PRD were too low by a factor of 10-20; we attribute this result in part to bias in the SCIAMACHY data and in part to underestimated CHOCHO yields from oxidation of aromatics. Our work points to the importance of better understanding CHOCHO yields from the oxidation of aromatics in order to interpret space-based CHOCHO observations in polluted environments.

  14. Unit-specific calibration of Actigraph accelerometers in a mechanical setup - is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    DEFF Research Database (Denmark)

    Moeller, Niels C; Korsholm, Lars; Kristensen, Peter L

    2008-01-01

    during free living conditions. RESULTS: Calibration reduced inter-instrument variability considerably in the mechanical setup, both in the MTI instruments (raw SDbetween units = 195 counts*min-1 vs. calibrated SDbetween units = 65 counts*min-1) and in the CSA instruments (raw SDbetween units = 343 counts...... conditions had no apparent effect on inter-instrument variability. In all probability, the effect of technical calibration was primarily attenuated in the field by other more dominant sources of variation. However, routine technical assessments are still very important for determining the acceleration...

  15. Calibration of the Fluorine, Chlorine and Hydrogen Content of Apatites With the ChemCam LIBS Instrument

    Science.gov (United States)

    Meslin, P.-Y.; Cicutto, L.; Forni, O.; Drouet, C.; Rapin, W.; Nachon, M.; Cousin, A.; Blank, J. G.; McCubbin, F. M.; Gasnault, O.; Newsom, H.; Mangold, N.; Schroeder, S.; Sautter, V.; Maurice, S.; Wiens, R. C.

    2016-01-01

    Determining the composition of apatites is important to understand the behavior of volatiles during planetary differentiation. Apatite is an ubiquitous magmatic mineral in the SNC meteorites. It is a significant reservoir of halogens in these meteorites and has been used to estimate the halogen budget of Mars. Apatites have been identified in sandstones and pebbles at Gale crater by ChemCam, a Laser-Induced Breakdown Spectroscometer (LIBS) instrument onboard the Curiosity rover. Their presence was inferred from correlations between calcium, fluorine (using the CaF molecular band centered near 603 nm, whose detection limit is much lower that atomic or ionic lines and, in some cases, phosphorus (whose detection limit is much larger). An initial quantification of fluorine, based on fluorite (CaF2)/basalt mixtures and obtained at the LANL laboratory, indicated that the excess of F/Ca (compared to the stoichiometry of pure fluorapatites) found on Mars in some cases could be explained by the presence of fluorite. Chlorine was not detected in these targets, at least above a detection limit of 0.6 wt% estimated from. Fluorapatite was later also detected by X-ray diffraction (with CheMin) at a level of approx.1wt% in the Windjana drill sample (Kimberley area), and several points analyzed by ChemCam in this area also revealed a correlation between Ca and F. The in situ detection of F-rich, Cl-poor apatites contrasts with the Cl-rich, F-poor compositions of apatites found in basaltic shergottites and in gabbroic clasts from the martian meteorite NWA 7034, which were also found to be more Cl-rich than apatites from basalts on Earth, the Moon, or Vesta. The in situ observations could call into question one of the few possible explanations brought forward to explain the SNC results, namely that Mars may be highly depleted in fluorine. The purpose of the present study is to refine the calibration of the F, Cl, OH and P signals measured by the ChemCam LIBS instrument, initiated

  16. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  17. Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs.

  18. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal,Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial

  19. Comparing Data from Telescopic X-Ray Instruments: Can We Trust All Satellites?

    Science.gov (United States)

    Joyce, Quianah T.; Fortenberry, Alexander; Gendre, Bruce

    2017-01-01

    In astronomy and astrophysics, X-ray emissions from cosmic entities aid in revealing what type of sources they emanate from. Swift, NASA’s latest X-ray satellite, has not been operating at its intended configurations. The satellite is experiencing difficulties maintaining a stable temperature in its charge capture device. This research intends to determine if this complication causes discrepancies in Swift’s collected data by using gamma-ray burst data. Gamma-ray bursts are excellent comparison candidates due to their brightness and fluctuations. We compared archived data of GRB 130427A and GRB 090423A from Swift and the European Space Agency’s XMM-Newton observatory. Next, we reduced the data and produced the respective spectra. We then analyzed and compared the spectra to one another to find any discrepancies. We have determined, based on data analysis of the spectra, that Swift is working properly despite the cooling malfunction.

  20. Engineering implementation of satellite calibration for radar%雷达卫星标校的工程实现研究

    Institute of Scientific and Technical Information of China (English)

    郭佳意; 钮俊清

    2014-01-01

    为确保雷达系统的测量精度,给出了一种用于标校雷达动态跟踪过程中系统误差的工程实现方法--卫星标校法。该方法通过观测卫星轨迹,将量测值与真实星历值比对,通过最优化解法标定雷达的系统误差。考虑雷达结构特点导致的误差和大气折射误差修正后的残余误差,建立了卫星标校的系统误差模型。最后,采用实测数据验证了该误差模型的可行性与可靠性。该方法在标校过程中不受人为、天气等因素影响,可以适应雷达的动态技术状态。%To guarantee the measurement precision of radar system, this paper presents an engineering implementation method, named satellite calibration, used for calibrating the system error in the course of radar dynamic tracking. This method contrasts the measurement value to the real ephemeris value by observing the satellite track, and calibrate the radar’s system errors by using the optimal solution. Considering that the errors caused by the features of radar configuration and the residual errors after correction of atmosphere refraction errors, the author sets up a system error model for satellite calibration, and finally proves the feasibility and reliability of this proposed error model using the test data. As this method is not affected by some factitious and weather factors, it can be also adapted to radar’s dynamic technical state.

  1. GOES-R Space Environment In-Situ Suite: instruments overview, calibration results, and data processing algorithms, and expected on-orbit performance

    Science.gov (United States)

    Galica, G. E.; Dichter, B. K.; Tsui, S.; Golightly, M. J.; Lopate, C.; Connell, J. J.

    2016-05-01

    The space weather instruments (Space Environment In-Situ Suite - SEISS) on the soon to be launched, NOAA GOES-R series spacecraft offer significant space weather measurement performance advances over the previous GOES N-P series instruments. The specifications require that the instruments ensure proper operation under the most stressful high flux conditions corresponding to the largest solar particle event expected during the program, while maintaining high sensitivity at low flux levels. Since the performance of remote sensing instruments is sensitive to local space weather conditions, the SEISS data will be of be of use to a broad community of users. The SEISS suite comprises five individual sensors and a data processing unit: Magnetospheric Particle Sensor-Low (0.03-30 keV electrons and ions), Magnetospheric Particle Sensor-High (0.05-4 MeV electrons, 0.08-12 MeV protons), two Solar And Galactic Proton Sensors (1 to >500 MeV protons), and the Energetic Heavy ion Sensor (10-200 MeV for H, H to Fe with single element resolution). We present comparisons between the enhanced GOES-R instruments and the current GOES space weather measurement capabilities. We provide an overview of the sensor configurations and performance. Results of extensive sensor modeling with GEANT, FLUKA and SIMION are compared with calibration data measured over nearly the entire energy range of the instruments. Combination of the calibration results and model are used to calculate the geometric factors of the various energy channels. The calibrated geometric factors and typical and extreme space weather environments are used to calculate the expected on-orbit performance.

  2. Cross-calibration of the X-ray instruments onboard the Chandra, INTEGRAL, RXTE, Suzaku, Swift, and XMM-Newton observatories using G21.5-0.9

    Science.gov (United States)

    Tsujimoto, M.; Guainazzi, M.; Plucinsky, P. P.; Beardmore, A. P.; Ishida, M.; Natalucci, L.; Posson-Brown, J. L. L.; Read, A. M.; Saxton, R. D.; Shaposhnikov, N. V.

    2011-01-01

    Context. For many years, X-ray astronomy missions have used the Crab nebula as a celestial calibration source for the X-ray flux and spectral shape. However, the object is often too bright for current and future missions equipped with instruments with improved sensitivity. Aims: We use G21.5-0.9, a pulsar-wind nebula with a time-constant power-law spectrum and a flux of a few milli-Crab in the X-ray band, as a viable, fainter substitute to the Crab. Using this source, we conduct a cross-calibration study of the instruments onboard currently active observatories: Chandra ACIS, Suzaku XIS, Swift XRT, and XMM-Newton EPIC (MOS and pn) for the soft-band, and INTEGRAL IBIS-ISGRI, RXTE PCA, and Suzaku HXD-PIN for the hard band. Methods: We extract spectra from all instruments and fit under the same astrophysical assumptions. We compare the spectral parameters of the G21.5-0.9 model: power-law photon index, H-equivalent column density of the interstellar photoelectric absorption, and flux in the soft (2-8 keV) or hard (15-50 keV) energy band. Results: We identify systematic differences in the best-fit parameter values unattributable to statistical scatter of the data alone. We interpret these differences as due to residual cross-calibration problems. The differences can be as large as 20% and 9% for the soft-band flux and power-law index, respectively, and 46% for the hard-band flux. The results are plotted and tabulated as a useful reference for future calibration and scientific studies using multiple missions. This work is based on the activity of the International Astronomical Consortium for High Energy Calibration (IACHEC).

  3. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    NARCIS (Netherlands)

    den Outer PN; van Dijk A; Slaper H; LSO

    2008-01-01

    UV-B gegevens afkomstig van het Ozone Monitoring Instrument (OMI) zijn op dit moment nog onvoldoende nauwkeurig voor milieu-evaluaties. Verbetering is mogelijk door lokale concentraties van stofdeeltjes in de lucht in de berekeningen te betrekken. Dit concludeert het RIVM nadat UV-B-data van het O

  4. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    Science.gov (United States)

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  5. Overview of the relativistic electron precipitations (REP) observed on LEO satellites and ISS by Bulgarian build instruments

    Science.gov (United States)

    Dachev, Tsvetan

    Relativistic electron precipitation (REP) are observed by the R3D B2/B3 and RD3-B3 instruments during the flights of the Foton M2/M3 and “BION-M” № 1 satellite in 2005, 2007 and 2013, and by the R3DE/R instruments at the EXPOSE-E facility of the European Columbus module and at the EXPOSE-R facility of the Russian Zvezda module of the International Space Station (ISS) in the period from February 2008 till August 2010. The obtained dose rates strongly depend by the external and internal shielding of the detectors in the instruments. The highest dose rate reaching more than 20 mGy h (-1) was observed outside the ISS Zvezda module during the REP in April 2010 being the second largest in GOES history with a >2 MeV electron fluence event. REP doses behind relatively thick shielding are too small but may play considerable role during extra vehicular activity (EVA) when the cosmonauts/astronauts body is shielded only by the space suit.

  6. Representativeness of total column water vapour retrievals from instruments on polar orbiting satellites

    Science.gov (United States)

    Diedrich, Hannes; Wittchen, Falco; Preusker, René; Fischer, Jürgen

    2016-07-01

    The remote sensing of total column water vapour (TCWV) from polar orbiting, sun-synchronous satellite spectrometers such as the Medium Resolution Imaging Spectrometer (MERIS) on board of ENVISAT and the Moderate Imaging Spectroradiometer (MODIS) on board of Aqua and Terra enables observations on a high spatial resolution and a high accuracy over land surfaces. The observations serve studies about small-scale variations of water vapour as well as the detection of local and global trends. However, depending on the swath width of the sensor, the temporal sampling is low and the observations of TCWV are limited to cloud-free land scenes. This study quantifies the representativeness of a single TCWV observation at the time of the satellite overpass under cloud-free conditions by investigating the diurnal cycle of TCWV using 9 years of a 2-hourly TCWV data set from global GNSS (Global Navigation Satellite Systems) stations. It turns out that the TCWV observed at 10:30 local time (LT) is generally lower than the daily mean TCWV by 0.65 mm (4 %) on average for cloud-free cases. Averaging over all GNSS stations, the monthly mean TCWV at 10:30 LT, constrained to cases that are cloud-free, is 5 mm (25 %) lower than the monthly mean TCWV at 10:30 LT of all cases. Additionally, the diurnal variability of TCWV is assessed. For the majority of GNSS stations, the amplitude of the averaged diurnal cycle ranges between 1 and 5 % of the daily mean with a minimum between 06:00 and 10:00 LT and maximum between 16:00 and 20:00 LT. However, a high variability of TCWV on an individual day is detected. On average, the TCWV standard deviation is about 15 % regarding the daily mean.

  7. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.

    Science.gov (United States)

    Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan

    2015-05-01

    Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry, First results

    DEFF Research Database (Denmark)

    Andersen, O.B.; Krogh, P.E.; Michailovsky, C.

    2008-01-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terre...

