WorldWideScience

Sample records for satellite infrared imagery

  1. Reconstruction of an infrared band of meteorological satellite imagery with abductive networks

    Science.gov (United States)

    Singer, Harvey A.; Cockayne, John E.; Versteegen, Peter L.

    1995-01-01

    As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a spectral channel of the image scanning system is continually and progressively degraded by noise. In time, that data may even become unusable. We describe a novel approach to the reconstruction of the noisy satellite imagery according to empirical functional relationships that tie the spectral channels together. Abductive networks are applied to automatically learn the empirical functional relationships between the data sensed on the other spectral channels to calculate the data that should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is demonstrated that abductive networks correctly predict the noise-free observed data.

  2. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  3. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  4. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  5. Quantification of the Beauce's Groundwater contribution to the Loire River discharge using satellite infrared imagery

    Directory of Open Access Journals (Sweden)

    E. Lalot

    2015-02-01

    Full Text Available Seven Landsat Thermal InfraRed (TIR images, taken over the period 2000–2010, were used to establish longitudinal temperature profiles of the middle Loire River, where it flows above the Beauce aquifer. Results showed that 75% of the temperature differences, between in situ observations and TIR image based estimations, remained within the ±1 °C interval. The groundwater discharge along the River course was quantified for each identified groundwater catchment areas using a heat budget based on the Loire River temperature variations, estimated from the TIR images. The main discharge area of the Beauce aquifer into the Loire River was located between river kilometers 630 and 650. This result confirms what was obtained using a groundwater budget and spatially locates groundwater input within the Middle sector of the Loire River. According to the heat budgets, groundwater discharge is higher during winter period (13.5 m3 s−1 than during summer (5.3 m3 s−1. Groundwater input is also higher during the flow recession periods of the Loire River.

  6. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  7. ERTS-A satellite imagery

    Science.gov (United States)

    Colvocoresses, Alden P.

    1970-01-01

    The first satellite designed to survey the Earth's resources is scheduled to be launched in 1972. This satellite, known as ERTS-A, will telemeter frames of imagery each covering 100-nautical-mile squares of the Earth. Except for the internal anomalies in the sensor system, the imagery, after being properly scaled, rectified, and controlled, may be considered an orthographic view of the Earth and used as a planimetric photomap. The accuracy of this photomap will be limited, principally by the geometric fidelity of the sensor system rather than by external effects, such as relief displacement, which restrict the direct cartographic use of the conventional aerial photograph. ERST-A is not designed as a topographic mapping satellite but does have real potential' for thematic mapping particularly in areas now covered by topographic maps.

  8. Casa Grande Ruins National Monument Vegetation Mapping Project - Quickbird Satellite Imagery

    Data.gov (United States)

    National Park Service, Department of the Interior — This imagery was acquired on December 3, 2007 by DigitalGlobe, Inc.'s Quickbird satellite. Its 4 multispectral bands (blue, green, red, near infrared), together with...

  9. The interpretation of SIR-B imagery of surface waves and other oceanographic features using in-situ, meteorological satellite, and infrared satellite data

    Science.gov (United States)

    Allan, T.; Guymer, T.; Muller, P.

    1984-01-01

    The overall aim is to interpret Shuttle Imaging Radar-B imagery of selected ocean areas near the United Kingdom using available data from ships and buoys, with particular emphasis on understanding the mechanisms involved in the backscattering of microwaves from the sea surface and their relationship to surface gravity waves. The secondary objective is to use a multispectral approach to study sea-surface expressions such as slicks, internal waves, and eddies. Data acquisition, handling, and analysis approaches and expected results are discussed.

  10. 7 CFR 611.22 - Availability of satellite imagery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of satellite imagery. 611.22 Section 611... § 611.22 Availability of satellite imagery. Cloud-free maps of the United States based on imagery received from a satellite are prepared and released to the pubic by NRCS. The maps offer the first image...

  11. Commercial satellite imagery comes of age

    Energy Technology Data Exchange (ETDEWEB)

    Jasani, Bhupendra [King' s College, London (United Kingdom). Dept. of War Studies

    2003-05-01

    In the absence of on-site inspections until recently, in the Seventh Quarterly Report to the United Nations Security Council, the Executive Director of the UN Monitoring, Verification and Inspection Commission (UNMOVIC) stated that the imagery acquired over Iraq, which UNMOVIC is receiving through a commercial satellite supplier is continuously, being analysed. Not only this but the report hopes that 'Member States will continue to provide it with imagery from their own assets as such assistance provided to date has proven very valuable' Even after the on-site inspections have begun, satellite imagery over Iraq continues, for example, to be used for inspection planning purposes. This indicates that commercial satellite imagery might finally be used on a routine basis. As the findings by the UNMOVIC are not made public, this paper examines a number of images acquired over Baghdad from different commercial satellite sources and at different times to determine what could be concluded about Iraq's nuclear and chemical weapon activities in the region.

  12. Photogrammetric Processing Using ZY-3 Satellite Imagery

    Science.gov (United States)

    Kornus, W.; Magariños, A.; Pla, M.; Soler, E.; Perez, F.

    2015-03-01

    This paper evaluates the stereoscopic capacities of the Chinese sensor ZiYuan-3 (ZY-3) for the generation of photogrammetric products. The satellite was launched on January 9, 2012 and carries three high-resolution panchromatic cameras viewing in forward (22º), nadir (0º) and backward direction (-22º) and an infrared multi-spectral scanner (IRMSS), which is slightly looking forward (6º). The ground sampling distance (GSD) is 2.1m for the nadir image, 3.5m for the two oblique stereo images and 5.8m for the multispectral image. The evaluated ZY-3 imagery consists of a full set of threefold-stereo and a multi-spectral image covering an area of ca. 50km x 50km north-west of Barcelona, Spain. The complete photogrammetric processing chain was executed including image orientation, the generation of a digital surface model (DSM), radiometric image correction, pansharpening, orthoimage generation and digital stereo plotting. All 4 images are oriented by estimating affine transformation parameters between observed and nominal RPC (rational polynomial coefficients) image positions of 17 ground control points (GCP) and a subsequent calculation of refined RPC. From 10 independent check points RMS errors of 2.2m, 2.0m and 2.7m in X, Y and H are obtained. Subsequently, a DSM of 5m grid spacing is generated fully automatically. A comparison with the Lidar data results in an overall DSM accuracy of approximately 3m. In moderate and flat terrain higher accuracies in the order of 2.5m and better are achieved. In a next step orthoimages from the high resolution nadir image and the multispectral image are generated using the refined RPC geometry and the DSM. After radiometric corrections a fused high resolution colour orthoimage with 2.1m pixel size is created using an adaptive HSL method. The pansharpen process is performed after the individual geocorrection due to the different viewing angles between the two images. In a detailed analysis of the colour orthoimage artifacts are

  13. Recommended satellite imagery capabilities for disaster management

    Science.gov (United States)

    Richards, P. B.; Robinove, C. J.; Wiesnet, D. R.; Salomonson, V. V.; Maxwell, M. S.

    1982-01-01

    This study explores the role that satellite imaging systems might play in obtaining information needed in the management of natural and manmade disasters. Information requirements which might conceivably be met by satellite were identified for over twenty disasters. These requirements covered pre-disaster mitigation and preparedness activities, disaster response activities, and post-disaster recovery activities. The essential imaging satellite characteristics needed to meet most of the information requirements are 30 meter (or finer) spatial resolution, frequency of observations of one week or less, data delivery times of one day or less, and stereo, synoptic all-weather coverage of large areas in the visible, near infrared, thermal infrared and microwave bands. Of the current and planned satellite systems investigated for possible application to disaster management, Landsat-D and SPOT appear to have the greatest potential during disaster mitigation and preparedness activities, but all satellites studied have serious deficiencies during response and recovery activities. Several strawman concepts are presented for a satellite system optimized to support all disaster management activities.

  14. APPLICABILITY EVALUATION OF OBJECT DETECTION METHOD TO SATELLITE AND AERIAL IMAGERIES

    Directory of Open Access Journals (Sweden)

    K. Kamiya

    2016-06-01

    Full Text Available Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  15. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    Science.gov (United States)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  16. High Resolution Imagery and Three-line Array Imagery Automatic Registration for China’s TH-1 Satellite Imagery

    OpenAIRE

    2014-01-01

    An automatic image registration method of high resolution (HR) imagery and three-line array imagery for China’s TH-1 mapping satellite is invented. The 2m resolution HR imagery is normalized to 5m resolution three-line array imagery firstly. Then using precise point prediction model (P3M) matching method, thousands of correspondent points can be matched. Based on these matched points, feature points collected on HR imagery can be converted onto three-line array imagery automatically. Conseque...

  17. A data mining approach for sharpening satellite thermal imagery over land

    Science.gov (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  18. Using satellite imagery for crime mapping in South Africa.

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2002-12-01

    Full Text Available . Increasingly, technologies such as digital orthophotographs, high-resolution satellite imagery and the global positioning system (GPS) are being used for these areas to provide base mapping and application data for geographical information systems (GIS...

  19. Potentials of satellite imagery for monitoring arctic goose productivity

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper reports upon the exciting possibility that satellite imagery may now provide feasible means for grossly monitoring arctic habitat conditions in a timely...

  20. Andean terraced hills (a use of satellite imagery)

    CERN Document Server

    Sparavigna, Amelia Carolina

    2010-01-01

    The aim of this paper is in stimulating the use of satellite imagery, in particular the free service of Google Maps, to investigate the distribution of the agricultural technique of terraced hills in Andean countries, near Titicaca Lake. In fact, satellite maps can give a clear view of the overall surface modified by human work, being then a precious help for on-site archaeological researches and for historical analysis. Satellite imagery is also able to give the distribution of burial and worship places. The paper discusses some examples near the Titicaca Lake.

  1. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  2. Harnessing Satellite Imageries in Feature Extraction Using Google Earth Pro

    Science.gov (United States)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Climate change has been a long-time concern worldwide. Impending flooding, for one, is among its unwanted consequences. The Phil-LiDAR 1 project of the Department of Science and Technology (DOST), Republic of the Philippines, has developed an early warning system in regards to flood hazards. The project utilizes the use of remote sensing technologies in determining the lives in probable dire danger by mapping and attributing building features using LiDAR dataset and satellite imageries. A free mapping software named Google Earth Pro (GEP) is used to load these satellite imageries as base maps. Geotagging of building features has been done so far with the use of handheld Global Positioning System (GPS). Alternatively, mapping and attribution of building features using GEP saves a substantial amount of resources such as manpower, time and budget. Accuracy-wise, geotagging by GEP is dependent on either the satellite imageries or orthophotograph images of half-meter resolution obtained during LiDAR acquisition and not on the GPS of three-meter accuracy. The attributed building features are overlain to the flood hazard map of Phil-LiDAR 1 in order to determine the exposed population. The building features as obtained from satellite imageries may not only be used in flood exposure assessment but may also be used in assessing other hazards and a number of other uses. Several other features may also be extracted from the satellite imageries.

  3. Satellite and lunar laser ranging in infrared

    Science.gov (United States)

    Courde, Clement; Torre, Jean-Marie; Samain, Etienne; Martinot-Lagarde, Gregoire; Aimar, Mourad; Albanese, Dominique; Maurice, Nicolas; Mariey, Hervé; Viot, Hervé; Exertier, Pierre; Fienga, Agnes; Viswanathan, Vishnu

    2017-05-01

    We report on the implementation of a new infrared detection at the Grasse lunar laser ranging station and describe how infrared telemetry improves the situation. We present our first results on the lunar reflectors and show that infrared detection permits us to densify the observations and allows measurements during the new and the full moon periods. We also present the benefit obtained on the ranging of Global Navigation Satellite System (GNSS) satellites and on RadioAstron which have a very elliptic orbit.

  4. On RPC Model of Satellite Imagery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo; YUAN Xiuxiao

    2006-01-01

    The RPC model has recently raised considerable interest in the photogrammetry and remote sensing community. The RPC is a generalized sensor model that is capable of achieving high approximation accuracy. Unfortunately, the computation of the parameters of RPC model is subject to the initial of the parameter in all available literature. An algorithm for computation of parameters of RPC model without initial value is presented and tested on SPOT-5, CBERS-2, ERS-1 imageries. RPC model is suitable for both push-broom and SAR imagery.

  5. Mapping cultivable land from satellite imagery with clustering algorithms

    Science.gov (United States)

    Arango, R. B.; Campos, A. M.; Combarro, E. F.; Canas, E. R.; Díaz, I.

    2016-07-01

    Open data satellite imagery provides valuable data for the planning and decision-making processes related with environmental domains. Specifically, agriculture uses remote sensing in a wide range of services, ranging from monitoring the health of the crops to forecasting the spread of crop diseases. In particular, this paper focuses on a methodology for the automatic delimitation of cultivable land by means of machine learning algorithms and satellite data. The method uses a partition clustering algorithm called Partitioning Around Medoids and considers the quality of the clusters obtained for each satellite band in order to evaluate which one better identifies cultivable land. The proposed method was tested with vineyards using as input the spectral and thermal bands of the Landsat 8 satellite. The experimental results show the great potential of this method for cultivable land monitoring from remote-sensed multispectral imagery.

  6. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Preußer

    2015-11-01

    Full Text Available The North Water (NOW Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1 sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2, Scanning Multichannel Microwave Radiometer (SMMR, Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS and (2 thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison

  7. Get Close to Glaciers with Satellite Imagery.

    Science.gov (United States)

    Hall, Dorothy K.

    1986-01-01

    Discusses the use of remote sensing from satellites to monitor glaciers. Discusses efforts to use remote sensing satellites of the Landsat series for examining the global distribution, mass, balance, movements, and dynamics of the world's glaciers. Includes several Landsat images of various glaciers. (TW)

  8. Parameterization of Vegetation Aerodynamic Roughness of Natural Regions Satellite Imagery

    Science.gov (United States)

    Jasinski, Michael F.; Crago, Richard; Stewart, Pamela

    1998-01-01

    Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. The parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.

  9. Identifying hydro resources with enhanced satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Cambridge, M.; Moore, J.M.; Canas, A.

    1986-10-01

    Landsat multi-spectral scanner (MSS) imagery in photographic form was used, in conjunction with available topographic and geologic maps, during the preliminary planning studies of potential dam sites in the Ulu Jelai river basin, Peninsular Malaysia. The Imperial College (London, UK) prototype analog image processing system was used to provide colour composite and edge-enhanced images for drainage, geological fold, fault and joint trace (tectonic fabric) mapping and to provide information on rock type distribution at scales between 1:250,000 and 1:50,000. Remotely sensed space imagery, enhanced by analog (optical) techniques, is a cheap, convenient and useful supplement to existing geologic and topographic maps for preliminary regional site assessment in tropical terrain.

  10. Estimation of walrus populations on sea ice with infrared imagery and aerial photography

    Science.gov (United States)

    Udevitz, M.S.; Burn, D.M.; Webber, M.A.

    2008-01-01

    Population sizes of ice-associated pinnipeds have often been estimated with visual or photographic aerial surveys, but these methods require relatively slow speeds and low altitudes, limiting the area they can cover. Recent developments in infrared imagery and its integration with digital photography could allow substantially larger areas to be surveyed and more accurate enumeration of individuals, thereby solving major problems with previous survey methods. We conducted a trial survey in April 2003 to estimate the number of Pacific walruses (Odobenus rosmarus divergens) hauled out on sea ice around St. Lawrence Island, Alaska. The survey used high altitude infrared imagery to detect groups of walruses on strip transects. Low altitude digital photography was used to determine the number of walruses in a sample of detected groups and calibrate the infrared imagery for estimating the total number of walruses. We propose a survey design incorporating this approach with satellite radio telemetry to estimate the proportion of the population in the water and additional low-level flights to estimate the proportion of the hauled-out population in groups too small to be detected in the infrared imagery. We believe that this approach offers the potential for obtaining reliable population estimates for walruses and other ice-associated pinnipeds. ?? 2007 by the Society for Marine Mammalogy.

  11. SOME ASPECTS OF SATELLITE IMAGERY INTEGRATION FROM EROS B AND LANDSAT 8

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2016-06-01

    Full Text Available The Landsat 8 satellite which was launched in 2013 is a next generation of the Landsat remote sensing satellites series. It is equipped with two new sensors: the Operational Land Imager (OLI and the Thermal Infrared Sensor (TIRS. What distinguishes this satellite from the previous is four new bands (coastal aerosol, cirrus and two thermal infrared TIRS bands. Similar to its antecedent, Landsat 8 records electromagnetic radiation in a panchromatic band at a range of 0.5‐0.9 μm with a spatial resolution equal to 15 m. In the paper, multispectral imagery integration capabilities of Landsat 8 with data from the new high resolution panchromatic EROS B satellite are analyzed. The range of panchromatic band for EROS B is 0.4‐0.9 μm and spatial resolution is 0.7 m. Research relied on improving the spatial resolution of natural color band combinations (bands: 4,3,2 and of desired false color band composition of Landsat 8 satellite imagery. For this purpose, six algorithms have been tested: Brovey’s, Mulitplicative, PCA, IHS, Ehler's, HPF. On the basis of the visual assessment, it was concluded that the best results of multispectral and panchromatic image integration, regardless land cover, are obtained for the multiplicative method. These conclusions were confirmed by statistical analysis using correlation coefficient, ERGAS and R-RMSE indicators.

  12. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    Science.gov (United States)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will

  13. Updating Maps Using High Resolution Satellite Imagery

    Science.gov (United States)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  14. Hazing Iran: Satellite Imagery, Human Rights, and City as Camp

    OpenAIRE

    Zhang, Amy

    2014-01-01

    As perhaps most obviously evidenced in the political maneuverings that led up to the second Gulf War in 2003, the use of satellite imagery to document spatial terrain is often, and almost instantly, politicized. In the two images presented here, this politicization takes on a two-way relationship and is open to contrasting and inevitably dualistic readings. One way of describing their relationship is as "Target" and "Aftermath". On the left, we have an image of the nuclear plant near the Iran...

  15. Visualization techniques for data mining of Latur district satellite imagery

    OpenAIRE

    Kodge, B. G.; Hiremath, P. S.

    2011-01-01

    This study presents a new visualization tool for classification of satellite imagery. Visualization of feature space allows exploration of patterns in the image data and insight into the classification process and related uncertainty. Visual Data Mining provides added value to image classifications as the user can be involved in the classification process providing increased confidence in and understanding of the results. In this study, we present a prototype visualization tool for visual dat...

  16. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    Science.gov (United States)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  17. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  18. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  19. Evaluating large scale orthophotos derived from high resolution satellite imagery

    Science.gov (United States)

    Ioannou, Maria Teresa; Georgopoulos, Andreas

    2013-08-01

    For the purposes of a research project, for the compilation of the archaeological and environmental digital map of the island of Antiparos, the production of updated large scale orthophotos was required. Hence suitable stereoscopic high resolution satellite imagery was acquired. Two Geoeye-1 stereopairs were enough to cover this small island of the Cyclades complex in the central Aegean. For the orientation of the two stereopairs numerous ground control points were determined using GPS observations. Some of them would also serve as check points. The images were processed using commercial stereophotogrammetric software suitable to process satellite stereoscopic imagery. The results of the orientations are evaluated and the digital terrain model was produced using automated and manual procedures. The DTM was checked both internally and externally with comparison to other available DTMs. In this paper the procedures for producing the desired orthophotography are critically presented and the final result is compared and evaluated for its accuracy, completeness and efficiency. The final product is also compared against the orthophotography produced by Ktimatologio S.A. using aerial images in 2007. The orthophotography produced has been evaluated metrically using the available check points, while qualitative evaluation has also been performed. The results are presented and a critical approach for the usability of satellite imagery for the production of large scale orthophotos is attempted.

  20. Crop classification using temporal stacks of multispectral satellite imagery

    Science.gov (United States)

    Moody, Daniela I.; Brumby, Steven P.; Chartrand, Rick; Keisler, Ryan; Longbotham, Nathan; Mertes, Carly; Skillman, Samuel W.; Warren, Michael S.

    2017-05-01

    The increase in performance, availability, and coverage of multispectral satellite sensor constellations has led to a drastic increase in data volume and data rate. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. The data analysis capability, however, has lagged behind storage and compute developments, and has traditionally focused on individual scene processing. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and can scale with the high-rate and dimensionality of imagery being collected. We investigate and compare the performance of pixel-level crop identification using tree-based classifiers and its dependence on both temporal and spectral features. Classification performance is assessed using as ground-truth Cropland Data Layer (CDL) crop masks generated by the US Department of Agriculture (USDA). The CDL maps contain 30m spatial resolution, pixel-level labels for around 200 categories of land cover, but are however only available post-growing season. The analysis focuses on McCook county in South Dakota and shows crop classification using a temporal stack of Landsat 8 (L8) imagery over the growing season, from April through October. Specifically, we consider the temporal L8 stack depth, as well as different normalized band difference indices, and evaluate their contribution to crop identification. We also show an extension of our algorithm to map corn and soy crops in the state of Mato Grosso, Brazil.

  1. Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering

    Science.gov (United States)

    Berendes, Todd A.; Mecikalski, John R.; MacKenzie, Wayne M.; Bedka, Kristopher M.; Nair, U. S.

    2008-10-01

    This paper describes a statistical clustering approach toward the classification of cloud types within meteorological satellite imagery, specifically, visible and infrared data. The method is based on the Standard Deviation Limited Adaptive Clustering (SDLAC) procedure, which has been used to classify a variety of features within both polar orbiting and geostationary imagery, including land cover, volcanic ash, dust, and clouds of various types. In this study, the focus is on classifying cumulus clouds of various types (e.g., "fair weather, "towering, and newly glaciated cumulus, in addition to cumulonimbus). The SDLAC algorithm is demonstrated by showing examples using Geostationary Operational Environmental Satellite (GOES) 12, Meteosat Second Generation's (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and the Moderate Resolution Infrared Spectrometer (MODIS). Results indicate that the method performs well, classifying cumulus similarly between MODIS, SEVIRI, and GOES, despite the obvious channel and resolution differences between these three sensors. The SDLAC methodology has been used in several research activities related to convective weather forecasting, which offers some proof of concept for its value.

  2. Processing Satellite Imagery To Detect Waste Tire Piles

    Science.gov (United States)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  3. Approximate Approaches to Geometric Corrections of High Resolution Satellite Imagery

    Institute of Scientific and Technical Information of China (English)

    SHI Wenzhong; Ahmed Shaker

    2004-01-01

    The exploitation of different non-rigorous mathematical models as opposed to the satellite rigorous models is discussed for geometric corrections and topographic/thematic maps production of high-resolution satellite imagery (HRSI). Furthermore, this paper focuses on the effects of the number of GCPs and the terrain elevation difference within the area covered by the images on the obtained ground points accuracy. From the research, it is obviously found that non-rigorous orientation and triangulation models can be used successfully in most cases for 2D rectification and 3D ground points determination without a camera model or the satellite ephemeris data. In addition, the accuracy up to the sub-pixel level in plane and about one pixel in elevation can be achieved with a modest number of GCPs.

  4. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    Science.gov (United States)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  5. Radiometric Correction of Multitemporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S. G. Biday,

    2010-01-01

    Full Text Available Problem statement: Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. Also major problem with satellite images is that regions below clouds are not covered by sensor. Cloud detection, removal and data prediction in cloudy region is essential for image interpretation. Approach: This study demonstrated applicability of empirical relative radiometric normalization methods to a set of multitemporal cloudy images acquired by Resourcesat-1 LISS III sensor. Objective of this study was to detect and remove cloud cover and normalize an image radiometrically. Cloud detection was achieved by using Average Brightness Threshold (ABT algorithm. The detected cloud removed and replaced with data from another images of the same area. We proposed a new method in which cloudy pixels are replaced with predicted pixel values obtained by regression. After cloud removal, the proposed normalization method was applied to reduce the radiometric influence caused by non surface factors. This process identified landscape elements whose reflectance values are nearly constant over time, i.e., the subset of non-changing pixels are identified using frequency based correlation technique. Further, we proposed another method of radiometric correction in frequency domain, Pseudo-Invariant Feature regression and this process removed landscape elements such as vegetation whose reflectance values are not constant over time. It takes advantage of vegetation being typically high frequency area, can be removed by low pass filter. Results: The quality of radiometric normalization is statistically assessed by R2 value and Root Mean Square Error (RMSE between each pair of analogous band. Further we verified that difference

  6. Direct determination of surface albedos from satellite imagery

    Science.gov (United States)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  7. Use Of Infrared Imagery In Continuous Flow Wind Tunnels

    Science.gov (United States)

    Stallings, D. W.; Whetsel, R. G.

    1983-03-01

    Thermal mapping with infrared imagery is a very useful test technique in continuous flow wind tunnels. Convective-heating patterns over large areas of a model can be obtained through remote sensing of the surface temperature. A system has been developed at AEDC which uses a commercially available infrared scanning camera to produce these heat-transfer maps. In addition to the camera, the system includes video monitors, an analog tape recording, an analog-to-digital converter, a digitizer control, and two minicomputers. This paper will describe the individual components, data reduction techniques, and typical applications. *

  8. Practical target recognition in infrared imagery using a neural network

    Science.gov (United States)

    Crowe, Alistair A.; Patel, A.; Wright, William A.; Green, Michael A.; Hughes, Andrew D.

    1992-07-01

    This paper describes work undertaken by British Aerospace (BAe) on the development of a neural network classifier for automatic recognition of land based targets in infrared imagery. The classifier used a histogram segmentation process to extract regions from the infrared imagery. A set of features were calculated for each region to form a feature vector describing the region. These feature vectors were then used as the input to the neural classifier. Two neural classifiers were investigated based upon the multi-layer perceptron and radial basis function networks. In order to assess the merits of a neural network approach, the neural classifiers were compared with a conventional classifier originally developed by British Aerospace (Systems and Equipment) Ltd., under contract to RARDE (Chertsey), for the purpose of infrared target recognition. This conventional system was based upon a Schurman classifier which operates on data transformed using a Hotelling Trace Transform. The ability of the classifiers to perform practical recognition of real-world targets was evaluated by training and testing the classifiers on real imagery obtained from mock land battles and military vehicle trials.

  9. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2016-10-01

    Full Text Available A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington of Kansas (total of 457 ha. Three basic tests were conducted on the data: (1 spatial dependence on each of the yield and vegetation indices (VIs using Moran’s I test; (2 model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS and spatial econometric (SPL models; and (3 model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG was tested positive and statistically significant for most of the fields (p < 0.05, except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02 was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to

  10. Automated Generation of the Alaska Coastline Using High-Resolution Satellite Imagery

    Science.gov (United States)

    Roth, G.; Porter, C. C.; Cloutier, M. D.; Clementz, M. E.; Reim, C.; Morin, P. J.

    2015-12-01

    Previous campaigns to map Alaska's coast at high resolution have relied on airborne, marine, or ground-based surveying and manual digitization. The coarse temporal resolution, inability to scale geographically, and high cost of field data acquisition in these campaigns is inadequate for the scale and speed of recent coastal change in Alaska. Here, we leverage the Polar Geospatial Center (PGC) archive of DigitalGlobe, Inc. satellite imagery to produce a state-wide coastline at 2 meter resolution. We first select multispectral imagery based on time and quality criteria. We then extract the near-infrared (NIR) band from each processed image, and classify each pixel as water or land with a pre-determined NIR threshold value. Processing continues with vectorizing the water-land boundary, removing extraneous data, and attaching metadata. Final coastline raster and vector products maintain the original accuracy of the orthorectified satellite data, which is often within the local tidal range. The repeat frequency of coastline production can range from 1 month to 3 years, depending on factors such as satellite capacity, cloud cover, and floating ice. Shadows from trees or structures complicate the output and merit further data cleaning. The PGC's imagery archive, unique expertise, and computing resources enabled us to map the Alaskan coastline in a few months. The DigitalGlobe archive allows us to update this coastline as new imagery is acquired, and facilitates baseline data for studies of coastal change and improvement of topographic datasets. Our results are not simply a one-time coastline, but rather a system for producing multi-temporal, automated coastlines. Workflows and tools produced with this project can be freely distributed and utilized globally. Researchers and government agencies must now consider how they can incorporate and quality-control this high-frequency, high-resolution data to meet their mapping standards and research objectives.

  11. Sugarcane Land Classification with Satellite Imagery using Logistic Regression Model

    Science.gov (United States)

    Henry, F.; Herwindiati, D. E.; Mulyono, S.; Hendryli, J.

    2017-03-01

    This paper discusses the classification of sugarcane plantation area from Landsat-8 satellite imagery. The classification process uses binary logistic regression method with time series data of normalized difference vegetation index as input. The process is divided into two steps: training and classification. The purpose of training step is to identify the best parameter of the regression model using gradient descent algorithm. The best fit of the model can be utilized to classify sugarcane and non-sugarcane area. The experiment shows high accuracy and successfully maps the sugarcane plantation area which obtained best result of Cohen’s Kappa value 0.7833 (strong) with 89.167% accuracy.

  12. Low-Cost Satellite Infrared Imager Study

    Science.gov (United States)

    2007-11-02

    2,297.00 10 MATLAB , Simulink , Symbolic Math Toolbox (2 ea @ £894) £1,788.00 11 MATLAB Image Processing Toolbox (2 ea at £192) £384.00 12 MATLAB ...Figure 1: MWIR and TIR satellite imagery. On the left is a BIRD image of forest fires on the Portuguese/ Spanish border3 and the image on right is...space-borne MWIR and TIR imagers, instrument engineers are continually evaluating advances in the miniaturization of detector technology. One

  13. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  14. Combining satellite imagery and machine learning to predict poverty.

    Science.gov (United States)

    Jean, Neal; Burke, Marshall; Xie, Michael; Davis, W Matthew; Lobell, David B; Ermon, Stefano

    2016-08-19

    Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.

  15. Measurement of sea ice and icebergs topography using satellite imagery

    Science.gov (United States)

    Zakharov, I.; Power, D.; Prasad, S.

    2016-12-01

    Sea ice topography represents geospatial information on the three-dimensional geometrical attributes of the ice surface including height and shape of various ice features. The features interest consist of deformed (pressure ridges, rubbles and hummocks) and level sea ice as well as glacial ice. Sea ice topography is important for scientific research and climate studies because it helps characterise ice volume and thickness and it influences the near-surface atmospheric transport by impacting the drag coefficients. It also represents critical information to marine operational applications, such as ships navigation and risks assessment for offshore infrastructures. The several methods were used to measure sea ice topography from a single satellite image as well as multiple images. The techniques based on the single image, acquired by optical or synthetic aperture radar (SAR) satellites, derive the height and shape information from shadow and shading. Optical stereo images acquired by very high resolution (0.5 m) satellites were used to extract highly detailed digital elevation model (DEM). SAR imagery allowed extraction of DEM using stereo-radargrammetry and interferometry. The images from optical satellites WorldView, Pleiades, GeoEye, Spot, and Landsat-8 were used to measure topography of sea ice deformation features and glacial ice including icebergs and ice islands. These features were mapped in regions of the Central Arctic, Baffin Bay and the coast of Greenland. SAR imagery including interferometric TanDEM-X data and full polarimetric Radarsat-2 were used to extract ridge frequency and measure spatial parameters of glacial features. The accuracy was evaluated by comparison of the results from different methods demonstrating their strengths and limitations. Ridge height and frequency were also compared with the high resolution results from the Los Alamos sea ice model (CICE), regionally implemented for Baffin Bay and the Labrador Sea.

  16. Detecting small groundwater discharge springs using handheld thermal infrared imagery.

    Science.gov (United States)

    Röper, Tania; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Ground-based handheld thermal infrared imagery was used for the detection of small-scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1-2 cm were observed along the beach at a distance of 2-3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3-5 °C higher) and a lower electric conductivity (30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small-scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground-based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters. © 2013, National Ground Water Association.

  17. Cultural Artifact Detection in Long Wave Infrared Imagery.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dylan Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craven, Julia M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ramon, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    Detection of cultural artifacts from airborne remotely sensed data is an important task in the context of on-site inspections. Airborne artifact detection can reduce the size of the search area the ground based inspection team must visit, thereby improving the efficiency of the inspection process. This report details two algorithms for detection of cultural artifacts in aerial long wave infrared imagery. The first algorithm creates an explicit model for cultural artifacts, and finds data that fits the model. The second algorithm creates a model of the background and finds data that does not fit the model. Both algorithms are applied to orthomosaic imagery generated as part of the MSFE13 data collection campaign under the spectral technology evaluation project.

  18. Fusion of visible and infrared imagery for face recognition

    Institute of Scientific and Technical Information of China (English)

    Xuerong Chen(陈雪荣); Zhongliang Jing(敬忠良); Shaoyuan Sun(孙韶媛); Gang Xiao(肖刚)

    2004-01-01

    In recent years face recognition has received substantial attention, but still remained very challenging in real applications. Despite the variety of approaches and tools studied, face recognition is not accurate or robust enough to be used in uncontrolled environments. Infrared (IR) imagery of human faces offers a promising alternative to visible imagery, however, IR has its own limitations. In this paper, a scheme to fuse information from the two modalities is proposed. The scheme is based on eigenfaces and probabilistic neural network (PNN), using fuzzy integral to fuse the objective evidence supplied by each modality. Recognition rate is used to evaluate the fusion scheme. Experimental results show that the scheme improves recognition performance substantially.

  19. Using satellite imagery to assess the influence of urban development on the impacts of extreme rainfall

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin; Madsen, Henrik;

    We investigate the applicability of medium resolution Landsat satellite imagery for mapping temporal changes in urban land cover for direct use in urban flood models. The overarching aim is to provide accurate and cost- and resource-efficient quantification of temporal changes in risk towards...... the impacts of pluvial flooding. Initial results show that satellite imagery may have considerable potential in this respect....

  20. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  1. Vertical Accuracy Comparison of Digital Elevation Model from LIDAR and Multitemporal Satellite Imagery

    Science.gov (United States)

    Octariady, J.; Hikmat, A.; Widyaningrum, E.; Mayasari, R.; Fajari, M. K.

    2017-05-01

    Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013-2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.

  2. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    Science.gov (United States)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  3. Quantifying River Widths of North America from Satellite Imagery

    Science.gov (United States)

    Allen, G. H.; Pavelsky, T.; Miller, Z.

    2013-12-01

    River width is a fundamental predictor variable in many hydrologic, geomorphic, and biogeochemical models, yet current large-scale models rely on theoretical hydraulic geometry relationships that do not fully capture natural variability in river form. Here we present the first high-resolution dataset of long-term mean width of North American rivers wider than 30 m. The dataset contains 7.93 million georeferenced width measurements derived from Landsat TM and ETM+ imagery that were acquired when rivers were most likely to be at mean discharge. We built the dataset by developing an automated procedure that selects and downloads raw imagery, creates cloud-free normalized difference water index images, histogram balances and mosaics them together, and produces a water mask using a dynamic water-land threshold technique. We then visually inspected and corrected the mask for errors and used RivWidth software to calculate river width at each river centerline pixel. We validated our dataset using >1000 United States Geological Survey and Water Survey of Canada in situ gauge station measurements. Error analysis shows a robust relationship between the remotely sensed widths and in situ gauge measurements with an r 2 = 0.86 (Spearman's = 0.81) and a mean absolute error of 27.5 m. We find that North American river widths lie on logarithmic frequency curve with some notable exceptions at widths SWOT) satellite mission.

  4. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  5. Automatic detection of ship tracks in ATSR-2 satellite imagery

    Directory of Open Access Journals (Sweden)

    E. Campmany

    2009-03-01

    Full Text Available Ships modify cloud microphysics by adding cloud condensation nuclei (CCN to a developing or existing cloud. These create lines of larger reflectance in cloud fields that are observed in satellite imagery. An algorithm has been developed to automate the detection of ship tracks in Along Track Scanning Radiometer 2 (ATSR-2 imagery. The scheme has been integrated into the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE processing chain. The algorithm firstly identifies intensity ridgelets in clouds which have the potential to be part of a ship track. This identification is done by comparing each pixel with its surrounding ones. If the intensity of three adjacent pixels is greater than the intensity of their neighbours, then it is classified as a ridgelet. These ridgelets are then connected together, according to a set of connectivity rules, to form tracks which are classed as ship tracks if they are long enough. The algorithm has been applied to two years of ATSR-2 data. Ship tracks are most frequently seen off the west coast of California, and the Atlantic coast of both West Africa and South-Western Europe. The global distribution of ship tracks shows strong seasonality, little inter-annual variability and a similar spatial pattern to the distribution of ship emissions.

  6. Efficient Algorithm for Railway Tracks Detection Using Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Ali Javed

    2012-10-01

    Full Text Available Satellite imagery can produce maps including roads, railway tracks, buildings, bridges, oceans, lakes, rivers, etc. In developed countries like USA, Canada, Australia, Europe, images produced by Google map are of high resolution and good quality. On the other hand, mostly images of the third world countries like Pakistan, Asian and African countries are of poor quality and not clearly visible. Similarly railway tracks of these countries are hardly visible in Google map. We have developed an efficient algorithm for railway track detection from a low quality image of Google map. This would lead to detect damaged railway track, railway crossings and help to schedule/divert locomotive movements in order to avoid catastrophe.

  7. Estimation of Satellite Orientation from Space Surveillance Imagery Measured with an Adaptive Optics Telescope

    Science.gov (United States)

    1996-12-01

    SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE THESIS Gregory E. Wood Lieutenant, USAF AFIT/GSO/ENP...the official policy or position of the Department of Defense or the U. S. Government. AFIT/GSO/ENP/96D-02 ESTIMATION OF SATELLITE ORIENTATION FROM...surveillance operations. xii ESTIMATION OF SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE

  8. Detection of ship tracks in ATSR2 satellite imagery

    Directory of Open Access Journals (Sweden)

    E. Campmany

    2008-08-01

    Full Text Available Ships modify cloud microphysics by adding cloud condensation nuclei (CCN to a developing or existing cloud. These create lines of larger reflectance in cloud fields that are observed in satellite imagery. Ship tracks are most frequently seen off the west coast of California, and the Atlantic coast of both west Africa and south-western Europe. In order to automate their detection within the Along Track Scanning Radiometer 2 (ATSR2 data set an algorithm was developed and integrated with the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE processing chain. The algorithm firstly identifies intensity ridgelets in clouds which have the potential to be part of a ship track. This identification is done by comparing each pixel with its surrounding ones. If the intensity of three adjacent pixels is greater than the intensity of its neighbours, then it is classified as a ridgelet. These ridgelets are then connected together, according to a set of connectivity rules, to form tracks which are classed as ship tracks if they are long enough. The algorithm has been applied to two years of ATSR2 data. A month of results have been compared with other satellite datasets to validate the algorithm. There is a high ratio of false detections. Nevertheless the global distribution of ship tracks shows a similar pattern to the ship emissions distribution.

  9. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  10. Estimating Monthly Rainfall from Geostationary Satellite Imagery Over Amazonia, Brazil.

    Science.gov (United States)

    Cutrim, Elen Maria Camara

    The infrared regression and the grid-history satellite rainfall estimating techniques were utilized to estimate monthly rainfall in Amazonia during one month of the rainy season (March, 1980) and one month of the dry season (September, 1980). The estimates were based on 3-hourly SMS-II infrared and visible images. Three sets of coefficients for the grid history method (Marajo, Arabian Sea, and GATE) were used to estimate rainfall. The estimated rain was compared with gauge measurements over the region. The infrared regression technique overestimated by a factor of 1.5. The Marajo coefficients yielded the best estimate, especially for eastern Amazonia. In the wet month Marajo coefficients overestimated rain by 10% and in the dry month by 70%. The Arabian Sea coefficients overestimated rain and the GATE coefficients slightly underestimated rain for Amazonia. Two maps of monthly rainfall over Amazonia were constructed for March and September, 1980, combining the ground station and satellite inferred rainfall of the grid history method using the Marajo coefficients. The satellite observations and ground data were mutually compatible and were contourable on these final, composite maps. Monthly rainfall was found to be much more inhomogeneous than previously reported. In March there was a belt of high precipitation trending southwest, with higher values and sharpest gradients in the coastal area. The upper Amazon was also an area of high precipitation, both north and south of the equator. In Roraima rainfall decreased drastically to the north. In September, the area of highest precipitation was the northwestern part of Amazonas State (northern hemisphere). Rainfall elsewhere was very localized and in northeastern Amazonia varied from 0 to 150 mm. Even though the grid history method presented better results for estimating rainfall over Amazonia, the IR model could be utilized more efficiently and economically on an operational basis if the calibration were properly made

  11. An ASIFT-Based Local Registration Method for Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiangjun Wang

    2015-05-01

    Full Text Available Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion. Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE and better distribution of feature points.

  12. Cloud detection method for Chinese moderate high resolution satellite imagery (Conference Presentation)

    Science.gov (United States)

    Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo

    2016-10-01

    Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.

  13. The development of a land use inventory for regional planning using satellite imagery

    Science.gov (United States)

    Hessling, A. H.; Mara, T. G.

    1975-01-01

    Water quality planning in Ohio, Kentucky, and Indiana is reviewed in terms of use of land use data and satellite imagery. A land use inventory applicable to water quality planning and developed through computer processing of LANDSAT-1 imagery is described.

  14. Landsat 7 ETM/1G satellite imagery - Hawaiian Islands cloud-free mosaics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cloud-free Landsat satellite imagery mosaics of the islands of the main 8 Hawaiian Islands (Hawaii, Maui, Kahoolawe, Lanai, Molokai, Oahu, Kauai and Niihau)....

  15. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  16. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  17. Nearshore Benthic Habitats of Timor-Leste Derived from WorldView-2 Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat classes were derived for nearshore waters around Timor-Leste from WorldView-2 satellite imagery. Habitat classes include different combinations of...

  18. Landsat 7 ETM/1G satellite imagery - Hawaiian Islands cloud-free mosaics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cloud-free Landsat satellite imagery mosaics of the islands of the main 8 Hawaiian Islands (Hawaii, Maui, Kahoolawe, Lanai, Molokai, Oahu, Kauai and Niihau). Landsat...

  19. Use of satellite imagery to map and monitor vegetation in New Zealand

    OpenAIRE

    Stephens, P. R.; Dymond, J. R.; Brown, L J

    1995-01-01

    研究概要:Land resource and environmental decision makers require quantitative information on the spatial distribution of vegetation types and their condition, and changes in these over time. Such vegetation mapping and monitoring is often required to be undertaken quickly. Remotely-sensed satellite imagery, in conjunction with other data sources, have been used to satisfy this need. This paper describes the uses of satellite imagery by reference to three regional mapping projects in New Zealand. ...

  20. Rice yield forecasting models using satellite imagery in Egypt

    Directory of Open Access Journals (Sweden)

    N.A. Noureldin

    2013-06-01

    Full Text Available Ability to make yield prediction before harvest using satellite remote sensing is important in many aspects of agricultural decision-making. In this study, canopy reflectance band and different band ratios in form of vegetation indices (VI with leaf area index (LAI were used to generate remotely sensed pre-harvest empirical rice yield prediction models. LAI measurements, spectral data derived from two SPOT data acquired on August 24, 2008 and August 23, 2009 and observed rice yield were used as main inputs for rice yield modeling. Each remotely sensed factor was used separately and in combination with LAI to generate the models. The results showed that green spectral band, middle infra-red spectral band and green vegetation index (GVI did not show sufficient capability as rice yield estimators while other inputs such as red spectral band, near infrared spectral band and vegetation indices that are algebraic ratios from these two spectral bands when used separately or in combined with leaf area index (LAI produced high accurate rice yield estimation models. The validation process was carried out using two statistical tests; standard error of estimate and the correlation coefficient between modeled and predicted yield. The validation results indicated that using normalized difference vegetation index (NDVI combined with leaf area index (LAI produced the model with highest accuracy and stability during the two rice seasons. The generated models are applicable 90 days after planting in any similar environmental conditions and agricultural practices.

  1. Calibration and Navigation of INSAT Infrared Imagery Using a Novel Cloud Clearing Approach

    Science.gov (United States)

    Datta, S.; Molnar, G. I.

    2002-05-01

    The Indian Ocean and surrounding landmasses are important regions of study for understanding the summer monsoon in Southeast Asia and monitoring clouds over the Tropics. For over two decades, the Indian National Satellite (INSAT) series is observing clouds in infrared (IR) and visible channels over that region from a geostationary orbit. Properly analyzed INSAT data could provide some very useful information over the Indian Ocean region. The raw images, received and archived at NASA are not properly navigated or calibrated. The current paper presents the effort to navigate and calibrate raw IR INSAT imagery. The navigation is performed using coastline-matching technique. The navigation software takes into account the tilted geometry of INSAT orbit and produces navigation for each 1024x1024 pixels. The accuracy of navigation at present is about +/-30 km. The rather large uncertainty is partly due to lack of information about the time of image and exact scanning strategy of the sensor. The IR calibration makes use of Sea Surface Temperature (SST) data that have been operationally retrieved using blended satellite and in situ observations by NOAA. We will show that this dedicated data series can be used effectively to calibrate IR window channel INSAT satellite radiances. This must be achieved through regression techniques, because not even the channel filter responses are published to allow for accurate modeling the satellite-observed radiances through high spectral resolution radiative transfer calculations. In order to lessen biases associated with cloud contamination, we make use of a novel, cloud contamination insensitive clear-sky brightness temperature (CBT) -retrieval approach. We intercompare our CBTs with the NOAA analyses on the NOAA SST retrieval grid scale thus assuring a large enough area to allow for clear pixels. On the other hand, to avoid the potential biases associated with SST diurnal cycle undersampling by the NOAA blended SST analyses, we also

  2. The use of color infrared imagery for the study of marsh buggy tracks

    Science.gov (United States)

    Whitehurst, C. A.; Doiron, L. N.

    1974-01-01

    Color infrared imagery is used to determine the location of buggy routes and to quantify the extent of tracks in a selected area where the marsh is seriously dissected. The imagery is used to show successive stages of destruction. It is recommended that alternate routes be identified in the operating area to eliminate continuous use of the same route and facilitate faster revegetation.

