WorldWideScience

Sample records for satellite infrared imagery

  1. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  2. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  3. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  4. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.

    2013-01-01

    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  5. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  6. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    Science.gov (United States)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  7. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  8. Infrared Astronomy Satellite

    Science.gov (United States)

    Ferrera, G. A.

    1981-09-01

    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.

  9. Satellite imagery in a nuclear age

    International Nuclear Information System (INIS)

    Baines, P.J.

    1998-01-01

    Increasingly, high resolution satellite imaging systems are becoming available from multiple and diverse sources with capabilities useful for answering security questions. With increased supply, data availability and data authenticity may be assured. In a commercial market a supplier can ill afford the loss in market share that would result from any falsification of data. Similarly rising competitors willing to sell imagery of national security sites will decrease the tendency to endure self-imposed restrictions on sales of those sites. International organizations operating in the security interests of all nations might also gain preferential access. Costa for imagery will also fall to the point were individuals can afford purchases of satellite images. International organizations will find utility in exploiting imagery for solving international security problems. Housed within international organizations possessing competent staff, procedures, and 'shared destiny' stakes in resolving compliance discrepancies, the use of satellite imagery may provide a degree of stability in a world in which individuals, non-governmental organizations and governments may choose to exploit the available information for political gain. The use of satellite imagery outside these international organizations might not necessarily be aimed at seeking mutually beneficial solutions for international problems

  10. 7 CFR 611.22 - Availability of satellite imagery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of satellite imagery. 611.22 Section 611... § 611.22 Availability of satellite imagery. Cloud-free maps of the United States based on imagery received from a satellite are prepared and released to the pubic by NRCS. The maps offer the first image of...

  11. Satellite imagery and the Department of Safeguards

    International Nuclear Information System (INIS)

    Chitumbo, K.; Bunney, J.; Leve, G.; Robb, S.

    2001-01-01

    Full text: The presentation examines some of the challenges the Satellite Imagery and Analysis Laboratory (SIAL) is facing in supporting Strengthened Safeguards. It focuses on the analytical process, starting with specifying initial tasking and continuing through to end products that are a direct result of in-house analysis. In addition it also evaluates the advantages and disadvantages of SIAL's mission and introduces external forces that the agency must consider, but cannot itself, predict or control. Although SIAL's contribution to tasks relating to Article 2a(iii) of the Additional Protocol are known and are presently of great benefit to operations areas, this is only one aspect of its work. SIAL's ability to identify and analyze historical satellite imagery data has the advantage of permitting operations to take a more in depth view of a particular area of interest's (AOI) development, and thus may permit operations to confirm or refute specific assertions relating to the AOI's function or abilities. These assertions may originate in-house or may be open source reports the agency feels it is obligated to explore. SIAL's mission is unique in the world of imagery analysis. Its aim is to support all operations areas equally and in doing so it must maintain global focus. The task is tremendous, but the resultant coverage and concentration of unique expertise will allow SIAL to develop and provide operations with datasets that can be exploited in standalone mode or be incorporated into new cutting edge tools to be developed in SGIT. At present SIAL relies on two remote sensors, IKONOS-2 and EROS-AI, for present high- resolution imagery data and is using numerous sources for historical, pre 1999, data. A multiplicity of sources for high-resolution data is very important to SIAL, but is something that it cannot influence. It is hoped that the planned launch of two new sensors by Summer 2002 will be successful and will offer greater flexibility for image collection

  12. Photogrammetric Processing Using ZY-3 Satellite Imagery

    Science.gov (United States)

    Kornus, W.; Magariños, A.; Pla, M.; Soler, E.; Perez, F.

    2015-03-01

    This paper evaluates the stereoscopic capacities of the Chinese sensor ZiYuan-3 (ZY-3) for the generation of photogrammetric products. The satellite was launched on January 9, 2012 and carries three high-resolution panchromatic cameras viewing in forward (22º), nadir (0º) and backward direction (-22º) and an infrared multi-spectral scanner (IRMSS), which is slightly looking forward (6º). The ground sampling distance (GSD) is 2.1m for the nadir image, 3.5m for the two oblique stereo images and 5.8m for the multispectral image. The evaluated ZY-3 imagery consists of a full set of threefold-stereo and a multi-spectral image covering an area of ca. 50km x 50km north-west of Barcelona, Spain. The complete photogrammetric processing chain was executed including image orientation, the generation of a digital surface model (DSM), radiometric image correction, pansharpening, orthoimage generation and digital stereo plotting. All 4 images are oriented by estimating affine transformation parameters between observed and nominal RPC (rational polynomial coefficients) image positions of 17 ground control points (GCP) and a subsequent calculation of refined RPC. From 10 independent check points RMS errors of 2.2m, 2.0m and 2.7m in X, Y and H are obtained. Subsequently, a DSM of 5m grid spacing is generated fully automatically. A comparison with the Lidar data results in an overall DSM accuracy of approximately 3m. In moderate and flat terrain higher accuracies in the order of 2.5m and better are achieved. In a next step orthoimages from the high resolution nadir image and the multispectral image are generated using the refined RPC geometry and the DSM. After radiometric corrections a fused high resolution colour orthoimage with 2.1m pixel size is created using an adaptive HSL method. The pansharpen process is performed after the individual geocorrection due to the different viewing angles between the two images. In a detailed analysis of the colour orthoimage artifacts are

  13. Essential climatic variables estimation with satellite imagery

    Science.gov (United States)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  14. A Study on the Use of Commercial Satellite Imagery for Monitoring of Yongbyon Nuclear Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyun; Kim, Min Soo [Korea Institute of Nuclear Nonproliferation and Control Daejeon (Korea, Republic of)

    2014-10-15

    It is particularly useful for the areas that are hard to access, such as the DPRK. On April 2009, North Korea expelled IAEA inspectors and USA disabling team at Yongbyon. Since then, there is not much left except for satellite imagery analysis. In this paper, we focused on the growing role and importance of commercial satellite imagery analysis for detecting and identifying nuclear activities at Yongbyon. For this, we examined monitoring capability of commercial satellite imagery status of commercial satellite imagery analysis to monitor the Yongbyon nuclear site. And we suggested several recommendations for enhancing the monitoring and analyzing capability. Current commercial satellite imagery has proven effective in monitoring for Yongbyon nuclear activities, especially change detection including the new construction activities. But identification and technical analysis of the operation status is still limited. In case of North Korea, operation status of 5 MWe reactor should be clearly identified to assess its plutonium production capability and to set up the negotiation strategy. To enhance the monitoring capability, we need much more thermal infrared imagery and radar imagery.

  15. ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2016-06-01

    Full Text Available The Very High Resolution (VHR satellite imageries such us Pleiades, WorldView-2, GeoEye-1 used for precise mapping purpose must be corrected from any distortion to achieve the expected accuracy. Orthorectification is performed to eliminate geometric errors of the VHR satellite imageries. Orthorectification requires main input data such as Digital Elevation Model (DEM and Ground Control Point (GCP. The VHR systematic-ortho imageries were generated using SRTM 30m DEM without using any GCP data. The accuracy value differences of VHR systematic-ortho imageries and VHR orthorectified imageries using GCP currently is not exactly defined. This study aimed to identified the accuracy comparison of VHR systematic-ortho imageries against orthorectified imageries using GCP. Orthorectified imageries using GCP created by using Rigorous model. Accuracy evaluation is calculated by using several independent check points.

  16. A data mining approach for sharpening satellite thermal imagery over land

    Science.gov (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  17. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  18. Generative Street Addresses from Satellite Imagery

    Directory of Open Access Journals (Sweden)

    İlke Demir

    2018-03-01

    Full Text Available We describe our automatic generative algorithm to create street addresses from satellite images by learning and labeling roads, regions, and address cells. Currently, 75% of the world’s roads lack adequate street addressing systems. Recent geocoding initiatives tend to convert pure latitude and longitude information into a memorable form for unknown areas. However, settlements are identified by streets, and such addressing schemes are not coherent with the road topology. Instead, we propose a generative address design that maps the globe in accordance with streets. Our algorithm starts with extracting roads from satellite imagery by utilizing deep learning. Then, it uniquely labels the regions, roads, and structures using some graph- and proximity-based algorithms. We also extend our addressing scheme to (i cover inaccessible areas following similar design principles; (ii be inclusive and flexible for changes on the ground; and (iii lead as a pioneer for a unified street-based global geodatabase. We present our results on an example of a developed city and multiple undeveloped cities. We also compare productivity on the basis of current ad hoc and new complete addresses. We conclude by contrasting our generative addresses to current industrial and open solutions.

  19. Commercial Satellite Imagery Analysis for Countering Nuclear Proliferation

    Science.gov (United States)

    Albright, David; Burkhard, Sarah; Lach, Allison

    2018-05-01

    High-resolution commercial satellite imagery from a growing number of private satellite companies allows nongovernmental analysts to better understand secret or opaque nuclear programs of countries in unstable or tense regions, called proliferant states. They include North Korea, Iran, India, Pakistan, and Israel. By using imagery to make these countries’ aims and capabilities more transparent, nongovernmental groups like the Institute for Science and International Security have affected the policies of governments and the course of public debate. Satellite imagery work has also strengthened the efforts of the International Atomic Energy Agency, thereby helping this key international agency build its case to mount inspections of suspect sites and activities. This work has improved assessments of the nuclear capabilities of proliferant states. Several case studies provide insight into the use of commercial satellite imagery as a key tool to educate policy makers and affect policy.

  20. Feature Detection Systems Enhance Satellite Imagery

    Science.gov (United States)

    2009-01-01

    In 1963, during the ninth orbit of the Faith 7 capsule, astronaut Gordon Cooper skipped his nap and took some photos of the Earth below using a Hasselblad camera. The sole flier on the Mercury-Atlas 9 mission, Cooper took 24 photos - never-before-seen images including the Tibetan plateau, the crinkled heights of the Himalayas, and the jagged coast of Burma. From his lofty perch over 100 miles above the Earth, Cooper noted villages, roads, rivers, and even, on occasion, individual houses. In 1965, encouraged by the effectiveness of NASA s orbital photography experiments during the Mercury and subsequent Gemini manned space flight missions, U.S. Geological Survey (USGS) director William Pecora put forward a plan for a remote sensing satellite program that would collect information about the planet never before attainable. By 1972, NASA had built and launched Landsat 1, the first in a series of Landsat sensors that have combined to provide the longest continuous collection of space-based Earth imagery. The archived Landsat data - 37 years worth and counting - has provided a vast library of information allowing not only the extensive mapping of Earth s surface but also the study of its environmental changes, from receding glaciers and tropical deforestation to urban growth and crop harvests. Developed and launched by NASA with data collection operated at various times by the Agency, the National Oceanic and Atmospheric Administration (NOAA), Earth Observation Satellite Company (EOSAT, a private sector partnership that became Space Imaging Corporation in 1996), and USGS, Landsat sensors have recorded flooding from Hurricane Katrina, the building boom in Dubai, and the extinction of the Aral Sea, offering scientists invaluable insights into the natural and manmade changes that shape the world. Of the seven Landsat sensors launched since 1972, Landsat 5 and Landsat 7 are still operational. Though both are in use well beyond their intended lifespans, the mid

  1. Learning target masks in infrared linescan imagery

    Science.gov (United States)

    Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter

    1997-04-01

    In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.

  2. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    Science.gov (United States)

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  3. Detection of pear thrips damage using satellite imagery data

    Science.gov (United States)

    James E. Vogelmann; Barrett N. Rock

    1991-01-01

    This study evaluates the potential of measuring, mapping and monitoring sugar maple damage caused by pear thrips in southern Vermont and northwestern Massachusetts using satellite imagery data. Landsat Thematic Mapper (TM) data were obtained during a major thrips infestation in June 1988, and were compared with satellite data acquired during June 1984 (before pear...

  4. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  5. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  6. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  7. Estimation of walrus populations on sea ice with infrared imagery and aerial photography

    Science.gov (United States)

    Udevitz, M.S.; Burn, D.M.; Webber, M.A.

    2008-01-01

    Population sizes of ice-associated pinnipeds have often been estimated with visual or photographic aerial surveys, but these methods require relatively slow speeds and low altitudes, limiting the area they can cover. Recent developments in infrared imagery and its integration with digital photography could allow substantially larger areas to be surveyed and more accurate enumeration of individuals, thereby solving major problems with previous survey methods. We conducted a trial survey in April 2003 to estimate the number of Pacific walruses (Odobenus rosmarus divergens) hauled out on sea ice around St. Lawrence Island, Alaska. The survey used high altitude infrared imagery to detect groups of walruses on strip transects. Low altitude digital photography was used to determine the number of walruses in a sample of detected groups and calibrate the infrared imagery for estimating the total number of walruses. We propose a survey design incorporating this approach with satellite radio telemetry to estimate the proportion of the population in the water and additional low-level flights to estimate the proportion of the hauled-out population in groups too small to be detected in the infrared imagery. We believe that this approach offers the potential for obtaining reliable population estimates for walruses and other ice-associated pinnipeds. ?? 2007 by the Society for Marine Mammalogy.

  8. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  9. Application of INSAT Satellite Cloud-Imagery Data for Site ...

    Indian Academy of Sciences (India)

    tribpo

    Application of INSAT Satellite Cloud-Imagery Data for Site Evaluation. Work of ... sources like Cyg X-3 and AM-Her binary systems (Bhat et al. 1986; Bhat et al. ... one is dealing with in the very high energy (VHE) and ultra high energy (UHE) .... shows the monthly distribution of 'spectroscopic' hours averaged over the 5-year.

  10. A Commercial Architecture for Satellite Imagery

    National Research Council Canada - National Science Library

    Didier, Christopher J

    2006-01-01

    .... This study focuses on the concept of the U.S. government purchasing proven and successful commercial satellites with minimal non-recurring engineering costs to help augment current national systems...

  11. Satellite Imagery Analysis for Automated Global Food Security Forecasting

    Science.gov (United States)

    Moody, D.; Brumby, S. P.; Chartrand, R.; Keisler, R.; Mathis, M.; Beneke, C. M.; Nicholaeff, D.; Skillman, S.; Warren, M. S.; Poehnelt, J.

    2017-12-01

    The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. Cloud computing and storage, combined with recent advances in machine learning, are enabling understanding of the world at a scale and at a level of detail never before feasible. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and that can scale with the high-rate and dimensionality of imagery being collected. We focus on the problem of monitoring food crop productivity across the Middle East and North Africa, and show how an analysis-ready, multi-sensor data platform enables quick prototyping of satellite imagery analysis algorithms, from land use/land cover classification and natural resource mapping, to yearly and monthly vegetative health change trends at the structural field level.

  12. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    Science.gov (United States)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  13. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  14. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    Science.gov (United States)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  15. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a 'Model Protocol Additional to Safeguards Agreements'. The Protocol provides the legal basis necessary to enhance the Agency's ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following 'Implementation Blueprint' study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small 'imagery unit' within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild's long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small 'imagery unit' using high-resolution data will be a sound and

  16. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  17. VHR satellite imagery for humanitarian crisis management: a case study

    Science.gov (United States)

    Bitelli, Gabriele; Eleias, Magdalena; Franci, Francesca; Mandanici, Emanuele

    2017-09-01

    During the last years, remote sensing data along with GIS have been largely employed for supporting emergency management activities. In this context, the use of satellite images and derived map products has become more common also in the different phases of humanitarian crisis response. In this work very high resolution satellite imagery was processed to assess the evolution of Za'atari Refugee Camp, built in Jordan in 2012 by the UN Refugee Agency to host Syrian refugees. Multispectral satellite scenes of the Za'atari area were processed by means of object-based classifications. The main aim of the present work is the development of a semiautomated procedure for multi-temporal camp monitoring with particular reference to the dwellings detection. Whilst in the emergency mapping domain automation of feature extraction is widely investigated, in the field of humanitarian missions the information is often extracted by means of photointerpretation of the satellite data. This approach requires time for the interpretation; moreover, it is not reliable enough in complex situations, where features of interest are often small, heterogeneous and inconsistent. Therefore, the present paper discusses a methodology to obtain information for assisting humanitarian crisis management, using a semi-automatic classification approach applied to satellite imagery.

  18. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  19. Landslide detection using very high-resolution satellite imageries

    Science.gov (United States)

    Suga, Yuzo; Konishi, Tomohisa

    2012-10-01

    The heavy rain induced by the 12th typhoon caused landslide disaster at Kii Peninsula in the middle part of Japan. We propose a quick response method for landslide disaster mapping using very high resolution (VHR) satellite imageries. Especially, Synthetic Aperture Radar (SAR) is effective because it has the capability of all weather and day/night observation. In this study, multi-temporal COSMO-SkyMed imageries were used to detect the landslide areas. It was difficult to detect the landslide areas using only backscatter change pattern derived from pre- and post-disaster COSMOSkyMed imageries. Thus, the authors adopted a correlation analysis which the moving window was selected for the correlation coefficient calculation. Low value of the correlation coefficient reflects land cover change between pre- and post-disaster imageries. This analysis is effective for the detection of landslides using SAR data. The detected landslide areas were compared with the area detected by EROS-B high resolution optical image. In addition, we have developed 3D viewing system for geospatial visualizing of the damaged area using these satellite image data with digital elevation model. The 3D viewing system has the performance of geographic measurement with respect to elevation height, area and volume calculation, and cross section drawing including landscape viewing and image layer construction using a mobile personal computer with interactive operation. As the result, it was verified that a quick response for the detection of landslide disaster at the initial stage could be effectively performed using optical and SAR very high resolution satellite data by means of 3D viewing system.

  20. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    Science.gov (United States)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  1. Processing Satellite Imagery To Detect Waste Tire Piles

    Science.gov (United States)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  2. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  3. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    Science.gov (United States)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  4. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  5. Satellite Imagery Production and Processing Using Apache Hadoop

    Science.gov (United States)

    Hill, D. V.; Werpy, J.

    2011-12-01

    The United States Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center Land Science Research and Development (LSRD) project has devised a method to fulfill its processing needs for Essential Climate Variable (ECV) production from the Landsat archive using Apache Hadoop. Apache Hadoop is the distributed processing technology at the heart of many large-scale, processing solutions implemented at well-known companies such as Yahoo, Amazon, and Facebook. It is a proven framework and can be used to process petabytes of data on thousands of processors concurrently. It is a natural fit for producing satellite imagery and requires only a few simple modifications to serve the needs of science data processing. This presentation provides an invaluable learning opportunity and should be heard by anyone doing large scale image processing today. The session will cover a description of the problem space, evaluation of alternatives, feature set overview, configuration of Hadoop for satellite image processing, real-world performance results, tuning recommendations and finally challenges and ongoing activities. It will also present how the LSRD project built a 102 core processing cluster with no financial hardware investment and achieved ten times the initial daily throughput requirements with a full time staff of only one engineer. Satellite Imagery Production and Processing Using Apache Hadoop is presented by David V. Hill, Principal Software Architect for USGS LSRD.

  6. Automated Generation of the Alaska Coastline Using High-Resolution Satellite Imagery

    Science.gov (United States)

    Roth, G.; Porter, C. C.; Cloutier, M. D.; Clementz, M. E.; Reim, C.; Morin, P. J.

    2015-12-01

    Previous campaigns to map Alaska's coast at high resolution have relied on airborne, marine, or ground-based surveying and manual digitization. The coarse temporal resolution, inability to scale geographically, and high cost of field data acquisition in these campaigns is inadequate for the scale and speed of recent coastal change in Alaska. Here, we leverage the Polar Geospatial Center (PGC) archive of DigitalGlobe, Inc. satellite imagery to produce a state-wide coastline at 2 meter resolution. We first select multispectral imagery based on time and quality criteria. We then extract the near-infrared (NIR) band from each processed image, and classify each pixel as water or land with a pre-determined NIR threshold value. Processing continues with vectorizing the water-land boundary, removing extraneous data, and attaching metadata. Final coastline raster and vector products maintain the original accuracy of the orthorectified satellite data, which is often within the local tidal range. The repeat frequency of coastline production can range from 1 month to 3 years, depending on factors such as satellite capacity, cloud cover, and floating ice. Shadows from trees or structures complicate the output and merit further data cleaning. The PGC's imagery archive, unique expertise, and computing resources enabled us to map the Alaskan coastline in a few months. The DigitalGlobe archive allows us to update this coastline as new imagery is acquired, and facilitates baseline data for studies of coastal change and improvement of topographic datasets. Our results are not simply a one-time coastline, but rather a system for producing multi-temporal, automated coastlines. Workflows and tools produced with this project can be freely distributed and utilized globally. Researchers and government agencies must now consider how they can incorporate and quality-control this high-frequency, high-resolution data to meet their mapping standards and research objectives.

  7. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2016-10-01

    Full Text Available A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington of Kansas (total of 457 ha. Three basic tests were conducted on the data: (1 spatial dependence on each of the yield and vegetation indices (VIs using Moran’s I test; (2 model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS and spatial econometric (SPL models; and (3 model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG was tested positive and statistically significant for most of the fields (p < 0.05, except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02 was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to

  8. Cultural Artifact Detection in Long Wave Infrared Imagery.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dylan Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craven, Julia M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ramon, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    Detection of cultural artifacts from airborne remotely sensed data is an important task in the context of on-site inspections. Airborne artifact detection can reduce the size of the search area the ground based inspection team must visit, thereby improving the efficiency of the inspection process. This report details two algorithms for detection of cultural artifacts in aerial long wave infrared imagery. The first algorithm creates an explicit model for cultural artifacts, and finds data that fits the model. The second algorithm creates a model of the background and finds data that does not fit the model. Both algorithms are applied to orthomosaic imagery generated as part of the MSFE13 data collection campaign under the spectral technology evaluation project.

  9. Automated vehicle detection in forward-looking infrared imagery.

    Science.gov (United States)

    Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung

    2004-01-10

    We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here.

  10. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  11. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  12. Early results from the Infrared Astronomical Satellite

    International Nuclear Information System (INIS)

    Neugebauer, G.; Beichman, C.A.; Soifer, B.T.

    1984-01-01

    For 10 months the Infrared Astronomical Satellite (IRAS) provided astronomers with what might be termed their first view of the infrared sky on a clear, dark night. Without IRAS, atmospheric absorption and the thermal emission from both the atmosphere and Earthbound telescopes make the task of the infrared astronomer comparable to what an optical astronomer would face if required to work only on cloudy afternoons. IRAS observations are serving astronomers in the same manner as the photographic plates of the Palomar Observatory Sky Survey; just as the optical survey has been used by all astronomers for over three decades, as a source of quantitative information about the sky and as a roadmap for future observations, the results of IRAS will be studied for years to come. IRAS has demonstrated the power of infrared astronomy from space. Already, from a brief look at a miniscule fraction of the data available, we have learned much about the solar system, about nearby stars, about the Galaxy as a whole and about distant extragalactic systems. Comets are much dustier than previously thought. Solid particles, presumably the remnants of the star-formation process, orbit around Vega and other stars and may provide the raw material for planetary systems. Emission from cool interstellar material has been traced throughout the Galaxy all the way to the galactic poles. Both the clumpiness and breadth of the distribution of this material were previously unsuspected. The far-infrared sky away from the galactic plane has been found to be dominate by spiral galaxies, some of which emit more than 50% and as much as 98% of their energy in the infrared - an exciting and surprising revelation. The IRAS mission is clearly the pathfinder for future mission that, to a large extent, will be devoted to the discoveries revealed by IRAS. 8 figures

  13. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  14. VERTICAL ACCURACY COMPARISON OF DIGITAL ELEVATION MODEL FROM LIDAR AND MULTITEMPORAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Octariady

    2017-05-01

    Full Text Available Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013–2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.

  15. Users, uses, and value of Landsat satellite imagery: results from the 2012 survey of users

    Science.gov (United States)

    Miller, Holly M.; Richardson, Leslie A.; Koontz, Stephen R.; Loomis, John; Koontz, Lynne

    2013-01-01

    Landsat satellites have been operating since 1972, providing a continuous global record of the Earth’s land surface. The imagery is currently available at no cost through the U.S. Geological Survey (USGS). Social scientists at the USGS Fort Collins Science Center conducted an extensive survey in early 2012 to explore who uses Landsat imagery, how they use the imagery, and what the value of the imagery is to them. The survey was sent to all users registered with USGS who had accessed Landsat imagery in the year prior to the survey and over 11,000 current Landsat imagery users responded. The results of the survey revealed that respondents from many sectors use Landsat imagery in myriad project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance of and dependence on the imagery, the numerous environmental and societal benefits observed from projects using Landsat imagery, the potential negative impacts on users’ work if Landsat imagery was no longer available, and the substantial aggregated annual economic benefit from the imagery. These results represent only the value of Landsat to users registered with USGS; further research would help to determine what the value of the imagery is to a greater segment of the population, such as downstream users of the imagery and imagery-derived products.

  16. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  17. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    Science.gov (United States)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  18. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    Science.gov (United States)

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  19. Earth mapping - aerial or satellite imagery comparative analysis

    Science.gov (United States)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  20. TESTFIELD TRENTO: GEOMETRIC EVALUATION OF VERY HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2012-07-01

    Full Text Available Today the use of spaceborne Very High Spatial Resolution (VHSR optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM Unit of the Bruno Kessler Foundation (FBK in Trento (Italy has collected stereo VHSR satellite imagery, as well as aerial and terrestrial data over Trento, with the aim to create a complete data collection with state-of-the-art datasets for investigations on image analysis, automatic digital surface model (DSM generation, 2D/3D feature extraction, city modelling and data fusion. The testfield region covers the city of Trento, characterised by very dense urban (historical centre, residential and industrial areas, and the surrounding hills and steep mountains (approximate height range 200-2100 m with cultivations, forests and bare soil. This paper reports the analysis conducted in FBK on the VHSR spaceborne imagery of Trento testfield for 3D information extraction. The data include two stereo-pairs acquired by WorldView-2 in August 2010 and by GeoEye-1 in September 2011 in panchromatic and multispectral mode, together with their original Rational Polynomial Coefficients (RPC, and the position and description of well distributed ground points. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project and the dataset characteristics. The results achieved by 3DOM on DSM extraction from WorldView-2 and GeoEye-1 stereo-pairs are shown and commented.

  1. Cloud detection method for Chinese moderate high resolution satellite imagery (Conference Presentation)

    Science.gov (United States)

    Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo

    2016-10-01

    Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.

  2. Diurnal changes in ocean color sensed in satellite imagery

    Science.gov (United States)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  3. Nearshore Benthic Habitats of Timor-Leste Derived from WorldView-2 Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat classes were derived for nearshore waters (< 20 m depths) around Timor-Leste from DigitalGlobe WorldView-2 satellite imagery, acquired from Jan 26...

  4. Landsat 7 ETM/1G satellite imagery - Hawaiian Islands cloud-free mosaics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cloud-free Landsat satellite imagery mosaics of the islands of the main 8 Hawaiian Islands (Hawaii, Maui, Kahoolawe, Lanai, Molokai, Oahu, Kauai and Niihau). Landsat...

  5. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  6. The development of a land use inventory for regional planning using satellite imagery

    Science.gov (United States)

    Hessling, A. H.; Mara, T. G.

    1975-01-01

    Water quality planning in Ohio, Kentucky, and Indiana is reviewed in terms of use of land use data and satellite imagery. A land use inventory applicable to water quality planning and developed through computer processing of LANDSAT-1 imagery is described.

  7. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  8. Vessel and oil spill early detection using COSMO satellite imagery

    Science.gov (United States)

    Revollo, Natalia V.; Delrieux, Claudio A.

    2017-10-01

    Oil spillage is one of the most common sources of environmental damage in places where coastal wild life is found in natural reservoirs. This is especially the case in the Patagonian coast, with a littoral more than 5000 km long and a surface above a million and half square km. In addition, furtive fishery activities in Argentine waters are depleting the food supplies of several species, altering the ecological equilibrium. For this reason, early oil spills and vessel detection is an imperative surveillance task for environmental and governmental authorities. However, given the huge geographical extension, human assisted monitoring is unfeasible, and therefore real time remote sensing technologies are the only operative and economically feasible solution. In this work we describe the theoretical foundations and implementation details of a system specifically designed to take advantage of the SAR imagery delivered by two satellite constellations (the SAOCOM mission, developed by the Argentine Space Agency, and the COSMO mission, developed by the Italian Space Agency), to provide real-time detection of vessels and oil spills. The core of the system is based on pattern recognition over a statistical characterization of the texture patterns arising in the positive and negative conditions (i.e., vessel, oil, or plain sea surfaces). Training patterns were collected from a large number of previously reported contacts tagged by experts in the National Commission on Space Activities (CONAE). The resulting system performs well above the sensitivity and specificity of other avalilable systems.

  9. The use of color infrared imagery for the study of marsh buggy tracks

    Science.gov (United States)

    Whitehurst, C. A.; Doiron, L. N.

    1974-01-01

    Color infrared imagery is used to determine the location of buggy routes and to quantify the extent of tracks in a selected area where the marsh is seriously dissected. The imagery is used to show successive stages of destruction. It is recommended that alternate routes be identified in the operating area to eliminate continuous use of the same route and facilitate faster revegetation.

  10. VT Data - NAIP Color Infrared Imagery (0.6m) 2016, Statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The NAIP_0_6M_CLRIR_2016 dataset is a (60 centimeter) truecolor and infrared (4 band) NAIP imagery product acquired during the summer of 2016 by...

  11. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Directory of Open Access Journals (Sweden)

    G. Broquet

    2018-02-01

    Full Text Available This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA. This assessment is based on observing system simulation experiments (OSSEs with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ∼ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system

  12. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Science.gov (United States)

    Broquet, Grégoire; Bréon, François-Marie; Renault, Emmanuel; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Chevallier, Frédéric; Wu, Lin; Ciais, Philippe

    2018-02-01

    This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ˜ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the

  13. Assessment on spatiotemporal relationship between rainfall and cloud top temperature from new generation weather satellite imagery

    Science.gov (United States)

    Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang

    2017-04-01

    This study addressed the relationship between rainfall and cloud top temperature (CCT) from new generation satellite Himawari-8 imagery at different spatiotemporal scale. This satellite provides higher band, more bits for data format, spatial and temporal resolution compared with previous GMS series. The multi-infrared channels with 10-minute and 1-2 km resolution make it possible for rainfall estimating/forecasting in small/medium watershed. The preliminary result investigated at Chenyulan watershed (443.6 square kilometer) of Central Taiwan in 2016 Typhoon Megi shows the regression coefficient fitted by negative exponential equation of largest rainfall vs. CCT (B8 band) at pixel scale increases as time scales enlarges and reach 0.462 for 120-minute accumulative rainfall; the value (CTT of B15 band) decreases from 0.635 for 10-minute to 0.423 for 120-minute accumulative rainfall at basin-wide scale. More rainfall events for different regime are yet to evaluate to get solid results.

  14. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  15. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  16. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    Science.gov (United States)

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  17. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  18. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  19. Enhanced processing of SPOT multispectral satellite imagery for environmental monitoring and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.

    2010-07-01

    acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive (rho{sub s}) within an RMSE of < 0.02 (rho{sub s}) in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium and high-resolution optical satellite imagery, as well the utilized SPOT data. (orig.)

  20. Satellite Map of Port-au-Prince, Haiti-2010-Infrared

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  1. Identification of High-Variation Fields based on Open Satellite Imagery

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Høxbroe; Jacobsen, Rune Hylsberg; Nyholm Jørgensen, Rasmus

    2017-01-01

    . The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update......This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective...