  9. Inter-calibration of polar imager solar channels using SEVIRI

    Directory of Open Access Journals (Sweden)

    J. F. Meirink

    2013-04-01

    Full Text Available Accurate calibration of satellite imagers is a prerequisite for using their measurements in climate applications. Here we present a method for the inter-calibration of geostationary and polar-orbiting imager solar channels based on regressions of collocated near-nadir radiances. Specific attention is paid to correcting for differences in spectral response between instruments. The method is used to calibrate the solar channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI on the geostationary Meteosat satellite with corresponding channels of the Moderate Resolution Imaging Spectroradiometer (MODIS on the polar-orbiting Aqua satellite. The SEVIRI operational calibration is found to be stable during the years 2004 to 2009 but off by −8, −6, and +3.5% for channels 1 (0.6 μm, 2 (0.8 μm, and 3 (1.6 μm, respectively. These results are robust for a range of choices that can be made regarding data collocation and selection, as long as the viewing and illumination geometries of the two instruments are matched. Uncertainties in the inter-calibration method are estimated to be 1% for channel 1 and 1.5% for channels 2 and 3. A specific application of the method is the inter-calibration of polar imagers using SEVIRI as a transfer instrument. This offers an alternative to direct inter-calibration, which in general has to rely on high-latitude collocations. Using this method we have tied MODIS-Terra and Advanced Very High Resolution Radiometer (AVHRR instruments on National Oceanic and Atmospheric Administration (NOAA satellites 17 and 18 to MODIS-Aqua for the years 2007 to 2009. While reflectances of the two MODIS instruments differ less than 2% for all channels considered, deviations of an existing AVHRR calibration from MODIS-Aqua reach −3.5 and +2.5% for the 0.8 and 1.6 μm channels, respectively.

  10. Formaldehyde (HCHO) column measurements from airborne instruments: Comparison with airborne in-situ measurements, model, and satellites

    Science.gov (United States)

    Kwon, Hyeong-Ahn; Park, Rokjin; Nowlan, Caroline; González Abad, Gonzalo; Chance, Kelly; Janz, Scott

    2017-04-01

    Trace gas measurements from airborne instruments are useful to evaluate and improve a retrieval algorithm developed for the Geostationary Environment Monitoring Spectrometer (GEMS). We used radiances measured from two airborne 2D array sensors, the GeoCAPE Airborne Simulator (GCAS) and the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) for DISCOVER-AQ Texas in 2013 and for KORUS-AQ in 2016 to retrieve formaldehyde (HCHO) columns and to evaluate the GEMS retrieval algorithm. In addition, we used simulated aerosol concentrations constrained by airborne LIDAR observations for AMF calculation to convert slant columns to vertical columns. We compared retrieved HCHO columns with vertical columns obtained from in-situ airborne HCHO measurements. Optical properties and distributions of aerosols are found to be important factors, affecting HCHO retrievals. Finally, additional comparisons of retrieved results with model simulations and low-orbiting satellites provides quantitative information for improving bottom-up emission estimates of volatile organic carbon emissions.

  11. In-Orbit Spectral Response Function Correction and Its Impact on Operational Calibration for the Long-Wave Split-Window Infrared Band (12.0 μm of FY-2G Satellite

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    2017-06-01

    Full Text Available During the early stage of the G satellite of the Fengyun-2 series (FY-2G, severe cold biases up to ~2.3 K occur in its measurements in the 12.0 μm (IR2 band, which demonstrate time- and scene-dependent characteristics. Similar cold biases in water vapor and carbon dioxide absorption bands of other satellites are considered to be caused by either ice contamination (physical method or spectral response function (SRF shift (empirical method. Simulations indicate that this cold bias of FY-2G indeed suffers from equivalent SRF shift as a whole towards the longer wavelength direction. To overcome it, a novel approach combining both physical and empirical methods is proposed. With the possible ice thicknesses tested before launch, the ice contamination effect is alleviated, while the shape of the SRF can be modified in a physical way. The remaining unknown factors for cold bias are removed by shifting the convolved SRF with an ice transmittance spectrum. Two parameters, i.e., the ice thickness (5 μm and the shifted value (+0.15 μm, are estimated by inter-calibration with reference instruments, and the modification coefficient is also calculated (0.9885 for the onboard blackbody calibration. Meanwhile, the updated SRF was released online on 23 March 2016. For the period between July 2015 and December 2016, the monthly biases of the FY-2G IR2 band remain oscillating around zero, the majorities (~89% of which are within ±1.0 K, while its mean monthly absolute bias is around 0.6 K. Nevertheless, the cold bias phenomenon of the IR2 band no longer exists. The combination method can be referred by other corrections for cold biases.

  12. True Color Images of the Earth created with the Geostationary Satellite Instrument MSG SEVIRI

    Science.gov (United States)

    Reuter, Maximilian

    2013-04-01

    One of the most famous pictures ever taken was by the crew of Apollo 17 in 1972, showing our Earth from a distance of about 45000km. This picture was named 'Blue Marble' and it reminds us of the beauty and uniqueness of our home planet. With geostationary satellites, such views of the Earth are possible without the need to have a photographer in space. However, up to the present, the production of such Blue Marble type images from geostationary satellite data has been impaired by the lack of channels in the visible spectral region. A method for the generation of full disk MSG (METEOSAT Second Generation) SEVIRI (Scanning-Enhanced Visible and Infrared Imager) true colour composite images will be presented. The algorithm mainly uses the SEVIRI channels VIS006 (0.6μm), NIR008 (0.8μm) and NIR016 (1.6μm). The lack of information in the blue and green parts of the visible spectrum is compensated by using data from NASA's (National Aeronautics and Space Administration's) Blue Marble next generation (BMNG) project to fill a look-up table (LUT) transforming RGB (red/green/blue) false colour composite images of VIS006/NIR008/NIR016 into true colour images. Tabulated radiative transfer calculations of a pure Rayleigh atmosphere are used to add an impression of Rayleigh scattering towards the sunlit horizon. The resulting images satisfy naive expectations: clouds are white or transparent, vegetated surfaces are greenish, deserts are sandy-coloured, the ocean is dark blue to black and a narrow halo due to Rayleigh scattering is visible at the sunlit horizon. Therefore, such images are easily interpretable also for inexperienced users not familiar with the characteristics of typical MSG false colour composite images. The images can be used for scientific applications to illustrate specific meteorological conditions or for non-scientific purposes, for example, for raising awareness in the public of the Earth's worthiness of protection.

  13. High Efficiency, Digitally Calibrated TR Modules Enabling Lightweight SweepSAR Architectures for DESDynI-Class Radar Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and demonstrate a next-generation digitally calibrated, highly scalable, L-band Transmit/Receive (TR) module to enable a precision beamforming SweepSAR...

  14. Assessment of the calibration performance of satellite visible channels using cloud targets: application to Meteosat-8/9 and MTSAT-1R

    Science.gov (United States)

    Ham, S.-H.; Sohn, B. J.

    2010-11-01

    To examine the calibration performance of the Meteosat-8/9 Spinning Enhanced Visible Infra-Red Imager (SEVIRI) 0.640-μm and the Multi-functional Transport Satellite (MTSAT)-1R 0.724-μm channels, three calibration methods are employed. Total eight months during the 2004-2007 period are used for SEVIRI, and total seven months during the 2007-2008 period are used for MTSAT-1R. First, a ray-matching technique is used to compare Meteosat-8/9 and MTSAT-1R visible channel reflectances with the well-calibrated Moderate Resolution Imaging Spectroradiometer (MODIS) 0.646-μm channel reflectances. Spectral differences of the response function between the two channels of interest are taken into account for the comparison. Second, collocated MODIS cloud products are used as inputs to a radiative transfer model (RTM) to calculate Meteosat-8/9 and MTSAT-1R visible channel reflectances. In the simulation, cloud three-dimensional (3-D) radiative effect associated with subgrid variations is taken into account using the lognormal-independent column approximation (LN-ICA) to minimize the simulation bias caused by the plane-parallel homogeneous assumption. Third, an independent method uses the typical optical properties of deep convective clouds (DCCs) to simulate reflectances of selected DCC targets. Although all three methods are not in perfect agreement, the results suggest that calibration coefficients of Meteosat-8/9 0.640-μm channels are underestimated by 6-7%. On the other hand, the calibration accuracy of MTSAT-1R visible channel appears to be variable with the target reflectance itself because of an underestimate of calibration coefficient (up to 20%) and a non-zero space offset. The results further suggest that the solar channel calibration scheme combining the three methods in this paper can be used as a tool to monitor the calibration performance of visible sensors that are particularly not equipped with an onboard calibration system.

  15. Science Instrument Support Electronics Systems for the Relativity Mission Satellite, Gravity Probe B

    Science.gov (United States)

    Bencze, W. J.; Brumley, R. W.; Buchman, S.; Clarke, B.; Hipkins, D. N.; Farley, R.; Shestople, P.; Meriwether, D.; Gray, C.

    The Relativity Mission, Gravity Probe B (GP-B), uses four redundant high precision electrostatically suspended mechanical gyroscopes for measuring the relativistic precessions of the frame of reference in a 640 km polar orbit. The two precessions to be measured are predicted in General Relativity are the geodetic effect, 6.6 arcsec/year, and the frame dragging effect, 0.042 arcsec/year. The Science Instrument Support Electronics or Payload Electronics Package enables this measurement to be performed by providing the necessary control and monitoring functions for the Science Instrument Assembly that contains the four gyroscopes and reference star tracking telescope. This paper describes the overall architecture of the Payload Electronics system and the design and operation of its component parts: 1) the SQUID Readout electronics (SRE) for gyroscope orientation measurement, 2) The Gyroscope Suspension System (GSS) for gyroscope electrostatic suspension and spin axis alignment, 3) the Telescope Readout Electronics (TRE) for measurement of the reference star location, 4) the Experiment Control Unit (ECU) for heater, valve, and rotor electrostatic charge control and thermometry, 5) the custom GPS receiver for orbital position determination and time reference generation, and 6) the Gas Management Assembly (GMA) that controls and routes the gaseous helium used for initial gyroscope spin-up. Contingent upon a successful launch of Gravity Probe on April 17 2004, preliminary performance results will be presented along side the predicated performance estimates derived from system analysis and test on the ground prior to launch.

  16. Data compression on board the PLANCK Satellite Low Frequency Instrument optimal compression rate

    CERN Document Server

    Gaztañaga, E; Romeo, A; Fosalba, P; Elizalde, E

    1998-01-01

    Data on board the future PLANCK Low Frequency Instrument (LFI), to measure the Cosmic Microwave Background (CMB) anisotropies, consist of $N$ differential temperature measurements, expanding a range of values we shall call $R$. Preliminary studies and telemetry allocation indicate the need of compressing these data by a ratio of $c_r \\simgt 10$. Here we present a study of entropy for (correlated multi-Gaussian discrete) noise, showing how the optimal compression $c_{r,opt}$, for a linearly discretized data set with $N_{bits}=\\log_2{N_{max}}$ bits is given by: $c_r \\simeq {N_{bits}/\\log_2(\\sqrt{2\\pi e} ~\\sigma_e/\\Delta)}$, where $\\sigma_e\\equiv (det C)^{1/2N}$ is some effective noise rms given by the covariance matrix $C$ and to be as small as the instrumental white noise RMS: $\\Delta \\simeq \\sigma_T averaging). Within the currently proposed $N_{bits}=16$ representation, a linear analogue to digital converter (ADC) will allow the digital storage of a large dynamic range of differential temperature $R= N_{max} ...

  17. Ozone ProfilE Retrieval Algorithm for nadir-looking satellite instruments in the UV-VIS

    Directory of Open Access Journals (Sweden)

    J. C. A. van Peet

    2013-10-01

    Full Text Available For the retrieval of the vertical distribution of ozone in the atmosphere the Ozone ProfilE Retrieval Algorithm (OPERA has been further developed. The new version (1.26 of OPERA is capable of retrieving ozone profiles from UV-VIS observations of most nadir looking satellite instruments like GOME, SCIAMACHY, OMI and GOME-2. The set-up of OPERA is described and results are presented for GOME and GOME-2 observations. The retrieved ozone profiles are globally compared to ozone sondes for the year 1997 and 2008. Relative differences between GOME/GOME-2 and ozone sondes are within the limits as specified by the user requirements from the Climate Change Initiative (CCI program of ESA. To demonstrate the performance of the algorithm under extreme circumstances the 2009 Antarctic ozone hole season was investigated in more detail using GOME-2 ozone profiles and lidar data, which showed an unusual persistence of the vortex over the Río Gallegos observing station (51° S, 69.3° W. By applying OPERA to multiple instruments a timeseries of ozone profiles from 1996 to 2013 from a single robust algorithm can be created.

  18. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    Science.gov (United States)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  19. Intercomparison of stratospheric nitrogen dioxide columns retrieved from ground-based DOAS and FTIR and satellite DOAS instruments over the subtropical Izana station

    OpenAIRE

    Robles-Gonzalez, Cristina; Navarro-Comas, Mónica; Puentedura, Olga; Schneider, Matthias; Hase, Frank; Garcia, Omaira; Blumenstock, Thomas; Gil-Ojeda, Manuel

    2016-01-01

    A 13-year analysis (2000–2012) of the NO2 vertical column densities derived from ground-based (GB) instruments and satellites has been carried out over the Izaña NDACC (Network for the Detection of the Atmospheric Composition Change) subtropical site. Ground-based DOAS (differential optical absorption spectroscopy) and FTIR (Fourier transform infrared spectroscopy) instruments are intercompared to test mutual consistency and then used for validation of stratospheric NO2 fro...

  20. The tabletting machine as an analytical instrument: qualification of the measurement devices for punch forces and validation of the calibration procedures.