  3. Demonstrative potential of multitemporal satellite imagery in documenting urban dynamics: generalisation from the Bucharest city case

    Science.gov (United States)

    Aldea, Mihaela; Petrescu, Florian; Parlow, Eberhard; Iacoboaea, Cristina; Luca, Oana; Sercaianu, Mihai; Gaman, Florian

    2016-08-01

    The main objective of this paper is to demonstrate the potential of multitemporal satellite imagery to be processed and used in documenting urban changes that took place over time, with limited resources involved and taking advantage of the opportunity to be able to use the satellite imagery available as open data. The possibilities to analyse and compare the written literature regarding the chronological evolution of a city with the patterns of Land Use/Land Cover obtained from the processing of satellite remotely sensed images of the respective scenery were investigated based upon a case study of a selected city. The extent of the prospects of using remote sensing based methods and multitemporal satellite imagery is also expressed as a result of this investigation.

  4. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  5. A review of uses of satellite imagery in monitoring mangrove forests

    Science.gov (United States)

    Rhyma Purnamasayangsukasih, P.; Norizah, K.; Ismail, Adnan A. M.; Shamsudin, I.

    2016-06-01

    Satellite image could provide much information of earth surfaces in a large scale in a short time, thus saving time. With the evolution and development of sensors providing satellite image, resolution of object captured enhanced with advance image processing techniques. In forestry, satellite image has been widely used for resources management, planning, monitoring, predicting, etc. However, the uses of satellite image are reported to be moderate and sometimes poor for mangrove forests due to homogenous species existed in salty and inundation areas. Many researches had been carried out to improve the uses of satellite imagery of either optical or radar data for mangrove forests. This paper reviews the uses of satellite imagery data in mangrove with the main focus of the literature related to mangroves monitoring.

  6. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    Science.gov (United States)

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  7. High-Resolution Satellite Imagery Is an Important yet Underutilized Resource in Conservation Biology

    Science.gov (United States)

    Boyle, Sarah A.; Kennedy, Christina M.; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E.; de la Sancha, Noé U.

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making. PMID:24466287

  8. Roof heat loss detection using airborne thermal infrared imagery

    Science.gov (United States)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  9. Satellite Imagery Cadastral Features Extractions using Image Processing Algorithms: A Viable Option for Cadastral Science

    Directory of Open Access Journals (Sweden)

    Usman Babawuro

    2012-07-01

    Full Text Available Satellite images are used for feature extraction among other functions. They are used to extract linear features, like roads, etc. These linear features extractions are important operations in computer vision. Computer vision has varied applications in photogrammetric, hydrographic, cartographic and remote sensing tasks. The extraction of linear features or boundaries defining the extents of lands, land covers features are equally important in Cadastral Surveying. Cadastral Surveying is the cornerstone of any Cadastral System. A two dimensional cadastral plan is a model which represents both the cadastral and geometrical information of a two dimensional labeled Image. This paper aims at using and widening the concepts of high resolution Satellite imagery data for extracting representations of cadastral boundaries using image processing algorithms, hence minimizing the human interventions. The Satellite imagery is firstly rectified hence establishing the satellite imagery in the correct orientation and spatial location for further analysis. We, then employ the much available Satellite imagery to extract the relevant cadastral features using computer vision and image processing algorithms. We evaluate the potential of using high resolution Satellite imagery to achieve Cadastral goals of boundary detection and extraction of farmlands using image processing algorithms. This method proves effective as it minimizes the human demerits associated with the Cadastral surveying method, hence providing another perspective of achieving cadastral goals as emphasized by the UN cadastral vision. Finally, as Cadastral science continues to look to the future, this research aimed at the analysis and getting insights into the characteristics and potential role of computer vision algorithms using high resolution satellite imagery for better digital Cadastre that would provide improved socio economic development.

  10. APPLYING SATELLITE IMAGERY TO TRIAGE ASSESSMENT OF ECOSYSTEM HEALTH

    Science.gov (United States)

    Considerable evidence documents that certain changes in vegetation and soils result in irreversibly degraded rangeland ecosystems. We used Advanced Very High Resolution Radiometer (AVHRR)imagery to develop calibration patterns of change in the Normalized Difference Vegetation Ind...

  11. Current Usage and Future Prospects of Multispectral (RGB) Satellite Imagery in Support of NWS Forecast Offices and National Centers

    Science.gov (United States)

    Molthan, Andrew L.; Fuell, Kevin K.; Knaff, John; Lee, Thomas

    2012-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low-Earth orbits. The NASA Short-term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA s Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channel s available from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard METEOSAT-9. This broader suite includes products that discriminate between air mass types associated with synoptic-scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Similarly, researchers at NOAA/NESDIS and CIRA have developed air mass discrimination capabilities using channels available from the current GOES Sounders. Other applications of multispectral composites include combinations of high and low frequency, horizontal and vertically polarized passive microwave brightness temperatures to discriminate tropical cyclone structures and other synoptic-scale features. Many of these capabilities have been transitioned for evaluation and operational use at NWS Weather Forecast Offices and National Centers through collaborations with SPoRT and CIRA. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES-R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar-Orbiting Partnership (S-NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross

  12. A thermodynamic geography: night-time satellite imagery as a proxy measure of emergy.

    Science.gov (United States)

    Coscieme, Luca; Pulselli, Federico M; Bastianoni, Simone; Elvidge, Christopher D; Anderson, Sharolyn; Sutton, Paul C

    2014-11-01

    Night-time satellite imagery enables the measurement, visualization, and mapping of energy consumption in an area. In this paper, an index of the "sum of lights" as observed by night-time satellite imagery within national boundaries is compared with the emergy of the nations. Emergy is a measure of the solar energy equivalent used, directly or indirectly, to support the processes that characterize the economic activity in a country. Emergy has renewable and non-renewable components. Our results show that the non-renewable component of national emergy use is positively correlated with night-time satellite imagery. This relationship can be used to produce emergy density maps which enable the incorporation of spatially explicit representations of emergy in geographic information systems. The region of Abruzzo (Italy) is used to demonstrate this relationship as a spatially disaggregate case.

  13. Retrieval Using Texture Features in High Resolution Multi-spectral Satellite Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Newsam, S D; Kamath, C

    2004-01-22

    Texture features have long been used in remote sensing applications to represent and retrieve image regions similar to a query region. Various representations of texture have been proposed based on the Fourier power spectrum, spatial co-occurrence, wavelets, Gabor filters, etc. These representations vary in their computational complexity and their suitability for representing different region types. Much of the work done thus far has focused on panchromatic imagery at low to moderate spatial resolutions, such as images from Landsat 1-7 which have a resolution of 15-30 m/pixel, and from SPOT 1-5 which have a resolution of 2.5-20 m/pixel. However, it is not clear which texture representation works best for the new classes of high resolution panchromatic (60-100 cm/pixel) and multi-spectral (4 bands for red, green, blue, and near infra-red at 2.4-4 m/pixel) imagery. It is also not clear how the different spectral bands should be combined. In this paper, we investigate the retrieval performance of several different texture representations using multi-spectral satellite images from IKONOS. A query-by-example framework, along with a manually chosen ground truth dataset, allows different combinations of texture representations and spectral bands to be compared. We focus on the specific problem of retrieving inhabited regions from images of urban and rural scenes. Preliminary results show that (1) the use of all spectral bands improves the retrieval performance, and (2) co-occurrence, wavelet and Gabor texture features perform comparably.

  14. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  15. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.

    Science.gov (United States)

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-12-16

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  16. Global trends in lake surface temperatures observed using multi-sensor thermal infrared imagery

    Science.gov (United States)

    Schneider, Philipp; Hook, Simon J.; Radocinski, Robert G.; Corlett, Gary K.; Hulley, Glynn C.; Schladow, S. Geoffrey; Steissberg, Todd E.

    2010-05-01

    Recent research has shown that the temperature of lakes and other inland water bodies does not only act as a good indicator of climate variability but under certain conditions can even increase more rapidly than the regional air temperature. Further investigation of this phenomenon in particular and of the interaction between lake temperature and climate variability in general requires extensive observations of lake temperature on a global scale. Current in situ records are limited in their spatial and/or temporal coverage and are thus insufficient for this task. However, a nearly 30-year archive of satellite-derived thermal infrared imagery from multiple sensors is available at this point and can be used to fill this data gap. We describe research on utilizing the existing archive of spaceborne thermal infrared imagery to generate multi-decadal time series of lake surface temperature for 170 of the largest lakes worldwide. The data used for this purpose includes imagery from the Advanced Very High Resolution Radiometers (AVHRR), the series of (Advanced) Along-Track Scanning Radiometers ((A)ATSR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Used in combination, these data sets offer a gapless time series of daily to near-daily thermal infrared retrievals from 1981 through present. In this contribution we demonstrate using comprehensive in situ data at Lake Tahoe, California/Nevada, that lake water surface temperature can be estimated using these sensors with an accuracy of up to 0.2 K. We further show that accurate continuous time series of water surface temperature can be derived from the data and that these time series can be used to detect significant trends in the temporal thermal behavior of lakes and other inland water bodies worldwide. Complementing our recent case study for lakes in California and Nevada for which a rapid increase in mean nighttime summertime lake surface temperatures of 0.11 K per year on average was found, we present

  17. The Potential Uses of Commercial Satellite Imagery in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The value of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.

  18. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  19. Satellite Imagery Measures of the Astronomically Aligned Megaliths at Nabta Playa

    Science.gov (United States)

    Brophy, T. G.; Rosen, P. A.

    2003-12-01

    Astronomically aligned megalithic structures described in field reports (Wendorf, F. and Malville, J.M., The Megalith Alignments, pp.489-502 in Holocene Settlement of the Egyptian Sahara, Vol.I, 2001.) are identified in newly acquired georectified 60 cm panchromatic satellite imagery of Nabta Playa, southern Egypt. The satellite images allow refinement, often significant, of the reported locations of the megaliths. The report that the primary megalithic alignment was constructed to point to the bright star Sirius, circa 4,820 BC, is reconsidered in light of the satellite data, new field data, radiocarbon, lithostratigraphic and geochronologic data, and the playa sedimentation history. Other possible archaeoastronomical interpretations are considered for that alignment, including the three stars of Orion's Belt circa 6,270 BC that are also implicated in the small Nabta Playa `calendar circle'. Other new features apparent in the satellite imagery are also considered.

  20. Speckle filtering in satellite SAR change detection imagery

    NARCIS (Netherlands)

    Dekker, R.J.

    1998-01-01

    Repeat-pass Synthetic Aperture Radar (SAR) imagery is useful for change detection. A disadvantage of SAR is the system-inherent speckle noise. This can be reduced by filtering. Various filter types and methods are described in the literature, but not one fits the speckle noise in change detection

  1. Thermal study of the Missouri River in North Dakota using infrared imagery

    Science.gov (United States)

    Crosby, Orlo A.

    1971-01-01

    Studies of infrared imagery obtained from aircraft at 305- to 1,524- meter altitudes indicate the feasibility of monitoring thermal changes attributable to the operation of thermal-electric plants and storage reservoirs, as well as natural phenomena such as tributary inflow and ground-water seeps, in large rivers. No identifiable sources of ground-water inflow below t he surface of the river could be found in the imagery. The thermal patterns from the generating plants and the major tri butary inflow are readily apparent in imagery obtained from an altitude of 305 meters. Though the patterns are generally discernible in the imagery from 1,067-meter and 1,524-meter altitudes, there is not sufficient ground resolution to make any but the most general qualitative analyses. The quality of the imagery varied with land-water temperature relations as well as with instrument properties.

  2. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  3. The pan-sharpening of satellite and UAV imagery for agricultural applications

    Science.gov (United States)

    Jenerowicz, Agnieszka; Woroszkiewicz, Malgorzata

    2016-10-01

    Remote sensing techniques are widely used in many different areas of interest, i.e. urban studies, environmental studies, agriculture, etc., due to fact that they provide rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. Agricultural management is one of the most common application of remote sensing methods nowadays. Monitoring of agricultural sites and creating information regarding spatial distribution and characteristics of crops are important tasks to provide data for precision agriculture, crop management and registries of agricultural lands. For monitoring of cultivated areas many different types of remote sensing data can be used- most popular are multispectral satellites imagery. Such data allow for generating land use and land cover maps, based on various methods of image processing and remote sensing methods. This paper presents fusion of satellite and unnamed aerial vehicle (UAV) imagery for agricultural applications, especially for distinguishing crop types. Authors in their article presented chosen data fusion methods for satellite images and data obtained from low altitudes. Moreover the authors described pan- sharpening approaches and applied chosen pan- sharpening methods for multiresolution image fusion of satellite and UAV imagery. For such purpose, satellite images from Landsat- 8 OLI sensor and data collected within various UAV flights (with mounted RGB camera) were used. In this article, the authors not only had shown the potential of fusion of satellite and UAV images, but also presented the application of pan- sharpening in crop identification and management.

  4. Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event

    Science.gov (United States)

    Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan R.

    2014-01-01

    Hail scars are identifiable in MODIS satellite imagery based on NDVI change, which was dominantly negative. Hail damage spatially correlates with SPC hail reports and MESH. This study developed a proxy for quantifying crop loss at varying thresholds to address the gap between SPC damage estimates and insurance payouts.

  5. Estimation of Vegetation Aerodynamic Roughness of Natural Regions Using Frontal Area Density Determined from Satellite Imagery

    Science.gov (United States)

    Jasinski, Michael F.; Crago, Richard

    1994-01-01

    Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.

  6. Detection of ZY-3 Satellite Platform Jitter Using Multi-spectral Imagery

    Directory of Open Access Journals (Sweden)

    ZHU Ying

    2015-04-01

    Full Text Available Satellite platform jitter is one of the factors that affect the quality of high resolution imagery, which can cause image blur and internal distortion. Taking ZiYuan-3 (ZY-3 multi-spectral camera as a prototype, this paper proposes a satellite platform jitter detection method by utilizing multi-spectral imagery. First, imaging characteristics of multispectral camera and the main factors affecting band-to-band registration error are introduced. Then the regularity of registration error caused by platform jitter is analyzed by theoretical derivation and simulation. Meanwhile, the platform jitter detection method based on high accuracy dense points matching is presented. Finally, the experiments were conducted by using ZY-3 multi-spectral imagery captured in different time. The result indicates that ZY-3 has a periodic platform jitter about 0.6 Hz in the imaging period of test data, and the jitter amplitude across track is greater than that along track, which causes periodic band-to-band registration error with the same frequency. The result shows the possibility of the improvement in geometric processing accuracy for ZY-3 imagery products and provides an important reference for satellite platform jitter source analysis and satellite platform design optimization.

  7. Satellite Map of Port-au-Prince, Haiti-2010-Infrared

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  8. Fully automated procedure for ship detection using optical satellite imagery

    Science.gov (United States)

    Corbane, C.; Pecoul, E.; Demagistri, L.; Petit, M.

    2009-01-01

    Ship detection from remote sensing imagery is a crucial application for maritime security which includes among others traffic surveillance, protection against illegal fisheries, oil discharge control and sea pollution monitoring. In the framework of a European integrated project GMES-Security/LIMES, we developed an operational ship detection algorithm using high spatial resolution optical imagery to complement existing regulations, in particular the fishing control system. The automatic detection model is based on statistical methods, mathematical morphology and other signal processing techniques such as the wavelet analysis and Radon transform. This paper presents current progress made on the detection model and describes the prototype designed to classify small targets. The prototype was tested on panchromatic SPOT 5 imagery taking into account the environmental and fishing context in French Guiana. In terms of automatic detection of small ship targets, the proposed algorithm performs well. Its advantages are manifold: it is simple and robust, but most of all, it is efficient and fast, which is a crucial point in performance evaluation of advanced ship detection strategies.

  9. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  10. Remote Estimation of Greenland Ice Sheet Supraglacial River Discharge using GIS Modeling and WorldView-2 Satellite Imagery

    Science.gov (United States)

    Chu, V. W.; Smith, L. C.; Yang, K.; Gleason, C. J.; Rennermalm, A. K.; Pitcher, L. H.; Legleiter, C. J.; Forster, R. R.

    2014-12-01

    Increasing surface melting on the Greenland ice sheet and rising sea level have heightened the need for understanding the complex pathways transporting meltwater from the ice sheet surface to the ice edge and the ocean. Satellite images show supraglacial rivers abundantly covering the western ablation zone throughout the melt season, transporting large volumes of meltwater into moulins and to the ice edge, yet these rivers remain poorly studied. Here, a GIS modeling framework is developed to estimate supraglacial river discharge by spatially adapting Manning's equation for use with remotely sensed imagery and is applied to supraglacial rivers on the Greenland Ice Sheet. This framework incorporates high-resolution visible/near-infrared WorldView-2 (WV2) satellite imagery, the Greenland Ice Mapping Project (GIMP) DEM, and a field-calibrated WV2 river bathymetry retrieval algorithm and channel roughness parameter. Orthogonal cross-sections are simulated along river centerlines to extract cross-sectional discharge using Manning's equation for open channel flow. A total of 1,629,502 reach-averaged points were retrieved over 465 river networks of western Greenland in 2012, including attributes of width, depth, velocity, slope, wetted perimeter, hydraulic radius, and discharge. This work provides a method for producing spatially extensive, high-resolution estimates of supraglacial meltwater flux in river networks and into the ice sheet.

  11. Visualization and unsupervised classification of changes in multispectral satellite imagery

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg

    2006-01-01

    The statistical techniques of multivariate alteration detection, minimum/maximum autocorrelation factors transformation, expectation maximization and probabilistic label relaxation are combined in a unified scheme to visualize and to classify changes in multispectral satellite data. The methods...

  12. Unsupervised classification of changes in multispectral satellite imagery

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg

    2004-01-01

    The statistical techniques of multivariate alteration detection, maximum autocorrelation factor transformation, expectation maximization, fuzzy maximum likelihood estimation and probabilistic label relaxation are combined in a unified scheme to classify changes in multispectral satellite data...

  13. Visualization and unsupervised classification of changes in multispectral satellite imagery

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg

    2006-01-01

    The statistical techniques of multivariate alteration detection, minimum/maximum autocorrelation factors transformation, expectation maximization and probabilistic label relaxation are combined in a unified scheme to visualize and to classify changes in multispectral satellite data. The methods...

  14. Kernel sparse coding method for automatic target recognition in infrared imagery using covariance descriptor

    Science.gov (United States)

    Yang, Chunwei; Yao, Junping; Sun, Dawei; Wang, Shicheng; Liu, Huaping

    2016-05-01

    Automatic target recognition in infrared imagery is a challenging problem. In this paper, a kernel sparse coding method for infrared target recognition using covariance descriptor is proposed. First, covariance descriptor combining gray intensity and gradient information of the infrared target is extracted as a feature representation. Then, due to the reason that covariance descriptor lies in non-Euclidean manifold, kernel sparse coding theory is used to solve this problem. We verify the efficacy of the proposed algorithm in terms of the confusion matrices on the real images consisting of seven categories of infrared vehicle targets.

  15. Epipolar Resampling of Cross-Track Pushbroom Satellite Imagery Using the Rigorous Sensor Model.

    Science.gov (United States)

    Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi

    2017-01-11

    Epipolar resampling aims to eliminate the vertical parallax of stereo images. Due to the dynamic nature of the exterior orientation parameters of linear pushbroom satellite imagery and the complexity of reconstructing the epipolar geometry using rigorous sensor models, so far, no epipolar resampling approach has been proposed based on these models. In this paper for the first time it is shown that the orientation of the instantaneous baseline (IB) of conjugate image points (CIPs) in the linear pushbroom satellite imagery can be modeled with high precision in terms of the rows- and the columns-number of CIPs. Taking advantage of this feature, a novel approach is then presented for epipolar resampling of cross-track linear pushbroom satellite imagery. The proposed method is based on the rigorous sensor model. As the instantaneous position of sensors remains fixed, the digital elevation model of the area of interest is not required in the resampling process. Experimental results obtained from two pairs of SPOT and one pair of RapidEye stereo imagery with different terrain conditions shows that the proposed epipolar resampling approach benefits from a superior accuracy, as the remained vertical parallaxes of all CIPs in the normalized images are close to zero.

  16. Epipolar Resampling of Cross-Track Pushbroom Satellite Imagery Using the Rigorous Sensor Model

    Directory of Open Access Journals (Sweden)

    Mojtaba Jannati

    2017-01-01

    Full Text Available Epipolar resampling aims to eliminate the vertical parallax of stereo images. Due to the dynamic nature of the exterior orientation parameters of linear pushbroom satellite imagery and the complexity of reconstructing the epipolar geometry using rigorous sensor models, so far, no epipolar resampling approach has been proposed based on these models. In this paper for the first time it is shown that the orientation of the instantaneous baseline (IB of conjugate image points (CIPs in the linear pushbroom satellite imagery can be modeled with high precision in terms of the rows- and the columns-number of CIPs. Taking advantage of this feature, a novel approach is then presented for epipolar resampling of cross-track linear pushbroom satellite imagery. The proposed method is based on the rigorous sensor model. As the instantaneous position of sensors remains fixed, the digital elevation model of the area of interest is not required in the resampling process. Experimental results obtained from two pairs of SPOT and one pair of RapidEye stereo imagery with different terrain conditions shows that the proposed epipolar resampling approach benefits from a superior accuracy, as the remained vertical parallaxes of all CIPs in the normalized images are close to zero.

  17. Multipath sparse coding for scene classification in very high resolution satellite imagery

    Science.gov (United States)

    Fan, Jiayuan; Tan, Hui Li; Lu, Shijian

    2015-10-01

    With the rapid development of various satellite sensors, automatic and advanced scene classification technique is urgently needed to process a huge amount of satellite image data. Recently, a few of research works start to implant the sparse coding for feature learning in aerial scene classification. However, these previous research works use the single-layer sparse coding in their system and their performances are highly related with multiple low-level features, such as scale-invariant feature transform (SIFT) and saliency. Motivated by the importance of feature learning through multiple layers, we propose a new unsupervised feature learning approach for scene classification on very high resolution satellite imagery. The proposed unsupervised feature learning utilizes multipath sparse coding architecture in order to capture multiple aspects of discriminative structures within complex satellite scene images. In addition, the dense low-level features are extracted from the raw satellite data by using different image patches with varying size at different layers, and this approach is not limited to a particularly designed feature descriptors compared with the other related works. The proposed technique has been evaluated on two challenging high-resolution datasets, including the UC Merced dataset containing 21 different aerial scene categories with a 1 foot resolution and the Singapore dataset containing 5 land-use categories with a 0.5m spatial resolution. Experimental results show that it outperforms the state-of-the-art that uses the single-layer sparse coding. The major contributions of this proposed technique include (1) a new unsupervised feature learning approach to generate feature representation for very high-resolution satellite imagery, (2) the first multipath sparse coding that is used for scene classification in very high-resolution satellite imagery, (3) a simple low-level feature descriptor instead of many particularly designed low-level descriptor

  18. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    Science.gov (United States)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  19. Study of the Nevada Test Site using Landsat satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, P.D. [Georgetown Univ., Washington, DC (United States). Center for Strategic and International Studies

    1993-07-01

    In the period covered by the purchase order CSIS has obtained one Landsat image and determined that two images previously supplied to the principal investigator under a subcontract with George Washington University were inherently defective. We have negotiated with EOSAT over the reprocessing of those scenes and anticipate final delivery within the next few weeks. A critical early purchase during the subcontract period was of an EXABYTE tape drive, Adaptec SCSI interface, and the appropriate software with which to read Landsat images at CSIS. This gives us the capability of reading and manipulating imagery in house without reliance on outside services which have not proven satisfactory. In addition to obtaining imagery for the study, we have also performed considerable analytic work on the newly and previously purchased images. A technique developed under an earlier subcontract for identifying underground nuclear tests at Pahute Mesa has been significantly refined, and similar techniques were applied to the summit of Rainier Mesa and to the Yucca Flats area. An entirely new technique for enhancing the spectral signatures of different regions of NTS was recently developed, and appears to have great promise of success.

  20. Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery

    Science.gov (United States)

    Kit, Oleksandr; Lüdeke, Matthias

    2013-09-01

    This paper presents an approach to automated identification of slum area change patterns in Hyderabad, India, using multi-year and multi-sensor very high resolution satellite imagery. It relies upon a lacunarity-based slum detection algorithm, combined with Canny- and LSD-based imagery pre-processing routines. This method outputs plausible and spatially explicit slum locations for the whole urban agglomeration of Hyderabad in years 2003 and 2010. The results indicate a considerable growth of area occupied by slums between these years and allow identification of trends in slum development in this urban agglomeration.

  1. Satellite orientation and position for geometric correction of scanner imagery.

    Science.gov (United States)

    Salamonowicz, P.H.

    1986-01-01

    The USGS Mini Image Processing System currently relies on a polynomial method for geometric correction of Landsat multispectral scanner (MSS) data. A large number of ground control points are required because polynomials do not model the sources of error. In order to reduce the number of necessary points, a set of mathematical equations modeling the Landsat satellite motions and MSS scanner has been derived and programmed. A best fit to the equations is obtained by using a least-squares technique that permits computation of the satellite orientation and position parameters based on only a few control points.-from Author

  2. a Detailed Study about Digital Surface Model Generation Using High Resolution Satellite Stereo Imagery

    Science.gov (United States)

    Gong, K.; Fritsch, D.

    2016-06-01

    Photogrammetry is currently in a process of renaissance, caused by the development of dense stereo matching algorithms to provide very dense Digital Surface Models (DSMs). Moreover, satellite sensors have improved to provide sub-meter or even better Ground Sampling Distances (GSD) in recent years. Therefore, the generation of DSM from spaceborne stereo imagery becomes a vivid research area. This paper presents a comprehensive study about the DSM generation of high resolution satellite data and proposes several methods to implement the approach. The bias-compensated Rational Polynomial Coefficients (RPCs) Bundle Block Adjustment is applied to image orientation and the rectification of stereo scenes is realized based on the Project-Trajectory-Based Epipolarity (PTE) Model. Very dense DSMs are generated from WorldView-2 satellite stereo imagery using the dense image matching module of the C/C++ library LibTsgm. We carry out various tests to evaluate the quality of generated DSMs regarding robustness and precision. The results have verified that the presented pipeline of DSM generation from high resolution satellite imagery is applicable, reliable and very promising.

  3. A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery

    Directory of Open Access Journals (Sweden)

    Kaveh Shahi

    2015-06-01

    Full Text Available This research develops a spectral index to automatically extract asphalt road networks named road extraction index (REI. This index uses WorldView-2 (WV-2 imagery, which has high spatial resolution and is multispectral. To determine the best bands for WV-2, field spectral data using a field spectroradiometer were collected. These data were then analyzed statistically. The bands were selected through the methodology of stepwise discriminant analysis. The appropriate WV-2 bands were distinguished from one another as per significant wavelengths. The proposed index is based on this classification. By applying REI to WV-2 imagery, we can extract asphalt roads accurately. Results demonstrate that REI is automated, transferable, and efficient in asphalt road extraction from high-resolution satellite imagery.

  4. Improved Wetland Classification Using Eight-Band High Resolution Satellite Imagery and a Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Charles R. Lane

    2014-12-01

    Full Text Available Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of wetland maps derived with moderate resolution imagery and traditional techniques have been limited and often unsatisfactory. We explored and evaluated the utility of a newly launched high-resolution, eight-band satellite system (Worldview-2; WV2 for identifying and classifying freshwater deltaic wetland vegetation and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using a hybrid approach and a novel application of Indicator Species Analysis (ISA. We achieved an overall classification accuracy of 86.5% (Kappa coefficient: 0.85 for 22 classes of aquatic and wetland habitats and found that additional metrics, such as the Normalized Difference Vegetation Index and image texture, were valuable for improving the overall classification accuracy and particularly for discriminating among certain habitat classes. Our analysis demonstrated that including WV2’s four spectral bands from parts of the spectrum less commonly used in remote sensing analyses, along with the more traditional bandwidths, contributed to the increase in the overall classification accuracy by ~4% overall, but with considerable increases in our ability to discriminate certain communities. The coastal band improved differentiating open water and aquatic (i.e., vegetated habitats, and the yellow, red-edge, and near-infrared 2 bands improved discrimination among different vegetated aquatic and terrestrial habitats. The use of ISA provided statistical rigor in developing associations between spectral classes and field-based data. Our analyses demonstrated the utility of a hybrid approach and the benefit of additional bands and metrics in providing the first spatially explicit mapping of a large and heterogeneous wetland system.

  5. The Application Achievements And Perspective Of CBERS Series Satellite Imagery

    Institute of Scientific and Technical Information of China (English)

    Li Xingchao; Qi Xueyong; Lu Yilin

    2009-01-01

    @@ Since the first China-Brazil Earth Resources Satellite (CBERS-1),launched in 1999,the CBERS data has been applied in many fields extensively.Remarkable social and economic benefits have been achieved.This article presents the application achievements during the past nine years,and gives a perspective for the future.All these applications demonstrate that the CBERS data has been an important data source for resources investigation and monitoring.

  6. Image Dodging Algorithm for GF-1 Satellite WFV Imagery

    Directory of Open Access Journals (Sweden)

    HAN Jie

    2016-12-01

    Full Text Available Image dodging method is one of the important processes that determines whether the mosaicking image can be used for remote sensing quantitative application. GF-1 satellite is the first satellite in CHEOS (Chinese high-resolution earth observation system. WFV multispectral sensor is one of the instruments onboard GF-1 satellite which consist of four cameras to mosaic imaging. According to the characteristics of WFV sensor, this paper proposes an image dodging algorithm based on cross/inter-radiometric calibration method. First, the traditional cross calibration method is applied to obtain the calibration coefficients of one WFV camera. Then statistical analysis and simulation methods are adopted to build the correlation models of DN and TOA (top of atmosphere radiances between adjacent cameras. The proposed method can not only accomplish the radiation performance transfer, but also can fulfill the image dodging. The experimental results show the cross/inter-radiometric calibration coefficients in this paper can effectively eliminate the radiation inconsistency problem of the adjacent camera image which realizes the image dodging. So our proposed dodging method can provide an important reference for other similar sensor in future.

  7. Detecting inter-annual variability in the phenological characteristics of southern Africa’s vegetation using satellite imagery

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-01-01

    Full Text Available Vegetation phenology refers to the timing of seasonal biological events (for example, bud burst, leaf unfolding, vegetation growth and leaf senescence) and biotic and abiotic forces that control these. Daily, coarse-resolution satellite imagery...

  8. A geographic investigation of hazards, disasters and recovery using satellite imagery

    Science.gov (United States)

    Keys-Mathews, Lisa D.

    Disaster recovery is depicted on the landscape by change through time. Given the classic uses of remote sensing for detecting change, this dissertation assessed the applicability of remote sensing image analysis to the study of long-term recovery from disasters. Because recovery is complex and dynamic a framework was that established that divided the recovery landscape into three components: the built, relief, and natural environments. Four study sites were selected for this research representing three types of hazard events (earthquakes, tsunami and hurricane), three climatic environments (tropical, dry and humid subtropical), and four cultures (Iran, Indonesia, Peru and the United States). The four disasters occurred between 2001 and 2005 with each a catastrophic event. To begin the research, a list of diagnostic features of recovery was created through field observations, reconnaissance reports, descriptions of disaster recovery case studies, and current literature. These features were then documented in the satellite imagery as examples of their portrayal on the landscape. Second, elements of each environment (built, relief, and natural) were explored through application of digital image processing techniques including: principal components analysis, texture analysis, normalized differenced vegetation index, and digital image classification. Each of these techniques was applied to the imagery with the final results being a digital analysis through time. Finally, the analysis was integrated to determine if differential recovery was visible through the analysis of satellite imagery. This neighborhood scale investigation compared satellite imagery findings to a rapid visual assessment in Gulfport and synthesized the findings toward an understanding of differential recovery. This dissertation determined that satellite imagery and remote sensing techniques supported by fieldwork are appropriate and valuable tools in the study of disaster recovery. Features and

  9. Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event

    Science.gov (United States)

    Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan

    2014-01-01

    Severe thunderstorms can produce large hail that causes property damage, livestock fatalities, and crop failure. However, detailed storm surveys of hail damage conducted by the National Weather Service (NWS) are not required. Current gaps also exist between Storm Prediction Center (SPC) hail damage estimates and crop-insurance payouts. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites can be used to support NWS damage assessments, particularly to crops during the growing season. The two-day severe weather event across western Nebraska and central Kansas during 9-10 August 2011 offers a case study for investigating hail damage signatures by examining changes in Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery. By analyzing hail damage swaths in satellite imagery, potential economic losses due to crop damage can be quantified and further improve the estimation of weather impacts on agriculture without significantly increasing manpower requirements.

  10. Progress of research to identify rotating thunderstorms using satellite imagery

    Science.gov (United States)

    Anderson, Charles E.

    1988-01-01

    The possibility of detecting potentially tornadic thunderstorm cells from geosynchronous satelite imagery is determined. During the life of the contract, we examined eight tornado outbreak cases which had a total of 124 individual thunderstorm cells, 37 of which were tornadic.These 37 cells produced a total of 119 tornadoes. The outflow characteristics of all the cells were measured. Through the use of a 2-D flow field model, we were able to simulate the downstream developmemt of an anvil cloud plume which was emitted by the storm updraft at or near the tropopause. We used two parameters to characterize the anvil plume behavior: its speed of downstream propagation (U max) and the clockwise deviation of the centerline of the anvil plume from the storm relative ambient wind at the anvil plume outflow level (MDA). U max was the maximum U-component of the anvil wind parameter required to successfully maintain an envelope of translating particles at the tip of the expanding anvil cloud. MDA was the measured deviation angle acquired from McIDAS, between the storm relative ambient wind direction and the storm relative anvil plume outflow direction; tha latter being manipulated by controlling a tangential wind component to force the envelope of particles to maintain their position of surrounding the expanding outflow cloud.

  11. Needs for registration and rectification of satellite imagery for land use and land cover and hydrologic applications

    Science.gov (United States)

    Gaydos, L.

    1982-01-01

    The use of satellite imagery and data for registration of land use, land cover and hydrology was discussed. Maps and aggregations are made from existing the data in concert with other data in a geographic information system. Basic needs for registration and rectification of satellite imagery related to specifying, reformatting, and overlaying the data are noted. It is found that the data are sufficient for users who must expand much effort in registering data.

  12. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  13. Commercial Imagery Satellite Threat: How Can U.S. Forces Protect Themselves?

    Science.gov (United States)

    2006-05-31

    10 Joint Chiefs of Staff, Joint Warfare of the Armed Forces of the United States, Appendix B. 11 Laurence Nardon, "The Dilemma of...January 2004]. Nardon, Laurence . "The Dilemma of Satellite Imagery Control." Military Technology, July 2002, 37-46. National Defense Panel...34 Fact Sheet. Washington DC: White House, 13 May 2003. <http://www.au.af.mil/au/awc/awcgate/space/ 2003remotesensing.htm> [3 December 2003]. Rees

  14. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  15. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  16. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  17. Forests through the Eye of a Satellite: Understanding regional forest-cover dynamics using Landsat Imagery

    Science.gov (United States)

    Baumann, Matthias

    Forests are changing at an alarming pace worldwide. Forests are an important provider of ecosystem services that contribute to human wellbeing, including the provision of timber and non-timber products, habitat for biodiversity, recreation amenities. Most prominently, forests serve as a sink for atmospheric carbon dioxide that ultimately helps to mitigate changes in the global climate. It is thus important to understand where, how and why forests change worldwide. My dissertation provides answers to these questions. The overarching goal of my dissertation is to improve our understanding of regional forest-cover dynamics by analyzing Landsat satellite imagery. I answer where forests change following drastic socio-economic shocks by using the breakdown of the Soviet Union as a natural experiment. My dissertation provides innovative algorithms to answer why forests change---because of human activities or because of natural events such as storms. Finally, I will show how dynamic forests are within one year by providing ways to characterize green-leaf phenology from satellite imagery. With my findings I directly contribute to a better understanding of the processes on the Earth's surface and I highlight the importance of satellite imagery to learn about regional and local forest-cover dynamics.

  18. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Directory of Open Access Journals (Sweden)

    Seth Stapleton

    Full Text Available Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105 was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152. Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  19. Plastic and Glass Greenhouses Detection and Delineation from WORLDVIEW-2 Satellite Imagery

    Science.gov (United States)

    Koc-San, D.; Sonmez, N. K.

    2016-06-01

    Greenhouse detection using remote sensing technologies is an important research area for yield estimation, sustainable development, urban and rural planning and management. An approach was developed in this study for the detection and delineation of greenhouse areas from high resolution satellite imagery. Initially, the candidate greenhouse patches were detected using supervised classification techniques. For this purpose, Maximum Likelihood (ML), Random Forest (RF), and Support Vector Machines (SVM) classification techniques were applied and compared. Then, sieve filter and morphological operations were performed for improving the classification results. Finally, the obtained candidate plastic and glass greenhouse areas were delineated using boundary tracing and Douglas Peucker line simplification algorithms. The proposed approach was implemented in the Kumluca district of Antalya, Turkey utilizing pan-sharpened WorldView-2 satellite imageries. Kumluca is the prominent district of Antalya with greenhouse cultivation and includes both plastic and glass greenhouses intensively. When the greenhouse classification results were analysed, it can be stated that the SVM classification provides most accurate results and RF classification follows this. The SVM classification overall accuracy was obtained as 90.28%. When the greenhouse boundary delineation results were considered, the plastic greenhouses were delineated with 92.11% accuracy, while glass greenhouses were delineated with 80.67% accuracy. The obtained results indicate that, generally plastic and glass greenhouses can be detected and delineated successfully from WorldView-2 satellite imagery.

  20. Development of the first infrared satellite observatory

    Science.gov (United States)

    Smith, G. M.; Squibb, G. F.

    1984-01-01

    A development history is given for the Infrared Astronomical Satelite (IRAS), whose primary mission objective is an unbiased, all-sky survey in the 8-120 micron wavelength range. A point source catalog of more than 200,000 IR sources, to be published later this year, represents the accomplishment of this objective. IRAS has also conducted 10,000 pointed observations of specific objects. Attention is given to the cost increases and schedule slips which resulted from the substantial technical challenges of IRAS hardware and software development, and to the management techniques which had to be employed in this major international project.

  1. Satellite geological and geophysical remote sensing of Iceland: Preliminary results from analysis of MSS imagery

    Science.gov (United States)

    Williams, R. S., Jr.; Boedvarsson, A.; Fridriksson, S.; Palmason, G.; Rist, S.; Sigtryggsson, H.; Thorarinsson, S.; Thorsteinsson, I.

    1973-01-01

    A binational, multidisciplinary research effort in Iceland is directed at an analysis of MSS imagery from ERTS-1 to study a variety of geologic, hydrologic, oceanographic, and agricultural phenomena. A preliminary evaluation of available MSS imagery of Iceland has yielded several significant results - some of which may have direct importance to the Icelandic economy. Initial findings can be summarized as follows: (1) recent lava flows can be delineated from older flows at Askja and Hekla; (2) MSS imagery from ERTS-1 and VHRR visible and infrared imagery from NOAA-2 recorded the vocanic eruption on Heimaey, Vestmann Islands; (3) coastline changes, particularly changes in the position of bars and beaches along the south coast are mappable; and (4) areas covered with new and residual snow can be mapped, and the appearance of newly fallen snow on ERTS-1, MSS band 7 appears dark where it is melting. ERTS-1 imagery provides a means of updating various types of maps of Iceland and will permit the compilation of special maps specifically aimed at those dynamic environmental phenomena which impact on the Icelandic economy.

  2. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  3. Target tracking in infrared imagery using a novel particle filter

    Institute of Scientific and Technical Information of China (English)

    Fanglin Wang; Erqi Liu; Jie Yang; Shengyang Yu; Yue Zhou

    2009-01-01

    To address two challenging problems in infrared target tracking, target appearance changes and unpre-dictable abrupt motions, a novel particle filtering based tracking algorithm is introduced. In this method, a novel saliency model is proposed to distinguish the salient target from background, and the eigenspace model is invoked to adapt target appearance changes. To account for the abrupt motions efficiently, a two-step sampling method is proposed to combine the two observation models. The proposed tracking method is demonstrated through two real infrared image sequences, which include the changes of luminance and size, and the drastic abrupt motions of the target.

  4. Performance Evaluation of Data Compression Systems Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Lilian N. Faria

    2012-01-01

    Full Text Available Onboard image compression systems reduce the data storage and downlink bandwidth requirements in space missions. This paper presents an overview and evaluation of some compression algorithms suitable for remote sensing applications. Prediction-based compression systems, such as DPCM and JPEG-LS, and transform-based compression systems, such as CCSDS-IDC and JPEG-XR, were tested over twenty multispectral (5-band images from CCD optical sensor of the CBERS-2B satellite. Performance evaluation of these algorithms was conducted using both quantitative rate-distortion measurements and subjective image quality analysis. The PSNR, MSSIM, and compression ratio results plotted in charts and the SSIM maps are used for comparison of quantitative performance. Broadly speaking, the lossless JPEG-LS outperforms other lossless compression schemes, and, for lossy compression, JPEG-XR can provide lower bit rate and better tradeoff between compression ratio and image quality.

  5. Physical effect of cloud seeding revealed by NOAA satellite imagery

    Institute of Scientific and Technical Information of China (English)

    YU Xing; DAI Jin; LEI Hengchi; XU Xiaohong; FAN Peng; CHEN Zhengqi; DUAN Changhui; WANG Yong

    2005-01-01

    From 0615 to 0749 UTC, 14 March 2000, a precipitation enhancement operation with AgI using an aircraft was conducted at the middle part of Shaanxi Province, China. 80 min after cloud seeding (0735 UTC), NOAA-14 satellite data showed a vivid zigzag cloud track on the satellite image. Its length is 301 km, and its average and maximum width are 8.3 and 11 km. The cloud track is very similar in shape with, but different in position and width from that of cloud seeding line. In order to determine that the cloud track is indeed caused by cloud seeding, a three-dimensional numerical model of transport and diffusion of seeding material is used to simulate the shape of seeding material concentration distribution, the turning points, width and length of seeding line. The simulated results are compared with the features of cloud track at 0735 UTC. Every segment of the cloud track is consistent with the transport and diffusion of every segment of seeding line. The transport position, length, width and the variation trend of seeding line agree with those of cloud track. All suggest that the cloud track is the direct physical reflection of cloud seeding effect on the cloud top, which can respond to the transport and diffusion of seeding material. For this study case, the main effecting duration for every segment of seeding line is from 20 to 80 min, the time for each segment of seeding line diffusing to the maximum width is from about 50 to 70 min. This time is obtained from the appearing and disappearing time, width variation of the cloud track segments and simulated results. Also, the comparisons demonstrate that the numerical model of transport and diffusion can simulate the main characteristics of transport and diffusion of seeding material, and the simulating results are sound and trustworthy.

  6. Using high-resolution satellite imagery to assess populations of animals in the Antarctic

    Science.gov (United States)

    LaRue, Michelle Ann

    The Southern Ocean is one of the most rapidly-changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically-important krill and fish. It is imperative that populations of indicator species, such as penguins and seals, be monitored at regional- to global scales to decouple the effects of climate and anthropogenic changes for appropriate ecosystem-based management of the Southern Ocean. Remotely monitoring populations through high-resolution satellite imagery is currently the only feasible way to gain information about population trends of penguins and seals in Antarctica. In my first chapter, I review the literature where high-resolution satellite imagery has been used to assess populations of animals in polar regions. Building on this literature, my second chapter focuses on estimating changes in abundance in the Weddell seal population in Erebus Bay. I found a strong correlation between ground and satellite counts, and this finding provides an alternate method for assessing populations of Weddell seals in areas where less is known about population status. My third chapter explores how size of the guano stain of Adelie penguins can be used to predict population size. Using high-resolution imagery and ground counts, I built a model to estimate the breeding population of Adelie penguins using a supervised classification to estimate guano size. These results suggest that the size of guano stain is an accurate predictor of population size, and can be applied to estimate remote Adelie penguin colonies. In my fourth chapter, I use air photos, satellite imagery, climate and mark-resight data to determine that climate change has positively impacted the population of Adelie penguins at Beaufort Island through a habitat release that ultimately affected the dynamics within the southern Ross Sea metapopulation. Finally, for my fifth chapter I combined the literature with observations from aerial surveys and satellite imagery to

  7. Airborne target tracking algorithm against oppressive decoys in infrared imagery

    Science.gov (United States)

    Sun, Xiechang; Zhang, Tianxu

    2009-10-01

    This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.

  8. River-ice and sea-ice velocity fields from near-simultaneous satellite imagery

    Science.gov (United States)

    Kaeaeb, A.; Leprince, S.; Prowse, T. D.; Beltaos, S.; Lamare, M.; Abrams, M.

    2013-12-01

    Satellite stereo and satellites that follow each other on similar orbits within short time periods produce near-simultaneous space imagery, a kind of data that is little exploited. In this study, we track river-ice and sea-ice motion over time periods of tens of seconds to several minutes, which is the typical time lag between the two or more images of such near-simultaneous acquisition constellations. Using this novel approach, we measure and visualize for the first time the almost complete two-dimensional minute-scale velocity fields over several thousand square-kilometers of sea ice cover or over up to several hundred kilometers long river reaches. We present the types of near-simultaneous imagery and constellations suitable for the measurements and discuss application examples, using a range of high and medium resolution imagery such as from ASTER, ALOS PRISM, Ikonos, WorldView-2, Landsat and EO-1. The river ice velocities obtained provide new insights into ice dynamics, river flow and river morphology, in particular during ice breakup. River-ice breakup and the associated downstream transport of ice debris is often the most important hydrological event of the year, producing flood levels that commonly exceed those for the open-water period and dramatic consequences for river infrastructure and ecology. We also estimate river discharge from ice/water surface velocities using near-simultaneous satellite imagery. Our results for sea ice complement velocity fields typically obtained over time-scales of days and can thus contribute to better understanding of a number of processes involved in sea ice drift, such as wind impact, tidal currents and interaction of ice floes with each other and with obstacles.

  9. Man-made objects cuing in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2009-01-01

    We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka's Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.

  10. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    Science.gov (United States)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  11. Satellite Imagery Measures of the Astronomically Aligned Megalithis at Nabta Playa.

    Science.gov (United States)

    Brophy, T.; Rosen, P.