  2. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2016-12-01

    Full Text Available Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC, atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  3. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Science.gov (United States)

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-01-01

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261

  4. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  5. The Potential Uses of Commercial Satellite Imagery in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The value of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.

  6. The employment of weather satellite imagery in an effort to identify and locate the forest-tundra ecotone in Canada

    Science.gov (United States)

    Aldrich, S. A.; Aldrich, F. T.; Rudd, R. D.

    1969-01-01

    Weather satellite imagery provides the only routinely available orbital imagery depicting the high latitudes. Although resolution is low on this imagery, it is believed that a major natural feature, notably linear in expression, should be mappable on it. The transition zone from forest to tundra, the ecotone, is such a feature. Locational correlation is herein established between a linear signature on the imagery and several ground truth positions of the ecotone in Canada.

  7. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation.

    Directory of Open Access Journals (Sweden)

    Masahito Mihara

    Full Text Available Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS, two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients.

  8. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  9. "Data Day" and "Data Night" Definitions - Towards Producing Seamless Global Satellite Imagery

    Science.gov (United States)

    Schmaltz, J. E.

    2017-12-01

    For centuries, the art and science of cartography has struggled with the challenge of mapping the round earth on to a flat page, or a flat computer monitor. Earth observing satellites with continuous monitoring of our planet have added the additional complexity of the time dimension to this procedure. The most common current practice is to segment this data by 24-hour Coordinated Universal Time (UTC) day and then split the day into sun side "Data Day" and shadow side "Data Night" global imagery that spans from dateline to dateline. Due to the nature of satellite orbits, simply binning the data by UTC date produces significant discontinuities at the dateline for day images and at Greenwich for night images. Instead, imagery could be generated in a fashion that follows the spatial and temporal progression of the satellite which would produce seamless imagery everywhere on the globe for all times. This presentation will explore approaches to produce such imagery but will also address some of the practical and logistical difficulties in implementing such changes. Topics will include composites versus granule/orbit based imagery, day/night versus ascending/descending definitions, and polar versus global projections.

  10. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  11. Using satellite imagery to assess the influence of urban development on the impacts of extreme rainfall

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin; Madsen, Henrik

    We investigate the applicability of medium resolution Landsat satellite imagery for mapping temporal changes in urban land cover for direct use in urban flood models. The overarching aim is to provide accurate and cost- and resource-efficient quantification of temporal changes in risk towards...

  12. Improved wetland classification using eight-band high-resolution satellite imagery and a hybrid approach

    Science.gov (United States)

    Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of derived wetland maps were limited or often unsatisfactory largely due to the relatively coarse spatial resolution of conventional satellite imagery. This re...

  13. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  14. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  15. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J.

    1973-01-01

    Multispectral scanner images taken by the ERTS-1 satellite in August and October, 1972, were examined to determine if they would be useful in identifying and mapping favorable habitat for grizzly bears. It was possible to identify areas having a suitable mixture of alpine meadow and timber, and to eliminate those which did not meet the isolation requirements of grizzlies because of farming or grazing activity. High altitude timbered areas mapped from satellite imagery agreed reasonably well with the distribution of whitebark pine, an important food species. Analysis of satellite imagery appears to be a valuable supplement to present ground observation methods, since it allows the most important areas to be identified for intensive study and many others to be eliminated from consideration. A sampling plan can be developed from such data which will minimize field effort and overall program cost.

  16. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  17. Modelling avian biodiversity using raw, unclassified satellite imagery.

    Science.gov (United States)

    St-Louis, Véronique; Pidgeon, Anna M; Kuemmerle, Tobias; Sonnenschein, Ruth; Radeloff, Volker C; Clayton, Murray K; Locke, Brian A; Bash, Dallas; Hostert, Patrick

    2014-01-01

    Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.

  18. Study of the Nevada Test Site using Landsat satellite imagery

    International Nuclear Information System (INIS)

    Zimmerman, P.D.

    1993-07-01

    In the period covered by the purchase order CSIS has obtained one Landsat image and determined that two images previously supplied to the principal investigator under a subcontract with George Washington University were inherently defective. We have negotiated with EOSAT over the reprocessing of those scenes and anticipate final delivery within the next few weeks. A critical early purchase during the subcontract period was of an EXABYTE tape drive, Adaptec SCSI interface, and the appropriate software with which to read Landsat images at CSIS. This gives us the capability of reading and manipulating imagery in house without reliance on outside services which have not proven satisfactory. In addition to obtaining imagery for the study, we have also performed considerable analytic work on the newly and previously purchased images. A technique developed under an earlier subcontract for identifying underground nuclear tests at Pahute Mesa has been significantly refined, and similar techniques were applied to the summit of Rainier Mesa and to the Yucca Flats area. An entirely new technique for enhancing the spectral signatures of different regions of NTS was recently developed, and appears to have great promise of success

  19. Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery

    Science.gov (United States)

    Kit, Oleksandr; Lüdeke, Matthias

    2013-09-01

    This paper presents an approach to automated identification of slum area change patterns in Hyderabad, India, using multi-year and multi-sensor very high resolution satellite imagery. It relies upon a lacunarity-based slum detection algorithm, combined with Canny- and LSD-based imagery pre-processing routines. This method outputs plausible and spatially explicit slum locations for the whole urban agglomeration of Hyderabad in years 2003 and 2010. The results indicate a considerable growth of area occupied by slums between these years and allow identification of trends in slum development in this urban agglomeration.

  20. Tracking an Oil Tanker Collision and Spilled Oils in the East China Sea Using Multisensor Day and Night Satellite Imagery

    Science.gov (United States)

    Sun, Shaojie; Lu, Yingcheng; Liu, Yongxue; Wang, Mengqiu; Hu, Chuanmin

    2018-04-01

    Satellite remote sensing is well known to play a critical role in monitoring marine accidents such as oil spills, yet the recent SANCHI oil tanker collision event in January 2018 in the East China Sea indicates that traditional techniques using synthetic aperture radar or daytime optical imagery could not provide timely and adequate coverage. In this study, we show the unprecedented value of Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire product and Day/Night Band data in tracking the oil tanker's drifting pathway and locations when all other means are not as effective for the same purpose. Such pathway and locations can also be reproduced with a numerical model, with root-mean-square error of days of the tanker's sinking reveals much larger oil spill area (>350 km2) than previous reports, the impact of the spilled condensate oil on the marine environment requires further research.

  1. Forward looking anomaly detection via fusion of infrared and color imagery

    Science.gov (United States)

    Stone, K.; Keller, J. M.; Popescu, M.; Havens, T. C.; Ho, K. C.

    2010-04-01

    This paper develops algorithms for the detection of interesting and abnormal objects in color and infrared imagery taken from cameras mounted on a moving vehicle, observing a fixed scene. The primary purpose of detection is to cue a human-in-the-loop detection system. Algorithms for direct detection and change detection are investigated, as well as fusion of the two. Both methods use temporal information to reduce the number of false alarms. The direct detection algorithm uses image self-similarity computed between local neighborhoods to determine interesting, or unique, parts of an image. Neighborhood similarity is computed using Euclidean distance in CIELAB color space for the color imagery, and Euclidean distance between grey levels in the infrared imagery. The change detection algorithm uses the affine scale-invariant feature transform (ASIFT) to transform multiple background frames into the current image space. Each transformed image is then compared to the current image, and the multiple outputs are fused to produce a single difference image. Changes in lighting and contrast between the background run and the current run are adjusted for in both color and infrared imagery. Frame-to-frame motion is modeled using a perspective transformation, the parameters of which are computed using scale-invariant feature transform (SIFT) keypoint correspondences. This information is used to perform temporal accumulation of single frame detections for both the direct detection and change detection algorithms. Performance of the proposed algorithms is evaluated on multiple lanes from a data collection at a US Army test site.

  2. Evidence of transport of hazy air masses from satellite imagery

    International Nuclear Information System (INIS)

    Lyons, W.A.

    1980-01-01

    Some observations of major aerosol events in the atmosphere by meteorological satellites are reviewed. The events included a massive plume of smoke from a Hawaiian volcanic eruption, dust plumes originating from the Sahara Desert and the central U.S., smoke from a small forest fire, and sulfate aerosol hazes. It is concluded that the routine detection and tracking of synoptic-scale pollution episodes, along with quantitative measurements of their intensity, are entirely feasible with existing spacecraft and data analysis systems

  3. Improved Wetland Classification Using Eight-Band High Resolution Satellite Imagery and a Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Charles R. Lane

    2014-12-01

    Full Text Available Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of wetland maps derived with moderate resolution imagery and traditional techniques have been limited and often unsatisfactory. We explored and evaluated the utility of a newly launched high-resolution, eight-band satellite system (Worldview-2; WV2 for identifying and classifying freshwater deltaic wetland vegetation and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using a hybrid approach and a novel application of Indicator Species Analysis (ISA. We achieved an overall classification accuracy of 86.5% (Kappa coefficient: 0.85 for 22 classes of aquatic and wetland habitats and found that additional metrics, such as the Normalized Difference Vegetation Index and image texture, were valuable for improving the overall classification accuracy and particularly for discriminating among certain habitat classes. Our analysis demonstrated that including WV2’s four spectral bands from parts of the spectrum less commonly used in remote sensing analyses, along with the more traditional bandwidths, contributed to the increase in the overall classification accuracy by ~4% overall, but with considerable increases in our ability to discriminate certain communities. The coastal band improved differentiating open water and aquatic (i.e., vegetated habitats, and the yellow, red-edge, and near-infrared 2 bands improved discrimination among different vegetated aquatic and terrestrial habitats. The use of ISA provided statistical rigor in developing associations between spectral classes and field-based data. Our analyses demonstrated the utility of a hybrid approach and the benefit of additional bands and metrics in providing the first spatially explicit mapping of a large and heterogeneous wetland system.

  4. Stray radiation and the Infrared Astronomical Satellite /IRAS/ telescope

    Science.gov (United States)

    Noll, R. J.; Harned, R.; Breault, R. P.; Malugin, R.

    1981-01-01

    Stray light control is a major consideration in the design of infrared cryogenically cooled telescopes such as the Infrared Astronomical Satellite (IRAS). The basic design of the baffle system, and the placement, shape, and coating of the secondary support struts for the telescope subsystem are described. The intent of this paper is to highlight the stray light problems encountered while designing the system, and to illustrate how computer analysis can be a useful design aid. Scattering measurements of the primary mirror, and a full system level scatter measurement are presented. Comparisons of predicted performance with the measured results are also presented.

  5. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  6. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  7. Compressing interpreted satellite imagery for geographic information systems applications over extensive regions

    Science.gov (United States)

    Miller, Stephan W.

    1981-01-01

    Image processing systems (IPS) and techniques effectively transform satellite imagery into data for input into a spatial database. Geographic information systems (GIS), consisting of graphic input and spatial database management subsystems, are capable of processing digital map and map overlay data to build and manipulate a spatial database. These systems can be successfully integrated to create a successful spatial data handling capability provided certain obstacle are understood and overcome.

  8. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  9. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  10. Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery

    Science.gov (United States)

    Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.

    2015-04-01

    Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.

  11. Polar bears from space: Assessing satellite imagery as a tool to track Arctic wildlife

    Science.gov (United States)

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  12. Satellite Imagery and In-situ Data Overlay Approach for Fishery Zonation

    Directory of Open Access Journals (Sweden)

    Fardhi Adria

    2010-12-01

    Full Text Available Remote sensing technology can be used to better understand the earth’s characteristics. SeaWiFS (sea-viewing wide field-of-view sensor is one of remote sensors used to observe global ocean phenomena. Previous studies showed that the distribution of chlorophyll-a in the ocean indicates the presence of fish. However, only a few studies tried to directly relate the chlorophyll-a distribution obtained through interpretation of satellite imagery to in-situ data of fish distribution. This paper investigates the relation between chlorophyll-a distribution and fish-capturing points in Aceh Province sea waters using overlay image analysis. The results are then used to identify the potential fishing ground in Aceh. The profile of chlorophyll-a concentration is derived from SeaWIFS satellite imagery. Fish-capturing points data is obtained from the fisherman communities of Banda Aceh, starting from June to November 2008. The results showed that the chlorophyll-a profile derived from satellite imagery has a positive relationship to fish-capturing point data. The most potential fish-capturing zone in Aceh sea waters is identified at 5-8º north latitude (N and 96-99º east longitude (E.

  13. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Directory of Open Access Journals (Sweden)

    Seth Stapleton

    Full Text Available Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105 was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152. Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  14. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Science.gov (United States)

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  15. PLASTIC AND GLASS GREENHOUSES DETECTION AND DELINEATION FROM WORLDVIEW-2 SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    D. Koc-San

    2016-06-01

    Full Text Available Greenhouse detection using remote sensing technologies is an important research area for yield estimation, sustainable development, urban and rural planning and management. An approach was developed in this study for the detection and delineation of greenhouse areas from high resolution satellite imagery. Initially, the candidate greenhouse patches were detected using supervised classification techniques. For this purpose, Maximum Likelihood (ML, Random Forest (RF, and Support Vector Machines (SVM classification techniques were applied and compared. Then, sieve filter and morphological operations were performed for improving the classification results. Finally, the obtained candidate plastic and glass greenhouse areas were delineated using boundary tracing and Douglas Peucker line simplification algorithms. The proposed approach was implemented in the Kumluca district of Antalya, Turkey utilizing pan-sharpened WorldView-2 satellite imageries. Kumluca is the prominent district of Antalya with greenhouse cultivation and includes both plastic and glass greenhouses intensively. When the greenhouse classification results were analysed, it can be stated that the SVM classification provides most accurate results and RF classification follows this. The SVM classification overall accuracy was obtained as 90.28%. When the greenhouse boundary delineation results were considered, the plastic greenhouses were delineated with 92.11% accuracy, while glass greenhouses were delineated with 80.67% accuracy. The obtained results indicate that, generally plastic and glass greenhouses can be detected and delineated successfully from WorldView-2 satellite imagery.

  16. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    Science.gov (United States)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  17. MIS photodetectors on intrinsic semiconductors for thermal infrared imagery - A design aid for focal plane matrices

    Science.gov (United States)

    Farre, J.

    1980-12-01

    The physical mechanisms determining the operational behavior of an MIS photodetector for thermal infrared imagery based on a two-dimensional matrix of intrinsic semiconductors constituting a charge injection device are examined. The general principles of a thermal infrared imagery system composed of radiation source, atmosphere, sensor system with entrance optics, detector and environment, and data processing means are introduced, and the parameters of the system as a whole influencing detector characteristics are indicated. The properties of an ideal and a real MIS photodetector are discussed, with attention given to the physical properties of narrow bandgap materials such as InSb, operational properties in the dynamic regime, the carrier tunneling component and experimentally observed instability phenomena. The matrix organization of MIS photodetectors is then considered, with particular attention given to a simple model of charge transfer between two electrodes and the two principal reading mechanisms: charge injection and the floating potential method.

  18. ASSESSMENT OF ATMOSPHERIC CORRECTION METHODS FOR OPTIMIZING HAZY SATELLITE IMAGERIES

    Directory of Open Access Journals (Sweden)

    Umara Firman Rizidansyah

    2015-04-01

    Full Text Available The purpose of this research is to examine suitability of three types of haze correction methods toward distinctness of surface objects in land cover. Considering the formation of haze therefore the main research are divided into both region namely rural assumed as vegetation and urban assumed as non vegetation area. Region of interest for rural selected Balaraja and urban selected Penjaringan. Haze imagery reduction utilized techniques such as Dark Object Substration, Virtual Cloud Point and Histogram Match. By applying an equation of Haze Optimized Transformation HOT = DNbluesin(∂-DNredcos(∂, the main result of this research includes: in the case of AVNIR-Rural, VCP has good results on Band 1 while the HM has good results on band 2, 3 and 4, therefore in the case of Avnir-Rural can be applied to HM. in the case of AVNIR-Urban, DOS has good result on band 1, 2 and 3 meanwhile HM has good results on band 4, therefore in the case of AVNIR-Urban can be applied to DOS. In the case of Landsat-Rural, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 4 and 5 and the smallest average value of HOT is 106.547 by VCP, therefore in the case of Lansat-Rural can be applied to DOS and VCP. In the case of Landsat-Urban, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 3, 4 and 5, therefore in the case of Landsat-Urban can be applied to VCP.   Tujuan penelitian ini untuk menguji kesesuaian tiga jenis metode koreksi haze terhadap kejelasan obyek permukaan di wilayah tutupan vegetasi dan non vegetasi, berkenaan menghilangkan haze di wilayah citra satelit optis yang memiliki karakteristik tertentu dan diduga proses pembentukan partikel hazenya berbeda. Sehingga daerah penelitian dibagi menjadi wilayah rural yang diasumsikan sebagai daerah vegetasi dan urban sebagai non vegetasi. Pedesaan terpilih kecamatan Balaraja dan Perkotaan terpilih kecamatan Penjaringan. Tiap lokasi menggunakan Avnir-2 dan Landsat

  19. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  20. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    Science.gov (United States)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  1. Analysis on the Utility of Satellite Imagery for Detection of Agricultural Facility

    Science.gov (United States)

    Kang, J.-M.; Baek, S.-H.; Jung, K.-Y.

    2012-07-01

    Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more effective

  2. ANALYSIS ON THE UTILITY OF SATELLITE IMAGERY FOR DETECTION OF AGRICULTURAL FACILITY

    Directory of Open Access Journals (Sweden)

    J.-M. Kang

    2012-07-01

    Full Text Available Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more

  3. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  4. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV in certain areas, but large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  5. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  6. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  7. Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa.

    Science.gov (United States)

    Yang, S; Li, X; Chen, C; Kyveryga, P; Yang, X B

    2016-08-01

    Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.

  8. Groundwater discharge mapping by thermal infra-red imagery

    International Nuclear Information System (INIS)

    Brereton, N.R.

    1984-02-01

    An area around Altnabreac in northern Scotland has been studied as part of the UK programme of research into the feasibility of disposal of radioactive waste into geological formations. An essential prerequisite to being able to predict the behaviour, migratory pathways and travel times of radionuclides emanating from a waste repository is an understanding of the regional and near surface groundwater flow systems and groundwater geochemical evolution. The groundwater system at depth has been studied by means of boreholes but an understanding of the shallow groundwater flow, and its interaction with groundwater upwelling from depth, can be gained from studies of the spatial distribution and geochemistry of surface springs and discharges. A survey was carried out using the thermal infra-red linescan technique with the objective of locating all significant spring discharges over the study area. The terrain around Altnabreac is largely covered by superficial deposits which overlie weathered granite. The survey was carried out from a height of 275m at a spatial resolution of about 0.5m. About 280 line Km were covered but allowing for overlap between adjacent flight lines and some repeat coverage, the actual area surveyed was 68 sq Km. The most striking aspect of the results is the wide distribution of groundwater discharges in the Altnabreac area. An analysis of the data identified three general categories of spring and many of these springs were subsequently visited for verification and to allow samples to be collected for chemical analysis. The results from this survey indicates that the groundwater table is strongly influenced by local topography and that the majority of the spring discharges represent near surface recent groundwaters circulating within the superficial deposits and weathered granite

  9. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  10. Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping

    Directory of Open Access Journals (Sweden)

    Dimitris G. Stavrakoudis

    2014-07-01

    Full Text Available This study investigates the effectiveness of combining multispectral very high resolution (VHR and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM. The classification result from the hyperspectral image is then resampled to the multispectral’s spatial resolution and the two sources are combined using a simple yet efficient fusion operator. Thus, the complementary information provided from the two sources is effectively exploited, without having to resort to computationally demanding and time-consuming typical data fusion or vector stacking approaches. The effectiveness of the proposed methodology is validated in a complex Mediterranean forest landscape, comprising spectrally similar and spatially intermingled species. The decision fusion scheme resulted in an accuracy increase of 8% compared to the classification using only the multispectral imagery, whereas the increase was even higher compared to the classification using only the hyperspectral satellite image. Perhaps most importantly, its accuracy was significantly higher than alternative multisource fusion approaches, although the latter are characterized by much higher computation, storage, and time requirements.

  11. On land-use modeling: A treatise of satellite imagery data and misclassification error

    Science.gov (United States)

    Sandler, Austin M.

    Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.

  12. Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana: A Case Study in Bundaberg, Australia

    Directory of Open Access Journals (Sweden)

    Andrew Robson

    2017-11-01

    Full Text Available Accurate pre-harvest estimation of avocado (Persea americana cv. Haas yield offers a range of benefits to industry and growers. Currently there is no commercial yield monitor available for avocado tree crops and the manual count method used for yield forecasting can be highly inaccurate. Remote sensing using satellite imagery offers a potential means to achieve accurate pre-harvest yield forecasting. This study evaluated the accuracies of high resolution WorldView (WV 2 and 3 satellite imagery and targeted field sampling for the pre-harvest prediction of total fruit weight (kg·tree−1 and average fruit size (g and for mapping the spatial distribution of these yield parameters across the orchard block. WV 2 satellite imagery was acquired over two avocado orchards during 2014, and WV3 imagery was acquired in 2016 and 2017 over these same two orchards plus an additional three orchards. Sample trees representing high, medium and low vigour zones were selected from normalised difference vegetation index (NDVI derived from the WV images and sampled for total fruit weight (kg·tree−1 and average fruit size (g per tree. For each sample tree, spectral reflectance data was extracted from the eight band multispectral WV imagery and 18 vegetation indices (VIs derived. Principal component analysis (PCA and non-linear regression analysis was applied to each of the derived VIs to determine the index with the strongest relationship to the measured total fruit weight and average fruit size. For all trees measured over the three year period (2014, 2016, and 2017 a consistent positive relationship was identified between the VI using near infrared band one and the red edge band (RENDVI1 to both total fruit weight (kg·tree−1 (R2 = 0.45, 0.28, and 0.29 respectively and average fruit size (g (R2 = 0.56, 0.37, and 0.29 respectively across all orchard blocks. Separate analysis of each orchard block produced higher R2 values as well as identifying different

  13. Wide area change detection with satellite imagery for locating underground nuclear testing

    International Nuclear Information System (INIS)

    Canty, M.J.; Jasani, B.; Schlittenhardt, J.

    2001-01-01

    With the advent of high resolution optical imagery from commercial earth observation satellites, the use of remote sensing data for verification of nuclear non-proliferation agreements is becoming increasingly attractive. Non-governmental organizations are routinely publishing high-quality imagery of sensitive nuclear installations round the world, and international verification authorities, such as the International Atomic Energy Agency (IAEA) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), will also want to make use, directly or indirectly, of this additional open source of information. Exact location of the sites of underground nuclear explosions is a task eminently suited to satellite imagery. Here both moderate resolutions for detecting signals in very large testing ranges as well as high resolution images for exact interpretation play important roles. We describe in our paper a particularly sensitive change detection procedure for bitemporal, multispectral satellite imagery which can be used to locate the spall zone of underground nuclear explosions with commercial satellite imagery. The method is based on the multivariate alteration detection (MAD) technique of Nielsen et al. Linear combinations of the spectral channels in two images of the same scene are chosen so as to minimize their positive correlation. This leads to a series of difference images - the so-called MAD components - which are mutually orthogonal (uncorrelated) and ordered according to decreasing variance in their pixel intensities. Since interesting changes in man-made structures may contribute minimally to the overall variance (as the latter may be dominated for instance by seasonal vegetation differences) it is often the case that such changes turn up in a higher order MAD component. This is because they will be uncorrelated with seasonal vegetation changes, stochastic image noise or other major contributions to the overall change signal. This in fact is one of the

  14. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  15. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-01-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  16. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite Imagery Heterogeneity at Multiple Spatial Scales

    Science.gov (United States)

    Rocchini, Duccio

    2009-01-01

    Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600

  17. Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery

    Directory of Open Access Journals (Sweden)

    Nobuoto Nojima

    2010-09-01

    Full Text Available For a quick and stable estimation of earthquake damaged buildings worldwide, using Phased Array type L-band Synthetic Aperture Radar (PALSAR loaded on the Advanced Land Observing Satellite (ALOS satellite, a model combining the usage of satellite synthetic aperture radar (SAR imagery and Japan Meteorological Agency (JMA-scale seismic intensity is proposed. In order to expand the existing C-band SAR based damage estimation model into L-band SAR, this paper rebuilds a likelihood function for severe damage ratio, on the basis of dataset from Japanese Earth Resource Satellite-1 (JERS-1/SAR (L-band SAR images observed during the 1995 Kobe earthquake and its detailed ground truth data. The model which integrates the fragility functions of building damage in terms of seismic intensity and the proposed likelihood function is then applied to PALSAR images taken over the areas affected by the 2007 earthquake in Pisco, Peru. The accuracy of the proposed damage estimation model is examined by comparing the results of the analyses with field investigations and/or interpretation of high-resolution satellite images.

  18. Remote detection of physiological depression in crop plants with infrared thermal imagery

    International Nuclear Information System (INIS)

    Inoue, Y.

    1990-01-01

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis

  19. Remote detection of physiological depression in crop plants with infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y. [Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    1990-12-15

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis.

  20. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    Science.gov (United States)

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  1. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  2. Detection and Prediction of Hail Storms in Satellite Imagery using Deep Learning

    Science.gov (United States)

    Pullman, M.; Gurung, I.; Ramachandran, R.; Maskey, M.

    2017-12-01

    Natural hazards, such as damaging hail storms, dramatically disrupt both industry and agriculture, having significant socio-economic impacts in the United States. In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest 2016 weather phenomenon in the United States. The destructive nature and high cost of hail storms has driven research into the development of more accurate hail-prediction algorithms in an effort to mitigate societal impacts. Recently, weather forecasting efforts have turned to deep learning neural networks because neural networks can more effectively model complex, nonlinear, dynamical phenomenon that exist in large datasets through multiple stages of transformation and representation. In an effort to improve hail-prediction techniques, we propose a deep learning technique that leverages satellite imagery to detect and predict the occurrence of hail storms. The technique is applied to satellite imagery from 2006 to 2016 for the contiguous United States and incorporates hail reports obtained from the National Center for Environmental Information Storm Events Database for training and validation purposes. In this presentation, we describe a novel approach to predicting hail via a neural network model that creates a large labeled dataset of hail storms, the accuracy and results of the model, and its applications for improving hail forecasting.

  3. Ship detection in satellite imagery using rank-order greyscale hit-or-miss transforms

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Neal R [Los Alamos National Laboratory; Porter, Reid B [Los Alamos National Laboratory; Theiler, James [Los Alamos National Laboratory

    2010-01-01

    Ship detection from satellite imagery is something that has great utility in various communities. Knowing where ships are and their types provides useful intelligence information. However, detecting and recognizing ships is a difficult problem. Existing techniques suffer from too many false-alarms. We describe approaches we have taken in trying to build ship detection algorithms that have reduced false alarms. Our approach uses a version of the grayscale morphological Hit-or-Miss transform. While this is well known and used in its standard form, we use a version in which we use a rank-order selection for the dilation and erosion parts of the transform, instead of the standard maximum and minimum operators. This provides some slack in the fitting that the algorithm employs and provides a method for tuning the algorithm's performance for particular detection problems. We describe our algorithms, show the effect of the rank-order parameter on the algorithm's performance and illustrate the use of this approach for real ship detection problems with panchromatic satellite imagery.

  4. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Oscar Rojas

    2013-04-01

    Full Text Available Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.

  5. Satellite imagery-based monitoring of archaeological site damage in the Syrian civil war.

    Science.gov (United States)

    Casana, Jesse; Laugier, Elise Jakoby

    2017-01-01

    Since the start of the Syrian civil war in 2011, the rich archaeological heritage of Syria and northern Iraq has faced severe threats, including looting, combat-related damage, and intentional demolition of monuments. However, the inaccessibility of the conflict zone to archaeologists or cultural heritage specialists has made it difficult to produce accurate damage assessments, impeding efforts to develop mitigation strategies and policies. This paper presents results of a project, undertaken in collaboration with the American Schools of Oriental Research (ASOR) and the US Department of State, to monitor damage to archaeological sites in Syria, northern Iraq, and southern Turkey using recent, high-resolution satellite imagery. Leveraging a large database of archaeological and heritage sites throughout the region, as well as access to continually updated satellite imagery from DigitalGlobe, this project has developed a flexible and efficient methodology to log observations of damage in a manner that facilitates spatial and temporal queries. With nearly 5000 sites carefully evaluated, analysis reveals unexpected patterns in the timing, severity, and location of damage, helping us to better understand the evolving cultural heritage crisis in Syria and Iraq. Results also offer a model for future remote sensing-based archaeological and heritage monitoring efforts in the Middle East and beyond.

  6. Satellite imagery-based monitoring of archaeological site damage in the Syrian civil war.

    Directory of Open Access Journals (Sweden)

    Jesse Casana

    Full Text Available Since the start of the Syrian civil war in 2011, the rich archaeological heritage of Syria and northern Iraq has faced severe threats, including looting, combat-related damage, and intentional demolition of monuments. However, the inaccessibility of the conflict zone to archaeologists or cultural heritage specialists has made it difficult to produce accurate damage assessments, impeding efforts to develop mitigation strategies and policies. This paper presents results of a project, undertaken in collaboration with the American Schools of Oriental Research (ASOR and the US Department of State, to monitor damage to archaeological sites in Syria, northern Iraq, and southern Turkey using recent, high-resolution satellite imagery. Leveraging a large database of archaeological and heritage sites throughout the region, as well as access to continually updated satellite imagery from DigitalGlobe, this project has developed a flexible and efficient methodology to log observations of damage in a manner that facilitates spatial and temporal queries. With nearly 5000 sites carefully evaluated, analysis reveals unexpected patterns in the timing, severity, and location of damage, helping us to better understand the evolving cultural heritage crisis in Syria and Iraq. Results also offer a model for future remote sensing-based archaeological and heritage monitoring efforts in the Middle East and beyond.

  7. Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations.

    Science.gov (United States)

    Checchi, Francesco; Stewart, Barclay T; Palmer, Jennifer J; Grundy, Chris

    2013-01-23

    Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Our method consisted of multiplying (i) manual counts of assumed residential structures on a satellite image and (ii) estimates of the mean number of people per structure (structure occupancy) obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons' camps and two urban neighbourhoods with a mixture of residents and displaced) ranging in population from 1,969 to 90,547, and compared these to "gold standard" reference population figures from census or other robust methods. Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of layout. For each site, estimates were produced in 2-5 working person-days. In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method's development.

  8. Using Online Citizen Science to Assess Giant Kelp Abundances Across the Globe with Satellite Imagery

    Science.gov (United States)

    Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Rosenthal, I.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Global scale long-term data sets that document the patterns and variability of human impacts on marine ecosystems are rare. This lack is particularly glaring for underwater species - even moreso for ecologically important ones. Here we demonstrate how online Citizen Science combined with Landsat satellite imagery can help build a picture of change in the dynamics of giant kelp, an important coastal foundation species around the globe, from the 1984 to the present. Giant kelp canopy is visible from Landsat images, but these images defy easy machine classification. To get useful data, images must be processed by hand. While academic researchers have applied this method successfully at sub-regional scales, unlocking the value of the full global dataset has not been possible until given the massive effort required. Here we present Floating Forests (http://floatingforests.org), an international collaboration between kelp forest researchers and the citizen science organization Zooniverse. Floating Forests provides an interface that allows citizen scientists to identify canopy cover of giant kelp on Landsat images, enabling us to scale up the dataset to the globe. We discuss lessons learned from the initial version of the project launched in 2014, a prototype of an image processing pipeline to bring Landsat imagery to citizen science platforms, methods of assessing accuracy of citizen scientists, and preliminary data from our relaunch of the project. Through this project we have developed generalizable tools to facilitate citizen science-based analysis of Landsat and other satellite and aerial imagery. We hope that this create a powerful dataset to unlock our understanding of how global change has altered these critically important species in the sea.