    Science.gov (United States)

    Belda, P M; Mielck, J B

    1998-11-01

    The quality of force measurement in an eccentric tabletting machine equipped with piezo-electric load washers mounted under pre-stress at the upper and lower punches, and the reliability of their calibration in situ and under working conditions were carefully investigated, since this tabletting machine is used as an 'analytical instrument' for the evaluation of the compression behaviour of pharmaceutical materials. For a quasistatic calibration procedure the repeatability under standard conditions and the robustness against variations in machine settings, installation conditions, equipment and handling were evaluated. Two differently constructed reference load cells equipped with strain gauges were used for the calibration of the upper punch sensor. The lower punch sensor was calibrated against the upper one. Except for a mechanical hysteresis, owing to uneven stress distribution over the piezo-electric sensors, the results of the quasistatic measurements are assessed to be satisfactory. In addition, dynamic calibrations were performed. One of the strain-gauged load cells was used in addition to two piezo-electric load washers installed without pre-stress. The dynamic behaviour of all the transducers used is deficient. While for the piezo-electric sensors a significant change in the slope of the calibration function with respect to the quasistatic behaviour was observed, for the strain-gauged load cell a pronounced hysteresis must be noted. Comparing the dynamic behaviour at different profiles of rates of force development generated by variations in machine speed and by maximum force setting, the variability in the sensitivity of the upper and lower punch piezo-electric load washers is comparatively small.

  1. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  2. PICASSO-SLP: a Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    Science.gov (United States)

    Ranvier, Sylvain; Anciaux, Michel; Cardoen, Pepijn; Gamby, Emmanuel; Bonnewijn, Sabrina; De Keyser, Johan; Echim, Marius; Pieroux, Didier

    2016-04-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Royal Belgian Institute for Space Aeronomy. PICASSO, an ESA in-orbit demonstrator, is a triple unit CubeSat of dimensions 340.5x100x100 mm. The sweeping Langmuir probe (SLP) instrument, which includes four thin cylindrical probes whose electrical potential is swept, is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e8/m³ at high latitude and high altitude up to several times 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1.000 K and 10.000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m for the electron density and temperature, and up to a few meters for electron density only. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, 5) for the density, the multi-scale behaviour, spectral properties and turbulence of processes typical for the auroral regions, and 6) ionospheric dynamics via coordinated observations with EISCAT's heating radar. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive modelling and simulations of the sheath effects on the

  3. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope using Hubble Space Telescope Flux Standards

    CERN Document Server

    Bohlin, R C; Rieke, G H; Ardila, D; Carey, S; Deustua, S; Engelbracht, C; Ferguson, H C; Flanagan, K; Kalirai, J; Meixner, M; Noriega-Crespo, A; Su, K Y L; Tremblay, P -E

    2011-01-01

    The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.

  4. Calibration of the ISEE plasma composition experiment

    Science.gov (United States)

    Baugher, C. R.; Olsen, R. C.; Reasoner, D. L.

    1986-01-01

    The Plasma Composition experiment on the ISEE-1 satellite was designed to measure ions from 1 to 16 amu, at energies from near zero to 16 keV. The two nearly identical flight instruments were calibrated by means of preflight laboratory tests and in-flight data comparisons. This document presents most of the details of those efforts, with special emphasis on the low energy (0 to 100 eV) portion of the instrument response. The analysis of the instrument includes a ray-tracing calculation, which follows an ensemble of test particles through the detector.

  5. Assembly of a laboratory for calibration in brachytherapy. Comparison of responses with different instrumentation; Montaje de un laboratorio para calibraciones en braquiterapia. Comparacion de respuestas con diferente instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Pirchio, R.; Saravi, M. [CNEA, Pbro. J. Gonzalez y Aragon No. 16 (B1802AYA) Ezeiza, Buenos Aires (Argentina)]. e-mail: pirchio@cae.cnea.gov.ar

    2006-07-01

    A common practice in quality control programs for dosimetry in brachytherapy is the source calibration. The AAPM (American Association of Physicists in Medicine) in the Task Group No. 40 (TG-40) it recommends that each institution that offers a brachytherapy service verifies the intensity of each source provided by the maker with secondary traceability. For such a reason it is necessary to have laboratories able to make calibrations of sources, traceable electrometer-chambers to primary or credited laboratories. The Regional Center of Reference of Dosimetry of the CNEA (National Commission of Atomic Energy) it is in the stage of finalization of the assembly of a Laboratory for source calibration and use equipment in brachytherapy. For it has two ionization chambers well type and two electrometers gauged by the Accredited Dosimetry Calibration Laboratory of the University of Wisconsin. Also account with a wide variety of supports and with a tube of {sup 137}Cs pattern 3M model 6500/6D6C. The procedures for the calibration of sources and equipment were elaborated starting from the TECDOC-1274. On the other hand, its were carried out measurements with different instrumentation for the comparison of responses and at the same time to implement the calibration procedures. For it, its were used chambers and electrometers of the institution, of hospitals and of the national company 'Solydes'. In the measurements its were used seeds of {sup 125}I taken place in Argentina and the tube of {sup 137}Cs pattern mentioned previously. In first place it was proceeded to the determination of the center of the region of the plateau in the axial response for the seeds of Iodine-125 and the tube of Cesium-137 pattern using different chambers. Later on its were carried out measurements of accumulated loads during a certain interval of time in this position. The calibration factors of each chamber were determined, N{sub Sk} ({mu}Gy m{sup 2} h{sup -1} A{sup -1}), as the quotient

  6. In situ calibration of the Gamma Reaction History instrument using reference samples ("pucks") for areal density measurements

    Science.gov (United States)

    Hoffman, N. M.; Herrmann, H. W.; Kim, Y. H.; Hsu, H. H.; Horsfield, C. J.; Rubery, M. S.; Wilson, D. C.; Stoeffl, W. W.; Young, C. S.; Mack, J. M.; Miller, E. K.; Grafil, E.; Evans, S. C.; Sedillo, T. J.; Glebov, V. Yu.; Duffy, T.

    2013-11-01

    The introduction of a sample of carbon, for example a disk or "puck", near an imploding DT-filled capsule creates a source of 12C gamma rays that can serve as a reference for calibrating the response of the Gamma Reaction History (GRH) detector [1]. Such calibration is important in the measurement of ablator areal density ⟨ρR⟩abl in plastic-ablator DT-filled capsules at OMEGA [2], by allowing ⟨ρR⟩abl to be inferred as a function of ratios of signals rather than from absolute measurements of signal magnitudes. Systematic uncertainties in signal measurements and detector responses therefore cancel, permitting more accurate measurements of ⟨ρR⟩abl.

  7. In situ calibration of the Gamma Reaction History instrument using reference samples (“pucks” for areal density measurements

    Directory of Open Access Journals (Sweden)

    Hoffman N.M.

    2013-11-01

    Full Text Available The introduction of a sample of carbon, for example a disk or “puck”, near an imploding DT-filled capsule creates a source of 12C gamma rays that can serve as a reference for calibrating the response of the Gamma Reaction History (GRH detector [1]. Such calibration is important in the measurement of ablator areal density ⟨ρR⟩abl in plastic-ablator DT-filled capsules at OMEGA [2], by allowing ⟨ρR⟩abl to be inferred as a function of ratios of signals rather than from absolute measurements of signal magnitudes. Systematic uncertainties in signal measurements and detector responses therefore cancel, permitting more accurate measurements of ⟨ρR⟩abl.

  8. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.

    2017-01-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration

  9. A New Class of Advanced Accuracy Satellite Instrumentation (AASI) for the CLARREO Mission: Interferometer Test-bed Tradestudies and Selection

    Science.gov (United States)

    Taylor, J. K.; Revercomb, H. E.; Grandmont, F. J.; Buijs, H.; Gero, P. J.; Best, F. A.; Tobin, D. C.; Knuteson, R. O.; Laporte, D. D.

    2009-12-01

    NASA has selected CLARREO (Climate Absolute Radiance and Refractivity Observatory), a climate mission recommended by the 2007 Decadal Survey of the US National Research Council, as a potential new start in 2010. CLARREO will measure spectrally resolved radiance from the earth and atmospheric bending of GPS signals related to atmospheric structure (refractivity) as benchmark measurements of long-term climate change trends. CLARREO will provide more complete spectral and time-of-day coverage and will fly basic physical standards to eliminate the need to assume on-board reference stability. Therefore, the spectral radiances from this mission will also serve as benchmarks to propagate a highly accurate calibration to other space-borne IR instruments. Technology development and risk reduction for the CLARREO mission is being conducted at the Space Science and Engineering Center at the University of Wisconsin-Madison. The objective of this work is to develop and demonstrate the technology necessary to measure IR spectrally resolved radiances (3 - 50 micrometers) with ultra high accuracy (model forecasts. The proposed work (University of Wisconsin-Madison and Harvard University) was selected for the 2007 NASA Instrument Incubator Program (IIP) and will develop four primary technologies to assure SI traceability on-orbit and demonstrate the ultra high accuracy measurement capability required for CLARREO: (1) On-orbit Absolute Radiance Standard (OARS), a high emissivity blackbody source that uses multiple miniature phase-change cells to provide a revolutionary on-orbit standard with absolute temperature accuracy proven over a wide range of temperatures, (2) On-orbit Cavity Emissivity Modules (OCEMs), providing a source (quantum cascade laser, QCL, or “Heated Halo”) to measure any change in the cavity emissivity of the OARS, (3) On-orbit Spectral Response Module (OSRM), a source for spectral response measurements using a nearly monochromatic QCL source configured to

  10. Experimental evaluation of self-calibrating cavity radiometers for use in earth flux radiation balance measurements from satellites

    Science.gov (United States)

    Hickey, J. R.; Karoli, A. R.; Alton, B. M.

    1982-01-01

    A method for evaluating out-of-field response of wide-field, earth-viewing satellite radiometers is described. The equipment which simulates the earth and space consists of a central blackbody surrounded by a cooled ring. The radiometric and orbital considerations are discussed. Some test results for prototype ERBE cavity sensors are included. This presentation is restricted to longwave radiative transfer

  11. Solar energy assessment in the Alpine area: satellite data and ground instruments integration for studying the radiative forcing of aerosols.

    Science.gov (United States)

    Castelli, M.; Petitta, M.; Emili, E.

    2012-04-01

    The primary objective of this work is to purpose an approach for estimating the effect of aerosols on surface incoming shortwave radiation (SIS) in the Alpine region, which is based on the integration of different instruments: we develop a GIS model, whose output is corrected by monthly atmospheric coefficients, and then we progressively add details by daily updated atmospheric information. The assessment of solar energy availability at the earth's surface over a specific geographic area is crucial for planning photovoltaic panels installation. When modeling SIS with GIS instruments or retrieving it from satellites measurements, we have to account for terrain shadowing and atmospheric extinction, both of which are difficult to describe in the Alpine area, because of the topographic complexity and the local atmospheric circulation influence on the atmospheric composition. While advanced methods were developed to carefully describe the effect of topography, the atmospheric attenuation was considered so far only through monthly turbidity values, and the question remains whether it be possible to develop a time-effective routine to model the atmospheric effect on SIS at daily scale. As a first step we produced a WebGIS for the town of Bressanone, Italy, showing a classification of the roofs of the buildings according to the yearly amount of global irradiance. Furthermore we provide the annual electricity production based on the efficiency of the most common PV technologies. At this stage clear sky irradiance was computed with a GIS based model, and afterwards monthly correction coefficients were applied to add real sky conditions to the merely geometrical computations, which were obtained from 20 years of measurement collected by the pyranometer in the closest meteorological station. As a second step we investigate the influence of aerosol optical properties on SIS by running the radiative transfer model libRadtran by using as input the aerosol model defined for the

  12. Extrapolation of contrail investigations by LIDAR to larger scale measurements. Analysis and calibration of CCD camera and satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Sussmann, R.; Homburg, F.; Freudenthaler, V.; Jaeger, H. [Frauenhofer Inst. fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen (Germany)

    1997-12-31

    The CCD image of a persistent contrail and the coincident LIDAR measurement are presented. To extrapolate the LIDAR derived optical thickness to the video field of view an anisotropy correction and calibration has to be performed. Observed bright halo components result from highly regular oriented hexagonal crystals with sizes of 200 {mu}m-2 mm. This explained by measured ambient humidities below the formation threshold of natural cirrus. Optical thickness from LIDAR shows significant discrepancies to the result from coincident NOAA-14 data. Errors result from anisotropy correction and parameterized relations between AVHRR channels and optical properties. (author) 28 refs.