    The Nabta Playa megalithic complex consists of two types of features: first are the large stones, many of them shaped, placed on or in the sediments of an ancient seasonal lake bed that is now hyper-ariad, second are large sculpted bedrocks features underneath the sediments and associated with the surface megaliths (Wendorf et al. 1992). The astronomically aligned surface megalithic structures described in field reports (Wendorf and Malville, 2001) are identified in recent georectified 60cm panchromatic satellite imagery of Nabta Playa, Southern Egypt. The satellite images allow refinement, often significant of the reported locations of the megaliths (Malville et al 1998, and Wendorf and Malville 2001). The report that a primary megalithic alignment was constructed to point to the bright star Sirius, circa 4820BC, is reconsidered in light of the satellite data, new field, data, radiocarbon, lithostratigraphic and geochronological data, and the playa sedimentation history. Other possible archaeoastronomical interpretations are considered for that alignment, including the three star asterism (of Alnitak, Alniham and Mintaka) circa 6270BC that is also implicated in the small Nebta Playa "calendar circle". Signatures of other possible features apparent in the satellite imagery and a recent field study are also considered. Only a small number of the subsurface bedrock sculptures have been excavated. We recommend the use of ground penetrating imaging methods to illuminate the known but not yet excavated subsurface features. The problem of determining the astronomical intent of the builders of the megalithic structures is approached by considering the complex of features as a whole.

  12. Omnispectravision Optimizes True Color Display Of Infrared Imagery

    Science.gov (United States)

    Pollock, D. H.; Stapleton, J. J.

    1981-07-01

    Omnispectravision is a real time electro-optic system that mimics and expands the ability of humans to receive radiant energy at multiple invisible wavelengths and convert it into visual stimuli thru the effect of display energy upon the photosensitive recePtors. A novel trichroic silicon mirror generates a composite plus two samples of three discrete infrared colors across a single InSb/PV detector array. The prototype digital scan con-verter with a recursive filter synchronously samples the multiplexed in-line detectors and transversal filters transform the λ3 > λ2 > λl infrared signals dispersed along the TV scan lines into -R-G-B (minus red, green, blue respectively).

  13. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  14. Graph clustering for weapon discharge event detection and tracking in infrared imagery using deep features

    Science.gov (United States)

    Bhattacharjee, Sreyasee Das; Talukder, Ashit

    2017-05-01

    This paper addresses the problem of detecting and tracking weapon discharge event in an Infrared Imagery collection. While most of the prior work in related domains exploits the vast amount of complementary in- formation available from both visible-band (EO) and Infrared (IR) image (or video sequences), we handle the problem of recognizing human pose and activity detection exclusively in thermal (IR) images or videos. The task is primarily two-fold: 1) locating the individual in the scene from IR imagery, and 2) identifying the correct pose of the human individual (i.e. presence or absence of weapon discharge activity or intent). An efficient graph-based shortlisting strategy for identifying candidate regions of interest in the IR image utilizes both image saliency and mutual similarities from the initial list of the top scored proposals of a given query frame, which ensures an improved performance for both detection and recognition simultaneously and reduced false alarms. The proposed search strategy offers an efficient feature extraction scheme that can capture the maximum amount of object structural information by defining a region- based deep shape descriptor representing each object of interest present in the scene. Therefore, our solution is capable of handling the fundamental incompleteness of the IR imageries for which the conventional deep features optimized on the natural color images in Imagenet are not quite suitable. Our preliminary experiments on the OSU weapon dataset demonstrates significant success in automated recognition of weapon discharge events from IR imagery.

  15. Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis

    Science.gov (United States)

    Alexakis, Dimitrios; Agapiou, Athos; Hadjimitsis, Diofantos; Retalis, Adrianos

    2012-06-01

    The aim of this study is to improve classification results of multispectral satellite imagery for supporting flood risk assessment analysis in a catchment area in Cyprus. For this purpose, precipitation and ground spectroradiometric data have been collected and analyzed with innovative statistical analysis methods. Samples of regolith and construction material were in situ collected and examined in the spectroscopy laboratory for their spectral response under consecutive different conditions of humidity. Moreover, reflectance values were extracted from the same targets using Landsat TM/ETM+ images, for drought and humid time periods, using archived meteorological data. The comparison of the results showed that spectral responses for all the specimens were less correlated in cases of substantial humidity, both in laboratory and satellite images. These results were validated with the application of different classification algorithms (ISODATA, maximum likelihood, object based, maximum entropy) to satellite images acquired during time period when precipitation phenomena had been recorded.

  16. Analysis on the Utility of Satellite Imagery for Detection of Agricultural Facility

    Science.gov (United States)

    Kang, J.-M.; Baek, S.-H.; Jung, K.-Y.

    2012-07-01

    Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more effective

  17. Swords into Ploughshares: Archaeological Applications of CORONA Satellite Imagery in the Near East

    Directory of Open Access Journals (Sweden)

    Jesse Casana

    2012-09-01

    Full Text Available Since their declassification in 1995, CORONA satellite images collected by the United States military from 1960-1972 have proved to be an invaluable resource in the archaeology of the Near East. Because CORONA images pre-date the widespread construction of reservoirs, urban expansion, and agricultural intensification the region has undergone in recent decades, these high-resolution, stereo images preserve a picture of archaeological sites and landscapes that have often been destroyed or obscured by modern development. Despite its widely recognised value, the application of CORONA imagery in archaeological research has remained limited to a small group of specialists, largely because of the challenges involved in correcting spatial distortions produced by the satellites' unusual panoramic cameras. This article presents results of an effort to develop new methods of efficiently orthorectifying CORONA imagery and to use these methods to produce geographically corrected images across the Near East, now freely available through an online database. Following an overview of our methods, we present examples of how recent development has affected the archaeological record, new discoveries that analysis of our CORONA imagery database has already made possible, and emerging applications of CORONA including stereo analysis and DEM extraction.

  18. Surface flow structure of the Gulf Stream from composite imagery and satellite-tracked drifters

    Directory of Open Access Journals (Sweden)

    C. P. Mullen

    1994-01-01

    Full Text Available A unique set of coutemporaneous satellite-tracked drifters and five-day composite Advanced Very High Resolution Radionmeter (AVHRR satellite imagery of the North Atlantic has been analyzed to examine the surface flow structure of the Gulf Stream. The study region was divided into two sections, greater than 37° N and less than 37° N, in order to answer the question of geographic variability. Fractal and spectral analyses methods were applied to the data. Fractal analysis of the Lagrangian trajectories showed a fractal dimension of 1.21 + 0.02 with a scaling range of 83 - 343 km. The fractal dimension of the temperature fronts of the composite imagery is similar for the two regions with D = 1.11 + 0.01 over a scaling range of 4 - 44 km. Spectral analysis also reports a fairly consistent value for the spectral slope and its scaling range. Therefore, we conclude there is no geographic variability in the data set. A suitable scaling range for this contemporaneous data set is 80 - 200 km which is consistent with the expected physical conditions in the region. Finally, we address the idea of using five-day composite imagery to infer the surface flow of the Gulf Stream. Close analyses of the composite thermal fronts and the Lagrangian drifter trajectories show that the former is not a good indicator of the latter.

  19. PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Ng, L.C.

    2002-06-30

    This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.

  20. Satellite Hyperspectral Imagery to Support Tick-Borne Infectious Diseases Surveillance.

    Directory of Open Access Journals (Sweden)

    Gina Polo

    Full Text Available This study proposed the use of satellite hyperspectral imagery to support tick-borne infectious diseases surveillance based on monitoring the variation in amplifier hosts food sources. To verify this strategy, we used the data of the human rickettsiosis occurrences in southeastern Brazil, region in which the emergence of this disease is associated with the rising capybara population. Spatio-temporal analysis based on Monte Carlo simulations was used to identify risk areas of human rickettsiosis and hyperspectral moderate-resolution imagery was used to identify the increment and expansion of sugarcane crops, main food source of capybaras. In general, a pixel abundance associated with increment of sugarcane crops was detected in risk areas of human rickettsiosis. Thus, the hypothesis that there is a spatio-temporal relationship between the occurrence of human rickettsiosis and the sugarcane crops increment was verified. Therefore, due to the difficulty of monitoring locally the distribution of infectious agents, vectors and animal host's, satellite hyperspectral imagery can be used as a complementary tool for the surveillance of tick-borne infectious diseases and potentially of other vector-borne diseases.

  1. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  2. Spacecraft design project: High temperature superconducting infrared imaging satellite

    Science.gov (United States)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  3. SPATIOTEMPORAL EVALUATION OF NOCTURNAL COLD AIR DRAINAGE OVER A SIMPLE SLOPE USING THERMAL INFRARED IMAGERY

    Directory of Open Access Journals (Sweden)

    V. Ikani

    2016-06-01

    The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  4. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    Science.gov (United States)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared

  5. Delineating Tree Types in a Complex Tropical Forest Setting Using High Resolution Multispectral Satellite Imagery

    Science.gov (United States)

    Cross, M.

    2016-12-01

    An improved process for the identification of tree types from satellite imagery for tropical forests is needed for more accurate assessments of the impact of forests on the global climate. La Selva Biological Station in Costa Rica was the tropical forest area selected for this particular study. WorldView-3 imagery was utilized because of its high spatial, spectral and radiometric resolution, its availability, and its potential to differentiate species in a complex forest setting. The first-step was to establish confidence in the high spatial and high radiometric resolution imagery from WorldView-3 in delineating tree types within a complex forest setting. In achieving this goal, ASD field spectrometer data were collected of specific tree species to establish solid ground control within the study site. The spectrometer data were collected from the top of each specific tree canopy utilizing established towers located at La Selva Biological Station so as to match the near-nadir view of the WorldView-3 imagery. The ASD data was processed utilizing the spectral response functions for each of the WorldView-3 bands to convert the ASD data into a band specific reflectivity. This allowed direct comparison of the ASD spectrometer reflectance data to the WorldView-3 multispectral imagery. The WorldView-3 imagery was processed to surface reflectance using two standard atmospheric correction procedures and the proprietary DigitalGlobe Atmospheric Compensation (AComp) product. The most accurate correction process was identified through comparison to the spectrometer data collected. A series of statistical measures were then utilized to access the accuracy of the processed imagery and which imagery bands are best suited for tree type identification. From this analysis, a segmentation/classification process was performed to identify individual tree type locations within the study area. It is envisioned the results of this study will improve traditional forest classification

  6. Scheduling satellite imagery acquisition for sequential assimilation of water level observation into flood modelling

    Science.gov (United States)

    García-Pintado, Javier; Neal, Jeff C.; Mason, David C.; Dance, Sarah L.; Bates, Paul D.

    2013-04-01

    Satellite-based imagery has proved useful for obtaining information on water levels in flood events. Microwave frequencies are generally more useful for flood detection than visible-band sensors because of its all-weather day-night capability. Specifically, the future SWOT mission, with Ka-band interferometry, will be able to provide direct Water Level Observations (WLOs), and current and future Synthetic Aperture Radar (SAR) sensors can provide information of flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides indirect WLOs. By either means, satellite-based WLOs can be assimilated into a hydrodynamic model to decrease forecast uncertainty and further to estimate river discharge into the flooded domain. Operational scenarios can even make a combined use of imagery from different uncoordinated missions to sequentially estimate river discharge. Thus, with an increasing number of operational satellites with WLO capability, information on the relationship between satellite first visit, revisit times, and forecast performance is required to optimise the operational scheduling of satellite imagery. By using an Ensemble Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007, Tewkesbury, Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. As an example, we use different scenarios of revisit times and observational errors expected from the current COSMO-Skymed (CSK) constellation, with X-band SAR. We emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotemporal correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement with previous research, estimation and correction for this bias leads to a clear improvement in keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a

  7. AN EFFICIENT APPROACH FOR EXTRACTION OF LINEAR FEATURES FROM HIGH RESOLUTION INDIAN SATELLITE IMAGERIES

    Directory of Open Access Journals (Sweden)

    DK Bhattacharyya

    2010-07-01

    Full Text Available This paper presents an Object oriented feature extraction approach in order to classify the linear features like drainage, roads etc. from high resolution Indian satellite imageries. It starts with the multiresolution segmentations of image objects for optimal separation and representation of image regions or objects. Fuzzy membership functions were defined for a selected set of image object parameters such as mean, ratio, shape index, area etc. for representation of required image objects. Experiment was carried out for both panchromatic (CARTOSAT-I and multispectral (IRSP6 LISS IV Indiansatellite imageries. Experimental results show that the extractionof linear features can be achieved in a satisfactory level throughproper segmentation and appropriate definition & representationof key parameters of image objects.

  8. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  9. Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping

    Directory of Open Access Journals (Sweden)

    Dimitris G. Stavrakoudis

    2014-07-01

    Full Text Available This study investigates the effectiveness of combining multispectral very high resolution (VHR and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM. The classification result from the hyperspectral image is then resampled to the multispectral’s spatial resolution and the two sources are combined using a simple yet efficient fusion operator. Thus, the complementary information provided from the two sources is effectively exploited, without having to resort to computationally demanding and time-consuming typical data fusion or vector stacking approaches. The effectiveness of the proposed methodology is validated in a complex Mediterranean forest landscape, comprising spectrally similar and spatially intermingled species. The decision fusion scheme resulted in an accuracy increase of 8% compared to the classification using only the multispectral imagery, whereas the increase was even higher compared to the classification using only the hyperspectral satellite image. Perhaps most importantly, its accuracy was significantly higher than alternative multisource fusion approaches, although the latter are characterized by much higher computation, storage, and time requirements.

  10. On land-use modeling: A treatise of satellite imagery data and misclassification error

    Science.gov (United States)

    Sandler, Austin M.

    Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.

  11. Calibration of Numerical Model for Shoreline Change Prediction Using Satellite Imagery Data

    Directory of Open Access Journals (Sweden)

    Sigit Sutikno

    2015-12-01

    Full Text Available This paper presents a method for calibration of numerical model for shoreline change prediction using satellite imagery data in muddy beach. Tanjung Motong beach, a muddy beach that is suffered high abrasion in Rangsang Island, Riau province, Indonesia was picked as study area. The primary numerical modeling tool used in this research was GENESIS (GENEralized Model for Simulating Shoreline change, which has been successfully applied in many case studies of shoreline change phenomena on a sandy beach.The model was calibrated using two extracted coastlines satellite imagery data, such as Landsat-5 TM and Landsat-8 OLI/TIRS. The extracted coastline data were analyzed by using DSAS (Digital Shoreline Analysis System tool to get the rate of shoreline change from 1990 to 2014. The main purpose of the calibration process was to find out the appropriate value for K 1 and K coefficients so that the predicted shoreline change had an acceptable correlation with the output of the satellite data processing. The result of this research showed that the shoreline change prediction had a good correlation with the historical evidence data in Tanjung Motong coast. It means that the GENESIS tool is not only applicable for shoreline prediction in sandy beach but also in muddy beach.

  12. Integrating satellite imagery with simulation modeling to improve burn severity mapping.

    Science.gov (United States)

    Karau, Eva C; Sikkink, Pamela G; Keane, Robert E; Dillon, Gregory K

    2014-07-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the Relative differenced Normalized Burn Ratio, a satellite image-based change detection procedure commonly used to map burn severity, with output from the Fire Hazard and Risk Model, a simulation model that estimates fire effects at a landscape scale. Using 285 Composite Burn Index (CBI) plots in Washington and Montana as ground reference, we found that an integrated model explained more variability in CBI (R (2) = 0.47) and had lower mean squared error (MSE = 0.28) than image (R (2) = 0.42 and MSE = 0.30) or simulation-based models (R (2) = 0.07 and MSE = 0.49) alone. Overall map accuracy was also highest for maps created with the Integrated Model (63 %). We suspect that Simulation Model performance would greatly improve with higher quality and more accurate spatial input data. Results of this study indicate the potential benefit of combining satellite image-based methods with a fire effects simulation model to create improved burn severity maps.

  13. Neural networks for identifying drunk persons using thermal infrared imagery.

    Science.gov (United States)

    Koukiou, Georgia; Anastassopoulos, Vassilis

    2015-07-01

    Neural networks were tested on infrared images of faces for discriminating intoxicated persons. The images were acquired during controlled alcohol consumption by forty-one persons. Two different experimental approaches were thoroughly investigated. In the first one, each face was examined, location by location, using each time a different neural network, in order to find out those regions that can be used for discriminating a drunk from a sober person. It was found that it was mainly the face forehead that changed thermal behaviour with alcohol consumption. In the second procedure, a single neural structure was trained on the whole face. The discrimination performance of this neural structure was tested on the same face, as well as on unknown faces. The neural networks presented high discrimination performance even on unknown persons, when trained on the forehead of the sober and the drunk person, respectively. Small neural structures presented better generalisation performance.

  14. Geometric Quality Assessment of Bundle Block Adjusted Mulit- Sensor Satellite Imageries

    Science.gov (United States)

    Ghosh, S.; Bhawani Kumar, P. S.; Radhadevi, P. V.; Srinivas, V.; Saibaba, J.; Varadan, G.

    2014-11-01

    The integration of multi-sensor earth observation data belonging to same area has become one of the most important input for resource mapping and management. Geometric error and fidelity between adjacent scenes affects large-area digital mosaic if the images/ scenes are processed independently. A block triangulation approach "Bundle Block Adjustment (BBA)" system has been developed at ADRIN for combined processing of multi-sensor, multi-resolution satellite imagery to achieve better geometric continuity. In this paper we present the evaluation results of BBA software along with performance assessment and operational use of products thus generated. The application evaluation deals with functional aspects of block-adjustment of satellite imagery consisting of data from multiple sources, i.e. AWiFs, LISS-3, LISS-4 and Cartosat-1 in various combinations as single block. It has provision for automatic generation of GCPs and tie-points using image metafile/ Rational Polynomial Coefficient's (RPC's) and ortho/ merged/ mosaicked products generation. The study is carried out with datasets covering different terrain types (ranging from high mountainous area, moderately undulating terrain, coastal plain, agriculture fields, urban area and water-body) across Indian subcontinent with varying block sizes and spatial reference systems. Geometric accuracy assessment is carried out to figure out error propagation at scene based ortho/ merged products as well as block level. The experimental results confirm that pixel tagging, geometric fidelity and feature continuity across adjacent scenes as well as for multiple sensors reduced to a great extent, due to the high redundancy. The results demonstrate that it is one of the most affective geometric corrections for generating large area digital mosaic over High mountainous terrain using high resolution good swath satellite imagery, like Cartosat-1, with minimum human intervention.

  15. UNSUPERVISED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGERY BY SELF-ORGANIZING NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    ÁRPÁD BARSI

    2010-06-01

    Full Text Available The current paper discusses the importance of the modern high resolution satellite imagery. The acquired high amount of data must be processed by an efficient way, where the used Kohonen-type self-organizing map has been proven as a suitable tool. The paper gives an introduction to this interesting method. The tests have shown that the multispectral image information can be taken after a resampling step as neural network inputs, and then the derived network weights are able to evaluate the whole image with acceptable thematic accuracy.

  16. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B. [Los Alamos National Lab., NM (United States); Lewis, A.; David, N. [Environmental Research Inst. of Michigan, Santa Fe, NM (United States)

    1996-04-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico.

  17. Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery

    Directory of Open Access Journals (Sweden)

    Nobuoto Nojima

    2010-09-01

    Full Text Available For a quick and stable estimation of earthquake damaged buildings worldwide, using Phased Array type L-band Synthetic Aperture Radar (PALSAR loaded on the Advanced Land Observing Satellite (ALOS satellite, a model combining the usage of satellite synthetic aperture radar (SAR imagery and Japan Meteorological Agency (JMA-scale seismic intensity is proposed. In order to expand the existing C-band SAR based damage estimation model into L-band SAR, this paper rebuilds a likelihood function for severe damage ratio, on the basis of dataset from Japanese Earth Resource Satellite-1 (JERS-1/SAR (L-band SAR images observed during the 1995 Kobe earthquake and its detailed ground truth data. The model which integrates the fragility functions of building damage in terms of seismic intensity and the proposed likelihood function is then applied to PALSAR images taken over the areas affected by the 2007 earthquake in Pisco, Peru. The accuracy of the proposed damage estimation model is examined by comparing the results of the analyses with field investigations and/or interpretation of high-resolution satellite images.

  18. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  19. Infrared Imagery of Crown-Fire Dynamics during FROSTFIRE.

    Science.gov (United States)

    Coen, Janice; Mahalingam, Shankar; Daily, John

    2004-09-01

    A thorough understanding of crown-fire dynamics requires a clear picture of the three-dimensional winds in and near the fire, including the flaming combustion zone and the convective updrafts produced by the fire. These observations and analyses present a unique high-spatial-resolution and high-temporal-resolution perspective of the motions within crown fires propagating up a forested 20° slope under light winds of 3 m s-1 during the FROSTFIRE experiment in interior Alaska. The purpose of this work is to calculate combustion-zone winds and examine mechanisms for the rapid propagation of crown fires. An infrared imager was used to detect high-temperature regions produced by incandescent soot particles in and near the fire and to produce a sequence of high-frequency (60 Hz), high-resolution (0.375 m × 0.8 m) two-dimensional images of temperature. An image-flow-analysis technique was applied to these data to derive wind fields in the image plane. Maximum updrafts of 32 60 m s-1 accompany maximum downdrafts of 18 30 m s-1. Horizontal wind speeds of 12 28 m s-1 show strong inflow into the base of the convective updrafts and imply recirculation of air and incomplete combustion products from the fire. Motions were more complex than a single large convective plume or many buoyant tree-scale plumes rising separately. Instead, repeated examples of narrow flaming fingers, representing a scale larger than individual trees, initially burst upslope along the ground for tens of meters at speeds up to 28 48 m s-1 before turning upward. These bursts exceeded ambient environmental winds, those considered to be driving the fire, by a factor of 10 and were low enough to propagate the crown fire actively by both igniting and preheating/ drying canopy fuel ahead of the fire. Average spread rates were 0.75 1.11 m s-1, with a peak 10-s spread rate of 1.26 m s-1. This powerful, dynamic mechanism of fire spread could explain firefighter reports of being overtaken by “fireballs.”

  20. Inferring urban household socio-economic conditions in Mafikeng, South Africa, using high spatial resolution satellite imagery

    Directory of Open Access Journals (Sweden)

    Christopher Munyati

    2014-01-01

    Full Text Available Updated household socio-economic information is necessary for planning the delivery of municipal services, particularly for cities in third world countries. The repetitive coverage of satellite imagery provides a possibility for sourcing and frequently updating information on household socio-economic conditions in urban landscapes. This paper examines the potential use of satellite imagery in inferring urban household socio-economic variables, using two high-resolution images of 2001 and 2010. Manual image interpretation was employed in deducing selected socio-economic variables that are utilised in census enumerations in South Africa, at four suburbs in Mafikeng. Of the three socio-economic variables that were examined (type of main dwelling, toilet facilities, and energy source for cooking, type of dwelling could more readily be deduced from the high-resolution imagery. Identified change in number of formal and informal houses indicated potential of satellite imagery in monitoring third world setting urban sprawl and the associated growth in informal settlements due to migration, among other factors. Satellite imagery appears useful as a supplementary source of socio-economic data to municipal authorities, for periods between regular censuses.

  1. Identification of lake trout Salvelinus namaycush spawning habitat in northern Lake Huron using high-resolution satellite imagery

    Science.gov (United States)

    Grimm, Amanda G.; Brooks, Colin N.; Binder, Thomas R.; Riley, Stephen C.; Farha, Steve A.; Shuchman, Robert A.; Krueger, Charles C.

    2016-01-01

    The availability and quality of spawning habitat may limit lake trout recovery in the Great Lakes, but little is known about the location and characteristics of current spawning habitats. Current methods used to identify lake trout spawning locations are time- and labor-intensive and spatially limited. Due to the observation that some lake trout spawning sites are relatively clean of overlaying algae compared to areas not used for spawning, we suspected that spawning sites could be identified using satellite imagery. Satellite imagery collected just before and after the spawning season in 2013 was used to assess whether lake trout spawning habitat could be identified based on its spectral characteristics. Results indicated that Pléiades high-resolution multispectral satellite imagery can be successfully used to estimate algal coverage of substrates and temporal changes in algal coverage, and that models developed from processed imagery can be used to identify potential lake trout spawning sites based on comparison of sites where lake trout eggs were and were not observed after spawning. Satellite imagery is a potential new tool for identifying lake trout spawning habitat at large scales in shallow nearshore areas of the Great Lakes.

  2. Satellite imagery and airborne geophysics for geologic mapping of the Edembo area, Eastern Hoggar (Algerian Sahara)

    Science.gov (United States)

    Lamri, Takfarinas; Djemaï, Safouane; Hamoudi, Mohamed; Zoheir, Basem; Bendaoud, Abderrahmane; Ouzegane, Khadidja; Amara, Massinissa

    2016-03-01

    Satellite imagery combined with airborne geophysical data and field observations were employed for new geologic mapping of the Edembo area in the Eastern Hoggar (Tuareg Shield, Sahara). Multi-spectral band fusion, filtering, and transformation techniques, i.e., band combination, band-rationing and principal component analysis of ETM+ and ASTER data are used for better spectral discrimination of the different rocks units. A thematic map assessed by field data and available geologic information is compiled by supervised classification of satellite data with high overall accuracy (>90%). The automated extraction technique efficiently aided the detection of the structural lineaments, i.e., faults, shear zones, and joints. Airborne magnetic and Gamma-ray spectrometry data showed the pervasiveness of the large structures beneath the Paleozoic sedimentary cover and aeolian sands. The aeroradiometric K-range is used for discrimination of the high-K granitoids of Djanet from the peralumineous granites of Edembo, and to verify the Silurian sediments with their high K-bearing minerals. The new geological map is considered to be a high resolution improvement on all pre-existing maps of this hardly accessible area in the Tuareg Shield. Integration of the airborne geophysical and space-borne imagery data can hence provide a rapid means of geologically mapping areas hitherto poorly known or difficult to access.

  3. Ship detection in satellite imagery using rank-order greyscale hit-or-miss transforms

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Neal R [Los Alamos National Laboratory; Porter, Reid B [Los Alamos National Laboratory; Theiler, James [Los Alamos National Laboratory

    2010-01-01

    Ship detection from satellite imagery is something that has great utility in various communities. Knowing where ships are and their types provides useful intelligence information. However, detecting and recognizing ships is a difficult problem. Existing techniques suffer from too many false-alarms. We describe approaches we have taken in trying to build ship detection algorithms that have reduced false alarms. Our approach uses a version of the grayscale morphological Hit-or-Miss transform. While this is well known and used in its standard form, we use a version in which we use a rank-order selection for the dilation and erosion parts of the transform, instead of the standard maximum and minimum operators. This provides some slack in the fitting that the algorithm employs and provides a method for tuning the algorithm's performance for particular detection problems. We describe our algorithms, show the effect of the rank-order parameter on the algorithm's performance and illustrate the use of this approach for real ship detection problems with panchromatic satellite imagery.

  4. Assessing Glacial Lake Outburst Flood Hazard in the Nepal Himalayas using Satellite Imagery and Hydraulic Models

    Science.gov (United States)

    Rounce, D.; McKinney, D. C.

    2015-12-01

    The last half century has witnessed considerable glacier melt that has led to the formation of large glacial lakes. These glacial lakes typically form behind terminal moraines comprising loose boulders, debris, and soil, which are susceptible to fail and cause a glacial lake outburst flood (GLOF). These lakes also act as a heat sink that accelerates glacier melt and in many cases is accompanied by rapid areal expansion. As these glacial lakes continue to grow, their hazard also increases due to the increase in potential flood volume and the lakes' proximity to triggering events such as avalanches and landslides. Despite the large threat these lakes may pose to downstream communities, there are few detailed studies that combine satellite imagery with hydraulic models to present a holistic understanding of the GLOF hazard. The aim of this work is to assess the GLOF hazard of glacial lakes in Nepal using a holistic approach based on a combination of satellite imagery and hydraulic models. Imja Lake will be the primary focus of the modeling efforts, but the methods will be developed in a manner that is transferable to other potentially dangerous glacial lakes in Nepal.

  5. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical-dynamical down......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...... developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter...

  6. Spatial Prediction of Coastal Bathymetry Based on Multispectral Satellite Imagery and Multibeam Data

    Directory of Open Access Journals (Sweden)

    Xavier Monteys

    2015-10-01

    Full Text Available The coastal shallow water zone can be a challenging and costly environment in which to acquire bathymetry and other oceanographic data using traditional survey methods. Much of the coastal shallow water zone worldwide remains unmapped using recent techniques and is, therefore, poorly understood. Optical satellite imagery is proving to be a useful tool in predicting water depth in coastal zones, particularly in conjunction with other standard datasets, though its quality and accuracy remains largely unconstrained. A common challenge in any prediction study is to choose a small but representative group of predictors, one of which can be determined as the best. In this respect, exploratory analyses are used to guide the make-up of this group, where we choose to compare a basic non-spatial model versus four spatial alternatives, each catering for a variety of spatial effects. Using one instance of RapidEye satellite imagery, we show that all four spatial models show better adjustments than the non-spatial model in the water depth predictions, with the best predictor yielding a correlation coefficient of actual versus predicted at 0.985. All five predictors also factor in the influence of bottom type in explaining water depth variation. However, the prediction ranges are too large to be used in high accuracy bathymetry products such as navigation charts; nevertheless, they are considered beneficial in a variety of other applications in sensitive disciplines such as environmental monitoring, seabed mapping, or coastal zone management.

  7. THE IMPACT OF SHADOWS IN THE RECENT INDIAN REMOTE SENSING SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    Mrs. G.Devi

    2011-08-01

    Full Text Available Remote sensing technology is emerging as a strong tool to extract information about the earth resources from the satellite imagery. However, shadow in fine resolution imagery affects this information. The fine resolution images from recent Indian Remote Sensing (IRS satellites are compared for the pixel values in shadow and non-shadow areas using histogram occupy large shadow area compared to Cartosat-1 of resolution 2.5m. The solar elevation angle is 41degree for which long shadows are formed in case of Cartosat-2 images. The solarelevation angle is 59 degree for which short shadows are formed in case of Cartosat-1 images. The shadows in an image are a function of the solar elevation angle, azimuth angle and spatial resolution etc. The fine resolution image (Cartosat-2 building and their shadow pixel values are analysed by bimodal histogram splitting technique. The shadow boundaries are extracted. Finally Gamma filtering applied and with the Gaussian enhancement technique the shadows are eliminated from Cartosat-2 image. The building shadow under objectcan be identified in this method. The main application in shadow elimination is used for urban map preparation and the object oriented classification.

  8. Proximity graph analysis for linear networks extraction from high-resolution satellite imagery

    Science.gov (United States)

    Skourikhine, Alexei N.

    2006-05-01

    Reliable and accurate methods for detection and extraction of linear network, such as road networks, in satellite imagery are essential to many applications. We present an approach to the road network extraction from high-resolution satellite imagery that is based on proximity graph analysis. We are jumping off from the classification provided by existing spectral and textural classification tools, which produce a set of candidate road patches. Then, constrained Delaunay triangulation and Chordal Axis transform are used to extract centerline characterization of the delineated candidate road patches. We refine produced center lines to reduce noise influence on patch boundaries, resulting in a smaller set of robust center lines authentically representing their road patches. Refined center lines are triangulated using constrained Delaunay triangulation (CDT) algorithm to generate a sub-optimal mesh of interconnections among them. The generated triangle edges connecting different center lines are used for spatial analysis of the center lines relations. A subset of the Delaunay tessellation grid contains the Euclidian Minimum Spanning Tree (EMST) that provides an approximation of road network. The approach can be generalized to the multi-criteria MST and multi-criteria shortest path algorithms to integrate other factors important for road network extraction, in addition to proximity relations considered by standard EMST.

  9. Vehicle detection in WorldView-2 satellite imagery based on Gaussian modeling and contextual learning

    Science.gov (United States)

    Shen, Bichuan; Chen, Chi-Hau; Marchisio, Giovanni B.

    2012-06-01

    In this paper, we aim to study the detection of vehicles from WorldView-2 satellite imagery. For this purpose, accurate modeling of vehicle features and signatures and efficient learning of vehicle hypotheses are critical. We present a joint Gaussian and maximum likelihood based modeling and machine learning approach using SVM and neural network algorithms to describe the local appearance densities and classify vehicles from non-vehicle buildings, objects, and backgrounds. Vehicle hypotheses are fitted by elliptical Gaussians and the bottom-up features are grouped by Gabor orientation filtering based on multi-scale analysis and distance transform. Global contextual information such as road networks and vehicle distributions can be used to enhance the recognition. In consideration of the problem complexity the practical vehicle detection task faces due to dense and overlapping vehicle distributions, partial occlusion and clutters by building, shadows, and trees, we employ a spectral clustering strategy jointly combined with bootstrapped learning to estimate the parameters of centroid, orientation, and extents for local densities. We demonstrate a high detection rate 94.8%,with a missing rate 5.2% and a false alarm rate 5.3% on the WorldView-2 satellite imagery. Experimental results show that our method is quite effective to model and detect vehicles.

  10. Coral Reef environment reconstruction using small drones, new generation photogrammetry algorithms and satellite imagery

    Science.gov (United States)

    Elisa, Casella; Rovere, Alessio; Harris, Daniel; Parravicini, Valeriano

    2016-04-01

    Surveys based on Remotely Piloted Aircraft Systems (RPAS), together with new-generation Structure from Motion (SfM) and Multi-View Stereo (MVS) reconstruction algorithms have been employed to reconstruct the shallow bathymetry of the inner lagoon of a coral reef in Moorea, French Polinesia. This technique has already been used with a high rate of success on coastal environments (e.g. sandy beaches and rocky shorelines) reaching accuracy of the final Digital Elevation Model in the order of few centimeters. The application of such techniques to reconstruct shallow underwater environments is, though, still little reported. We then used the bathymetric dataset obtained from aerial pictures as ground-truth for relative bathymetry obtained from satellite imagery (WorldView-2) of a larger area within the same study site. The first results of our work suggest that RPAS coupled with SfM and MVS algorithms can be used to reconstruct shallow water environments with favorable weather conditions, and can be employed to ground-truth to satellite imagery.

  11. Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations

    Directory of Open Access Journals (Sweden)

    Checchi Francesco

    2013-01-01

    Full Text Available Abstract Background Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Methods Our method consisted of multiplying (i manual counts of assumed residential structures on a satellite image and (ii estimates of the mean number of people per structure (structure occupancy obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons’ camps and two urban neighbourhoods with a mixture of residents and displaced ranging in population from 1,969 to 90,547, and compared these to “gold standard” reference population figures from census or other robust methods. Results Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of Conclusions In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method’s development.

  12. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff

    Science.gov (United States)

    Lavers, C.; Bishop, C.; Hawkins, O.; Grealey, E.; Cox, C.; Thomas, D.; Trimel, S.

    2009-07-01

    Space imagery offers remote surveillance of ethnic people groups at risk of human rights abuse. We highlight work in alleged violations in Burma and Sudan, using satellite imagery for verification with Amnesty International. We consider how imaging may effectively support small to medium-sized Non Governmental Organisations and charities, e.g. HART, working in dangerous zones on the ground. Satellite based sensing applications are now at a sufficiently mature stage for moderate Governmental funding levels to help prevent human rights abuse, rather than the greater cost of rebuilding communities and healing sectarian divisions after abuse has taken place.

  13. Mission design for the infrared astronomical satellite /IRAS/

    Science.gov (United States)

    Lundy, S. A.; Mclaughlin, W. I.; Pouw, A.

    1979-01-01

    IRAS, a joint United States, Netherlands, United Kingdom astronomical satellite, is scheduled to be launched early in 1981 with the purpose of completing an all-sky survey in the infrared wavelengths from 8 to 120 microns and to observe objects of special interest. The mission design is driven by thermal constraints primarily determined by the Sun and Earth; the orbit and survey strategy must be chosen so as to satisfy the mission requirements before the cryogenic system is depleted of its liquid helium. Computer graphics help the designer choose valid survey strategies and evaluate resulting sky coverage.

  14. The infrared astronomical satellite AKARI: overview, highlights of the mission

    Science.gov (United States)

    Murakami, Hiroshi; Matsuhara, Hideo

    2008-07-01

    The AKARI, Japanese infrared astronomical satellite, is a 68.5 cm cooled telescope with two focal-plane instruments providing continuous sky scan at six wavelength bands in mid- and far-infrared. The instruments also have capabilities of imaging and spectroscopy in the wavelength range 2-180 μm in the pointing observations occasionally inserted into the continuous survey. AKARI was launched on 21st Feb. 2006, and has performed the all-sky survey as well as 5380 pointing observations until the liquid helium exhaustion on 26th Aug. 2007. The all sky survey covers more than 90 percent of the entire sky with higher spatial resolutions and sensitivities than the IRAS. First version of the infrared source catalogue will be released in 2009. Here we report the overview of the mission, highlights on the scientific results as well as the performance of the focal-plane instruments. We also present the observation plan with the near infrared camera during the post-helium mission phase started in June 2008.

  15. A procedure for semi-Automatic Orthophoto Generation from High Resolution Satellite Imagery

    Science.gov (United States)

    Alrajhi, M. N.; Jacobsen, K.; Heipke, C.

    2013-10-01

    The General Directorate of Surveying and Mapping (GDSM), under the Ministry of Municipal and Rural Affairs (MOMRA) is responsible for the production and dissemination of accurate geospatial data for all the metropolitan cities, towns and rural settlements in the Kingdom of Saudi Arabia. GDSM maintains digital geospatial databases that support the production of conventional line and orthophoto maps at scales ranging from 1:1,000 to 1:20,000. The current procedures for the acquisition of new aerial imagery cover a long time cycle of three or more years. Consequently, the availability of recently acquired High Resolution Satellite Imagery (HRSI) presents an attractive alternative image data source for rapid response to updated geospatial data needs. The direct sensor orientation of HRSI is not accurate enough requiring ground control points (GCP). A field survey of GCP is time consuming and costly. Seeking an alternative approach, a research study has recently been completed to use existing image and data base information instead of traditional ground control for the orthoprojection of HRSI in order to automate and speed up as much as possible the whole process. Based on a series of practical experiments, the ability for automated matching of aerial and satellite images by using the Speeded-Up Robust Features (SURF) algorithm is demonstrated to be useful for this task. Practical results from matching with SURF validate the ability for multi-scale, multi-sensor and multi-season matching of aerial and satellite images. The matched tie points are then used to transform the satellite orthophoto to the aerial orthophoto through a 2D affine coordinate transformation. GeoEye-1 and IKONOS imagery, when geo-referenced through SURF-based matching and transformed meet the MOMRA Map Accuracy Standards for 1:10,000 and 1:20,000 scale. However, a similarly processed SPOT-5 image does not meet these standards. This research has led to the development of a simple and efficient tool

  16. Quantifying tree mortality in a mixed species woodland using multitemporal high spatial resolution satellite imagery

    Science.gov (United States)

    Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael

    2013-01-01

    Widespread tree mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray tree canopies during and shortly after tree damage or mortality has occurred. However, detecting trees in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for tree mortality detection in a southwestern U.S. mixed species woodland using archived satellite images acquired prior to mortality and well after dead trees had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-tree image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead tree classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of tree mortality across areas with differences in tree species composition. We found that 38% of tree crown area was lost during the drought period between 2002 and 2006. The majority of tree mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the tree canopy died or was removed between 2006 and 2011, primarily in areas

  17. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    Science.gov (United States)

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  18. The Role of Satellite Imagery to Improve Pastureland Estimates in South America

    Science.gov (United States)

    Graesser, J.

    2015-12-01

    Agriculture has changed substantially across the globe over the past half century. While much work has been done to improve spatial-temporal estimates of agricultural changes, we still know more about the extent of row-crop agriculture than livestock-grazed land. The gap between cropland and pastureland estimates exists largely because it is challenging to characterize natural versus grazed grasslands from a remote sensing perspective. However, the impasse of pastureland estimates is set to break, with an increasing number of spaceborne sensors and freely available satellite data. The Landsat satellite archive in particular provides researchers with immense amounts of data to improve pastureland information. Here we focus on South America, where pastureland expansion has been scrutinized for the past few decades. We explore the challenges of estimating pastureland using temporal Landsat imagery and focus on key agricultural countries, regions, and ecosystems. We focus on the suggested shift of pastureland from the Argentine Pampas to northern Argentina, and the mixing of small-scale and large-scale ranching in eastern Paraguay and how it could impact the Chaco forest to the west. Further, the Beni Savannahs of northern Bolivia and the Colombian Llanos—both grassland and savannah regions historically used for livestock grazing—have been hinted at as future areas for cropland expansion. There are certainly environmental concerns with pastureland expansion into forests; but what are the environmental implications when well-managed pasture systems are converted to intensive soybean or palm oil plantation? Tropical, grazed grasslands are important habitats for biodiversity, and pasturelands can mitigate soil erosion when well managed. Thus, we must improve estimates of grazed land before we can make informed policy and conservation decisions. This talk presents insights into pastureland estimates in South America and discusses the feasibility to improve current

  19. Mapping of land cover in northern California with simulated hyperspectral satellite imagery

    Science.gov (United States)

    Clark, Matthew L.; Kilham, Nina E.

    2016-09-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Analysis of hyperspectral, or imaging spectrometer, imagery has shown an impressive capacity to map a wide range of natural and anthropogenic land cover. Applications have been mostly with single-date imagery from relatively small spatial extents. Future hyperspectral satellites will provide imagery at greater spatial and temporal scales, and there is a need to assess techniques for mapping land cover with these data. Here we used simulated multi-temporal HyspIRI satellite imagery over a 30,000 km2 area in the San Francisco Bay Area, California to assess its capabilities for mapping classes defined by the international Land Cover Classification System (LCCS). We employed a mapping methodology and analysis framework that is applicable to regional and global scales. We used the Random Forests classifier with three sets of predictor variables (reflectance, MNF, hyperspectral metrics), two temporal resolutions (summer, spring-summer-fall), two sample scales (pixel, polygon) and two levels of classification complexity (12, 20 classes). Hyperspectral metrics provided a 16.4-21.8% and 3.1-6.7% increase in overall accuracy relative to MNF and reflectance bands, respectively, depending on pixel or polygon scales of analysis. Multi-temporal metrics improved overall accuracy by 0.9-3.1% over summer metrics, yet increases were only significant at the pixel scale of analysis. Overall accuracy at pixel scales was 72.2% (Kappa 0.70) with three seasons of metrics. Anthropogenic and homogenous natural vegetation classes had relatively high confidence and producer and user accuracies were over 70%; in comparison, woodland and forest classes had considerable confusion. We next focused on plant functional types with relatively pure spectra by removing open-canopy shrublands

  20. Estimating Uncertainties in Bio-Optical Products Derived from Satellite Ocean Color Imagery Using an Ensemble Approach

    Science.gov (United States)

    2011-01-01

    We propose a methodology to quantify errors and produce uncertainty maps for satellite-derived ocean color bio -optical products using ensemble...retrievals of bio -optical properties from satellite ocean color imagery are related to a variety of factors, including sensor calibration, atmospheric...correction, and the bio -optical inversion algorithms. Errors propagate, amplify, and intertwine along the processing path, so it is important to

  1. The Matsu Wheel: A Cloud-based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    OpenAIRE

    Patterson, Maria T.; Anderson, Nikolas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert; Handy, Matthew; Ly, Vuong; Mandl, Dan; Pederson, Shane; Pivarski, Jim; Powell, Ray; Spring, Jonathan; Wells, Walt

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for the cloud-based processing of Earth satellite imagery. A particular focus is the development of applications for detecting fires and floods to help support natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStac...

  2. Buried explosive hazard detection using forward-looking long-wave infrared imagery

    Science.gov (United States)

    Stone, K.; Keller, J. M.; Popescu, M.; Spain, C. J.

    2011-06-01

    Trainable size-contrast filters, similar to local dual-window RX anomaly detectors, utilizing the Bhattacharyya distance are used to detect buried explosive hazards in forward-looking long-wave infrared imagery. The imagery, captured from a moving vehicle, is geo-referenced, allowing projection of pixel coordinates into (UTM) Universal Transverse Mercator coordinates. Size-contrast filter detections for a particular frame are projected into UTM coordinates, and peaks are detected in the resulting density using the mean-shift algorithm. All peaks without a minimum number of detections in their local neighborhood are discarded. Peaks from individual frames are then combined into a single set of tentative hit locations, and the same mean-shift procedure is run on the resulting density. Peaks without a minimum number of hit locations in their local neighborhood are removed. The remaining peaks are declared as target locations. The mean-shift steps utilize both the spatial and temporal information in the imagery. Scoring is performed using ground truth locations in UTM coordinates. The size-contrast filter and mean-shift parameters are learned using a genetic algorithm which minimizes a multiobjective fitness function involving detection rate and false alarm rate. Performance of the proposed algorithm is evaluated on multiple lanes from a recent collection at a US Army test site.

  3. Building high-performance system for processing a daily large volume of Chinese satellites imagery

    Science.gov (United States)

    Deng, Huawu; Huang, Shicun; Wang, Qi; Pan, Zhiqiang; Xin, Yubin

    2014-10-01

    The number of Earth observation satellites from China increases dramatically recently and those satellites are acquiring a large volume of imagery daily. As the main portal of image processing and distribution from those Chinese satellites, the China Centre for Resources Satellite Data and Application (CRESDA) has been working with PCI Geomatics during the last three years to solve two issues in this regard: processing the large volume of data (about 1,500 scenes or 1 TB per day) in a timely manner and generating geometrically accurate orthorectified products. After three-year research and development, a high performance system has been built and successfully delivered. The high performance system has a service oriented architecture and can be deployed to a cluster of computers that may be configured with high end computing power. The high performance is gained through, first, making image processing algorithms into parallel computing by using high performance graphic processing unit (GPU) cards and multiple cores from multiple CPUs, and, second, distributing processing tasks to a cluster of computing nodes. While achieving up to thirty (and even more) times faster in performance compared with the traditional practice, a particular methodology was developed to improve the geometric accuracy of images acquired from Chinese satellites (including HJ-1 A/B, ZY-1-02C, ZY-3, GF-1, etc.). The methodology consists of fully automatic collection of dense ground control points (GCP) from various resources and then application of those points to improve the photogrammetric model of the images. The delivered system is up running at CRESDA for pre-operational production and has been and is generating good return on investment by eliminating a great amount of manual labor and increasing more than ten times of data throughput daily with fewer operators. Future work, such as development of more performance-optimized algorithms, robust image matching methods and application

  4. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  5. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  6. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    柳钦火; 顾行法; 李小文; 田国良; 余涛; F.Jacob; J.F.Hanocq; M.Friedl; A.H.Strahler

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies, a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80?FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces. Accordingly, multi-angle directional brightness temperatures were acquired at different view angles for individual pixel. The flight experiment was carried out from January 1997 to October 1997 over a 5 kmx5 km flat agricultural area, located near Avignon, southeastern France.This paper presents results from analyses performed using these data including instrument calibration, radiometric correction, atmospheric correction, temperature temporal adjustment, geometric matching and registration of images. Results are presented for different thermal infrared emission patterns of different surface types including bare soil, wheat, maize and sunflower at different growth stages.