  9. Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network

    Directory of Open Access Journals (Sweden)

    Aoran Xiao

    2018-04-01

    Full Text Available Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method’s practicality. Experimental results on “Jilin-1” satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  10. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.

    Science.gov (United States)

    Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-04-13

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  11. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approxima......The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...

  12. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Bishop, C; Hawkins, O; Grealey, E; Cox, C; Thomas, D; Trimel, S, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth (United Kingdom); DMC International Imaging, Tycho House, Surrey Research Park, Guildford (United Kingdom); Qinetiq, Cody Technology Park, Cody Building, Ively Road, Farnborough (United Kingdom); Humanitarian Aid Relief Trust (HART), 3 Arnellan House, Kingsbury, London (United Kingdom); Amnesty International USA, 5 Penn Plaza, New York (United States)

    2009-07-01

    Space imagery offers remote surveillance of ethnic people groups at risk of human rights abuse. We highlight work in alleged violations in Burma and Sudan, using satellite imagery for verification with Amnesty International. We consider how imaging may effectively support small to medium-sized Non Governmental Organisations and charities, e.g. HART, working in dangerous zones on the ground. Satellite based sensing applications are now at a sufficiently mature stage for moderate Governmental funding levels to help prevent human rights abuse, rather than the greater cost of rebuilding communities and healing sectarian divisions after abuse has taken place.

  13. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff

    International Nuclear Information System (INIS)

    Lavers, C; Bishop, C; Hawkins, O; Grealey, E; Cox, C; Thomas, D; Trimel, S

    2009-01-01

    Space imagery offers remote surveillance of ethnic people groups at risk of human rights abuse. We highlight work in alleged violations in Burma and Sudan, using satellite imagery for verification with Amnesty International. We consider how imaging may effectively support small to medium-sized Non Governmental Organisations and charities, e.g. HART, working in dangerous zones on the ground. Satellite based sensing applications are now at a sufficiently mature stage for moderate Governmental funding levels to help prevent human rights abuse, rather than the greater cost of rebuilding communities and healing sectarian divisions after abuse has taken place.

  14. The Role of Satellite Imagery to Improve Pastureland Estimates in South America

    Science.gov (United States)

    Graesser, J.

    2015-12-01

    Agriculture has changed substantially across the globe over the past half century. While much work has been done to improve spatial-temporal estimates of agricultural changes, we still know more about the extent of row-crop agriculture than livestock-grazed land. The gap between cropland and pastureland estimates exists largely because it is challenging to characterize natural versus grazed grasslands from a remote sensing perspective. However, the impasse of pastureland estimates is set to break, with an increasing number of spaceborne sensors and freely available satellite data. The Landsat satellite archive in particular provides researchers with immense amounts of data to improve pastureland information. Here we focus on South America, where pastureland expansion has been scrutinized for the past few decades. We explore the challenges of estimating pastureland using temporal Landsat imagery and focus on key agricultural countries, regions, and ecosystems. We focus on the suggested shift of pastureland from the Argentine Pampas to northern Argentina, and the mixing of small-scale and large-scale ranching in eastern Paraguay and how it could impact the Chaco forest to the west. Further, the Beni Savannahs of northern Bolivia and the Colombian Llanos—both grassland and savannah regions historically used for livestock grazing—have been hinted at as future areas for cropland expansion. There are certainly environmental concerns with pastureland expansion into forests; but what are the environmental implications when well-managed pasture systems are converted to intensive soybean or palm oil plantation? Tropical, grazed grasslands are important habitats for biodiversity, and pasturelands can mitigate soil erosion when well managed. Thus, we must improve estimates of grazed land before we can make informed policy and conservation decisions. This talk presents insights into pastureland estimates in South America and discusses the feasibility to improve current

  15. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    Science.gov (United States)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV

  16. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    Science.gov (United States)

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  17. Assessing the population coverage of a health demographic surveillance system using satellite imagery and crowd-sourcing

    NARCIS (Netherlands)

    Pasquale, Di Aurelio; Mc Cann, Robert; Maire, Nicolas

    2017-01-01

    Remotely sensed data can serve as an independent source of information about the location of residential structures in areas under demographic and health surveillance. We report on results obtained combining satellite imagery, imported from Bing, with location data routinely collected using the

  18. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields

    NARCIS (Netherlands)

    Hamzeh, Saied; Naseri, Abd Ali; Alavipanah, Seyed Kazem; Bartholomeus, Harm; Herold, Martin

    2016-01-01

    This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image

  19. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  20. Location of irrigated land classified from satellite imagery - High Plains Area, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land overlying the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a water-quality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated-land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres).

  1. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...

  2. Estimation Of The Spatial Distribution Of Crop Coefficient (Kc) From Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Abou EI-Magd, I.H.

    2009-01-01

    Single crop coefficient factor (K c ) is an essential component for crop water allocation for efficient irrigation scheduling and irrigation water management. Kc is basically defined as the ratio of actual evapotranspiration and grass/alfalfa reference evapotranspiration and always measured by lysimeter in localized area in the field, which then generalized on the whole irrigated land. The lack of precise information about the crop coefficient particularly in our country together with both small sized fields and heterogeneity of agricultural crops calls for developing a new methodology for computing a real time crop coefficient from remotely sensed data. This paper discusses the methodology developed for obtaining a real time single crop coefficient from Landsat Satellite ETM + 7 imageries. The methodology was applied and optimized on one irrigation field with two different dates and crop cover in the northern Delta of Egypt

  3. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  4. Monitoring Termite-Mediated Ecosystem Processes Using Moderate and High Resolution Satellite Imagery

    Science.gov (United States)

    Lind, B. M.; Hanan, N. P.

    2016-12-01

    Termites are considered dominant decomposers and prominent ecosystem engineers in the global tropics and they build some of the largest and architecturally most complex non-human-made structures in the world. Termite mounds significantly alter soil texture, structure, and nutrients, and have major implications for local hydrological dynamics, vegetation characteristics, and biological diversity. An understanding of how these processes change across large scales has been limited by our ability to detect termite mounds at high spatial resolutions. Our research develops methods to detect large termite mounds in savannas across extensive geographic areas using moderate and high resolution satellite imagery. We also investigate the effect of termite mounds on vegetation productivity using Landsat-8 maximum composite NDVI data as a proxy for production. Large termite mounds in arid and semi-arid Senegal generate highly reflective `mound scars' with diameters ranging from 10 m at minimum to greater than 30 m. As Sentinel-2 has several bands with 10 m resolution and Landsat-8 has improved calibration, higher radiometric resolution, 15 m spatial resolution (pansharpened), and improved contrast between vegetated and bare surfaces compared to previous Landsat missions, we found that the largest and most influential mounds in the landscape can be detected. Because mounds as small as 4 m in diameter are easily detected in high resolution imagery we used these data to validate detection results and quantify omission errors for smaller mounds.

  5. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    Science.gov (United States)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged

  6. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    Science.gov (United States)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab

  7. Using Satellite Imagery to Identify Tornado Damage Tracks and Recovery from the April 27, 2011 Severe Weather Outbreak

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Bell, Jordan R.

    2014-01-01

    Emergency response to natural disasters requires coordination between multiple local, state, and federal agencies. Single, relatively weak tornado events may require comparatively simple response efforts; but larger "outbreak" events with multiple strong, long-track tornadoes can benefit from additional tools to help expedite these efforts. Meteorologists from NOAA's National Weather Service conduct field surveys to map tornado tracks, assess damage, and determine the tornado intensity following each event. Moderate and high resolution satellite imagery can support these surveys by providing a high-level view of the affected areas. Satellite imagery could then be used to target areas for immediate survey or to corroborate the results of the survey after it is completed. In this study, the feasibility of using satellite imagery to identify tornado damage tracks was determined by comparing the characteristics of tracks observed from low-earth orbit to tracks assessed during the official NWS storm survey process. Of the 68 NWS confirmed centerlines, 24 tracks (35.3%) could be distinguished from other surface features using satellite imagery. Within each EF category, 0% of EF-0, 3% of EF-1, 50% of EF-2, 77.7% of EF-3, 87.5% of EF-4 and 100% of EF-5 tornadoes were detected. It was shown that satellite data can be used to identify tornado damage tracks in MODIS and ASTER NDVI imagery, where damage to vegetation creates a sharp drop in values though the minimum EF-category which can be detected is dependent upon the type of sensor used and underlying vegetation. Near-real time data from moderate resolution sensors compare favorably to field surveys after the event and suggest that the data can provide some value in the assessment process.

  8. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    Science.gov (United States)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  9. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  10. Classification of irrigated land using satellite imagery, the High Plains aquifer, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land across the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a waterquality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres). This information was also compared to a similar data set based on 1980 imagery. The 1980 data classified 13.7 million acres as irrigated. Although the change in the amount of irrigated land between the two times was not substantial, the location of the irrigated land did shift from areas where there were large ground-water-level declines to other areas where ground-water levels were static or rising.

  11. Geometric Positioning Accuracy Improvement of ZY-3 Satellite Imagery Based on Statistical Learning Theory

    Directory of Open Access Journals (Sweden)

    Niangang Jiao

    2018-05-01

    Full Text Available With the increasing demand for high-resolution remote sensing images for mapping and monitoring the Earth’s environment, geometric positioning accuracy improvement plays a significant role in the image preprocessing step. Based on the statistical learning theory, we propose a new method to improve the geometric positioning accuracy without ground control points (GCPs. Multi-temporal images from the ZY-3 satellite are tested and the bias-compensated rational function model (RFM is applied as the block adjustment model in our experiment. An easy and stable weight strategy and the fast iterative shrinkage-thresholding (FIST algorithm which is widely used in the field of compressive sensing are improved and utilized to define the normal equation matrix and solve it. Then, the residual errors after traditional block adjustment are acquired and tested with the newly proposed inherent error compensation model based on statistical learning theory. The final results indicate that the geometric positioning accuracy of ZY-3 satellite imagery can be improved greatly with our proposed method.

  12. Does the Data Resolution/origin Matter? Satellite, Airborne and Uav Imagery to Tackle Plant Invasions

    Science.gov (United States)

    Müllerová, Jana; Brůna, Josef; Dvořák, Petr; Bartaloš, Tomáš; Vítková, Michaela

    2016-06-01

    Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.

  13. Sherlock Holmes' or Don Quixote`s certainty? Interpretations of cropmarks on satellite imageries in archaeological investigation

    Science.gov (United States)

    Wilgocka, Aleksandra; RÄ czkowski, Włodzimierz; Kostyrko, Mikołaj; Ruciński, Dominik

    2016-08-01

    Years of experience in air-photo interpretations provide us to conclusion that we know what we are looking at, we know why we can see cropmarks, we even can estimate, when are the best opportunities to observe them. But even today cropmarks may be a subject of misinterpretation or wishful thinking. The same problems appear when working with aerial photographs, satellite imageries, ALS, geophysics, etc. In the paper we present several case studies based on data acquired for and within ArchEO - archaeological applications of Earth Observation techniques project to discuss complexity and consequences of archaeological interpretations. While testing usefulness of satellite imagery in Poland on various types of sites, cropmarks were the most frequent indicators of past landscapes as well as archaeological and natural features. Hence, new archaeological sites have been discovered mainly thanks to cropmarks. This situation has given us an opportunity to test not only satellite imageries as a source of data but also confront them with results of other non-invasive methods of data acquisition. When working with variety of data we have met several issues which raised problems of interpretation. Consequently, questions related to the cognitive value of remote sensing data appear and should be discussed. What do the data represent? To what extent the imageries, cropmarks or other visualizations represent the past? How should we deal with ambiguity of data? What can we learn from pitfalls in the interpretation of cropmarks, soilmarks etc. to share more Sherlock's methodology rather than run around Don Quixote's delusions?

  14. Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines

    Science.gov (United States)

    Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya

    2017-11-01

    Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1

  15. gProcess and ESIP Platforms for Satellite Imagery Processing over the Grid

    Science.gov (United States)

    Bacu, Victor; Gorgan, Dorian; Rodila, Denisa; Pop, Florin; Neagu, Gabriel; Petcu, Dana

    2010-05-01

    The Environment oriented Satellite Data Processing Platform (ESIP) is developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) co-funded by the European Commission through FP7 [1]. The gProcess Platform [2] is a set of tools and services supporting the development and the execution over the Grid of the workflow based processing, and particularly the satelite imagery processing. The ESIP [3], [4] is build on top of the gProcess platform by adding a set of satellite image processing software modules and meteorological algorithms. The satellite images can reveal and supply important information on earth surface parameters, climate data, pollution level, weather conditions that can be used in different research areas. Generally, the processing algorithms of the satellite images can be decomposed in a set of modules that forms a graph representation of the processing workflow. Two types of workflows can be defined in the gProcess platform: abstract workflow (PDG - Process Description Graph), in which the user defines conceptually the algorithm, and instantiated workflow (iPDG - instantiated PDG), which is the mapping of the PDG pattern on particular satellite image and meteorological data [5]. The gProcess platform allows the definition of complex workflows by combining data resources, operators, services and sub-graphs. The gProcess platform is developed for the gLite middleware that is available in EGEE and SEE-GRID infrastructures [6]. gProcess exposes the specific functionality through web services [7]. The Editor Web Service retrieves information on available resources that are used to develop complex workflows (available operators, sub-graphs, services, supported resources, etc.). The Manager Web Service deals with resources management (uploading new resources such as workflows, operators, services, data, etc.) and in addition retrieves information on workflows. The Executor Web Service manages the execution of the instantiated workflows

  16. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    International Nuclear Information System (INIS)

    Potgieter A B; Rodriguez D; Power B; Mclean J; Davis P

    2014-01-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (∼1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible

  17. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  18. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding

    Science.gov (United States)

    Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong

    2012-01-01

    Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.

  19. Using Satellite Imagery to Quantify Water Quality Impacts and Recovery from Hurricane Harvey

    Science.gov (United States)

    Sobel, R. S.; Kiaghadi, A.; Rifai, H. S.

    2017-12-01

    Record rainfall during Hurricane Harvey in the Houston-Galveston region generated record flows containing suspended sediment that was likely contaminated. Conventional water quality monitoring requires resource intensive field campaigns, and produces sparse datasets. In this study, satellite data were used to quantify suspended sediment (TSS) concentrations and mass within the region's estuary system and to estimate sediment deposition and transport. A conservative two band, red-green empirical regression was developed from the Sentinel 2 satellite to calculate TSS concentrations and masses. The regression was calibrated with an R2 = 0.73 (n=28) and validated with an R2 = 0.75 (n=12) using 2016 & 2017 imagery. TSS concentrations four days, 14 days, and 44 days post-storm were compared with a reference condition three days before storm arrival. Results indicated that TSS concentrations were an average of 100% higher four days post-storm, and 150% higher after 14 days, however, the average concentration on day 144 was only seven percent higher than the reference condition, suggesting the estuary system is approaching recovery to pre-storm conditions. Sediment masses were determined from the regressed concentrations and water volumes estimated from a bottom elevation grid combined with water surface elevations observed coincidently with the satellite image. While water volumes were only 13% higher on both day four and day 14 post-storm; sediment masses were 195% and 227% higher than the reference condition, respectively. By day 44, estuary sediment mass returned to just 2.9% above the reference load. From a mechanistic standpoint, the elevated TSS concentrations on day four indicated an advection-based regime due to stormwater runoff draining through the estuarine system. Sometime, however, between days 14 and 44, transport conditions switched from advection-dominated to deposition-driven as indicated by the near normal TSS concentrations on day 44.

  20. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.

    Science.gov (United States)

    Jaenicke, J; Englhart, S; Siegert, F

    2011-03-01

    In the context of the ongoing climate change discussions the importance of peatlands as carbon stores is increasingly recognised in the public. Drainage, deforestation and peat fires are the main reasons for the release of huge amounts of carbon from peatlands. Successful restoration of degraded tropical peatlands is of high interest due to their huge carbon store and sequestration potential. The blocking of drainage canals by dam building has become one of the most important measures to restore the hydrology and the ecological function of the peat domes. This study investigates the capability of using multitemporal radar remote sensing imagery for monitoring the hydrological effects of these measures. The study area is the former Mega Rice Project area in Central Kalimantan, Indonesia, where peat drainage and forest degradation is especially intense. Restoration measures started in July 2004 by building 30 large dams until June 2008. We applied change detection analysis with more than 80 ENVISAT ASAR and ALOS PALSAR images, acquired between 2004 and 2009. Radar signal increases of up to 1.36 dB show that high frequency multitemporal radar satellite imagery can be used to detect an increase in peat soil moisture after dam construction, especially in deforested areas with a high density of dams. Furthermore, a strong correlation between cross-polarised radar backscatter coefficients and groundwater levels above -50 cm was found. Monitoring peatland rewetting and quantifying groundwater level variations is important information for vegetation re-establishment, fire hazard warning and making carbon emission mitigation tradable under the voluntary carbon market or REDD (Reducing Emissions from Deforestation and Degradation) mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Improving the Quality of Satellite Imagery Based on Ground-Truth Data from Rain Gauge Stations

    Directory of Open Access Journals (Sweden)

    Ana F. Militino

    2018-03-01

    Full Text Available Multitemporal imagery is by and large geometrically and radiometrically accurate, but the residual noise arising from removal clouds and other atmospheric and electronic effects can produce outliers that must be mitigated to properly exploit the remote sensing information. In this study, we show how ground-truth data from rain gauge stations can improve the quality of satellite imagery. To this end, a simulation study is conducted wherein different sizes of outlier outbreaks are spread and randomly introduced in the normalized difference vegetation index (NDVI and the day and night land surface temperature (LST of composite images from Navarre (Spain between 2011 and 2015. To remove outliers, a new method called thin-plate splines with covariates (TpsWc is proposed. This method consists of smoothing the median anomalies with a thin-plate spline model, whereby transformed ground-truth data are the external covariates of the model. The performance of the proposed method is measured with the square root of the mean square error (RMSE, calculated as the root of the pixel-by-pixel mean square differences between the original data and the predicted data with the TpsWc model and with a state-space model with and without covariates. The study shows that the use of ground-truth data reduces the RMSE in both the TpsWc model and the state-space model used for comparison purposes. The new method successfully removes the abnormal data while preserving the phenology of the raw data. The RMSE reduction percentage varies according to the derived variables (NDVI or LST, but reductions of up to 20% are achieved with the new proposal.

  2. Multi-Temporal Satellite Imagery for Urban Expansion Assessment at Sharjah City /UAE

    International Nuclear Information System (INIS)

    Al-Ruzouq, R; Shanableh, A

    2014-01-01

    Change detection is the process of identifying differences in land cover over time. As human and natural forces continue to alter the landscape, it is important to develop monitoring methods to assess and quantify these changes. Recent advances in satellite imagery, in terms of improved spatial and temporal resolutions, are allowing for efficient identification of change patterns and the prediction of areas of growth. Sharjah is the third largest and most populous city in the United Arab Emirates (UAE). It is located along the northern coast of the Persian Gulf on the Arabian Peninsula. After the discovery of oil and its export in the last four decades at UAE, it has experienced very rapid growth in industry, economy and population. The main purpose of this study is to detect urban development in Sharjah city by detecting and registering linear features in multi-temporal Landsat images. This paper used linear features for image registration that were chosen since they can be reliably extracted from imagery with significantly different geometric and radiometric properties. Derived edges from the registered images are used as the basis for change detection. Image registration and pixel-pixel subtraction has been implement using multi- temporal Landsat images for Sharjah City. Straight-line segments have been used for accurate co-registration as well as main element for a reliable change detection procedure. Results illustrate that highest range of growth that represented by linear features (building and roads) have been accrued during 1976 – 1987 and stand for 36.24% of the total urban features inside Sharjah city. Moreover, result shows that since 1976 to 2010, the cumulative urban expansion inside Sharjah city is 71.9%

  3. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    Science.gov (United States)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  4. Monitoring vegetation change in Abu Dhabi Emirate from 1996 to 2000 and 2004 using Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Starbuck, M.J.; Tamayo, J.

    2007-01-01

    In the fall of 2001, a study was initiated to investigate vegetation changes in the Abu Dhabi Emirates. The vast majority of vegetation present in the region is irrigated and analysis of vegetation change will support groundwater investigations in the region by indicating areas of increased water use. Satellite-based imaging systems provide a good source of data for such an analysis. The recent analysis was completed between February and November 2002 using Landsat 5 Thematic Mapper satellite imagery acquired in 1996 and Landsat 7 Enhanced Thematic Mapper Plus imagery acquired in 2000. These assessments were augmented in 2004with the study of Landsat 7 imagery acquired in early 2004. The total area of vegetation for each of seven study areas was calculated using the Normalized Difference Vegetation Index (NDVI) technique. Multiband image classification was used to differentiate general vegetation types. Change analysis consisted of simple NDVI image differencing and post-classification change matrices. Measurements of total vegetation are for the Abu Dhabi Emirate indicate an increase from 77,200 hectares in 1996 to 162,700 hectares in 2000 (110% increase). Based on comparison with manual interpretation of satellite imagery, the amount of under-reporting of irrigated land is estimated at about 15% of the actual area. From the assessment of 2004 Landset imagery, it was found that the growth of irrigated vegetation in most areas of Emirate had stabilized and had actually slightly decreased in some cases. The decreases are probably due to variability in the measurement technique and not due to actual decreases in area of vegetation. (author)

  5. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    CAO Yungang

    2016-10-01

    Full Text Available A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features. Firstly, texture and shape features are extracted at the pixel level, and spectral features are extracted at the object level based on multi-scale image segmentation maps. Then, extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions. Finally, an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline. Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.

  6. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  7. Real-time person detection in low-resolution thermal infrared imagery with MSER and CNNs

    Science.gov (United States)

    Herrmann, Christian; Müller, Thomas; Willersinn, Dieter; Beyerer, Jürgen

    2016-10-01

    In many camera-based systems, person detection and localization is an important step for safety and security applications such as search and rescue, reconnaissance, surveillance, or driver assistance. Long-wave infrared (LWIR) imagery promises to simplify this task because it is less affected by background clutter or illumination changes. In contrast to a lot of related work, we make no assumptions about any movement of persons or the camera, i.e. persons may stand still and the camera may move or any combination thereof. Furthermore, persons may appear arbitrarily in near or far distances to the camera leading to low-resolution persons in far distances. To address this task, we propose a two-stage system, including a proposal generation method and a classifier to verify, if the detected proposals really are persons. In contradiction to use all possible proposals as with sliding window approaches, we apply Maximally Stable Extremal Regions (MSER) and classify the detected proposals afterwards with a Convolutional Neural Network (CNN). The MSER algorithm acts as a hot spot detector when applied to LWIR imagery. Because the body temperature of persons is usually higher than the background, they appear as hot spots in the image. However, the MSER algorithm is unable to distinguish between different kinds of hot spots. Thus, all further LWIR sources such as windows, animals or vehicles will be detected, too. Still by applying MSER, the number of proposals is reduced significantly in comparison to a sliding window approach which allows employing the high discriminative capabilities of deep neural networks classifiers that were recently shown in several applications such as face recognition or image content classification. We suggest using a CNN as classifier for the detected hot spots and train it to discriminate between person hot spots and all further hot spots. We specifically design a CNN that is suitable for the low-resolution person hot spots that are common with

  8. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  9. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  10. Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery.

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, Alexandra A

    2017-02-01

    Although meteorological monitoring stations provide accurate measurements of Air Temperature (AT), their spatial coverage within a given region is limited and thus is often insufficient for exposure and epidemiological studies. In many applications, satellite imagery measures energy flux, which is spatially continuous, and calculates Brightness Temperature (BT) that used as an input parameter. Although both quantities (AT-BT) are physically related, the correlation between them is not straightforward, and varies daily due to parameters such as meteorological conditions, surface moisture, land use, satellite-surface geometry and others. In this paper we first investigate the relationship between AT and BT as measured by 39 meteorological stations in Israel during 1984-2015. Thereafter, we apply mixed regression models with daily random slopes to calibrate Landsat BT data with monitored AT measurements for the period 1984-2015. Results show that AT can be predicted with high accuracy by using BT with high spatial resolution. The model shows relatively high accuracy estimation of AT (R 2 =0.92, RMSE=1.58°C, slope=0.90). Incorporating meteorological parameters into the model generates better accuracy (R 2 =0.935) than the AT-BT model (R 2 =0.92). Furthermore, based on the relatively high model accuracy, we investigated the spatial patterns of AT within the study domain. In the latter we focused on July-August, as these two months are characterized by relativity stable synoptic conditions in the study area. In addition, a temporal change in AT during the last 30years was estimated and verified using available meteorological stations and two additional remote sensing platforms. Finally, the impact of different land coverage on AT were estimated, as an example of future application of the presented approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, Thomas J. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched on January 26, 1983. During its 300-day mission, IRAS surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and data reduction.

  12. Calculating Viewing Angles Pixel by Pixel in Optical Remote Sensing Satellite Imagery Using the Rational Function Model

    OpenAIRE

    Kai Xu; Guo Zhang; Qingjun Zhang; Deren Li

    2018-01-01

    In studies involving the extraction of surface physical parameters using optical remote sensing satellite imagery, sun-sensor geometry must be known, especially for sensor viewing angles. However, while pixel-by-pixel acquisitions of sensor viewing angles are of critical importance to many studies, currently available algorithms for calculating sensor-viewing angles focus only on the center-point pixel or are complicated and are not well known. Thus, this study aims to provide a simple and ge...

  13. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  14. Seasonally-managed wetland footprint delineation using Landsat ETM+ satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Epshtein, Olga [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arizona State Univ., Tempe, AZ (United States). School of Sustainable Engineering and the Built Environment

    2014-01-09

    One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands' areal footprint during the periods of flood-up and drawdown. In this paper, we present a data-lean solution to this problem using an example application in the San Joaquin Basin, California. Through analysis of high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric to better capture the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets for two wetlands within the study area. The proposed classification which uses a Landsat ETM + Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30–50% relative to previous wetland delineation studies. Finally, requiring modest ancillary data, the study results provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.

  15. FULLY AUTOMATED GENERATION OF ACCURATE DIGITAL SURFACE MODELS WITH SUB-METER RESOLUTION FROM SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Wohlfeil

    2012-07-01

    Full Text Available Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images’ relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.

  16. A General Approach to Enhance Short Wave Satellite Imagery by Removing Background Atmospheric Effects

    Directory of Open Access Journals (Sweden)

    Ronald Scheirer

    2018-04-01

    Full Text Available Atmospheric interaction distorts the surface signal received by a space-borne instrument. Images derived from visible channels appear often too bright and with reduced contrast. This hampers the use of RGB imagery otherwise useful in ocean color applications and in forecasting or operational disaster monitoring, for example forest fires. In order to correct for the dominant source of atmospheric noise, a simple, fast and flexible algorithm has been developed. The algorithm is implemented in Python and freely available in PySpectral which is part of the PyTroll family of open source packages, allowing easy access to powerful real-time image-processing tools. Pre-calculated look-up tables of top of atmosphere reflectance are derived by off-line calculations with RTM DISORT as part of the LibRadtran package. The approach is independent of platform and sensor bands, and allows it to be applied to any band in the visible spectral range. Due to the use of standard atmospheric profiles and standard aerosol loads, it is possible just to reduce the background disturbance. Thus signals from excess aerosols become more discernible. Examples of uncorrected and corrected satellite images demonstrate that this flexible real-time algorithm is a useful tool for atmospheric correction.

  17. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    Science.gov (United States)

    Husak, G. J.; Marshall, M. T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G.

    2008-07-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  18. Effective System for Automatic Bundle Block Adjustment and Ortho Image Generation from Multi Sensor Satellite Imagery

    Science.gov (United States)

    Akilan, A.; Nagasubramanian, V.; Chaudhry, A.; Reddy, D. Rajesh; Sudheer Reddy, D.; Usha Devi, R.; Tirupati, T.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Block Adjustment is a technique for large area mapping for images obtained from different remote sensingsatellites.The challenge in this process is to handle huge number of satellite imageries from different sources with different resolution and accuracies at the system level. This paper explains a system with various tools and techniques to effectively handle the end-to-end chain in large area mapping and production with good level of automation and the provisions for intuitive analysis of final results in 3D and 2D environment. In addition, the interface for using open source ortho and DEM references viz., ETM, SRTM etc. and displaying ESRI shapes for the image foot-prints are explained. Rigorous theory, mathematical modelling, workflow automation and sophisticated software engineering tools are included to ensure high photogrammetric accuracy and productivity. Major building blocks like Georeferencing, Geo-capturing and Geo-Modelling tools included in the block adjustment solution are explained in this paper. To provide optimal bundle block adjustment solution with high precision results, the system has been optimized in many stages to exploit the full utilization of hardware resources. The robustness of the system is ensured by handling failure in automatic procedure and saving the process state in every stage for subsequent restoration from the point of interruption. The results obtained from various stages of the system are presented in the paper.

  19. A FUZZY AUTOMATIC CAR DETECTION METHOD BASED ON HIGH RESOLUTION SATELLITE IMAGERY AND GEODESIC MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    N. Zarrinpanjeh

    2017-09-01

    Full Text Available Automatic car detection and recognition from aerial and satellite images is mostly practiced for the purpose of easy and fast traffic monitoring in cities and rural areas where direct approaches are proved to be costly and inefficient. Towards the goal of automatic car detection and in parallel with many other published solutions, in this paper, morphological operators and specifically Geodesic dilation are studied and applied on GeoEye-1 images to extract car items in accordance with available vector maps. The results of Geodesic dilation are then segmented and labeled to generate primitive car items to be introduced to a fuzzy decision making system, to be verified. The verification is performed inspecting major and minor axes of each region and the orientations of the cars with respect to the road direction. The proposed method is implemented and tested using GeoEye-1 pansharpen imagery. Generating the results it is observed that the proposed method is successful according to overall accuracy of 83%. It is also concluded that the results are sensitive to the quality of available vector map and to overcome the shortcomings of this method, it is recommended to consider spectral information in the process of hypothesis verification.

  20. a Fuzzy Automatic CAR Detection Method Based on High Resolution Satellite Imagery and Geodesic Morphology

    Science.gov (United States)

    Zarrinpanjeh, N.; Dadrassjavan, F.

    2017-09-01

    Automatic car detection and recognition from aerial and satellite images is mostly practiced for the purpose of easy and fast traffic monitoring in cities and rural areas where direct approaches are proved to be costly and inefficient. Towards the goal of automatic car detection and in parallel with many other published solutions, in this paper, morphological operators and specifically Geodesic dilation are studied and applied on GeoEye-1 images to extract car items in accordance with available vector maps. The results of Geodesic dilation are then segmented and labeled to generate primitive car items to be introduced to a fuzzy decision making system, to be verified. The verification is performed inspecting major and minor axes of each region and the orientations of the cars with respect to the road direction. The proposed method is implemented and tested using GeoEye-1 pansharpen imagery. Generating the results it is observed that the proposed method is successful according to overall accuracy of 83%. It is also concluded that the results are sensitive to the quality of available vector map and to overcome the shortcomings of this method, it is recommended to consider spectral information in the process of hypothesis verification.