  13. Comprehensive, Process-based Identification of Hydrologic Models using Satellite and In-situ Water Storage Data: A Multi-objective calibration Approach

    Science.gov (United States)

    Abdo Yassin, Fuad; Wheater, Howard; Razavi, Saman; Sapriza, Gonzalo; Davison, Bruce; Pietroniro, Alain

    2015-04-01

    The credible identification of vertical and horizontal hydrological components and their associated parameters is very challenging (if not impossible) by only constraining the model to streamflow data, especially in regions where the vertical processes significantly dominate the horizontal processes. The prairie areas of the Saskatchewan River basin, a major water system in Canada, demonstrate such behavior, where the hydrologic connectivity and vertical fluxes are mainly controlled by the amount of surface and sub-surface water storages. In this study, we develop a framework for distributed hydrologic model identification and calibration that jointly constrains the model response (i.e., streamflows) as well as a set of model state variables (i.e., water storages) to observations. This framework is set up in the form of multi-objective optimization, where multiple performance criteria are defined and used to simultaneously evaluate the fidelity of the model to streamflow observations and observed (estimated) changes of water storage in the gridded landscape over daily and monthly time scales. The time series of estimated changes in total water storage (including soil, canopy, snow and pond storages) used in this study were derived from an experimental study enhanced by the information obtained from the GRACE satellite. We test this framework on the calibration of a Land Surface Scheme-Hydrology model, called MESH (Modélisation Environmentale Communautaire - Surface and Hydrology), for the Saskatchewan River basin. Pareto Archived Dynamically Dimensioned Search (PA-DDS) is used as the multi-objective optimization engine. The significance of using the developed framework is demonstrated in comparison with the results obtained through a conventional calibration approach to streamflow observations. The approach of incorporating water storage data into the model identification process can more potentially constrain the posterior parameter space, more comprehensively

  14. Research on the thermocouple instrument calibration method%一种热电偶测量仪表的校准方法

    Institute of Scientific and Technical Information of China (English)

    孔繁军; 戴晶; 潘婧

    2012-01-01

    Introduced a method of the thermocouple instrument calibration. Using of Labview and high precision analog output card, the computer can translate the temperature difference into the 0 ~5V DC voltage output, and form the function relation from a variety of types of thermocouple degree, which is used to modify non-strict linear function of thermocouple EMF and temperature difference. Then the outside analog circuit translate the 0 ~ 5V voltage into the EMF. This method can achieve the thermocouple instrument calibration for a variety of types of thermocouple and range of temperature. According to data test and analysis, all errors of output EMF are acceptable, the method is easy operated and can be used for thermocouple instrument calibration.%提出了一种热电偶测量仪表的校准方法.采用Labview软件和高精度模拟输出板卡相结合的方法,将温差转化为0~5V的直流电压输出,将不同类型的热电偶分度表拟合出函数关系,用于纠正热电偶产生的热电动势和温差之间非严格线性关系,然后通过外部模拟运算电路将板卡输出电压转化为标准热电偶的温差电动势输出,可以实现多种类型热电偶测量仪表在不同使用温度范围的校准.经过数据测试及分析,输出的温差电动势均在允许的误差范围内,且操作简便,能很方便地用于热电偶测量仪表的校准.

  15. Calibration Method of Nickel Water Quality On-line Automatic Monitoring Instrument%镍水质在线自动监测仪校准方法

    Institute of Scientific and Technical Information of China (English)

    肖克

    2016-01-01

    通过分析镍水质在线自动监测仪工作原理及结构,探讨其计量特性和校准方法。提出了校准项目和技术指标,示值误差:当镍的质量浓度c≤0.05 mg/L时为±0.01 mg/L,当0.05 mg/L<c≤0.2 mg/L时为±10%,当c>0.2 mg/L时为±5%;重复性不大于5%;稳定性不大于5%。对示值误差测量结果不确定度进行了评定,相对扩展不确定度为1.6%(k=2)。用所建校准方法对不同厂家的监测仪进行校准试验,示值误差、重复性、稳定性满足校准项目技术指标要求。该校准方法可以用于评价镍水质在线自动监测仪的性能。%The metrological characteristics and calibration method of the nickel water quality on-line automatic monitoring instrument were discussed on the basis of analysis of its working principle and structure. The calibration items and technical specifications were put forward. The indicating value error were±0.01 mg/L,±10% and±5% at the corresponding concentration of standard solutionc≤0.05 mg/L,0.05 mg/L0.2 mg/L, respectively. The repeatability was not more than 5% while the stability was not more than 5%. The measurement uncertainty of indicating value error was evaluated,and the relative expanded uncertainty was 1.6% (k=2). The established calibration method was applied to test monitoring instruments from different manufacturers. The results indicated that value error, repeatability and stability meet the requirement of technical specifications. This method can be used for the evaluation of the performance of nickel water quality on-line automatic monitoring instrument.

  16. Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments

    OpenAIRE

    Blumenstock, T.; J.-M. Flaud; P. Chelin; Eremenko, M.; A. Redondas; Hase, F.; Schneider, M; C. Viatte; Orphal, J

    2011-01-01

    An intercomparison of ozone total column measurements derived from various platforms is presented in this work. Satellite data from Infrared Atmospheric Sounding Interferometer (IASI), Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment (GOME-2) are compared with data from two ground-based spectrometers (Fourier Transform Infrared spectrometer FTIR and Brewer), located at the Network for Detection of Atmospheric Composition Change (NDACC) super-site of Izaña (Tenerife), m...

  17. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    Science.gov (United States)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  18. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  19. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  20. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  1. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Science.gov (United States)

    Thalman, R.; Volkamer, R.

    2010-12-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7 × 10-7cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation chambers and in the open atmosphere.

  2. Characterization of different qualities in X-rays, for instruments calibration in radiological protection; Caracterizacion de diferentes calidades en rayos X, para calibracion de instrumentos en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Cejudo A, J.; Tovar M, V. M.; Vergara M, F., E-mail: jesus.cejudo@inin.gob.m [ININ, Departamento de Metrologia de Radiaciones Ionizantes, Laboratorio Secundario de Calibracion Dosimetrica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    In the Secondary Laboratory of Dosimetric Calibration in Mexico was realized the qualities characterization of the series X-rays RQR reported in the International Code of Practices in Dosimetry and Diagnostic Radiology No. 457, using attenuator filters of high purity aluminum and ionizing radiation equipment of inherent filtration of 4 mm Be with and emergent X-radiation beam of 40 grades. For the attenuation was used a geometric arrangement with three beam limiters and a monitor camera prepared on the established form in the mentioned technical report, and a spherical ionization chamber with collection volume of 3.6 cm{sup 3}, aligning its geometric center with the focus of X-rays tube to get that the incident radiation direction will be perpendicular to the ionization chamber. From the perspective of the radiological protection is important to know the X-radiation quality for the application dedicated to the instruments calibration and can to give to these the traceability to a reference laboratory, this way the quality combination and reference chamber can give as a result a procedure for the evaluation of the entrance in surface dose to estimate the dose orientate levels, specified in the basic standards of safety. (Author)

  3. Astrid-2 SSC ASUMagnetic Calibration

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    1997-01-01

    Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory.......Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory....

  4. Global Monitoring of Atmospheric Trace Gases, Clouds and Aerosols from UV/vis/NIR Satellite Instruments: Currents Status and Near Future Perspectives

    Science.gov (United States)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Frankenberg, C.; Grzegorski, M.; Khokhar, M. F.; Kühl, S.; Marbach, T.; Mies, K.; de Vries, M. Penning; Platt, U.; Pukite, J.; Sanghavi, S.

    2008-04-01

    A new generation of UV/vis/near-IR satellite instruments like GOME (since 1995), SCIAMACHY (since 2002), OMI (since 2004), and GOME-2 (since 2006) allows to measure several important stratospheric and tropospheric trace gases like O3, NO2, OClO, HCHO, SO2, BrO, and H2O as well as clouds and aerosols from space. Because of its extended spectral range, the SCIAMACHY instrument also allows the retrieval of Greenhouse gases (CO2, CH4) and CO in the near IR. Almost all of the tropospheric trace gases are observed by these instruments for the first time. From satellite data it is possible to investigate the temporal and spatial variation. Also different sources can be characterised and quantified. The derived global distributions can serve as input and for the validation of atmospheric models. Here we give an overview on the current status of these new instruments and data products and their recent applications to various atmospheric and oceanic phenomena.

  5. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  6. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    Science.gov (United States)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  7. The calibration of PIXIE

    Science.gov (United States)

    Fixsen, D. J.; Chuss, D. T.; Kogut, Alan; Mirel, Paul; Wollack, E. J.

    2016-07-01

    The FIRAS instrument demonstrated the use of an external calibrator to compare the sky to an instrumented blackbody. The PIXIE calibrator is improved from -35 dB to -65 dB. Another significant improvement is the ability to insert the calibrator into either input of the FTS. This allows detection and correction of additional errors, reduces the effective calibration noise by a factor of 2, eliminates an entire class of systematics and allows continuous observations. This paper presents the design and use of the PIXIE calibrator.

  8. A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments

    Directory of Open Access Journals (Sweden)

    J. D. Rösevall

    2007-01-01

    Full Text Available The objective of this study is to demonstrate how polar ozone depletion can be mapped and quantified by assimilating ozone data from satellites into the wind driven transport model DIAMOND, (Dynamical Isentropic Assimilation Model for OdiN Data. By assimilating a large set of satellite data into a transport model, ozone fields can be built up that are less noisy than the individual satellite ozone profiles. The transported fields can subsequently be compared to later sets of incoming satellite data so that the rates and geographical distribution of ozone depletion can be determined. By tracing the amounts of solar irradiation received by different air parcels in a transport model it is furthermore possible to study the photolytic reactions that destroy ozone. In this study, destruction of ozone that took place in the Antarctic winter of 2003 and in the Arctic winter of 2002/2003 have been examined by assimilating ozone data from the ENVISAT/MIPAS and Odin/SMR satellite-instruments. Large scale depletion of ozone was observed in the Antarctic polar vortex of 2003 when sunlight returned after the polar night. By mid October ENVISAT/MIPAS data indicate vortex ozone depletion in the ranges 80–100% and 70–90% on the 425 and 475 K potential temperature levels respectively while the Odin/SMR data indicates depletion in the ranges 70–90% and 50–70%. The discrepancy between the two instruments has been attributed to systematic errors in the Odin/SMR data. Assimilated fields of ENVISAT/MIPAS data indicate ozone depletion in the range 10–20% on the 475 K potential temperature level, (~19 km altitude, in the central regions of the 2002/2003 Arctic polar vortex. Assimilated fields of Odin/SMR data on the other hand indicate ozone depletion in the range 20–30%.

  9. TOWARD CALIBRATED MODULAR WIRELESS SYSTEM BASED AD HOC SENSORS FOR IN SITU LAND SURFACE TEMPERATURE MEASUREMENTS AS SUPPORT TO SATELLITE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    ASAAD CHAHBOUN

    2011-06-01

    Full Text Available This paper presents a new method for in situ Land Surface Temperature (LST measurements' campaigns for satellite algorithms validations. The proposed method based on Wireless Sensor Network (WSN is constituted by modules of node arrays. Each of which is constituted by 25 smart nodes scattered throughout a target field. Every node represents a Thermal Infra Red (TIR radiation sensor and keeps a minimum size while ensuring the functions of communication, sensing, and processing. This Wireless-LST (Wi-LST system is convenient to beinstalled on a field pointing to any type of targets (e.g. bare soil, grass, water, etc.. Ad hoc topology is adopted among the TIR nodes with multi-hop mesh routing protocol for communication, acquisition data are transmitted to the client tier wirelessly. Using these emergent technologies, we propose a practical method for Wi-LSTsystem calibration. TIR sensor (i.e. OSM101 from OMEGA society measures temperature, which is conditioned and amplified by an AD595 within a precision of 0.1 °C. Assessed LST is transmitted over thedeveloped ad hoc WSN modules (i.e. MICA2DOT from CROSSBOW society, and collected at in situ base station (i.e. PANASONIC CF19 laptop using an integrated database. LST is evaluated with a polynomialalgorithm structure as part of developed software. Finally, the comparison of the mean values of LST(Wi-LST in each site with the Moderate Resolution Imaging Spectro-radiometer (MODIS sensor, obtained from the daily LST product (MOD11C1 developed by the MODIS-NASA Science Team, on board TERRA satellite during the campaign period is provided.

  10. Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing

    Directory of Open Access Journals (Sweden)

    Slawomir Blonski

    2015-12-01

    Full Text Available Radiometric calibration coefficients for the VIIRS (Visible Infrared Imaging Radiometer Suite reflective solar bands have been reprocessed from the beginning of the Suomi NPP (National Polar-orbiting Partnership mission until present. An automated calibration procedure, implemented in the NOAA (National Oceanic and Atmospheric Administration JPSS (Joint Polar Satellite System operational data production system, was applied to reprocess onboard solar calibration data and solar diffuser degradation measurements. The latest processing parameters from the operational system were used to include corrected solar vectors, optimized directional dependence of attenuation screens transmittance and solar diffuser reflectance, updated prelaunch calibration coefficients without an offset term, and optimized Robust Holt-Winters filter parameters. The parameters were consistently used to generate a complete set of the radiometric calibration coefficients for the entire duration of the Suomi NPP mission. The reprocessing has demonstrated that the automated calibration procedure can be successfully applied to all solar measurements acquired from the beginning of the mission until the full deployment of the automated procedure in the operational processing system. The reprocessed calibration coefficients can be further used to reprocess VIIRS SDR (Sensor Data Record and other data products. The reprocessing has also demonstrated how the automated calibration procedure can be used during activation of the VIIRS instruments on the future JPSS satellites.

  11. Calibración de acelerómetros piezoeléctricos empleando un instrumento virtual. // Calibration Of piezoelectric accelerometers by using a virtual instrument.

    Directory of Open Access Journals (Sweden)

    J. Cabrera Gómez

    2001-04-01

    Full Text Available La medición de los niveles de vibraciones en maquinarias y estructuras requiere el empleo de una instrumentaciónadecuada, dentro de la cual tiene un inobjetable protagonismo el captador utilizado como elemento sensor primario. Estohace que la calidad de la medición esté significativamente vinculada a la dependencia de la relación de la magnitud a mediry la señal eléctrica producida por el propio captador, así como el comportamiento de éste ante el contenido de frecuenciasde la vibración. El presente trabajo muestra la implementación automatizada, a través del análisis FFT, de un procedimientopara la calibración de acelerómetros piezoeléctricos a partir de suministrarle a éstos una excitación de tipo aleatoria.Palabras claves: Calibración de acelerómetros, medición de vibraciones, respuesta de frecuencias,sensibilidad.____________________________________________________________________SummaryVibration level measurements in machineries and structures require an appropriate instrumentation, being veryimportant the transducer used as primary sensor element. The quality of the measurement is significantly linked to thedependence of the relationship between the magnitude to measure and the electric output produced by the transducer, aswell as the behaviour of this device to the content of frequencies of the vibration. The pres ent work shows the automatedimplementation, through the FFT analysis, of a procedure in order to calibrate piezoelectric accelerometers submittingthem to random excitation forces.Key words: calibration of accelerometers, vibration measurements, frequency response, sensitivity

  12. The Multi-Angle Imager for Aerosols (MAIA) Instrument, the Satellite-Based Element of an Investigation to Benefit Public Health

    Science.gov (United States)

    Diner, D. J.