  7. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies,a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80o FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces.Accordingly,multi-angle directional brightness temperatures were acquired at different view angles for individual pixel.The flight experiment was carried out from January 1997 to October 1997 over a 5 km×5 km flat agricultural area,located near Avignon,southeastern France.This paper presents results from analyses performed using these data including instrument calibration,radiometric correction,atmospheric correction,temperature temporal adjustment,geometric matching and registration of images.Results are presented for different thermal infrared emission patterns of different surface types including bare soil,wheat,maize and sunflower at different growth stages.

  8. Assessing Usefulness of High-Resolution Satellite Imagery (HRSI) for Re-Survey of Cadastral Maps

    Science.gov (United States)

    Rao, S. S.; Sharma, J. R.; Rajashekar, S. S.; Rao, D. S. P.; Arepalli, A.; Arora, V.; Kuldeep; Singh, R. P.; Kanaparthi, M.

    2014-11-01

    The Government of India has initiated "National Land Records Modernization Programme (NLRMP)" with emphasis to modernize management of land records, minimize scope of land/property disputes, enhance transparency in the land records maintenance system, and facilitate moving eventually towards guaranteed conclusive titles to immovable properties in the country. One of the major components of the programme is survey/re-survey and updating of all survey and settlement records including creation of original cadastral records wherever necessary. The use of ETS/GPS, Aerial or High Resolution Satellite Images (HRSI) and hybrid method of images are suggested for re-survey in the guidelines. The emerging new satellite technologies enabling earth observation at a spatial resolution of 1.0m or 0.5m or even 0.41m have brought revolutionary changes in the field of cadastral survey. The highresolution satellite imagery (HRSI) is showing its usefulness for cadastral surveys in terms of clear identification of parcel boundaries and other cultural features due to which traditional cadastre and land registration systems have been undergoing major changes worldwide. In the present research study, cadastral maps are derived from ETS/GPS, HRSI of 1.0m and 0.5m and used for comparison. The differences in areas, perimeter and position of parcels derived from HRSI are compared vis-a-vis ETS/GPS boundaries. An assessment has been made on the usefulness of HRSI for re-survey of cadastral maps vis-a-vis conventional ground survey.

  9. Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3)sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.

  10. Stratified estimation of forest area using satellite imagery, inventory data, and the k-nearest neighbors technique

    Science.gov (United States)

    Ronald E. McRoberts; Mark D. Nelson; Daniel G. Wendt

    2002-01-01

    For two large study areas in Minnesota, USA, stratified estimation using classified Landsat Thematic Mapper satellite imagery as the basis for stratification was used to estimate forest area. Measurements of forest inventory plots obtained for a 12-month period in 1998 and 1999 were used as the source of data for within-stratum estimates. These measurements further...

  11. Estimation of Reservoir Discharges from Lake Nasser and Roseires Reservoir in the Nile Basin Using Satellite Altimetry and Imagery Data

    NARCIS (Netherlands)

    Muala, E.; Mohamed, Y.A.; Duan, Z.; Van der Zaag, P.

    2014-01-01

    This paper presents the feasibility of estimating discharges from Roseires Reservoir (Sudan) for the period from 2002 to 2010 and Aswan High Dam/Lake Nasser (Egypt) for the periods 1999–2002 and 2005–2009 using satellite altimetry and imagery with limited in situ data. Discharges were computed using

  12. Indirect building localization based on a prominent solid landmark from a forward-looking infrared imagery

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Wang; Tianxu Zhang; Xiaoyu Yang

    2011-01-01

    A novel indirect building localization technique based on a prominent solid landmark from a forwardlooking infrared imagery is proposed to localize low, deeply buried, or carefully camouflaged buildings in dense urban areas.First, the widely used effective methods are applied to detect and localize the solid landmark.The building target is then precisely indirectly localized by perspective transformation according to the imaging parameters and the space constraint relations between the building target and the solid landmark.Experimental results demonstrate this technique can indirectly localize buildings in dense urban areas effectively.%@@ A novel indirect building localization technique based on a prominent solid landmark from a forward-looking infrared imagery is proposed to localize low, deeply buried, or carefully camouflaged buildings in dense urban areas.First, the widely used effective methods are applied to detect and localize the solid landmark.The building target is then precisely indirectly localized by perspective transformation according to the imaging parameters and the space constraint relations between the building target and the solid landmark.Experimental results demonstrate this technique can indirectly localize buildings in dense urban areas effectively.

  13. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  14. A Digital Scene Model For Simulation Of Visual And Infrared Imagery

    Science.gov (United States)

    Gardner, Geoffrey Y.; Mendelsohn, Jay; Kim, Julius; Reynolds, William

    1987-09-01

    Digital scene modeling provides a powerful tool for the simulation of visual and infrared imagery because it allows control of all aspects of the scene. Specific targets can be defined and placed in arbitrary back-grounds, and specific atmospheric conditions and diurnal effects can be included and changed with relative ease, allowing a comprehensive study of factors critical to a real-world scenario. A major stumbling block to digital simulation has been the computation load required to process scenes containing a realistic representation of natural detail. The traditional approach to computer modeling of natural scenes represents natural detail explicitly, requiring a complex geometric data base which is costly to render. An alternative approach to modeling natural scenes is to use a small number of surfaces to define the major geometry of scene features and to use texturing to imply surface detail. Techniques developed at the Grumman Corporate Research Center use a few simple surfaces to define major scene features, such as hills, trees, and clouds, and a mathematical texturing function to define minor topographical detail by modulating surface shading and translucence. This technique pro-duces realistic visual images with much less computation than the traditional approach. Continuing research at Grumman in cooperation with the Keweenaw Research Institute and the U.S. Army Tank Automotive Command (TACOM) has extended the use of this technology to the simulation of infrared imagery by using the statistical characteristics of measured IR data to control textural shading on scene surfaces. This allows the simulation of visual and IR imagery using the same geometric data base and provides a cost-effective tool that can be integrated in a comprehensive target acquisition simulation system which will include missile dynamics, multi-sensor simulation, image processing, and pat-tern recognition.

  15. Monitoring and characterizing natural hazards with satellite InSAR imagery

    Science.gov (United States)

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel

    2010-01-01

    Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.

  16. Geometric Potential of Pléiades 1A Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Postelniak Andrii

    2014-10-01

    Full Text Available In this paper, the geometrical characteristics of Pléiades 1A satellite imagery (both single and stereo are analysed. At first the process of digital surface model (DSM extraction from a Pléiades 1A stereo pair is described and analysed. After that geometric an accuracy of imagery, orthorectified using the extracted DSM and using the SRTM (Shuttle radar topographic mission was analysed. The Pléiades 1A stereo pair was acquired on October 22, 2012 from the same orbital pass over an urban zone (Kiev, Ukraine. The study area is heterogeneous: there are both built-up and flat areas. The iImage orientation, DSM extraction and orthorectified images generation were performed using the PCI Geomatica 2013 software. The results showed that a strong, positive correlation between reference-derived elevations and DSM-derived elevations can be observed, and the orthorectified image accuracy, generated using that DSM, approximately equal to 1 m can be achieved using a bias compensation sensor model. Different sensor models were used for orthorectification using the SRTM. In this case, the geometric accuracy is а function of a chosen sensor model and a number of ground control points (GCP.

  17. The Northeast Greenland Sirius Water Polynya dynamics and variability inferred from satellite imagery

    DEFF Research Database (Denmark)

    Pedersen, Jørn Bjarke Torp; Kaufmann, Laura Hauch; Kroon, Aart

    2010-01-01

    ’, and examines its spatial and temporal dynamics by analysis of recent satellite imagery, modelled meteorological data and historical data covering the last decade. The dominating mechanisms to form and sustain the polynya are inferred and the persistence and inter-annual variability of the phenomenon...... and summer regimes in the seasonal evolution of the polynya. During the winter regime, both the size of and the ice cover within the polynya varies significantly on a temporal and spatial scale. Intermittent wind-driven openings of the polynya alternate with periods of increasing ice cover. Some of the most...... persistent areas of open water in the polynya coincide with locations where significant concentrations of spring and summer settlements from the Thule Inuit culture (AD 1400-1850) are observed, indicating a connection between the presence of the polynya and the Thule Inuit living in the area in prehistoric...

  18. The Northeast Greenland Sirius Water Polynya dynamics and variability inferred from satellite imagery

    DEFF Research Database (Denmark)

    Pedersen, Jørn Bjarke Torp; Kaufmann, Laura Hauch; Kroon, Aart

    2010-01-01

    ’, and examines its spatial and temporal dynamics by analysis of recent satellite imagery, modelled meteorological data and historical data covering the last decade. The dominating mechanisms to form and sustain the polynya are inferred and the persistence and inter-annual variability of the phenomenon...... are estimated. The polynya formation is predominantly governed by mechanical forcing caused by northerly gales, and it is classified as a wind-driven shelf water polynya. A marked seasonal difference in the surface wind field, together with the obvious seasonal cycle in insolation, creates distinct winter...... and summer regimes in the seasonal evolution of the polynya. During the winter regime, both the size of and the ice cover within the polynya varies significantly on a temporal and spatial scale. Intermittent wind-driven openings of the polynya alternate with periods of increasing ice cover. Some of the most...

  19. Advancing Coastal Climate Adaptation in Denmark by Land Subsidence Mapping using Sentinel-1 Satellite Imagery

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, Niels H.; Mølgaard, Mads R.

    2016-01-01

    There are still large uncertainties in projections of climate change and sea level rise. Here, land subsidence is an additional factor that may adversely affect the vulnerability towards floods in low-lying coastal communities. The presented study performs an initial assessment of subsidence...... mapping using Sentinel-1 satellite imagery and leveling at two coastal locations in Denmark. Within both investigated areas current subsidence rates of 5-10 millimeters per year are found. This subsidence is related to the local geology, and challenges and potentials in bringing land subsidence mapping...... and geology into climate adaptation are discussed in relation to perspectives of a national subsidence monitoring system partly based on the findings from the two coastal locations. The current lack of subsidence data and a fragmentation of geotechnical information are considered as hindrances to optimal...

  20. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  1. Glacier Fluctuations in the Western Himalaya: Multi-temporal Assessment Using Multi-sensor Satellite Imagery

    Science.gov (United States)

    Bishop, M. P.; Shroder, J. F.

    2004-12-01

    Alpine glaciers are retreating and downwasting in many mountain environments. Systematic and quantitative assessments are sorely needed, as regional mass-balance trends are not known, and many glaciers may disappear before we can study them and assess glacier sensitivity to climate forcing. This urgency dictates remote sensing and GIS-based studies to provide baseline information and estimates of mass balance. In the Western Himalaya there is a paucity of quantitative information on glacier fluctuations and meltwater contributions to rising sea level. As part of the Global Land Ice Measurements from Space (GLIMS) project, we conducted several glacier change-detection studies to assess ice fluctuations on selected glaciers. We compared SPOT imagery from the 1990's to ASTER satellite imagery from the 2000-2004 time period. Ground photography and satellite image analysis using artificial neural networks were used to compare glacier characteristics. Results indicate that some glaciers have retreated, while others exhibit very similar terminus positions to past positions, but have downwasted. Glacier retreat and downwasting have resulted in the disconnection of tributary glaciers to valley glaciers in the Hindu Kush and Nanga Parbat Himalaya. In addition, there are increases in meltwater production on some glaciers, as revealed by surging and variation in the frequency and size of supraglacial lakes. These results identify increased hazard potential in many areas, and suggest negative mass balance for some glaciers. Quantitative results from remote sensing studies, however, should be carefully interpreted, as climate, glacier, lithosphere interactions that dictate glacier fluctuations are not adequately accounted for in image-based analyses of supraglacial conditions. The integration of quantitative remote sensing/GIS information into numerical ice flow/mass balance models is required to obtain better estimates of mass balance and glacier sensitivity to climate forcing.

  2. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    Science.gov (United States)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab

  3. Using Satellite Imagery to Identify Tornado Damage Tracks and Recovery from the April 27, 2011 Severe Weather Outbreak

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Bell, Jordan R.

    2014-01-01

    Emergency response to natural disasters requires coordination between multiple local, state, and federal agencies. Single, relatively weak tornado events may require comparatively simple response efforts; but larger "outbreak" events with multiple strong, long-track tornadoes can benefit from additional tools to help expedite these efforts. Meteorologists from NOAA's National Weather Service conduct field surveys to map tornado tracks, assess damage, and determine the tornado intensity following each event. Moderate and high resolution satellite imagery can support these surveys by providing a high-level view of the affected areas. Satellite imagery could then be used to target areas for immediate survey or to corroborate the results of the survey after it is completed. In this study, the feasibility of using satellite imagery to identify tornado damage tracks was determined by comparing the characteristics of tracks observed from low-earth orbit to tracks assessed during the official NWS storm survey process. Of the 68 NWS confirmed centerlines, 24 tracks (35.3%) could be distinguished from other surface features using satellite imagery. Within each EF category, 0% of EF-0, 3% of EF-1, 50% of EF-2, 77.7% of EF-3, 87.5% of EF-4 and 100% of EF-5 tornadoes were detected. It was shown that satellite data can be used to identify tornado damage tracks in MODIS and ASTER NDVI imagery, where damage to vegetation creates a sharp drop in values though the minimum EF-category which can be detected is dependent upon the type of sensor used and underlying vegetation. Near-real time data from moderate resolution sensors compare favorably to field surveys after the event and suggest that the data can provide some value in the assessment process.

  4. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    Science.gov (United States)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  5. Insights into correlation between satellite infrared information and fault activities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Tectonic activities are accompanied with material movement and energy transfer, which definitely change the state of thermal radiation on the ground. Thus it is possible to infer present-day tectonic activities based on variations of the thermal radiation state on the ground. The received satellite infrared information is, however, likely influenced by many kinds of factors. Therefore, the first problem that needs to be solved is to extract information on tectonic activities and eliminate effects of external (non-tectonic) factors. In this study, we firstly make a review of the current studies on this subject, and then present the technical approach and our research goal.Using the data of 20 years from the infrared band of the satellite of National Oceanic and Atmospheric Administration (NOAA) and the method we have developed, we investigate fault activities in western China. The results show that the areas with high residual values of land surface brightness temperature (LSBT), which is presumably related to faultings in space, accord usually with the locations of followed major earthquakes. The times of their value growing are also roughly consistent with the beginning of active periods of earthquakes.The low frequency component fields of the LSBT, acquired from wavelet analysis, exhibit well the spatial distributions of active faults.The "heat penetrability index" (HPI) related with enhancement of subsurface thermal information has been expressed well for the backgrounds of accelerated tectonic motions, and some correlations exist between HPI and the local faulting and seismicity. This study provides a new approach to study temporal-spatial evolution of recent activities of faults and their interactions.

  6. Sherlock Holmes' or Don Quixote`s certainty? Interpretations of cropmarks on satellite imageries in archaeological investigation

    Science.gov (United States)

    Wilgocka, Aleksandra; RÄ czkowski, Włodzimierz; Kostyrko, Mikołaj; Ruciński, Dominik

    2016-08-01

    Years of experience in air-photo interpretations provide us to conclusion that we know what we are looking at, we know why we can see cropmarks, we even can estimate, when are the best opportunities to observe them. But even today cropmarks may be a subject of misinterpretation or wishful thinking. The same problems appear when working with aerial photographs, satellite imageries, ALS, geophysics, etc. In the paper we present several case studies based on data acquired for and within ArchEO - archaeological applications of Earth Observation techniques project to discuss complexity and consequences of archaeological interpretations. While testing usefulness of satellite imagery in Poland on various types of sites, cropmarks were the most frequent indicators of past landscapes as well as archaeological and natural features. Hence, new archaeological sites have been discovered mainly thanks to cropmarks. This situation has given us an opportunity to test not only satellite imageries as a source of data but also confront them with results of other non-invasive methods of data acquisition. When working with variety of data we have met several issues which raised problems of interpretation. Consequently, questions related to the cognitive value of remote sensing data appear and should be discussed. What do the data represent? To what extent the imageries, cropmarks or other visualizations represent the past? How should we deal with ambiguity of data? What can we learn from pitfalls in the interpretation of cropmarks, soilmarks etc. to share more Sherlock's methodology rather than run around Don Quixote's delusions?

  7. Observing Red Tide Algal Blooms From Satellite Ocean Color Imagery: West Florida Shelf

    Science.gov (United States)

    Krueger, E. T.; Jose, F.

    2016-12-01

    Harmful algal blooms (HABs) from Karenia brevis occur along the west Florida shelf (WFS) almost every year, producing a brevetoxin that is harmful to birds, fish, marine mammals, shellfish, and humans. These HABs are commonly known as "red tide" from the reddish discoloration in the water, but color can vary from yellow to deep brown depending on other parameters. Ocean color data is a viable tool for monitoring the outbreak and persistence of these ecological phenomena. Also, the spatial extend of this outbreak could be evaluated effectively from satellite imagery. Chlorophyll (Chl) and sea surface temperature (SST) data from four satellites during the period from 2010 to 2013 were analyzed, and compared the monthly composite data with in situ observation on K. brevis cell counts collected by the Florida Fish and Wildlife Conservation Commission (FWC). Remote sensing data were extracted from the NASA Ocean Color data servers and were processed using WimSoft, a Windows-based remote sensing data analysis program. Based on the comparison of data from 26 transects from the WFS, which were extended from nearshore to 400 km offshore, highest Chl concentrations were observed in the sector from St. Petersburg to Sanibel Island. FWC data also showed that highest K. brevis cell counts were concentrated in this region during the 2011 to 2012 period. Additionally, a high Chl concentration was observed for the Big Bend region, particularly during the spring and early summer. The inter-annual variability of Chl, SST, and red tide occurrence are also discussed in this study.

  8. Does the Data Resolution/origin Matter? Satellite, Airborne and Uav Imagery to Tackle Plant Invasions

    Science.gov (United States)

    Müllerová, Jana; Brůna, Josef; Dvořák, Petr; Bartaloš, Tomáš; Vítková, Michaela

    2016-06-01

    Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.

  9. Epipolar resampling of linear pushbroom satellite imagery by a new epipolarity model

    Science.gov (United States)

    Wang, Mi; Hu, Fen; Li, Jonathan

    This paper presents a practical epipolarity model for high-resolution linear pushbroom satellite images acquired in either along-track or cross-track mode, based on the projection reference plane in object space. A new method for epipolar resampling of satellite stereo imagery based on this model is then developed. In this method, the pixel-to-pixel relationship between the original image and the generated epipolar image is established directly by the geometric sensor model. The approximate epipolar images are generated in a manner similar to digital image rectification. In addition, by arranging the approximate epipolar lines on the defined projection reference plane, a stereoscopic model with consistent ground sampling distance and parallel to the object space is thus available, which is more convenient for three-dimensional measurement and interpretation. The results obtained from SPOT5, IKONOS, IRS-P5, and QuickBird stereo images indicate that the generated epipolar images all achieve high accuracy. Moreover, the vertical parallaxes at check points are at sub-pixel level, thus proving the feasibility, correctness, and applicability of the method.

  10. Detection of the urban heat island in Beijing using HJ-1B satellite imagery

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Satellite images are used extensively in studying the urban heat island(UHI) phenomenon.We evaluated the suitability of thermal infrared(TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing.Two modified algorithms for retrieving the land surface temperature(LST) from HJ-1B data were tested.The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output.The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data.Of the two algorithms,the mono-window algorithm performed better but further tests are necessary.With more frequent coverage than TM and higher spatial resolution than MODIS,the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.

  11. TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications

    Science.gov (United States)

    Wright, Robert; Lucey, Paul; Crites, Sarah; Garbeil, Harold; Wood, Mark; Pilger, Eric; Gabrieli, Andrea; Honniball, Casey

    2016-10-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm ♢ 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible. Measured signal-to-noise ratios range from peak values of 500:1 to 1500:1, for source temperature of 10 to 100°C.

  12. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    Science.gov (United States)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged

  13. gProcess and ESIP Platforms for Satellite Imagery Processing over the Grid

    Science.gov (United States)

    Bacu, Victor; Gorgan, Dorian; Rodila, Denisa; Pop, Florin; Neagu, Gabriel; Petcu, Dana

    2010-05-01

    The Environment oriented Satellite Data Processing Platform (ESIP) is developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) co-funded by the European Commission through FP7 [1]. The gProcess Platform [2] is a set of tools and services supporting the development and the execution over the Grid of the workflow based processing, and particularly the satelite imagery processing. The ESIP [3], [4] is build on top of the gProcess platform by adding a set of satellite image processing software modules and meteorological algorithms. The satellite images can reveal and supply important information on earth surface parameters, climate data, pollution level, weather conditions that can be used in different research areas. Generally, the processing algorithms of the satellite images can be decomposed in a set of modules that forms a graph representation of the processing workflow. Two types of workflows can be defined in the gProcess platform: abstract workflow (PDG - Process Description Graph), in which the user defines conceptually the algorithm, and instantiated workflow (iPDG - instantiated PDG), which is the mapping of the PDG pattern on particular satellite image and meteorological data [5]. The gProcess platform allows the definition of complex workflows by combining data resources, operators, services and sub-graphs. The gProcess platform is developed for the gLite middleware that is available in EGEE and SEE-GRID infrastructures [6]. gProcess exposes the specific functionality through web services [7]. The Editor Web Service retrieves information on available resources that are used to develop complex workflows (available operators, sub-graphs, services, supported resources, etc.). The Manager Web Service deals with resources management (uploading new resources such as workflows, operators, services, data, etc.) and in addition retrieves information on workflows. The Executor Web Service manages the execution of the instantiated workflows

  14. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    Science.gov (United States)

    B, Potgieter A.; D, Rodriguez; B, Power; J, Mclean; P, Davis

    2014-02-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (~1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible and

  15. Real-time classification of vehicles by type within infrared imagery

    Science.gov (United States)

    Kundegorski, Mikolaj E.; Akçay, Samet; Payen de La Garanderie, Grégoire; Breckon, Toby P.

    2016-10-01

    Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios.

  16. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  17. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  18. LANDSAT imagery: Description of products available from the CSIR Satellite Remote Sensing Centre

    Science.gov (United States)

    1982-01-01

    An overview of the LANDSAT system is provided along with information to assist prospective users in establishing whether imagery for their areas of interest is available and how to obtain such imagery. Spectral bands, spatial resolution, and digital data are explained as well as worldwide reference system indexing and the identification number assigned to images. The sizes and scales of standard black and white imagery and of false color composite imagery are listed. The format is given for computer compatible tapes and standard enhanced imagery is described. Other information available to users include LANDSAT index maps, catalogs of available imagery, a schedule of overpass dates, and a list of product prices.

  19. Sea ice thickness analyses for the Bohai Sea using MODIS thermal infrared imagery

    Institute of Scientific and Technical Information of China (English)

    ZENG Tao; SHI Lijian; MARKO Makynen; CHENG Bin; ZOU Juhong; ZHANG Zhiping

    2016-01-01

    Level ice thickness distribution pattern in the Bohai Sea in the winter of 2009–2010 was investigated in this paper using MODIS night-time thermal infrared imagery. The cloud cover in the imagery was masked out manually. Level ice thickness was calculated using MODIS ice surface temperature and an ice surface heat balance equation. Weather forcing data was from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. The retrieved ice thickness agreed reasonable well within situ observations from two off-shore oil platforms. The overall bias and the root mean square error of the MODIS ice thickness are –1.4 cm and 3.9 cm, respectively. The MODIS results under cold conditions (air temperature < –10°C) also agree with the estimated ice growth from Lebedev and Zubov models. The MODIS ice thickness is sensitive to the changes of the sea ice and air temperature, in particular when the sea ice is relatively thin. It is less sensitive to the wind speed. Our method is feasible for the Bohai Sea operational ice thickness analyses during cold freezing seasons.

  20. Denoising infrared maritime imagery using tailored dictionaries via modified K-SVD algorithm.

    Science.gov (United States)

    Smith, L N; Olson, C C; Judd, K P; Nichols, J M

    2012-06-10

    Recent work has shown that tailored overcomplete dictionaries can provide a better image model than standard basis functions for a variety of image processing tasks. Here we propose a modified K-SVD dictionary learning algorithm designed to maintain the advantages of the original approach but with a focus on improved convergence. We then use the learned model to denoise infrared maritime imagery and compare the performance to the original K-SVD algorithm, several overcomplete "fixed" dictionaries, and a standard wavelet denoising algorithm. Results indicate the superiority of overcomplete representations and show that our tailored approach provides similar peak signal-to-noise ratios as the traditional K-SVD at roughly half the computational cost.

  1. High-spatial resolution multispectral and panchromatic satellite imagery for mapping perennial desert plants

    Science.gov (United States)

    Alsharrah, Saad A.; Bruce, David A.; Bouabid, Rachid; Somenahalli, Sekhar; Corcoran, Paul A.

    2015-10-01

    The use of remote sensing techniques to extract vegetation cover information for the assessment and monitoring of land degradation in arid environments has gained increased interest in recent years. However, such a task can be challenging, especially for medium-spatial resolution satellite sensors, due to soil background effects and the distribution and structure of perennial desert vegetation. In this study, we utilised Pleiades high-spatial resolution, multispectral (2m) and panchromatic (0.5m) imagery and focused on mapping small shrubs and low-lying trees using three classification techniques: 1) vegetation indices (VI) threshold analysis, 2) pre-built object-oriented image analysis (OBIA), and 3) a developed vegetation shadow model (VSM). We evaluated the success of each approach using a root of the sum of the squares (RSS) metric, which incorporated field data as control and three error metrics relating to commission, omission, and percent cover. Results showed that optimum VI performers returned good vegetation cover estimates at certain thresholds, but failed to accurately map the distribution of the desert plants. Using the pre-built IMAGINE Objective OBIA approach, we improved the vegetation distribution mapping accuracy, but this came at the cost of over classification, similar to results of lowering VI thresholds. We further introduced the VSM which takes into account shadow for further refining vegetation cover classification derived from VI. The results showed significant improvements in vegetation cover and distribution accuracy compared to the other techniques. We argue that the VSM approach using high-spatial resolution imagery provides a more accurate representation of desert landscape vegetation and should be considered in assessments of desertification.

  2. High-resolution multispectral satellite imagery for extracting bathymetric information of Antarctic shallow lakes

    Science.gov (United States)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-05-01

    High-resolution pansharpened images from WorldView-2 were used for bathymetric mapping around Larsemann Hills and Schirmacher oasis, east Antarctica. We digitized the lake features in which all the lakes from both the study areas were manually extracted. In order to extract the bathymetry values from multispectral imagery we used two different models: (a) Stumpf model and (b) Lyzenga model. Multiband image combinations were used to improve the results of bathymetric information extraction. The derived depths were validated against the in-situ measurements and root mean square error (RMSE) was computed. We also quantified the error between in-situ and satellite-estimated lake depth values. Our results indicated a high correlation (R = 0.60 0.80) between estimated depth and in-situ depth measurements, with RMSE ranging from 0.10 to 1.30 m. This study suggests that the coastal blue band in the WV-2 imagery could retrieve accurate bathymetry information compared to other bands. To test the effect of size and dimension of lake on bathymetry retrieval, we distributed all the lakes on the basis of size and depth (reference data), as some of the lakes were open, some were semi frozen and others were completely frozen. Several tests were performed on open lakes on the basis of size and depth. Based on depth, very shallow lakes provided better correlation (≈ 0.89) compared to shallow (≈ 0.67) and deep lakes (≈ 0.48). Based on size, large lakes yielded better correlation in comparison to medium and small lakes.

  3. Inversion Technique for Estimating Emissions of Volcanic Ash from Satellite Imagery

    Science.gov (United States)

    Pelley, Rachel; Cooke, Michael; Manning, Alistair; Thomson, David; Witham, Claire; Hort, Matthew

    2014-05-01

    When using dispersion models such as NAME (Numerical Atmospheric-dispersion Modelling Environment) to predict the dispersion of volcanic ash, a source term defining the mass release rate of ash is required. Inversion modelling using observations of the ash plume provides a method of estimating the source term for use in NAME. Our inversion technique makes use of satellite retrievals, calculated using data from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument on-board the MSG (Meteosat Second Generation) satellite, as the ash observations. InTEM (Inversion Technique for Emission Modelling) is the UK Met Office's inversion modelling system. Recently the capability to estimate time and height varying source terms has been implemented and applied to volcanic ash. InTEM uses a probabilistic approach to fit NAME model concentrations to satellite retrievals. This is achieved by applying Bayes Theorem to give a cost function for the source term. Source term profiles with lower costs generate model concentrations that better fit the satellite retrievals. InTEM uses the global optimisation technique, simulated annealing, to find the minimum of the cost function. The use of a probabilistic approach allows the uncertainty in the satellite retrievals to be incorporated into the inversion technique. InTEM makes use of satellite retrievals of both ash column loadings and of cloud free regions. We present a system that allows InTEM to be used during an eruption. The system is automated and can produce source term updates up to four times a day. To allow automation hourly satellite retrievals of ash are routinely produced using conservative detection limits. The conservative detection limits provide good detection of the ash plume while limiting the number of false alarms. Regions which are flagged as ash contaminated or free from cloud (both meteorological and ash) are used in the InTEM system. This approach is shown to improve the concentrations in the

  4. Land and Water Interface of Louisiana from 2002 Landsat Thematic Mapper Satellite Imagery, Geographic NAD83, LOSCO (2005) [landwater_interface_la_03ac_LOSCO_2002

    Data.gov (United States)

    Louisiana Geographic Information Center — These are polygon and raster data sets derived from 2002 Landsat Thematic Mapper Satellite Imagery that indicates areas of land and areas of water in Louisiana. The...

  5. Land and Water Interface of Louisiana from 2002 Landsat Thematic Mapper Satellite Imagery, Geographic NAD83, LOSCO (2004) [landwater_interface_la_25ac_LOSCO_2002

    Data.gov (United States)

    Louisiana Geographic Information Center — These are polygon and raster data sets derived from 2002 Landsat Thematic Mapper Satellite Imagery that indicates areas of land and areas of water in Louisiana. The...

  6. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  7. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  8. Land and Water Interface of Louisiana from 2002 Landsat Thematic Mapper Satellite Imagery, Geographic NAD83, LOSCO (2005) [landwater_interface_la_05ac_LOSCO_2002

    Data.gov (United States)

    Louisiana Geographic Information Center — These are polygon and raster data sets derived from 2002 Landsat Thematic Mapper Satellite Imagery that indicates areas of land and areas of water in Louisiana. The...

  9. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    Science.gov (United States)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  10. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approxima......The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...... vs snow accumulation in the interior catchment show that Daugaard Jensen Gletscher has a small negative mass balance. This result is consistent with other mass-balance estimates for the inland region of the glacier....

  11. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    CAO Yungang

    2016-10-01

    Full Text Available A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features. Firstly, texture and shape features are extracted at the pixel level, and spectral features are extracted at the object level based on multi-scale image segmentation maps. Then, extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions. Finally, an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline. Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.

  12. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  13. Subsurface Dynamical Properties of Variable Features Seen in Satellite IR Imagery off Point Sur and Their Acoustic Significance.

    Science.gov (United States)

    1980-06-01

    profile as in Fig. 87 except 60 foot source at 50 Hz -------------------------------. 205 90 Graph showing the difference between clima - tological PL...graph as in Fig. 90 except 300 foot source ---------------------------------------- 207 92 Graph showing the difference between clima - tological PL and... temporal scales, to make observations on the subsurface structure of features observed by satellite imagery, to investigate the diurnal variation of the sea

  14. Combining Satellite Ocean Color Imagery and Circulation Modeling to Forecast Bio-Optical Properties: Comparison of Models and Advection Schemes

    Science.gov (United States)

    2008-10-01

    Remote sensing of ocean color provides synoptic surface ocean bio -optical properties but is limited to real-time or climatological applications. Many...this, we couple satellite imagery with numerical circulation models to provide short-term (24-48 hr) forecasts of bio -optical properties. These are...physical processes control the bio -optical distribution patterns. We compare optical forecast results from three Navy models and two advection

  15. Exploring Land use and Land cover change in the mining areas of Wa East District, Ghana using Satellite Imagery

    Science.gov (United States)

    Basommi, Prosper Laari; Guan, Qingfeng; Cheng, Dandan

    2015-11-01

    Satellite imagery has been widely used to monitor the extent of environmental change in both mine and post mine areas. This study uses Remote sensing and Geographical Information System techniques for the assessment of land use/land cover dynamics of mine related areas in Wa East District of Ghana. Landsat satellite imageries of three different time periods, i.e., 1991, 2000 and 2014 were used to quantify the land use/cover changes in the area. Supervised Classification using Maximum Likelihood Technique in ERDAS was utilized. The images were categorized into five different classes: Open Savannah, Closed Savannah, Bare Areas, Settlement and Water. Image differencing method of change detection was used to investigate the changes. Normalized Differential Vegetative Index valueswere used to correlate the state of healthy vegetation. The image differencing showed a positive correlation to the changes in the Land use and Land cover classes. NDVI values reduced from 0.48 to 0.11. The land use change matrix also showed conversion of savannah areas into bare ground and settlement. Open and close savannah reduced from 50.80% to 36.5% and 27.80% to 22.67% respectively whiles bare land and settlement increased. Overall accuracy of classified 2014 image and kappa statistics was 83.20% and 0.761 respectively. The study revealed the declining nature of the vegetation and the significance of using satellite imagery. A higher resolution satellite Imagery is however needed to satisfactorily delineate mine areas from other bare areas in such Savannah zones.

  16. The Matsu Wheel: A Cloud-based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    CERN Document Server

    Patterson, Maria T; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert; Handy, Matthew; Ly, Vuong; Mandl, Dan; Pederson, Shane; Pivarski, Jim; Powell, Ray; Spring, Jonathan; Wells, Walt

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for the cloud-based processing of Earth satellite imagery. A particular focus is the development of applications for detecting fires and floods to help support natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce, Storm and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework is designed to be able to support scanning queries using cloud computing applications, such as Hadoop and Accumulo. A scanning query processes all, or most of the data, in a database or data repository. We also descri...

  17. Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information

    Directory of Open Access Journals (Sweden)

    Curt H. Davis

    2005-08-01

    Full Text Available High-resolution satellite imagery provides an important new data source for building extraction. We demonstrate an integrated strategy for identifying buildings in 1-meter resolution satellite imagery of urban areas. Buildings are extracted using structural, contextual, and spectral information. First, a series of geodesic opening and closing operations are used to build a differential morphological profile (DMP that provides image structural information. Building hypotheses are generated and verified through shape analysis applied to the DMP. Second, shadows are extracted using the DMP to provide reliable contextual information to hypothesize position and size of adjacent buildings. Seed building rectangles are verified and grown on a finely segmented image. Next, bright buildings are extracted using spectral information. The extraction results from the different information sources are combined after independent extraction. Performance evaluation of the building extraction on an urban test site using IKONOS satellite imagery of the City of Columbia, Missouri, is reported. With the combination of structural, contextual, and spectral information, 72.7% of the building areas are extracted with a quality percentage 58.8%.

  18. Feature extraction and classification of clouds in high resolution panchromatic satellite imagery

    Science.gov (United States)

    Sharghi, Elan

    The development of sophisticated remote sensing sensors is rapidly increasing, and the vast amount of satellite imagery collected is too much to be analyzed manually by a human image analyst. It has become necessary for a tool to be developed to automate the job of an image analyst. This tool would need to intelligently detect and classify objects of interest through computer vision algorithms. Existing software called the Rapid Image Exploitation Resource (RAPIER®) was designed by engineers at Space and Naval Warfare Systems Center Pacific (SSC PAC) to perform exactly this function. This software automatically searches for anomalies in the ocean and reports the detections as a possible ship object. However, if the image contains a high percentage of cloud coverage, a high number of false positives are triggered by the clouds. The focus of this thesis is to explore various feature extraction and classification methods to accurately distinguish clouds from ship objects. An examination of a texture analysis method, line detection using the Hough transform, and edge detection using wavelets are explored as possible feature extraction methods. The features are then supplied to a K-Nearest Neighbors (KNN) or Support Vector Machine (SVM) classifier. Parameter options for these classifiers are explored and the optimal parameters are determined.

  19. Demarcation of Prime Farmland Protection Areas around a Metropolis Based on High-Resolution Satellite Imagery

    Science.gov (United States)

    Xia, Nan; Wang, Yajun; Xu, Hao; Sun, Yuefan; Yuan, Yi; Cheng, Liang; Jiang, Penghui; Li, Manchun

    2016-12-01

    Prime farmland (PF) is defined as high-quality farmland and a prime farmland protection area (PFPA, including related roads, waters and facilities) is a region designated for the special protection of PF. However, rapid urbanization in China has led to a tremendous farmland loss and to the degradation of farmland quality. Based on remote sensing and geographic information system technology, this study developed a semiautomatic procedure for designating PFPAs using high-resolution satellite imagery (HRSI), which involved object-based image analysis, farmland composite evaluation, and spatial analysis. It was found that the HRSIs can provide elaborate land-use information, and the PFPA demarcation showed strong correlation with the farmland area and patch distance. For the benefit of spatial planning and management, different demarcation rules should be applied for suburban and exurban areas around a metropolis. Finally, the overall accuracy of HRSI classification was about 80% for the study area, and high-quality farmlands from evaluation results were selected as PFs. About 95% of the PFs were demarcated within the PFPAs. The results of this study will be useful for PFPA planning and the methods outlined could help in the automatic designation of PFPAs from the perspective of the spatial science.

  20. Monitoring the Urban Growth of Dhaka (bangladesh) by Satellite Imagery in Flooding Risk Management Perspective

    Science.gov (United States)

    Bitelli, G.; Franci, F.; Mandanici, E.

    2013-01-01

    There is large consensus that demographic changes, the lack of appropriate environmental policies and sprawling urbanization result in high vulnerability and exposure to the natural disasters. This work reports some experiences of using multispectral satellite imagery to produce landuse/cover maps for the Dhaka city, the capital of Bangladesh, which is subject to frequent flooding events.The activity was conducted in collaboration with the non-profit organization ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The Landsat images acquired in 2000, 2002 and 2009 were used to evaluate the urban growth in order to support risk assessment studies; to identify areas routinely flooded during the monsoon season, the image of October 2009 (the most critical month for the effects of rain) was compared with two images acquired in January and February 2010. The analysis between 2000 and 2009 was able to quantify a very rapid growth of the metropolis, with an increase in built-up areas from 75 to 111 km2. The analysis highlights also a sharp rise of Bare soil class, likely related to the construction of embankments for the creation of new building space; consequently a decrease of cultivated land was observed. In particular, these artificial islands have been invading flooding areas. The change detection procedure also showed that the flooding in October 2009 affected about 20% (115 out of 591 km2) of the entire study area; furthermore these areas became wetlands and farmland over the next three/four months.

  1. Flood mapping using VHR satellite imagery: a comparison between different classification approaches

    Science.gov (United States)

    Franci, Francesca; Boccardo, Piero; Mandanici, Emanuele; Roveri, Elena; Bitelli, Gabriele

    2016-10-01

    Various regions in Europe have suffered from severe flooding over the last decades. Flood disasters often have a broad extent and a high frequency. They are considered the most devastating natural hazards because of the tremendous fatalities, injuries, property damages, economic and social disruption that they cause. In this context, Earth Observation techniques have become a key tool for flood risk and damage assessment. In particular, remote sensing facilitates flood surveying, providing valuable information, e.g. flood occurrence, intensity and progress of flood inundation, spurs and embankments affected/threatened. The present work aims to investigate the use of Very High Resolution satellite imagery for mapping flood-affected areas. The case study is the November 2013 flood event which occurred in Sardinia region (Italy), affecting a total of 2,700 people and killing 18 persons. The investigated zone extends for 28 km2 along the Posada river, from the Maccheronis dam to the mouth in the Tyrrhenian sea. A post-event SPOT6 image was processed by means of different classification methods, in order to produce the flood map of the analysed area. The unsupervised classification algorithm ISODATA was tested. A pixel-based supervised technique was applied using the Maximum Likelihood algorithm; moreover, the SPOT 6 image was processed by means of object-oriented approaches. The produced flood maps were compared among each other and with an independent data source, in order to evaluate the performance of each method, also in terms of time demand.

  2. Effective System for Automatic Bundle Block Adjustment and Ortho Image Generation from Multi Sensor Satellite Imagery

    Science.gov (United States)

    Akilan, A.; Nagasubramanian, V.; Chaudhry, A.; Reddy, D. Rajesh; Sudheer Reddy, D.; Usha Devi, R.; Tirupati, T.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Block Adjustment is a technique for large area mapping for images obtained from different remote sensingsatellites.The challenge in this process is to handle huge number of satellite imageries from different sources with different resolution and accuracies at the system level. This paper explains a system with various tools and techniques to effectively handle the end-to-end chain in large area mapping and production with good level of automation and the provisions for intuitive analysis of final results in 3D and 2D environment. In addition, the interface for using open source ortho and DEM references viz., ETM, SRTM etc. and displaying ESRI shapes for the image foot-prints are explained. Rigorous theory, mathematical modelling, workflow automation and sophisticated software engineering tools are included to ensure high photogrammetric accuracy and productivity. Major building blocks like Georeferencing, Geo-capturing and Geo-Modelling tools included in the block adjustment solution are explained in this paper. To provide optimal bundle block adjustment solution with high precision results, the system has been optimized in many stages to exploit the full utilization of hardware resources. The robustness of the system is ensured by handling failure in automatic procedure and saving the process state in every stage for subsequent restoration from the point of interruption. The results obtained from various stages of the system are presented in the paper.

  3. Glacier changes in the Karakoram region mapped by multi-mission satellite imagery

    Directory of Open Access Journals (Sweden)

    M. Rankl

    2013-08-01

    Full Text Available Glaciers in the Karakoram region are known to show stable and advancing terminus positions or surging behavior, which contrasts the worldwide retreat of many mountain glaciers. The present study uses Landsat imagery to derive an updated and extended glacier inventory. Surging and advancing glaciers and their annual termini position changes are mapped in addition. Out of 1334 glaciers, 134 show advancing or surging behavior, with a marked increase since 2000. The length distribution of surging glaciers differs significantly from non-surging glaciers. More than 50% of the advancing/surging glaciers are shorter than 10 km. Besides a regional spatial coverage of ice dynamics, high-resolution SAR data allows to investigate very small and comparably fast flowing glaciers (up to 1.8 m day−1. Such data enables mapping of temporal changes of ice dynamics of individual small surging or advancing glaciers. In a further case study, glacier volume changes of three glaciers around Braldu Glacier are quantified during a surge event comparing digital elevation models from the Shuttle Radar Topography Mission (SRTM and the new TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X Mission. We recommend regular acquisitions of high resolution (bi-static SAR satellite data and further exploitation of the archives in order to generate an improved database for monitoring changes, and to at least partially compensate for the lack of in-situ and long-term climatological measurements in the Karakoram region.

  4. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    Science.gov (United States)

    Husak, G.J.; Marshall, M. T.; Michaelsen, J.; Pedreros, Diego; Funk, Christopher C.; Galu, G.

    2008-01-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  5. Detection of facilities in satellite imagery using semi-supervized image classification and auxiliary contextual observables

    Science.gov (United States)

    Harvey, Neal R.; Ruggiero, C.; Pawley, N. H.; MacDonald, B.; Oyer, A.; Balick, L.; Brumby, S. P.

    2009-05-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervised assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.

  6. Determination of mangrove change in Matang Mangrove Forest using multi temporal satellite imageries

    Science.gov (United States)

    Ibrahim, N. A.; Mustapha, M. A.; Lihan, T.; Ghaffar, M. A.

    2013-11-01

    Mangrove protects shorelines from damaging storm and hurricane winds, waves, and floods. Mangroves also help prevent erosion by stabilizing sediments with their tangled root systems. They maintain water quality and clarity, filtering pollutants and trapping sediments originating from land. However, mangrove has been reported to be threatened by land conversion for other activities. In this study, land use and land cover changes in Matang Mangrove Forest during the past 18 years (1993 to 2011) were determined using multi-temporal satellite imageries by Landsat TM and RapidEye. In this study, classification of land use and land cover approach was performed using the maximum likelihood classifier (MCL) method along with vegetation index differencing (NDVI) technique. Data obtained was evaluated through Kappa coefficient calculation for accuracy and results revealed that the classification accuracy was 81.25% with Kappa Statistics of 0.78. The results indicated changes in mangrove forest area to water body with 2,490.6 ha, aquaculture with 890.7 ha, horticulture with 1,646.1 ha, palm oil areas with 1,959.2 ha, dry land forest with 2,906.7 ha and urban settlement area with 224.1 ha. Combinations of these approaches were useful for change detection and for indication of the nature of these changes.

  7. GPU-based normalized cuts for road extraction using satellite imagery

    Indian Academy of Sciences (India)

    J Senthilnath; S Sindhu; S N Omkar

    2014-12-01

    This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, vegetation, and fallow regions). The road regions are then extracted using the normalized cuts algorithm. Normalized cuts algorithm is a graph-based partitioning approach whose focus lies in extracting the global impression (perceptual grouping) of an image rather than local features. For the segmented image, post-processing is carried out using morphological operations – erosion and dilation. Finally, the road extracted image is overlaid on the original image. Here, a GPGPU (General Purpose Graphical Processing Unit) approach has been adopted to implement the same algorithm on the GPU for fast processing. A performance comparison of this proposed GPU implementation of normalized cuts algorithm with the earlier algorithm (CPU implementation) is presented. From the results, we conclude that the computational improvement in terms of time as the size of image increases for the proposed GPU implementation of normalized cuts. Also, a qualitative and quantitative assessment of the segmentation results has been projected.

  8. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Neal R [Los Alamos National Laboratory; Ruggiero, Christy E [Los Alamos National Laboratory; Pawley, Norma H [Los Alamos National Laboratory; Brumby, Steven P [Los Alamos National Laboratory; Macdonald, Brian [Los Alamos National Laboratory; Balick, Lee [Los Alamos National Laboratory; Oyer, Alden [Los Alamos National Laboratory

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervised assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.