  1. Assessment of Mining Extent and Expansion in Myanmar Based on Freely-Available Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Katherine J. LaJeunesse Connette

    2016-11-01

    Full Text Available Using freely-available data and open-source software, we developed a remote sensing methodology to identify mining areas and assess recent mining expansion in Myanmar. Our country-wide analysis used Landsat 8 satellite data from a select number of mining areas to create a raster layer of potential mining areas. We used this layer to guide a systematic scan of freely-available fine-resolution imagery, such as Google Earth, in order to digitize likely mining areas. During this process, each mining area was assigned a ranking indicating our certainty in correct identification of the mining land use. Finally, we identified areas of recent mining expansion based on the change in albedo, or brightness, between Landsat images from 2002 and 2015. We identified 90,041 ha of potential mining areas in Myanmar, of which 58% (52,312 ha was assigned high certainty, 29% (26,251 ha medium certainty, and 13% (11,478 ha low certainty. Of the high-certainty mining areas, 62% of bare ground was disturbed (had a large increase in albedo since 2002. This four-month project provides the first publicly-available database of mining areas in Myanmar, and it demonstrates an approach for large-scale assessment of mining extent and expansion based on freely-available data.

  2. Coastline changes in North Bengkalis Island, Indonesia: satellite imagery analysis and observation

    Directory of Open Access Journals (Sweden)

    M Mubarak

    2018-01-01

    Full Text Available Coastal area activity on human exploitation greatly affected aquatic ecosystems. Land changes disturbed the level of soil stability, soil will be easily eroded by the flow of water, the surface tide ran off to the sea. North waters of the island of Bengkalis is a place boiling down to several rivers, including the river Jangkang and river Liung. The rivers have affected the concentration of total suspended solid (TSS in the strait waters of North Bengkalis Island. This research demonstrated water sampling by using sampling point determined by purposive sampling method mixing the layer of water depth ratio. The results based on satellite imagery data showed that TSS was quite high in the West season period until the transition period I (West to East with a large concentration value of 200 mg / L. For the lowest TSS concentration occurred in the East season i.e., between 0 - 200 mg/L. TSS concentrations that dominated in the East season ranged from 51 to 75 mg/L This value was higher than the TSS concentration of field data analysis, i.e., between 23 - 39 mg/L. Changes of coastal coastline of North Bengkalis during the last 20 years continue to change the size of the land area, with a land area of 131 ha lost.

  3. Feature extraction and classification of clouds in high resolution panchromatic satellite imagery

    Science.gov (United States)

    Sharghi, Elan

    The development of sophisticated remote sensing sensors is rapidly increasing, and the vast amount of satellite imagery collected is too much to be analyzed manually by a human image analyst. It has become necessary for a tool to be developed to automate the job of an image analyst. This tool would need to intelligently detect and classify objects of interest through computer vision algorithms. Existing software called the Rapid Image Exploitation Resource (RAPIER®) was designed by engineers at Space and Naval Warfare Systems Center Pacific (SSC PAC) to perform exactly this function. This software automatically searches for anomalies in the ocean and reports the detections as a possible ship object. However, if the image contains a high percentage of cloud coverage, a high number of false positives are triggered by the clouds. The focus of this thesis is to explore various feature extraction and classification methods to accurately distinguish clouds from ship objects. An examination of a texture analysis method, line detection using the Hough transform, and edge detection using wavelets are explored as possible feature extraction methods. The features are then supplied to a K-Nearest Neighbors (KNN) or Support Vector Machine (SVM) classifier. Parameter options for these classifiers are explored and the optimal parameters are determined.

  4. Rigorous Line-Based Transformation Model Using the Generalized Point Strategy for the Rectification of High Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Kun Hu

    2016-09-01

    Full Text Available High precision geometric rectification of High Resolution Satellite Imagery (HRSI is the basis of digital mapping and Three-Dimensional (3D modeling. Taking advantage of line features as basic geometric control conditions instead of control points, the Line-Based Transformation Model (LBTM provides a practical and efficient way of image rectification. It is competent to build the mathematical relationship between image space and the corresponding object space accurately, while it reduces the workloads of ground control and feature recognition dramatically. Based on generalization and the analysis of existing LBTMs, a novel rigorous LBTM is proposed in this paper, which can further eliminate the geometric deformation caused by sensor inclination and terrain variation. This improved nonlinear LBTM is constructed based on a generalized point strategy and resolved by least squares overall adjustment. Geo-positioning accuracy experiments with IKONOS, GeoEye-1 and ZiYuan-3 satellite imagery are performed to compare rigorous LBTM with other relevant line-based and point-based transformation models. Both theoretic analysis and experimental results demonstrate that the rigorous LBTM is more accurate and reliable without adding extra ground control. The geo-positioning accuracy of satellite imagery rectified by rigorous LBTM can reach about one pixel with eight control lines and can be further improved by optimizing the horizontal and vertical distribution of control lines.

  5. Online Visualization and Analysis of Global Half-Hourly Infrared Satellite Data

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    nfrared (IR) images (approximately 11-micron channel) recorded by satellite sensors have been widely used in weather forecasting, research, and classroom education since the Nimbus program. Unlike visible images, IR imagery can reveal cloud features without sunlight illumination; therefore, they can be used to monitor weather phenomena day and night. With geostationary satellites deployed around the globe, it is possible to monitor weather events 24/7 at a temporal resolution that polar-orbiting satellites cannot achieve at the present time. When IR data from multiple geostationary satellites are merged to form a single product--also known as a merged product--it allows for observing weather on a global scale. Its high temporal resolution (e.g., every half hour) also makes it an ideal ancillary dataset for supporting other satellite missions, such as the Tropical Rainfall Measuring Mission (TRMM), etc., by providing additional background information about weather system evolution.

  6. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  7. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines

    Science.gov (United States)

    Shen, Xiang; Liu, Bin; Li, Qing-Quan

    2017-03-01

    The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates

  8. Use of the Vis-SWIR to Aid Atmospheric Correction of Multispectral and Hyperspectral Thermal Infrared (TIR) Imagery: The TIR Model

    National Research Council Canada - National Science Library

    Gruninger, John; Fox, Marsha; Lee, Jamine; Ratkowski, Anthony J; Hoke, Michael L

    2006-01-01

    The atmospheric correction of thermal infrared (TIR) imagery involves the combined tasks of separation of atmospheric transmittance, downwelling flux and upwelling radiance from the surface material spectral emissivity and temperature...

  9. Characterizing Temporal and Spatial Changes in Land Surface Temperature across the Amazon Basin using Thermal and Infrared Satellite Data

    Science.gov (United States)

    Cak, A. D.

    2017-12-01

    The Amazon Basin has faced innumerable pressures in recent years, including logging, mining and resource extraction, agricultural expansion, road building, and urbanization. These changes have drastically altered the landscape, transforming a predominantly forested environment into a mosaic of different types of land cover. The resulting fragmentation has caused dramatic and negative impacts on its structure and function, including on biodiversity and the transfer of water and energy to and from soil, vegetation, and the atmosphere (e.g., evapotranspiration). Because evapotranspiration from forested areas, which is affected by factors including temperature and water availability, plays a significant role in water dynamics in the Amazon Basin, measuring land surface temperature (LST) across the region can provide a dynamic assessment of hydrological, vegetation, and land use and land cover changes. It can also help to identify widespread urban development, which often has a higher LST signal relative to surrounding vegetation. Here, we discuss results from work to measure and identify drivers of change in LST across the entire Amazon Basin through analysis of past and current thermal and infrared satellite imagery. We leverage cloud computing resources in new ways to allow for more efficient analysis of imagery over the Amazon Basin across multiple years and multiple sensors. We also assess potential drivers of change in LST using spatial and multivariate statistical analyses with additional data sources of land cover, urban development, and demographics.

  10. Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery

    Science.gov (United States)

    Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun

    2014-01-01

    Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale. PMID:24691435

  11. Quantifying the Value of Satellite Imagery in Agriculture and other Sectors

    Science.gov (United States)

    Brown, M. E.; Abbott, P. C.; Escobar, V. M.

    2013-12-01

    This study focused on quantifying the commercial value of satellite remote sensing for agriculture. Commercial value from satellite imagery arises when improved information leads to better economic decisions. We identified five areas of application of remote sensing to agriculture where there is this potential: crop management (precision agriculture), insurance, real estate assessment, crop forecasting, and environmental monitoring. These applications can be divided between public information (crop forecasting) and those that may generate private commercial value (crop management), with both public and private information dimensions in some categories. Public information applications of remote sensing have been more successful in the past, and are likely to generate more economic value in the future. It was found that several issues have limited realization of the potential to generate private value from remote sensing in agriculture. The scale of use is small to the high cost of acquiring and interpreting large images has limited the cost effectiveness to individual farmers. Insurance, environmental monitoring, and crop management services by cooperatives or consultants may be cases overcoming this limitation. The greatest opportunities for potential commercial value from agriculture are probably in the crop forecasting area, especially where agricultural statistics services are not as well developed, since public market information benefits a broad range of economic actors, not limited to countries where forecasts are made. We estimate here the value from components of USDA's World Agricultural Supply and Demand Estimates (WASDE) forecasts for corn, indicating potential value increasing in the range of 60 to 240 million if improved satellite based information enhances those forecasts. The research was conducted by agricultural economists at Purdue University, and will be the basis for further evaluation of the use of satellite data within the NASA Carbon

  12. Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Sandra L. Perry

    2013-05-01

    Full Text Available WorldView commercial imaging satellites comprise a constellation developed by DigitalGlobe Inc. (Longmont, CO, USA. Worldview-3 (WV-3, currently planned for launch in 2014, will have 8 spectral bands in the Visible and Near-Infrared (VNIR, and an additional 8 bands in the Short-Wave-Infrared (SWIR; the approximately 1.0–2.5 μm spectral range. WV-3 will be the first commercial system with both high spatial resolution and multispectral SWIR capability. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS data collected at 3 m spatial resolution with 86 SWIR bands having 10 nm spectral resolution were used to simulate the new WV-3 SWIR data. AVIRIS data were converted to reflectance, geographically registered, and resized to the proposed 3.7 and 7.5 m spatial resolutions. WV-3 SWIR band pass functions were used to spectrally resample the data to the proposed 8 SWIR bands. Characteristic reflectance signatures extracted from the data for known mineral locations (endmembers were used to map spatial locations of specific minerals. The WV-3 results, when compared to spectral mapping using the full AVIRIS SWIR dataset, illustrate that the WV-3 spectral bands should permit identification and mapping of some key minerals, however, minerals with similar spectral features may be confused and will not be mapped with the same detail as using hyperspectral systems. The high spatial resolution should provide detailed mapping of complex alteration mineral patterns not achievable by current multispectral systems. The WV-3 simulation results are promising and indicate that this sensor will be a significant tool for geologic remote sensing.

  13. Analysis of Satellite and Airborne Imagery for Detection of Water Hyacinth and Other Invasive Floating Macrophytes and Tracking of Aquatic Weed Control Efficacy

    Science.gov (United States)

    Potter, Christopher

    2016-01-01

    Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed an 80 percent overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.

  14. HALESIS projet: Hight Altitude Luminous Events Studied by Infrared Spectro-imagery

    Science.gov (United States)

    Croizé, Laurence; Payan, Sébastien; Bureau, Jérome; Duruisseau, Fabrice; Huret, Nathalie

    2014-05-01

    During the last two decades, the discovery of transient luminous events (TLEs) in the high atmosphere [1], as well as the observation of gamma ray flashes of terrestrial origin (Terrestrial Gamma Flashes or TGF) [2] demonstrated the existence of another interaction processes between the different atmospheric layers (troposphere, stratosphere, mesosphere and ionosphere). Indeed, the frequency of occurrence of these phenomena over thunderstorm cells, and the energies involved provide evidence for an impulsive energy transfer between the troposphere and the highest atmospheric layers, which was not considered before. HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery) is an innovative project based on hyperspectral imagery. The purpose of this experience is to measure the atmospheric perturbation in the minutes following the occurrence of Transient Luminous Events (TLEs) from a stratospheric balloon in the altitude range of 20 to 40 km. The first part of the study has been dedicated to establish the project feasibility. To do that, we have simulated spectral perturbation induced by an isolated blue jet. Theoretical predictions [3] have been used to simulate the radiative perturbation due to O3, NO, NO2, NO+ concentration induced by the blue jet. Simulations have been performed using the line by line radiative transfer model LBLRM [4] taking into account of the Non Local Thermodynamic Equilibrium hypotheses. Then, the expected signatures have been compared to the available instrumentation. During this talk, HALESIS project and the results of the feasibility study will be presented. Then, the estimated spectral signatures will be confronted with the technical capabilities of different kind of hyperspectral imagers. We will conclude on the project feasibility, but also on the challenges that lie ahead for an imager perfectly suited for experiences like HALESIS. 1. Franz R, Nemzek R, Winckler J. Television image of a large upward electrical

  15. Infrared Methods for Daylight Acquisition of LEO Satellites

    National Research Council Canada - National Science Library

    Nelson, Joel

    2004-01-01

    ..., and very capable space surveillance systems. The first product of the Raven program was a family of telescopes capable of generating world-class optical observation data of deep-space satellites...

  16. Extracting Urban Morphology for Atmospheric Modeling from Multispectral and SAR Satellite Imagery

    Science.gov (United States)

    Wittke, S.; Karila, K.; Puttonen, E.; Hellsten, A.; Auvinen, M.; Karjalainen, M.

    2017-05-01

    This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1) Digital Elevation Model (DEM) and 2) land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP).

  17. EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Wittke

    2017-05-01

    Full Text Available This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1 Digital Elevation Model (DEM and 2 land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP.

  18. Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    Science.gov (United States)

    Williams, Jack G.; Rosser, Nick J.; Kincey, Mark E.; Benjamin, Jessica; Oven, Katie J.; Densmore, Alexander L.; Milledge, David G.; Robinson, Tom R.; Jordan, Colm A.; Dijkstra, Tom A.

    2018-01-01

    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response.

  19. Algorithm and Application of Gcp-Independent Block Adjustment for Super Large-Scale Domestic High Resolution Optical Satellite Imagery

    Science.gov (United States)

    Sun, Y. S.; Zhang, L.; Xu, B.; Zhang, Y.

    2018-04-01

    The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image - GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.

  20. Novel method of drizzle formation observation at large horizontal scales using multi-wavelength satellite imagery simulation

    NARCIS (Netherlands)

    Stepanov, I.; Russchenberg, H.W.J.

    2014-01-01

    The observations of on-board satellite imaging radiometers are representative of a far-reaching two-dimensional cloud top properties, however with a cutback in the capacity of profiling the cloud vertically. A combination of simulated radiances calculated at the top of the cloud in the near-infrared

  1. Flow detection via sparse frame analysis for suspicious event recognition in infrared imagery

    Science.gov (United States)

    Fernandes, Henrique C.; Batista, Marcos A.; Barcelos, Celia A. Z.; Maldague, Xavier P. V.

    2013-05-01

    It is becoming increasingly evident that intelligent systems are very bene¯cial for society and that the further development of such systems is necessary to continue to improve society's quality of life. One area that has drawn the attention of recent research is the development of automatic surveillance systems. In our work we outline a system capable of monitoring an uncontrolled area (an outside parking lot) using infrared imagery and recognizing suspicious events in this area. The ¯rst step is to identify moving objects and segment them from the scene's background. Our approach is based on a dynamic background-subtraction technique which robustly adapts detection to illumination changes. It is analyzed only regions where movement is occurring, ignoring in°uence of pixels from regions where there is no movement, to segment moving objects. Regions where movement is occurring are identi¯ed using °ow detection via sparse frame analysis. During the tracking process the objects are classi¯ed into two categories: Persons and Vehicles, based on features such as size and velocity. The last step is to recognize suspicious events that may occur in the scene. Since the objects are correctly segmented and classi¯ed it is possible to identify those events using features such as velocity and time spent motionless in one spot. In this paper we recognize the suspicious event suspicion of object(s) theft from inside a parked vehicle at spot X by a person" and results show that the use of °ow detection increases the recognition of this suspicious event from 78:57% to 92:85%.

  2. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  3. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  4. An estimation model of population in China using time series DMSP night-time satellite imagery from 2002-2010

    Science.gov (United States)

    Zhang, Xiaoyong; Zhang, Zhijie; Chang, Yuguang; Chen, Zhengchao

    2015-12-01

    Accurate data on the spatial distribution and potential growth estimation of human population are playing pivotal role in addressing and mitigating heavy lose caused by earthquake. Traditional demographic data is limited in its spatial resolution and is extremely hard to update. With the accessibility of massive DMSP/OLS night time imagery, it is possible to model population distribution at the county level across China. In order to compare and improve the continuity and consistency of time-series DMSP night-time satellite imagery obtained by different satellites in same year or different years by the same satellite from 2002-2010, normalized method was deployed for the inter-correction among imageries. And we referred to the reference F162007 Jixi city, whose social-economic has been relatively stable. Through binomial model, with average R2 0.90, then derived the correction factor of each year. The normalization obviously improved consistency comparing to previous data, which enhanced the correspondent accuracy of model. Then conducted the model of population density between average night-time light intensity in eight-economic districts. According to the two parameters variation law of consecutive years, established the prediction model of next following years with R2of slope and constant typically 0.85 to 0.95 in different regions. To validate the model, taking the year of 2005 as example, retrieved quantitatively population distribution in per square kilometer based on the model, then compared the results to the statistical data based on census, the difference of the result is acceptable. In summary, the estimation model facilitates the quick estimation and prediction in relieving the damage to people, which is significant in decision-making.

  5. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  6. Vectorized Shoreline of Guam, Derived from IKONOS Satellite Imagery, 2000 through 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  7. Semi-automatic building extraction in informal settlements from high-resolution satellite imagery

    Science.gov (United States)

    Mayunga, Selassie David

    The extraction of man-made features from digital remotely sensed images is considered as an important step underpinning management of human settlements in any country. Man-made features and buildings in particular are required for varieties of applications such as urban planning, creation of geographical information systems (GIS) databases and Urban City models. The traditional man-made feature extraction methods are very expensive in terms of equipment, labour intensive, need well-trained personnel and cannot cope with changing environments, particularly in dense urban settlement areas. This research presents an approach for extracting buildings in dense informal settlement areas using high-resolution satellite imagery. The proposed system uses a novel strategy of extracting building by measuring a single point at the approximate centre of the building. The fine measurement of the building outlines is then effected using a modified snake model. The original snake model on which this framework is based, incorporates an external constraint energy term which is tailored to preserving the convergence properties of the snake model; its use to unstructured objects will negatively affect their actual shapes. The external constrained energy term was removed from the original snake model formulation, thereby, giving ability to cope with high variability of building shapes in informal settlement areas. The proposed building extraction system was tested on two areas, which have different situations. The first area was Tungi in Dar Es Salaam, Tanzania where three sites were tested. This area is characterized by informal settlements, which are illegally formulated within the city boundaries. The second area was Oromocto in New Brunswick, Canada where two sites were tested. Oromocto area is mostly flat and the buildings are constructed using similar materials. Qualitative and quantitative measures were employed to evaluate the accuracy of the results as well as the performance

  8. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  9. River floodplain vegetation classification using multi-temporal high-resolution colour infrared UAV imagery.

    NARCIS (Netherlands)

    van Iersel, W.K.; Straatsma, M.W.; Addink, E.A.; Middelkoop, H.

    2016-01-01

    To evaluate floodplain functioning, monitoring of its vegetation is essential. Although airborne imagery is widely applied for this purpose, classification accuracy (CA) remains low for grassland (< 88%) and herbaceous vegetation (<57%) due to the spectral and structural similarity of these

  10. New interpretations of the Fort Clark State Historic Site based on aerial color and thermal infrared imagery

    Science.gov (United States)

    Heller, Andrew Roland

    The Fort Clark State Historic Site (32ME2) is a well known site on the upper Missouri River, North Dakota. The site was the location of two Euroamerican trading posts and a large Mandan-Arikara earthlodge village. In 2004, Dr. Kenneth L. Kvamme and Dr. Tommy Hailey surveyed the site using aerial color and thermal infrared imagery collected from a powered parachute. Individual images were stitched together into large image mosaics and registered to Wood's 1993 interpretive map of the site using Adobe Photoshop. The analysis of those image mosaics resulted in the identification of more than 1,500 archaeological features, including as many as 124 earthlodges.

  11. 3D high resolution tracking of ice flow using mutli-temporal stereo satellite imagery, Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Leprince, S.; Lin, J.; Ayoub, F.; Herman, F.; Avouac, J.

    2013-12-01

    We present the latest capabilities added to the Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) software, which aim at analyzing time-series of stereoscopic imagery to document 3D variations of the ground surface. We review the processing chain and present the new and improved modules for satellite pushbroom imagery, in particular the N-image bundle block adjustment to jointly optimize the viewing geometry of multiple acquisitions, the improved multi-scale image matching based on Semi-Global Matching (SGM) to extract high resolution topography, and the triangulation of multi-temporal disparity maps to derive 3D ground motion. In particular, processes are optimized to run on a cluster computing environment. This new suite of algorithms is applied to the study of Worldview stereo imagery above the Franz Josef, Fox, and Tasman Glaciers, New Zealand, acquired on 01/30/2013, 02/09/2013, and 02/28/2013. We derive high resolution (1m post-spacing) maps of ice flow in three dimensions, where ice velocities of up to 4 m/day are recorded. Images were collected in early summer during a dry and sunny period, which followed two weeks of unsettled weather with several heavy rainfall events across the Southern Alps. The 3D tracking of ice flow highlights the surface response of the glaciers to changes in effective pressure at the ice-bedrock interface due to heavy rainfall, at an unprecedented spatial resolution.

  12. Employing high resolution satellite imagery to document a rapid glacier surge in the Karakoram - risks and opportunities for hazard assessment

    Science.gov (United States)

    Steiner, J. F.; Kraaijenbrink, P. D. A.; Jiduc, S. G.; Immerzeel, W. W.

    2017-12-01

    Glacier surges occur regularly in the Karakoram but their driving mechanisms, recurrence and its relation to climatic change remain unclear. Since many glacier tongues in the region reach to very low elevations, local populations are often exposed to glacial hazards. While the scientific interpretation of hazard is one challenge, adequately communicating results to possibly affected stakeholders poses a different set of hurdles. Using DEMs as well as Landsat imagery in combination with high-resolution Planet imagery we quantify surface elevation changes and flow velocities to document a glacier surge of the Khurdopin glacier, located in a remote valley in Pakistan, in the first half of 2017. Results reveal that an accumulation of ice mass leads to a rapid surge in peaking with velocities above 5000 m a-1 or 0.5 m h-1 during a few days. Velocities increase steadily during a four-year build-up phase prior to the actual surge, while the remaining 15 years of the recurring cycle the glacier is quiescent. It is hypothesized that the surge is mainly initiated as a result of increased pressure melting caused by ice accumulation. However, surface observations show increased crevassing and disappearance of supra glacial ponds, which could have led to increased lubrication of the glacier bed. As a consequence of the surging tongue blocking the main valley a lake has formed and grown continuously in size over two months at a rate of up to 3000 m2 per day. Using satellite imagery with a frequent overpass rate we are able to (a) characterize the nature of glacier surges in the region with greater detail and (b) monitor the surge as well as the formation of the lake as it develops. Having developed a connection to local stakeholders we were able to provide rapid hazard assessments to affected communities, which can be employed to define possible actions. We show the potential of satellite imagery - freely available Landsat in combination with commercial Planet imagery -, which

  13. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  14. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  15. Detection of Coccolithophore Blooms in Ocean Color Satellite Imagery: a Generalized Approach for Use with Multiple Sensors

    Science.gov (United States)

    Moore, Timothy; Dowell, Mark; Franz, Bryan A.

    2012-01-01

    A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.

  16. Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery

    International Nuclear Information System (INIS)

    Ener Rusen, Selmin; Hammer, Annette; Akinoglu, Bulent G.

    2013-01-01

    In this work, the current version of the satellite-based HELIOSAT method and ground-based linear Ångström–Prescott type relations are used in combination. The first approach is based on the use of a correlation between daily bright sunshine hours (s) and cloud index (n). In the second approach a new correlation is proposed between daily solar irradiation and daily data of s and n which is based on a physical parameterization. The performances of the proposed two combined models are tested against conventional methods. We test the use of obtained correlation coefficients for nearby locations. Our results show that the use of sunshine duration together with the cloud index is quite satisfactory in the estimation of daily horizontal global solar irradiation. We propose to use the new approaches to estimate daily global irradiation when the bright sunshine hours data is available for the location of interest, provided that some regression coefficients are determined using the data of a nearby station. In addition, if surface data for a close location does not exist then it is recommended to use satellite models like HELIOSAT or the new approaches instead the Ångström type models. - Highlights: • Satellite imagery together with surface measurements in solar radiation estimation. • The new coupled and conventional models (satellite and ground-based) are analyzed. • New models result in highly accurate estimation of daily global solar irradiation

  17. Improved land use classification from Landsat and Seasat satellite imagery registered to a common map base

    Science.gov (United States)

    Clark, J.

    1981-01-01

    In the case of Landsat Multispectral Scanner System (MSS) data, ambiguities in spectral signature can arise in urban areas. A study was initiated in the belief that Seasat digital SAR could help provide the spectral separability needed for a more accurate urban land use classification. A description is presented of the results of land use classifications performed on Landsat and preprocessed Seasat imagery that were registered to a common map base. The process of registering imagery and training site boundary coordinates to a common map has been reported by Clark (1980). It is found that preprocessed Seasat imagery provides signatures for urban land uses which are spectrally separable from Landsat signatures. This development appears to significantly improve land use classifications in an urban setting for class 12 (Commercial and Services), class 13 (Industrial), and class 14 (Transportation, Communications, and Utilities).

  18. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    Science.gov (United States)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  19. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  20. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  1. Using the spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns.

    Science.gov (United States)

    Edward J. Laurent; Haijin Shi; Demetrios Gatziolis; Joseph P. LeBouton; Michael B. Walters; Jianguo Liu

    2005-01-01

    We investigated the potential of using unclassified spectral data for predicting the distribution of three bird species over a -400,000 ha region of Michigan's Upper Peninsula using Landsat ETM+ imagery and 433 locations sampled for birds through point count surveys. These species, Black-throated Green Warbler, Nashville Warbler, and Ovenbird. were known to be...

  2. Building damage assessment after the earthquake in Haiti using two postevent satellite stereo imagery and DSMs

    DEFF Research Database (Denmark)

    Tian, Jiaojiao; Nielsen, Allan Aasbjerg; Reinartz, Peter

    2015-01-01

    In this article, a novel after-disaster building damage monitoring method is presented. This method combines the multispectral imagery and digital surface models (DSMs) from stereo matching of two dates to obtain three kinds of changes: collapsed buildings, newly built buildings and temporary she...... changes after the 2010 Haiti earthquake, and the obtained results are further evaluated both visually and numerically....

  3. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation

    DEFF Research Database (Denmark)

    Canty, Morton John; Nielsen, Allan Aasbjerg

    2008-01-01

    A recently proposed method for automatic radiometric normalization of multi- and hyper-spectral imagery based on the invariance property of the Multivariate Alteration Detection (MAD) transformation and orthogonal linear regression is extended by using an iterative re-weighting scheme involving no...

  4. Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions

    Science.gov (United States)

    Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.

    2017-12-01

    Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.

  5. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  6. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    Science.gov (United States)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  7. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015)

    OpenAIRE

    Honda, Takumi; Miyoshi, Takemasa; Lien, Guo-Yuan; Nishizawa, Seiya; Yoshida, Ryuji; Adachi, Sachiho A.; Terasaki, Koji; Okamoto, Kozo; Tomita, Hirofumi; Bessho, Kotaro

    2018-01-01

    Japan’s new geostationary satellite Himawari-8, the first of a series of the third-generation geostationary meteorological satellites includingGOES-16, has been operational since July 2015. Himawari-8 produces highresolution observations with 16 frequency bands every 10 min for full disk, and every 2.5 min for local regions. This study aims to assimilate all-sky every-10-min infrared (IR) radiances from Himawari-8 with a regional numerical weather prediction model and to investigate its impac...

  8. The users, uses, and value of Landsat and other moderate-resolution satellite imagery in the United States-Executive report

    Science.gov (United States)

    Miller, Holly M.; Sexton, Natalie R.; Koontz, Lynne; Loomis, John; Koontz, Stephen R.; Hermans, Caroline

    2011-01-01

    Moderate-resolution imagery (MRI), such as that provided by the Landsat satellites, provides unique spatial information for use by many people both within and outside of the United States (U.S.). However, exactly who these users are, how they use the imagery, and the value and benefits derived from the information are, to a large extent, unknown. To explore these issues, social scientists at the USGS Fort Collins Science Center conducted a study of U.S.-based MRI users from 2008 through 2010 in two parts: 1) a user identification and 2) a user survey. The objectives for this study were to: 1) identify and classify U.S.-based users of this imagery; 2) better understand how and why MRI, and specifically Landsat, is being used; and 3) qualitatively and quantitatively measure the value and societal benefits of MRI (focusing on Landsat specifically). The results of the survey revealed that respondents from multiple sectors use Landsat imagery in many different ways, as demonstrated by the breadth of project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance placed on the imagery, the numerous benefits received from projects using Landsat imagery, the negative impacts if Landsat imagery was no longer available, and the substantial willingness to pay for replacement imagery in the event of a data gap. The survey collected information from users who are both part of and apart from the known user community. The diversity of the sample delivered results that provide a baseline of knowledge about the users, uses, and value of Landsat imagery. While the results supply a wealth of information on their own, they can also be built upon through further research to generate a more complete picture of the population of Landsat users as a whole.

  9. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J. S.

    1974-01-01

    Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.

  10. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    Science.gov (United States)

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  11. Using airborne middle-infrared (1.45–2.0 μm) video imagery for distinguishing plant species and soil conditions

    International Nuclear Information System (INIS)

    Everitt, J.H.; Escobar, D.E.; Alaniz, M.A.; Davis, M.R.

    1987-01-01

    This paper describes the use of a black-and-white visible/infrared (0.4–2.4 μm) sensitive video camera, filtered to record radiation within the 1.45–2.0 μm middle-infrared water absorption region, for discriminating among plant species and soil conditions. The camera provided adequate quality airborne imagery that distinguished the succulent plant species onions (Allium cepum L.) and aloe vera (Aloe barbadensis Mill.) from nonsucculent plant species. Moreover, wet soil, dry crusted soil, and dry fallow soil could be differentiated in middle-infrared video images. Succulent plants, however, could not be distinguished from wet soil or water. These results show that middle-infrared video imagery has potential use for remote sensing research and applications

  12. Stormwater Runoff Plumes in Southern California Detected with Satellite SAR and MODIS Imagery - Areas of Increased Contamination Risk

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Gierach, M.