    2016-12-01

    Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five

  13. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  14. Design and Calibration of a Raman Spectrometer for use in a Laser Spectroscopy Instrument Intended to Analyze Martian Surface and Atmospheric Characteristics for NASA

    Science.gov (United States)

    Lucas, John F.; Hornef, James

    2016-01-01

    This project's goal is the design of a Raman spectroscopy instrument to be utilized by NASA in an integrated spectroscopy strategy that will include Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Induced Florescence Spectroscopy (LIFS) for molecule and element identification on Mars Europa, and various asteroids. The instrument is to be down scaled from a dedicated rover mounted instrument into a compact unit with the same capabilities and accuracy as the larger instrument. The focus for this design is a spectrometer that utilizes Raman spectroscopy. The spectrometer has a calculated range of 218 nm wavelength spectrum with a resolution of 1.23 nm. To filter out the laser source wavelength of 532 nm the spectrometer design utilizes a 532 nm wavelength dichroic mirror and a 532 nm wavelength notch filter. The remaining scatter signal is concentrated by a 20 x microscopic objective through a 25-micron vertical slit into a 5mm diameter, 1cm focal length double concave focusing lens. The light is then diffracted by a 1600 Lines per Millimeter (L/mm) dual holographic transmission grating. This spectrum signal is captured by a 1-inch diameter double convex 3 cm focal length capture lens. An Intensified Charge Couple Device (ICCD) is placed within the initial focal cone of the capture lens and the Raman signal captured is to be analyzed through spectroscopy imaging software. This combination allows for accurate Raman spectroscopy to be achieved. The components for the spectrometer have been bench tested in a series of prototype developments based on theoretical calculations, alignment, and scaling strategies. The mounting platform is 2.5 cm wide by 8.8 cm long by 7 cm height. This platform has been tested and calibrated with various sources such as a neon light source and ruby crystal. This platform is intended to be enclosed in a ruggedized enclosure for mounting on a rover platform. The size and functionality of the Raman spectrometer allows for the rover to

  15. The Dedicated Aerosol Retrieval Experiment (DARE): scientific requirements for a dedicated satellite instrument to measure atmospheric aerosols

    NARCIS (Netherlands)

    Decae, R.; Courrèges-Lacoste, G.B.; Leeuw, G. de

    2004-01-01

    DARE (Dedicated Aerosol Retrieval Experiment) is a study to design an instrument for accurate remote sensing of aerosol properties from space. DARE combines useful properties of several existing instruments like TOMS, GOME, ATSR and POLDER. It has a large wavelength range, 330 to 1000 nm, to discrim

  16. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-08-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736 nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683 nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths > 712 nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric and/or solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) γ band that is not affected by SIF. The SIF-free O2 γ band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps to estimate red SIF emission. Our approach is then an extension of previous approaches applied to satellite data that utilized only the filling-in of SFLs by red SIF. We conducted retrievals of red SIF using an extensive database of simulated radiances covering a wide range of conditions. Our new algorithm produces good agreement between the simulated truth and retrievals and shows the potential of the O2 bands for noise reduction in red SIF retrievals as compared with approaches that rely solely on SFL filling. Biases seen with existing satellite data, most likely

  17. Observations of the moon by the global ozone monitoring experiment: radiometric calibration and lunar albedo

    NARCIS (Netherlands)

    Dobber, M.R.; Goede, A.P.H.; Burrows, J.P.

    1998-01-01

    The Global Ozone Monitoring Experiment (GOME) is a new instrument, which was launched aboard the second European Remoting Sensing satellite ESA-ERS2 in 1995. For its long-term radiometric and spectral calibration the GOME observes the sun and less frequently the moon on a regular basis. These measur

  18. Intercomparison of stratospheric nitrogen dioxide columns retrieved from ground-based DOAS and FTIR and satellite DOAS instruments over the subtropical Izana station

    Science.gov (United States)

    Robles-Gonzalez, Cristina; Navarro-Comas, Mónica; Puentedura, Olga; Schneider, Matthias; Hase, Frank; Garcia, Omaira; Blumenstock, Thomas; Gil-Ojeda, Manuel

    2016-09-01

    A 13-year analysis (2000-2012) of the NO2 vertical column densities derived from ground-based (GB) instruments and satellites has been carried out over the Izaña NDACC (Network for the Detection of the Atmospheric Composition Change) subtropical site. Ground-based DOAS (differential optical absorption spectroscopy) and FTIR (Fourier transform infrared spectroscopy) instruments are intercompared to test mutual consistency and then used for validation of stratospheric NO2 from OMI (Ozone Monitoring Instrument) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY). The intercomparison has been carried out taking into account the various differences existing in instruments, namely temporal coincidence, collocation, sensitivity, field of view, etc. The paper highlights the importance of considering an "effective solar zenith angle" instead of the actual one when comparing direct-sun instruments with zenith sky ones for a proper photochemical correction. Results show that NO2 vertical column densities mean relative difference between FTIR and DOAS instruments is 2.8 ± 10.7 % for a.m. data. Both instruments properly reproduce the NO2 seasonal and the interannual variation. Mean relative difference of the stratospheric NO2 derived from OMI and DOAS is -0.2 ± 8.7 % and from OMI and FTIR is -1.6 ± 6.7 %. SCIAMACHY mean relative difference is of 3.7 ± 11.7 and -5.7 ± 11.0 % for DOAS and FTIR, respectively. Note that the days used for the intercomparison are not the same for all the pairs of instruments since it depends on the availability of data. The discrepancies are found to be seasonally dependent with largest differences in winter and excellent agreement in the spring months (AMJ). A preliminary analysis of NO2 trends has been carried out with the available data series. Results show increases in stratospheric NO2 columns in all instruments but larger values in those that are GB than that expected by nitrous oxide oxidation. The

  19. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Science.gov (United States)

    Thalman, R.; Volkamer, R.

    2010-06-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first CEAS detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. A further innovation consists in the measurement of extinction losses from the cavity, e.g. due to aerosols, at two wavelengths by observing O4 (477 nm) and H2O (443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7×10-7 cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement in open cavity mode (mirrors facing the open atmosphere), and eliminates the need for sampling lines to supply air to the cavity, and/or keep the cavity enclosed and aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction at 477 nm and 443 nm. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation

  20. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-06-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first CEAS detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. A further innovation consists in the measurement of extinction losses from the cavity, e.g. due to aerosols, at two wavelengths by observing O4 (477 nm and H2O (443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7×10-7 cm-1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement in open cavity mode (mirrors facing the open atmosphere, and eliminates the need for sampling lines to supply air to the cavity, and/or keep the cavity enclosed and aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2

  1. Improving Planck calibration by including frequency-dependent relativistic corrections

    CERN Document Server

    Quartin, Miguel

    2015-01-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10^(-3), due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  2. Improving Planck calibration by including frequency-dependent relativistic corrections

    Science.gov (United States)

    Quartin, Miguel; Notari, Alessio

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  3. A Precipitation Satellite Downscaling & Re-Calibration Routine for TRMM 3B42 and GPM Data Applied to the Tropical Andes

    Science.gov (United States)

    Manz, B.; Buytaert, W.; Tobón, C.; Villacis, M.; García, F.

    2014-12-01

    With the imminent release of GPM it is essential for the hydrological user community to improve the spatial resolution of satellite precipitation products (SPPs), also retrospectively of historical time-series. Despite the growing number of applications, to date SPPs have two major weaknesses. Firstly, geosynchronous infrared (IR) SPPs, relying exclusively on cloud elevation/ IR temperature, fail to replicate ground rainfall rates especially for convective rainfall. Secondly, composite SPPs like TRMM include microwave and active radar to overcome this, but the coarse spatial resolution (0.25°) from infrequent orbital sampling often fails to: a) characterize precipitation patterns (especially extremes) in complex topography regions, and b) allow for gauge comparisons with adequate spatial support. This is problematic for satellite-gauge merging and subsequent hydrological modelling applications. We therefore present a new re-calibration and downscaling routine that is applicable to 0.25°/ 3-hrly TRMM 3B42 and Level 3 GPM time-series to generate 1 km estimates. 16 years of instantaneous TRMM radar (TPR) images were evaluated against a unique dataset of over 100 10-min rain gauges from the tropical Andes (Colombia & Ecuador) to develop a spatially distributed error surface. Long-term statistics on occurrence frequency, convective/ stratiform fraction and extreme precipitation probability (Gamma & Generalized Pareto distributions) were computed from TPR at the 1 km scale as well as from TPR and 3B42 at the 0.25° scale. To downscale from 0.25° to 1 km a stochastic generator was used to restrict precipitation occurrence to a fraction of the 1 km pixels within the 0.25° gridcell at every time-step. Regression modelling established a relationship between probability distributions at the 0.25° scale and rainfall amounts were assigned to the retained 1 km pixels by quantile-matching to the gridcell. The approach inherently provides mass conservation of the downscaled

  4. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil

    Science.gov (United States)

    Vaz Peres, Lucas; Bencherif, Hassan; Mbatha, Nkanyiso; Passaglia Schuch, André; Toihir, Abdoulwahab Mohamed; Bègue, Nelson; Portafaix, Thierry; Anabor, Vagner; Kirsch Pinheiro, Damaris; Paes Leme, Neusa Maria; Valentin Bageston, José; Schuch, Nelson Jorge

    2017-01-01

    This paper presents 23 years (1992-2014) of quasi-continuous measurements of the total ozone column (TOC) over the Southern Space Observatory (SSO) in São Martinho da Serra, Brazil (29.26° S, 53.48° and 488 m altitude). The TOC was measured by a Brewer spectrometer, and the results are also compared to daily and monthly observations from the TOMS (Total Ozone Mapping Spectrometer) and OMI (Ozone Monitoring Instrument) satellite instruments. Analyses of the main interannual modes of variability computed using the wavelet transform method were performed. A favorable agreement between the Brewer spectrophotometer and satellite datasets was found. The seasonal TOC variation is dominated by an annual cycle, with a minimum of approximately 260 DU in April and a maximum of approximately 295 DU in September. The wavelet analysis applied in the SSO TOC anomaly time series revealed that the Quasi-Biennial Oscillation (QBO) modulation was the main mode of interannual variability. The comparison between the SSO TOC anomaly time series with the QBO index revealed that the two are in opposite phases.

  5. SCIAMACHY Level 1 data: calibration concept and in-flight calibration

    Directory of Open Access Journals (Sweden)

    G. Lichtenberg

    2006-01-01

    Full Text Available The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1 Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2 Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of on-ground and in-flight data is shortly described here. (3 Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues.

  6. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  7. A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

    CERN Document Server

    Lazzarotto, Francesco; Costa, Enrico; Del Monte, Ettore; Di Persio, Giuseppe; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Pacciani, Luigi; Rubini, Alda; Soffitta, Paolo

    2011-01-01

    Modern satellite based experiments are often very complex real-time systems, composed by flight and ground segments, that have challenging resource related constraints, in terms of size, weight, power, requirements for real-time response, fault tolerance, and specialized input/output hardware-software, and they must be certified to high levels of assurance. Hardware-software data processing systems have to be responsive to system degradation and to changes in the data acquisition modes, and actions have to be taken to change the organization of the mission operations. A big research & develop effort in a team composed by scientists and technologists can lead to produce software systems able to optimize the hardware to reach very high levels of performance or to pull degraded hardware to maintain satisfactory features. We'll show real-life examples describing a system, processing the data of a X-Ray detector on satellite-based mission in spinning mode.

  8. Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada

    Directory of Open Access Journals (Sweden)

    Robert H. Fraser

    2017-03-01

    Full Text Available Wildfires are a dominant disturbance to boreal forests, and in North America, they typically cause widespread tree mortality. Forest fire burn severity is often measured at a plot scale using the Composite Burn Index (CBI, which was originally developed as a means of assigning severity levels to the Normalized Burn Ratio (NBR computed from Landsat satellite imagery. Our study investigated the potential to map biophysical indicators of burn severity (residual green vegetation and charred organic surface at very high (3 cm resolution, using color orthomosaics and vegetation height models derived from UAV-based photographic surveys and Structure from Motion methods. These indicators were scaled to 30 m resolution Landsat pixel footprints and compared to the post-burn NBR (post-NBR and differenced NBR (dNBR ratios computed from pre- and post-fire Landsat imagery. The post-NBR showed the strongest relationship to both the fraction of charred surface (exponential R2 = 0.79 and the fraction of green crown vegetation above 5 m (exponential R2 = 0.81, while the dNBR was more closely related to the total green vegetation fraction (exponential R2 = 0.69. Additionally, the UAV green fraction and Landsat indices could individually explain more than 50% of the variance in the overall CBI measured in 39 plots. These results provide a proof-of-concept for using low-cost UAV photogrammetric mapping to quantify key measures of boreal burn severity at landscape scales, which could be used to calibrate and assign a biophysical meaning to Landsat spectral indices for mapping severity at regional scales.