  9. Object-oriented industrial solid waste identification using HJ satellite imagery: a case study of phosphogypsum

    Science.gov (United States)

    Fu, Zhuo; Shen, Wenming; Xiao, Rulin; Xiong, Wencheng; Shi, Yuanli; Chen, Baisong

    2012-10-01

    The increasing volume of industrial solid wastes presents a critical problem for the global environment. In the detection and monitoring of these industrial solid wastes, the traditional field methods are generally expensive and time consuming. With the advantages of quick observations taken at a large area, remote sensing provides an effective means for detecting and monitoring the industrial solid wastes in a large scale. In this paper, we employ an object-oriented method for detecting the industrial solid waste from HJ satellite imagery. We select phosphogypsum which is a typical industrial solid waste as our target. Our study area is located in Fuquan in Guizhou province of China. The object oriented method we adopted consists of the following steps: 1) Multiresolution segmentation method is adopted to segment the remote sensing images for obtaining the object-based images. 2) Build the feature knowledge set of the object types. 3) Detect the industrial solid wastes based on the object-oriented decision tree rule set. We analyze the heterogeneity in features of different objects. According to the feature heterogeneity, an object-oriented decision tree rule set is then built for aiding the identification of industrial solid waste. Then, based on this decision tree rule set, the industrial solid waste can be identified automatically from remote sensing images. Finally, the identified results are validated using ground survey data. Experiments and results indicate that the object-oriented method provides an effective method for detecting industrial solid wastes.

  10. Seasonally-managed wetland footprint delineation using Landsat ETM+ satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Epshtein, Olga [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arizona State Univ., Tempe, AZ (United States). School of Sustainable Engineering and the Built Environment

    2014-01-09

    One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands' areal footprint during the periods of flood-up and drawdown. In this paper, we present a data-lean solution to this problem using an example application in the San Joaquin Basin, California. Through analysis of high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric to better capture the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets for two wetlands within the study area. The proposed classification which uses a Landsat ETM + Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30–50% relative to previous wetland delineation studies. Finally, requiring modest ancillary data, the study results provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.

  11. Mapping snow depth in open alpine terrain from stereo satellite imagery

    Science.gov (United States)

    Marti, R.; Gascoin, S.; Berthier, E.; de Pinel, M.; Houet, T.; Laffly, D.

    2016-07-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km2) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km2). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available.

  12. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines

    Science.gov (United States)

    Shen, Xiang; Liu, Bin; Li, Qing-Quan

    2017-03-01

    The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates

  13. A robust method for removal of glint effects from satellite ocean colour imagery

    Directory of Open Access Journals (Sweden)

    R. K. Singh

    2014-12-01

    Full Text Available Removal of the glint effects from satellite imagery for accurate retrieval of water-leaving radiances is a complicated problem since its contribution in the measured signal is dependent on many factors such as viewing geometry, sun elevation and azimuth, illumination conditions, wind speed and direction, and the water refractive index. To simplify the situation, existing glint correction models describe the extent of the glint-contaminated region and its contribution to the radiance essentially as a function of the wind speed and sea surface slope that often lead to a tremendous loss of information with a considerable scientific and financial impact. Even with the glint-tilting capability of modern sensors, glint contamination is severe on the satellite-derived ocean colour products in the equatorial and sub-tropical regions. To rescue a significant portion of data presently discarded as "glint contaminated" and improving the accuracy of water-leaving radiances in the glint contaminated regions, we developed a glint correction algorithm which is dependent only on the satellite derived Rayleigh Corrected Radiance and absorption by clear waters. The new algorithm is capable of achieving meaningful retrievals of ocean radiances from the glint-contaminated pixels unless saturated by strong glint in any of the wavebands. It takes into consideration the combination of the background absorption of radiance by water and the spectral glint function, to accurately minimize the glint contamination effects and produce robust ocean colour products. The new algorithm is implemented along with an aerosol correction method and its performance is demonstrated for many MODIS-Aqua images over the Arabian Sea, one of the regions that are heavily affected by sunglint due to their geographical location. The results with and without sunglint correction are compared indicating major improvements in the derived products with sunglint correction. When compared to the

  14. Compression of infrared imagery sequences containing a slow-moving point target, part II.

    Science.gov (United States)

    Huber-Shalem, Revital; Hadar, Ofer; Rotman, Stanley R; Huber-Lerner, Merav

    2013-03-10

    Infrared (IR) imagery sequences are commonly used for detecting moving targets in the presence of evolving cloud clutter or background noise. This research concentrates on slow-moving point targets that are less than one pixel in size, such as aircraft at long ranges from a sensor. Because transmitting IR imagery sequences to a base unit or storing them consumes considerable time and resources, a compression method that maintains the point-target detection capabilities is highly desirable. In our previous work, we introduced two temporal compression methods that preserve the temporal profile properties of the point target in the form of discrete cosine transform (DCT) quantization and parabola fit. In the present work, we extend the compression task method of DCT quantization by applying spatial compression over the temporally compressed coefficients, which is followed by bit encoding. We evaluate the proposed compression method using a signal-to-noise ratio (SNR)-based measure for point target detection and find that it yields better results than the compression standard H.264. Furthermore, we introduce an automatic detection algorithm that extracts the target location from the SNR scores image, which is acquired during the evaluation process and has a probability of detection and a probability of false alarm close to those of the original sequences. We previously determined that it is necessary to establish a minimal noise level in the SNR-based measure to compensate for smoothing that is induced by the compression. Here, the noise level calculation process is modified in order to allow detection of targets traversing all background types.

  15. Real-time person detection in low-resolution thermal infrared imagery with MSER and CNNs

    Science.gov (United States)

    Herrmann, Christian; Müller, Thomas; Willersinn, Dieter; Beyerer, Jürgen

    2016-10-01

    In many camera-based systems, person detection and localization is an important step for safety and security applications such as search and rescue, reconnaissance, surveillance, or driver assistance. Long-wave infrared (LWIR) imagery promises to simplify this task because it is less affected by background clutter or illumination changes. In contrast to a lot of related work, we make no assumptions about any movement of persons or the camera, i.e. persons may stand still and the camera may move or any combination thereof. Furthermore, persons may appear arbitrarily in near or far distances to the camera leading to low-resolution persons in far distances. To address this task, we propose a two-stage system, including a proposal generation method and a classifier to verify, if the detected proposals really are persons. In contradiction to use all possible proposals as with sliding window approaches, we apply Maximally Stable Extremal Regions (MSER) and classify the detected proposals afterwards with a Convolutional Neural Network (CNN). The MSER algorithm acts as a hot spot detector when applied to LWIR imagery. Because the body temperature of persons is usually higher than the background, they appear as hot spots in the image. However, the MSER algorithm is unable to distinguish between different kinds of hot spots. Thus, all further LWIR sources such as windows, animals or vehicles will be detected, too. Still by applying MSER, the number of proposals is reduced significantly in comparison to a sliding window approach which allows employing the high discriminative capabilities of deep neural networks classifiers that were recently shown in several applications such as face recognition or image content classification. We suggest using a CNN as classifier for the detected hot spots and train it to discriminate between person hot spots and all further hot spots. We specifically design a CNN that is suitable for the low-resolution person hot spots that are common with

  16. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    Science.gov (United States)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  17. Quantifying the Value of Satellite Imagery in Agriculture and other Sectors

    Science.gov (United States)

    Brown, M. E.; Abbott, P. C.; Escobar, V. M.

    2013-12-01

    This study focused on quantifying the commercial value of satellite remote sensing for agriculture. Commercial value from satellite imagery arises when improved information leads to better economic decisions. We identified five areas of application of remote sensing to agriculture where there is this potential: crop management (precision agriculture), insurance, real estate assessment, crop forecasting, and environmental monitoring. These applications can be divided between public information (crop forecasting) and those that may generate private commercial value (crop management), with both public and private information dimensions in some categories. Public information applications of remote sensing have been more successful in the past, and are likely to generate more economic value in the future. It was found that several issues have limited realization of the potential to generate private value from remote sensing in agriculture. The scale of use is small to the high cost of acquiring and interpreting large images has limited the cost effectiveness to individual farmers. Insurance, environmental monitoring, and crop management services by cooperatives or consultants may be cases overcoming this limitation. The greatest opportunities for potential commercial value from agriculture are probably in the crop forecasting area, especially where agricultural statistics services are not as well developed, since public market information benefits a broad range of economic actors, not limited to countries where forecasts are made. We estimate here the value from components of USDA's World Agricultural Supply and Demand Estimates (WASDE) forecasts for corn, indicating potential value increasing in the range of 60 to 240 million if improved satellite based information enhances those forecasts. The research was conducted by agricultural economists at Purdue University, and will be the basis for further evaluation of the use of satellite data within the NASA Carbon

  18. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery.

    Directory of Open Access Journals (Sweden)

    Jingcheng Zhang

    Full Text Available Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B, green (G, red (R and near infrared (NIR bands from HJ-CCD (CCD sensor on Huanjing satellite to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72. However, by comparing these disease maps with ground survey data (validation samples, all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59. The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale.

  19. Investigating the error budget of tropical rainfall accumulations derived from combined passive microwave and infrared satellite measurements

    Science.gov (United States)

    Roca, R.; Chambon, P.; jobard, I.; Viltard, N.

    2012-04-01

    Measuring rainfall requires a high density of observations, which, over the whole tropical elt, can only be provided from space. For several decades, the availability of satellite observations has greatly increased; thanks to newly implemented missions like the Megha-Tropiques mission and the forthcoming GPM constellation, measurements from space become available from a set of observing systems. In this work, we focus on rainfall error estimations at the 1 °/1-day accumulated scale, key scale of meteorological and hydrological studies. A novel methodology for quantitative precipitation estimation is introduced; its name is TAPEER (Tropical Amount of Precipitation with an Estimate of ERrors) and it aims to provide 1 °/1-day rain accumulations and associated errors over the whole Tropical belt. This approach is based on a combination of infrared imagery from a fleet of geostationary satellites and passive microwave derived rain rates from a constellation of low earth orbiting satellites. A three-stage disaggregation of error into sampling, algorithmic and calibration errors is performed; the magnitudes of the three terms are then estimated separately. A dedicated error model is used to evaluate sampling errors and a forward error propagation approach is used for an estimation of algorithmic and calibration errors. One of the main findings in this study is the large contribution of the sampling errors and the algorithmic errors of BRAIN on medium rain rates (2 mm h-1 to 10 mm h-1) in the total error budget.

  20. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  1. Analysis of Satellite and Airborne Imagery for Detection of Water Hyacinth and Other Invasive Floating Macrophytes and Tracking of Aquatic Weed Control Efficacy

    Science.gov (United States)

    Potter, Christopher

    2016-01-01

    Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed an 80 percent overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.

  2. Overview of Physical Models and Statistical Approaches for Weak Gaseous Plume Detection using Passive Infrared Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Nicolas Hengartner

    2006-12-01

    Full Text Available The performance of weak gaseous plume-detection methods in hyperspectral long-wave infrared imagery depends on scene-specific conditions such at the ability to properly estimate atmospheric transmission, the accuracy of estimated chemical signatures, and background clutter. This paper reviews commonly-applied physical models in the context of weak plume identification and quantification, identifies inherent error sources as well as those introduced by making simplifying assumptions, and indicates research areas.

  3. Prototype of the Mexican spatial data infrastructure for climate raster models and satellite imagery (“VISTA-C”)

    Science.gov (United States)

    Couturier, S.; Osorno Covarrubias, J.; Magaña Rueda, V.; Martínez Zazueta, I.; Vázquez Cruz, G.

    2017-01-01

    In the face of climatic uncertainty and its impacts on agriculture yields, there is a growing need for public institutions of subtropical countries to access as reliable as possible meteorological models and transmit a representation of their results in an effective way to stakeholders in agriculture. In many of these countries however, broad climatic regions and point-based statistics remain the core of these representations. The use of satellite imagery is largely limited to visual assessment, although it could serve as complementary data to meteorological raster models and the basis for spatially consistent quantitative impact assessments of meteorological events. In view of this situation in Mexico, a project developed by the Institute of Geography at UNAM university, and promoted by the National Institute of Geography and Statistics, consisted in the development of a climate monitoring system, which includes three main features: 1) a modular array storage system containing NOAA and GOES satellite imagery acquired though a receiving station (ERISA), 2) a climate modeling squeme based on successive error corrections of climate raster maps and associated models using the above mentioned imagery, and 3) an online, dynamic geovisualization of the results of the models. We discuss the implemented technologies and illustrate the VISTA-C prototype which has been released.

  4. Estimation of hydraulic conductivity of a coastal aquifer using satellite imagery

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Iglesias-Prieto, R.; Marino-Tapia, I.

    2012-12-01

    The northern Yucatan Peninsula is characterized by a young and dynamic karstic system that yields very high secondary porosity and permeability. However, we have little, if none, knowledge about the hydraulic conductivity and the amount of groundwater being discharged in to ocean. Here we present and estimation of the hydraulic conductivity and quantity of groundwater being discharged by the northern Yucatan Peninsula coastal aquifer into the Gulf of Mexico, using the Sea Surface Temperature (SST) Images offshore the Yucatan coast, where we have detected a thermal anomaly that appears few hours after heavy rainfall in northern Yucatan. We associated these thermal anomalies of the SST to the groundwater being discharged into the ocean. To test our hypothesis we conducted a review of extreme rainfall events in the last 10 years; in parallel we used data from pressure and flow direction gauges installed in a known submarine groundwater discharge (SGD) to estimate the hydraulic conductivity and the quantity of groundwater being discharged. The satellite imagery and the rainfall data, allowed us to estimate the time lag between the rainfall and the SGD beginning, along with the hydraulic data from the gauges we have estimated the hydrogeological parameters of the coastal aquifer. This data is very important to contribute to the understanding the hydrogeological setting of the Yucatan coastal aquifer and its implications of the impact of human activities on the water quality. July 29th, 2005, NOAA's Sea Surface Temperature (SST) image of the Gulf of Mexico taken a week after hurricane Emily (2005). A thermal low is present offshore northern Yucatan.

  5. EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Wittke

    2017-05-01

    Full Text Available This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1 Digital Elevation Model (DEM and 2 land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP.

  6. Validation of the morphological compositing method for ZY-3 satellite imagery

    Science.gov (United States)

    Feng, Shuna; Zhao, Yindi

    2014-11-01

    Each scene of image generated from earth observation satellites can only cover a certain area. When one scene cannot cover a user's area of interest, two or more scenes are needed to be registered and combined into a single image, and this composition process is referred to as image mosaicking. The key issue in image composition is to decide where to place the seam line in overlapping region. The optimal seam line which joins several scenes of images covered the entire study area, is usually determined by texture and other characteristics of the overlap region for seamless quality. Recently, a morphological image compositing algorithm was proposed which is able to automatically delineate seam lines along salient image structures. And this algorithm uses the ideas of marker-controlled segmentation for image mosaicking and divides the overlap region into a determined number of areas. The resulting seam lines of the morphological image compositing algorithm cut along high gradient regions which are object edges in initial images. However, the morphological compositing method only applied to delineate the invisible seam line to the human eyes based on Landsat ETM+ data which is the representation of medium resolution data. In this paper, we test the validation of the morphological compositing method to generate visually pleasing seam line for image mosaic without changing the image radiometry and feasibility to handle two adjacent scenes simultaneously on high spatial resolution imagery by using ZY-3 multispectral image data. The focus of this paper is developing a quantitative evaluation measure which is usually formulated as the sum of morphological gradient of the image mosaic along the seam line divided by the length of the seam to quantitatively estimate the `quality' of the automatically delineate seam line.

  7. From Satellite Imagery to Peatland Vegetation Diversity: How Reliable Are Habitat Maps?

    Directory of Open Access Journals (Sweden)

    Monique F. Poulin

    2002-12-01

    Full Text Available Although satellite imagery is becoming a basic component of the work of ecologists and conservationists, its potential and reliability are still relatively unknown for a large number of ecosystems. Using Landsat 7/ETM+ (Enhanced Thematic Mapper Plus data, we tested the accuracy of two types of supervised classifications for mapping 13 peatland habitats in southern Quebec, Canada. Before classifying peatland habitats, we applied a mask procedure that revealed 629 peatlands covering a total of 18,103 ha; 26% of them were larger than 20 ha. We applied both a simple maximum likelihood (ML function and a weighted maximum likelihood (WML function that took into account the proportion of each habitat class within each peatland when classifying the habitats on the image. By validating 626 Global Positioning System locations within 92 peatlands, we showed that both classification procedures provided an accurate representation of the 13 peatland habitat classes. For all habitat classes except lawn with pools, the predominant classified habitat within 45 m of the center of the validation location was of the same type as the one observed in the field. There were differences in the performance of the two classification procedures: ML was a better tool for mapping rare habitats, whereas WML favored the most common habitats. Based on ordinations, peatland habitat classes were as effective as environmental variables such as humidity indicators and water chemistry components at explaining the distribution of plant species and performed 1.6 times better when it came to accounting for vegetation structure patterns. Peatland habitats with pools had the most distinct plant assemblages, and the habitats dominated by herbs were moderately distinct from those characterized by ericaceous shrubs. Habitats dominated by herbs were the most variable in terms of plant species assemblages. Because peatlands are economically valuable wetlands, the maps resulting from the new

  8. Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery

    Science.gov (United States)

    Maurer, Joshua M.; Rupper, Summer B.; Schaefer, Joerg M.

    2016-09-01

    Himalayan glaciers are important natural resources and climate indicators for densely populated regions in Asia. Remote sensing methods are vital for evaluating glacier response to changing climate over the vast and rugged Himalayan region, yet many platforms capable of glacier mass balance quantification are somewhat temporally limited due to typical glacier response times. We here rely on declassified spy satellite imagery and ASTER data to quantify surface lowering, ice volume change, and geodetic mass balance during 1974-2006 for glaciers in the eastern Himalayas, centered on the Bhutan-China border. The wide range of glacier types allows for the first mass balance comparison between clean, debris, and lake-terminating (calving) glaciers in the region. Measured glaciers show significant ice loss, with an estimated mean annual geodetic mass balance of -0.13 ± 0.06 m w.e. yr-1 (meters of water equivalent per year) for 10 clean-ice glaciers, -0.19 ± 0.11 m w.e. yr-1 for 5 debris-covered glaciers, -0.28 ± 0.10 m w.e. yr-1 for 6 calving glaciers, and -0.17 ± 0.05 m w.e. yr-1 for all glaciers combined. Contrasting hypsometries along with melt pond, ice cliff, and englacial conduit mechanisms result in statistically similar mass balance values for both clean-ice and debris-covered glacier groups. Calving glaciers comprise 18 % (66 km2) of the glacierized area yet have contributed 30 % (-0.7 km3) to the total ice volume loss, highlighting the growing relevance of proglacial lake formation and associated calving for the future ice mass budget of the Himalayas as the number and size of glacial lakes increase.

  9. Detecting tents to estimate the displaced populations for post-disaster relief using high resolution satellite imagery

    Science.gov (United States)

    Wang, Shifeng; So, Emily; Smith, Pete

    2015-04-01

    Estimating the number of refugees and internally displaced persons is important for planning and managing an efficient relief operation following disasters and conflicts. Accurate estimates of refugee numbers can be inferred from the number of tents. Extracting tents from high-resolution satellite imagery has recently been suggested. However, it is still a significant challenge to extract tents automatically and reliably from remote sensing imagery. This paper describes a novel automated method, which is based on mathematical morphology, to generate a camp map to estimate the refugee numbers by counting tents on the camp map. The method is especially useful in detecting objects with a clear shape, size, and significant spectral contrast with their surroundings. Results for two study sites with different satellite sensors and different spatial resolutions demonstrate that the method achieves good performance in detecting tents. The overall accuracy can be up to 81% in this study. Further improvements should be possible if over-identified isolated single pixel objects can be filtered. The performance of the method is impacted by spectral characteristics of satellite sensors and image scenes, such as the extent of area of interest and the spatial arrangement of tents. It is expected that the image scene would have a much higher influence on the performance of the method than the sensor characteristics.

  10. HALESIS projet: Hight Altitude Luminous Events Studied by Infrared Spectro-imagery

    Science.gov (United States)

    Croizé, Laurence; Payan, Sébastien; Bureau, Jérome; Duruisseau, Fabrice; Huret, Nathalie

    2014-05-01

    During the last two decades, the discovery of transient luminous events (TLEs) in the high atmosphere [1], as well as the observation of gamma ray flashes of terrestrial origin (Terrestrial Gamma Flashes or TGF) [2] demonstrated the existence of another interaction processes between the different atmospheric layers (troposphere, stratosphere, mesosphere and ionosphere). Indeed, the frequency of occurrence of these phenomena over thunderstorm cells, and the energies involved provide evidence for an impulsive energy transfer between the troposphere and the highest atmospheric layers, which was not considered before. HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery) is an innovative project based on hyperspectral imagery. The purpose of this experience is to measure the atmospheric perturbation in the minutes following the occurrence of Transient Luminous Events (TLEs) from a stratospheric balloon in the altitude range of 20 to 40 km. The first part of the study has been dedicated to establish the project feasibility. To do that, we have simulated spectral perturbation induced by an isolated blue jet. Theoretical predictions [3] have been used to simulate the radiative perturbation due to O3, NO, NO2, NO+ concentration induced by the blue jet. Simulations have been performed using the line by line radiative transfer model LBLRM [4] taking into account of the Non Local Thermodynamic Equilibrium hypotheses. Then, the expected signatures have been compared to the available instrumentation. During this talk, HALESIS project and the results of the feasibility study will be presented. Then, the estimated spectral signatures will be confronted with the technical capabilities of different kind of hyperspectral imagers. We will conclude on the project feasibility, but also on the challenges that lie ahead for an imager perfectly suited for experiences like HALESIS. 1. Franz R, Nemzek R, Winckler J. Television image of a large upward electrical

  11. Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity

    Directory of Open Access Journals (Sweden)

    Matthew Blackett

    2014-03-01

    Full Text Available The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique characteristics, the TIRS shows much potential for providing useful, detailed and accurate volcanic observations in the future.

  12. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  13. Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Sandra L. Perry

    2013-05-01

    Full Text Available WorldView commercial imaging satellites comprise a constellation developed by DigitalGlobe Inc. (Longmont, CO, USA. Worldview-3 (WV-3, currently planned for launch in 2014, will have 8 spectral bands in the Visible and Near-Infrared (VNIR, and an additional 8 bands in the Short-Wave-Infrared (SWIR; the approximately 1.0–2.5 μm spectral range. WV-3 will be the first commercial system with both high spatial resolution and multispectral SWIR capability. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS data collected at 3 m spatial resolution with 86 SWIR bands having 10 nm spectral resolution were used to simulate the new WV-3 SWIR data. AVIRIS data were converted to reflectance, geographically registered, and resized to the proposed 3.7 and 7.5 m spatial resolutions. WV-3 SWIR band pass functions were used to spectrally resample the data to the proposed 8 SWIR bands. Characteristic reflectance signatures extracted from the data for known mineral locations (endmembers were used to map spatial locations of specific minerals. The WV-3 results, when compared to spectral mapping using the full AVIRIS SWIR dataset, illustrate that the WV-3 spectral bands should permit identification and mapping of some key minerals, however, minerals with similar spectral features may be confused and will not be mapped with the same detail as using hyperspectral systems. The high spatial resolution should provide detailed mapping of complex alteration mineral patterns not achievable by current multispectral systems. The WV-3 simulation results are promising and indicate that this sensor will be a significant tool for geologic remote sensing.

  14. Estimating Carbon STOCK Changes of Mangrove Forests Using Satellite Imagery and Airborne LiDAR Data in the South Sumatra State, Indonesia

    Science.gov (United States)

    Maeda, Y.; Fukushima, A.; Imai, Y.; Tanahashi, Y.; Nakama, E.; Ohta, S.; Kawazoe, K.; Akune, N.

    2016-06-01

    The purposes of this study were 1) to estimate the biomass in the mangrove forests using satellite imagery and airborne LiDAR data, and 2) to estimate the amount of carbon stock changes using biomass estimated. The study area is located in the coastal area of the South Sumatra state, Indonesia. This area is approximately 66,500 ha with mostly flat land features. In this study, the following procedures were carried out: (1) Classification of types of tree species using Satellite imagery in the study area, (2) Development of correlation equations between spatial volume based on LiDAR data and biomass stock based on field survey for each types of tree species, and estimation of total biomass stock and carbon stock using the equation, and (3) Estimation of carbon stock change using Chronological Satellite Imageries. The result showed the biomass and the amount of carbon stock changes can be estimated with high accuracy, by combining the spatial volume based on airborne LiDAR data with the tree species classification based on satellite imagery. Quantitative biomass monitoring is in demand for projects related to REDD+ in developing countries, and this study showed that combining airborne LiDAR data with satellite imagery is one of the effective methods of monitoring for REDD+ projects.

  15. ESTIMATING CARBON STOCK CHANGES OF MANGROVE FORESTS USING SATELLITE IMAGERY AND AIRBORNE LiDAR DATA IN THE SOUTH SUMATRA STATE, INDONESIA

    Directory of Open Access Journals (Sweden)

    Y. Maeda

    2016-06-01

    Full Text Available The purposes of this study were 1 to estimate the biomass in the mangrove forests using satellite imagery and airborne LiDAR data, and 2 to estimate the amount of carbon stock changes using biomass estimated. The study area is located in the coastal area of the South Sumatra state, Indonesia. This area is approximately 66,500 ha with mostly flat land features. In this study, the following procedures were carried out: (1 Classification of types of tree species using Satellite imagery in the study area, (2 Development of correlation equations between spatial volume based on LiDAR data and biomass stock based on field survey for each types of tree species, and estimation of total biomass stock and carbon stock using the equation, and (3 Estimation of carbon stock change using Chronological Satellite Imageries. The result showed the biomass and the amount of carbon stock changes can be estimated with high accuracy, by combining the spatial volume based on airborne LiDAR data with the tree species classification based on satellite imagery. Quantitative biomass monitoring is in demand for projects related to REDD+ in developing countries, and this study showed that combining airborne LiDAR data with satellite imagery is one of the effective methods of monitoring for REDD+ projects.

  16. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  17. Measuring snow cover using satellite imagery during 1973 and 1974 melt season: North Santiam, Boise, and Upper Snake Basins, phase 1. [LANDSAT satellites, imaging techniques

    Science.gov (United States)

    Wiegman, E. J.; Evans, W. E.; Hadfield, R.

    1975-01-01

    Measurements are examined of snow coverage during the snow-melt season in 1973 and 1974 from LANDSAT imagery for the three Columbia River Subbasins. Satellite derived snow cover inventories for the three test basins were obtained as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. The accuracy and precision versus cost for several different interactive image analysis procedures was investigated using a display device, the Electronic Satellite Image Analysis Console. Single-band radiance thresholding was the principal technique employed in the snow detection, although this technique was supplemented by an editing procedure involving reference to hand-generated elevation contours. For each data and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures. Photographs of data analysis equipment (displays) are shown.

  18. Study of time-lapse processing for dynamic hydrologic conditions. [electronic satellite image analysis console for Earth Resources Technology Satellites imagery

    Science.gov (United States)

    Serebreny, S. M.; Evans, W. E.; Wiegman, E. J.

    1974-01-01

    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies.

  19. Vectorized Shoreline of Guam, Derived from IKONOS Satellite Imagery, 2000 through 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  20. Derived bathymetry from WorldView-2 satellite imagery of nearshore benthic habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Methods used were adapted from a "cookbook" of instructions developed by Kyle Hogref for using IKONOS imagery data to derive seafloor elevations in optically clear...

  1. Vectorized Shoreline of Guam, Derived from IKONOS Satellite Imagery, 2000 through 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  2. Extended adaptive mutation operator for training an explosive hazard detection prescreener in forward looking infrared imagery

    Science.gov (United States)

    Singh, Ravinder; Price, Stanton R.; Anderson, Derek T.

    2015-05-01

    A big challenge with forward looking (FL), versus downward looking, sensors mounted on a ground vehicle for explosive hazard detection (EHD) is they "see everything", on and off road. Even if a technology such as road detection is used, we still have to find and subsequently discriminate targets versus clutter on the road and often road side. When designing an automatic detection system for FL-EHD, we typically make use of a prescreener to identify regions of interest (ROI) instead of searching for targets in an inefficient brute force fashion by extracting complicated features and running expensive classifiers at every possible translation, rotation and scale. In this article, we explore the role of genetic algorithms (GAs), specifically with respect to a new adaptive mutation operator, for learning the parameters of a FL-EHD prescreener in FL infrared (FLIR) imagery. The proposed extended adaptive mutation (eAM) algorithm is driven by fitness similarities in the chromosome population. Currently, our prescreener consists of many free parameters that are empirically chosen by a researcher. The parameters are learned herein using the proposed optimization technique and the performance of the system is measured using receiver operating characteristic (ROC) curves on data obtained from a U.S. Army test site that includes a variety of target types buried at varying depths and from different times of day. The proposed technique is also applied to numerous synthetic fitness landscapes to further assess the effectiveness of the eAM algorithm. Results show that the new adaptive mutation technique converges faster to a better solution than a GA with fixed mutation.

  3. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...... in approximately the same position over the past similar to 50 years. There is no evidence of a change in ice motion between 1968 and 2001, based on a comparison of velocities derived from terrestrial surveying and feature tracking using sequential satellite images. Estimates of flux near the entrance to the fjord...... vs snow accumulation in the interior catchment show that Daugaard Jensen Gletscher has a small negative mass balance. This result is consistent with other mass-balance estimates for the inland region of the glacier....

  4. Summit-to-sea mapping and change detection using satellite imagery: tools for conservation and management of coral reefs.

    Science.gov (United States)

    Shapiro, A C; Rohmann, S O

    2005-05-01

    Continuous summit-to-sea maps showing both land features and shallow-water coral reefs have been completed in Puerto Rico and the U.S. Virgin Islands, using circa 2000 Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery. Continuous land/sea terrain was mapped by merging Digital Elevation Models (DEM) with satellite-derived bathymetry. Benthic habitat characterizations were created by unsupervised classifications of Landsat imagery clustered using field data, and produced maps with an estimated overall accuracy of>75% (Tau coefficient >0.65). These were merged with Geocover-LC (land use/land cover) data to create continuous land/ sea cover maps. Image pairs from different dates were analyzed using Principle Components Analysis (PCA) in order to detect areas of change in the marine environment over two different time intervals: 2000 to 2001, and 1991 to 2003. This activity demonstrates the capabilities of Landsat imagery to produce continuous summit-to-sea maps, as well as detect certain changes in the shallow-water marine environment, providing a valuable tool for efficient coastal zone monitoring and effective management and conservation.

  5. Spatio-Temporal Analysis of Urban Heat Island and Urban Metabolism by Satellite Imagery over the Phoenix Metropolitan Area

    Science.gov (United States)

    Zhao, Q.; Zhan, S.; Kuai, X.; Zhan, Q.

    2015-12-01

    The goal of this research is to combine DMSP-OLS nighttime light data with Landsat imagery and use spatio-temporal analysis methods to evaluate the relationships between urbanization processes and temperature variation in Phoenix metropolitan area. The urbanization process is a combination of both land use change within the existing urban environment as well as urban sprawl that enlarges the urban area through the transformation of rural areas to urban structures. These transformations modify the overall urban climate environment, resulting in higher nighttime temperatures in urban areas compared to the surrounding rural environment. This is a well-known and well-studied phenomenon referred to as the urban heat island effect (UHI). What is unknown is the direct relationship between the urbanization process and the mechanisms of the UHI. To better understand this interaction, this research focuses on using nighttime light satellite imagery to delineate and detect urban extent changes and utilizing existing land use/land cover map or newly classified imagery from Landsat to analyze the internal urban land use variations. These data are combined with summer and winter land surface temperature data extracted from Landsat. We developed a time series of these combined data for Phoenix, AZ from 1992 to 2013 to analyze the relationships among land use change, land surface temperature and urban growth.

  6. 3D high resolution tracking of ice flow using mutli-temporal stereo satellite imagery, Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Leprince, S.; Lin, J.; Ayoub, F.; Herman, F.; Avouac, J.

    2013-12-01

    We present the latest capabilities added to the Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) software, which aim at analyzing time-series of stereoscopic imagery to document 3D variations of the ground surface. We review the processing chain and present the new and improved modules for satellite pushbroom imagery, in particular the N-image bundle block adjustment to jointly optimize the viewing geometry of multiple acquisitions, the improved multi-scale image matching based on Semi-Global Matching (SGM) to extract high resolution topography, and the triangulation of multi-temporal disparity maps to derive 3D ground motion. In particular, processes are optimized to run on a cluster computing environment. This new suite of algorithms is applied to the study of Worldview stereo imagery above the Franz Josef, Fox, and Tasman Glaciers, New Zealand, acquired on 01/30/2013, 02/09/2013, and 02/28/2013. We derive high resolution (1m post-spacing) maps of ice flow in three dimensions, where ice velocities of up to 4 m/day are recorded. Images were collected in early summer during a dry and sunny period, which followed two weeks of unsettled weather with several heavy rainfall events across the Southern Alps. The 3D tracking of ice flow highlights the surface response of the glaciers to changes in effective pressure at the ice-bedrock interface due to heavy rainfall, at an unprecedented spatial resolution.

  7. Contribution of MODIS satellite imagery in modelling the flooding patterns of the coastal wetlands of the Tana River, Kenya

    Science.gov (United States)

    Leauthaud, C.; Duvail, S.; Belaud, G.; Albergel, J.; Moussa, R.; Grunberger, O.

    2012-04-01

    In sub-Saharan Africa, much of the arid and semi-arid lands are used by pastoralist groups as seasonal grazing zones. In such a context, wetlands are a vital resource as they act as retreat zones during the dry seasons when water and fodder resources are scarce. At a larger scale, wetlands also render numerous services including groundwater recharge, water quality improvement and climate regulation. As regular floods are the underlying factor determining the healthiness of wetland ecosystems, it is important to understand their dynamics for a better water resource management at the catchment scale in the context of increased water abstraction and hydroelectric infrastructure development. Yet, this is challenging in many places because of scarce or poor quality data and a often difficult access to the zone. In tropical or coastal areas, frequent cloud cover can also limit the use of remote sensing data. The MODIS instruments on board the Terra and Aqua satellites offer high temporal resolution images at a moderate spatial resolution in the visible and infrared spectrum. In particular the MOD09A1 and MYD09A1 500m, 8-day synthesis products select the best possible observation for each 8-day period thus decreasing poor quality pixels due to cloud cover in an image while retaining a high frequency coverage. Here we assess their potential use to monitor floods in the Tana River Delta (TRD), Kenya. In this study, all 8-day synthesis products from 2001 to 2011 were screened and selected for low cloud cover. The total flooded surface was then extracted from each image using the Normalized Difference Moisture Index (Xu, 2006) to obtain time-series inundation maps from 2002 onward. In a third step, the images were used, combined with river-flow data, to analyse the hydrological system of the area. The maximal extent, start and end inundation dates were determined for the major floods of the past decade. There were major differences in these characteristics for medium to large

  8. Extracting impervious surfaces from multi-source satellite imagery based on unified conceptual model by decision tree algorithm

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Extraction of impervious surfaces is one of the necessary processes in urban change detection.This paper derived a unified conceptual model (UCM) from the vegetation-impervious surface-soil (VIS) model to make the extraction more effective and accurate.UCM uses the decision tree algorithm with indices of spectrum and texture,etc.In this model,we found both dependent and independent indices for multi-source satellite imagery according to their similarity and dissimilarity.The purpose of the indices is to remove the other land-use and land-cover types (e.g.,vegetation and soil) from the imagery,and delineate the impervious surfaces as the result.UCM has the same steps conducted by decision tree algorithm.The Landsat-5 TM image (30 m) and the Satellite Probatoire d’Observation de la Terre (SPOT-4) image (20 m) from Chaoyang District (Beijing) in 2007 were used in this paper.The results show that the overall accuracy in Landsat-5 TM image is 88%,while 86.75% in SPOT-4 image.It is an appropriate method to meet the demand of urban change detection.

  9. Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Austin R. Coates

    2015-10-01

    Full Text Available Airborne hyperspectral and thermal infrared imagery acquired in 2013 and 2014, the second and third years of a severe drought in California, were used to assess drought impacts on dominant plant species. A relative green vegetation fraction (RGVF calculated from 2013–2014 Airborne Visible Infrared Imaging Spectrometer (AVIRIS data using linear spectral unmixing revealed seasonal and multi-year changes relative to a pre-drought 2011 reference AVIRIS image. Deeply rooted tree species and tree species found in mesic areas showed the least change in RGVF. Coastal sage scrub species demonstrated the highest seasonal variability, as well as a longer-term decline in RGVF. Ceanothus species were apparently least well-adapted to long-term drought among chaparral species, showing persistent declines in RGVF over 2013 and 2014. Declining RGVF was associated with higher land surface temperature retrieved from MODIS-ASTER Airborne Simulator (MASTER data. Combined collection of hyperspectral and thermal infrared imagery may offer new opportunities for mapping and monitoring drought impacts on ecosystems.

  10. Exploring Google Earth Engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping

    Science.gov (United States)

    Shelestov, Andrii; Lavreniuk, Mykola; Kussul, Nataliia; Novikov, Alexei; Skakun, Sergii

    2017-02-01

    Many applied problems arising in agricultural monitoring and food security require reliable crop maps at national or global scale. Large scale crop mapping requires processing and management of large amount of heterogeneous satellite imagery acquired by various sensors that consequently leads to a “Big Data” problem. The main objective of this study is to explore efficiency of using the Google Earth Engine (GEE) platform when classifying multi-temporal satellite imagery with potential to apply the platform for a larger scale (e.g. country level) and multiple sensors (e.g. Landsat-8 and Sentinel-2). In particular, multiple state-of-the-art classifiers available in the GEE platform are compared to produce a high resolution (30 m) crop classification map for a large territory ( 28,100 km2 and 1.0 M ha of cropland). Though this study does not involve large volumes of data, it does address efficiency of the GEE platform to effectively execute complex workflows of satellite data processing required with large scale applications such as crop mapping. The study discusses strengths and weaknesses of classifiers, assesses accuracies that can be achieved with different classifiers for the Ukrainian landscape, and compares them to the benchmark classifier using a neural network approach that was developed in our previous studies. The study is carried out for the Joint Experiment of Crop Assessment and Monitoring (JECAM) test site in Ukraine covering the Kyiv region (North of Ukraine) in 2013. We found that Google Earth Engine (GEE) provides very good performance in terms of enabling access to the remote sensing products through the cloud platform and providing pre-processing; however, in terms of classification accuracy, the neural network based approach outperformed support vector machine (SVM), decision tree and random forest classifiers available in GEE.

  11. Probing orographic controls in the Himalayas during the monsoon using satellite imagery

    Directory of Open Access Journals (Sweden)

    A. P. Barros

    2004-01-01

    Full Text Available The linkages between the space-time variability of observed clouds, rainfall, large-circulation patterns and topography in northern India and the Himalayas were investigated using remote sensing data. The research purpose was to test the hypothesis that cloudiness patterns are dynamic tracers of rainstorms, and therefore their temporal and spatial evolution can be used as a proxy of the spatial and temporal organization of precipitation and precipitation processes in the Himalayan range during the monsoon. The results suggest that the space-time distribution of precipitation, the spatial variability of the diurnal cycle of convective activity, and the terrain (landform and altitudinal gradients are intertwined at spatial scales ranging from the order of a few kms (1–5km up to the continental-scale. Furthermore, this relationship is equally strong in the time domain with respect to the onset and intra-seasonal variability of the monsoon. Infrared and microwave imagery of cloud fields were analyzed to characterize the spatial and temporal evolution of mesoscale convective weather systems and short-lived convection in Northern India, the Himalayan range, and in the Tibetan Plateau during three monsoon seasons (1999, 2000 and 2001. The life cycle of convective systems suggests landform and orographic controls consistent with a convergence zone constrained to the valley of the Ganges and the Himalayan range, bounded in the west by the Aravalli range and the Garhwal mountains and in the East by the Khasi Hills and the Bay of Bengal, which we call the Northern India Convergence Zone (NICZ. The NICZ exhibits strong night-time activity along the south-facing slopes of the Himalayan range, which is characterized by the development of short-lived convection (1–3h aligned with protruding ridges between 1:00 and 3:00 AM. The intra-annual and inter-annual variability of convective activity in the NICZ were assessed with respect to large-scale synoptic

  12. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  13. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation

    DEFF Research Database (Denmark)

    Canty, Morton John; Nielsen, Allan Aasbjerg

    2008-01-01

    A recently proposed method for automatic radiometric normalization of multi- and hyper-spectral imagery based on the invariance property of the Multivariate Alteration Detection (MAD) transformation and orthogonal linear regression is extended by using an iterative re-weighting scheme involving no...

  14. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  15. Application of High Resolution Satellite Imagery to Characterize Individual-Based Environmental Heterogeneity in a Wild Blue Tit Population

    Directory of Open Access Journals (Sweden)

    Marta Szulkin

    2015-10-01

    Full Text Available Environmental heterogeneity in space and time plays a key role in influencing trait variability in animals, and can be particularly relevant to animal phenology. Until recently, the use of remotely sensed imagery in understanding animal variation was limited to analyses at the population level, largely because of a lack of high-resolution data that would allow inference at the individual level. We evaluated the potential of SPOT 4 (Take 5 satellite imagery data (with observations every fifth day at 20 m resolution and equivalent to acquisition parameters of Sentinel-2 in animal ecology research. We focused on blue tit Cyanistes caeruleus reproduction in a study site containing 227 nestboxes scattered in a Mediterranean forest dominated by deciduous downy oaks Quercus pubescens with a secondary cover of evergreen holm oaks Quercus ilex. We observed high congruence between ground data collected in a 50 m radius around each nestbox and NDVI values averaged across a 5 by 5 pixel grid centered around each nestbox of the study site. The number of deciduous and evergreen oaks around nestboxes explained up to 66% of variance in nestbox-centered, SPOT-derived NDVI values. We also found highly equivalent patterns of spatial autocorrelation for both ground- and satellite-derived indexes of environmental heterogeneity. For deciduous and evergreen oaks, the derived NDVI signal was highly distinctive in winter and early spring. June NDVI values for deciduous and evergreen oaks were higher by 58% and 8% relative to February values, respectively. The number of evergreen oaks was positively associated with later timing of breeding in blue tits. SPOT-derived, Sentinel-2 like imagery thus provided highly reliable, ground-validated information on habitat heterogeneity of direct relevance to a long-term field study of a free-living passerine bird. Given that the logistical demands of gathering ground data often limit our understanding of variation in animal

  16. The users, uses, and value of Landsat and other moderate-resolution satellite imagery in the United States-Executive report

    Science.gov (United States)

    Miller, Holly M.; Sexton, Natalie R.; Koontz, Lynne; Loomis, John; Koontz, Stephen R.; Hermans, Caroline

    2011-01-01

    Moderate-resolution imagery (MRI), such as that provided by the Landsat satellites, provides unique spatial information for use by many people both within and outside of the United States (U.S.). However, exactly who these users are, how they use the imagery, and the value and benefits derived from the information are, to a large extent, unknown. To explore these issues, social scientists at the USGS Fort Collins Science Center conducted a study of U.S.-based MRI users from 2008 through 2010 in two parts: 1) a user identification and 2) a user survey. The objectives for this study were to: 1) identify and classify U.S.-based users of this imagery; 2) better understand how and why MRI, and specifically Landsat, is being used; and 3) qualitatively and quantitatively measure the value and societal benefits of MRI (focusing on Landsat specifically). The results of the survey revealed that respondents from multiple sectors use Landsat imagery in many different ways, as demonstrated by the breadth of project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance placed on the imagery, the numerous benefits received from projects using Landsat imagery, the negative impacts if Landsat imagery was no longer available, and the substantial willingness to pay for replacement imagery in the event of a data gap. The survey collected information from users who are both part of and apart from the known user community. The diversity of the sample delivered results that provide a baseline of knowledge about the users, uses, and value of Landsat imagery. While the results supply a wealth of information on their own, they can also be built upon through further research to generate a more complete picture of the population of Landsat users as a whole.

  17. Application of satellite infrared measurements to mapping sea ice

    Science.gov (United States)

    Barnes, J. C.

    1972-01-01

    The application of the ITOS-SR (scanning radiometer) infrared measurements for mapping sea ice was examined. The work included detailed mapping of ice features visible in the ITOS nighttime DRSR (direct readout scanning radiometer) pictorial data and in Nimbus summertime film strip data. Analyses of digital temperature values from computer printouts of ITOS stored data and from Nimbus data listings were also undertaken, and densitometric measurements of both ITOS and Nimbus data were initiated.

  18. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellidol, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Mirarrionti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, T. J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Fernandez, G. Rodriguez; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F. G.; Schulz, J.; Schuster, D.; Sciutto, Si.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Machado, D. Torres; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger

  19. Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model

    Institute of Scientific and Technical Information of China (English)

    Li-gang MA; Jin-song DENG; Huai YANG; Yang HONG; Ke WANG

    2015-01-01

    The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and hetero-geneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multi-variable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorre-lation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy as-sessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63%and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82%of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.

  20. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries.

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-08-25

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  1. Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

    NARCIS (Netherlands)

    Bruin, de H.A.R.; Trigo, I.F.; Jitan, M.A.; Enku, N.T.; Tol, van der C.; Gieske, A.S.M.

    2010-01-01

    First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formul

  2. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    Science.gov (United States)

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  3. Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

    NARCIS (Netherlands)

    Bruin, de H.A.R.; Trigo, I.F.; Jitan, M.A.; Enku, N.T.; Tol, van der C.; Gieske, A.S.M.

    2010-01-01

    First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate

  4. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    Science.gov (United States)

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  5. Estimation of volcanic ash refractive index from satellite infrared sounder data

    Science.gov (United States)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  6. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  7. Identifying and locating land irrigated by center-pivot irrigation systems using satellite imagery

    Science.gov (United States)

    Hoffman, R. O.

    1980-01-01

    A methodology for using Landsat imagery for the identification and location of land irrigated by center-pivot irrigation systems is presented. The procedure involves the use of sets of Landsat band 5 imagery taken separated in time by about three weeks during the irrigation season, a zoom transfer scope and mylar base maps to record the locations of center pivots. Further computer processing of the data has been used to obtain plots of center-pivot irrigation systems and tables indicating the distribution and growth of systems by county for the state of Nebraska, and has been found to be in 95% agreement with current high-altitude IR photography. The information obtainable can be used for models of ground-water aquifers or resource planning.