    2016-12-01

    Coastal pollution poses both a major health and environmental hazard, not only for beachgoers and coastal communities, but for marine organisms as well. Stormwater runoff is the largest source of pollution in the coastal waters of the Southern California Bight (SCB). The SCB is the final destination of four major urban watersheds and associated rivers, Ballona Creek, the Los Angeles River, the San Gabriel River, and the Santa Ana River, which act as channels for runoff and pollution during and after episodic rainstorms. Previous studies of SCB water quality have made use of both fine resolution Synthetic Aperture Radar (SAR) imagery and wide-swath medium resolution optical "ocean color" imagery from SeaWiFS and MODIS. In this study, we expand on previous SAR efforts, compiling a more extensive collection of multi-sensor SAR data, spanning from 1992 to 2014, analyzing the surface slick component of stormwater plumes. We demonstrate the use of SAR data in early detection of coastal stormwater plumes, relating plume extent to cumulative river discharge, and shoreline fecal bacteria loads. Intensity maps of the primary extent and direction of plumes were created, identifying coastal areas that may be subject to the greatest risk of environmental contamination. Additionally, we illustrate the differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS ocean color imagery. Finally, we provide a concept for satellite monitoring of stormwater plumes, combining both optical and radar sensors, to be used to guide the collection of in situ water quality data and enhance the assessment of related beach closures.

  13. Wind Atlas for the Gulf of Suez Satellite Imagery and Analyses

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    (SAR) data derived from the European Remote Sensing Satellite (ERS) have been used to make wind speed maps for the Gulf of Suez. 2. “Land cover from Landsat TM imagery”. Landsat Thematic Mapper(TM) data have been used to establish true- and false-colour land cover maps, as well as land cover...... classification maps. 3. “Reporting on satellite information for the Wind Atlas for Egypt”. Along-Track Scanning Radiometer (ATSR) data from the European Remote Sensing Satellite (ERS) have been used to map the sea- and land-surface temperatures and albedos....

  14. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    Science.gov (United States)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  15. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery

    Directory of Open Access Journals (Sweden)

    Shasha Jiang

    2016-05-01

    Full Text Available Automated remote sensing methods have not gained widespread usage for damage assessment after hurricane events, especially for low-rise buildings, such as individual houses and small businesses. Hurricane wind, storm surge with waves, and inland flooding have unique damage signatures, further complicating the development of robust automated assessment methodologies. As a step toward realizing automated damage assessment for multi-hazard hurricane events, this paper presents a mono-temporal image classification methodology that quickly and accurately differentiates urban debris from non-debris areas using post-event images. Three classification approaches are presented: spectral, textural, and combined spectral–textural. The methodology is demonstrated for Gulfport, Mississippi, using IKONOS panchromatic satellite and NOAA aerial colour imagery collected after 2005 Hurricane Katrina. The results show that multivariate texture information significantly improves debris class detection performance by decreasing the confusion between debris and other land cover types, and the extracted debris zone accurately captures debris distribution. Additionally, the extracted debris boundary is approximately equivalent regardless of imagery type, demonstrating the flexibility and robustness of the debris mapping methodology. While the test case presents results for hurricane hazards, the proposed methodology is generally developed and expected to be effective in delineating debris zones for other natural hazards, including tsunamis, tornadoes, and earthquakes.

  16. Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale

    Science.gov (United States)

    Priem, Frederik; Okujeni, Akpona; van der Linden, Sebastian; Canters, Frank

    2016-10-01

    The value of characteristic reflectance features for mapping urban materials has been demonstrated in many experiments with airborne imaging spectrometry. Analysis of larger areas requires satellite-based multispectral imagery, which typically lacks the spatial and spectral detail of airborne data. Consequently the need arises to develop mapping methods that exploit the complementary strengths of both data sources. In this paper a workflow for sub-pixel quantification of Vegetation-Impervious-Soil urban land cover is presented, using medium resolution multispectral satellite imagery, hyperspectral endmember libraries and Support Vector Regression. A Landsat 8 Operational Land Imager surface reflectance image covering the greater metropolitan area of Brussels is selected for mapping. Two spectral libraries developed for the cities of Brussels and Berlin based on airborne hyperspectral APEX and HyMap data are used. First the combined endmember library is resampled to match the spectral response of the Landsat sensor. The library is then optimized to avoid spectral redundancy and confusion. Subsequently the spectra of the endmember library are synthetically mixed to produce training data for unmixing. Mapping is carried out using Support Vector Regression models trained with spectra selected through stratified sampling of the mixed library. Validation on building block level (mean size = 46.8 Landsat pixels) yields an overall good fit between reference data and estimation with Mean Absolute Errors of 0.06, 0.06 and 0.08 for vegetation, impervious and soil respectively. Findings of this work may contribute to the use of universal spectral libraries for regional scale land cover fraction mapping using regression approaches.

  17. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    Science.gov (United States)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  18. IMAGE FUSION APPLIED TO SATELLITE IMAGERY FOR THE IMPROVED MAPPING AND MONITORING OF CORAL REEFS: A PROPOSAL

    Directory of Open Access Journals (Sweden)

    M. Gholoum

    2012-07-01

    Full Text Available A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine

  19. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  20. Assessing the population coverage of a health demographic surveillance system using satellite imagery and crowd-sourcing.

    Directory of Open Access Journals (Sweden)

    Aurelio Di Pasquale

    Full Text Available Remotely sensed data can serve as an independent source of information about the location of residential structures in areas under demographic and health surveillance. We report on results obtained combining satellite imagery, imported from Bing, with location data routinely collected using the built-in GPS sensors of tablet computers, to assess completeness of population coverage in a Health and Demographic Surveillance System in Malawi. The Majete Malaria Project Health and Demographic Surveillance System, in Malawi, started in 2014 to support a project with the aim of studying the reduction of malaria using an integrated control approach by rolling out insecticide treated nets and improved case management supplemented with house improvement and larval source management. In order to support the monitoring of the trial a Health and Demographic Surveillance System was established in the area that surrounds the Majete Wildlife Reserve (1600 km2, using the OpenHDS data system. We compared house locations obtained using GPS recordings on mobile devices during the demographic surveillance census round with those acquired from satellite imagery. Volunteers were recruited through the crowdcrafting.org platform to identify building structures on the images, which enabled the compilation of a database with coordinates of potential residences. For every building identified on these satellite images by the volunteers (11,046 buildings identified of which 3424 (ca. 30% were part of the censused area, we calculated the distance to the nearest house enumerated on the ground by fieldworkers during the census round of the HDSS. A random sample of buildings (85 structures identified on satellite images without a nearby location enrolled in the census were visited by a fieldworker to determine how many were missed during the baseline census survey, if any were missed. The findings from this ground-truthing effort suggest that a high population coverage was

  1. Using limnological and optical knowledge to detect discharges from nuclear facilities - Potential application of satellite imagery for international safeguards

    International Nuclear Information System (INIS)

    Borstad, G.; Truong, Q.S. Bob; Keeffe, R.; Baines, P.; Staenz, K.; Neville, R.

    2001-01-01

    Previous work carried out under the Canadian Safeguards Support Program, has shown that thermal imagery from the American Landsat satellites could be used to detect the cooling water discharges, and could therefore be used to verify the operational status of nuclear facilities. In some images, thermal plumes could be easily detected in single band imagery with no mathematical manipulation and little image enhancement because there was a very strong thermal contrast between the effluent and the receiving water. However, for certain situations such as discharges into well mixed conditions (cold water and violent tides) the thermal plume may be more subtle. We show here that the visible bands of Landsat and IKONOS images often contain additional information, and that the thermal signature of a discharge from a nuclear facility is not the only signal available to describe its operation. This paper introduces some important hydrological phenomena that govern the biological and physical organization of water bodies, and discusses some basic concepts of marine and aquatic optics that are relevant to the safeguards problem. Using image analysis techniques that have been used widely in ocean optics work and in applications in the mapping and monitoring of water quality, we have re-analyzed data that were obtained under a joint project between various Canadian government departments. We present a preliminary examination of imagery from both satellite multispectral and aircraft hyperspectral sensors, and discuss methods to extract information that could be useful in the detection and verification of declared or undeclared nuclear activities. In one example of an IKONOS image of the Canadian Bruce Nuclear Generating Facility, simple enhancement techniques failed to find any plume other than a small jet visible in the surface wave field. With knowledge of limnology, oceanography and aquatic optics, we have been able to separate and remove the surface reflection, and detect a

  2. The investigation of brain-computer interface for motor imagery and execution using functional near-infrared spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Jiao, Xuejun; Xu, Fengang; Jiang, Jin; Yang, Hanjun; Cao, Yong; Fu, Jiahao

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS), which can measure cortex hemoglobin activity, has been widely adopted in brain-computer interface (BCI). To explore the feasibility of recognizing motor imagery (MI) and motor execution (ME) in the same motion. We measured changes of oxygenated hemoglobin (HBO) and deoxygenated hemoglobin (HBR) on PFC and Motor Cortex (MC) when 15 subjects performing hand extension and finger tapping tasks. The mean, slope, quadratic coefficient and approximate entropy features were extracted from HBO as the input of support vector machine (SVM). For the four-class fNIRS-BCI classifiers, we realized 87.65% and 87.58% classification accuracy corresponding to hand extension and finger tapping tasks. In conclusion, it is effective for fNIRS-BCI to recognize MI and ME in the same motion.

  3. Digital processing of satellite imagery application to jungle areas of Peru

    Science.gov (United States)

    Pomalaza, J. C. (Principal Investigator); Pomalaza, C. A.; Espinoza, J.

    1976-01-01

    The author has identified the following significant results. The use of clustering methods permits the development of relatively fast classification algorithms that could be implemented in an inexpensive computer system with limited amount of memory. Analysis of CCTs using these techniques can provide a great deal of detail permitting the use of the maximum resolution of LANDSAT imagery. Potential cases were detected in which the use of other techniques for classification using a Gaussian approximation for the distribution functions can be used with advantage. For jungle areas, channels 5 and 7 can provide enough information to delineate drainage patterns, swamp and wet areas, and make a reasonable broad classification of forest types.

  4. Drunk identification using far infrared imagery based on DCT features in DWT domain

    Science.gov (United States)

    Xie, Zhihua; Jiang, Peng; Xiong, Ying; Li, Ke

    2016-10-01

    Drunk driving problem is a serious threat to traffic safety. Automatic drunk driver identification is vital to improve the traffic safety. This paper copes with automatic drunk driver detection using far infrared thermal images by the holistic features. To improve the robustness of drunk driver detection, instead of traditional local pixels, a holistic feature extraction method is proposed to attain compact and discriminative features for infrared face drunk identification. Discrete cosine transform (DCT) in discrete wavelet transform (DWT) domain is used to extract the useful features in infrared face images for its high speed. Then, the first six DCT coefficients are retained for drunk classification by means of "Z" scanning. Finally, SVM is applied to classify the drunk person. Experimental results illustrate that the accuracy rate of proposed infrared face drunk identification can reach 98.5% with high computation efficiency, which can be applied in real drunk driver detection system.

  5. The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment

    CERN Document Server

    Méndez-Lorenzo, P; Lamanna, M; Meyer, X; Lazeyras, M; Bjorgo, E; Retiere, A; Falzone, A; Venuti, N; Maccarone, S; Ugolotti, B

    2007-01-01

    UNOSAT is a United Nations activity to provide access to satellite images and geographic system services for humanitarian operations for rescue or aid activities. UNOSAT is implemented by the UN Institute for Training and Research (UNITAR) and managed by the UN Office for Project Services (UNOPS). In addition, partners from different organizations constitute the UNOSAT consortium. Among these partners, CERN participates actively providing the required computational and storage resources. The critical part of the UNOSAT activity is the storage and processing of large quantities of satellite images. The fast and secure access to these images from any part of the world is mandatory during these activities. Based on two successful CERN-GRID/UNOSAT pilot projects (data storage/compression/download and image access through mobile phone), the GRIDUNOSAT project has consolidated the considerable work undertaken so far in the present activity. The main use case already demonstrated is the delivery of satellite images ...

  6. Land surface temperature distribution and development for green open space in Medan city using imagery-based satellite Landsat 8

    Science.gov (United States)

    Sulistiyono, N.; Basyuni, M.; Slamet, B.

    2018-03-01

    Green open space (GOS) is one of the requirements where a city is comfortable to stay. GOS might reduce land surface temperature (LST) and air pollution. Medan is one of the biggest towns in Indonesia that experienced rapid development. However, the early development tends to neglect the GOS existence for the city. The objective of the study is to determine the distribution of land surface temperature and the relationship between the normalized difference vegetation index (NDVI) and the priority of GOS development in Medan City using imagery-based satellite Landsat 8. The method approached to correlate the distribution of land surface temperature derived from the value of digital number band 10 with the NDVI which was from the ratio of groups five and four on satellite images of Landsat 8. The results showed that the distribution of land surface temperature in the Medan City in 2016 ranged 20.57 - 33.83 °C. The relationship between the distribution of LST distribution with NDVI was reversed with a negative correlation of -0.543 (sig 0,000). The direction of GOS in Medan City is therefore developed on the allocation of LST and divided into three priority classes namely first priority class had 5,119.71 ha, the second priority consisted of 16,935.76 ha, and third priority of 6,118.50 ha.

  7. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    Science.gov (United States)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  8. Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling

    Science.gov (United States)

    Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805

  9. Using satellite imagery for qualitative evaluation of plume transport in modeling the effects of the Kuwait oil fire smoke plumes

    International Nuclear Information System (INIS)

    Bass, A.; Janota, P.

    1992-01-01

    To forecast the behavior of the Kuwait oil fire smoke plumes and their possible acute or chronic health effects over the Arabian Gulf region, TASC created a comprehensive health and environmental impacts modeling system. A specially-adapted Lagrangian puff transport model was used to create (a) short-term (multiday) forecasts of plume transport and ground-level concentrations of soot and SO 2 ; and (b) long-term (seasonal and longer) estimates of average surface concentrations and depositions. EPA-approved algorithms were used to transform exposures to SO 2 and soot (as PAH/BaP) into morbidity, mortality and crop damage risks. Absent any ground truth, satellite imagery from the NOAA Polar Orbiter and the ESA Geostationary Meteosat offered the only opportunity for timely qualitative evaluation of the long-range plume transport and diffusion predictions. This paper shows the use of actual satellite images (including animated loops of hourly Meteosat images) to evaluate plume forecasts in near-real-time, and to sanity-check the meso- and long-range plume transport projections for the long-term estimates. Example modeled concentrations, depositions and health effects are shown

  10. High Resolution Topography of Polar Regions from Commercial Satellite Imagery, Petascale Computing and Open Source Software

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Kramer, WIlliam; Bauer, Greg; Bates, Brian; Williamson, Cathleen

    2017-04-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. Two new projects are using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency and open source photogrammetry software to produce a time-tagged 2m posting elevation model of the Arctic and an 8m posting reference elevation model for the Antarctic. When complete, this publically available data will be at higher resolution than any elevation models that cover the entirety of the Western United States. These two polar projects are made possible due to three equally important factors: 1) open-source photogrammetry software, 2) petascale computing, and 3) sub-meter imagery licensed to the United States Government. Our talk will detail the technical challenges of using automated photogrammetry software; the rapid workflow evolution to allow DEM production; the task of deploying the workflow on one of the world's largest supercomputers; the trials of moving massive amounts of data, and the management strategies the team needed to solve in order to meet deadlines. Finally, we will discuss the implications of this type of collaboration for future multi-team use of leadership-class systems such as Blue Waters, and for further elevation mapping.

  11. Advances In very high resolution satellite imagery analysis for Monitoring human settlements

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Cheriyadat, Anil M [ORNL; Bhaduri, Budhendra L [ORNL

    2014-01-01

    The high rate of urbanization, political conflicts and ensuing internal displacement of population, and increased poverty in the 20th century has resulted in rapid increase of informal settlements. These unplanned, unauthorized, and/or unstructured homes, known as informal settlements, shantytowns, barrios, or slums, pose several challenges to the nations, as these settlements are often located in most hazardous regions and lack basic services. Though several World Bank and United Nations sponsored studies stress the importance of poverty maps in designing better policies and interventions, mapping slums of the world is a daunting and challenging task. In this paper, we summarize our ongoing research on settlement mapping through the utilization of Very high resolution (VHR) remote sensing imagery. Most existing approaches used to classify VHR images are single instance (or pixel-based) learning algorithms, which are inadequate for analyzing VHR imagery, as single pixels do not contain sufficient contextual information (see Figure 1). However, much needed spatial contextual information can be captured via feature extraction and/or through newer machine learning algorithms in order to extract complex spatial patterns that distinguish informal settlements from formal ones. In recent years, we made significant progress in advancing the state of art in both directions. This paper summarizes these results.

  12. Using high-resolution satellite imagery and double sampling as a ...

    African Journals Online (AJOL)

    QuickBird satellite images were used to extract auxiliary variables (image data), such as photogrammetric crown diameter and number of stems, using visual interpretation and measuring tools offered by Erdas 8.7 geographic imaging software. Field inventory data (terrestric data) collected in 2002 were used to obtain the ...

  13. Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery

    Science.gov (United States)

    Bonnie Ruefenacht; Mark D. Nelson; Mark Finco

    2009-01-01

    Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...

  14. Identifying and Allocating Geodetic Systems to historical oil gas wells by using high-resolution satellite imagery

    Science.gov (United States)

    Alvarez, Gabriel O.

    2018-05-01

    Hydrocarbon exploration in Argentina started long before the IGM created a single, high-precision geodetic reference network for the whole country. Several geodetic surveys were conducted in every producing basin, which have ever since then supported well placement. Currently, every basin has a huge amount of information referenced to the so-called "local" geodetic systems, such as Chos Malal - Quiñi Huao in the Neuquén Basin, and Pampa del Castillo in the San Jorge Basin, which differ to a greater or lesser extent from the national Campo Inchauspe datum established by the IGM in 1969 as the official geodetic network. However, technology development over the last few years and the expansion of satellite positioning systems such as GPS resulted in a new world geodetic order. Argentina rapidly joined this new geodetic order through the implementation of a new national geodetic system by the IGM: POSGAR network, which replaced the old national Campo Inchauspe system. However, this only helped to worsen the data georeferencing issue for oil companies, as a third reference system was added to each basin. Now every basin has a local system, the national system until 1997 (Campo Inchauspe), and finally the newly created POSGAR network national satellite system, which is geocentric unlike the former two planimetric datums. The purpose of this paper is to identify and allocate geodetic systems of coordinates to historical wells, whose geodetic system is missing or has been erroneously allocated, by using currently available technological resources such as geographic information systems and high-resolution satellite imagery.

  15. Geographic object-based delineation of neighborhoods of Accra, Ghana using QuickBird satellite imagery.

    Science.gov (United States)

    Stow, Douglas A; Lippitt, Christopher D; Weeks, John R

    2010-08-01

    The objective was to test GEographic Object-based Image Analysis (GEOBIA) techniques for delineating neighborhoods of Accra, Ghana using QuickBird multispectral imagery. Two approaches to aggregating census enumeration areas (EAs) based on image-derived measures of vegetation objects were tested: (1) merging adjacent EAs according to vegetation measures and (2) image segmentation. Both approaches exploit readily available functions within commercial GEOBIA software. Image-derived neighborhood maps were compared to a reference map derived by spatial clustering of slum index values (from census data), to provide a relative assessment of potential map utility. A size-constrained iterative segmentation approach to aggregation was more successful than standard image segmentation or feature merge techniques. The segmentation approaches account for size and shape characteristics, enabling more realistic neighborhood boundaries to be delineated. The percentage of vegetation patches within each EA yielded more realistic delineation of potential neighborhoods than mean vegetation patch size per EA.

  16. The theory precision analyse of RFM localization of satellite remote sensing imagery

    Science.gov (United States)

    Zhang, Jianqing; Xv, Biao

    2009-11-01

    The tradition method of detecting precision of Rational Function Model(RFM) is to make use of a great deal check points, and it calculates mean square error through comparing calculational coordinate with known coordinate. This method is from theory of probability, through a large number of samples to statistic estimate value of mean square error, we can think its estimate value approaches in its true when samples are well enough. This paper is from angle of survey adjustment, take law of propagation of error as the theory basis, and it calculates theory precision of RFM localization. Then take the SPOT5 three array imagery as experiment data, and the result of traditional method and narrated method in the paper are compared, while has confirmed tradition method feasible, and answered its theory precision question from the angle of survey adjustment.

  17. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  18. UNOSAT at CERN – 15 years of satellite imagery support to the humanitarian and development community

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Abstract: UNOSAT is part of the United Nations Institute for Training and Research (UNITAR) and has been hosted at CERN since 2001. This partnership allows UNOSAT to benefit from CERN's IT infrastructure whenever the situation requires, allowing the UN to be at the forefront of satellite-analysis technology. Specialists in geographic information systems (GIS) and in the analysis of satellite data, supported by IT engineers and policy experts, ensure a dedicated service to the international humanitarian and development communities 24 hours a day, seven days a week. The presentation will give an overview of the variety of activities carried out by UNOSAT over the last 15 years including support to humanitarian assistance and protection of cultural heritage, sustainable water management in Chad and training & capacity development in East Africa and Asia. The talk will be followed at 12:00 by the inauguration of the UNOSAT exhibition, in front of the Users' office. Speaker: Einar Bjor...

  19. Becoming Bombs: 3D Animated Satellite Imagery and the Weaponization of the Civic Eye

    Directory of Open Access Journals (Sweden)

    Roger Stahl

    2010-02-01

    Full Text Available This essay traces the recent history of 3D satellite animation from its military origins to its visibility in the civic sphere. Specifically, technologies unveiled in 2004 as Google Earth first received widespread public visibility in the television coverage of the 2003 U.S. invasion of Iraq. The essay first maps the political economy of the “military-media-geotech” complex, focusing mainly on the coverage of the Iraq War as an nexus of interests. Second, the essay analyzes the aesthetic uses of 3D satellite animation on the news during this period, including how these imaging practices meshed with existing discourses such as the clean war, the weaponization of the civic gaze, and others. The essay concludes with thoughts regarding what these practices mean for the efficacy of the deliberative citizen, public life, and the meaning of war.

  20. Use of satellite imagery to assess the trophic state of Miyun Reservoir, Beijing, China

    International Nuclear Information System (INIS)

    Wang Zhengjun; Hong Jianming; Du Guisen

    2008-01-01

    The objective of this research is to explore an appropriate way of monitoring and assessing water quality by satellite remote sensing techniques in the Miyun reservoir of Beijing, China. Two scene Thematic Mapper images in May and October of 2003 were acquired and simultaneous in situ measurements, sampling and analysis were conducted. Statistical analysis indicates that satellite-based normalized ratio vegetation index (NRVI) and in situ measured water chlorophyll a (Chl-a) concentration have very high correlation. Two linear regression models with high determination coefficients were constructed for NRVI and Chl-a of sample points. According to the modified trophic state index map, water quality in the western section of Miyun reservoir was consistently higher than in the eastern section during the two months tested. The trophic grade of the eastern reservoir remained mesotrophic with a tendency for eutrophication. - Remote sensing techniques can effectively monitor the change of water quality with time and space

  1. Land use change detection based on multi-date imagery from different satellite sensor systems

    Science.gov (United States)

    Stow, Douglas A.; Collins, Doretta; Mckinsey, David

    1990-01-01

    An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.

  2. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  3. OVERVIEW OF MODERN RESEARCH OF LANDSLIDES ACCORDING TO AERIAL AND SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    K. M. Lyapishev

    2015-01-01

    Full Text Available This article is an overview of researches of landslides using remote sensing methods such as aerial photography, satellite images, radar interferometry, and their combination with the use of GIS technology. Modern methods of investigation of landslides are very diverse. The authors propose different approaches to the identification, classification and monitoring of landslides. Data analysis techniques can help in creating more sophisticated approach to the analysis of landslides.

  4. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  5. Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast

    International Nuclear Information System (INIS)

    Escrig, H.; Batlles, F.J.; Alonso, J.; Baena, F.M.; Bosch, J.L.; Salbidegoitia, I.B.; Burgaleta, J.I.

    2013-01-01

    Considering that clouds are the greatest causes to solar radiation blocking, short term cloud forecasting can help power plant operation and therefore improve benefits. Cloud detection, classification and motion vector determination are key to forecasting sun obstruction by clouds. Geostationary satellites provide cloud information covering wide areas, allowing cloud forecast to be performed for several hours in advance. Herein, the methodology developed and tested in this study is based on multispectral tests and binary cross correlations followed by coherence and quality control tests over resulting motion vectors. Monthly synthetic surface albedo image and a method to reject erroneous correlation vectors were developed. Cloud classification in terms of opacity and height of cloud top is also performed. A whole-sky camera has been used for validation, showing over 85% of agreement between the camera and the satellite derived cloud cover, whereas error in motion vectors is below 15%. - Highlights: ► A methodology for detection, classification and movement of clouds is presented. ► METEOSAT satellite images are used to obtain a cloud mask. ► The prediction of cloudiness is estimated with 90% in overcast conditions. ► Results for partially covered sky conditions showed a 75% accuracy. ► Motion vectors are estimated from the clouds with a success probability of 86%

  6. Contrast, size, and orientation-invariant target detection in infrared imagery

    Science.gov (United States)

    Zhou, Yi-Tong; Crawshaw, Richard D.

    1991-08-01

    Automatic target detection in IR imagery is a very difficult task due to variations in target brightness, shape, size, and orientation. In this paper, the authors present a contrast, size, and orientation invariant algorithm based on Gabor functions for detecting targets from a single IR image frame. The algorithms consists of three steps. First, it locates potential targets by using low-resolution Gabor functions which resist noise and background clutter effects, then, it removes false targets and eliminates redundant target points based on a similarity measure. These two steps mimic human vision processing but are different from Zeevi's Foveating Vision System. Finally, it uses both low- and high-resolution Gabor functions to verify target existence. This algorithm has been successfully tested on several IR images that contain multiple examples of military vehicles with different size and brightness in various background scenes and orientations.

  7. Use of open source information and commercial satellite imagery for nuclear nonproliferation regime compliance verification by a community of academics

    Science.gov (United States)

    Solodov, Alexander

    The proliferation of nuclear weapons is a great threat to world peace and stability. The question of strengthening the nonproliferation regime has been open for a long period of time. In 1997 the International Atomic Energy Agency (IAEA) Board of Governors (BOG) adopted the Additional Safeguards Protocol. The purpose of the protocol is to enhance the IAEA's ability to detect undeclared production of fissile materials in member states. However, the IAEA does not always have sufficient human and financial resources to accomplish this task. Developed here is a concept for making use of human and technical resources available in academia that could be used to enhance the IAEA's mission. The objective of this research was to study the feasibility of an academic community using commercially or publicly available sources of information and products for the purpose of detecting covert facilities and activities intended for the unlawful acquisition of fissile materials or production of nuclear weapons. In this study, the availability and use of commercial satellite imagery systems, commercial computer codes for satellite imagery analysis, Comprehensive Test Ban Treaty (CTBT) verification International Monitoring System (IMS), publicly available information sources such as watchdog groups and press reports, and Customs Services information were explored. A system for integrating these data sources to form conclusions was also developed. The results proved that publicly and commercially available sources of information and data analysis can be a powerful tool in tracking violations in the international nuclear nonproliferation regime and a framework for implementing these tools in academic community was developed. As a result of this study a formation of an International Nonproliferation Monitoring Academic Community (INMAC) is proposed. This would be an independent organization consisting of academics (faculty, staff and students) from both nuclear weapon states (NWS) and

  8. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  9. A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data

    Science.gov (United States)

    Abedi, Maysam; Norouzi, Gholam-Hossain

    2016-04-01

    This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA

  10. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    Science.gov (United States)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled

  11. Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

    Directory of Open Access Journals (Sweden)

    Kuan-Ting Liu

    2016-04-01

    Full Text Available Water level (WL and water volume (WV of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2 and Landsat-5/-7/-8 Thematic Mapper (TM/Enhanced Thematic Mapper plus (ETM+/Operational  Land Imager (OLI optical remote sensing (RS imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE is at 2–5 m level. The estimated WV variations derived from combined RA

  12. A Satellite Imagery Approach to Monitor Turbidity and Total Suspended Sediments in Green Bay, WI

    Science.gov (United States)

    Khazaei, B.; Hamidi, S.; Hosseiny, S. M. H.; Ekhtari, N.

    2017-12-01

    Fox River is a major source of land-based pollutants, nutrients, and sediment that flows into the southern Green Bay (GB). GB supplies one-third of the total nutrient loading to Lake Michigan. This can play a significant role in the biological functioning of the Bay and development of managerial scenarios. To name a few, it can degrade the quality of the aquatic life, add to the costs for treatment processes, and reduce coastal quality. Water quality evaluation is a time consuming and costly process. Spaceborne imagery data provides a cheap and valuable source of information as an alternative for field monitoring of the water resources. Sediment is an optically active variable; hence; remote sensing techniques can be utilized to estimate Total Suspended Sediments (TSS) and Turbidity (TU) of water. In this study, we developed relationships between remote sensing imagery data with daily in situ measurements of TSS and TU in the summers of 2011 to 2014. Surface reflectance (SR) values obtained from Band 1 of MYD09GQ dataset-a level 2 product of MODerate Resolution Imaging Spectroradiometer (MODIS). This band covers SR between 620 and 670nm, in which, the wavelength is sensitive to mineral suspended matters most. After elimination of days with cloud contamination, 118 pairs of data remained for analysis. Several possible functions were tested and exponential function was the best estimator of the SR-TSS and SR-TU relationships with R2 values of 0.8269 and 0.8688, respectively. We then used 2014 data to validate the proposed functions. The model was able to estimate TSS and TU with NRMSE values of 0.36 and 0.30. It indicates that the model can be well-applied to predict TSS and TU within a reasonable margin of error. Then, equations were used to map the spatiotemporal dynamics of sediment in GB. Area of the plume ranges between 12 to 180 km2 while 50% of the time the area of the turbid plume is more than 106 km2. Expectedly, the concentration of sediment is much higher

  13. Detection of environmental disturbance using color aerial photography and thermal infrared imagery

    International Nuclear Information System (INIS)

    Aronoff, S.; Ross, G.A.

    1982-01-01

    Characteristics of a program for satellite remote sensing for long-period environmental monitoring are examined, noting that establishing early mapping surveys of areas of concern aids in detection of stressful environmental conditions. The process is described with an example from IR and color photography of a 30,000 sq km area in the Athabasca Oil Sands, with the photography carried out from aircraft and satellite. The IR data was gathered between 8-14 microns and the photographs were taken at a 1:11,000 scale. Water-related disturbances detected included turbidity which indicated the possible presence of oil, and higher thermal emission near a tailings pond which also suggested an oil source. The presence of surface aquatic vegetation is an indicator of nutrient imbalance in a pond near a sewage pond. Finally, dead trees were observed near improperly installed culverts along new roads

  14. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  15. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.

    2016-01-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  16. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    Science.gov (United States)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  17. A Subpixel Classification of Multispectral Satellite Imagery for Interpetation of Tundra-Taiga Ecotone Vegetation (Case Study on Tuliok River Valley, Khibiny, Russia)

    Science.gov (United States)

    Mikheeva, A. I.; Tutubalina, O. V.; Zimin, M. V.; Golubeva, E. I.