  9. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat......Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence...... on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... by different land covers. The results show that the sun-target-sensor geometry plays a significant role in the estimated temperature, with variations strictly due to the angular configuration of more than ±3°C in some cases. On the continental scale, the average error is small except in hot-spot conditions...

  10. Space environment's effect on MODIS calibration

    Science.gov (United States)

    Dodd, J. L.; Wenny, B. N.; Chiang, K.; Xiong, X.

    2010-09-01

    The MODerate resolution Imaging Spectroradiometer flies on board the Earth Observing System (EOS) satellites Terra and Aqua in a sun-synchronous orbit that crosses the equator at 10:30 AM and 2:30 PM, respectively, at a low earth orbit (LEO) altitude of 705 km. Terra was launched on December 18,1999 and Aqua was launched on May 4, 2002. As the MODIS instruments on board these satellites continue to operate beyond the design lifetime of six years, the cumulative effect of the space environment on MODIS and its calibration is of increasing importance. There are several aspects of the space environment that impact both the top of atmosphere (TOA) calibration and, therefore, the final science products of MODIS. The south Atlantic anomaly (SAA), spacecraft drag, extreme radiative and thermal environment, and the presence of orbital debris have the potential to significantly impact both MODIS and the spacecraft, either directly or indirectly, possibly resulting in data loss. Efforts from the Terra and Aqua Flight Operations Teams (FOT), the MODIS Instrument Operations Team (IOT), and the MODIS Characterization Support Team (MCST) prevent or minimize external impact on the TOA calibrated data. This paper discusses specific effects of the space environment on MODIS and how they are minimized.

  11. Data use investigations for applications Explorer Mission A (Heat Capacity Mapping Mission): HCMM's role in studies of the urban heat island, Great Lakes thermal phenomena and radiometric calibration of satellite data. [Buffalo, Syracuse, and Rochester New York and Lake Ontario

    Science.gov (United States)

    Schott, J. R. (Principal Investigator); Schimminger, E. W.

    1981-01-01

    The utility of data from NASA'a heat capacity mapping mission satellite for studies of the urban heat island, thermal phenomena in large lakes and radiometric calibration of satellite sensors was assessed. The data were found to be of significant value in all cases. Using HCMM data, the existence and microstructure of the heat island can be observed and associated with land cover within the urban complex. The formation and development of the thermal bar in the Great Lakes can be observed and quantitatively mapped using HCMM data. In addition, the thermal patterns observed can be associated with water quality variations observed both from other remote sensing platforms and in situ. The imaging radiometer on-board the HCMM satellite is shown to be calibratible to within about 1.1 C of actual surface temperatures. These findings, as well as the analytical procedures used in studying the HCMM data, are included.

  12. Status of calibration and data evaluation of AMSR on board ADEOS-II

    Science.gov (United States)

    Imaoka, Keiji; Fujimoto, Yasuhiro; Kachi, Misako; Takeshima, Toshiaki; Igarashi, Tamotsu; Kawanishi, Toneo; Shibata, Akira

    2004-02-01

    The Advanced Microwave Scanning Radiometer (AMSR) is the multi-frequency, passive microwave radiometer on board the Advanced Earth Observing Satellite-II (ADEOS-II), currently called Midori-II. The instrument has eight-frequency channels with dual polarization (except 50-GHz band) covering frequencies between 6.925 and 89.0 GHz. Measurement of 50-GHz channels is the first attempt by this kind of conically scanning microwave radiometers. Basic concept of the instrument including hardware configuration and calibration method is almost the same as that of ASMR for EOS (AMSR-E), the modified version of AMSR. Its swath width of 1,600 km is wider than that of AMSR-E. In parallel with the calibration and data evaluation of AMSR-E instrument, almost identical calibration activities have been made for AMSR instrument. After finished the initial checkout phase, the instrument has been continuously obtaining the data in global basis. Time series of radiometer sensitivities and automatic gain control telemetry indicate the stable instrument performance. For the radiometric calibration, we are now trying to apply the same procedure that is being used for AMSR-E. This paper provides an overview of the instrument characteristics, instrument status, and preliminary results of calibration and data evaluation activities.

  13. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    Science.gov (United States)

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  14. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx); Laboratorio de Calibracao de Instrumentode Medicao de Radiacao Gama (LabCal) do IDQBRN do CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S., E-mail: aneurideamorim@gmail.com [Centro Tecnologico do Exercito (DQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Quimica, Biologica, Radiologica e Nuclear

    2016-07-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  15. Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    CERN Document Server

    Maire, Jérôme; De Rosa, Robert J; Perrin, Marshall D; Rajan, Abhijith; Savransky, Dmitry; Wang, Jason J; Ruffio, Jean-Baptiste; Wolff, Schuyler G; Chilcote, Jeffrey K; Doyon, René; Graham, James R; Greenbaum, Alexandra Z; Konopacky, Quinn M; Larkin, James E; Macintosh, Bruce A; Marois, Christian; Millar-Blanchaer, Max; Patience, Jennifer; Pueyo, Laurent A; Sivaramakrishnan, Anand; Thomas, Sandrine J; Weiss, Jason L

    2014-01-01

    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 $\\mu$m. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measur...

  16. Development and characterization of Carbon Observing Satellite

    Science.gov (United States)

    Zhang, Hang; Lin, Chao; Zheng, Yuquan; Wang, Wenquan; Tian, Longfei; Liu, Dongbin; Li, Shuai

    2016-04-01

    Carbon Observing Satellite (Tan-Sat) is the first satellite of China designed to monitor column-averaged atmospheric carbon dioxide (X) by detecting gas absorption spectra of the solar shortwave infrared radiation reflected from the Earth's surface and atmosphere. Two instruments are accommodated on Tan-Sat: the high resolution hyperspectral sensor for carbon observation grating spectrometer (HRHS-GS) and the cloud and aerosol polarimetric imager (CAPI). HRHS-GS will provide the space-based measurements of CO2 on a scale and with the accuracy and precision to quantify terrestrial sources and sinks of CO2. CAPI is used to identify the contamination by optically thick clouds and to minimize the impact of scattering by aerosol. These two instruments work together to collect global column CO2 concentrations with correction for cloud and aerosol contamination. The instrument design of HRHS-GS is presented. Ocean reflectivity and the incident radiation of the instrument for transverse electric and transverse magnetic polarizations in glint mode are discussed. The changes to glint mode operation are described. The spectral characteristics of HRHS-GS were determined through the laser-based spectral calibration. The onboard spectral calibration method based on spectrum matching is introduced. The availability was verified, satisfying the onboard spectral calibration accuracy requirement of better than Δλ/10 (Δλ is spectral resolution).

  17. Calibration of the Ørsted vector magnetometer

    DEFF Research Database (Denmark)

    Olsen, Nils; Tøffner-Clausen, Lars; Sabaka, T.J.

    2003-01-01

    The vector fluxgate magnetometer of the Orsted satellite is routinely calibrated by comparing its output with measurements of the absolute magnetic intensity from the Overhauser instrument, which is the second magnetometer of the satellite. We describe the method used for and the result obtained ...... coordinate system and the reference system of the star imager. This is done by comparing the magnetic and attitude measurements with a model of Earth's magnetic field. The Euler angles describing this rotation are determined in this way with an accuracy of better than 4 arcsec....

  18. Handheld temperature calibrator

    National Research Council Canada - National Science Library

    Martella, Melanie

    2003-01-01

    ... you sign on. What are you waiting for? JOFRA ETC Series dry-block calibrators from AMETEK Test & Calibration Instruments, Largo, FL, are small enough to be handheld and feature easy-to-read displays, multiple bore blocks, programmable test setup, RS-232 communications, and software. Two versions are available: the ETC 125A that ranges from -10[degrees]C to 125[d...

  19. System for calibration of instruments of x-ray measurement (CIR-X) applying the PGCS; Sistema para calibracion de instrumentos de medicion de rayos X (CIR-X) aplicando el PGCS

    Energy Technology Data Exchange (ETDEWEB)

    Gaytan G, E.; Rivero G, T.; Cruz E, P.; Tovar M, V.M.; Vergara M, F.J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: egg@nuclear.inin.mx

    2007-07-01

    The Department of Metrology of Ionizing Radiations of the ININ carries out calibration of instruments for X-ray measurement that determine the operation parameters in X-ray diagnostic machines of the health and private sectors. To facilitate this task, the Department of Automation and Instrumentation developed a system for acquisition and signals processing coming from a reference voltage divider with traceability at NIST that is connected directly to the X-rays tube. The system is integrated by the X-ray unit, the X-ray measurement equipment Dynalizer IIIU of RADCAL, a data acquisition card, a personal computer and the acquisition software and signals processing. (Author)

  20. SNR 1E 0102.2-7219 as an X-ray calibration standard in the 0.5-1.0 keV bandpass and its application to the CCD instruments aboard Chandra, Suzaku, Swift and XMM-Newton

    Science.gov (United States)

    Plucinsky, Paul P.; Beardmore, Andrew P.; Foster, Adam; Haberl, Frank; Miller, Eric D.; Pollock, Andrew M. T.; Sembay, Steve

    2017-01-01

    Context. The flight calibration of the spectral response of charge-coupled device (CCD) instruments below 1.5 keV is difficult in general because of the lack of strong lines in the on-board calibration sources typically available. This calibration is also a function of time due to the effects of radiation damage on the CCDs and/or the accumulation of a contamination layer on the filters or CCDs. Aims: We desire a simple comparison of the absolute effective areas of the current generation of CCD instruments onboard the following observatories: Chandra ACIS-S3, XMM-Newton (EPIC-MOS and EPIC-pn), Suzaku XIS, and Swift XRT and a straightforward comparison of the time-dependent response of these instruments across their respective mission lifetimes. Methods: We have been using 1E 0102.2-7219, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate and modify the response models of these instruments. 1E 0102.2-7219 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. The spectrum of 1E 0102.2-7219 has been well-characterized using the RGS gratings instrument on XMM-Newton and the HETG gratings instrument on Chandra. As part of the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC), we have developed a standard spectral model for 1E 0102.2-7219 and fit this model to the spectra extracted from the CCD instruments. The model is empirical in that it includes Gaussians for the identified lines, an absorption component in the Galaxy, another absorption component in the SMC, and two thermal continuum components with different temperatures. In our fits, the model is highly constrained in that only the normalizations of the four brightest lines/line complexes (the O vii Heα triplet, O viii Lyα line, the Ne ix Heα triplet, and the Ne x Lyα line) and an overall normalization are allowed to vary, while all other components are fixed. We adopted this approach to

  1. Calibrating Data from the Hinode/X-Ray Telescope and Associated Uncertainties

    CERN Document Server

    Kobelski, Adam R; Weber, Mark A; McKenzie, David E; Reeves, Katharine K

    2013-01-01

    The X-Ray Telescope (XRT) onboard the Hinode satellite, launched 23 September 2006 by the Japanese Aerospace Exploration Agency (JAXA) is a joint mission between Japan, the United States, and the United Kingdom to study the solar corona. In particular XRT was designed to study solar plasmas with temperatures between 1 and 10 MK with $\\approx1''$ pixels ($\\approx2''$ resolution). Prior to analysis, the data product from this instrument must be properly calibrated and data values quantified in order to assess accurately the information contained within. We present here the standard methods of calibration for these data. The calibration is performed on an empirical basis which uses the least complicated correction that accurately describes the data while suppressing spurious features. By analyzing the uncertainties remaining in the data after calibration, we conclude that the procedure is successful, as the remaining uncertainty after calibration is dominated by photon noise. This calibration software is availab...

  2. Evaluation of ISCCP multisatellite radiance calibration for geostationary imager visible channels using the moon

    Science.gov (United States)

    Stone, Thomas C.; William B. Rossow,; Joseph Ferrier,; Laura M. Hinkelman,

    2013-01-01

    Since 1983, the International Satellite Cloud Climatology Project (ISCCP) has collected Earth radiance data from the succession of geostationary and polar-orbiting meteorological satellites operated by weather agencies worldwide. Meeting the ISCCP goals of global coverage and decade-length time scales requires consistent and stable calibration of the participating satellites. For the geostationary imager visible channels, ISCCP calibration provides regular periodic updates from regressions of radiances measured from coincident and collocated observations taken by Advanced Very High Resolution Radiometer instruments. As an independent check of the temporal stability and intersatellite consistency of ISCCP calibrations, we have applied lunar calibration techniques to geostationary imager visible channels using images of the Moon found in the ISCCP data archive. Lunar calibration enables using the reflected light from the Moon as a stable and consistent radiometric reference. Although the technique has general applicability, limitations of the archived image data have restricted the current study to Geostationary Operational Environmental Satellite and Geostationary Meteorological Satellite series. The results of this lunar analysis confirm that ISCCP calibration exhibits negligible temporal trends in sensor response but have revealed apparent relative biases between the satellites at various levels. However, these biases amount to differences of only a few percent in measured absolute reflectances. Since the lunar analysis examines only the lower end of the radiance range, the results suggest that the ISCCP calibration regression approach does not precisely determine the intercept or the zero-radiance response level. We discuss the impact of these findings on the development of consistent calibration for multisatellite global data sets.