  8. Integrated snow and avalanche monitoring syatem for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    The variations in the local climate, environment and altitude as well as fast snow cover build up and rapid changes in snow characteristics with passage of winter are major contributing factors to make snow avalanches as one of the threatening problems in the North West Himalaya. For sustainable development of these mountainous areas, a number of multi-purpose projects are being planned. In recent times, the danger of natural and man-made hazards is increasing and the availability of water is fluctuating; and thus, making the project implementation difficult. To overcome these difficulties to a great extent, an integrated monitoring system is required for short term as well as long term assessment of snowcover variation and avalanche hazard. In order to monitor the spatial extent of snow cover, satellite data can be employed on an operational basis. Spectral settings as well as the temporal and spatial resolution make time series NOAA-AVHHR and MODIS sensor data well suited for operational snow cover monitoring at regional or continental scale; Indian Remote Sensing Satellite (IRS) LISS, WiFS and AWiFS sensor data suitable for studies at larger scale; and microwave data for extraction of snow wetness information.. In the present paper, an attempt is made to study the trends of changes in snow characteristics and related avalanche phenomenon using time series multi-temporal, multi-resolution satellite data with respect to different ranges in Western Himalaya, namely Pir Panjal range, Great Himalaya range, Zanskar range, Ladakh range and Great Karakoram range. The operational processing of these data included geocoding, calibration, terrain normalization, classification, statistical post classification and derivation of snow cover statistics. The calibration and normalization of imageries allowed the application of physically based classification thresholds possible for albedo, brightness temperature and the Normalized Difference Snow Index (NDSI) parameters

  9. Integrated snow and avalanche monitoring system for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    The variations in the local climate, environment and altitude as well as fast snow cover build up and rapid changes in snow characteristics with passage of winter are major contributing factors to make snow avalanches as one of the threatening problems in the North West Himalaya. For sustainable development of these mountainous areas, a number of multi-purpose projects are being planned. In recent times, the danger of natural and man-made hazards is increasing and the availability of water is fluctuating; and thus, making the project implementation difficult. To overcome these difficulties to a great extent, an integrated monitoring system is required for short term as well as long term assessment of snowcover variation and avalanche hazard. In order to monitor the spatial extent of snow cover, satellite data can be employed on an operational basis. Spectral settings as well as the temporal and spatial resolution make time series NOAA-AVHHR and MODIS sensor data well suited for operational snow cover monitoring at regional or continental scale; Indian Remote Sensing Satellite (IRS) LISS, WiFS and AWiFS sensor data suitable for studies at larger scale; and microwave data for extraction of snow wetness information.. In the present paper, an attempt is made to study the trends of changes in snow characteristics and related avalanche phenomenon using time series multi-temporal, multi-resolution satellite data with respect to different ranges in Western Himalaya, namely Pir Panjal range, Great Himalaya range, Zanskar range, Ladakh range and Great Karakoram range. The operational processing of these data included geocoding, calibration, terrain normalization, classification, statistical post classification and derivation of snow cover statistics. The calibration and normalization of imageries allowed the application of physically based classification thresholds possible for albedo, brightness temperature and the Normalized Difference Snow Index (NDSI) parameters

  10. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery

    Directory of Open Access Journals (Sweden)

    Shasha Jiang

    2016-05-01

    Full Text Available Automated remote sensing methods have not gained widespread usage for damage assessment after hurricane events, especially for low-rise buildings, such as individual houses and small businesses. Hurricane wind, storm surge with waves, and inland flooding have unique damage signatures, further complicating the development of robust automated assessment methodologies. As a step toward realizing automated damage assessment for multi-hazard hurricane events, this paper presents a mono-temporal image classification methodology that quickly and accurately differentiates urban debris from non-debris areas using post-event images. Three classification approaches are presented: spectral, textural, and combined spectral–textural. The methodology is demonstrated for Gulfport, Mississippi, using IKONOS panchromatic satellite and NOAA aerial colour imagery collected after 2005 Hurricane Katrina. The results show that multivariate texture information significantly improves debris class detection performance by decreasing the confusion between debris and other land cover types, and the extracted debris zone accurately captures debris distribution. Additionally, the extracted debris boundary is approximately equivalent regardless of imagery type, demonstrating the flexibility and robustness of the debris mapping methodology. While the test case presents results for hurricane hazards, the proposed methodology is generally developed and expected to be effective in delineating debris zones for other natural hazards, including tsunamis, tornadoes, and earthquakes.

  11. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    Science.gov (United States)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  12. Geographic Object-based Image Analysis for Developing Cryospheric Surface Mapping Application using Remotely Sensed High-Resolution Satellite Imagery

    Science.gov (United States)

    Jawak, S. D.; Luis, A. J.

    2015-12-01

    A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (GEOBIA) to extract cryospheric geoinformation from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for GEOBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, Antarctica. Multi-level segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features w.r.t scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify landmass, man-made features, snow/ice, and water bodies. A specific attention was paid to water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and GEOBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≈97%. In conclusion, the results suggest that GEOBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geoinformation.

  13. Observations of Gulf Stream-induced and wind-driven upwelling in the Georgia Bight using ocean color and infrared imagery

    Science.gov (United States)

    Mcclain, C. R.; Pietrafesa, L. J.; Yoder, J. A.

    1984-01-01

    Ocean color and infrared imagery from U2 aircraft and satellite sensors are used to study upwelling interaction between Gulf Stream and continental shelf waters in the Georgia Bight. The photographic data are combined with in situ measurements of currents, chlorophyll, temperature, salinity, coastal winds, and sea-level in observations of five different upwelling events including a near-short wind-driven upwelling caused by topographic effects, three filament-induced upwellings in the Gulf Stream, and a possible meander-induced upwelling event in the Gulf Stream. Chlorophyll distributions are used to trace the circulation and propagation of filaments along the advective routes by which the water moves offshore. Photographic and mooring array measurements of temperature time series are found to provide nearly identical results for the phase speeds of each event. Field measurements of surface pigments, and Nimbus/7 coastal zone color scanner (CZCS) estimates are found to agree well over the range of concentrations 0.1 to 0.7 mg/m to the third. Examples of U2/Ocean Color Scanner and Nimbus 7 CZCS photographs are provided.

  14. Diabatic initialization for improvement in the tropical analysis of divergence and moisture using satellite radiometric imagery data

    Science.gov (United States)

    Kasahara, Akira; Mizzi, Arthur P.; Donner, Leo J.

    1994-05-01

    To improve the quality of horizontal divergence and moisture analyses in the tropics, a diabatic initialization scheme is developed to incorporate information on convective activity and the proxy data of precipitation obtained from satellite radiometric imagery data. The tropical precipitation rates are estimated by developing a relationship between the pentad precipitation data of the Global Precipitation Climatology Project with daily outgoing longwave radiation data. The tropical belt from 35°S to 25°N (for January 1988) is divided into 3 parts: convective, convective fringe, and downward-motion (clear-air) areas. In the convective region, the algorithm adjusts the horizontal divergence and humidity fields such that a version of the Kuo cumulus parameterization will yield the precipitation rates closest to the proxy data. The temperature in the planetary boundary layer is also adjusted, if necessary, to ensure the initiation of cumulus convection. In the downward-motion region, the divergence field is adjusted to yield descending motion expected from the thermodynamic balance between radiative cooling and adiabatic warming. In the convective fringe region, where convective criteria are not met, the divergence field is adjusted only to satisfy the global conservation of divergence. The humidity field is left intact in both the downward-motion and convective fringe regions. This adjustment scheme will ameliorate problems associated with spinup of precipitation in a numerical prediction model with the same cumulus parameterization as used in the initialization. This initialization scheme may be used as a method of quality control for first-guess fields in four-dimensional data assimilation by means of satellite radiometric imagery data.

  15. Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale

    Science.gov (United States)

    Priem, Frederik; Okujeni, Akpona; van der Linden, Sebastian; Canters, Frank

    2016-10-01

    The value of characteristic reflectance features for mapping urban materials has been demonstrated in many experiments with airborne imaging spectrometry. Analysis of larger areas requires satellite-based multispectral imagery, which typically lacks the spatial and spectral detail of airborne data. Consequently the need arises to develop mapping methods that exploit the complementary strengths of both data sources. In this paper a workflow for sub-pixel quantification of Vegetation-Impervious-Soil urban land cover is presented, using medium resolution multispectral satellite imagery, hyperspectral endmember libraries and Support Vector Regression. A Landsat 8 Operational Land Imager surface reflectance image covering the greater metropolitan area of Brussels is selected for mapping. Two spectral libraries developed for the cities of Brussels and Berlin based on airborne hyperspectral APEX and HyMap data are used. First the combined endmember library is resampled to match the spectral response of the Landsat sensor. The library is then optimized to avoid spectral redundancy and confusion. Subsequently the spectra of the endmember library are synthetically mixed to produce training data for unmixing. Mapping is carried out using Support Vector Regression models trained with spectra selected through stratified sampling of the mixed library. Validation on building block level (mean size = 46.8 Landsat pixels) yields an overall good fit between reference data and estimation with Mean Absolute Errors of 0.06, 0.06 and 0.08 for vegetation, impervious and soil respectively. Findings of this work may contribute to the use of universal spectral libraries for regional scale land cover fraction mapping using regression approaches.

  16. Assessing the population coverage of a health demographic surveillance system using satellite imagery and crowd-sourcing.

    Science.gov (United States)

    Di Pasquale, Aurelio; McCann, Robert S; Maire, Nicolas

    2017-01-01

    Remotely sensed data can serve as an independent source of information about the location of residential structures in areas under demographic and health surveillance. We report on results obtained combining satellite imagery, imported from Bing, with location data routinely collected using the built-in GPS sensors of tablet computers, to assess completeness of population coverage in a Health and Demographic Surveillance System in Malawi. The Majete Malaria Project Health and Demographic Surveillance System, in Malawi, started in 2014 to support a project with the aim of studying the reduction of malaria using an integrated control approach by rolling out insecticide treated nets and improved case management supplemented with house improvement and larval source management. In order to support the monitoring of the trial a Health and Demographic Surveillance System was established in the area that surrounds the Majete Wildlife Reserve (1600 km2), using the OpenHDS data system. We compared house locations obtained using GPS recordings on mobile devices during the demographic surveillance census round with those acquired from satellite imagery. Volunteers were recruited through the crowdcrafting.org platform to identify building structures on the images, which enabled the compilation of a database with coordinates of potential residences. For every building identified on these satellite images by the volunteers (11,046 buildings identified of which 3424 (ca. 30%) were part of the censused area), we calculated the distance to the nearest house enumerated on the ground by fieldworkers during the census round of the HDSS. A random sample of buildings (85 structures) identified on satellite images without a nearby location enrolled in the census were visited by a fieldworker to determine how many were missed during the baseline census survey, if any were missed. The findings from this ground-truthing effort suggest that a high population coverage was achieved in the

  17. Estimation of Reservoir Discharges from Lake Nasser and Roseires Reservoir in the Nile Basin Using Satellite Altimetry and Imagery Data

    Directory of Open Access Journals (Sweden)

    Eric Muala

    2014-08-01

    Full Text Available This paper presents the feasibility of estimating discharges from Roseires Reservoir (Sudan for the period from 2002 to 2010 and Aswan High Dam/Lake Nasser (Egypt for the periods 1999–2002 and 2005–2009 using satellite altimetry and imagery with limited in situ data. Discharges were computed using the water balance of the reservoirs. Rainfall and evaporation data were obtained from public domain data sources. In situ measurements of inflow and outflow (for validation were obtained, as well. The other water balance components, such as the water level and surface area, for derivation of the change of storage volume were derived from satellite measurements. Water levels were obtained from Hydroweb for Roseires Reservoir and Hydroweb and Global Reservoir and Lake Monitor (GRLM for Lake Nasser. Water surface areas were derived from Landsat TM/ETM+ images using the Normalized Difference Water Index (NDWI. The water volume variations were estimated by integrating the area-level relationship of each reservoir. For Roseires Reservoir, the water levels from Hydroweb agreed well with in situ water levels (RMSE = 0.92 m; R2 = 0.96. Good agreement with in situ measurements were also obtained for estimated water volume (RMSE = 23%; R2 = 0.94 and computed discharge (RMSE = 18%; R2 = 0.98. The accuracy of the computed discharge was considered acceptable for typical reservoir operation applications. For Lake Nasser, the altimetry water levels also agreed well with in situ levels, both for Hydroweb (RMSE = 0.72 m; R2 = 0.81 and GRLM (RMSE = 0.62 m; R2 = 0.96 data. Similar agreements were also observed for the estimated water volumes (RMSE = 10%–15%. However, the estimated discharge from satellite data agreed poorly with observed discharge, Hydroweb (RMSE = 70%; R2 = 0.09 and GRLM (RMSE = 139%; R2 = 0.36. The error could be attributed to the high sensitivity of discharge to errors in storage volume because of the immense reservoir compared to inflow

  18. Using high-resolution satellite imagery to engage students in classroom experiences which meld research, the nature of science, and inquiry-based instruction

    Science.gov (United States)

    Pennycook, J.; LaRue, M.; Herried, B.; Morin, P. J.

    2013-12-01

    Recognizing the need to bridge the gap between scientific research and the classroom, we have developed an exciting activity which engages students in grades 5-12 using high-resolution satellite imagery to observe Weddell seal populations in Antarctica. Going beyond the scope of the textbook, students experience the challenge researchers face in counting and monitoring animal populations in the field. The activity is presented in a non-expert, non-technical exercise enriched for students, with background information, tutorials, and satellite imagery included. Teachers instruct their class in how to use satellite imagery analysis techniques to collect data on seal populations in the McMurdo Sound region of the Ross Sea, Antarctica. Students participate in this inquiry-based, open-ended exercise to evaluate changes in the seal population within and between seasons. The activity meets the New Generation Science Standards (NGSS) through inquiry-based, real-world application and supports seven Performance Expectations (PE) for grade 5-12. In addition, it offers students a glimpse into the work of a field biologist, promoting interest in entering the STEM career pipeline. As every new Antarctica season unfolds, new imagery will be uploaded to the website allowing each year of students to add their counts to a growing long-term dataset for the classroom. The activity files provide 1) a tutorial in how to use the images to count the populations, 2) background information about Weddell seals in the McMurdo Sound region of the Ross Sea for the students and the teachers, and 3) collections of satellite imagery for spatial and temporal analysis of population fluctuations. Teachers can find all activity files to conduct the activity, including student instructions, on the Polar Geospatial Center's website (http://z.umn.edu/seals). Satellite image, Big Razorback Island, Antarctica Weddell seals,Tent Island, Antarctica

  19. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  20. Use and Assessment of Multi-Spectral Satellite Imagery in NWS Operational Forecasting Environments

    Science.gov (United States)

    Molthan, Andrew; Fuell, Kevin; Stano, Geoffrey; McGrath, Kevin; Schultz, Lori; LeRoy, Anita

    2015-01-01

    NOAA's Satellite Proving Grounds have established partnerships between product developers and NWS WFOs for the evaluation of new capabilities from the GOES-R and JPSS satellite systems. SPoRT has partnered with various WFOs to evaluate multispectral (RGB) products from MODIS, VIIRS and Himawari/AHI to prepare for GOES-R/ABI. Assisted through partnerships with GINA, UW/CIMSS, NOAA, and NASA Direct Broadcast capabilities.

  1. Using Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery to identify and analyze light pollution

    Science.gov (United States)

    Nurbandi, Wahyu; Ramadhani Yusuf, Febrina; Prasetya, Ruwanda; Dimas Afrizal, Mousafi

    2016-11-01

    Light pollution is any adverse effect of artificial lighting including sky glow, glare, light trespass, light clutter, decreased visibility at night, and energy waste. Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. Remote sensing can be used for identification of light pollution. The purpose of this study is to identify and analyze the light pollution by using remote sensing imagery. This study uses VIIRS DNB Free Cloud Composites imagery to identify light pollution in Yogyakarta province and surrounding areas. VIIRS imagery which obtained is processed to get information of light pollution by classifying the information into several classes presented in a map. Selected few sample points as test sites to determine the actual condition. Field work conducted at theree location, they are Yogyakarta City, Depok Beach, and Gajah Mungkur reservoir. Night sky condition analysis conducted field tests as well as night time shooting the night sky conditions. Analysis of the night sky conditions are calculated qualitatively using Bortle Dark-Sky Scale with a value range of 1-9. Field test results show that Yogyakarta City has a value of 8, Depok has a value of 3, and Gajah Mungkur Reservoir has a value of 4. The conclusion of study is VIIRS imagery can be used for identification light pollution and calculation analysis of light pollution can use Bortle Dark-Sky Scale.

  2. Quantifying riverine surface currents from time sequences of thermal infrared imagery

    Science.gov (United States)

    Puleo, J.A.; McKenna, T.E.; Holland, K.T.; Calantoni, J.

    2012-01-01

    River surface currents are quantified from thermal and visible band imagery using two methods. One method utilizes time stacks of pixel intensity to estimate the streamwise velocity at multiple locations. The other method uses particle image velocimetry to solve for optimal two-dimensional pixel displacements between successive frames. Field validation was carried out on the Wolf River, a small coastal plain river near Landon, Mississippi, United States, on 26-27 May 2010 by collecting imagery in association with in situ velocities sampled using electromagnetic current meters deployed 0.1 m below the river surface. Comparisons are made between mean in situ velocities and image-derived velocities from 23 thermal and 6 visible-band image sequences (5 min length) during daylight and darkness conditions. The thermal signal was a small apparent temperature contrast induced by turbulent mixing of a thin layer of cooler water near the river surface with underlying warmer water. The visible-band signal was foam on the water surface. For thermal imagery, streamwise velocities derived from the pixel time stack and particle image velocimetry technique were generally highly correlated to mean streamwise current meter velocities during darkness (r 2 typically greater than 0.9) and early morning daylight (r 2 typically greater than 0.83). Streamwise velocities from the pixel time stack technique had high correlation for visible-band imagery during early morning daylight hours with respect to mean current meter velocities (r 2 > 0.86). Streamwise velocities for the particle image velocimetry technique for visible-band imagery had weaker correlations with only three out of six correlations performed having an r 2 exceeding 0.6. Copyright 2012 by the American Geophysical Union.

  3. Assessment of Building Heights from Pléiades Satellite Imagery for ...

    African Journals Online (AJOL)

    Felix

    and classification of build-up structures, LIDAR based DSMs proved to be beneficial .... Vegetation Index (NDVI) (Rouse, 1974) was generated from the red and near- infrared bands. .... Pleiades System Architecture and main Performances.

  4. Using thermal infrared imagery produced by unmanned air vehicles to evaluate locations of ecological road structures

    Directory of Open Access Journals (Sweden)

    Sercan Gülci

    2016-07-01

    Full Text Available The aerial photos and satellite images are widely used and cost efficient data for monitoring and analysis of large areas in forestry activities. Nowadays, accurate and high resolution remote sensing data can be generated for large areas by using Unmanned Aerial Vehicles (UAV integrated with sensors working in various spectral bands. Besides, the UAV systems (UAVs have been used in interdisciplinary studies to produce data of large scale forested areas for desired time periods (i.e. in different seasons or different times of a day. In recent years, it has become more important to conduct studies on determination of wildlife corridors for controlling and planning of habitat fragmentation of wild animals that need vast living areas. The wildlife corridors are a very important base for the determination of a road network planning and placement of ecological road structures (passages, as well as for the assessment of special and sensitive areas such as riparian zones within the forest. It is possible to evaluate wildlife corridors for large areas within a shorter time by using data produced by ground measurements, and remote sensing and viewer systems (i.e. photo-trap, radar and etc., as well as by using remote sensing data generated by UAVs. Ecological behaviors and activities (i.e. sheltering, feeding, mating, etc. of wild animals vary spatially and temporally. Some species are active in their habitats at day time, while some species are active during the night time. One of the most effective methods for evaluation of night time animals is utilizing heat sensitive thermal cameras that can be used to collect thermal infrared images with the night vision feature. When the weather conditions are suitable for a flight, UAVs assist for determining location of corridors effectively and accurately for moving wild animals at any time of the day. Then, the most suitable locations for ecological road structures can be determined based on wildlife corridor

  5. Building damage assessment after the earthquake in Haiti using two postevent satellite stereo imagery and DSMs

    DEFF Research Database (Denmark)

    Tian, Jiaojiao; Nielsen, Allan Aasbjerg; Reinartz, Peter

    2015-01-01

    In this article, a novel after-disaster building damage monitoring method is presented. This method combines the multispectral imagery and digital surface models (DSMs) from stereo matching of two dates to obtain three kinds of changes: collapsed buildings, newly built buildings and temporary...... shelters. The proposed method contains three basic steps. The first step is to focus on the DSMs and orthorectified images preparation. The second step is to segment the panchromatic images in obtaining small homogeneous regions. In the last step, a rule-based classification is built on the change...

  6. A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery

    Science.gov (United States)

    kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2013-12-01

    A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery Ugur ALGANCI1, Sinasi KAYA1,2, Elif SERTEL1,2,Berk USTUNDAG3 1 ITU, Center for Satellite Communication and Remote Sensing, 34469, Maslak-Istanbul,Turkey 2 ITU, Department of Geomatics, 34469, Maslak-Istanbul, Turkey 3 ITU, Agricultural and Environmental Informatics Research Center,34469, Maslak-Istanbul,Turkey alganci@itu.edu.tr, kayasina@itu.edu.tr, sertele@itu.edu.tr, berk@berk.tc ABSTRACT Cultivated land determination and their area estimation are important tasks for agricultural management. Derived information is mostly used in agricultural policies and precision agriculture, in specifically; yield estimation, irrigation and fertilization management and farmers declaration verification etc. The use of satellite image in crop type identification and area estimate is common for two decades due to its capability of monitoring large areas, rapid data acquisition and spectral response to crop properties. With launch of high and very high spatial resolution optical satellites in the last decade, such kind of analysis have gained importance as they provide information at big scale. With increasing spatial resolution of satellite images, image classification methods to derive the information form them have become important with increase of the spectral heterogeneity within land objects. In this research, pixel based classification with maximum likelihood algorithm and object based classification with nearest neighbor algorithm were applied to 2012 dated 2.5 m resolution SPOT 5 satellite images in order to investigate the accuracy of these methods in determination of cotton and corn planted lands and their area estimation. Study area was selected in Sanliurfa Province located on Southeastern Turkey that contributes to Turkey's agricultural production in a major way. Classification results were compared in terms of crop type identification using

  7. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  8. RPC Stereo Processor (rsp) - a Software Package for Digital Surface Model and Orthophoto Generation from Satellite Stereo Imagery

    Science.gov (United States)

    Qin, R.

    2016-06-01

    Large-scale Digital Surface Models (DSM) are very useful for many geoscience and urban applications. Recently developed dense image matching methods have popularized the use of image-based very high resolution DSM. Many commercial/public tools that implement matching methods are available for perspective images, but there are rare handy tools for satellite stereo images. In this paper, a software package, RPC (rational polynomial coefficient) stereo processor (RSP), is introduced for this purpose. RSP implements a full pipeline of DSM and orthophoto generation based on RPC modelled satellite imagery (level 1+), including level 2 rectification, geo-referencing, point cloud generation, pan-sharpen, DSM resampling and ortho-rectification. A modified hierarchical semi-global matching method is used as the current matching strategy. Due to its high memory efficiency and optimized implementation, RSP can be used in normal PC to produce large format DSM and orthophotos. This tool was developed for internal use, and may be acquired by researchers for academic and non-commercial purpose to promote the 3D remote sensing applications.

  9. Mapping sub-antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling.

    Directory of Open Access Journals (Sweden)

    Phillippa K Bricher

    Full Text Available Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6-96.3%, κ = 0.849-0.924. Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments.

  10. Forest Condition Monitoring Using Very-High-Resolution Satellite Imagery in a Remote Mountain Watershed in Nepal

    Directory of Open Access Journals (Sweden)

    Kabir Uddin

    2015-08-01

    Full Text Available Satellite imagery has proven extremely useful for repetitive timeline-based data collection, because it offers a synoptic view and enables fast processing of large quantities of data. The changes in tree crown number and land cover in a very remote watershed (area 1305 ha in Nepal were analyzed using a QuickBird image from 2006 and an IKONOS image from 2011. A geographic object-based image analysis (GEOBIA was carried out using the region-growing technique for tree crown detection, delineation, and change assessment, and a multiresolution technique was used for land cover mapping and change analysis. The coefficient of determination for tree crown detection and delineation was 0.97 for QuickBird and 0.99 for IKONOS, calculated using a line-intercept transect method with 10 randomly selected windows (1×1 ha. The number of tree crowns decreased from 47,121 in 2006 to 41,689 in 2011, a loss of approximately 90 trees per month on average; the area of needle-leaved forest was reduced by 140 ha (23% over the same period. Analysis of widely available very-high-resolution satellite images using GEOBIA techniques offers a cost-effective method for detecting changes in tree crown number and land cover in remote mountain valleys; the results provide the information needed to support improved local-level planning and forest management in such areas.

  11. Precipitation effects on the selection of suitable non-variant targets intended for atmospheric correction of satellite remotely sensed imagery

    Science.gov (United States)

    Themistocleous, Kyriacos; Hadjimitsis, Diofantos G.; Retalis, Adrianos; Chrysoulakis, Nektarios; Michaelides, Silas

    2013-09-01

    One of the most well-established atmospheric correction methods of satellite imagery is the use of the empirical line method using non-variant targets. Non-variant targets serve as pseudo-invariant targets since their reflectance values are stable across time. A recent adaptation of the empirical line method incorporates the use of ground reflectance measurements of selected non-variant targets. Most of the users are not aware of the existing conditions of the pseudo-invariant targets; i.e., whether they are dry or wet. Any omission of such effects may cause erroneous results; therefore, remote sensing users must be aware of such effects. This study assessed the effects of precipitation on five types of commonly located surfaces, including asphalt, concrete and sand, intended as pseudo-invariant targets for atmospheric correction. Spectroradiometric measurements were taken in wet and dry conditions to obtain the spectral signatures of the targets, from January 2010 to May 2011 (46 campaigns). An atmospheric correction of eleven Landsat TM/ETM + satellite images using the empirical line method was conducted. To identify the effects of precipitation, a comparison was conducted of the atmospheric path radiance component for wet and dry conditions. It was found that precipitation conditions such as rainfall affected the reflectance values of the surfaces, especially sand. Therefore, precipitation conditions need to be considered when using non-variant targets in atmospheric correction methods.

  12. Use of shadow for enhancing mapping of perennial desert plants from high-spatial resolution multispectral and panchromatic satellite imagery

    Science.gov (United States)

    Alsharrah, Saad A.; Bouabid, Rachid; Bruce, David A.; Somenahalli, Sekhar; Corcoran, Paul A.

    2016-07-01

    Satellite remote-sensing techniques face challenges in extracting vegetation-cover information in desert environments. The limitations in detection are attributed to three major factors: (1) soil background effect, (2) distribution and structure of perennial desert vegetation, and (3) tradeoff between spatial and spectral resolutions of the satellite sensor. In this study, a modified vegetation shadow model (VSM-2) is proposed, which utilizes vegetation shadow as a contextual classifier to counter the limiting factors. Pleiades high spatial resolution, multispectral (2 m), and panchromatic (0.5 m) images were utilized to map small and scattered perennial arid shrubs and trees. We investigated the VSM-2 method in addition to conventional techniques, such as vegetation indices and prebuilt object-based image analysis. The success of each approach was evaluated using a root sum square error metric, which incorporated field data as control and three error metrics related to commission, omission, and percent cover. Results of the VSM-2 revealed significant improvements in perennial vegetation cover and distribution accuracy compared with the other techniques and its predecessor VSM-1. Findings demonstrated that the VSM-2 approach, using high-spatial resolution imagery, can be employed to provide a more accurate representation of perennial arid vegetation and, consequently, should be considered in assessments of desertification.

  13. Advances In very high resolution satellite imagery analysis for Monitoring human settlements

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Cheriyadat, Anil M [ORNL; Bhaduri, Budhendra L [ORNL

    2014-01-01

    The high rate of urbanization, political conflicts and ensuing internal displacement of population, and increased poverty in the 20th century has resulted in rapid increase of informal settlements. These unplanned, unauthorized, and/or unstructured homes, known as informal settlements, shantytowns, barrios, or slums, pose several challenges to the nations, as these settlements are often located in most hazardous regions and lack basic services. Though several World Bank and United Nations sponsored studies stress the importance of poverty maps in designing better policies and interventions, mapping slums of the world is a daunting and challenging task. In this paper, we summarize our ongoing research on settlement mapping through the utilization of Very high resolution (VHR) remote sensing imagery. Most existing approaches used to classify VHR images are single instance (or pixel-based) learning algorithms, which are inadequate for analyzing VHR imagery, as single pixels do not contain sufficient contextual information (see Figure 1). However, much needed spatial contextual information can be captured via feature extraction and/or through newer machine learning algorithms in order to extract complex spatial patterns that distinguish informal settlements from formal ones. In recent years, we made significant progress in advancing the state of art in both directions. This paper summarizes these results.

  14. Land Use Changes of Mata Lake Using Multi-temporal Satellite Imageries

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Land use and protection has become a global hotspot. How to use land resources is an important topic for the future socio-economic sustainable development. This paper analyzes the land use changes of Mata lake of Shandong province in China, from 1985's to 2000's using multi-temporal remotely sensed data including TM in the 1985s, ETM+ in the 2000s and ancillary data such as soil use map, water map etc. The remote sensing imageries were calibrated, registered and geo-referenced, then classified by multi-source information data and remote sensing image interpretation expert system based on knowledge base. Five land use types were extracted from remote sensing imageries, that is, water body, agriculture land, rural settlement, bare land and none use land. The total precision is 80.7% and Kappa index is 0.825. The analysis result of the remote sensing showsthat during the past 15 years, water resource dropped off very promptly from 51.77 km2 to 16. 65 km2 and bare land reduced greatly more than 60% in Mata lake region. With the development of the economy and agriculture areas, more and more water body and bare land converted to agriculture land use and rural settlement areas. Since last years, the Mata lake has been affected by natural factor, human activity and increasing population. So its land use pattern greatly changed from 1985 to 2000.The information of land use changes provided scientific supports for land planning and environmental protection.

  15. High Resolution Topography of Polar Regions from Commercial Satellite Imagery, Petascale Computing and Open Source Software

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Kramer, WIlliam; Bauer, Greg; Bates, Brian; Williamson, Cathleen

    2017-04-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. Two new projects are using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency and open source photogrammetry software to produce a time-tagged 2m posting elevation model of the Arctic and an 8m posting reference elevation model for the Antarctic. When complete, this publically available data will be at higher resolution than any elevation models that cover the entirety of the Western United States. These two polar projects are made possible due to three equally important factors: 1) open-source photogrammetry software, 2) petascale computing, and 3) sub-meter imagery licensed to the United States Government. Our talk will detail the technical challenges of using automated photogrammetry software; the rapid workflow evolution to allow DEM production; the task of deploying the workflow on one of the world's largest supercomputers; the trials of moving massive amounts of data, and the management strategies the team needed to solve in order to meet deadlines. Finally, we will discuss the implications of this type of collaboration for future multi-team use of leadership-class systems such as Blue Waters, and for further elevation mapping.

  16. Changes in the Earth's largest surge glacier system from satellite and airborne altimetry and imagery

    Science.gov (United States)

    Trantow, T.; Herzfeld, U. C.

    2015-12-01

    The Bering-Bagley Glacier System (BBGS), Alaska, one of the largest ice systems outside of Greenland and Antarctica, has recently surged (2011-2013), providing a rare opportunity to study the surge phenomenon in a large and complex system. Understanding fast-flowing glaciers and accelerations in ice flow, of which surging is one type, is critical to understanding changes in the cryosphere and ultimately changes in sea level. It is important to distinguish between types of accelerations and their consequences, especially between reversible or quasi-cyclic and irreversible forms of glacial acceleration, but current icesheet models treat all accelerating ice identically. Additionally, the surge provides an exceptional opportunity to study the influence of surface roughness and water content on return signals of altimeter systems. In this presentation, we analyze radar and laser altimeter data from CryoSat-2, NASA's Operation IceBridge (OIB), the ICESat Geoscience Laser Altimeter System (GLAS), ICESat-2's predecessor the Multiple Altimeter Beam Experimental Lidar (MABEL), and airborne laser altimeter and imagery campaigns by our research group. These measurements are used to study elevation, elevation change and crevassing throughout the glacier system. Analysis of the imagery from our airborne campaigns provides comprehensive characterizations of the BBGS surface over the course of the surge. Results from the data analysis are compared to numerical modeling experiments.

  17. The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment

    CERN Document Server

    Méndez-Lorenzo, P; Lamanna, M; Meyer, X; Lazeyras, M; Bjorgo, E; Retiere, A; Falzone, A; Venuti, N; Maccarone, S; Ugolotti, B

    2007-01-01

    UNOSAT is a United Nations activity to provide access to satellite images and geographic system services for humanitarian operations for rescue or aid activities. UNOSAT is implemented by the UN Institute for Training and Research (UNITAR) and managed by the UN Office for Project Services (UNOPS). In addition, partners from different organizations constitute the UNOSAT consortium. Among these partners, CERN participates actively providing the required computational and storage resources. The critical part of the UNOSAT activity is the storage and processing of large quantities of satellite images. The fast and secure access to these images from any part of the world is mandatory during these activities. Based on two successful CERN-GRID/UNOSAT pilot projects (data storage/compression/download and image access through mobile phone), the GRIDUNOSAT project has consolidated the considerable work undertaken so far in the present activity. The main use case already demonstrated is the delivery of satellite images ...

  18. Applicability of near-infrared hyperspectral imagery (NIR-HI) for sensor based sorting of an epithermal Au-Ag ore

    NARCIS (Netherlands)

    Dalm, M.; Buxton, M.W.N.; Van Ruitenbeek, F.J.A.

    2015-01-01

    In the presented study test work was performed with near-infrared hyperspectral imagery (NIR-HI) on 36 ore samples from a South-American epithermal Au-Ag mine. The aim of the test work was to investigate if NIR-HI provides information about the alteration mineralogy of samples that can be used to pr

  19. Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry

    Directory of Open Access Journals (Sweden)

    F. Meier

    2010-12-01

    Full Text Available This research quantifies and discusses atmospheric effects that alter the radiance observed by a ground-based thermal-infrared (TIR camera mounted on top of a high-rise building in the city of Berlin, Germany. The study shows that atmospheric correction of ground-based TIR imagery of the three-dimensional (3-D urban environment acquired in oblique viewing geometry has to account for spatial variability of line-of-sight (LOS geometry. We present an atmospheric correction procedure that uses these spatially distributed LOS geometry parameters, the radiative transfer model MODTRAN 5.2 and atmospheric profile data derived from meteorological measurements in the field of view (FOV of the TIR camera. The magnitude of atmospheric effects varies during the analysed 24-hourly period (8 August 2009 and is particularly notable for surfaces showing a strong surface-to-air temperature difference. The differences between uncorrected and corrected TIR imagery reach up to 7.7 K at 12:00. Atmospheric effects are biased up to 4.3 K at 12:00 and up to 0.6 K at 24:00, if non-spatially distributed LOS parameters are used.

  20. The investigation of brain-computer interface for motor imagery and execution using functional near-infrared spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Jiao, Xuejun; Xu, Fengang; Jiang, Jin; Yang, Hanjun; Cao, Yong; Fu, Jiahao

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS), which can measure cortex hemoglobin activity, has been widely adopted in brain-computer interface (BCI). To explore the feasibility of recognizing motor imagery (MI) and motor execution (ME) in the same motion. We measured changes of oxygenated hemoglobin (HBO) and deoxygenated hemoglobin (HBR) on PFC and Motor Cortex (MC) when 15 subjects performing hand extension and finger tapping tasks. The mean, slope, quadratic coefficient and approximate entropy features were extracted from HBO as the input of support vector machine (SVM). For the four-class fNIRS-BCI classifiers, we realized 87.65% and 87.58% classification accuracy corresponding to hand extension and finger tapping tasks. In conclusion, it is effective for fNIRS-BCI to recognize MI and ME in the same motion.

  1. Joint Target Tracking, Recognition and Segmentation for Infrared Imagery Using a Shape Manifold-Based Level Set

    Directory of Open Access Journals (Sweden)

    Jiulu Gong

    2014-06-01

    Full Text Available We propose a new integrated target tracking, recognition and segmentation algorithm, called ATR-Seg, for infrared imagery. ATR-Seg is formulated in a probabilistic shape-aware level set framework that incorporates a joint view-identity manifold (JVIM for target shape modeling. As a shape generative model, JVIM features a unified manifold structure in the latent space that is embedded with one view-independent identity manifold and infinite identity-dependent view manifolds. In the ATR-Seg algorithm, the ATR problem formulated as a sequential level-set optimization process over the latent space of JVIM, so that tracking and recognition can be jointly optimized via implicit shape matching where target segmentation is achieved as a by-product without any pre-processing or feature extraction. Experimental results on the recently released SENSIAC ATR database demonstrate the advantages and effectiveness of ATR-Seg over two recent ATR algorithms that involve explicit shape matching.

  2. Application of satellite imagery to analyse the distribution and recruitment of sardinella - Annual Report 2002

    NARCIS (Netherlands)

    Zeeberg, J.J.

    2003-01-01

    Remote sensing studies at the Netherlands Institute for Fisheries Research (RIVO) aim to stimulate the use of satellite images on board of Dutch freezer-trawlers in the Mauritanian Exclusive Economic Zone (MEEZ). During four research missions (5-12 July 2002, 23-30 August 2002, 13-20 October 2002, a

  3. The Final Frontier: News Media’s Use of Commercial Satellite Imagery during Wartime

    Science.gov (United States)

    2006-04-01

    Political Communication . Vol. 9, 1992, p. 192. 5 “An orbit is sun-synchronous when the spacecraft is constantly interposed between the earth and the sun...government: The media, remote-sensing satellites, and U.S. national security policy.” Political Communication . Vol. 9, 1992. DeSelding, P.B. and Lawler

  4. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation.

    Science.gov (United States)

    Hong, Seunghwan; Choi, Yoonjo; Park, Ilsuk; Sohn, Hong-Gyoo

    2017-01-17

    Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy.

  5. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

    Science.gov (United States)

    Hong, Seunghwan; Choi, Yoonjo; Park, Ilsuk; Sohn, Hong-Gyoo

    2017-01-01

    Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy. PMID:28106729

  6. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

    Directory of Open Access Journals (Sweden)

    Seunghwan Hong

    2017-01-01

    Full Text Available Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy.

  7. Geographic object-based delineation of neighborhoods of Accra, Ghana using QuickBird satellite imagery.

    Science.gov (United States)

    Stow, Douglas A; Lippitt, Christopher D; Weeks, John R

    2010-08-01

    The objective was to test GEographic Object-based Image Analysis (GEOBIA) techniques for delineating neighborhoods of Accra, Ghana using QuickBird multispectral imagery. Two approaches to aggregating census enumeration areas (EAs) based on image-derived measures of vegetation objects were tested: (1) merging adjacent EAs according to vegetation measures and (2) image segmentation. Both approaches exploit readily available functions within commercial GEOBIA software. Image-derived neighborhood maps were compared to a reference map derived by spatial clustering of slum index values (from census data), to provide a relative assessment of potential map utility. A size-constrained iterative segmentation approach to aggregation was more successful than standard image segmentation or feature merge techniques. The segmentation approaches account for size and shape characteristics, enabling more realistic neighborhood boundaries to be delineated. The percentage of vegetation patches within each EA yielded more realistic delineation of potential neighborhoods than mean vegetation patch size per EA.

  8. Particle contamination from Martin Optical Black. [in design of barrel baffle of Infrared Astronomical Satellite

    Science.gov (United States)

    Young, P. J.; Noll, R.; Andreozzi, L.; Hope, J.

    1981-01-01

    The design of the barrel baffle of the Infrared Astronomical Satellite (IRAS) Optical Subsystem to minimize production of particulate contamination is described. The configuration of the 50-inch long, 28.5-inch diameter baffle required pop-rivet assembly after coating with Martin Optical Black for stray light suppression. An experiment to determine the contamination produced at assembly led to the modification of the baffle construction to preclude such damage to the coated surfaces.

  9. Assessing Sahelian vegetation and stress from seasonal time series of polar orbiting and geostationary satellite imagery

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard

    on short timescales, which are challenging from polar orbiting instruments. Geostationary NDVI and the NIR and SWIR based Shortwave Infrared Water Stress Index (SIWSI) indices are compared with extensive field data from the Dahra site, supplemented by data from the Agoufou and Demokeya sites. The indices...

  10. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  11. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Science.gov (United States)

    Leahy, Susannah M; Kingsford, Michael J; Steinberg, Craig R

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  12. Thermal Imaging with Novel Infrared Focal Plane Arrays and Quantitative Analysis of Thermal Imagery

    Science.gov (United States)

    Gunapala, S. D.; Rafol, S. B.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Soibel, A.; Ting, D. Z.; Tidrow, Meimei

    2012-01-01

    We have developed a single long-wavelength infrared (LWIR) quantum well infrared photodetector (QWIP) camera for thermography. This camera has been used to measure the temperature profile of patients. A pixel coregistered simultaneously reading mid-wavelength infrared (MWIR)/LWIR dual-band QWIP camera was developed to improve the accuracy of temperature measurements especially with objects with unknown emissivity. Even the dualband measurement can provide inaccurate results due to the fact that emissivity is a function of wavelength. Thus we have been developing a four-band QWIP camera for accurate temperature measurement of remote object.

  13. UNOSAT at CERN – 15 years of satellite imagery support to the humanitarian and development community

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Abstract: UNOSAT is part of the United Nations Institute for Training and Research (UNITAR) and has been hosted at CERN since 2001. This partnership allows UNOSAT to benefit from CERN's IT infrastructure whenever the situation requires, allowing the UN to be at the forefront of satellite-analysis technology. Specialists in geographic information systems (GIS) and in the analysis of satellite data, supported by IT engineers and policy experts, ensure a dedicated service to the international humanitarian and development communities 24 hours a day, seven days a week. The presentation will give an overview of the variety of activities carried out by UNOSAT over the last 15 years including support to humanitarian assistance and protection of cultural heritage, sustainable water management in Chad and training & capacity development in East Africa and Asia. The talk will be followed at 12:00 by the inauguration of the UNOSAT exhibition, in front of the Users' office. Speaker: Einar Bjor...

  14. Becoming Bombs: 3D Animated Satellite Imagery and the Weaponization of the Civic Eye

    Directory of Open Access Journals (Sweden)

    Roger Stahl

    2010-02-01

    Full Text Available This essay traces the recent history of 3D satellite animation from its military origins to its visibility in the civic sphere. Specifically, technologies unveiled in 2004 as Google Earth first received widespread public visibility in the television coverage of the 2003 U.S. invasion of Iraq. The essay first maps the political economy of the “military-media-geotech” complex, focusing mainly on the coverage of the Iraq War as an nexus of interests. Second, the essay analyzes the aesthetic uses of 3D satellite animation on the news during this period, including how these imaging practices meshed with existing discourses such as the clean war, the weaponization of the civic gaze, and others. The essay concludes with thoughts regarding what these practices mean for the efficacy of the deliberative citizen, public life, and the meaning of war.

  15. Land use change detection based on multi-date imagery from different satellite sensor systems

    Science.gov (United States)

    Stow, Douglas A.; Collins, Doretta; Mckinsey, David

    1990-01-01

    An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.

  16. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  17. Drunk identification using far infrared imagery based on DCT features in DWT domain

    Science.gov (United States)

    Xie, Zhihua; Jiang, Peng; Xiong, Ying; Li, Ke

    2016-10-01

    Drunk driving problem is a serious threat to traffic safety. Automatic drunk driver identification is vital to improve the traffic safety. This paper copes with automatic drunk driver detection using far infrared thermal images by the holistic features. To improve the robustness of drunk driver detection, instead of traditional local pixels, a holistic feature extraction method is proposed to attain compact and discriminative features for infrared face drunk identification. Discrete cosine transform (DCT) in discrete wavelet transform (DWT) domain is used to extract the useful features in infrared face images for its high speed. Then, the first six DCT coefficients are retained for drunk classification by means of "Z" scanning. Finally, SVM is applied to classify the drunk person. Experimental results illustrate that the accuracy rate of proposed infrared face drunk identification can reach 98.5% with high computation efficiency, which can be applied in real drunk driver detection system.

  18. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  19. Multi-Spectral Satellite Imagery and Land Surface Modeling Supporting Dust Detection and Forecasting

    Science.gov (United States)

    Molthan, A.; Case, J.; Zavodsky, B.; Naeger, A. R.; LaFontaine, F.; Smith, M. R.

    2014-12-01

    Current and future multi-spectral satellite sensors provide numerous means and methods for identifying hazards associated with polluting aerosols and dust. For over a decade, the NASA Short-term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center in Huntsville has focused on developing new applications from near real-time data sources in support of the operational weather forecasting community. The SPoRT Center achieves these goals by matching appropriate analysis tools, modeling outputs, and other products to forecast challenges, along with appropriate training and end-user feedback to ensure a successful transition. As a spinoff of these capabilities, the SPoRT Center has recently focused on developing collaborations to address challenges with the public health community, specifically focused on the identification of hazards associated with dust and pollution aerosols. Using multispectral satellite data from the SEVIRI instrument on the Meteosat series, the SPoRT team has leveraged EUMETSAT techniques for identifying dust through false color (RGB) composites, which have been used by the National Hurricane Center and other meteorological centers to identify, monitor, and predict the movement of dust aloft. Similar products have also been developed from the MODIS and VIIRS instruments onboard the Terra and Aqua, and Suomi-NPP satellites, respectively, and transitioned for operational forecasting use by offices within NOAA's National Weather Service. In addition, the SPoRT Center incorporates satellite-derived vegetation information and land surface modeling to create high-resolution analyses of soil moisture and other land surface conditions relevant to the lofting of wind-blown dust and identification of other, possible public-health vectors. Examples of land surface modeling and relevant predictions are shown in the context of operational decision making by forecast centers with potential future applications to public health arenas.