    2017-12-01

    The tundra-taiga ecotone plays significant role in northern ecosystems. Due to global climatic changes, the vegetation of the ecotone is the key object of many remote-sensing studies. The interpretation of vegetation and nonvegetation objects of the tundra-taiga ecotone on satellite imageries of a moderate resolution is complicated by the difficulty of extracting these objects from the spectral and spatial mixtures within a pixel. This article describes a method for the subpixel classification of Terra ASTER satellite image for vegetation mapping of the tundra-taiga ecotone in the Tuliok River, Khibiny Mountains, Russia. It was demonstrated that this method allows to determine the position of the boundaries of ecotone objects and their abundance on the basis of quantitative criteria, which provides a more accurate characteristic of ecotone vegetation when compared to the per-pixel approach of automatic imagery interpretation.

  18. Preliminary hard and soft bottom seafloor substrate map derived from an supervised classification of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from a supervised classification from multispectral World View-2 satellite imagery of Ni'ihau Island,...

  19. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    Science.gov (United States)

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  20. Spatial and temporal changes in household structure locations using high-resolution satellite imagery for population assessment: an analysis in southern Zambia, 2006-2011

    Directory of Open Access Journals (Sweden)

    Timothy Shields

    2016-05-01

    Full Text Available Satellite imagery is increasingly available at high spatial resolution and can be used for various purposes in public health research and programme implementation. Comparing a census generated from two satellite images of the same region in rural southern Zambia obtained four and a half years apart identified patterns of household locations and change over time. The length of time that a satellite image-based census is accurate determines its utility. Households were enumerated manually from satellite images obtained in 2006 and 2011 of the same area. Spatial statistics were used to describe clustering, cluster detection, and spatial variation in the location of households. A total of 3821 household locations were enumerated in 2006 and 4256 in 2011, a net change of 435 houses (11.4% increase. Comparison of the images indicated that 971 (25.4% structures were added and 536 (14.0% removed. Further analysis suggested similar household clustering in the two images and no substantial difference in concentration of households across the study area. Cluster detection analysis identified a small area where significantly more household structures were removed than expected; however, the amount of change was of limited practical significance. These findings suggest that random sampling of households for study participation would not induce geographic bias if based on a 4.5-year-old image in this region. Application of spatial statistical methods provides insights into the population distribution changes between two time periods and can be helpful in assessing the accuracy of satellite imagery.

  1. Ensemble classification of individual Pinus crowns from multispectral satellite imagery and airborne LiDAR

    Science.gov (United States)

    Kukunda, Collins B.; Duque-Lazo, Joaquín; González-Ferreiro, Eduardo; Thaden, Hauke; Kleinn, Christoph

    2018-03-01

    Distinguishing tree species is relevant in many contexts of remote sensing assisted forest inventory. Accurate tree species maps support management and conservation planning, pest and disease control and biomass estimation. This study evaluated the performance of applying ensemble techniques with the goal of automatically distinguishing Pinus sylvestris L. and Pinus uncinata Mill. Ex Mirb within a 1.3 km2 mountainous area in Barcelonnette (France). Three modelling schemes were examined, based on: (1) high-density LiDAR data (160 returns m-2), (2) Worldview-2 multispectral imagery, and (3) Worldview-2 and LiDAR in combination. Variables related to the crown structure and height of individual trees were extracted from the normalized LiDAR point cloud at individual-tree level, after performing individual tree crown (ITC) delineation. Vegetation indices and the Haralick texture indices were derived from Worldview-2 images and served as independent spectral variables. Selection of the best predictor subset was done after a comparison of three variable selection procedures: (1) Random Forests with cross validation (AUCRFcv), (2) Akaike Information Criterion (AIC) and (3) Bayesian Information Criterion (BIC). To classify the species, 9 regression techniques were combined using ensemble models. Predictions were evaluated using cross validation and an independent dataset. Integration of datasets and models improved individual tree species classification (True Skills Statistic, TSS; from 0.67 to 0.81) over individual techniques and maintained strong predictive power (Relative Operating Characteristic, ROC = 0.91). Assemblage of regression models and integration of the datasets provided more reliable species distribution maps and associated tree-scale mapping uncertainties. Our study highlights the potential of model and data assemblage at improving species classifications needed in present-day forest planning and management.

  2. Mapping Aquatic Vegetation in a Tropical Wetland Using High Spatial Resolution Multispectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Timothy G. Whiteside

    2015-09-01

    Full Text Available Vegetation plays a key role in the environmental function of wetlands. The Ramsar-listed wetlands of the Magela Creek floodplain in Northern Australia are identified as being at risk from weeds, fire and climate change. In addition, the floodplain is a downstream receiving environment for the Ranger Uranium Mine. Accurate methods for mapping wetland vegetation are required to provide contemporary baselines of annual vegetation dynamics on the floodplain to assist with analysing any potential change during and after minesite rehabilitation. The aim of this study was to develop and test the applicability of geographic object-based image analysis including decision tree classification to classify WorldView-2 imagery and LiDAR-derived ancillary data to map the aquatic vegetation communities of the Magela Creek floodplain. Results of the decision tree classification were compared against a Random Forests classification. The resulting maps showed the 12 major vegetation communities that exist on the Magela Creek floodplain and their distribution for May 2010. The decision tree classification method provided an overall accuracy of 78% which was significantly higher than the overall accuracy of the Random Forests classification (67%. Most of the error in both classifications was associated with confusion between spectrally similar classes dominated by grasses, such as Hymenachne and Pseudoraphis. In addition, the extent of the sedge Eleocharis was under-estimated in both cases. This suggests the method could be useful for mapping wetlands where statistical-based supervised classifications have achieved less than satisfactory results. Based upon the results, the decision tree method will form part of an ongoing operational monitoring program.

  3. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    Science.gov (United States)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  4. Identification of the potential gap areas for the developing green infrastructure in the Urban area using High resolution satellite Imagery

    Science.gov (United States)

    Kanaparthi, M. B.

    2017-12-01

    In India urban population is growing day by day which is causing air pollution less air quality finally leading to climate change and global warming. To mitigate the effect of the climate change we need to plant more trees in the urban area. The objective of this study is develop a plan to improve the urban Green Infrastructure (GI) to fight against the climate change and global warming. Improving GI is a challenging and difficult task in the urban areas because land unavailability of land, to overcome the problem greenways is a good the solution. Greenway is a linear open space developed along the rivers, canals, roads in the urban areas to form a network of green spaces. Roads are the most common structures in the urban area. The idea is to develop the greenways alongside the road to connecting the different green spaces. Tree crowns will act as culverts to connect the green spaces. This will require the spatial structure of the green space, distribution of trees along the roads and the gap areas along the road where more trees can be planted. This can be achieved with help of high resolution Satellite Imagery and the object extraction techniques. This study was carried in the city Bhimavaram which is located in state Andhra Pradesh. The final outcome of this study is potential gap areas for planting trees in the city.

  5. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China

    Science.gov (United States)

    Wang, Wen; Cheng, Hui; Zhang, Li

    2012-04-01

    All countries around the world and many international bodies, including the United Nations Development Program (UNDP), United Nations Food and Agricultural Organization (FAO), the International Fund for Agricultural Development (IFAD) and the International Labor Organization (ILO), have to eliminate rural poverty. Estimation of regional poverty level is a key issue for making strategies to eradicate poverty. Most of previous studies on regional poverty evaluations are based on statistics collected typically in administrative units. This paper has discussed the deficiencies of traditional studies, and attempted to research regional poverty evaluation issues using 3-year DMSP/OLS night-time light satellite imagery. In this study, we adopted 17 socio-economic indexes to establish an integrated poverty index (IPI) using principal component analysis (PCA), which was proven to provide a good descriptor of poverty levels in 31 regions at a provincial scale in China. We also explored the relationship between DMSP/OLS night-time average light index and the poverty index using regression analysis in SPSS and a good positive linear correlation was modelled, with R2 equal to 0.854. We then looked at provincial poverty problems in China based on this correlation. The research results indicated that the DMSP/OLS night-time light data can assist analysing provincial poverty evaluation issues.

  6. Automatic Classification of High Resolution Satellite Imagery - a Case Study for Urban Areas in the Kingdom of Saudi Arabia

    Science.gov (United States)

    Maas, A.; Alrajhi, M.; Alobeid, A.; Heipke, C.

    2017-05-01

    Updating topographic geospatial databases is often performed based on current remotely sensed images. To automatically extract the object information (labels) from the images, supervised classifiers are being employed. Decisions to be taken in this process concern the definition of the classes which should be recognised, the features to describe each class and the training data necessary in the learning part of classification. With a view to large scale topographic databases for fast developing urban areas in the Kingdom of Saudi Arabia we conducted a case study, which investigated the following two questions: (a) which set of features is best suitable for the classification?; (b) what is the added value of height information, e.g. derived from stereo imagery? Using stereoscopic GeoEye and Ikonos satellite data we investigate these two questions based on our research on label tolerant classification using logistic regression and partly incorrect training data. We show that in between five and ten features can be recommended to obtain a stable solution, that height information consistently yields an improved overall classification accuracy of about 5%, and that label noise can be successfully modelled and thus only marginally influences the classification results.

  7. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  8. Application of an optimization algorithm to satellite ocean color imagery: A case study in Southwest Florida coastal waters

    Science.gov (United States)

    Hu, Chuanmin; Lee, Zhongping; Muller-Karger, Frank E.; Carder, Kendall L.

    2003-05-01

    A spectra-matching optimization algorithm, designed for hyperspectral sensors, has been implemented to process SeaWiFS-derived multi-spectral water-leaving radiance data. The algorithm has been tested over Southwest Florida coastal waters. The total spectral absorption and backscattering coefficients can be well partitioned with the inversion algorithm, resulting in RMS errors generally less than 5% in the modeled spectra. For extremely turbid waters that come from either river runoff or sediment resuspension, the RMS error is in the range of 5-15%. The bio-optical parameters derived in this optically complex environment agree well with those obtained in situ. Further, the ability to separate backscattering (a proxy for turbidity) from the satellite signal makes it possible to trace water movement patterns, as indicated by the total absorption imagery. The derived patterns agree with those from concurrent surface drifters. For waters where CDOM overwhelmingly dominates the optical signal, however, the procedure tends to regard CDOM as the sole source of absorption, implying the need for better atmospheric correction and for adjustment of some model coefficients for this particular region.

  9. PREDICTION METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED HYPERSPECTRAL IMAGERY

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, M.; Walsh, S.J.; Daly, D.S.

    2009-01-01

    Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, the bounding background surface and instrument noise. A physics-based model of observed radiance shows that high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing one background type to another. The two predictor metrics correctly rank ordered the backgrounds for about 94% of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study suggests that similarly effective predictors that account for more general physical conditions may be derived.

  10. Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite no. 1 wide field of view imagery

    Science.gov (United States)

    Ai, Jinquan; Gao, Wei; Gao, Zhiqiang; Shi, Runhe; Zhang, Chao

    2017-04-01

    Spartina alterniflora is an aggressive invasive plant species that replaces native species, changes the structure and function of the ecosystem across coastal wetlands in China, and is thus a major conservation concern. Mapping the spread of its invasion is a necessary first step for the implementation of effective ecological management strategies. The performance of a phenology-based approach for S. alterniflora mapping is explored in the coastal wetland of the Yangtze Estuary using a time series of GaoFen satellite no. 1 wide field of view camera (GF-1 WFV) imagery. First, a time series of the normalized difference vegetation index (NDVI) was constructed to evaluate the phenology of S. alterniflora. Two phenological stages (the senescence stage from November to mid-December and the green-up stage from late April to May) were determined as important for S. alterniflora detection in the study area based on NDVI temporal profiles, spectral reflectance curves of S. alterniflora and its coexistent species, and field surveys. Three phenology feature sets representing three major phenology-based detection strategies were then compared to map S. alterniflora: (1) the single-date imagery acquired within the optimal phenological window, (2) the multitemporal imagery, including four images from the two important phenological windows, and (3) the monthly NDVI time series imagery. Support vector machines and maximum likelihood classifiers were applied on each phenology feature set at different training sample sizes. For all phenology feature sets, the overall results were produced consistently with high mapping accuracies under sufficient training samples sizes, although significantly improved classification accuracies (10%) were obtained when the monthly NDVI time series imagery was employed. The optimal single-date imagery had the lowest accuracies of all detection strategies. The multitemporal analysis demonstrated little reduction in the overall accuracy compared with the

  11. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    International Nuclear Information System (INIS)

    Baccini, A; Laporte, N; Goetz, S J; Sun, M; Dong, H

    2008-01-01

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha -1 for a range of biomass between 0 and 454 Mg ha -1 . Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R 2 = 0.90) between the GLAS height metrics and predicted AGB.

  12. NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded Satellite (GridSat-B1) data provides a uniform set of quality controlled geostationary satellite observations for the visible, infrared window and...

  13. Automatic Blocked Roads Assessment after Earthquake Using High Resolution Satellite Imagery

    Science.gov (United States)

    Rastiveis, H.; Hosseini-Zirdoo, E.; Eslamizade, F.

    2015-12-01

    In 2010, an earthquake in the city of Port-au-Prince, Haiti, happened quite by chance an accident and killed over 300000 people. According to historical data such an earthquake has not occurred in the area. Unpredictability of earthquakes has necessitated the need for comprehensive mitigation efforts to minimize deaths and injuries. Blocked roads, caused by debris of destroyed buildings, may increase the difficulty of rescue activities. In this case, a damage map, which specifies blocked and unblocked roads, can be definitely helpful for a rescue team. In this paper, a novel method for providing destruction map based on pre-event vector map and high resolution world view II satellite images after earthquake, is presented. For this purpose, firstly in pre-processing step, image quality improvement and co-coordination of image and map are performed. Then, after extraction of texture descriptor from the image after quake and SVM classification, different terrains are detected in the image. Finally, considering the classification results, specifically objects belong to "debris" class, damage analysis are performed to estimate the damage percentage. In this case, in addition to the area objects in the "debris" class their shape should also be counted. The aforementioned process are performed on all the roads in the road layer.In this research, pre-event digital vector map and post-event high resolution satellite image, acquired by Worldview-2, of the city of Port-au-Prince, Haiti's capital, were used to evaluate the proposed method. The algorithm was executed on 1200×800 m2 of the data set, including 60 roads, and all the roads were labelled correctly. The visual examination have authenticated the abilities of this method for damage assessment of urban roads network after an earthquake.

  14. Quantifying the clear-sky bias of satellite-derived infrared LST

    Science.gov (United States)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.

    2017-12-01

    Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.

  15. Assessing Sahelian vegetation and stress from seasonal time series of polar orbiting and geostationary satellite imagery

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard

    that short term variations in anomalies from seasonally detrended time series of indices could carry information on vegetation stress was examined and confirmed. However, it was not found sufficiently robust on pixel level to be implemented for monitoring vegetation water stress on a per-pixel basis...... provide good sensitivity to canopy water content, which can make vegetation stress detection possible. Furthermore, the high frequency observations in the optical spectrum now available from geostationary instruments have the potential for detection of changes in vegetation related surface properties...... on short timescales, which are challenging from polar orbiting instruments. Geostationary NDVI and the NIR and SWIR based Shortwave Infrared Water Stress Index (SIWSI) indices are compared with extensive field data from the Dahra site, supplemented by data from the Agoufou and Demokeya sites. The indices...

  16. Near-Infrared Mapping Spectrometer for investigation of Jupiter and its satellites

    International Nuclear Information System (INIS)

    Aptaker, I.M.

    1988-01-01

    The Near-Infrared-Mapping Spectrometer (NIMS) is one of the science instruments in the Galileo mission, which will explore Jupiter and its satellites in the mid-1990's. The NIMS experiment will map geological units on the surfaces of the Jovian satellites and characterize their mineral content; and, for the atmosphere of Jupiter, investigate cloud properties and the spatial and temporal variability of molecular abundances. The optics are gold-coated reflective and consist of a telescope and a grating spectrometer. The balance of the instrument includes a 17-detector (silicon and indium antimonide) focal plane array, a tuning fork chopper, microprocessor-controlled electronics, and a passive radiative cooler. A wobbling secondary mirror in the telescope provides 20 pixels in one dimension of spatial scanning in a pushbroom mode with 0.5 mr x 0.5 mr instantaneous field of view. The spectral range is 0.7-5.2 microns; resolution is 0.025 micron. NIMS is the first infrared experiment to combine both spatial and spectral mapping capability in one instrument

  17. Aerial Photography and Imagery, Ortho-Corrected, 4 inch aerial photography (color, infrared, and color oblique) in urban areas, 1 foot in national forest, Published in 2006, 1:600 (1in=50ft) scale, Los Angeles County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2006. 4 inch aerial photography (color, infrared, and color oblique) in urban areas, 1 foot in...

  18. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery

    Science.gov (United States)

    García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko

    2018-04-01

    Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important

  19. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  20. Revisiting Past Earthquakes and Seismo-Volcanic Crises Using Declassified Optical Satellite Imagery (Invited)

    Science.gov (United States)

    Hollingsworth, J.; Leprince, S.; Ayoub, F.; Avouac, J.

    2009-12-01

    In this study we demonstrate that the recently declassified Corona KH-9 images can be used to measure ground deformation due to seismotectonic and volcanic events from optical sub-pixel correlation. We use high resolution (6-9 m) satellite images, available from the USGS for a relatively small cost ($30 per image, swath measuring 250 x 125 km). The images are processed with the user-friendly software package COSI-Corr, which allows for automatic and precise ortho-rectification, co-registration, and sub-pixel correlation of pushbroom satellite and aerial images. Knowledge of the camera calibration information is required to determine the interior and exterior orientation parameters of the camera, which are in turn needed to successfully orthorectify and co-register the images using COSI-Corr. Because the camera information still remains classified, we follow the approach of Surazakov, et al., (2009), who conclude the Hexagon KH9 camera system is similar to the NASA Large Format Camera (LFC) system. We successfully tested the approach on the 1999 Hector Mine, USA (Ms 7.4) and 1992 Landers, USA (Ms 7.5) earthquakes and then moved on to analyze a number of other large events. We have in particular been able to measure the surface deformation induced by the 1975-1984 Krafla rifting crisis in NE Iceland, by correlating a Hexagon image from 15th September 1977 with a SPOT5 image from 2002. During the period 1977-2002 we find an average E-W extension of 3±0.5 m across the rift, which extends NNE from Lake Myvatn in the south to Ásbyrgi canyon near the coast to the north (a distance of over 40 km) and were able to determine which faults were activated. We have also co-registered a number of Hexagon images to both SPOT and ASTER images (orthorectified using either SRTMv2 or ASTER GDEM topographic data) to determine the co-seismic rupture location and amount of displacement in various significant intraplate earthquakes for which InSAR or GPS data is unavailable: 1976

  1. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    Science.gov (United States)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  2. Mid-term fire danger index based on satellite imagery and ancillary geographic data

    Science.gov (United States)

    Stefanidou, A.; Dragozi, E.; Tompoulidou, M.; Stepanidou, L.; Grigoriadis, D.; Katagis, T.; Stavrakoudis, D.; Gitas, I.

    2017-09-01

    Fire danger forecast constitutes one of the most important components of integrated fire management since it provides crucial information for efficient pre-fire planning, alertness and timely response to a possible fire event. The aim of this work is to develop an index that has the capability of predicting accurately fire danger on a mid-term basis. The methodology that is currently under development is based on an innovative approach that employs dry fuel spatial connectivity as well as biophysical and topological variables for the reliable prediction of fire danger. More specifically, the estimation of the dry fuel connectivity is based on a previously proposed automated procedure implemented in R software that uses Moderate Resolution Imaging Spectrometer (MODIS) time series data. Dry fuel connectivity estimates are then combined with other ancillary data such as fuel type and proximity to roads in order to result in the generation of the proposed mid-term fire danger index. The innovation of the proposed index—which will be evaluated by comparison to historical fire data—lies in the fact that its calculation is almost solely affected by the availability of satellite data. Finally, it should be noted that the index is developed within the framework of the National Observatory of Forest Fires (NOFFi) project.

  3. Forest mapping and change analysis, using satellite imagery in Zagros mountain Iran, Islamic Republic o

    International Nuclear Information System (INIS)

    Torahi, A.A.

    2013-01-01

    A methodology to map and monitor land cover change using multi temporal Landsat Thematic Mapper (TM) and ASTER data in Zagros mountains of Iran for 1990, 1998, and 2006 was developed. Land- use/cover mapping is achieved through interpretation of Landsat TM satellite images of 1990, 1998 and TERRA-ASTER image of 2006 using ENVI 4.3. Basedon the Anderson land-use/cover classification system, land-use and land-covers are classified as forest land, range land, water bodies, agricultural land and residential land.The unsupervised image classification method was carried out prior to field visit, in order to determine strata for ground truth. Fieldwork was carried out to collect data for training and validating land use/cover interpretation from satellite image of 2006, and for qualitative description of the characteristics of each land use/cover class. The land - use/cover maps of 1990,1998 and 2006 were produced by using supervised image classification technique based on the Maximum Likelihood Classifier (MLC) and 132 training samples. Error matrices as cross-tabulations of the mapped class vs. the reference class were used to assess classification accuracy. Overall accuracy, users and produce accuracies, and the Kappa statistic were then derived from the error matrices. A multi-date post-classification comparison change detection algorithm was used to determine changes in land cover in three intervals, 1990,1998, 1998, 2006 and 1990, 2006.To evaluate the maps change for the 1990 to 2006 interval, areas classified as change and no-change were randomly sampled and checked whether they were correctly classified. The maps showed that between 1990 and 2006 the amount of forest land decreased from 67% to 38.5% of the total area, while rangelands, agriculture, settlement and surface water increased from 30.8% to 45%, 1.2% to.0%, 0.3% to 7.5% and 0.6% to 1.8%, respectively.In 1990,1998 and 2006, the area was dominated by dense forest (35.9%, 28.9%, 29.3%), open forest and

  4. Online Access to Weather Satellite Imagery Through the World Wide Web

    Science.gov (United States)

    Emery, W.; Baldwin, D.

    1998-01-01

    Both global area coverage (GAC) and high-resolution picture transmission (HRTP) data from the Advanced Very High Resolution Radiometer (AVHRR) are made available to laternet users through an online data access system. Older GOES-7 data am also available. Created as a "testbed" data system for NASA's future Earth Observing System Data and Information System (EOSDIS), this testbed provides an opportunity to test both the technical requirements of an onune'd;ta system and the different ways in which the -general user, community would employ such a system. Initiated in December 1991, the basic data system experienced five major evolutionary changes In response to user requests and requirements. Features added with these changes were the addition of online browse, user subsetting, dynamic image Processing/navigation, a stand-alone data storage system, and movement,from an X-windows graphical user Interface (GUI) to a World Wide Web (WWW) interface. Over Its lifetime, the system has had as many as 2500 registered users. The system on the WWW has had over 2500 hits since October 1995. Many of these hits are by casual users that only take the GIF images directly from the interface screens and do not specifically order digital data. Still, there b a consistent stream of users ordering the navigated image data and related products (maps and so forth). We have recently added a real-time, seven- day, northwestern United States normalized difference vegetation index (NDVI) composite that has generated considerable Interest. Index Terms-Data system, earth science, online access, satellite data.

  5. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    Science.gov (United States)

    Malone, Sparkle; Tulbure, Mirela; Pérez-Luque, Antonio J.; Assal, Timothy J.; Bremer, Leah; Drucker, Debora; Hillis, Vicken; Varela, Sara; Goulden, Michael

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and function. We quantified ecosystem resistance to drought by comparing changes in satellite-derived estimates of water-use efficiency (WUE = net primary productivity [NPP]/evapotranspiration [ET]) under normal (i.e., baseline) and drought conditions (ΔWUE = WUE2014 − baseline WUE). With this method, areas with increasing WUE under drought conditions are considered more resilient than systems with declining WUE. Baseline WUE varied across California (0.08 to 3.85 g C/mm H2O) and WUE generally increased under severe drought conditions in 2014. Strong correlations between ΔWUE, precipitation, and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e., grasslands) also had greater C-uptake rates when water was limiting and higher rates of carbon-uptake efficiency (CUE = NPP/LAI) under drought conditions. We also found that systems with a baseline WUE ≤ 0.4 exhibited a decline in WUE under drought conditions, suggesting that a baseline WUE ≤ 0.4 might be indicative of low drought resistance. Drought severity, precipitation, and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.

  6. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    Science.gov (United States)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  7. Recognizing pedestrian's unsafe behaviors in far-infrared imagery at night

    Science.gov (United States)

    Lee, Eun Ju; Ko, Byoung Chul; Nam, Jae-Yeal

    2016-05-01

    Pedestrian behavior recognition is important work for early accident prevention in advanced driver assistance system (ADAS). In particular, because most pedestrian-vehicle crashes are occurred from late of night to early of dawn, our study focus on recognizing unsafe behavior of pedestrians using thermal image captured from moving vehicle at night. For recognizing unsafe behavior, this study uses convolutional neural network (CNN) which shows high quality of recognition performance. However, because traditional CNN requires the very expensive training time and memory, we design the light CNN consisted of two convolutional layers and two subsampling layers for real-time processing of vehicle applications. In addition, we combine light CNN with boosted random forest (Boosted RF) classifier so that the output of CNN is not fully connected with the classifier but randomly connected with Boosted random forest. We named this CNN as randomly connected CNN (RC-CNN). The proposed method was successfully applied to the pedestrian unsafe behavior (PUB) dataset captured from far-infrared camera at night and its behavior recognition accuracy is confirmed to be higher than that of some algorithms related to CNNs, with a shorter processing time.

  8. Classifying coastal resources by integrating optical and radar imagery and color infrared photography

    Science.gov (United States)

    Ramsey, Elijah W.; Nelson, Gene A.; Sapkota, Sijan

    1998-01-01

    A progressive classification of a marsh and forest system using Landsat Thematic Mapper (TM), color infrared (CIR) photograph, and ERS-1 synthetic aperture radar (SAR) data improved classification accuracy when compared to classification using solely TM reflective band data. The classification resulted in a detailed identification of differences within a nearly monotypic black needlerush marsh. Accuracy percentages of these classes were surprisingly high given the complexities of classification. The detailed classification resulted in a more accurate portrayal of the marsh transgressive sequence than was obtainable with TM data alone. Individual sensor contribution to the improved classification was compared to that using only the six reflective TM bands. Individually, the green reflective CIR and SAR data identified broad categories of water, marsh, and forest. In combination with TM, SAR and the green CIR band each improved overall accuracy by about 3% and 15% respectively. The SAR data improved the TM classification accuracy mostly in the marsh classes. The green CIR data also improved the marsh classification accuracy and accuracies in some water classes. The final combination of all sensor data improved almost all class accuracies from 2% to 70% with an overall improvement of about 20% over TM data alone. Not only was the identification of vegetation types improved, but the spatial detail of the classification approached 10 m in some areas.

  9. The 2006 July 17 Java (Indonesia) tsunami from satellite imagery and numerical modelling: a single or complex source?

    Science.gov (United States)

    Hébert, H.; Burg, P.-E.; Binet, R.; Lavigne, F.; Allgeyer, S.; Schindelé, F.

    2012-12-01

    The Mw 7.8 2006 July 17 earthquake off the southern coast of Java, Indonesia, has been responsible for a very large tsunami causing more than 700 casualties. The tsunami has been observed on at least 200 km of coastline in the region of Pangandaran (West Java), with run-up heights from 5 to more than 20 m. Such a large tsunami, with respect to the source magnitude, has been attributed to the slow character of the seismic rupture, defining the event as a so-called tsunami earthquake, but it has also been suggested that the largest run-up heights are actually the result of a second local landslide source. Here we test whether a single slow earthquake source can explain the tsunami run-up, using a combination of new detailed data in the region of the largest run-ups and comparison with modelled run-ups for a range of plausible earthquake source models. Using high-resolution satellite imagery (SPOT 5 and Quickbird), the coastal impact of the tsunami is refined in the surroundings of the high-security Permisan prison on Nusa Kambangan island, where 20 m run-up had been recorded directly after the event. These data confirm the extreme inundation lengths close to the prison, and extend the area of maximum impact further along the Nusa Kambangan island (about 20 km of shoreline), where inundation lengths reach several hundreds of metres, suggesting run-up as high as 10-15 m. Tsunami modelling has been conducted in detail for the high run-up Permisan area (Nusa Kambangan) and the PLTU power plant about 25 km eastwards, where run-up reached only 4-6 m and a video recording of the tsunami arrival is available. For the Permisan prison a high-resolution DEM was built from stereoscopic satellite imagery. The regular basin of the PLTU plant was designed using photographs and direct observations. For the earthquake's mechanism, both static (infinite) and finite (kinematic) ruptures are investigated using two published source models. The models account rather well for the sea level

  10. Detecting the changes in rural communities in Taiwan by applying multiphase segmentation on FORMOSA-2 satellite imagery

    Science.gov (United States)

    Huang, Yishuo

    2015-09-01

    regions containing roads, buildings, and other manmade construction works and the class with high values of NDVI indicates that those regions contain vegetation in good health. In order to verify the processed results, the regional boundaries were extracted and laid down on the given images to check whether the extracted boundaries were laid down on buildings, roads, or other artificial constructions. In addition to the proposed approach, another approach called statistical region merging was employed by grouping sets of pixels with homogeneous properties such that those sets are iteratively grown by combining smaller regions or pixels. In doing so, the segmented NDVI map can be generated. By comparing the areas of the merged classes in different years, the changes occurring in the rural communities of Taiwan can be detected. The satellite imagery of FORMOSA-2 with 2-m ground resolution is employed to evaluate the performance of the proposed approach. The satellite imagery of two rural communities (Jhumen and Taomi communities) is chosen to evaluate environmental changes between 2005 and 2010. The change maps of 2005-2010 show that a high density of green on a patch of land is increased by 19.62 ha in Jhumen community and conversely a similar patch of land is significantly decreased by 236.59 ha in Taomi community. Furthermore, the change maps created by another image segmentation method called statistical region merging generate similar processed results to multiphase segmentation.

  11. Multiscale assessment of progress of electrification in Indonesia based on brightness level derived from nighttime satellite imagery.

    Science.gov (United States)

    Ramdani, Fatwa; Setiani, Putri

    2017-06-01

    Availability of electricity can be used as an indicator to proximate parameters related to human well-being. Overall, the electrification process in Indonesia has been accelerating in the past two decades. Unfortunately, monitoring the country's progress on its effort to provide wider access to electricity poses challenges due to inconsistency of data provided by each national bureau, and limited availability of information. This study attempts to provide a reliable measure by employing nighttime satellite imagery to observe and to map the progress of electrification within a duration of 20 years, from 1993 to 2013. Brightness of 67,021 settlement-size points in 1993, 2003, and 2013 was assessed using data from DMSP/OLS instruments to study the electrification progress in the three service regions (Sumatera, Java-Bali, and East Indonesia) of the country's public electricity company, PLN. Observation of all service areas shows that the increase in brightness, which correspond with higher electricity development and consumption, has positive correlation with both population density (R 2  = 0.70) and urban change (R 2  = 0.79). Moreover, urban change has a stronger correlation with brightness, which is probably due to the high energy consumption in urban area per capita. This study also found that the brightness in Java-Bali region is very dominant, while the brightness in other areas has been lagging during the period of analysis. The slow development of electricity infrastructure, particularly in major parts of East Indonesia region, affects the low economic growth in some areas and formed vicious cycle.