  3. Development and implantation of a control and data acquisition program for the calibration of instruments for diagnostic radiology; Desenvolvimento e implantacao de um programa de controle e aquisicao de dados na calibracao de instrumentos em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Flavio

    2007-07-01

    Design techniques of an automatic control system implementing corrected kerma determination and shutter command in the calibration laboratory at IPEN are shown, as well as the periodic calibration program developed for a monitor chamber for several X-ray beam qualities used for diagnostic radiology and radiation protection instruments. Two reference electrometers, a multichannel secondary standard thermometer, and an absolute pressure barometer were connected to the Rs-232 interface from a PC computer equipped with a National Instruments multi function analog and digital I/O card. LabVIEW{sup MR} was chosen as programming tool, which allowed for the development of a suite of programs for both controlling the shutter timing cycles and the calibration of the monitor chamber against a reference standard. A detailed description of the methods used for troubleshooting, fine tuning of parameters and evaluation of program results is followed by an analysis showing that considerable advantages regarding reduction of time and precision improvements during the calibrations could be achieved by the use of the developed programs, particularly under adverse conditions like those found during short expositions, or instead during long irradiation intervals where fluctuation of parameters like kerma rate or room conditions (temperature or pressure) can be found. (author)

  4. Sensor Calibration Inter-Comparison Methodologies and Applications TO AVHRR, MODIS, AND VIIRS Observations

    Science.gov (United States)

    Xiong, Xiaoxiong; Wu, Aisheng; Cao, Changyong; Doelling, David

    2012-01-01

    As more and more satellite observations become available to the science and user community, their on-orbit calibration accuracy and consistency over time continue to be an important and challenge issue, especially in the reflective solar spectral regions. In recent years, many sensor calibration inter-comparison methodologies have been developed by different groups and applied to a range of satellite observations, aiming to the improvement of satellite instrument calibration accuracy and data quality. This paper provides an overview of different methodologies developed for inter-comparisons of A VHRR and MODIS observations, and extends their applications to the Visible-Infrared Imaging Radiometer Suite (VIIRS) instrument. The first VIIRS was launched on-board the NPP spacecraft on October 28, 2011. The VIIRS, designed with MODIS heritage, collects data in 22 spectral bands from visible (VIS) to long-wave infrared (LWIR). Like both Terra and Aqua MODIS, the VIIRS on-orbit calibration is performed using a set of on-board calibrators (OBC), Methodologies discussed in this paper include the use of well-characterized ground reference targets, near simultaneous nadir overpasses (SNO), lunar observations, and deep convective clouds (DeC). Results from long-term A VHRR and MODIS observations and initial assessment of VIIRS on-orbit calibration are presented. Current uncertainties of different methodologies and potential improvements are also discussed in this paper.

  5. Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-09-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  6. Application of the Langley plot for calibration of sun sensors for the Halogen Occultation Experiment (HALOE)

    Science.gov (United States)

    Moore, Alvah S., Jr.; Mauldin, L. ED, III; Stump, Charles W.; Reagan, John A.; Fabert, Milton G.

    1989-01-01

    The calibration of the Halogen Occultation Experiment (HALOE) sun sensor is described. This system consists of two energy-balancing silicon detectors which provide coarse azimuth and elevation control signals and a silicon photodiode array which provides top and bottom solar edge data for fine elevation control. All three detectors were calibrated on a mountaintop near Tucson, Ariz., using the Langley plot technique. The conventional Langley plot technique was modified to allow calibration of the two coarse detectors, which operate wideband. A brief description of the test setup is given. The HALOE instrument is a gas correlation radiometer that is now being developed for the Upper Atmospheric Research Satellite.

  7. Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments

    Directory of Open Access Journals (Sweden)

    T. Blumenstock

    2011-03-01

    Full Text Available An intercomparison of ozone total column measurements derived from various platforms is presented in this work. Satellite data from Infrared Atmospheric Sounding Interferometer (IASI, Ozone Monitoring Instrument (OMI and Global Ozone Monitoring Experiment (GOME-2 are compared with data from two ground-based spectrometers (Fourier Transform Infrared spectrometer FTIR and Brewer, located at the Network for Detection of Atmospheric Composition Change (NDACC super-site of Izaña (Tenerife, measured during a campaign from March to June 2009. These ground-based observing systems have already been demonstrated to perform consistent, precise and accurate ozone total column measurements. An excellent agreement between ground-based and OMI/GOME-2 data is observed. Results from two different algorithms for deriving IASI ozone total column are also compared: the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT/ESA operational algorithm and the LISA (Laboratoire Inter-universitaire des Systèmes Atmosphériques algorithm. A better agreement was found with LISA's analytical approach based on an altitude-dependent Tikhonov-Philips regularization: correlations are 0.94 and 0.89 compared to FTIR and Brewer, respectively; while the operational IASI ozone columns (based on neural network analysis show correlations of 0.90 and 0.85, respectively, compared to the O3 columns obtained from FTIR and Brewer.

  8. Calibration of DMSP SSM/I and SSM/IS for Weather and Climate Applications

    Science.gov (United States)

    Weng, F.

    2006-05-01

    Since the launch of the first DMSP F8 satellite in 1987, the microwave data from all SSM/I have been utilized to improve weather forecasts. For climate studies, it is important to ensure calibration consistency and traceability across all satellite instruments. NOAA/NESDIS is developing an integrated system for satellite inter-calibrations including DMSP sensors. In this system, the coincident observations from different sensors are generated to characterize differences between sensors and improve radiometric calibration. This system is currently used for processing real-time data and extended to past data for NOAA satellites. For DMSP SSM//I instruments, the method referred as the Simultaneous Nadir Overpass (SNO) (Cao et al., 2005) is modified to take into account the SSM/I conical viewing geometry. The measurements from the SSM/I simultaneous conical overpass (SCO) are matched from two satellites that have overlapping time. Since SSM/I is an imager more sensitive to surface properties, the matched data from SCO will require more quality controls in discriminating the inhomogeneity effects from surface snow and sea ice prior to uses in the inter-calibration. Our preliminary analysis has indicated that SCO derived data can be used to remove the biases among all SSM/I instruments and calibrate all SSM/I instruments to the same reference level. This activity will lead to fundamental climate data records (FCDR) from SSM/I radiances On board DMSP F-16 satellite, the Special Sensor Microwave Imager/Sounder (SSMIS) measures the Earth's microwave radiation at frequencies ranging from 19 to 183 GHz. This instrument is designed to improve atmospheric sounding capability by uses of both imaging and sounding channels in the conical scanning mode. However, there remain several outstanding issues related to the SSMIS calibration. First, an extra energy arises from the emission and/or scattering through its main reflector and results in anomalous scene temperatures. It is

  9. Pre-Launch Radiometric Performance Characterization of the Advanced Technology Microwave Sounder on the Joint Polar Satellite System-1 Satellite

    Science.gov (United States)

    Smith, Craig K.; Kim, Edward; Leslie, R. Vincent; Lyu, Joseph; McCormick, Lisa M.; Anderson, Kent

    2017-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a space-based, cross-track radiometer for operational atmospheric temperature and humidity sounding, utilizing 22 channels over a frequency range from 23 to 183 gigahertz. The ATMS for the Joint Polar Satellite System-1 has undergone two rounds of re-work in 2014-2015 and 2016, following performance issues discovered during and following thermal vacuum chamber (TVAC) testing at the instrument and observatory level. Final shelf-level testing, including measurement of pass band characteristics and spectral response functions, was completed in December 2016. Final instrument-level TVAC testing and calibration occurred during February 2017. Here we will describe the instrument-level TVAC calibration process, and illustrate with results from the final TVAC calibration effort.

  10. 某钨矿斜坡道中高程法标定腰线的全站仪应用%Applying Total Station Instrument to Waistline Calibration in a Tungsten Mine's Ramp

    Institute of Scientific and Technical Information of China (English)

    钟晓阳

    2013-01-01

      The conventional method used for waist calibration during a tungsten mine's ramp construction can't meet the production requirements. This paper applies the total station instrument to control surveying, topographic surveying and engineering surveying adopting midline point calibration waistline and pseudo-angle calibration waistline principles. Two calibration points of the ramp are measured by plan and profile derivations. The height variations between each Calibration point and waistline by elevation method are calculated.%  某钨矿斜坡道工程施工中,采用日常方法标定腰线因测量精度较低,满足不了矿山生产需求。试将全站仪用于矿山控制测量、地形测量及工程测量中,结合利用中线点标定腰线和伪倾角标定腰线原理,通过对斜坡道两帮标定点进行测量,然后根据斜坡道平面及剖面进行公式推导,用高程法计算出各标定点与腰线的高差,最后标定腰线点,测高测距结果精确。

  11. X-ray facility for the ground calibration of the X-ray monitor JEM-X on board INTEGRAL

    DEFF Research Database (Denmark)

    Loffredo, G.; Pelliciari, C.; Frontera, F.;

    2003-01-01

    We describe the X-ray facility developed for the calibration of the X-ray monitor JEM-X on board the INTEGRAL satellite. The apparatus allowed the scanning of the detector geometric area with a pencil beam of desired energy over the major part of the passband of the instrument. The monochromatic...

  12. TWSTFT Link Calibration Report

    Science.gov (United States)

    2015-09-01

    box calibrator with unknown but constant total delay during a calibration tour Total Delay: The total electrical delay from the antenna phase center...to the UTCp including all the devices/cables that the satellite and clock signals pass through. It numerically equals the sum of all the sub-delays...PTB. To average out the dimnal effects and measurement noise , 5-7 days of continuous measurements is required. 3 Setups at the Lab(k) The setup

  13. Models for Photogrammetric Processing of Information from Resource-P Satellites

    Science.gov (United States)

    Poshekhonov, V.; Eremeev, V.; Kuznetcov, A.; Kochergin, A.

    2016-06-01

    The present paper provides information about imagery and navigation systems of the Russian high resolution satellites "Resource- P". Models of image geolocation used for photogrammetric processing of information from all types of imagery systems are designed. Design of these models is based on two task solutions: correct processing of the measurement information and geometric calibration of the imagery systems. It is shown that for high-precision interior orientation parameters adjustment of the high-resolution "Geoton" instrument the method of self-calibration should be used. The technology of calibration activities is considered. Distinctive features of calibration of the hyperspectral and wide-swath imagery systems are noted. It is represented in the paper that after calibration the root mean square error (RMSE) of measured geodetic coordinates of objects on images do not exceed 10 m. Examples of the obtained models practical application for photogrammetric processing of images from "Resource-P" satellites are shown.

  14. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  15. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  16. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  17. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2007-10-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  18. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  19. Calibration of Angular Systematic Errors for High Resolution Satellite Imagery%高分辨率卫星遥感影像姿态角系统误差检校

    Institute of Scientific and Technical Information of China (English)

    袁修孝; 余翔

    2012-01-01

    The object positioning accuracy from high resolution satellite imagery is strongly relevant to image attitude data accuracy, but the attitude data have generally systematic errors and the object location becomes unreliable. The angular systematic error calibration model is stricter than constant angular error calibration model, based on the rigorous geometric processing model of high resolution satellite remote sensing imagery. The calibration model was tested on SPOT-5 and CBERS-02B images and both have proved its correctness. After compensating the angular systematic errors of images, the direct georeferencing accuracy can reach ±(2-3) pixels, which is much better than results of constant angular calibration.%简要介绍高分辨率卫星遥感影像的严格几何处理模型,提出较为严密的影像姿态角系统误差检校模型。通过对SPOT-5、CBERS-02B两种卫星遥感影像的试验证实模型的正确性和方法的有效性。对影像姿态角系统误差进行补偿后,可明显提高卫星遥感影像对地目标定位的精度,且优于影像姿态角常差检校的效果,目标点平面定位精度达到了±(2-~3)像素的水平。

  20. Calibration of the Herschel SPIRE Fourier Transform Spectrometer

    CERN Document Server

    Swinyard, B M; Hopwood, R; Valtchanov, I; Lu, N; Fulton, T; Benielli, D; Imhof, P; Marchili, N; Baluteau, J -P; Bendo, G J; Ferlet, M; Griffin, M J; Lim, T L; Makiwa, G; Naylor, D A; Orton, G S; Papageorgiou, A; Pearson, C P; Schulz, B; Sidher, S D; Spencer, L D; van der Wiel, M H D; Wu, R

    2014-01-01

    The Herschel SPIRE instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of 450-1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a spatially extended source and uses the Herschel telescope as primary calibrator. Conversion from extended to point-source calibration is carried out using observations of the planet Uranus. The model of the telescope emission is shown to be accurate to within 6% and repeatable to better than 0.06% and, by comparison with models of Mars and Neptune, the Uranus model is shown to be accurate to within 3%. Multiple observations of a number of point-like sources show that the repeatability of the calibration is better than 1%, if the effects of the satellite absolu...

  1. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz

    1997-01-01

    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  2. Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula.