  20. Content-Aware Adaptive Compression of Satellite Imagery Using Artificial Vision

    Science.gov (United States)

    2013-09-01

    Figure 3.2 An example of a vector-based Digital Nautical Chart ( DNC ) which could be used to automatically remove most of the terrain from a satellite...Transform DNC Digital Nautical Chart DWT Discrete Wavelet Transform DSP Digital Signal Processor FPGA Field-Programmable Gate Array IEC International...order to automate this step. Figure 3.2: An example of a vector-based Digital Nautical Chart ( DNC ) which could be used to automatically remove most of

  1. A surge of Perseibreen, Svalbard, examined using aerial photography and ASTER high resolution satellite imagery

    OpenAIRE

    Dowdeswell, Julian A.; Benham, Toby J.

    2003-01-01

    The identification of surge activity is important in assessing the duration of the active and quiescent phases of the surge cycle of Svalbard glaciers. Satellite and aerial photographic images are used to identify and describe the form and flow of Perseibreen, a valley glacier of 59 km2 on the east coast of Spitsbergen. Heavy surface crevassing and a steep ice front, indicative of surge activity, were first observed on Perseibreen in April 2002. Examination of high resolution (15 m) Advanced ...

  2. OVERVIEW OF MODERN RESEARCH OF LANDSLIDES ACCORDING TO AERIAL AND SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    K. M. Lyapishev

    2015-01-01

    Full Text Available This article is an overview of researches of landslides using remote sensing methods such as aerial photography, satellite images, radar interferometry, and their combination with the use of GIS technology. Modern methods of investigation of landslides are very diverse. The authors propose different approaches to the identification, classification and monitoring of landslides. Data analysis techniques can help in creating more sophisticated approach to the analysis of landslides.

  3. Use of Commercial Satellite Imagery for Surveillance of the Canadian North by the Canadian Armed Forces

    Science.gov (United States)

    1988-12-01

    by M. Dobson. New York: IEEE Press, 1988. 9. Bodin , P. and J-F. Reulet. "A New Channel for SPOT Satellite in the SWIR Band," Focal Plane Arra@s...TecholgqoandAic@igtns, edited by Jean -Pierre Chartard. Proc. SPIE 865, 142-1Li9 (1987). 10. Burrows, W.E. eep apck _Sacesionage_and National SecuritU. New

  4. Using ISERV and Commercial Satellite Imagery to Assess and Monitor Recovery Efforts in Urban Damaged Areas

    Science.gov (United States)

    Bell, Jordan R.; Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.

    2014-01-01

    NASA's Short-term Prediction, Research, and Transition (SPoRT) Center uses a wide array of satellites to monitor and assess the impacts of natural disasters, with support from NASA's Applied Sciences Program. One of the newest sensors SPoRT is utilizing in these activities is the International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. ISERV provides a unique view of the areas impacted and will play a big role in monitoring the recovery these areas. High-resolution commercial satellite data is also used to monitor urban areas that have been impacted by natural disasters. SPoRT is developing techniques to measure the extent of these disasters and to monitor recovery. Several of these techniques include semi-automatic feature detection and change as well as developing an experimental damage assessment based upon the visible damage observed by the satellites. Furthermore, throughout these activities SPoRT hopes to provide additional data to the NOAA National Weather Service Damage Assessment Toolkit, which will help to supplement those activities being performed in the field.

  5. An improved technique for global daily sunshine duration estimation using satellite imagery

    Institute of Scientific and Technical Information of China (English)

    Muhammad Ali SHAMIM; Renji REMESAN; Da-wei HAN; Naeem EJAZ; Ayub ELAHI

    2012-01-01

    This paper presents an improved model for global sunshine duration estimation.The methodology incorporates geostationary satellite images by including snow cover information,sun and satellite angles and a trend correction factor for seasons,for the determination of cloud cover index.The effectiveness of the proposed methodology has been tested using Meteosat geostationary satellite images in the visible band with a temporal resolution of 1 h and spatial resolution of 2.5 km×2.5 km,for the Brue Catchment in the southwest of England.Validation results show a significant improvement in the estimation of global sunshine duration by the proposed method as compared to its predecessor (R2 is improved from 0.68 to 0.83,root mean squared error (RMSE) from 2.37 h/d to 1.19 h/d and the mean biased error (MBE) from 0.21 h/d to 0.08 h/d).Further studies are needed to test this method in other parts of the world with different climate and geographical conditions.

  6. Classification of mangroves vegetation species using texture analysis on Rapideye satellite imagery

    Science.gov (United States)

    Roslani, M. A.; Mustapha, M. A.; Lihan, T.; Juliana, W. A. Wan

    2013-11-01

    Mangroves are unique ecosystem structures that are typically made up of salt tolerant species of vegetation that can be found in tropical and subtropical climate country. Mangrove ecosystem plays important role and also is known as highly productive ecosystem with high diversity of flora and fauna. However, these ecosystems have been declining over time due to the various kinds of direct and indirect pressures. Thus, there is an increasing need to monitor and assess this ecosystem for better conservation and management efforts. The multispectral RapidEye satellite image was used to identify the mangrove vegetation species within the Matang Mangrove Forest Reserve in Perak, Malaysia using texture analysis. Classification was implemented using the maximum likelihood classifier (MLC) method. Total of eleven main mangrove species were found in the satellite image of the study site which includes Rhizophora mucronata, Rhizophora apiculata, Bruguiera parviflora, Bruguiera cylindrica, Bruguiera gymnorrhiza, Avicennia alba, Avicennia officinalis, Sonneratia alba, Sonneratia caseolaris, Sonneratia ovata and Xylocarpus granatum. The classification results showed that the textured image produced high overall classification assessment recorded at 84% and kappa statistic of 0.8016. Meanwhile, the non-textured image produces 80% of overall accuracy and kappa statistic of 0.7061. The classification result indicated the capability of high resolution satellite image to classify the mangrove species and inclusion of texture information in the classification increased the classification accuracy.

  7. Aerial Photography and Imagery, Ortho-Corrected, 2004 Satellite Imagery, Published in 2004, 1:12000 (1in=1000ft) scale, Anne Arundel County, OIT GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Aerial Photography and Imagery, Ortho-Corrected dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Orthoimagery information as...

  8. Fast terrain modelling for hydrogeological risk mapping and emergency management: the contribution of high-resolution satellite SAR imagery

    Directory of Open Access Journals (Sweden)

    A. Nascetti

    2015-07-01

    Full Text Available Geomatic tools fast terrain modelling play a relevant role in hydrogeological risk mapping and emergency management. Given their complete independence from logistic constraints on the ground (as for airborne data collection, illumination (daylight, and weather (clouds conditions, synthetic aperture radar (SAR satellite systems may provide important contributions in terms of digital surface models (DSMs and digital elevation models (DEMs. For this work we focused on the potential of high-resolution SAR satellite imagery for DSM generation using an interferometric (InSAR technique and using a revitalized radargrammetric stereomapping approach. The goal of this work was just methodological. Our goal was to illustrate both the fundamental advantages and drawbacks of the radargrammetric approach with respect to the InSAR technique for DSM generation, and to outline their possible joint role in hydrogeological risk mapping and emergency management. Here, it is worth mentioning that radargrammetry procedures are independent of image coherence (unlike the interferometric approach and phase unwrapping, as well as of parsimony (only a few images are necessary. Therefore, a short time is required for image collection (from tens of minutes to a few hours, thanks to the independence from illumination and weather. The most relevant obstacles of the technique are speckle and the lack of texture impact on image matching, as well as the well-known deformations of SAR imagery (layover and foreshortening, which may produce remarkable difficulties with complex morphologies and that must be accounted for during acquisition planning. Here, we discuss results obtained with InSAR and radargrammetry applied to a COSMO-SkyMed SpotLight triplet (two stereopairs suited for radargrammetry and InSAR, sharing one common image acquired over suburbs of San Francisco (United States, which are characterized by mixed morphology and land cover. We mainly focused on urban areas and

  9. Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

    Directory of Open Access Journals (Sweden)

    Kuan-Ting Liu

    2016-04-01

    Full Text Available Water level (WL and water volume (WV of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2 and Landsat-5/-7/-8 Thematic Mapper (TM/Enhanced Thematic Mapper plus (ETM+/Operational  Land Imager (OLI optical remote sensing (RS imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE is at 2–5 m level. The estimated WV variations derived from combined RA

  10. Use of open source information and commercial satellite imagery for nuclear nonproliferation regime compliance verification by a community of academics

    Science.gov (United States)

    Solodov, Alexander

    The proliferation of nuclear weapons is a great threat to world peace and stability. The question of strengthening the nonproliferation regime has been open for a long period of time. In 1997 the International Atomic Energy Agency (IAEA) Board of Governors (BOG) adopted the Additional Safeguards Protocol. The purpose of the protocol is to enhance the IAEA's ability to detect undeclared production of fissile materials in member states. However, the IAEA does not always have sufficient human and financial resources to accomplish this task. Developed here is a concept for making use of human and technical resources available in academia that could be used to enhance the IAEA's mission. The objective of this research was to study the feasibility of an academic community using commercially or publicly available sources of information and products for the purpose of detecting covert facilities and activities intended for the unlawful acquisition of fissile materials or production of nuclear weapons. In this study, the availability and use of commercial satellite imagery systems, commercial computer codes for satellite imagery analysis, Comprehensive Test Ban Treaty (CTBT) verification International Monitoring System (IMS), publicly available information sources such as watchdog groups and press reports, and Customs Services information were explored. A system for integrating these data sources to form conclusions was also developed. The results proved that publicly and commercially available sources of information and data analysis can be a powerful tool in tracking violations in the international nuclear nonproliferation regime and a framework for implementing these tools in academic community was developed. As a result of this study a formation of an International Nonproliferation Monitoring Academic Community (INMAC) is proposed. This would be an independent organization consisting of academics (faculty, staff and students) from both nuclear weapon states (NWS) and

  11. Detecting Rock Glacier Dynamics in Southern Carpathians Mountains Using High-Resolution Optical and Multi-Temporal SAR Satellite Imagery .....

    Science.gov (United States)

    Necsoiu, M.; Onaca, A.

    2015-12-01

    This research provided the first documented assessment of the dynamics of rock glaciers in Southern Carpathian Mountains over almost half a century (1968-2014). The dynamics of four representative rock glaciers were assessed using complementary satellite-based optical and radar remote sensing techniques. We investigated the dynamics of the area using co-rectification of paired optical satellite datasets acquired by SPOT5, WV-1, Pléiades, and Corona to estimate short term (7 years) and longer term changes (44 years). Accurately rectifying and co-registering Corona KH-4B imagery allowed us to expand the time horizon over which changes in this alpine environment could be analyzed. The displacements revealed by this analysis correlate with variations in local slope of the rock glaciers, and presence or absence of permafrost. For radar analysis, nine ascending ALOS-1 PALSAR images were used based clear sky and absence of snow groundcover (i.e. June-October). Although decorrelation limits the ability to perform quantitative InSAR analyses, loss of coherence was useful in detecting subtle changes in active rock glacier environments, as well as other mass movements including rock falls, rock avalanches, debris flows, creep of permafrost, and solifluction. Small Baseline Subset (SBAS) InSAR analysis successfully quantified rates of change for unstable areas. The results of this investigation, although based on limited archived imagery, demonstrate that correlation analysis, coherence analysis, and multitemporal InSAR techniques can yield useful information for detecting creeping permafrost in a complex mountain environment, such as Retezat Mountains. Our analyses showed that rock glaciers in the Southern Carpathian Mountains are experiencing very slow annual movement of only a few cm per year. Results of the remote sensing analyses are consistent with field observations of permafrost occurrence at these sites (for more, please see Abstract ID# 68413). The combined optical

  12. A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data

    Science.gov (United States)

    Abedi, Maysam; Norouzi, Gholam-Hossain

    2016-04-01

    This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA

  13. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and Quantitative mapping of salinity stress in sugarcane fields

    Science.gov (United States)

    Hamzeh, Saeid; Naseri, Abd Ali; AlaviPanah, Seyed Kazem; Bartholomeus, Harm; Herold, Martin

    2016-10-01

    This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image acquired on September 7, 2010 were used as hyperspectral and multispectral satellite imagery. Field data including soil salinity in the sugarcane root zone was collected at 191 locations in 25 fields during September 2010. In the first section of the paper, based on the yield potential of sugarcane as influenced by different soil salinity levels provided by FAO, soil salinity was classified into three classes, low salinity (1.7-3.4 dS/m), moderate salinity (3.5-5.9 dS/m) and high salinity (6-9.5) by applying different classification methods including Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and Maximum Likelihood (ML) on Hyperion and Landsat images. In the second part of the paper the performance of nine vegetation indices (eight indices from literature and a new developed index in this study) extracted from Hyperion and Landsat data was evaluated for quantitative mapping of salinity stress. The experimental results indicated that for categorical classification of salinity stress, Landsat data resulted in a higher overall accuracy (OA) and Kappa coefficient (KC) than Hyperion, of which the MD classifier using all bands or PCA (1-5) as an input performed best with an overall accuracy and kappa coefficient of 84.84% and 0.77 respectively. Vice versa for the quantitative estimation of salinity stress, Hyperion outperformed Landsat. In this case, the salinity and water stress index (SWSI) has the best prediction of salinity stress with an R2 of 0.68 and RMSE of 1.15 dS/m for Hyperion followed by Landsat data with an R2 and RMSE of 0.56 and 1.75 dS/m respectively. It was concluded that categorical mapping of salinity stress is the best option

  14. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    Science.gov (United States)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled

  15. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    Science.gov (United States)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be

  16. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  17. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Directory of Open Access Journals (Sweden)

    U. Amato

    2014-06-01

    Full Text Available We introduce a classification method (Cumulative Discriminant Analysis of the Discriminant Analysis type to discriminate between cloudy and clear sky satellite observations in the thermal infrared. The tool is intended for the high spectral resolution infrared sounder (IRS planned for the geostationary METEOSAT (Meteorological Satellite Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer data as a proxy. The Cumulative Discriminant Analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A Principal Component Analysis prior step is also introduced which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer and SEVIRI (Spinning Enhanced Visible and Infrared Imager imagers. The agreement with these independent cloud masks is generally well above 80%, except at high latitudes in their winter seasons.

  18. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Science.gov (United States)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-10-01

    We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The cumulative discriminant analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A principal component analysis prior step is also introduced, which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80 %, except at high latitudes in the winter seasons.

  19. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Benjamin T. Tuttle

    2010-12-01

    Full Text Available The potential use of satellite observed nighttime lights for estimating carbon-dioxide (CO2 emissions has been demonstrated in several previous studies. However, the procedures for a moderate resolution (1 km2 grid cells global map of fossil fuel CO2 emissions based on nighttime lights are still in the developmental phase. We report on the development of a method for mapping distributed fossil fuel CO2 emissions (excluding electric power utilities at 30 arc-seconds or approximately 1 km2 resolution using nighttime lights data collected by the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS. A regression model, Model 1, was initially developed based on carbon emissions from five sectors of the Vulcan data produced by the Purdue University and a nighttime satellite image of the U.S. The coefficient derived through Model 1 was applied to the global nighttime image but it resulted in underestimation of CO2 emissions for most of the world’s countries, and the states of the U.S. Thus, a second model, Model 2 was developed by allocating the distributed CO2 emissions (excluding emissions from utilities using a combination of DMSP-OLS nighttime image and population count data from the U.S. Department of Energy's (DOE LandScan grid. The CO2 emissions were distributed in proportion to the brightness of the DMSP nighttime lights in areas where lighting was detected. In areas with no DMSP detected lighting, the CO2 emissions were distributed based on population count, with the assumption that people who live in these areas emit half as much CO2 as people who live in the areas with DMSP detected lighting. The results indicate that the relationship between satellite observed nighttime lights and CO2 emissions is complex, with differences between sectors and variations in lighting practices between countries. As a result it is not possible to make independent estimates of CO2 emissions with currently available coarse

  20. Assessing Sahelian vegetation and stress from seasonal time series of polar orbiting and geostationary satellite imagery

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard

    index (NDVI), which combines red and near infrared (NIR) spectral regions. From NDVI data a greening of the Sahel have been identified since the 80s and attributed to increasing trends in annual rainfall for large parts of the region. One part of this thesis analyses time series of parameterized MODIS...... that the varying NPP/NDVI relationships, combined with the large increase in livestock of the Sahel in recent decades, means that the greening of the Sahel cannot uncritically be interpreted as a positive trend in vegetation productivity due to increasing rainfall. It can also represent grazing induced changes...... in species composition which covers neutral or even decreasing trends in biomass production. For monitoring vegetation status on a shorter time scale in the Sahel, the NDVI may not be the most appropriate index. From previous research it has been suggested that the Shortwave infrared (SWIR) spectral region...

  1. Preliminary hard and soft bottom seafloor substrate map derived from an supervised classification of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from a supervised classification from multispectral World View-2 satellite imagery of Ni'ihau Island,...

  2. Assessing the Performance of a Northern Gulf of Mexico Tidal Model Using Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Stephen C. Medeiros

    2013-11-01

    Full Text Available Tidal harmonic analysis simulations along with simulations spanning four specific historical time periods in 2003 and 2004 were conducted to test the performance of a northern Gulf of Mexico tidal model. A recently developed method for detecting inundated areas based on integrated remotely sensed data (i.e., Radarsat-1, aerial imagery, LiDAR, Landsat 7 ETM+ was applied to assess the performance of the tidal model. The analysis demonstrates the applicability of the method and its agreement with traditional performance assessment techniques such as harmonic resynthesis and water level time series analysis. Based on the flooded/non-flooded coastal areas estimated by the integrated remotely sensed data, the model is able to adequately reproduce the extent of inundation within four sample areas from the coast along the Florida panhandle, correctly identifying areas as wet or dry over 85% of the time. Comparisons of the tidal model inundation to synoptic (point-in-time inundation areas generated from the remotely sensed data generally agree with the results of the traditional performance assessment techniques. Moreover, this approach is able to illustrate the spatial distribution of model inundation accuracy allowing for targeted refinement of model parameters.

  3. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    Science.gov (United States)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  4. Detection of Neolithic Settlements in Thessaly (Greece Through Multispectral and Hyperspectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Dimitrios Alexakis

    2009-02-01

    Full Text Available Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 – 3,000 BC. Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throughout the region. Data from four primary sensors were used, namely Landsat ETM, ASTER, EO1 - HYPERION and IKONOS. A range of image processing techniques were originally applied to the hyperspectral imagery in order to detect the settlements and validate the results of GPS surveying. Although specific difficulties were encountered in the automatic classification of archaeological features composed by a similar parent material with the surrounding landscape, the results of the research suggested a different response of each sensor to the detection of the Neolithic settlements, according to their spectral and spatial resolution.

  5. Impact of Atmospheric Attenuations Time Resolutions in Solar Radiation Derived from Satellite Imagery

    Science.gov (United States)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    Accurate knowledge of solar irradiance components at the earth surface is of highly interest in many scientific and technology branches concerning meteorology, climate, agriculture and solar energy applications. In the specific case of solar energy systems the solar resource analysis with accuracy is a first step in every project since it is a required data for design, power output estimations, systems simulations and risk assessments. Solar radiation measurement availability is increasing both in spatial density and in historical archiving. However, it is still quite limited and most of the situations cannot make use of a long term ground database of high quality since solar irradiance is not generally measured where users need data. Satellite-derived solar radiation estimations are a powerful and valuable tool for solar resource assessment studies that have achieved a relatively high maturity due to years of developments and improvements. However, several sources of uncertainty are still present in satellite-derived methods. In particular, the strong influence of atmospheric attenuation information as input to the method is one of the main topics of improvement. Since solar radiation attenuation by atmospheric aerosols, and water vapor in a second place, is, after clouds, the second most important factor determining solar radiation, and particularly direct normal irradiance, the accurate knowledge of aerosol optical depth and water vapor content is relevant in the final output of satellite-derived methods. This present work, two different datasets we are used for extract atmospheric attenuation information. On the one hand the monthly mean values of the Linke turbidity factor from Meteotest database, which are twelve unique values of the Linke turbidity worldwide with a spatial resolution of 1/12º. On the other hand, daily values of AOD (Aerosol Optical Depth) at 550 nm, Angstrom alpha exponent and water vapor column were taken from a gridded database that

  6. Satellite geological and geophysical remote sensing of Iceland: Preliminary results of geologic, hydrologic, oceanographic, and agricultural studies with ERTS-1 imagery

    Science.gov (United States)

    Williams, R. S., Jr. (Principal Investigator); Boeovarsson, A.; Frioriksson, S.; Palmason, G.; Rist, S.; Sigtryggsson, H.; Saemundsson, K.; Thorarinsson, S.; Thorsteinsson, I.

    1973-01-01

    The author has identified the following significant results. The wide variety of geological and geophysical phenomena which can be observed in Iceland, and particularly their very direct relation to the management of the country's natural resources, has provided great impetus to the use of ERTS-1 imagery to measure and map the dynamic natural phenomena in Iceland. MSS imagery is being used to study a large variety of geological and geophysical eruptive products, geologic structure, volcanic geomorphology, hydrologic, oceanographic, and agricultural phenomena of Iceland. Some of the preliminary results from this research projects are: (1) a large number of geological and volcanic features can be studied from ERTS-1 imagery, particularly imagery acquired at low sun angle, which had not previously been recognized; (2) under optimum conditions the ERTS-1 satellite can discern geothermal areas by their snow melt pattern or warm spring discharge into frozen lakes; (3) various maps at scales of 1:1 million and 1:500,000 can be updated and made more accurate with ERTS-1 imagery; (4) the correlation of water reserves with snowcover can improve the basis for planning electrical production in the management of water resources; (5) false-color composites (MSS) permitted the mapping of four types of vegetation: forested; grasslands, reclaimed, and cultivated areas, and the seasonal change of the vegetation, all of high value to rangeland management.

  7. Application of LANDSAT satellite imagery for iron ore prospecting in the Western Desert of Egypt

    Science.gov (United States)

    Elshazly, E. M.; Abdelhady, M. A.; Elghawaby, M. A.; Khawasik, S. M.

    1977-01-01

    Prospecting for iron ore occurrences was conducted by the Remote Sensing Center in Bahariya Oasis-El Faiyum area covering some 100,000 km squared in the Western Desert of Egypt. LANDSAT-1 satellite images were utilized as the main tool in the regional prospecting of the iron ores. The delineation of the geological units and geological structure through the interpretation of the images corroborated by field observations and structural analysis led to the discovery of new iron ore occurrences in the area of investigation.

  8. Determination of Land Use from Satellite Imagery for Input to Hydrologic Models.

    Science.gov (United States)

    1980-04-01

    Symposium on Remote Sensing of thieK Environment, 23-30 April 1980, San Jose, Costa Rica 19. KEY WORDS - C=Wm*. eO I.W. EII..e.wvm I*FS Week atfm...Fourteenth International Symposium on Remote Sensing of the Environment, 23-30 April 1980, San Jose, Costa Rica DETERMINATION OF LAND USE FROM SATELLITE...Factors in Small Hydropower Planning, Darryl W. Davis, February 1979, 38 pages. #62 Flood Hydrograph and Peak Flow Frequency Analysis, Arlen D. Feldman

  9. REFLECTIONS ON THE USO OF SATELLITE IMAGERY FOR THE TEACHING-LEARNING OF URBAN GEOGRAPHY CONTENTS IN FORTALEZA/CEARÁ

    Directory of Open Access Journals (Sweden)

    Rosilene Aires

    2016-06-01

    Full Text Available This paper exposes a didactic experience realized in 2012 with 80 students of the daytime secondary education from school E.E.F.M Senador Osires Pontes in Fortaleza - Ceará. This experience demonstrated how the school use of satellite imagery can aid in the geography teaching. The methodology was based on study and analysis of satellite images of urban areas, making drawings and application of questionnaires by students in the neighborhood. After that, discussed about the cognitive responses of students from didactic resources and teaching method chosen to approach of the contents. This practice improved learning of all students about its reality. Este artigo expõe uma experiência pedagógica realizada em 2012 com 80 alunos do 2o ano do Ensino Médio diurno da Escola de Ensino Fundamental e Médio Senador Osires Pontes em Fortaleza- Ceará. Esta vivência demonstrou como o uso pedagógico de imagens pode auxiliar no ensino de conteúdos geográficos. A metodologia baseou-se em estudo e análise de imagens de satélite de áreas urbanas, confecção e interpretação de croquis e elaboração e aplicação de questionários pelos estudantes no bairro. Em seguida, dialogou-se sobre as respostas do público-alvo, diante dos recursos didáticos e do método de ensino escolhido na abordagem dos conteúdos. Esta prática melhorou a aprendizagem dos participantes sobre sua realidade.

  10. Spatial and temporal changes in household structure locations using high-resolution satellite imagery for population assessment: an analysis in southern Zambia, 2006-2011

    Directory of Open Access Journals (Sweden)

    Timothy Shields

    2016-05-01

    Full Text Available Satellite imagery is increasingly available at high spatial resolution and can be used for various purposes in public health research and programme implementation. Comparing a census generated from two satellite images of the same region in rural southern Zambia obtained four and a half years apart identified patterns of household locations and change over time. The length of time that a satellite image-based census is accurate determines its utility. Households were enumerated manually from satellite images obtained in 2006 and 2011 of the same area. Spatial statistics were used to describe clustering, cluster detection, and spatial variation in the location of households. A total of 3821 household locations were enumerated in 2006 and 4256 in 2011, a net change of 435 houses (11.4% increase. Comparison of the images indicated that 971 (25.4% structures were added and 536 (14.0% removed. Further analysis suggested similar household clustering in the two images and no substantial difference in concentration of households across the study area. Cluster detection analysis identified a small area where significantly more household structures were removed than expected; however, the amount of change was of limited practical significance. These findings suggest that random sampling of households for study participation would not induce geographic bias if based on a 4.5-year-old image in this region. Application of spatial statistical methods provides insights into the population distribution changes between two time periods and can be helpful in assessing the accuracy of satellite imagery.

  11. Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Panu Srestasathiern

    2014-10-01

    Full Text Available Oil palm tree is an important cash crop in Thailand. To maximize the productivity from planting, oil palm plantation managers need to know the number of oil palm trees in the plantation area. In order to obtain this information, an approach for palm tree detection using high resolution satellite images is proposed. This approach makes it possible to count the number of oil palm trees in a plantation. The process begins with the selection of the vegetation index having the highest discriminating power between oil palm trees and background. The index having highest discriminating power is then used as the primary feature for palm tree detection. We hypothesize that oil palm trees are located at the local peak within the oil palm area. To enhance the separability between oil palm tree crowns and background, the rank transformation is applied to the index image. The local peak on the enhanced index image is then detected by using the non-maximal suppression algorithm. Since both rank transformation and non-maximal suppression are window based, semi-variogram analysis is used to determine the appropriate window size. The performance of the proposed method was tested on high resolution satellite images. In general, our approach uses produced very accurate results, e.g., about 90 percent detection rate when compared with manual labeling.

  12. Mapping species distribution of Canarian Monteverde forest by field spectroradiometry and satellite imagery

    Science.gov (United States)

    Martín-Luis, Antonio; Arbelo, Manuel; Hernández-Leal, Pedro; Arbelo-Bayó, Manuel

    2016-10-01

    Reliable and updated maps of vegetation in protected natural areas are essential for a proper management and conservation. Remote sensing is a valid tool for this purpose. In this study, a methodology based on a WorldView-2 (WV-2) satellite image and in situ spectral signatures measurements was applied to map the Canarian Monteverde ecosystem located in the north of the Tenerife Island (Canary Islands, Spain). Due to the high spectral similarity of vegetation species in the study zone, a Multiple Endmember Spectral Mixture Analysis (MESMA) was performed. MESMA determines the fractional cover of different components within one pixel and it allows for a pixel-by-pixel variation of endmembers. Two libraries of endmembers were collected for the most abundant species in the test area. The first library was collected from in situ spectral signatures measured with an ASD spectroradiometer during a field campaign in June 2015. The second library was obtained from pure pixels identified in the satellite image for the same species. The accuracy of the mapping process was assessed from a set of independent validation plots. The overall accuracy for the ASD-based method was 60.51 % compared to the 86.67 % reached for the WV-2 based mapping. The results suggest the possibility of using WV-2 images for monitoring and regularly updating the maps of the Monteverde forest on the island of Tenerife.

  13. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China

    Science.gov (United States)

    Wang, Wen; Cheng, Hui; Zhang, Li

    2012-04-01

    All countries around the world and many international bodies, including the United Nations Development Program (UNDP), United Nations Food and Agricultural Organization (FAO), the International Fund for Agricultural Development (IFAD) and the International Labor Organization (ILO), have to eliminate rural poverty. Estimation of regional poverty level is a key issue for making strategies to eradicate poverty. Most of previous studies on regional poverty evaluations are based on statistics collected typically in administrative units. This paper has discussed the deficiencies of traditional studies, and attempted to research regional poverty evaluation issues using 3-year DMSP/OLS night-time light satellite imagery. In this study, we adopted 17 socio-economic indexes to establish an integrated poverty index (IPI) using principal component analysis (PCA), which was proven to provide a good descriptor of poverty levels in 31 regions at a provincial scale in China. We also explored the relationship between DMSP/OLS night-time average light index and the poverty index using regression analysis in SPSS and a good positive linear correlation was modelled, with R2 equal to 0.854. We then looked at provincial poverty problems in China based on this correlation. The research results indicated that the DMSP/OLS night-time light data can assist analysing provincial poverty evaluation issues.

  14. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary

    Directory of Open Access Journals (Sweden)

    Pei Shang

    2016-11-01

    Full Text Available The Multispectral Wide Field of View (WFV camera on the Chinese GF-1 satellite, launched in 2013, has advantages of high spatial resolution (16 m, short revisit period (4 days and wide scene swath (800 km compared to the Landsat-8/OLI, which make it an ideal means of monitoring spatial-temporal changes of Suspended Particulate Matter (SPM in large estuaries like the Yangtze Estuary. However, a lack of proper atmospheric correction methods has limited its application in water quality assessment. We propose an atmospheric correction method based on a look up table coupled by the atmosphere radiative transfer model (6S and the water semi-empirical radiative transfer (SERT model for inversion of water-leaving reflectance from GF-1 top-of-atmosphere radiance, and then retrieving SPM concentration from water-leaving radiance reflectance of the Yangtze Estuary and its adjacent sea. Results are validated by the Landsat-8/OLI imagery together with autonomous fixed station data, and influences of human activities (e.g., waterway construction and shipping on SPM distribution are analyzed.

  15. Automatic Classification of High Resolution Satellite Imagery - a Case Study for Urban Areas in the Kingdom of Saudi Arabia

    Science.gov (United States)

    Maas, A.; Alrajhi, M.; Alobeid, A.; Heipke, C.

    2017-05-01

    Updating topographic geospatial databases is often performed based on current remotely sensed images. To automatically extract the object information (labels) from the images, supervised classifiers are being employed. Decisions to be taken in this process concern the definition of the classes which should be recognised, the features to describe each class and the training data necessary in the learning part of classification. With a view to large scale topographic databases for fast developing urban areas in the Kingdom of Saudi Arabia we conducted a case study, which investigated the following two questions: (a) which set of features is best suitable for the classification?; (b) what is the added value of height information, e.g. derived from stereo imagery? Using stereoscopic GeoEye and Ikonos satellite data we investigate these two questions based on our research on label tolerant classification using logistic regression and partly incorrect training data. We show that in between five and ten features can be recommended to obtain a stable solution, that height information consistently yields an improved overall classification accuracy of about 5%, and that label noise can be successfully modelled and thus only marginally influences the classification results.

  16. ANALYSIS OF AMBIENT FIELDS AND SATELLITE IMAGERY CHARACTERISTICS OF EFFECT OF BAY OF BENGAL STORMS ON LOW-LATITUDE PLATEAU

    Institute of Scientific and Technical Information of China (English)

    XU Mei-ling; ZHANG Xiu-nian; YANG Su-yu

    2007-01-01

    Based on the composite analysis method, 12 rainstorms triggered by Bay of Bengal storms(shortened as B-storms hereafter) across the whole province of Yunnan were studied, and some interesting results of rain and circulation characteristics influenced by the storms were obtained for low-latitude plateau.Usually, when a rainstorm weather occurs in low-latitude plateau, the B-storm center locates in the central,east or north parts of the Bay of Bengal. At the same time, the subtropical high ridge moves to 15°N - 20°Nand the west ridge point moves to the Indo-china Peninsula from the South China Sea and the low-latitude plateau is controlled by southwest air streams coming from the front of the trough and the periphery of the subtropical high. The southwest low-level jet stream from the east side of the bay storm has great effect on heavy rains. On the one hand, the southwest low-level jet stream is playing the role of transporting water vapor and energy. On the other hand, the southwest low-level jet stream is helpful to keep essential dynamical condition. From the analysis of the satellite cloud imagery, it is found that mesoscale convection cloud clusters will keep growing and moving into the low-latitude plateau to cause heavy rains when a storm forms in the Bay of Bengal.

  17. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary.

    Science.gov (United States)

    Shang, Pei; Shen, Fang

    2016-11-25

    The Multispectral Wide Field of View (WFV) camera on the Chinese GF-1 satellite, launched in 2013, has advantages of high spatial resolution (16 m), short revisit period (4 days) and wide scene swath (800 km) compared to the Landsat-8/OLI, which make it an ideal means of monitoring spatial-temporal changes of Suspended Particulate Matter (SPM) in large estuaries like the Yangtze Estuary. However, a lack of proper atmospheric correction methods has limited its application in water quality assessment. We propose an atmospheric correction method based on a look up table coupled by the atmosphere radiative transfer model (6S) and the water semi-empirical radiative transfer (SERT) model for inversion of water-leaving reflectance from GF-1 top-of-atmosphere radiance, and then retrieving SPM concentration from water-leaving radiance reflectance of the Yangtze Estuary and its adjacent sea. Results are validated by the Landsat-8/OLI imagery together with autonomous fixed station data, and influences of human activities (e.g., waterway construction and shipping) on SPM distribution are analyzed.

  18. Mapping seagrass and colonized hard bottom in Springs Coast, Florida using WorldView-2 satellite imagery

    Science.gov (United States)

    Baumstark, René; Duffey, Renee; Pu, Ruiliang

    2016-11-01

    The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps were created from WorldView-2 satellite imagery using an Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study suggests an alternative for mapping deeper, offshore habitats capable of producing higher thematic and spatial resolution maps compared to those created with the traditional photo-interpretation method.

  19. Long-term evolution of Wink sinkholes in West Texas observed by high-resolution satellite imagery

    Science.gov (United States)

    Kim, J. W.; Lu, Z.

    2016-12-01

    Sinkhole is ground depression and/or collapse over the subsurface cavity in the karst terrain underlain by the carbonates, evaporites, and other soluble soils and rocks. The geohazards have been considered as a "hidden threat" to human life, infrastructures, and properties. The Delaware Basin of West Texas in the southwest part of the Permian Basin contains one of the greatest accumulations of evaporites in the United States. Sinkholes in West Texas have been developed by the dissolution of the subsurface evaporite deposits that come in contact with groundwater. Two Wink sinkholes in Wink, Texas, were developed in 1980 and 2002, respectively. However, monitoring the sinkholes in no man's lands has been challenging due to the lack of availability of high-resolution and temporally dense acquisitions. We employ aerial photography and radar satellite imagery to measure the long-term deformation from early 2000 and characterize the inherent hydrogeology that is closely related to sinkhole collapse and subsidence. Furthermore, data on oil/gas production and water injection into the subsurface as well as ground water level are analyzed to study their effects on the concurrent unstable ground surface in Wink sinkholes. Our study will provide invaluable information to understand the mechanism of sinkhole development and mitigate the catastrophic outcomes of the geohazards.

  20. Fine-scale features on the sea surface in SAR satellite imagery – Part 1: Simultaneous in-situ measurements

    Directory of Open Access Journals (Sweden)

    S. Brusch

    2012-09-01

    Full Text Available This work is aimed at identifying the origin of fine-scale features on the sea surface in synthetic aperture radar (SAR imagery with the help of in-situ measurements as well as numerical models (presented in a companion paper. We are interested in natural and artificial features starting from the horizontal scale of the upper ocean mixed layer, around 30–50 m. These features are often associated with three-dimensional upper ocean dynamics. We have conducted a number of studies involving in-situ observations in the Straits of Florida during SAR satellite overpass. The data include examples of sharp frontal interfaces, wakes of surface ships, internal wave signatures, as well as slicks of artificial and natural origin. Atmospheric processes, such as squall lines and rain cells, produced prominent signatures on the sea surface. This data has allowed us to test an approach for distinguishing between natural and artificial features and atmospheric influences in SAR images that is based on a co-polarized phase difference filter.

  1. Estimating trends of urban residential irrigation extent and rate using satellite imagery in the city of Los Angeles, CA

    Science.gov (United States)

    Chen, Y. J.; McFadden, J. P.; Clarke, K. C.; Roberts, D. A.

    2015-12-01

    Urban residential irrigation is a large component of urban water budgets in Mediterranean climate cities, and plays a significant role for managing landscape vegetation and water resources. This is particularly occurring at cities such as Los Angeles, where water availability is limited during dry summers. This study applied 10-m SPOT 5 satellite imagery and a database of monthly water use records for residential water customers in Los Angeles in order to examine the interactions between vegetation water demand and residential water consumption. Here, we identify the spatial distribution of vegetation greenness and the extent of irrigation rates through water year 2005-2007, including normal, dry, and wet extremes of annual rainfall. Additionally, the water conservation ratio, which is between rates of irrigation and vegetation water demand, is used to assess over-irrigation. Although residential outdoor water usage was found as highest in the dry year, landscape vegetation under water stress that cannot maintain greenness condition as well as in wetter years. However, the decreasing trend of over-irrigation occurred from wet to drier years, since vegetation water demand increased significantly but irrigation rates changed little, implying over-irrigation in urbanized areas. This over watering issue can be implemented by water resource management, and urban planning, especially in current severe California drought.

  2. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  3. Assessing the Spatial Variability of Alfalfa Yield Using Satellite Imagery and Ground-Based Data

    Science.gov (United States)

    Kayad, Ahmed G.; Al-Gaadi, Khalid A.; Tola, ElKamil; Madugundu, Rangaswamy; Zeyada, Ahmed M.; Kalaitzidis, Chariton

    2016-01-01

    Understanding the temporal and spatial variability in a crop yield is viewed as one of the key steps in the implementation of precision agriculture practices. Therefore, a study on a center pivot irrigated 23.5 ha field in Saudi Arabia was conducted to assess the variability in alfalfa yield using Landsat-8 imagery and a hay yield monitor data. In addition, the study was designed to also explore the potential of predicting the alfalfa yield using vegetation indices. A calibrated yield monitor mounted on a large rectangular hay baler was used to measure the actual alfalfa yield for four alfalfa harvests performed in the period from October 2013 to May 2014. A total of 18 Landsat-8 images, representing different crop growth stages, were used to derive different vegetation indices (VIs). Data from the yield monitor was used to generate yield maps, which illustrated a definite spatial variation in alfalfa yield across the experimental field for the four studied harvests as indicated by the high spatial correlation values (0.75 to 0.97) and the low P-values (4.7E-103 to 8.9E-27). The yield monitor-measured alfalfa actual yield was compared to the predicted yield form the Vis. Results of the study showed that there was a correlation between actual and predicted yield. The highest correlations were observed between actual yield and the predicted using NIR reflectance, SAVI and NDVI with maximum correlation coefficients of 0.69, 0.68 and 0.63, respectively. PMID:27281189

  4. Mapping Aquatic Vegetation in a Tropical Wetland Using High Spatial Resolution Multispectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Timothy G. Whiteside

    2015-09-01

    Full Text Available Vegetation plays a key role in the environmental function of wetlands. The Ramsar-listed wetlands of the Magela Creek floodplain in Northern Australia are identified as being at risk from weeds, fire and climate change. In addition, the floodplain is a downstream receiving environment for the Ranger Uranium Mine. Accurate methods for mapping wetland vegetation are required to provide contemporary baselines of annual vegetation dynamics on the floodplain to assist with analysing any potential change during and after minesite rehabilitation. The aim of this study was to develop and test the applicability of geographic object-based image analysis including decision tree classification to classify WorldView-2 imagery and LiDAR-derived ancillary data to map the aquatic vegetation communities of the Magela Creek floodplain. Results of the decision tree classification were compared against a Random Forests classification. The resulting maps showed the 12 major vegetation communities that exist on the Magela Creek floodplain and their distribution for May 2010. The decision tree classification method provided an overall accuracy of 78% which was significantly higher than the overall accuracy of the Random Forests classification (67%. Most of the error in both classifications was associated with confusion between spectrally similar classes dominated by grasses, such as Hymenachne and Pseudoraphis. In addition, the extent of the sedge Eleocharis was under-estimated in both cases. This suggests the method could be useful for mapping wetlands where statistical-based supervised classifications have achieved less than satisfactory results. Based upon the results, the decision tree method will form part of an ongoing operational monitoring program.

  5. Verification of sectoral cloud motion based direct normal irradiance nowcasting from satellite imagery

    Science.gov (United States)

    Schroedter-Homscheidt, Marion; Gesell, Gerhard

    2016-05-01

    The successful integration of solar electricity from photovoltaics or concentrating solar power plants into the existing electricity supply requires an electricity production forecast for 48 hours, while any improved surface irradiance forecast over the next upcoming hours is relevant for an optimized operation of the power plant. While numerical weather prediction has been widely assessed and is in commercial use, the short-term nowcasting is still a major field of development. European Commission's FP7 DNICast project is especially focusing on this task and this paper reports about parts of DNICast results. A nowcasting scheme based on Meteosat Second Generation cloud imagery and cloud movement tracking has been developed for Southern Spain as part of a solar production forecasting tool (CSP-FoSyS). It avoids the well-known, but not really satisfying standard cloud motion vector approach by using a sectoral approach and asking the question at which time any cloud structure will affect the power plant. It distinguishes between thin cirrus clouds and other clouds, which typically occur in different heights in the atmosphere and move in different directions. Also, their optical properties are very different - especially for the calculation of direct normal irradiances as required by concentrating solar power plants. Results for Southern Spain show a positive impact of up to 8 hours depending of the time of the day and a RMSD reduction of up to 10% in hourly DNI irradiation compared to day ahead forecasts. This paper presents the verification of this scheme at other locations in Europe and Northern Africa (BSRN and EnerMENA stations) with different cloud conditions. Especially for Jordan and Tunisia as the most relevant countries for CSP in this station list, we also find a positive impact of up to 8 hours.

  6. Rectification of single and multiple frames of satellite scanner imagery using points and edges as control

    Science.gov (United States)

    Paderes, F. C., Jr.; Mikhail, E. M.; Foerstner, W.

    1984-01-01

    Rectification of single and overlapping multiple scanner frames produced by such satellite-borne scanners as the LANDSAT MSS was carried out using a newly developed comprehensive parametric model. Tests with both simulated and real image data demonstrate conclusively that this model in general is superior to the widely used polynomial model, and that the simultaneous rectification of overlapping frames using least squares techniques yields a high accuracy than sngle frame rectification due to the inclusion of tie points between the image frames. Used to control, edges or lines, whic are much more likely to be found in images, can replace conventional control points and can easily be implemented into the least squares approach. An efficient algorithm for findng corresponding points in image paris was developed which can be used for determining tie points between image frames and thus increase the ecnomy of the whole rectification procedure.

  7. Subpixel Accuracy Analysis of Phase Correlation Shift Measurement Methods Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S.M. Badwai

    2013-01-01

    Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.

  8. Dynamics modeling for sugar cane sucrose estimation using time series satellite imagery

    Science.gov (United States)

    Zhao, Yu; Justina, Diego Della; Kazama, Yoriko; Rocha, Jansle Vieira; Graziano, Paulo Sergio; Lamparelli, Rubens Augusto Camargo

    2016-10-01

    Sugarcane, as one of the most mainstay crop in Brazil, plays an essential role in ethanol production. To monitor sugarcane crop growth and predict sugarcane sucrose content, remote sensing technology plays an essential role while accurate and timely crop growth information is significant, in particularly for large scale farming. We focused on the issues of sugarcane sucrose content estimation using time-series satellite image. Firstly, we calculated the spectral features and vegetation indices to make them be correspondence to the sucrose accumulation biological mechanism. Secondly, we improved the statistical regression model considering more other factors. The evaluation was performed and we got precision of 90% which is about 20% higher than the conventional method. The validation results showed that prediction accuracy using our sugarcane growth modeling and improved mix model is satisfied.

  9. A new method to determine eroded areas in arid environment using Landsat satellite imagery

    Science.gov (United States)

    A, Aydda; Ah, Algouti; Ab, Algouti; M, Essemani; Y, Taghya

    2014-06-01

    Erosion (by water or wind) is an increasing problem for many local authorities and government agencies throughout the world. The identification of eroded areas in arid and humid regions can be very useful for environmental planning and can help reduce soil and sediment degradation in these regions. In this work we present a new method to determine eroded areas in arid environment. In this method were explored lithological data to determine eroded areas. These data were collected in the field using GPS (Global Positioning System) checkpoints and geological maps. For that, two lithological maps of the study areas were analysed to determine lithological data change. Those two maps were obtained from the classification algorithm by applying the maximum likelihood on two Landsat satellite images. After images classification and validation a change detection technique was adopted to determine eroded areas. This method was applied in northern part of Atlantic Sahara desert to confirm their potentiality.

  10. LAND USE LAND COVER DYNAMICS OF NILGIRIS DISTRICT, INDIA INFERRED FROM SATELLITE IMAGERIES

    Directory of Open Access Journals (Sweden)

    P. Nalina

    2014-01-01

    Full Text Available Land use Land cover changes are critical components in managing natural resources especially in hilly region as they trigger the erosion of soil and thus making the zone highly vulnerable to landslides. The Nilgiris district of Tamilnadu state in India is the first biosphere in Western Ghats region with rare species of flora and fauna and often suffered by frequent landslides. Therefore in this present study land use land cover dynamics of Nilgiri district has been studied from 1990 to 2010 using Satellite Remote Sensing Technique. The temporal changes of land use and land cover changes of Nilgiris district over the period of 1990 to 2010 were monitored using LISS I and LISS III of IRS 1A and IRS-P6 satellites. Land use dynamics were identified using Maximum likelihood classification under supervised classification technique. From the remote sensing study, it is found that during the study period of 1990 to 2010, area of dense forest increased by 27.17%, forest plantation area decreased by 54.64%. Conversion of forest plantation, Range land and open forest by agriculture and settlement leading to soil erosion and landslides. Tea plantation increased by 33.95% and agricultural area for plantation of vegetables increased rapidly to 217.56% in the mountain steep area. The accuracy of classification has been assessed by forming confusion matrix and evaluating kappa coefficient. The overall accuracy has been obtained as 83.7 and 89.48% for the years 1990 and 2010 respectively. The kappa coefficients were reported as 0.80 and 0.88 respectively for the years 1990 and 2010.