  12. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  13. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    Science.gov (United States)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  14. Extending a field-based Sonoran desert vegetation classification to a regional scale using optical and microwave satellite imagery

    Science.gov (United States)

    Shupe, Scott Marshall

    2000-10-01

    Vegetation mapping in and regions facilitates ecological studies, land management, and provides a record to which future land changes can be compared. Accurate and representative mapping of desert vegetation requires a sound field sampling program and a methodology to transform the data collected into a representative classification system. Time and cost constraints require that a remote sensing approach be used if such a classification system is to be applied on a regional scale. However, desert vegetation may be sparse and thus difficult to sense at typical satellite resolutions, especially given the problem of soil reflectance. This study was designed to address these concerns by conducting vegetation mapping research using field and satellite data from the US Army Yuma Proving Ground (USYPG) in Southwest Arizona. Line and belt transect data from the Army's Land Condition Trend Analysis (LCTA) Program were transformed into relative cover and relative density classification schemes using cluster analysis. Ordination analysis of the same data produced two and three-dimensional graphs on which the homogeneity of each vegetation class could be examined. It was found that the use of correspondence analysis (CA), detrended correspondence analysis (DCA), and non-metric multidimensional scaling (NMS) ordination methods was superior to the use of any single ordination method for helping to clarify between-class and within-class relationships in vegetation composition. Analysis of these between-class and within-class relationships were of key importance in examining how well relative cover and relative density schemes characterize the USYPG vegetation. Using these two classification schemes as reference data, maximum likelihood and artificial neural net classifications were then performed on a coregistered dataset consisting of a summer Landsat Thematic Mapper (TM) image, one spring and one summer ERS-1 microwave image, and elevation, slope, and aspect layers

  15. Monitoring and modeling land-use change in the Pearl River Delta, China, using satellite imagery and socioeconomic data

    Science.gov (United States)

    Seto, Karen Ching-Yee

    Over the last two decades, rapid rates of economic growth in the People's Republic of China have converted large areas of natural ecosystems and agricultural lands to urban uses. The size and rate of these land-use changes may affect local and regional climate, biogeochemistry, and food supply. To assess these impacts, both the amount of land converted and its relation to socioeconomic drivers must be determined. This research combines satellite remote sensing, which is used to monitor land conversion, with socioeconomic data to model the economic and demographic drivers of land-use change in the Pearl River Delta of Southern China. This research modifies existing techniques and develops new methods to assess the type, amount, and timing of land-use change from annual Landsat Thematic Mapper (TM) images from 1988 to 1996. During this period, most of the land-use change is conversion of agricultural land to urban areas. Results indicate that urban areas, increased by over 300% between 1988 and 1996. Field assessments confirm these results and indicate that the land-use change map is highly accurate at 93.5%. To use these data as inputs to statistical models, the year of land conversion derived from satellite imagery must be unbiased. A new method that uses time series techniques identifies the date at which land-use changes occur from a sequential series of TM images. The accuracy and bias of the dates of change identified compare favorably to a more conventional remote sensing change detection technique and may have the additional advantages of reducing efforts required to assemble training data and to correct for atmospheric effects. Data on the quantity of land-use change and the timing of these changes are used in conjunction with socioeconomic data to estimate statistical models that identify and quantify the demographic and economic changes on two types of land conversion: urbanization of agricultural land and urbanization of natural vegetation. Results

  16. Wavelet Scale Analysis of Mesoscale Convective Systems for Detecting Deep Convection From Infrared Imagery

    Science.gov (United States)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.

    2018-03-01

    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.

  17. Adaptive Kalman filtering for histogram-based appearance learning in infrared imagery.

    Science.gov (United States)

    Venkataraman, Vijay; Fan, Guoliang; Havlicek, Joseph P; Fan, Xin; Zhai, Yan; Yeary, Mark B

    2012-11-01

    Targets of interest in video acquired from imaging infrared sensors often exhibit profound appearance variations due to a variety of factors, including complex target maneuvers, ego-motion of the sensor platform, background clutter, etc., making it difficult to maintain a reliable detection process and track lock over extended time periods. Two key issues in overcoming this problem are how to represent the target and how to learn its appearance online. In this paper, we adopt a recent appearance model that estimates the pixel intensity histograms as well as the distribution of local standard deviations in both the foreground and background regions for robust target representation. Appearance learning is then cast as an adaptive Kalman filtering problem where the process and measurement noise variances are both unknown. We formulate this problem using both covariance matching and, for the first time in a visual tracking application, the recent autocovariance least-squares (ALS) method. Although convergence of the ALS algorithm is guaranteed only for the case of globally wide sense stationary process and measurement noises, we demonstrate for the first time that the technique can often be applied with great effectiveness under the much weaker assumption of piecewise stationarity. The performance advantages of the ALS method relative to the classical covariance matching are illustrated by means of simulated stationary and nonstationary systems. Against real data, our results show that the ALS-based algorithm outperforms the covariance matching as well as the traditional histogram similarity-based methods, achieving sub-pixel tracking accuracy against the well-known AMCOM closure sequences and the recent SENSIAC automatic target recognition dataset.

  18. Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves

    International Nuclear Information System (INIS)

    Siddiqui, M.H. Kamran; Loewen, Mark R.; Richardson, Christine; Asher, William E.; Jessup, Andrew T.

    2001-01-01

    We report the results from a laboratory investigation in which microscale breaking waves were detected using an infrared (IR) imager and two-dimensional (2-D) velocity fields were simultaneously measured using particle image velocimetry (PIV). In addition, the local heat transfer velocity was measured using the controlled flux technique. To the best of our knowledge these are the first measurements of the instantaneous 2-D velocity fields generated beneath microscale breaking waves. Careful measurements of the water surface profile enabled us to make accurate estimates of the near-surface velocities using PIV. Previous experiments have shown that behind the leading edge of a microscale breaker the cool skin layer is disrupted creating a thermal signature in the IR image [Jessup et al., J. Geophys. Res. 102, 23145 (1997)]. The simultaneously sampled IR images and PIV data enabled us to show that these disruptions or wakes are typically produced by a series of vortices that form behind the leading edge of the breaker. When the vortices are first formed they are very strong and coherent but as time passes, and they move from the crest region to the back face of the wave, they become weaker and less coherent. The near-surface vorticity was correlated with both the fractional area coverage of microscale breaking waves and the local heat transfer velocity. The strong correlations provide convincing evidence that the wakes produced by microscale breaking waves are regions of high near-surface vorticity that are in turn responsible for enhancing air-water heat transfer rates

  19. Inferring species richness and turnover by statistical multiresolution texture analysis of satellite imagery.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. METHODOLOGY/PRINCIPAL FINDINGS: We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL. Species turnover, or [Formula: see text] diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species

  20. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  1. 75 FR 39701 - Revision of a Currently Approved Collection: Users, Uses, and Benefits of Landsat Satellite Imagery

    Science.gov (United States)

    2010-07-12

    ... information from this collection to understand if they are currently meeting the needs of their user community... (1028-0091) provided up-to-date information about the current users and uses of Landsat imagery, as well... provided general information from a broader population of moderate resolution imagery users. This revised...

  2. The Infrared Astronomical Satellite /IRAS/ Scientific Data Analysis System /SDAS/ sky flux subsystem

    Science.gov (United States)

    Stagner, J. R.; Girard, M. A.

    1980-01-01

    The sky flux subsystem of the Infrared Astronomical Satellite Scientific Data Analysis System is described. Its major output capabilities are (1) the all-sky lune maps (8-arcminute pixel size), (2) galactic plane maps (2-arcminute pixel size) and (3) regional maps of small areas such as extended sources greater than 1-degree in extent. The major processing functions are to (1) merge the CRDD and pointing data, (2) phase the detector streams, (3) compress the detector streams in the in-scan and cross-scan directions, and (4) extract data. Functional diagrams of the various capabilities of the subsystem are given. Although this device is inherently nonimaging, various calibrated and geometrically controlled imaging products are created, suitable for quantitative and qualitative scientific interpretation.

  3. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  5. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  6. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    Directory of Open Access Journals (Sweden)

    K. Korzeniowska

    2017-10-01

    Full Text Available Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR ADS80-SH92 aerial imagery using an object-based image analysis (OBIA approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI, the normalised difference water index (NDWI, and its standard deviation (SDNDWI to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  7. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field

  8. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    Science.gov (United States)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  9. Uncertainty Evaluations of the CRCS In-orbit Field Radiometric Calibration Methods for Thermal Infrared Channels of FENGYUN Meteorological Satellites

    Science.gov (United States)

    Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.

    2017-12-01

    Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).

  10. Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery

    Science.gov (United States)

    Eva, Hugh; Carboni, Silvia; Achard, Frédéric; Stach, Nicolas; Durieux, Laurent; Faure, Jean-François; Mollicone, Danilo

    A global systematic sampling scheme has been developed by the UN FAO and the EC TREES project to estimate rates of deforestation at global or continental levels at intervals of 5 to 10 years. This global scheme can be intensified to produce results at the national level. In this paper, using surrogate observations, we compare the deforestation estimates derived from these two levels of sampling intensities (one, the global, for the Brazilian Amazon the other, national, for French Guiana) to estimates derived from the official inventories. We also report the precisions that are achieved due to sampling errors and, in the case of French Guiana, compare such precision with the official inventory precision. We extract nine sample data sets from the official wall-to-wall deforestation map derived from satellite interpretations produced for the Brazilian Amazon for the year 2002 to 2003. This global sampling scheme estimate gives 2.81 million ha of deforestation (mean from nine simulated replicates) with a standard error of 0.10 million ha. This compares with the full population estimate from the wall-to-wall interpretations of 2.73 million ha deforested, which is within one standard error of our sampling test estimate. The relative difference between the mean estimate from sampling approach and the full population estimate is 3.1%, and the standard error represents 4.0% of the full population estimate. This global sampling is then intensified to a territorial level with a case study over French Guiana to estimate deforestation between the years 1990 and 2006. For the historical reference period, 1990, Landsat-5 Thematic Mapper data were used. A coverage of SPOT-HRV imagery at 20 m × 20 m resolution acquired at the Cayenne receiving station in French Guiana was used for year 2006. Our estimates from the intensified global sampling scheme over French Guiana are compared with those produced by the national authority to report on deforestation rates under the Kyoto

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ahankashan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ahankashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008, 2009, 2010),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Bamyan mineral district, which has areas with a spectral reflectance anomaly that require field investigation. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  14. A Neutral-Network-Fusion Architecture for Automatic Extraction of Oceanographic Features from Satellite Remote Sensing Imagery

    National Research Council Canada - National Science Library

    Askari, Farid

    1999-01-01

    This report describes an approach for automatic feature detection from fusion of remote sensing imagery using a combination of neural network architecture and the Dempster-Shafer (DS) theory of evidence...

  15. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    Science.gov (United States)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  16. Built-Up Area and Land Cover Extraction Using High Resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa

    Science.gov (United States)

    Fundisi, E.; Musakwa, W.

    2017-09-01

    Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  17. BUILT-UP AREA AND LAND COVER EXTRACTION USING HIGH RESOLUTION PLEIADES SATELLITE IMAGERY FOR MIDRAND, IN GAUTENG PROVINCE, SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    E. Fundisi

    2017-09-01

    Full Text Available Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  18. Feasibility study for Japanese Air Quality Mission from Geostationary Satellite: Infrared Imaging Spectrometer

    Science.gov (United States)

    Sagi, K.; Kasai, Y.; Philippe, B.; Suzuki, K.; Kita, K.; Hayashida, S.; Imasu, R.; Akimoto, H.

    2009-12-01

    A Geostationary Earth Orbit (GEO) satellite is potentially able to monitor the regional distribution of pollution with good spatial and temporal resolution. The Japan Society of Atmospheric Chemistry (JSAC) and the Japanese Space Exploration Agency (JAXA) initiated a concept study for air quality measurements from a GEO satellite targeting the Asian region [1]. This work presents the results of sensitivity studies for a Thermal Infrared (TIR) (650-2300cm-1) candidate instrument. We performed a simulation study and error analysis to optimize the instrumental operating frequencies and spectral resolution. The scientific requirements, in terms of minimum precision (or error) values, are 10% for tropospheric O3 and CO and total column of HN3 and nighttime HNO2 and 25% for O3 and CO with separating 2 or 3 column in troposphere. Two atmospheric scenarios, one is Asian background, second is polluted case, were assumed for this study. The forward calculations and the retrieval error analysis were performed with the AMATERASU model [2] developed within the NICT-THz remote sensing project. Retrieval error analysis employed the Optimal Estimation Method [3]. The geometry is off-nadir observation on Tokyo from the geostationary satellite at equator. Fine spectral resolution will allow to observe boundary layer O3 and CO. We estimate the observation precision in the spectral resolution from 0.1cm-1 to 1cm-1 for 0-2km, 2-6km, and 6-12km. A spectral resolution of 0.3 cm-1 gives good sensitivity for all target molecules (e.g. tropospheric O3 can be detected separated 2 column with error 30%). A resolution of 0.6 cm-1 is sufficient to detect tropospheric column amount of O3 and CO (in the Asian background scenario), which is within the required precision and with acceptable instrumental SNR values of 100 for O3 and 30 for CO. However, with this resolution, the boundary layer ozone will be difficult to detect in the background abundance. In addition, a spectral resolution of 0.6 cm

  19. Using High Resolution Commercial Satellite Imagery to Quantify Spatial Features of Urban Areas and their Relationship to Quality of Life Indicators in Accra, Ghana

    Science.gov (United States)

    Sandborn, A.; Engstrom, R.; Yu, Q.

    2014-12-01

    Mapping urban areas via satellite imagery is an important task for detecting and anticipating land cover and land use change at multiple scales. As developing countries experience substantial urban growth and expansion, remotely sensed based estimates of population and quality of life indicators can provide timely and spatially explicit information to researchers and planners working to determine how cities are changing. In this study, we use commercial high spatial resolution satellite imagery in combination with fine resolution census data to determine the ability of using remotely sensed data to reveal the spatial patterns of quality of life in Accra, Ghana. Traditionally, spectral characteristics are used on a per-pixel basis to determine land cover; however, in this study, we test a new methodology that quantifies spatial characteristics using a variety of spatial features observed in the imagery to determine the properties of an urban area. The spatial characteristics used in this study include histograms of oriented gradients, PanTex, Fourier transform, and line support regions. These spatial features focus on extracting structural and textural patterns of built-up areas, such as homogeneous building orientations and straight line indices. Information derived from aggregating the descriptive statistics of the spatial features at both the fine-resolution census unit and the larger neighborhood level are then compared to census derived quality of life indicators including information about housing, education, and population estimates. Preliminary results indicate that there are correlations between straight line indices and census data including available electricity and literacy rates. Results from this study will be used to determine if this methodology provides a new and improved way to measure a city structure in developing cities and differentiate between residential and commercial land use zones, as well as formal versus informal housing areas.

  20. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  1. Use of Real Time Satellite Infrared and Ocean Color to Produce Ocean Products

    Science.gov (United States)

    Roffer, M. A.; Muller-Karger, F. E.; Westhaver, D.; Gawlikowski, G.; Upton, M.; Hall, C.

    2014-12-01

    Real-time data products derived from infrared and ocean color satellites are useful for several types of users around the world. Highly relevant applications include recreational and commercial fisheries, commercial towing vessel and other maritime and navigation operations, and other scientific and applied marine research. Uses of the data include developing sampling strategies for research programs, tracking of water masses and ocean fronts, optimizing ship routes, evaluating water quality conditions (coastal, estuarine, oceanic), and developing fisheries and essential fish habitat indices. Important considerations for users are data access and delivery mechanisms, and data formats. At this time, the data are being generated in formats increasingly available on mobile computing platforms, and are delivered through popular interfaces including social media (Facebook, Linkedin, Twitter and others), Google Earth and other online Geographical Information Systems, or are simply distributed via subscription by email. We review 30 years of applications and describe how we develop customized products and delivery mechanisms working directly with users. We review benefits and issues of access to government databases (NOAA, NASA, ESA), standard data products, and the conversion to tailored products for our users. We discuss advantages of different product formats and of the platforms used to display and to manipulate the data.

  2. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  3. Efficient Photometry In-Frame Calibration (EPIC) Gaussian Corrections for Automated Background Normalization of Rate-Tracked Satellite Imagery

    Science.gov (United States)

    Griesbach, J.; Wetterer, C.; Sydney, P.; Gerber, J.

    Photometric processing of non-resolved Electro-Optical (EO) images has commonly required the use of dark and flat calibration frames that are obtained to correct for charge coupled device (CCD) dark (thermal) noise and CCD quantum efficiency/optical path vignetting effects respectively. It is necessary to account/calibrate for these effects so that the brightness of objects of interest (e.g. stars or resident space objects (RSOs)) may be measured in a consistent manner across the CCD field of view. Detected objects typically require further calibration using aperture photometry to compensate for sky background (shot noise). For this, annuluses are measured around each detected object whose contained pixels are used to estimate an average background level that is subtracted from the detected pixel measurements. In a new photometric calibration software tool developed for AFRL/RD, called Efficient Photometry In-Frame Calibration (EPIC), an automated background normalization technique is proposed that eliminates the requirement to capture dark and flat calibration images. The proposed technique simultaneously corrects for dark noise, shot noise, and CCD quantum efficiency/optical path vignetting effects. With this, a constant detection threshold may be applied for constant false alarm rate (CFAR) object detection without the need for aperture photometry corrections. The detected pixels may be simply summed (without further correction) for an accurate instrumental magnitude estimate. The noise distribution associated with each pixel is assumed to be sampled from a Poisson distribution. Since Poisson distributed data closely resembles Gaussian data for parameterized means greater than 10, the data may be corrected by applying bias subtraction and standard-deviation division. EPIC performs automated background normalization on rate-tracked satellite images using the following technique. A deck of approximately 50-100 images is combined by performing an independent median

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  15. GHRSST Level 2P Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni1 mineral district in Afghanistan: Chapter DD in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Bakhud mineral district in Afghanistan: Chapter U in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Uruzgan mineral district in Afghanistan: Chapter V in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Helmand mineral district in Afghanistan: Chapter O in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni2 mineral district in Afghanistan: Chapter EE in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Takhar mineral district in Afghanistan: Chapter Q in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Baghlan mineral district in Afghanistan: Chapter P in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match

  12. Using infrared spectroscopy and satellite data to accurately monitor remote volcanoes and map their eruptive products

    Science.gov (United States)

    Ramsey, M. S.

    2011-12-01

    The ability to detect the onset of new activity at a remote volcano commonly relies on high temporal resolution thermal infrared (TIR) satellite-based observations. These observations from sensors such as AVHRR and MODIS are being used in innovative ways to produce trends of activity, which are critical for hazard response planning and scientific modeling. Such data are excellent for detection of new thermal features, volcanic plumes, and tracking changes over the hour time scale, for example. For some remote volcanoes, the lack of ground-based monitoring typically means that these sensors provide the first and only confirmation of renewed activity. However, what is lacking is the context of the higher spatial scale, which provides the volcanologist with meter-scale information on specific temperatures and changes in the composition and texture of the eruptive products. For the past eleven years, the joint US-Japanese ASTER instrument has been acquiring image-based data of volcanic eruptions around the world, including in the remote northern Pacific region. There have been more ASTER observations of Kamchatka volcanoes than any other location on the globe due mainly to an operational program put into place in 2004. Automated hot spot alarms from AVHRR data trigger ASTER acquisitions using the instrument's "rapid response" mode. Specifically for Kamchatka, this program has resulted in more than 700 additional ASTER images of the most thermally-active volcanoes (e.g., Shiveluch, Kliuchevskoi, Karymsky, Bezymianny). The scientific results from this program at these volcanoes will be highlighted. These results were strengthened by several field seasons used to map new products, collect samples for laboratory-based spectroscopy, and acquire TIR camera data. The fusion of ground, laboratory and space-based spectroscopy provided the most accurate interpretation of the eruptions and laid the ground work for future VSWIR/TIR sensors such as HyspIRI, which are a critically

  13. Valuing geospatial information: Using the contingent valuation method to estimate the economic benefits of Landsat satellite imagery

    Science.gov (United States)

    Loomis, John; Koontz, Steve; Miller, Holly M.; Richardson, Leslie A.

    2015-01-01

    While the U.S. government does not charge for downloading Landsat images, the images have value to users. This paper demonstrates a method that can value Landsat and other imagery to users. A survey of downloaders of Landsat images found: (a) established US users have a mean value of $912 USD per scene; (b) new US users and users returning when imagery became free have a mean value of $367 USD per scene. Total US user benefits for the 2.38 million scenes downloaded is $1.8 billion USD. While these benefits indicate a high willingness-to-pay among many Landsat downloaders, it would be economically inefficient for the US government to charge for Landsat imagery. Charging a price of $100 USD a scene would result in an efficiency loss of $37.5 million a year. This economic information should be useful to policy-makers who must decide about the future of this and similar remote sensing programs.

  14. Potential of High-Resolution Satellite Imagery for Mapping Distribution and Evaluating Ecological Characteristics of Tree Species at the Angkor Monument, Cambodia

    Directory of Open Access Journals (Sweden)

    Tomita Mizuki

    2015-01-01

    Full Text Available Large trees play several vital roles in the Angkor monuments landscape. They protect biodiversity, enhance the tourism experience, and provide various ecosystem services to local residents. A clear understanding of forest composition and distribution of individual species, as well as timely monitoring of changes, is necessary for conservation of these trees. using traditional field work, obtaining this sort of data is time-consuming and labour-intensive. This research investigates classification of very high resolution remote sensing data as a tool for efficient analyses. QuickBird satellite imagery was used to clarify the tree species community in and around Preah Khan temple, to elucidate differences in ecological traits among the three dominant species (Dipterocarpus alatus, Lagerstroemia calyculata and Tetrameles nudiflora, and to identify crowns of the dominant species.

  15. Digging up your dirt. High school students combine small-scale respiration and soil carbon measurements with satellite imagery in hands-on inquiry activities.

    Science.gov (United States)

    Kemper, K.; Throop, H.

    2015-12-01

    One of the greatest impacts on the global carbon cycle is changes in land use. Making this concept relevant and inquiry-based for high school students is challenging. Many are familiar with reconstructing paleo-climate from ice core data, but few have a connection to current climate research. Many students ask questions like 'What will our area be like in 20 years?' or 'How much does planting trees help?' while few have the scientific language to engage in a discussion to answer these questions. Our work connects students to climate change research in several ways: first, teacher Keska Kemper engaged in field research with Dr. Heather Throop creating a 'teacher in the field' perspective for students in the classroom. Dr. Throop met with Keska Kemper's students several times to develop an inquiry-based field study. Students predicted and then measured rates of respiration between different soil types in an urban park close to their school. Students then could compare their results from Portland, Oregon to Throop's work across a rain gradient in Australia. Discussions about percent tree cover and soil carbon helped students see connections between land use changes and changes in carbon cycling. Last, students examined satellite imagery to determine percent tree cover and numberss of trees to compare to soil carbon in the same region. Students were able to examine imagery over the last 30 years to visualize land use changes in the greater Portland area.

  16. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tutuila Island, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  17. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Rose Atoll, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry were...

  18. Mosaic of bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  19. Mosaic of bathymetry derived from multispectral WV-2 satellite imagery of Agrihan Island, Territory of Mariana, USA (NODC Accession 0126914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multispectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  20. Mosaic of bathymetry derived from multispectral WV-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  1. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  2. AgSat Imagery Collection Footprints

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The AgSat Imagery Collection Footprints map shows the imagery footprints which have been collected under the USDA satellite blanket purchase agreement. Click on a...

  3. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data

    Science.gov (United States)

    Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan

    2008-06-01

    The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.

  4. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.

    Science.gov (United States)

    Naseer, Noman; Hong, Keum-Shik

    2013-10-11

    This paper presents a study on functional near-infrared spectroscopy (fNIRS) indicating that the hemodynamic responses of the right- and left-wrist motor imageries have distinct patterns that can be classified using a linear classifier for the purpose of developing a brain-computer interface (BCI). Ten healthy participants were instructed to imagine kinesthetically the right- or left-wrist flexion indicated on a computer screen. Signals from the right and left primary motor cortices were acquired simultaneously using a multi-channel continuous-wave fNIRS system. Using two distinct features (the mean and the slope of change in the oxygenated hemoglobin concentration), the linear discriminant analysis classifier was used to classify the right- and left-wrist motor imageries resulting in average classification accuracies of 73.35% and 83.0%, respectively, during the 10s task period. Moreover, when the analysis time was confined to the 2-7s span within the overall 10s task period, the average classification accuracies were improved to 77.56% and 87.28%, respectively. These results demonstrate the feasibility of an fNIRS-based BCI and the enhanced performance of the classifier by removing the initial 2s span and/or the time span after the peak value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Building damage assessment after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs

    DEFF Research Database (Denmark)

    Reinartz, Peter; Tian, Jiaojiao; Nielsen, Allan Aasbjerg

    2013-01-01

    In this paper, a novel disaster building damage monitoring method is presented. This method combines the multispectral imagery and DSMs from stereo matching to obtain three kinds of changes. The proposed method contains three basic steps. The first step is to segment the panchromatic images to ge...... (mainly temporary residential area, etc. tents). In the last step, a region based grey level co-occurrence matrix texture measurement is used to refine the third change class. The method is applied to building change detection after the Haiti earthquake....

  6. Nimbus-2 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN2IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-2 High-Resolution Infrared Radiometer. The images contain...

  7. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Near Constant Contrast (NCC) Imagery Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  8. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery (not Near Constant Contrast) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  9. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    The marine atmospheric boundary layer is a layer or cool, moist maritime air with the thickness of a few thousand feet immediately below a temperature inversion. In coastal areas as moist air rises from the ocean surface, it becomes trapped and is often compressed into fog above which a layer of stratus clouds often forms. This phenomenon is common for satellite-based solar radiation monitoring and forecasting. Hour ahead satellite-based solar radiation forecasts are commonly using visible spectrum satellite images, from which it is difficult to automatically differentiate low stratus clouds and fog from high altitude clouds. This provides a challenge for cloud motion tyracking and cloud cover forecasting. San Diego Gas and Electric {sup registered} (SDG and E {sup registered}) Marine Layer Project was undertaken to obtain information for integration with PV forecasts, and to develop a detailed understanding of long-term benefits from forecasting Marine Layer (ML) events and their effects on PV production. In order to establish climatological ML patterns, spatial extent and distribution of marine layer, we analyzed visible and IR spectrum satellite images (GOES WEST) archive for the period of eleven years (2000 - 2010). Historical boundaries of marine layers impact were established based on the cross-classification of visible spectrum (VIS) and infrared (IR) images. This approach is successfully used by us and elsewhere for evaluating cloud albedo in common satellite-based techniques for solar radiation monitoring and forecasting. The approach allows differentiation of cloud cover and helps distinguish low laying fog which is the main consequence of marine layer formation. ML occurrence probability and maximum extent inland was established for each hour and day of the analyzed period and seasonal/patterns were described. SDG and E service area is the most affected region by ML events with highest extent and probability of ML occurrence. Influence of ML was the

  10. User's guide to image processing applications of the NOAA satellite HRPT/AVHRR data. Part 1: Introduction to the satellite system and its applications. Part 2: Processing and analysis of AVHRR imagery

    Science.gov (United States)

    Huh, Oscar Karl; Leibowitz, Scott G.; Dirosa, Donald; Hill, John M.

    1986-01-01

    The use of NOAA Advanced Very High Resolution Radar/High Resolution Picture Transmission (AVHRR/HRPT) imagery for earth resource applications is provided for the applications scientist for use within the various Earth science, resource, and agricultural disciplines. A guide to processing NOAA AVHRR data using the hardware and software systems integrated for this NASA project is provided. The processing steps from raw data on computer compatible tapes (1B data format) through usable qualitative and quantitative products for applications are given. The manual is divided into two parts. The first section describes the NOAA satellite system, its sensors, and the theoretical basis for using these data for environmental applications. Part 2 is a hands-on description of how to use a specific image processing system, the International Imaging Systems, Inc. (I2S) Model 75 Array Processor and S575 software, to process these data.

  11. The Potential of Satellite Imagery to Estimate Chlorophyll-a and Water Clarity Data For the Assessment of Lake Water Quality

    Science.gov (United States)

    Shrift, M.; Weathers, K. C.; Norouzi, H.; Ewing, H. A.

    2017-12-01

    Lake water quality is declining nationwide and has become a tremendous point of interest. Remote sensing (RS) data have provided the ability to efficiently study oceans and terrestrial systems over space and time. However, fresh water systems, especially small, nutrient poor lakes have only recently been assessed using remote sensing technology. Prior research suggests that there is poor satellite sensitivity to lakes with low chlorophyll a (chl a) values. This study focuses on the potential to utilize Landsat 8 satellite imagery to predict chl a and Secchi disk transparency values from Lake Auburn, Maine, an oligo-mesotrophic lake that is the primary source of drinking water for the cities of Lewiston and Auburn and has had an increasing number of algal blooms. A total of 28 Landsat scenes from 2013-2017 within 4 days of in-lake measurements were collected for band value extraction and radiometric correction. Band combinations were explored and analyzed to obtain the most reliable prediction of in-lake chl a and Secchi disk values. A nonlinear combination of bands 5 and 4 for chl a, and bands 3 and 2 for Secchi disk transparency show the most promising algorithms, with correlations coefficients of 0.57 and 0.74, respectively. The resultant algorithms show promise for utilizing RS data to estimate water quality for a large array of low-nutrient lakes in northern North America, and thereby to gain a better understanding of water quality of our vital fresh water resources.

  12. Spatial estimation of air PM2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery

    Science.gov (United States)

    Gibe, Hezron P.; Cayetano, Mylene G.

    2017-09-01

    Exposure to particulate matter (PM) is a serious environmental problem in many urban areas on Earth. In the Philippines, most existing studies and emission inventories have mainly focused on point and mobile sources, while research involving human exposures to particulate pollutants is rare. This paper presents a method for estimating the amount of fine particulate (PM2.5) emissions in a test study site in the city of Cabanatuan, Nueva Ecija, in the Philippines, by utilizing local emission factors, regionally procured data, and land cover/land use (activity data) interpreted from satellite imagery. Geographic information system (GIS) software was used to map the estimated emissions in the study area. The present results suggest that vehicular emissions from motorcycles and tricycles, as well as fuels used by households (charcoal) and burning of agricultural waste, largely contribute to PM2.5 emissions in Cabanatuan. Overall, the method used in this study can be applied in other small urbanizing cities, as long as on-site specific activity, emission factor, and satellite-imaged land cover data are available.

  13. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2015-09-01

    Full Text Available Crop area extent estimates and crop type maps provide crucial information for agricultural monitoring and management. Remote sensing imagery in general and, more specifically, high temporal and high spatial resolution data as the ones which will be available with upcoming systems, such as Sentinel-2, constitute a major asset for this kind of application. The goal of this paper is to assess to what extent state-of-the-art supervised classification methods can be applied to high resolution multi-temporal optical imagery to produce accurate crop type maps at the global scale. Five concurrent strategies for automatic crop type map production have been selected and benchmarked using SPOT4 (Take5 and Landsat 8 data over 12 test sites spread all over the globe (four in Europe, four in Africa, two in America and two in Asia. This variety of tests sites allows one to draw conclusions applicable to a wide variety of landscapes and crop systems. The results show that a random forest classifier operating on linearly temporally gap-filled images can achieve overall accuracies above 80% for most sites. Only two sites showed low performances: Madagascar due to the presence of fields smaller than the pixel size and Burkina Faso due to a mix of trees and crops in the fields. The approach is based on supervised machine learning techniques, which need in situ data collection for the training step, but the map production is fully automatic.