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E; Wang, Huiqun; González Abad, Gonzalo; Román, Roberto; Costa, Maria João

    2017-02-15

    This paper shows the validation of integrated water vapor (IWV) measurements retrieved from the Ozone Monitoring Instrument (OMI), using as reference nine ground-based GPS stations in the Iberian Peninsula. The study period covers from 2007 to 2009. The influence of two factors, - solar zenith angle (SZA) and IWV -, on OMI-GPS differences was studied in detail, as well as the seasonal dependence. The pseudomedian of the relative differences is -1 ± 1% and the inter-quartile range (IQR) is 41%. Linear regressions calculated over each station show an acceptable agreement (R(2) up to 0.77). The OMI-GPS differences display a clear dependence on IWV values. Hence, OMI substantially overestimates the lower IWV data recorded by GPS (∼ 40%), while underestimates the higher IWV reference values (∼ 20%). In connection to this IWV dependence, the relative differences also show an evident SZA dependence when the whole range of IWV values are analyzed (OMI overestimates for high SZA values while underestimates for low values). Finally, the seasonal variation of the OMI-GPS differences is also associated with the strong IWV dependence found in this validation exercise. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Calibration and Validation of the InfraRed Atmospheric Sounder Onboard the FY3B Satellite%风云三号B星红外分光计的定标和验证

    Institute of Scientific and Technical Information of China (English)

    漆成莉; 陈勇; 刘辉; 吴春强; 殷德奎

    2013-01-01

    搭载于风云三号A星和B星上的红外分光计(IRAS)分别于2008年5月27日和2010年11月5日成功发射。该仪器主要提供从可见光到红外波长范围内多通道的辐射观测,并可应用于资料同化、全球大气温度和水汽廓线反演等领域。搭载于风云三号A星上的IRAS由于滤光轮转速不稳定,导致仪器观测不连续。风云三号B星上的IRAS运行正常,处于稳定的业务模式。利用仪器在轨3个月期间的资料,进行了一系列的在轨定标和验证试验,对IRAS仪器的性能进行了一系列的验证,包括冷空和暖黑体定标计数值的长期趋势、噪音等效辐射率等。利用IRAS和红外大气探测干涉仪(IASI)同时观察到的地球场景进行比较,证明了两种观测非常相似。另外,将FY3B/IRAS红外通道的观测与NOAA-19/HIRS对应的通道的辐射传输模式模拟进行了对比。对比结果显示相对于HIRS,部分IRAS红外通道,尤其是通道1到10,15,19和20偏差很小。但是少数通道,如通道13,16和18有较大的偏差。造成这些偏差的原因仍需要进一步的研究。%InfraRed Atmospheric Sounder (IRAS) instruments were successfully launched onboard the FengYun-3A (FY3A) and FengYun-3B (FY3B) satellites on May 27, 2008, and November 5, 2010, respectively. They aim at providing multichannel radiances within the spectral range of visible to infrared (IR) wavelengths for many environmental applications, including data assimilation and retrievals of global atmospheric temperature and humidity proifles. However, the velocity of the iflter wheel of the ifrst IRAS onboard FY3A is unstable and, therefore, induced a discontinuity in the measurement. The IRAS onboard FY3B works well in normal and stable operational mode since its launch without any anomaly. A variety of postlaunch calibration/validation tasks are conducted using on-orbit data during a period of three months. This paper presents

  4. Satellite-Based Tropospheric NO2 Column Trends in the Last 10 Years Over Mexican Urban Areas Measured by the Ozone Monitoring Instrument

    Science.gov (United States)

    Rivera, C. I.; Stremme, W.; Grutter, M.

    2015-12-01

    Population density and economic activities in urban agglomerations have drastically increased in many cities in Mexico during the last decade. Several factors are responsible for increased urbanization such as a shift of people from rural to urban areas while looking for better education, services and job opportunities as well as the natural growth of the urban areas themselves. Urbanization can create great social, economic and environmental pressures and changes which can easily be observed in most urban agglomerations in the world. In this study, we have focused on analyzing tropospheric NO2 (nitrogen dioxide) column trends over Mexican urban areas that have a population of at least one million inhabitants according to the latest 2010 population census. Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 conducted by the space-borne Ozone Monitoring Instrument (OMI) on board the Aura satellite between 2005 and 2014 have been used for this analysis. This dataset has allowed us to obtain a satellite-based 10-year tropospheric NO2 column trend over the most populated Mexican cities which include the dominating metropolitan area of Mexico City with more than twenty million inhabitants as well as ten other Mexican cities with a population ranging between one to five million inhabitants with a wide range of activities (commercial, agricultural or heavily industrialized) as well as two important border crossings. Distribution maps of tropospheric NO2 columns above the studied urban agglomerations were reconstructed from the analyzed OMI dataset, allowing to identify areas of interest due to clear NO2 enhancements inside these urban regions.

  5. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  6. Calibration and performance analysis on channel mismatch of multi-beam antenna on satellites%星载多波束天线通道误差特性分析及校准

    Institute of Scientific and Technical Information of China (English)

    赵星惟; 龚文斌; 梁旭文

    2012-01-01

    针对星载多波束天线幅相误差对天线性能影响较大的问题,通过对多波束发射天线的射频通道在不同温度下的幅相特性进行试验测定,得到了通道幅相特性与温度的对应关系,发现不同通道的幅相特性与通道温度的关系曲线在给定温度区间内基本呈线性关系,且斜率基本一致,从而确定了对不同通道的幅相特性进行固定值补偿的校准策略.通过固定值补偿后,各通道的幅相特性曲线基本重合,从而消除了通道间幅相误差.进一步给出了提升温度一致性的措施,并设计了多波束发射天线的校准原理框图和校准流程图.结果表明:新的星载多波束天线幅相误差校准方法是有效的.%To solve the mismatch effect of amplitude-and-phase errors on multi-beam antenna performance , the radio frequency channel amplitude and phase errors of multi-beam transmitting antenna on satellite were experimentally measured to obtain the corresponding relations of channel amplitude-and-phase mismatch and temperature, and to compensate the mismatch. The shell temperatures are almost same after temperature stabilization, which effectively results in channel consistency. Some methods were used to improve temperature consistency. Calibration of channel is the key to guarantee the performance indexes of multi-beam antenna on satellites. The calibration principle block diagram and flow chart of multi-beam transmitting antenna were designed. The theoretical analysis and simulation results show that the proposed calibration method is effective for calibration of multi-beam antenna on satellites.

  7. First calibration results of Jason-2 and SARAL/AltiKa satellite altimeters from the Qianli Yan permanent Cal/Val facilities, China

    Science.gov (United States)

    Yang, Lei; Zhou, Xinghua; Mertikas, S. P.; Zhu, Lin; Yang, Long; Lei, Ning

    2017-06-01

    This work presents the first calibration results for the Jason-2 and the SARAL/AltiKa altimetric missions by using the permanent calibration facilities on the Qianli Yan islet (China). Qianli Yan is located in the Yellow Sea and only ∼3 km from the Jason-2 and SARAL/AltiKa crossover point. Analysis of the Jason-2 and SARAL/AltiKa waveform data and geophysical data over the Qianli Yan calibration area has proven that the altimeters and microwave radiometers are not contaminated by the mainland or the islet. The accuracies of the regional geoid model, provided by the First Institute of Oceanography (FIO), State Oceanic Administration of China, and the DTU10 MSS model were assessed by a GNSS buoy experiment. The results indicated that the FIO model is suitable for altimeter calibration in the Qianli Yan area. From the observations and the geoid model, the absolute biases for the Jason-2 and SARAL/AltiKa altimeters (2013-2014) were determined as 21.0 ± 5.9 and -44.0 ± 7.3 mm, respectively. The 2 years' results indicated that the Jason-2 bias had no trend. However, the SARAL/AltiKa bias presented a downward trend that was more stable in 2014 than in 2013. The Qianli Yan results are consistent with those determined by other international dedicated calibration sites and crossover analysis.

  8. 局部放电测量仪校准装置的研制与应用%Development and Application About Calibrating Device of Shelf Depreciation Measuring Instrument

    Institute of Scientific and Technical Information of China (English)

    彭黎迎; 徐艳秋; 丁太春; 贺明志; 许睿

    2011-01-01

    局部放电测量仪校准装置是根据国家计量标准和高新科学技术设计和研制而成的,采用虚拟数据采集技术,进行数字积分.按照q=It的方法来实现对局部放电(电量单位:皮库(pC))的测量.该棱准装置能够按照标准的规定对局部放电测量仪进行全面的校准,具有半智能化、精度高,感应灵敏、操作方便等优点,对于提高电器产品的安全性能和产品质量很有帮助,是一种应用广泛的重要安全试验仪器.%The calibrating device of shelf depreciation measuring instrument was developed and designed according to the national measurement standard and the high technology, which used the virtual data gathering technology, carried on the digital intcgration, realized measuremcnt to the shelf depreciation (pC) through the q=It method. This calibrating device can calibrate the shelf depreciation measuring instrument according to the standard stipulation, which has half intellectualization,high precision, sensitive induction, easy operation and so on, and has great help for improving the safety performance ard the quality of products. It is a widely used important safety test instrument, and receives high praise from the colleague experts.

  9. Evaluating tropospheric humidity observations from modern space-borne microwave instruments

    Science.gov (United States)

    Moradi, I.; Ferraro, R. R.

    2013-12-01

    Two main sources of tropospheric humidity data include radiosonde measurements as well as observations from space-borne microwave instruments operating at the frequencies close to the water vapor absorption line at 183 GHz. Radiosonde data are available for a long-period and have a high vertical resolution compared to the microwave satellite data. On the other hand, satellite data provide global coverage, but radiosonde stations are very sparse. Both space-based and radiosonde observations are prone to different errors. Radiosonde data are affected by several factors including sensor contamination, daytime radiation bias, sensor icing in mid-upper troposphere, and discontinuity in the data because of the difference between observations from different sonde sensors. Microwave satellite data are also prone to several errors including calibration drift, geolocation error, sensor degradation, and inter-satellite biases. We present the results of evaluating observations from microwave instruments aboard recently launched the Suomi National Polar-orbiting Partnership (NPP, ATMS instrument) and Megha-Tropiques (SAPHIR instrument) satellites. The study includes inter-comparison and inter-calibration of observations of similar channels from the two satellites, evaluation of the satellite data using high-quality radiosonde data from Atmospheric Radiation Measurement Program, as well as geolocation error correction. The results of this study are valuable for generating climate data records from these instruments as well as for extending current climate data records from similar instruments such as AMSU-B and MHS to the ATMS and SAPHIR instruments. Brightness temperatures from different SAPHIR channels Inter-comparing SAPHIR and ATMS data (observations and simulations)

  10. Shield calculation of project for instrument calibration integrated laboratory of IPEN-Sao Paulo, Brazil; Calculo das blindagens do projeto de um laboratorio integrado de calibracao de instrumentos no IPEN - Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo A.S.J.; Caldas, Linda V.E., E-mail: gustavaobarros@gmail.co, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    This work performed the shield calculation of the future rooms walls of the five X-ray equipment of the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, which will be constructed in project of laboratory enlargement. The obtained results by application of a calculation methodology from an international regulation have shown that the largest thickness of shielding (25.7 cm of concrete or 7.1 mm of lead) will be of the wall which will receive the primary beam of the equipment with a 320 kV voltage. The cost/benefit analysis indicated the concrete as the best material option for the shielding

  11. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall

    Science.gov (United States)

    Yucel, I.; Onen, A.; Yilmaz, K. K.; Gochis, D. J.

    2015-04-01

    A fully-distributed, multi-physics, multi-scale hydrologic and hydraulic modeling system, WRF-Hydro, is used to assess the potential for skillful flood forecasting based on precipitation inputs derived from the Weather Research and Forecasting (WRF) model and the EUMETSAT Multi-sensor Precipitation Estimates (MPEs). Similar to past studies it was found that WRF model precipitation forecast errors related to model initial conditions are reduced when the three dimensional atmospheric data assimilation (3DVAR) scheme in the WRF model simulations is used. A comparative evaluation of the impact of MPE versus WRF precipitation estimates, both with and without data assimilation, in driving WRF-Hydro simulated streamflow is then made. The ten rainfall-runoff events that occurred in the Black Sea Region were used for testing and evaluation. With the availability of streamflow data across rainfall-runoff events, the calibration is only performed on the Bartin sub-basin using two events and the calibrated parameters are then transferred to other neighboring three ungauged sub-basins in the study area. The rest of the events from all sub-basins are then used to evaluate the performance of the WRF-Hydro system with the calibrated parameters. Following model calibration, the WRF-Hydro system was capable of skillfully reproducing observed flood hydrographs in terms of the volume of the runoff produced and the overall shape of the hydrograph. Streamflow simulation skill was significantly improved for those WRF model simulations where storm precipitation was accurately depicted with respect to timing, location and amount. Accurate streamflow simulations were more evident in WRF model simulations where the 3DVAR scheme was used compared to when it was not used. Because of substantial dry bias feature of MPE, as compared with surface rain gauges, streamflow derived using this precipitation product is in general very poor. Overall, root mean squared errors for runoff were reduced by

  12. Cross Calibration of TOMS, SBUV/2 and SCIAMACHY Radiances from Ground Observations

    Science.gov (United States)

    Hilsenrath, Ernest; Bhartia, P. K.; Bojkov, B.; Kowaleski, M.; Labow, G.; Ahmad, Z.

    2002-01-01

    We have shown that validation of radiances is a very effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called 'Skyrad', employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS, SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOMEZ, OMI, and OMPS. Additional information is included in the original extended abstract.

  13. Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment

    DEFF Research Database (Denmark)

    Milzow, Christian; Krogh, Pernille Engelbredt; Bauer-Gottwein, Peter

    2011-01-01

    The availability of data is a major challenge for hydrological modelling in large parts of the world. Remote sensing data can be exploited to improve models of ungauged or poorly gauged catchments. In this study we combine three datasets for calibration of a rainfall-runoff model of the poorly...

  14. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    NARCIS (Netherlands)

    Butler, J.J.; Park, H.; Barnes, P.Y.