  11. Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery

    Science.gov (United States)

    Shukla, P. K.; Goel, S.; Singh, P.; Lohani, B.

    2014-11-01

    Tracking of targets from aerial platforms is an important activity in several applications, especially surveillance. Knowled ge of geolocation of these targets adds additional significant and useful information to the application. This paper determines the geolocation of a target being tracked from an aerial platform using the technique of image registration. Current approaches utilize a POS to determine the location of the aerial platform and then use the same for geolocation of the targets using the principle of photogrammetry. The constraints of cost and low-payload restrict the applicability of this approach using UAV platforms. This paper proposes a methodology for determining the geolocation of a target tracked from an aerial platform in a partially GPS devoid environment. The method utilises automatic feature based registration technique of a georeferenced satellite image with an ae rial image which is already stored in UAV's database to retrieve the geolocation of the target. Since it is easier to register subsequent aerial images due to similar viewing parameters, the subsequent overlapping images are registered together sequentially thus resulting in the registration of each of the images with georeferenced satellite image thus leading to geolocation of the target under interest. Using the proposed approach, the target can be tracked in all the frames in which it is visible. The proposed concept is verified experimentally and the results are found satisfactory. Using the proposed method, a user can obtain location of target of interest as well features on ground without requiring any POS on-board the aerial platform. The proposed approach has applications in surveillance for target tracking, target geolocation as well as in disaster management projects like search and rescue operations.

  12. Automatic Blocked Roads Assessment after Earthquake Using High Resolution Satellite Imagery

    Science.gov (United States)

    Rastiveis, H.; Hosseini-Zirdoo, E.; Eslamizade, F.

    2015-12-01

    In 2010, an earthquake in the city of Port-au-Prince, Haiti, happened quite by chance an accident and killed over 300000 people. According to historical data such an earthquake has not occurred in the area. Unpredictability of earthquakes has necessitated the need for comprehensive mitigation efforts to minimize deaths and injuries. Blocked roads, caused by debris of destroyed buildings, may increase the difficulty of rescue activities. In this case, a damage map, which specifies blocked and unblocked roads, can be definitely helpful for a rescue team. In this paper, a novel method for providing destruction map based on pre-event vector map and high resolution world view II satellite images after earthquake, is presented. For this purpose, firstly in pre-processing step, image quality improvement and co-coordination of image and map are performed. Then, after extraction of texture descriptor from the image after quake and SVM classification, different terrains are detected in the image. Finally, considering the classification results, specifically objects belong to "debris" class, damage analysis are performed to estimate the damage percentage. In this case, in addition to the area objects in the "debris" class their shape should also be counted. The aforementioned process are performed on all the roads in the road layer.In this research, pre-event digital vector map and post-event high resolution satellite image, acquired by Worldview-2, of the city of Port-au-Prince, Haiti's capital, were used to evaluate the proposed method. The algorithm was executed on 1200×800 m2 of the data set, including 60 roads, and all the roads were labelled correctly. The visual examination have authenticated the abilities of this method for damage assessment of urban roads network after an earthquake.

  13. AUTOMATIC BLOCKED ROADS ASSESSMENT AFTER EARTHQUAKE USING HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    H. Rastiveis

    2015-12-01

    Full Text Available In 2010, an earthquake in the city of Port-au-Prince, Haiti, happened quite by chance an accident and killed over 300000 people. According to historical data such an earthquake has not occurred in the area. Unpredictability of earthquakes has necessitated the need for comprehensive mitigation efforts to minimize deaths and injuries. Blocked roads, caused by debris of destroyed buildings, may increase the difficulty of rescue activities. In this case, a damage map, which specifies blocked and unblocked roads, can be definitely helpful for a rescue team. In this paper, a novel method for providing destruction map based on pre-event vector map and high resolution world view II satellite images after earthquake, is presented. For this purpose, firstly in pre-processing step, image quality improvement and co-coordination of image and map are performed. Then, after extraction of texture descriptor from the image after quake and SVM classification, different terrains are detected in the image. Finally, considering the classification results, specifically objects belong to “debris” class, damage analysis are performed to estimate the damage percentage. In this case, in addition to the area objects in the “debris” class their shape should also be counted. The aforementioned process are performed on all the roads in the road layer.In this research, pre-event digital vector map and post-event high resolution satellite image, acquired by Worldview-2, of the city of Port-au-Prince, Haiti's capital, were used to evaluate the proposed method. The algorithm was executed on 1200×800 m2 of the data set, including 60 roads, and all the roads were labelled correctly. The visual examination have authenticated the abilities of this method for damage assessment of urban roads network after an earthquake.

  14. Evaluation of a physically-based snow model with infrared and microwave satellite-derived estimates

    Science.gov (United States)

    Wang, L.

    2013-05-01

    Snow (with high albedo, as well as low roughness and thermal conductivity) has significant influence on the land-atmosphere interactions in the cold climate and regions of high elevation. The spatial and temporal variability of the snow distribution on a basin scale greatly determines the timing and magnitude of spring snowmelt runoff. For improved water resources management, a physically-based distributed snow model has been developed and applied to the upper Yellow River Basin to provide the outputs of snow variables as well as streamflows from 2001 to 2005. Remotely-sensed infrared information from MODIS satellites has been used to evaluate the model's outputs of spatially-distributed snow cover extent (SCE) and land surface temperature (LST); while the simulated snow depth (SD) and snow water equivalent (SWE) have been compared with the microwave information from SSM/I and AMSR-E satellites. In general, the simulated streamflows (including spring snowmelt) agree fairly well with the gauge-based observations; while the modeled snow variables show acceptable accuracies through comparing to various satellite-derived estimates from infrared or microwave information.;

  15. Search for astronomical sites suitable for infrared observations using GOES satellite images

    Science.gov (United States)

    Ducati, Jorge R.; Feijo, Eleandro S.

    2003-04-01

    Images from GOES satellite were used to develop a method to search for sites suitable to astronomical observations in the infrared. An area of study located in the Peruvian Andes was chosen, with altitudes above 2500 m. Forty-three images from the GOES meteorological satellite in channels 3, 4 and 5 were used. The GOES images, spanning an 11-day period, in each channel, were combined to produced images expressing the surface visibility in each channel. Atmospheric turbulence could be estimated from the variation of visibility over six-hour periods, with one image per hour. As criteria to classify sites on the Andes, we combined information on altitude, visibility of the surface in the infrared, the amount of water vapor in the atmosphere, and atmospheric turbulence. Results of this new method showed that the region of Moquegua, in South Peru, is to be preferred in surveys for astronomical sites. Comparisons with results from other investigators, which used other approaches, indicated that this methodology can produce valid results and can be applied to studies covering larger periods. The general results of this study indicate that the method is valid and can effectively be used as an important resource in surveys for infrared astronomical sites.

  16. Search for astronomical sites suitable for infrared observations using goes satellite images release

    Science.gov (United States)

    Ducati, J. R.; Feijó, E.

    2003-08-01

    Astronomical sites are traditionally found after studies performed over many years, including preliminary selection of places based in general information on climate, clear skies and logistical adequacy. It follows extensive "in situ" monitoring of seeing and cloudiness. Theses procedures are long and expensive, and alternatives can be looked for. In this study, images from GOES meteorological satellite were used to develop a method to search for sites suitable to astronomical observations in the infrared. An area of study located in the Peruvian Andes was chosen, with altitudes above 2500 m. 43 images from the GOES meteorological satellite in chanels 3, 4 and 5 were used. The GOES images, spanning a 11-day period, in each channel, were combined to produced images expressing the surface visibility in each channel. Atmospheric turbulence could be estimated from the variation of visibility over six-hour periods, with one image per hour. As criteria to classify sites on the Andes, we combined information on altitude, visibility of the surface in the infrared, the amount of water vapor in the atmosphere, and atmospheric turbulence. Results of this new method showed that the region of Moquegua, in South Peru, is to be preferred in surveys for astronomical sites. Comparisons with results from other investigators, which used other approaches, indicated that this methodology produces valid results and can be used to studies spanning larger periods. The general results of this study indicate that the method can efectively be used as an important resource in surveys for infrared astronomical sites

  17. Synopsis of current satellite snow mapping techniques, with emphasis on the application of near-infrared data

    Science.gov (United States)

    Barnes, J. C.; Smallwood, M. D.

    1975-01-01

    The Skylab EREP S192 Multispectral Scanner data have provided for the first time an opportunity to examine the reflectance characteristics of snowcover in several spectral bands extending from the visible into the near-infrared spectral region. The analysis of the S192 imagery and digital tape data indicates a sharp drop in reflectance of snow in the near-infrared, with snow becoming essentially nonreflective in Bands 11 (1.55-1.75 micron) and 12 (2.10-2.35 micron). Two potential applications to snow mapping of measurements in the near-infrared spectral region are possible: (1) the use of a near-infrared band in conjunction with a visible band to distinguish automatically between snow and water droplet clouds; and (2) the use of one or more near-infrared bands to detect areas of melting snow.

  18. Mapping plant functional type distributions in Arctic ecosystems using WorldView-2 satellite imagery and unsupervised clustering

    Science.gov (United States)

    Langford, Z.; Kumar, J.; Hoffman, F. M.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.

    2014-12-01

    The Arctic has emerged as an important focal point for the study of climate change. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Modeling of Arctic tundra vegetation requires representation of the heterogeneous tundra landscape, which includes representation of individual plant functional types (PFT). Vegetation exhibits unique spectral characteristics that can be harnessed to discriminate plant types and develop quantitative vegetation indices, such as the Normalized Difference Vegetation Index. We have combined high resolution multi-spectral remote sensing from the WorldView-2 satellite with LiDAR-derived digital elevation models to characterize the tundra landscape in four 100m X 100m sites within the Barrow Environmental Observatory, a 3021 hectare research reserve located at the northern most location on the Alaskan Arctic Coastal Plain. Classification of landscape PFT's using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season (June - August) to collect vegetation surveys from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. We will describe two versions of PFT upscaling from WorldView-2 imagery: 1) a version computed from multiple imagery through the growing season and 2) a version computed from a single image in the middle of the growing season. This approach allowed us to test the degree to which including phenology helps predict PFT distribution

  19. Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery

    Science.gov (United States)

    Lee, George

    1992-01-01

    A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.

  20. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy

    Science.gov (United States)

    Power, Sarah D.; Falk, Tiago H.; Chau, Tom

    2010-04-01

    Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI). In particular, previous research has shown that NIRS signals recorded from the motor cortex during left- and right-hand imagery can be distinguished, providing a basis for a two-choice NIRS-BCI. In this study, we investigated the feasibility of an alternative two-choice NIRS-BCI paradigm based on the classification of prefrontal activity due to two cognitive tasks, specifically mental arithmetic and music imagery. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while ten able-bodied adults performed mental arithmetic and music imagery within a synchronous shape-matching paradigm. With the 18 filtered AC signals, we created task- and subject-specific maximum likelihood classifiers using hidden Markov models. Mental arithmetic and music imagery were classified with an average accuracy of 77.2% ± 7.0 across participants, with all participants significantly exceeding chance accuracies. The results suggest the potential of a two-choice NIRS-BCI based on cognitive rather than motor tasks.

  1. Aerial Photography and Imagery, Ortho-Corrected, 4 inch aerial photography (color, infrared, and color oblique) in urban areas, 1 foot in national forest, Published in 2006, 1:600 (1in=50ft) scale, Los Angeles County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2006. 4 inch aerial photography (color, infrared, and color oblique) in urban areas, 1 foot in...

  2. Object-based approach to national land cover mapping using HJ satellite imagery

    Science.gov (United States)

    Zhang, Lei; Li, Xiaosong; Yuan, Quanzhi; Liu, Yu

    2014-01-01

    To meet the carbon storage estimate in ecosystems for a national carbon strategy, we introduce a consistent database of China land cover. The Chinese Huan Jing (HJ) satellite is proven efficient in the cloud-free acquisition of seasonal image series in a monsoon region and in vegetation identification for mesoscale land cover mapping. Thirty-eight classes of level II land cover are generated based on the Land Cover Classification System of the United Nations Food and Agriculture Organization that follows a standard and quantitative definition. Twenty-four layers of derivative spectral, environmental, and spatial features compose the classification database. Object-based approach characterizing additional nonspectral features is conducted through mapping, and multiscale segmentations are applied on object boundary match to target real-world conditions. This method sufficiently employs spatial information, in addition to spectral characteristics, to improve classification accuracy. The algorithm of hierarchical classification is employed to follow step-by-step procedures that effectively control classification quality. This algorithm divides the dual structures of universal and local trees. Consistent universal trees suitable to most regions are performed first, followed by local trees that depend on specific features of nine climate stratifications. The independent validation indicates the overall accuracy reaches 86%.

  3. Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment

    Directory of Open Access Journals (Sweden)

    Jochen Zschau

    2012-05-01

    Full Text Available Given high urbanization rates and increasing spatio-temporal variability in many present-day cities, exposure information is often out-of-date, highly aggregated or spatially fragmented, increasing the uncertainties associated with seismic risk assessments. This work therefore aims at using space-based technologies to estimate, complement and extend exposure data at multiple scales, over large areas and at a comparatively low cost for the case of the city of Bishkek, Kyrgyzstan. At a neighborhood scale, an analysis of urban structures using medium-resolution optical satellite images is performed. Applying image classification and change-detection analysis to a time-series of Landsat images, the urban environment can be delineated into areas of relatively homogeneous urban structure types, which can provide a first estimate of an exposed building stock (e.g., approximate age of structures, composition and distribution of predominant building types. At a building-by-building scale, a more detailed analysis of the exposed building stock is carried out using a high-resolution Quickbird image. Furthermore, the multi-resolution datasets are combined with census data to disaggregate population statistics. The tools used within this study are being developed on a free- and open-source basis and aim at being transparent, usable and transferable.

  4. Estimating the global surface area of rivers and streams using satellite imagery

    Science.gov (United States)

    Allen, George; Pavelsky, Tamlin

    2017-04-01

    Global observational assessments of river and stream systems are based largely on gauge station data, which are fragmented and often limited to country-level statistics. This limitation severely impedes our understanding of global-scale hydrologic, geomorphic, and biogeochemical fluvial processes. In contrast, satellite remote sensing data provide a globally-consistent and spatially-continuous tool for studying rivers. Here we present a novel method estimate the total surface area of all rivers and stream globally using measurements from the recently-developed Global River Widths from Landsat (GRWL) database and field surveys. The surface area of rivers and streams is a key model parameter in global evaluations of greenhouse gas emissions from inland waters. Preliminary analysis suggests that rivers occupy a total area of 80 thousand square kilometers, or 0.58% of Earth's land surface. This result is 30% greater than the previous best estimate that is based on digital elevation models and gauge station measurements. Compared to previous regional assessments, we find that rivers and streams occupy a greater proportion of the land surface in the arctic and in the tropics, and a lower proportion of land surface in the United States and in Europe. Our results suggest that current estimates of greenhouse gas emissions from inland waters should be revised upwards to account for the greater abundance of river and stream surface area.

  5. Monitoring agricultural crop growth: comparison of high spatial-temporal satellite imagery versus UAV-based imaging spectrometer time series measurements

    Science.gov (United States)

    Mucher, Sander; Roerink, Gerbert; Franke, Jappe; Suomalainen, Juha; Kooistra, Lammert

    2014-05-01

    In 2012, the Dutch National Satellite Data Portal (NSD) was launched as a preparation to the launch of the European SENTINEL satellites in the framework of the Copernicus Programme. At the same time the Unmanned Aerial Remote Sensing Facility (UARSF: www.wageningenUR.nl/uarsf) has been established as research facility at Wageningen University and Research Centre. The NSD became available for the development of services and advice through an investment from the Dutch government in collaboration with the Netherlands Space Office (NSO) in order to develop new services for precision agriculture. The NSD contains Formosat, Radarsat as well as DMC satellite imagery. The processing of the DMC imagery resulted in the Greenmonitor service (www.groenmonitor.nl). The Greenmonitor is an unique product that covers the Netherlands with a high spatial and temporal resolution. The Greenmonitor is now being exploited for various applications, amongst others crop identification, crop phenology, and identification of management activities. The UARSF of Wageningen UR has three objectives: 1) to develop innovation in the field of remote sensing science using Unmanned Aerial Vehicles (UAV) by providing a platform for dedicated and high-quality experiments; 2) to support high quality UAV services by providing calibration facilities and disseminating processing procedures to the UAV user community; 3) to promote and test the use of UAV in a broad range of application fields such as precision agriculture and habitat monitoring. Through this coincidence of new developments the goal of our study was to compare the information for the measurements of spatial variation in crops and soils as derived from high spatial-temporal satellite imagery from the national data portal compared to the exploitation of UAVs, in our case an Altura octocopter with a hyperspectral camera. As such, the focus is on the applications in precision agriculture. Both primary producers and chain partners and service

  6. Astrometry and Near-Infrared Photometry of Neptune's Inner Satellites and Ring Arcs

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn

    2002-03-01

    We report 1.87 μm photometry and astrometry of the inner satellites (Proteus, Larissa, Galatea, and Despina) and ring arcs of Neptune, obtained with the Hubble Space Telescope and its near-infrared camera NICMOS. From comparison with the Voyager data obtained at visible wavelengths, the small bodies orbiting within the ring region of Neptune have a near-infrared albedo consistently low, but higher than at visible wavelengths for most of the satellites, ranging from p1.87μm=0.058 (Despina) to p1.87μm=0.094 (Proteus). The ring arcs display a reddish spectral response similar to the satellites' in the 0.5-1.9 μm wavelength range. If we consider an earlier photometric measurement of Proteus obtained at K band, the satellite's albedo shows a depression at 2.2 μm that could be the first spectral evidence for the presence of CH or CN bearing material on its surface. Although astrometry of the inner moons of Neptune yields positions consistent with the predictions derived from Voyager images, the long time base between the Voyager and NICMOS observations allows us to refine our knowledge of their mean motions and semimajor axes, and to decrease the errors associated with these measurements. In addition, we confirm a mismatch between the mean semimajor axis of the ring arcs and the location of the 42:43 corotation inclined resonance due to Galatea. This result calls into question the ability of this resonance to confine the arcs azimuthally.

  7. Digital Meteorological Radar Data Compared with Digital Infrared Data from a Geostationary Meteorological Satellite.

    Science.gov (United States)

    1979-05-01

    datai uwere tab~ulaited for compariso;cn with the infrared satellite data) j 20 CIIA1iLTR Ml GEOSTAT] ONAPY ME LW)L- C , TIL LF K Meteorolccj isa I sate...8217):U S f 3 ’ 1 t ’ Iv . e , :]~L ’ bI 1 T-4 THY:-, L,’AClvT!P 3 AND IMVIC]l C t101 KRV~;It Tb 3 ( ji~u>:2;cat L ii 2 ’GD ~Of the L~r [2 u : ~~ I~ rtu ~j

  8. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Science.gov (United States)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  9. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  10. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    Science.gov (United States)

    Malone, Sparkle; Tulbure, Mirela; Pérez-Luque, Antonio J.; Assal, Timothy J.; Bremer, Leah; Drucker, Debora; Hillis, Vicken; Varela, Sara; Goulden, Michael

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and function. We quantified ecosystem resistance to drought by comparing changes in satellite-derived estimates of water-use efficiency (WUE = net primary productivity [NPP]/evapotranspiration [ET]) under normal (i.e., baseline) and drought conditions (ΔWUE = WUE2014 − baseline WUE). With this method, areas with increasing WUE under drought conditions are considered more resilient than systems with declining WUE. Baseline WUE varied across California (0.08 to 3.85 g C/mm H2O) and WUE generally increased under severe drought conditions in 2014. Strong correlations between ΔWUE, precipitation, and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e., grasslands) also had greater C-uptake rates when water was limiting and higher rates of carbon-uptake efficiency (CUE = NPP/LAI) under drought conditions. We also found that systems with a baseline WUE ≤ 0.4 exhibited a decline in WUE under drought conditions, suggesting that a baseline WUE ≤ 0.4 might be indicative of low drought resistance. Drought severity, precipitation, and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.

  11. Online Access to Weather Satellite Imagery Through the World Wide Web

    Science.gov (United States)

    Emery, W.; Baldwin, D.

    1998-01-01

    Both global area coverage (GAC) and high-resolution picture transmission (HRTP) data from the Advanced Very High Resolution Radiometer (AVHRR) are made available to laternet users through an online data access system. Older GOES-7 data am also available. Created as a "testbed" data system for NASA's future Earth Observing System Data and Information System (EOSDIS), this testbed provides an opportunity to test both the technical requirements of an onune'd;ta system and the different ways in which the -general user, community would employ such a system. Initiated in December 1991, the basic data system experienced five major evolutionary changes In response to user requests and requirements. Features added with these changes were the addition of online browse, user subsetting, dynamic image Processing/navigation, a stand-alone data storage system, and movement,from an X-windows graphical user Interface (GUI) to a World Wide Web (WWW) interface. Over Its lifetime, the system has had as many as 2500 registered users. The system on the WWW has had over 2500 hits since October 1995. Many of these hits are by casual users that only take the GIF images directly from the interface screens and do not specifically order digital data. Still, there b a consistent stream of users ordering the navigated image data and related products (maps and so forth). We have recently added a real-time, seven- day, northwestern United States normalized difference vegetation index (NDVI) composite that has generated considerable Interest. Index Terms-Data system, earth science, online access, satellite data.

  12. Surface chlorophyll distributions in the upper Gulf of Thailand investigated using satellite imagery and ecosystem model

    Science.gov (United States)

    Buranapratheprat, Anukul

    MERIS data and Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model coupled with the Princeton Ocean Model (POM), were used to investigate seasonal variations in surface chlorophyll distributions and their controlling factors to clarify phytoplankton dynamics in the upper Gulf of Thailand. Chlorophyll maps were produced by application on MERIS Level 2 data an empirical algorithm derived from the regression analysis of the relationship between chlorophyll-a concentration and remote sensing reflectance ratio. The results indicated that the patterns of seasonal chlorophyll distributions corresponded to local wind and water circulations. The model simulation highlighted the importance of river water as a significant nutrient source, and its movement after discharge into the sea is controlled by seasonal circulations. High chlorophyll concentration located along the western coast following the direction of counter-clockwise circulation, forced by the northeast winds, while chlorophyll accumulation was observed in the northeastern corner of the gulf due to clockwise circulation, driven by the southwest winds. These key simulated results are consistent with those of field observations and satellite images captured in the same periods of time, and also described seasonal shifting of blooming areas previously reported. Sensitivity analysis of simulated chlorophyll distributions suggested that not only nutrients but also wind-induced vertical movement plays a significant role in controlling phytoplankton growth. Plankton blooms occur in zones of upwelling or where vertical diffusivities are low. Increasing nutrients in the water column due to river loads leads to increasing potential for severe plankton blooms when other photosynthetic factors, such as water stability and light, are optimized. The knowledge of seasonal patterns of blooming can be used to construct environmental risk maps which are very useful for planning to mitigate the eutrophic problems

  13. Detecting the changes in rural communities in Taiwan by applying multiphase segmentation on FORMOSA-2 satellite imagery

    Science.gov (United States)

    Huang, Yishuo

    2015-09-01

    regions containing roads, buildings, and other manmade construction works and the class with high values of NDVI indicates that those regions contain vegetation in good health. In order to verify the processed results, the regional boundaries were extracted and laid down on the given images to check whether the extracted boundaries were laid down on buildings, roads, or other artificial constructions. In addition to the proposed approach, another approach called statistical region merging was employed by grouping sets of pixels with homogeneous properties such that those sets are iteratively grown by combining smaller regions or pixels. In doing so, the segmented NDVI map can be generated. By comparing the areas of the merged classes in different years, the changes occurring in the rural communities of Taiwan can be detected. The satellite imagery of FORMOSA-2 with 2-m ground resolution is employed to evaluate the performance of the proposed approach. The satellite imagery of two rural communities (Jhumen and Taomi communities) is chosen to evaluate environmental changes between 2005 and 2010. The change maps of 2005-2010 show that a high density of green on a patch of land is increased by 19.62 ha in Jhumen community and conversely a similar patch of land is significantly decreased by 236.59 ha in Taomi community. Furthermore, the change maps created by another image segmentation method called statistical region merging generate similar processed results to multiphase segmentation.

  14. Developing an Ice Volume Estimate of Jarvis Glacier, Alaska, using Ground-Penetrating Radar and High Resolution Satellite Imagery

    Science.gov (United States)

    Wu, N. L.; Campbell, S. W.; Douglas, T. A.; Osterberg, E. C.

    2013-12-01

    Jarvis Glacier is an important water source for Fort Greely and Delta Junction, Alaska. Yet with warming summer temperatures caused by climate change, the glacier is melting rapidly. Growing concern of a dwindling water supply has caused significant research efforts towards determining future water resources from spring melt and glacier runoff which feeds the community on a yearly basis. The main objective of this project was to determine the total volume of the Jarvis Glacier. In April 2012, a centerline profile of the Jarvis Glacier and 15 km of 100 MHz ground-penetrating radar (GPR) profiles were collected in cross sections to provide ice depth measurements. These depth measurements were combined with an interpreted glacier boundary (depth = 0 m) from recently collected high resolution WorldView satellite imagery to estimate total ice volume. Ice volume was calculated at 0.62 km3 over a surface area of 8.82 km2. However, it is likely that more glacier-ice exists within Jarvis Glacier watershed considering the value calculated with GPR profiles accounts for only the glacier ice within the valley and not for the valley side wall ice. The GLIMS glacier area database suggests that the valley accounts for approximately 50% of the total ice covered watershed. Hence, we are currently working to improve total ice volume estimates which incorporate the surrounding valley walls. Results from this project will be used in conjunction with climate change estimates and hydrological properties downstream of the glacier to estimate future water resources available to Fort Greely and Delta Junction.

  15. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison

    Science.gov (United States)

    Biggs, Trent W.; Marshall, Michael; Messina, Alex

    2016-09-01

    The surface energy balance algorithm for land (SEBAL) estimates land surface evapotranspiration (ET) from radiometric surface temperature (TR), but requires manual selection of calibration pixels, which can be impractical for mapping seasonal ET. Here pixel selection is automated and SEBAL implemented using global climate grids and satellite imagery. SEBAL is compared with the MOD16 algorithm, which uses remotely sensed data on vegetation condition to constrain reference ET from the Penman-Monteith equation. The difference between the evaporative fraction (Λ, range 0-1) from SEBAL and six eddy flux correlation towers was less than 0.10 for three of six towers, and less than 0.24 for all towers. SEBAL ET was moderately sensitive to surface roughness length and implementation over regions smaller than ˜10,000 km2 provided lower error than larger regions. Pixel selection based on TR had similar errors as those based on a vegetation index. For maize, MOD16 had lower error in mean seasonal evaporative fraction (-0.02) compared to SEBAL Λ (0.23), but MOD16 significantly underestimated the evaporative fraction from rice (-0.52) and cotton fields (-0.67) compared with SEBAL (-0.09 rice, -0.09 cotton). MOD16 had the largest error over short crops in the early growing season when vegetation cover was low but land surface was wet. Temperature-based methods like SEBAL can be automated and likely outperform vegetation-based methods in irrigated areas, especially under conditions of low vegetation cover and high soil evaporation.

  16. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  17. Integration of satellite imagery and forest inventory in mapping dominant and associated species at a regional scale.

    Science.gov (United States)

    Zhang, Yangjian; He, Hong S; Dijak, William D; Yang, Jian; Shifley, Stephen R; Palik, Brian J

    2009-08-01

    To achieve the overall objective of restoring natural environment and sustainable resource usability, each forest management practice effect needs to be predicted using a simulation model. Previous simulation efforts were typically confined to public land. Comprehensive forest management practices entail incorporating interactions between public and private land. To make inclusion of private land into management planning feasible at the regional scale, this study uses a new method of combining Forest Inventory and Analysis (FIA) data with remotely sensed forest group data to retrieve detailed species composition and age information for the Missouri Ozark Highlands. Remote sensed forest group and land form data inferred from topography were integrated to produce distinct combinations (ecotypes). Forest types and size classes were assigned to ecotypes based on their proportions in the FIA data. Then tree species and tree age determined from FIA subplots stratified by forest type and size class were assigned to pixels for the entire study area. The resulting species composition map can improve simulation model performance in that it has spatially explicit and continuous information of dominant and associated species, and tree ages that are unavailable from either satellite imagery or forest inventory data. In addition, the resulting species map revealed that public land and private land in Ozark Highlands differ in species composition and stand size. Shortleaf pine is a co-dominant species in public land, whereas it becomes a minor species in private land. Public forest is older than private forest. Both public and private forests have deviated from historical forest condition in terms of species composition. Based on possible reasons causing the deviation discussed in this study, corresponding management avenues that can assist in restoring natural environment were recommended.

  18. Multiscale assessment of progress of electrification in Indonesia based on brightness level derived from nighttime satellite imagery.

    Science.gov (United States)

    Ramdani, Fatwa; Setiani, Putri

    2017-06-01

    Availability of electricity can be used as an indicator to proximate parameters related to human well-being. Overall, the electrification process in Indonesia has been accelerating in the past two decades. Unfortunately, monitoring the country's progress on its effort to provide wider access to electricity poses challenges due to inconsistency of data provided by each national bureau, and limited availability of information. This study attempts to provide a reliable measure by employing nighttime satellite imagery to observe and to map the progress of electrification within a duration of 20 years, from 1993 to 2013. Brightness of 67,021 settlement-size points in 1993, 2003, and 2013 was assessed using data from DMSP/OLS instruments to study the electrification progress in the three service regions (Sumatera, Java-Bali, and East Indonesia) of the country's public electricity company, PLN. Observation of all service areas shows that the increase in brightness, which correspond with higher electricity development and consumption, has positive correlation with both population density (R(2) = 0.70) and urban change (R(2) = 0.79). Moreover, urban change has a stronger correlation with brightness, which is probably due to the high energy consumption in urban area per capita. This study also found that the brightness in Java-Bali region is very dominant, while the brightness in other areas has been lagging during the period of analysis. The slow development of electricity infrastructure, particularly in major parts of East Indonesia region, affects the low economic growth in some areas and formed vicious cycle.

  19. NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded Satellite (GridSat-B1) data provides a uniform set of quality controlled geostationary satellite observations for the visible, infrared window and...

  20. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    Science.gov (United States)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure

  1. Object detection utilizing a linear retrieval algorithm for thermal infrared imagery

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, M.S. [Arizona State Univ., Tempe, AZ (United States)

    1996-11-01

    Thermal infrared (TIR) spectroscopy and remote sensing have been proven to be extremely valuable tools for mineralogic discrimination. One technique for sub-pixel detection and data reduction, known as a spectral retrieval or unmixing algorithm, will prove useful in the analysis of data from scheduled TIR orbital instruments. This study represents the first quantitative attempt to identify the limits of the model, specifically concentrating on the TIR. The algorithm was written and applied to laboratory data, testing the effects of particle size, noise, and multiple endmembers, then adapted to operate on airborne Thermal Infrared Multispectral Scanner data of the Kelso Dunes, CA, Meteor Crater, AZ, and Medicine Lake Volcano, CA. Results indicate that linear spectral unmixmg can produce accurate endmember detection to within an average of 5%. In addition, the effects of vitrification and textural variations were modeled. The ability to predict mineral or rock abundances becomes extremely useful in tracking sediment transport, decertification, and potential hazard assessment in remote volcanic regions. 26 refs., 3 figs.

  2. Analysis of the ballistic impact response of a composite material using FAST Infrared Imagery

    Science.gov (United States)

    Marcotte, Frederick; Ouellet, Simon; Farley, Vincent

    2013-05-01

    The level of protection offered by a given ballistic material is typically evaluated in terms of a set of projectiles and their associated velocity at which a certain percentage of the projectiles are expected to perforate. (i.e. FSP 17gr : V50 = 500m/s, 9mm FMJ; V0=500m/s). These metrics give little information about the physical phenomena by which energy is dispersed, spread or absorbed in a specific target material. Aside from post-test inspection of the impacted material, additional information on the target response is traditionally obtained during a test from the use of high speed imaging, whether it is from a single camera aimed at the impact surface or the backface, or from a set of camera allowing full 3-D reconstruction of a deformed surface. Again, this kind of data may be difficult to interpret if the interest is in the way energy is managed in the target in real time. Recent technological progress in scientific grade high-speed infrared (IR) camera demonstrated that these phenomena can straightforwardly be measured using IR thermal imaging. This paper presents promising results obtained from Telops FAST-IR 1500 infrared camera on an aramid-based ballistic composite during an impact from a small caliber fragment simulating projectile (FSP).

  3. Frequency based detection and monitoring of small scale explosive activity by comparing satellite and ground based infrared observations at Stromboli Volcano, Italy

    Science.gov (United States)

    Worden, Anna; Dehn, Jonathan; Ripepe, Maurizio; Donne, Dario Delle

    2014-08-01

    Thermal activity is a common precursor to explosive volcanic activity. The ability to use these thermal precursors to monitor the volcano and obtain early warning about upcoming activity is beneficial for both human safety and infrastructure security. By using a very reliably active volcano, Stromboli Volcano in Italy, a method has been developed and tested to look at changes in the frequency of small scale explosive activity and how this activity changes prior to larger, ash producing explosive events. Thermal camera footage was used to designate parameters for typical explosions at Stromboli (size of spatter field, cooling rate, frequency of explosions) and this information was applied to characterize explosions in satellite imagery. Satellite data from The National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS) and US/Japan designed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for numerous periods in 2002 to 2009 were analyzed for thermal features which were used to calculate an estimate of the level of activity during the given time period. The results at Stromboli showed a high level of small scale explosions which stop completely prior to large paroxysmal eruptive episodes. This activity also corresponds well to seismic and infrasonic records at Stromboli, indicating that this thermal infrared monitoring method may be used in conjunction with other detection methods where available, and also indicates that it may be a useful method for volcano monitoring when other methods (e.g. seismic instrumentation, infrasound arrays, etc.) are not available.

  4. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    Science.gov (United States)

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the

  5. Inferring species richness and turnover by statistical multiresolution texture analysis of satellite imagery.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. METHODOLOGY/PRINCIPAL FINDINGS: We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL. Species turnover, or [Formula: see text] diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species

  6. Near-Infrared Photometry of Irregular Satellites of Jupiter and Saturn

    CERN Document Server

    Grav, T; Grav, Tommy; Holman, Matthew J.

    2003-01-01

    We present JHKs photometry of 10 Jovian and 4 Saturnian irregular satellites, taken with the Near-InfraRed Imager (NIRI) at the 8-m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C, P and D-type asteroids, although J XII Ananke and S IX Phoebe show weak indications of possible water features in the H filter. The four members of the Himalia-family have similar near-infrared colors, as do the two members of the Gallic family, S XX Paaliaq and S XXIX Siarnaq. From low resolution normalized reflectance spectra based on the broadband colors and covering 0.4 to 2.2 microns, the irregular satellites are identified as C-type (J VII Pasiphae, J VI Himalia and S IX Phoebe), P-type (J XII Ananke and J XVIII Themisto) and D-type (J IX Carme and J X Sinope), showing a diversity of origins of these objects.

  7. Contribution of ultraviolet and shortwave infrared observations to atmospheric correction of PACE ocean-color imagery

    Science.gov (United States)

    Frouin, Robert J.; Gross-Colzy, Lydwine S.

    2016-05-01

    The Pre-Aerosol, Cloud, and ocean Ecosystem (PACE) mission will carry into space a spectrometer measuring at 5 nm resolution in the ultraviolet (UV) to near infrared (NIR) and at lower resolution in spectral bands in the NIR and shortwave infrared (SWIR). These observations have great potential for improving estimates of marine reflectance in the post-EOS era. In view of this, we evaluate, using simulations with a coupled radiation transfer code, the gain in marine reflectance accuracy expected by including observations in the UV and SWIR compared with just using observations in the visible to NIR. The study is performed for the PACE threshold aggregate bands with respect to the standard set of bands used to generate ocean color products. The top-of-atmosphere (TOA) signal measured by the PACE spectrometer is simulated for a variety of realistic atmospheric and oceanic conditions. The TOA reflectance and the marine reflectance of the simulated ensemble are decomposed into principal components, and the components of the TOA reflectance sensitive to the ocean signal identified. Inverse models are constructed to retrieve the principal components of the marine reflectance, allowing a reconstruction, therefore an estimation of the marine reflectance. Theoretical performance is quantified as a function of angular geometry, aerosol properties, and water type, showing a significant improvement in retrieval accuracy when using the extended spectral range. On average over all the situations considered (including sun glint), the RMS error is reduced from 0.0037 to 0.0024 at 412 nm, from 0.0013 to 0.0007 at 665 nm, and from 0.0010 to 0.0004 at 865 nm (Case 2 waters are better handled). The performance is degraded at large zenith angles and aerosol optical thickness, is better at scattering angles around 120-130 degrees, and exhibits little dependence on aerosol single scattering albedo and aerosol scale height.

  8. Online Visualization and Analysis of Merged Global Geostationary Satellite Infrared Dataset

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Leptoukh, G.; Mehta, A.

    2008-12-01

    The NASA Goddard Earth Sciences Data Information Services Center (GES DISC) is home of Tropical Rainfall Measuring Mission (TRMM) data archive. The global merged IR product, also known as, the NCEP/CPC 4-km Global (60°N - 60°S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged (60°N-60°S) pixel-resolution (4 km) IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The availability of data from METEOSAT-5, which is located at 63E at the present time, yields a unique opportunity for total global (60°N-60°S) coverage. The GES DISC has collected over 8 years of the data beginning from February of 2000. This high temporal resolution dataset can not only provide additional background information to TRMM and other satellite missions, but also allow observing a wide range of meteorological phenomena from space, such as, mesoscale convection system, tropical cyclones, hurricanes, etc. The dataset can also be used to verify model simulations. Despite that the data can be downloaded via ftp, however, its large volume poses a challenge for many users. A single file occupies about 70 MB disk space and there is a total of ~73,000 files (~4.5 TB) for the past 8 years. Because there is a lack of data subsetting service, one has to download the entire file, which could be time consuming and require a lot of disk space. In order to facilitate data access, we have developed a web prototype, the Global Image ViewER (GIVER), to allow users to conduct online visualization and analysis of this dataset. With a web browser and few mouse clicks, users can have a full access to over 8 year and over 4.5 TB data and generate black and white IR imagery and animation without downloading any software and data. Basic functions include selection of area of interest, single imagery or animation, a time skip capability for different temporal resolution and image size. Users

  9. Near-infrared photometry and astrometry of Neptune's inner satellites and ring-arcs

    Science.gov (United States)

    Dumas, C.; Terrile, R. J.; Smith, B. A.; Schneider, G.; Becklin, E. E.

    2000-10-01

    Until recently, the system of Neptune's inner satellites and ring-arcs had only been observed in direct imaging from the Voyager 2 spacecraft, limiting our knowledge of this system to visible wavelengths data. Nearly ten years after the Voyager fly-by, HST/NICMOS observed the close vicinity of Neptune at 1.87μ m, a wavelength that corresponds to a strong methane absorption in the atmosphere of Neptune and allows the attenuation of the scattered light produced by the planet. We derived the near-infrared geometric albedo of the ring-arcs and small moons Proteus, Larissa, Galatea and Despina, and compared their orbital positions with the predictions from the 1989 Voyager observations. The surfaces of the inner satellites of Neptune appear to be coated with dark, neutral material, with albedoes ranging from 0.077 (Proteus) to 0.033 (Despina) and their orbital position was found to be within the prediction errors of the Voyager measurements. The material located inside the ring-arcs of Neptune also displays a low-neutral reflectance (p{1.87 μm } ~ 0.055) and the HST/NICMOS measurement of the mean orbital motion of the ring-arcs shows that their confinement cannot be entirely explained by resonances produced by the nearby satellite Galatea (Nature, 400, 733-735). This work was performed at the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration, and is supported by NASA grant NAG5-3042.

  10. Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004-2010

    Science.gov (United States)

    Morgan, Hilary A.; Harris, Andrew J. L.; Gurioli, Lucia

    2013-08-01

    high TADRs of about 1-10 m3·s- 1, followed by a waning phase, and Type 2 activity characterized by low, scattered TADRs of about 0.1-1 m3·s- 1. The risk associated with Type 1 activity is much higher, so identifying the Type 1 radiance signature in satellite imagery is useful for monitoring an ongoing eruption.

  11. Algorithm fusion in forward-looking long-wave infrared imagery for buried explosive hazard detection

    Science.gov (United States)

    Anderson, D. T.; Keller, James M.; Sjahputera, Ozy

    2011-06-01

    In this article, we propose a method to fuse multiple algorithms in a long wave infrared (LWIR) system in the context of forward looking buried explosive hazard detection. A pre-screener is applied first, which is an ensemble of local RX filters and mean shift clustering in UTM space. Hit correspondence is then performed with an algorithm based on corner detection, local binary patterns (LBP), multiple instance learning (MIL) and mean shift clustering in UTM space. Next, features from image chips are extracted from UTM confidence maps based on maximally stable extremal regions (MSERs) and Gaussian mixture models (GMMs). These sources are then fused using an ordered weighted average (OWA). While this fusion approach has yet to improve the overall positive detection rate in LWIR, we do demonstrate false alarm reduction. Targets that are not detected by our system are also not detected by a human under visual inspection. Experimental results are shown based on field data measurements from a US Army test site.

  12. Recognizing pedestrian's unsafe behaviors in far-infrared imagery at night

    Science.gov (United States)

    Lee, Eun Ju; Ko, Byoung Chul; Nam, Jae-Yeal

    2016-05-01

    Pedestrian behavior recognition is important work for early accident prevention in advanced driver assistance system (ADAS). In particular, because most pedestrian-vehicle crashes are occurred from late of night to early of dawn, our study focus on recognizing unsafe behavior of pedestrians using thermal image captured from moving vehicle at night. For recognizing unsafe behavior, this study uses convolutional neural network (CNN) which shows high quality of recognition performance. However, because traditional CNN requires the very expensive training time and memory, we design the light CNN consisted of two convolutional layers and two subsampling layers for real-time processing of vehicle applications. In addition, we combine light CNN with boosted random forest (Boosted RF) classifier so that the output of CNN is not fully connected with the classifier but randomly connected with Boosted random forest. We named this CNN as randomly connected CNN (RC-CNN). The proposed method was successfully applied to the pedestrian unsafe behavior (PUB) dataset captured from far-infrared camera at night and its behavior recognition accuracy is confirmed to be higher than that of some algorithms related to CNNs, with a shorter processing time.

  13. The 2010 MW 6.9 Yushu (Qinghai, China) earthquake: constraints from InSAR, bodywave modeling and satellite imagery

    Science.gov (United States)

    Parsons, B. E.; Li, Z.; Elliott, J. R.; Barisin, I.; Feng, W.; Jackson, J. A.; Song, X.; Walters, R. J.; Zhang, P.

    2010-12-01

    A large earthquake (MW = 6.9) struck the county of Yushu, Qinghai, China on 13 April 2010, causing 2,220 fatalities and over 12,000 injured. We have used a combination of ALOS and Envisat SAR data to model the fault geometry and slip distribution of this event, using high-resolution satellite imagery and bodywave modelling to provide further information. Preliminary observations were first posted on the internet on 20 April 2010. The fault on which the earthquake occurred can be traced precisely using SPOT 5 (2.5 m resolution) imagery and SAR image offsets, interferometric coherence and phase discontinuities. On this basis the fault was most simply divided into three segments. The dips of the fault segments were obtained from elastic dislocation models with uniform slip; the southeast segment, on which the largest slip occurred, and northwest segment are near vertical, with the central segment dipping about 75° to the southwest. Slip was almost pure left-lateral. The fault geometry was then fixed and the slip distribution that best-fits the InSAR phase measurements determined. Slip occurs mainly in the upper 10 km, with a maximum slip of ~2 m at a depth of 3 km on the southeast segment. Near-surface slip (upper 1 km of the model) agrees well with field observations of offsets on the southeast segment. The geodetically-determined and seismic moments are in reasonable agreement (2.1 ± 0.2 × 1019 N m). However, rupture lengths of 35-40 km were estimated immediately after the earthquake from the seismic moment together with a magnitude of slip from surface observations and assumed seismogenic layer thicknesses, whereas the interferograms showed slip must have occurred over a length of 70-75 km. The apparent discrepancy can be explained in terms of the non-uniform distribution of moment release on the fault. There are three main patches of moment release along the length of the fault. We believe the northwest patch may be due to the aftershock (M0 = ~0.2 × 1019 N m

  14. Extension of mental preparation positively affects motor imagery as compared to motor execution: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Holper, Lisa; Scholkmann, Felix; Shalóm, Diego E; Wolf, Martin

    2012-05-01

    Motor imagery (MI) is widely used to study cognitive action control. Although, the neural simulation theory assumes that MI and motor execution (ME) share many common features, the extent of similarity and whether it spreads into the preparation phase is still under investigation. Here we asked, whether an extension of physiological mental preparation has a comparable effect on MI and ME. Data were recorded using wireless functional near-infrared spectroscopy (fNIRS) in a two-stage task design where subjects were cued with or without preparatory stimuli to either execute or imagine complex sequential thumb-finger tasks. The main finding is that the extended mental preparation has a significant positive effect on oxy-hemoglobin (∆[O(2)Hb]) in response to MI, which is proportionally larger as that found in response to ME. Furthermore, fNIRS was capable to discriminate within each task whether it was preceded by preparatory stimuli or not. Transition from mental preparation to actual performance (ME or MI) was reflected by a dip of the fNIRS signal presumably related to underlying cortical processes changing between preparation and task performance. Statistically significant main effects of 'Preparation' and 'Task' showed that ∆[O(2)Hb] during preparation was preparation-specific, i.e., positively affected by the presence of preparatory stimuli, whereas during task performance ∆[O(2)Hb] was both preparation- and task-specific, i.e., additionally affected by the task mode. These results are particularly appealing from a practical point of view for making use of MI in neuroscientific applications. Especially neurorehabilitation and neural interfaces may benefit from utilizing positive interactions between mental preparation and MI performance.

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  16. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics wer