  14. Remote sensing of height of a fog layer and temperature of fog droplets using infrared thermometer and meteorological satellite

    International Nuclear Information System (INIS)

    Inoue, K.; Abe, H.

    1998-01-01

    To study meteorological characteristics of cool foggy easterly (Yamase), by which rice production in the Tohoku region was frequently damaged, we measured temperature of the fog layer resulted from Yamase, using infrared thermal indicator and meteorological satellite (HIMAWARI). These temperature data were compared with wet-bulb and dry-bulb temperatures obtained by a ventilated psychrometer. Generally, the temperature of fog droplets estimated from infrared thermal indicator was higher than the wet-bulb temperature by about 0∼1°C. This result indicates clearly that fog droplets were cooled by evaporation on the droplet surface. Under the conditions that the fog layer is homogeneous in liquid water content and fog droplet size distribution, the height of the fog layer can be estimated by the observation of visibility and relative solar radiation flux. (author)

  15. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide

    2012-01-16

    A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

  16. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    Science.gov (United States)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  17. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    Science.gov (United States)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an

  18. A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes

    Science.gov (United States)

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques have been shown to be useful for predicting multiple forest attributes from forest inventory and Landsat satellite image data. However, in regions lacking good digital land cover information, nearest neighbors selected to predict continuous variables such as tree volume must be selected without regard to relevant categorical variables such...

  19. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-01-01

    due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report

  20. Combining satellite imagery with forest inventory data to assess damage severity following a major blowdown event in northern Minnesota, USA

    Science.gov (United States)

    Mark D. Nelson; Sean P. Healey; W. Keith Moser; Mark H. Hansen

    2009-01-01

    Effects of a catastrophic blowdown event in northern Minnesota, USA were assessed using field inventory data, aerial sketch maps and satellite image data processed through the North American Forest Dynamics programme. Estimates were produced for forest area and net volume per unit area of live trees pre- and post-disturbance, and for changes in volume per unit area and...

  1. Instantaneous Shoreline Extraction Utilizing Integrated Spectrum and Shadow Analysis From LiDAR Data and High-resolution Satellite Imagery

    Science.gov (United States)

    Lee, I.-Chieh

    Shoreline delineation and shoreline change detection are expensive processes in data source acquisition and manual shoreline delineation. These costs confine the frequency and interval of shoreline mapping periods. In this dissertation, a new shoreline delineation approach was developed targeting on lowering the data source cost and reducing human labor. To lower the cost of data sources, we used the public domain LiDAR data sets and satellite images to delineate shorelines without the requirement of data sets being acquired simultaneously, which is a new concept in this field. To reduce the labor cost, we made improvements in classifying LiDAR points and satellite images. Analyzing shadow relations with topography to improve the satellite image classification performance is also a brand-new concept. The extracted shoreline of the proposed approach could achieve an accuracy of 1.495 m RMSE, or 4.452m at the 95% confidence level. Consequently, the proposed approach could successfully lower the cost and shorten the processing time, in other words, to increase the shoreline mapping frequency with a reasonable accuracy. However, the extracted shoreline may not compete with the shoreline extracted by aerial photogrammetric procedures in the aspect of accuracy. Hence, this is a trade-off between cost and accuracy. This approach consists of three phases, first, a shoreline extraction procedure based mainly on LiDAR point cloud data with multispectral information from satellite images. Second, an object oriented shoreline extraction procedure to delineate shoreline solely from satellite images; in this case WorldView-2 images were used. Third, a shoreline integration procedure combining these two shorelines based on actual shoreline changes and physical terrain properties. The actual data source cost would only be from the acquisition of satellite images. On the other hand, only two processes needed human attention. First, the shoreline within harbor areas needed to be

  2. Empirical water depth predictions in Dublin Bay based on satellite EO multispectral imagery and multibeam data using spatially weighted geographical analysis

    Science.gov (United States)

    Monteys, Xavier; Harris, Paul; Caloca, Silvia

    2014-05-01

    reliable and error controlled depths. Bathymetric extraction approaches involving satellite imagery data are regarded as a fast, successful and economically advantageous solution to automatic water depth calculation in shallow and complex environments.

  3. Comparative alteration mineral mapping using visible to shortwave infrared (0.4-2.4 μm) Hyperion, ALI, and ASTER imagery

    Science.gov (United States)

    Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R.

    2003-01-01

    Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Hyperion imaging spectrometer data covering an area in the Central Andes between Volcan Socompa and Salar de Llullaillaco were used to map hydrothermally altered rocks associated with several young volcanic systems. Six ALI channels in the visible and near-infrared wavelength range (0.4-1.0 ??m) were useful for discriminating between ferric-iron alteration minerals based on the spectral shapes of electronic absorption features seen in continuum-removed spectra. Six ASTER channels in the short wavelength infrared (1.0-2.5 ??m) enabled distinctions between clay and sulfate mineral types based on the positions of band minima related to Al-OH vibrational absorption features. Hyperion imagery embedded in the broader image coverage of ALI and ASTER provided essential leverage for calibrating and improving the mapping accuracy of the multispectral data. This capability is especially valuable in remote areas of the earth where available geologic and other ground truth information is limited.

  4. Land use maps of the Tanana and Purcell Mountain areas, Alaska, based on Earth Resources Technology Satellite imagery

    Science.gov (United States)

    Anderson, J. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS imagery in photographic format was used to make land use maps of two areas of special interest to native corporations under terms of the Alaska Native Claims Settlement Act. Land selections are to be made in these areas, and the maps should facilitate decisions because of their comprehensive presentation of resource distribution information. The ERTS images enabled mapping broadly-defined land use classes in large areas in a comparatively short time. Some aerial photography was used to identify colors and shades of gray on the various images. The 14 mapped land use categories are identified according to the classification system under development by the U.S. Geological Survey. These maps exemplify a series of about a dozen diverse Alaskan areas. The principal resource depicted is vegetation, and clearly shown are vegetation units of special importance, including stands possibly containing trees of commercial grade and stands constituting wildlife habitat.

  5. Analysis of High Resolution Satellite imagery to acsees Glacier Mass Balance and Lake Hazards in Sikkim Himalayas

    Science.gov (United States)

    Bhushan, S.; Shean, D. E.; Haritashya, U. K.; Arendt, A. A.; Syed, T. H.; Setiawan, L.

    2017-12-01

    Glacial lake outburst floods can impact downstream communities due to the sudden outflux of huge quantities of stored water. In this study, we develop a hazard assessment of the moraine dammed glacial lakes in Sikkim Himalayas by analyzing the morphometry of proglacial features, and the surface velocity and mass balance of glaciers. We generated high-resolution digital elevation models (DEMs) using the open-source NASA Ames Stereo Pipeline (ASP) and use other open-source tools to calculate surface velocity and patterns of glacier downwasting over time. Geodetic glacier mass balance is obtained for three periods using high-resolution WorldView/GeoEye stereo DEMs (8 m posting, 2014-2016), Cartosat-1 stereo DEMs (10 m, 2006-2008) and SRTM (30 m, 2000). Initial results reveal a region-wide mass balance of -0.31±0.13 m w.eq.a-1 for the 2007-2015 period, with some debris covered glaciers showing a very low mass loss rate. Additionally, 12 annual glacier velocity fields spanning from 1991 to 2017.derived from Landsat imagery are used to explore the relationship between glacier dynamics and changes in proglacial lakes. Multi-temporal glacial lake mapping is conducted using Landsat and Cartosat imagery. Avalanche and rockfall modeling are combined with morphometric analysis of the proglacial lake area to assess the likelihood of glacial lake dam failure. The above parameters are integrated into a decision tree approach enabling categorization of moraine-dammed lakes according to their potential for outburst events.

  6. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    Science.gov (United States)

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering

  7. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Science.gov (United States)

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  8. Creating Orthographically Rectified Satellite Multi-Spectral Imagery with High Resolution Digital Elevation Model from LiDAR: A Tutorial

    Science.gov (United States)

    2014-08-15

    EGM96 refers to the equipotential gravity field depicting mean-sea-level across the Earth that is commonly called the geoid...raster and commercial satellite MSI data that are combined in the process of making orthoimages, where feature extraction for models of surface material...peaks along the waveform that show a strong returned laser signal reflected from a rela- tively solid terrain surface or subsurface for the entire

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Parwan mineral district in Afghanistan: Chapter CC in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  10. TIRCIS: A Thermal Infrared, Compact Imaging Spectrometer for Small Satellite Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will demonstrate how hyperspectral thermal infrared (TIR; 8-14 microns) image data, with a spectral resolution of up to 8 wavenumbers, can be acquired...

  11. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats’ total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation. PMID:26812397

  12. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index.

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats' total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation.

  13. Time series analysis of satellite multi-sensors imagery to study the recursive abnormal grow of floating macrophyte in the lake victoria (central Africa)

    Science.gov (United States)

    Fusilli, Lorenzo; Cavalli, Rosa Maria; Laneve, Giovanni; Pignatti, Stefano; Santilli, Giancarlo; Santini, Federico

    2010-05-01

    Remote sensing allows multi-temporal mapping and monitoring of large water bodies. The importance of remote sensing for wetland and inland water inventory and monitoring at all scales was emphasized several times by the Ramsar Convention on Wetlands and from EU projects like SALMON and ROSALMA, e.g. by (Finlayson et al., 1999) and (Lowry and Finlayson, 2004). This paper aims at assessing the capability of time series of satellite imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the macrophytes growing in order to support the monitor and management of the lake Victoria water resources. The lake Victoria coastal areas are facing a number of challenges related to water resource management which include growing population, water scarcity, climate variability and water resource degradation, invasive species, water pollution. The proliferation of invasive plants and aquatic weeds, is of growing concern. In particular, let us recall some of the problems caused by the aquatic weeds growing: Ø interference with human activities such as fishing, and boating; Ø inhibition or interference with a balanced fish population; Ø fish killing due to removal of too much oxygen from the water; Ø production of quiet water areas that are ideal for mosquito breeding. In this context, an integrated use of medium/high resolution images from sensors like MODIS, ASTER, LANDSAT/TM and whenever available CHRIS offers the possibility of creating a congruent time series allowing the analysis of the floating vegetation dynamic on an extended temporal basis. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution, further its spatial resolution can results not always adequate to map the extension of floating plants. Therefore, the integrated use of sensors with different spatial resolution, were used to map across seasons the evolution of the phenomena. The

  14. Identification of dust outbreaks on infrared MSG-SEVIRI data by using a Robust Satellite Technique (RST)

    Science.gov (United States)

    Sannazzaro, Filomena; Filizzola, Carolina; Marchese, Francesco; Corrado, Rosita; Paciello, Rossana; Mazzeo, Giuseppe; Pergola, Nicola; Tramutoli, Valerio

    2014-01-01

    Dust storms are meteorological phenomena of great interest for scientific community because of their potential impact on climate changes, for the risk that may pose to human health and due to other issues as desertification processes and reduction of the agricultural production. Satellite remote sensing, thanks to global coverage, high frequency of observation and low cost data, may highly contribute in monitoring these phenomena, provided that proper detection methods are used. In this work, the known Robust Satellite Techniques (RST) multitemporal approach, used for studying and monitoring several natural/environmental hazards, is tested on some important dust events affecting Mediterranean region in May 2004 and Arabian Peninsula in February 2008. To perform this study, data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) have been processed, comparing the generated dust maps to some independent satellite-based aerosol products. Outcomes of this work show that the RST technique can be profitably used for detecting dust outbreaks from space, providing information also about areas characterized by a different probability of dust presence. They encourage further improvements of this technique in view of its possible implementation in the framework of operational warning systems.

  15. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  16. Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to MODIS satellite imagery

    Science.gov (United States)

    Park, Isaac W.

    2012-11-01

    This study demonstrates that phenological information included in digital herbarium archives can produce annual phenological estimates correlated to satellite-derived green wave phenology at a regional scale (R = 0.183, P = 0.03). Thus, such records may be utilized in a fashion similar to other annual phenological records and, due to their longer duration and ability to discriminate among the various components of the plant community, hold significant potential for use in future research to supplement the deficiencies of other data sources as well as address a wide array of important issues in ecology and bioclimatology that cannot be addressed easily using more traditional methods.

  17. Modelling risk of tick exposure in southern Scandinavia using machine learning techniques, satellite imagery, and human population density maps

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    30 sites (forests and meadows) in each of Denmark, southern Norway and south-eastern Sweden. At each site we measured presence/absence of ticks, and used the data obtained along with environmental satellite images to run Boosted Regression Tree machine learning algorithms to predict overall spatial...... and Sweden), areas with high population densities tend to overlap with these zones.Machine learning techniques allow us to predict for larger areas without having to perform extensive sampling all over the region in question, and we were able to produce models and maps with high predictive value. The results...

  18. Discriminação de variedades de citros em imagens CCD/CBERS-2 Discrimination of citrus varieties using CCD/CBERS-2 satellite imagery

    Directory of Open Access Journals (Sweden)

    Ieda Del'Arco Sanches

    2008-02-01

    Full Text Available O presente trabalho teve o objetivo de avaliar as imagens CCD/CBERS-2 quanto à possibilidade de discriminarem variedades de citros. A área de estudo localiza-se em Itirapina (SP e, para este estudo, foram utilizadas imagens CCD de três datas (30/05/2004, 16/08/2004 e 11/09/2004. Um modelo que integra os elementos componentes da cena citrícola sensoriada é proposto com o objetivo de explicar a variabilidade das respostas das parcelas de citros em imagens orbitais do tipo CCD/CBERS-2. Foram feitas classificações pelos algoritmos Isoseg e Maxver e, de acordo com o índice kappa, concluiu-se que é possível obterem-se exatidões qualificadas como muito boas, sendo que as melhores classificações foram conseguidas com imagens da estação seca.This paper was aimed at evaluating the possibility of discriminating citrus varieties in CCD imageries from CBERS-2 satellite ("China-Brazil Earth Resouces Satellite". The study area is located in Itirapina, São Paulo State. For this study, three CCD images from 2004 were acquired (May 30, August 16, and September 11. In order to acquire a better understanding and for explaining the variability of the spectral behavior of the citrus areas in orbital images (like as the CCD/CBERS-2 images a model that integrates the elements of the citrus scene is proposed and discussed. The images were classified by Isoseg and MaxVer classifiers. According to kappa index, it was possible to obtain classifications qualified as 'very good'. The best results were obtained with the images from the dry season.

  19. ROOF TYPE SELECTION BASED ON PATCH-BASED CLASSIFICATION USING DEEP LEARNING FOR HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    T. Partovi

    2017-05-01

    Full Text Available 3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2 for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes extracted from a Digital Surface Model (DSM, the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  20. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery

    International Nuclear Information System (INIS)

    Doll, Christopher N.H.; Pachauri, Shonali

    2010-01-01

    A lack of access to energy and, in particular, electricity is a less obvious manifestation of poverty but arguably one of the most important. This paper investigates the extent to which electricity access can be investigated using night-time light satellite data and spatially explicit population datasets to compare electricity access between 1990 and 2000. We present here the first satellite derived estimates of rural population without access to electricity in developing countries to draw insights on issues surrounding the delivery of electricity to populations in rural areas. The paper provides additional evidence of the slow progress in expansion of energy access to households in Sub-Saharan Africa and shows how this might be ascribed in part due to the low population densities in rural areas. The fact that this is a continent with some of the lowest per-capita income levels aggravates the intrinsic difficulties associated with making the investments needed to supply electricity in areas with low population density and high dispersion. Clearly, these spatial dimensions of the distributions of the remaining unelectrified populations in the world have an impact on what options are considered the most appropriate in expanding access to these households and the relative attractiveness of decentralized options.

  1. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    Science.gov (United States)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  2. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain

    Directory of Open Access Journals (Sweden)

    Manuel A. Aguilar

    2015-06-01

    Full Text Available Greenhouse detection and mapping via remote sensing is a complex task, which has already been addressed in numerous studies. In this research, the innovative goal relies on the identification of greenhouse horticultural crops that were growing under plastic coverings on 30 September 2013. To this end, object-based image analysis (OBIA and a decision tree classifier (DT were applied to a set consisting of eight Landsat 8 OLI images collected from May to November 2013. Moreover, a single WorldView-2 satellite image acquired on 30 September 2013, was also used as a data source. In this approach, basic spectral information, textural features and several vegetation indices (VIs derived from Landsat 8 and WorldView-2 multi-temporal satellite data were computed on previously segmented image objects in order to identify four of the most popular autumn crops cultivated under greenhouse in Almería, Spain (i.e., tomato, pepper, cucumber and aubergine. The best classification accuracy (81.3% overall accuracy was achieved by using the full set of Landsat 8 time series. These results were considered good in the case of tomato and pepper crops, being significantly worse for cucumber and aubergine. These results were hardly improved by adding the information of the WorldView-2 image. The most important information for correct classification of different crops under greenhouses was related to the greenhouse management practices and not the spectral properties of the crops themselves.

  3. New and Emerging Satellite Imaging Capabilities in Support of Safeguards

    International Nuclear Information System (INIS)

    Johnson, M.; Paquette, J.P.; Spyropoulos, N.; Rainville, L.; Schichor, P.; Hong, M.

    2015-01-01

    This abstract is focused on new and emerging commercial satellite imagery (CSI) capabilities. For more than a decade, experienced imagery analysts have been exploiting and analyzing CSI in support of the Department of Safeguards. As the remote sensing industry continues to evolve, additional CSI imagery types are becoming available that could enhance our ability to evaluate and verify States' declarations and to investigate the possible presence of undeclared activities. A newly available and promising CSI capability that may have a Safeguards application is Full Motion Video (FMV) imagery collection from satellites. For quite some time, FMV imagery has been collected from airborne platforms, but now FMV sensors are being deployed into space. Like its airborne counterpart, satellite FMV imagery could provide analysts with a great deal of information, including insight into the operational status of facilities and patterns of activity. From a Safeguards perspective, FMV imagery could help the Agency in the evaluation and verification of States' declared facilities and activities. There are advantages of FMV imaging capabilities that cannot be duplicated with other CSI capabilities, including the ability to loiter over areas of interest and the potential to revisit sites multiple times per day. Additional sensor capabilities applicable to the Safeguards mission include, but are not limited to, the following sensors: · Thermal Infrared imaging sensors will be launched in late 2014 to monitor operational status, e.g., heat from a transformer. · High resolution ShortWave Infrared sensors able to characterize materials that could support verification of Additional Protocol declarations under Article 2.a(v). · Unmanned Aerial Vehicles with individual sensors or specific sensor combinations. The Safeguards Symposium provides a forum to showcase and demonstrate safeguards applications for these emerging satellite imaging capabilities. (author)

  4. Soil depth modelling using terrain analysis and satellite imagery: the case study of Qeshlaq mountainous watershed (Kurdistan, Iran

    Directory of Open Access Journals (Sweden)

    Salahudin Zahedi

    2017-09-01

    Full Text Available Soil depth is a major soil characteristic, which is commonly used in distributed hydrological modelling in order to present watershed subsurface attributes. This study aims at developing a statistical model for predicting the spatial pattern of soil depth over the mountainous watershed from environmental variables derived from a digital elevation model (DEM and remote sensing data. Among the explanatory variables used in the models, seven are derived from a 10 m resolution DEM, namely specific catchment area, wetness index, aspect, slope, plan curvature, elevation and sediment transport index. Three variables landuse, NDVI and pca1 are derived from Landsat8 imagery, and are used for predicting soil depth by the models. Soil attributes, soil moisture, topographic curvature, training samples for each landuse and major vegetation types are considered at 429 profiles within four subwatersheds. Random forests (RF, support vector machine (SVM and artificial neural network (ANN are used to predict soil depth using the explanatory variables. The models are run using 336 data points in the calibration dataset with all 31 explanatory variables, and soil depth as the response of the models. Mean decrease permutation accuracy is performed on Variable selection. Testing dataset is done with the model soil depth values at testing locations (93 points using different efficiency criteria. Prediction error is computed for both the calibration and testing datasets. Results show that the variables landuse, specific surface area, slope, pca1, NDVI and aspect are the most important explanatory variables in predicting soil depth. RF and SVM models are appropriate for the mountainous watershed areas that have been limited in the depth of the soil and ANN model is more suitable for watershed with the fields of agricultural and deep soil depth.

  5. Ten Years of Post-Fire Vegetation Recovery following the 2007 Zaca Fire using Landsat Satellite Imagery

    Science.gov (United States)

    Hallett, J. K. E.; Miller, D.; Roberts, D. A.

    2017-12-01

    Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.

  6. Morphodynamics of nearshore rhythmic sandbars in a mixed-energy environment (SW France): I. Mapping beach changes using visible satellite imagery

    Science.gov (United States)

    Lafon, V.; De Melo Apoluceno, D.; Dupuis, H.; Michel, D.; Howa, H.; Froidefond, J. M.

    2004-10-01

    This paper presents a new method to analyze the morphology and migration of shallow water sandbanks based on the retrieval of maps from high-resolution Spot satellite imagery. This approach was applied to the study of intertidal ridge and runnel systems and subtidal crescents that border the southwest coast of France. Maps were obtained from 16 Spot images recorded between 1986 and 2000. Ridge and runnel shapes, with regard to a reference level, were delineated using a watercolor reflectance code parameterized and validated with field data. Crescent plan shapes, which appear on the images due to water transparency or breaking-induced foam, were directly extracted. The spatial maps show that, in conformity with field surveys, the mean alongshore spacing of intertidal systems and crescents range from 370 ± 146 m (variability is indicated by standard deviation) to 462 ± 188 m, and from 579 ± 200 to 818 ± 214 m, respectively. Several couples of images also show that ridge and runnel systems and crescents move in the longshore drift direction (southward) by about 2.4-3.1 and 1 m day -1, respectively. Alongshore migration rates of intertidal systems are confirmed by field surveys, whilst crescent dynamics cannot be validated because there is no in situ data available. To complete these measurements, an analysis of the influence of wave climate on both the shape and movements of these rhythmic sedimentary patterns is proposed in a companion paper.

  7. Relative abundance of 'Bacillus' spp., surfactant-associated bacterium present in a natural sea slick observed by satellite SAR imagery over the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Kathryn Lynn Howe

    2018-01-01

    Full Text Available The damping of short gravity-capillary waves (Bragg waves due to surfactant accumulation under low wind speed conditions results in the formation of natural sea slicks. These slicks are detectable visually and in synthetic aperture radar satellite imagery. Surfactants are produced by natural life processes of many marine organisms, including bacteria, phytoplankton, seaweed, and zooplankton. In this work, samples were collected in the Gulf of Mexico during a research cruise on the R/V 'F.G. Walton Smith' to evaluate the relative abundance of 'Bacillus' spp., surfactant-associated bacteria, in the sea surface microlayer compared to the subsurface water at 0.2 m depth. A method to reduce potential contamination of microlayer samples during their collection on polycarbonate filters was implemented and advanced, including increasing the number of successive samples per location and changing sample storage procedures. By using DNA analysis (real-time polymerase chain reaction to target 'Bacillus' spp., we found that in the slick areas, these surfactant-associated bacteria tended to reside mostly in subsurface waters, lending support to the concept that the surfactants they may produce move to the surface where they accumulate under calm conditions and enrich the sea surface microlayer.

  8. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012

    Directory of Open Access Journals (Sweden)

    Jihye Ahn

    2014-06-01

    Full Text Available Extensive sea ice over Arctic regions is largely involved in heat, moisture, and momentum exchanges between the atmosphere and ocean. Some previous studies have been conducted to develop statistical models for the status of Arctic sea ice and showed considerable possibilities to explain the impacts of climate changes on the sea ice extent. However, the statistical models require improvements to achieve better predictions by incorporating techniques that can deal with temporal variation of the relationships between sea ice concentration and climate factors. In this paper, we describe the statistical approaches by ordinary least squares (OLS regression and a time-series method for modeling sea ice concentration using satellite imagery and climate reanalysis data for the Barents and Kara Seas during 1979–2012. The OLS regression model could summarize the overall climatological characteristics in the relationships between sea ice concentration and climate variables. We also introduced autoregressive integrated moving average (ARIMA models because the sea ice concentration is such a long-range dataset that the relationships may not be explained by a single equation of the OLS regression. Temporally varying relationships between sea ice concentration and the climate factors such as skin temperature, sea surface temperature, total column liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover were modeled by the ARIMA method, which considerably improved the prediction accuracies. Our method may also be worth consideration when forecasting future sea ice concentration by using the climate data provided by general circulation models (GCM.

  9. Image Segmentation of Hyperspectral Imagery

    National Research Council Canada - National Science Library

    Wellman, Mark

    2003-01-01

    .... Army tactical applications. An important tactical application of infrared (IR) hyperspectral imagery is the detection of low-contrast targets, including those targets that may employ camouflage, concealment, and deception (CCD) techniques 1, 2...

  10. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery

    Science.gov (United States)

    Moody, Daniela Irina

    2018-04-17

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  11. Citizen science land cover classification based on ground and satellite imagery: Case study Day River in Vietnam

    Science.gov (United States)

    Nguyen, Son Tung; Minkman, Ellen; Rutten, Martine

    2016-04-01

    Citizen science is being increasingly used in the context of environmental research, thus there are needs to evaluate cognitive ability of humans in classifying environmental features. With the focus on land cover, this study explores the extent to which citizen science can be applied in sensing and measuring the environment that contribute to the creation and validation of land cover data. The Day Basin in Vietnam was selected to be the study area. Different methods to examine humans' ability to classify land cover were implemented using different information sources: ground based photos - satellite images - field observation and investigation. Most of the participants were solicited from local people and/or volunteers. Results show that across methods and sources of information, there are similar patterns of agreement and disagreement on land cover classes among participants. Understanding these patterns is critical to create a solid basis for implementing human sensors in earth observation. Keywords: Land cover, classification, citizen science, Landsat 8

  12. Analysis of the most important river plumes on the Atlantic and Mediterranean Iberian coast by means of satellite imagery

    Directory of Open Access Journals (Sweden)

    Diego Fernandez Novoa

    2014-06-01

    Full Text Available Rivers discharges cause the formation of buoyant plumes in the adjacent coastal area at their mouths, which are characterized by low-salinity water and controlled by outflow inertia, rotation (Coriolis effects, buoyancy, wind, and tide forcing. The turbid plumes influence the adjacent coastal area, since they control the patterns of nutrients, sediments and/or pollutants of fluvial origin on the coastal ocean and can promote strong physical and chemical changes on seawater. These changes affect the biological characteristics of the area, such as primary production, species composition, abundance and distribution of existing microorganism, which demonstrates its high ecological importance. The characterization of the most important river plumes along the Atlantic Iberian coast and the influence of the main forcing drivers (river discharge, wind and tide on them, was carried out through the analysis of plume mean-state images calculated using water leaving radiance data (nLw555 obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer sensor onboard the Aqua satellite during 2003-2013. Satellite data are downloaded from Ocean Color web site (http://oceancolor.gsfc.nasa.gov. Daily high-resolution L1 files from MODIS-Aqua were processed through SeaDAS software. Composite images, interpolated to a regular pixel grid with an approximate resolution of 500m, were built for different synoptic conditions of river discharge, wind regimes and tide, in order to obtain a representative average plume image of each situation and river for the posterior analysis. Results showed that the river discharge is the main forcing factor in the river plume extension. Wind effect is noticeable under high river discharge and tide is important for the estuarine outflow regimes although with some remarkable similarities and differences between the Atlantic rivers due to their intrinsic characteristics.

  13. Resolving uncertainties in the urban air quality, climate, and vegetation nexus through citizen science, satellite imagery, and atmospheric modeling

    Science.gov (United States)

    Jenerette, D.; Wang, J.; Chandler, M.; Ripplinger, J.; Koutzoukis, S.; Ge, C.; Castro Garcia, L.; Kucera, D.; Liu, X.

    2017-12-01

    Large uncertainties remain in identifying the distribution of urban air quality and temperature risks across neighborhood to regional scales. Nevertheless, many cities are actively expanding vegetation with an expectation to moderate both climate and air quality risks. We address these uncertainties through an integrated analysis of satellite data, atmospheric modeling, and in-situ environmental sensor networks maintained by citizen scientists. During the summer of 2017 we deployed neighborhood-scale networks of air temperature and ozone sensors through three campaigns across urbanized southern California. During each five-week campaign we deployed six sensor nodes that included an EPA federal equivalent method ozone sensor and a suite of meteorological sensors. Each node was further embedded in a network of 100 air temperature sensors that combined a randomized design developed by the research team and a design co-created by citizen scientists. Between 20 and 60 citizen scientists were recruited for each campaign, with local partners supporting outreach and training to ensure consistent deployment and data gathering. We observed substantial variation in both temperature and ozone concentrations at scales less than 4km, whole city, and the broader southern California region. At the whole city scale the average spatial variation with our ozone sensor network just for city of Long Beach was 26% of the mean, while corresponding variation in air temperature was only 7% of the mean. These findings contrast with atmospheric model estimates of variation at the regional scale of 11% and 1%. Our results show the magnitude of fine-scale variation underestimated by current models and may also suggest scaling functions that can connect neighborhood and regional variation in both ozone and temperature risks in southern California. By engaging citizen science with high quality sensors, satellite data, and real-time forecasting, our results help identify magnitudes of climate and

  14. Monitoring Changes in Croplands Due to Water Stress in the Krishna River Basin Using Temporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Murthy Reddi

    2017-10-01

    Full Text Available Remote sensing-based assessments of large river basins such as the Krishna, which supplies water to many states in India, are useful for operationally monitoring agriculture, especially basins that are affected by abiotic stress. Moderate-Resolution Imaging Spectroradiometer (MODIS time series products can be used to understand cropland changes at the basin level due to abiotic stresses, especially water scarcity. Spectral matching techniques were used to identify land use/land cover (LULC areas for two crop years: 2013–2014, which was a normal year, and 2015–2016, which was a water stress year. Water stress-affected crop areas were categorized into three classes—severe, moderate and mild—based on the normalized difference vegetation index (NDVI and intensity of damage assessed through field sampling. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived classification individual products. Water inflows into and outflows from the Krishna river basin during the study period were used as direct indicators of water scarcity/availability in the Krishna Basin. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived LULC classification of individual year products. Rainfall data from the tropical rainfall monitoring mission (TRMM was used to support the water stress analysis. The nine LULC classes derived using the MODIS temporal imagery provided overall accuracies of 82% for the cropping year 2013–2014 and 85% for the year 2015–2016. Kappa values are 0.78 for 2013–2014 and 0.82 for 2015–2016. MODIS-derived cropland areas were compared with national statistics for the cropping year 2013–2014 with a R2 value of 0.87. Results show that both rainfed and irrigated areas in 2015–2016 saw significant changes that will have significant impacts on food security. It has been also observed that the farmers in the basin tend to use lower inputs and labour per ha during drought years. Among

  15. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    Science.gov (United States)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  16. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion an